THE COMPLEXITY OF RELATIONAL QUERY LANGUAGES

Extended Abstract

Moshe Y. VardiT

Department of Computer Science
Stanford University
Stanford, California 94305

Abstract

Two complexity measures for query languages are
proposed. Data complexity is the complexity of evaluating
a query in the language as a function of the size of the
database. and expression complexity is the complexity of
evalualing a query in the language as a function of the size
of the expression defining the query. We study the data
and expression complexity of logical languages - relational
calculus and its extensions by transitive closure, fixpoint
and second order existential quantification - and algebraic
Janguages - relational algebra and ils extensions by
bounded and unbounded looping. The patiern which will
be shown is that the expression complexity of the investi-
gated languages is one cxponential higher then their data
complexity, and for both types of complexity we show
completeness in some complexity class.

U Research supported by a Weizmann Post-doctoral Fellow-
ship, Fullbright Award, and NSF grant MCS-80-12907. Pan of
this rescarch was carried out while the author was as the Hebrew
University of Jferusalem, lIsracl, and was supported by Grant
1849/79 of the U.S.A -lsracl BSI-.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-067-2/82/005/0137 $00.75

137

1. Introduction

In the last years there has been a lot of interest in
query languages for relational databases. Following
Codd's pioneering work [Codd] on the relational calculus
and algebra. a lot of work has been done on studying and
comparing the expressive power of several query languages
[AU,Ba,CH1,CH2,CH3,Chan,Coop,Pa]. The approach
taken here is to compare query languages by investigating
the complexity of evaluating queries in these languages.

There are three ways to measure the complexity of
evaluating queries in a specific language. First, one can fix
a specific query in the language and study the complexity
of applying this query to arbitrary databases. The com-
plexity is then given as a function of the size of the data-
bases. We call this complexily data complexity.

Alternatively, one can fix a specific database and
study the complexity of applying queries represented by
arbitrary expressions in the language. The complexity is
then given as a function of the length of the expressions.
We call this complexity expression complexity.

Finally, one can study the complexily of applying
queries represented by arbitrary expressions in the
language to arbitrary databases. The complexity is then
given as a function of the combined size of the expressions
and the databases. We call this complexily combined com-
Dplexity.

It turns out that combined complexity is pretty
closed to expression complexity, and for this reason we

concentrate in this paper upon data and expression com-
plexity. These two types of complexity actually measures
two different things. Data complexity is really a measure
for the expressive power of the language because it
answers the question "how difficult are the individual
questions asked in this language?”. [t is of interest mainly
to users who tend to use only very specific queries.
Expression complexity on the other hand is a measure for
the succinctness of the language because it answers the
question "how difficult is answering different questions
asked in this language?”. It is of interest mainly to users
who tend to use a variety of queries.

There are two major types of relational query
languages. Logical languages, e.g., relational calculus, con-
sist of formulas that when applied 1o a database return as
an answer the set of all tuples that satisfy them. These
languages are non-procedural in nature. Algebraic
languages, c.g.. relational algebra, consist of programs
whose basic operations are algebraic ones like join and

projection. These languages are procedural in nature.

The logical languages investigated in this paper are
the language of first-order logic (which differs from the
relational calculus of [Codd] in having the variables rang-
ing over domain elements instcad of tuples), and the
languages obtained by restricting it to be quantifier-free or
by enriching it with transitive closure, fixpoint and
second-order quantification, respectively, The algebraic
languages are the relational algebra and the languages
obtained by restricting it to be projection-fiee or by
enriching it with bounded looping and unbounded looping,
respectively.

As an example consider the language of first-order
logic. Let ¢ be a sentence in this language of sizc s (a
sentence represents a Boolean query, that is, a query that
returns a yes/no answer). @ has at most s variables. In
order to evaluate @ on a database of size n, it suffices to
cycle through at most n* possible assignments of values
from the database to the variables, and this can be done in
space O(logn). Thus, the set of all databases satisfying ¢

is in LOGSPACE. On the other hand, if B is a non-trivial
database, 1., it has a relalion which is neither empty nor
does it contain all tuples over the domain of the database,
then the set of all fist-order sentences satisfied by B is
PSPACE-complete {CM].

This happens to be quite a typical patiern. The
expression complexily of the investigated languages is usu-
ally one exponential higher then the data complexity, and
for both types of complexity we will show completeness in
some complexity class. More specifically, we will show a
hierarchy of languages whose data complexity is described
by completeness in LOGSPACE, NLOGSPACE, PTIME,
NPTIME and PSPACE, respectively, and whose expres-
sions comiplexity is described by completeness in PSPACE,
NPSPACE (=PSPACE), EXPTIME, NEXPTIME and
EXPSPACE, respectively.

In this version of the paper proofs are only briefly
sketched.

2. Databases, Queries and Complexity

We first recall some basic definition taken mainly
from [CH2).

Definition: A relational database (or database for shor) is
atuple B=(D.R\..... R;) where DCN is a finite set
(N is the set of natural numbers) and for each 1<i<k,
R,gDa' for some @;>0. The number a; is called the rank

of R; and B is said to be of type a=(ay, ..., ax).

We will usually abbreviate the vector Ry, ..., R:
by R and write B=(D.R). Also, throughout the paper
we will assume some standard encoding for databases.
Eg., the daabase B =({3.5.7}.{<3,5><5.7>}) might be

" encoded by the string ({11,101,111}.{<11,101><101,111>}).

Definition: A query of type a—b is a partial function
Q:{B| B is of type E}—>2”b

such that if B=(D.R) and Q(B) is defined then
Q(BCD?.

Chandra and Harel [CH1) define a query as comput-
able if it is a partial recursive function and it satisfies what
they call the "consistency criterion”. The queries defined
by the languages in this paper are all computable, so we
will not address this point any further.

Definition: A query language (or language for short) is a
set of expressions L and a meaning function p such that
for every expression e in L, p(e) is a query. C(L) is the
class of queries defined by expressions in L, that is,

C(L)={Q | Q =ple) for some e €L}

We will write Q. for p(e) when p is understood
from the context.

Since queries are functions, we will measure their
complexity by studying how difficult it is to recognize that
a certain tuple belongs to the result of applying the query
to the database. That is, we look al the problem as a
recognition problem instead of looking at it as a computa-
tion problem. The result of applying the query to the
database can be obwined by checking for all possible
tuples (.., D®) whether they belong to the result. For
most languages dealt with in the paper, the complexity of
computing the result is the same as the complexity of
recognizing tuples in the result.

Definition: The graph of a query Q is the set
Gr(Q)={(d.B)| dEQ(B)}.

The graph of a database B with respect to a language L is
the set

Gri(B)={(d.e)| e€L and d€Q.(B)}.
The data complexity of a language L is the complex-
ity of the sets Gr(Q,) for the expressions e in L. The

expression complexity of a language L is the complexity of
the sets Gry (B).

Definition: A language L is data-complete (or D-complete
for short) in a complexity class C if for every expression e

139

in L, Gr(Q.) is in C, and there is an expression eg in L

)

)
L is expression-complete (or E-complete for short) in a

such that all sets in C are logspace reducible to Gr(Q,

complexity class C if for every database B, Gr (B) is in
C, and there is a database By such that all sets in C are
logspace reducible to Gry (By).

Delinition: Let C be a complexity class. QC is the class
of queries whose graph is in C, ie., '

QC={Q | Gr(Q)EC}.

3. Logical Languages and their Complexity

The first query language to be studied here is the
language of first-order logic, whose tuple oriented version
is called relational calculus in {Codd).

Definition: Let L be the first-order language with equality,
with no function symbols and with R|,R,, -« - as its predi-
cate symbols. (Note: we will use R, both as the format
symbol denoting a relation and as the relation itself; also
the rank of R, will be a;). Let F be the language consist-
ing of expressions of the form X @(x) where @ is a formula
of L and X is a vector of distinct variable containing all
free variables of . If e is such an expression then p(e) is
a query Q. of type (ay, ...,a)| x| (| X| denotes the
length of X). Q, is defined by

Qe(D,R)={dED'?! | ¢(d) is true in (D,R)}.

Let F~ be the quantifier-free version of F. That is,
quantifiers are not allowed in expressions of F~.

Clearly, F is more expressive then F~.

Example: Let R; be a binary relation describing the flights
of an airline company, ie., R(x,y) means that the com-
pany has a flight from city x to city y. The expression

(x.p).32(R\(x,2)\R(z,y))

represents the query Q of type (2)—>2 which returns the
composition of Ry with itself, ie., the pairs of cities that

are connected by exactly two flights,

A useful query is that which returns the pairs of
cities that are connected by any positive number of flights.
It was shown by Aho and Ullman [AU] that no expression
in F represents this query. This is the motivation for
enriching F by the transitive closure construct [Z1}.

Definition: Let TF be the language obtained by adding to
F expressions of the form 7.(x,y).p(x,y), where
(x,y).p(x,y) is an expression of F. If e is such an expres-
sion then ple) is a query Q. of type (@)—2 defined by

QD R)Y=(Qu (D R)N* (* stands for transitive closure).

Example: The desired query mentioned above s

represented by 7.(x,y).Ri(x,p).

Let R, be a ternary relation describing flights of
several airline companies, i.c., R(x,y,z) means that com-
pany x has a flight from city y to city z. Consider the
query which return all triples (u,v,w) such that v and w
are connected by a posilive number of flights all by the
same company u. There is no way of representing this
query in TF. This is the motivation for enriching £ by
the fixpoint construct.

Definition: Let YF be the language obtained by adding to
F expressions of the form TR.X.¢(X), where X¢(X) is an
expression of F and R is a predicate symbol of rank |x|
that occurs positively in ¢ (i.e.. each occurrence of R in ¢
is under an even number of negations). If e is such an
expression then ple) is a query Q. of type (@)~*|%].
Q.(D R} is a refation R such that Q, (D,R,R)=R and
for any relation R', if Q, (D,R",R)=R’ then RCR'. In
other words, Q.(D,R) is the least fixpoint of the query
Osy

Chandra and Harel [CH2] have shown that all the
expressions in YF define total queries.

Example: The above mentioned query is represented by

140

the following expression of YF:

TR. (x,y,2)R{x,y. 2V 3u(R Lx,y,u)/\R(x,u,z))).

YF is more expressive then TF, because the query
defined by the expression 7.(x,y).@(x.y) of TF is also
defined by the following expression of YF:

TR. (x,p)px,yIVvE z(p(x,2)/\R(z,y))).

Consider now the query which returns the pair of
cities connected by direct flights by an even number of air-
line companies. There is no way to express this query in
YF [CH2]. It can however be expressed by using second-
order existential quantification.

Definition: Let SF be the language obtained by adding to
F expressions of the form X3R. ¢(X), where X.g(X) is an
expression of F. 1If e is such an expression and R is of
arity a then ple) is a query Q. of type (@)—>|Xx| defined
by

0.(D,R)={d€D'*! | there is a relation R CD® st

@(d) is true in (D,R,R)}.

Example: The above mentioned query is represented-by
the following expression of SF:

(u,v).3R. (Yxpz((R(x,y)/\R (x,2)—>y =2)
NRQY,x)\R(z,x)y=z)
ACROPIVR(z,x))

INR o, u,v) > 3w (R (G wIV R(w,x)))
INRC,Y)R L u AR Ly u v).

Tt is easy to show that queries defined by expressions
in YF can be defined by using second-order universal
quantification. It is also true, though less trivial, that such
queries can be defined by using second-order cxistential
quantification. This

can be shown by complexity

arguments [CH2} or by the technique of [JS}. Thus, SF is
more expressive than YF.

The expressiveness relation between the languages
defined so far can be summed up as

Q(F YCQUFCQ(TF)CQ(YF)CQ(SF).

(We use C to denote containment and C to denote proper
containment),

Let us now consider the data and expression com-
plexity of F , F, TF, YF and SF, respectively. We use a
fixed database Bo=(Dg,Ry), Dy={0,1} and
Ro={<D}.

where

Theorem 1: F
LOGSPACE.

Proof: For LOGSPACE, hardness by a logspace reduction
is trivial, so it suffices to show membership. For e€F -,
Gr(Q.) is clearly in LOGSPACE (see next theorem). The
fact thal for every database B, Gr, (B)YELOGSPACE fol-

is D-complete and E-complete in

lows from the fact that Boolean expressions can be
evaluated in logarithmic space [Ly]. O

Theorem 2: F is D-complete in LOGSPACE and E-
complete in PSPACE.
Proof: To test whether €0, (B), a straightforward algo-
rithm cycles through all possible substilutions for the
quantified variables. This algorithm has a logarithmic
space data complexity and polynomial space expression
complexity.
D-completeness: Trivial.
E-completeness: By reduction from Quantified Boolean
Formulas of Stockmeyer [SU it follows that Gre(Bg) is
PSPACE-hard [CM). O

The classification of F as having a logarithmic space
data complexity is quite crude and can be further refined.
For an expression e€F, let gn(e) be the number of
quantifiers in e. Let 2DFA(k) denote the class of sets
accepted by a two-way deterministic finite automaton with
k heads. Recall that LOGSPACE :&ﬁDFA (k) [Ha}.

EN

141

Theorem 3: Let e €F; then Gr(Q,)E2DFA(gn(e)+2).

Proof: gn(e) heads are needed to move over the domain;
thus giving an assignment of elements to the gn(e)
quantified variables, an additional head is needed to move
over the assignment of elements to the free variables, and
the. last head is needed to move over the relations. The
interaction between the last head and the first gn{e)+1
heads gives truth values to the atomic formulas in e. D

Interestingly, it is known that, for all kEN,
2DFA(k) is properly contained 2DFA(k+2) [Ib}, and it
[CH2] that
C({e | e€F and gn(e)=4k}) is properly contained in
C({e | e€F and gn(e)=k +2}).

follows from the resulls of

Theorem 4: TF is D-complete in NLOGSPACE and E-
complete in PSPACE.

Proof: To test whether (a,B)€Q, (x)4(B) W guess a
sequence a=a,ay....a=b and test whether
(a:,a;+)€Q s o(B) for 1<Ki<k. This algorithm has a
nondeterministic logarithmic space data complexity, and a
nondeterministic polynomial space expression complexity.
D-completeness: Let ey be 7.(x.y).R(x.y). Grley) is
NLOGSPACE-hard by reduction from Graph Accessibility
problem [Jo).

E-completeness; Follows from the fact that
PSPACE=NPSPACE and FCTF.O

Theorem 5: YF is D-complete in PTIME and E-complete
in EXPTIME.

Proof: Let the fixpoint expression e be TR.X.q{(X), where
R is of rank | X|. The algorithm of [CH2] for evaluating
Q.(D,R) builds a sequence of increasing approximations
for R starting with the empty relation. Since the cardinal-
ity of Q.(D,R) is bounded by | D }!¥!, the length of the
sequence has the same bound. Hence, this algorithm has a
polynomial time data complexily and an exponential time
expression complexily.

D-completeness: Follows by reduction from Path System

Accessibility problem [JL).

E-completeness: We show that any set accepted by an
exponential time deterministic Turing machine is logspace
reducible to Grys(By). The idea is to encode a computa-
tion of length 2" by a 2n +m —ary relation R (m depends
on the machine in question).

R@p e 808y it e e sy Qo lanste e v o s Qypvm) MEANS
that afier { computation steps the machine has a symbol ¢
j—th ape (@n.... a,),
[ay), and (@yan.... Gy 4m) are
encodings of i, j and o, respectively. The movements of

in its square, where

binary

the machine are simulated by the fixpoint operation. O

The algorithm outlined above for evaluating
Q.(D.R) makes at most | D | *! iterations, and the cost of
each iteration is O(} ||} | D |<!"*M) for some constant
¢. (| la|} denotes the size of the encoding of a). The
following theorem shows that the rank of R and the size
of @ gives also a lower bound on the complexity of

Gr(Q.).

Theerem 6: There is a polynomial p so that for every
kKEN there is an expression e=TRX@(X), with
|X{=0(k) and [lpl1=0((k)), such that
Gr(Q.)DTIME (n*~Y),

Proof: There is a polynomial p so that given a determinis-
tic Turing machine M with input alphabet Z that operates
in time O(n*), we can build an expression e with
|X]1=0(k) and ||pl1=0((M |1)), such that, for
every s€X", one can construct in time O(| |s}|) a data-
base B and a vector d of size O(}]s|}) such that
SEL(M) iff d€Q.(B). The claim then follows from the
fact that there is a Turing machine M with
[{M || =0(k) that operates in time O(n*), but
L(M)YEDTIME(n*) [HS).O

Let YF(k) be the «class of expressions
{e)|e€YF and |)e)) <k}. The theorem above shows
that the hierarchy <C(YF(k)>ien is infinite.

Theorem 7. SF is D-complete in NPTIME and E-

142

complete in NEXPTIME.

Proof: To test whether d€Q; 3, (D R), a straightforward
algorithm guesses a relation R CD? (a is the arity of R)
and tests whether d€Q, (D .R,R). This algorithm has a
nondetecministic polynomial time data complexity and a
nondeterministic exponential time expression complexity.
D-completeness: Shown by reduction from the Clique
probiem of [Kal.

E-completeness: We show that any set accepted by a non-
deterministic exponential time Turing machine is reducible
10 Grg(Bg). We use the encoding described in the proof
of Theorem 5. O

Remark 1: Lower bounds for SF in the spirit of Theorem
6 can be shown in a similar manner.

Remark 2: Not only are YF and SF D-complete in
PTIME and NPTIME, respectively, but also every query
computable in nondeterministic polynomial time can be
defined in SF, and if we assume that one of the relations
of the database is a linear order on the elements of the
domain then every query computable in polynomial time
can be defined in YF*, which is a slight extcnsion of YF
(more precisely, it allows existential quantification over
conjunctions of equality formulas with expressions of YF).
Fagin [Fa] has proven the first claim for Boolean queries,
and by extending his argument we can show that
C(SF)=QNPTIME. Studying the proof in detail, we can
see that the second-order quantification is nceded for two
different purposes. First. it is uséd to define a linear order
on the elements of the domain, and sccondly it is used to
say that there exists an accepling computation on the non-
deterministic machine. If one of the relations in the data~
base is already a linear order relation, and the machine is
deterministic, then the computation can be simulated by
the fixpoint operation. Thus, C(YF'.<{)=QPTIME(L).
(This fact has been also proven independently by Immer-
man [Im2]). Let EVEN be the Boolean query that answer

positively for a database (D,R) just in case that |D| is
even. Clearly, EVEN€QLOGSPACE. However, it is
known that EVEN€C(YF*) [CH2]. Conscquently,
C(FYCQLOGSPACE, C(TF)YCQNLOGSPACE, and
C(YF*)CQPTIME. One may wonder
C(F,<)=QLOGSPACE(L) or

C(TF,<)=QNLOGSPACE(L). It
results of [Im1] that the first statement docs not hold, and

whether
whether
follows from the

we conjecture that neither does the second one.

4. Algebraic Languages and their Complexity

Our basic algebraic query language is based on the
relational algebra of [Codd]. The language consists of the
following:

Variables: X§,X9?., ..., Xé.xt, ..., X¢....

Terms: D ,R; XF....
and if #,,15,¢ are terms then so are:

X1, Cartesian product,
nUr, union,

- complement,

Proj,(1) projection of column §,
Permy(t) permutation by 8,

Restrict, (1) restriction of columns i and j.
(The numbers is the terms are assumed to be written in

unary notation).

Definition: The language A consists of statements of the
following form:
Xie1
(5::8)) where S| and S, are statements.
The language A

where ¢ is a term of rank a,

is the projection-free version of A. That

is, projections are not allowed in terms of A~

The language BA consists of the statements of A and also
For |t| do S

ment.

The language LA consists of the statements of BA and

also

, where ¢ is a term and S is a state-

While t=@ do § , where { is a term and S is a

143

statement.
An expression in any of these languages is a pair (S,7)
where S is a statement and ¢ is an expression in the
language.

The semantics of the language is as follows. Vari-
able X¢ has rank a. All variables are initialized to @.
The values of terms D, R, are from the database. The
term ;X1 has value {<d,&>|d€1,6€6}; U, is set
union if ¢; and ¢, have the same rank: Proj,(¢) deletes the

i-th column from t having value
Kdy, d i ... d,, | d€t}, where ¢ has rank a
and i <u: given a permutation § on {1, ..., a}, where ¢

has rank a, the value of Permy(t) is
{<doay - - - .daay | €1} and Restrict, ,(¢) has the value
{d | d€t and d,=d,}, where ¢ has rank a, i<a, and
j<a.

The semantics of "« and ;" is that of assignment
For |t} do S
means: execute S |z] times, where |7]| is determined
upon entry to the loop. We call this bounded looping.

and concatenation in the obvious way.

While t =@ do S means: exccute S as long as 1=,
where ¢ is evaluated dynamically, We call this unbounded
looping.

An expression (S) defines a query Qs) in thefol-
lowing manner: Qs,(B) is the valuc of ¢ afler termina-
tion of S on B, or @ if S does not terminate on B.

It is easy to see that 4 is more expressive than 4,
BA is more expressive than A, and LA is at least as
expressive as B4. However, it is not known whether LA
i3 more expressive than BA. So we have

C(4)CC(A)CC(BAYTC(LA)

Theorem 8; A is D-complete in LOGSPACE and E-
complete in PTIME.

Proof:

D-completeness: Sce next theorem.

E-completeness: Follows from the completeness in PTIME
of the Circuit Value problem of {La]. O

Theorem 9: A is D-complete in LOGSPACE and E-
complete in PSPACE.

Proof: For every e)€F there exists e,€A such that
Q= Q.,, and for every &,€4 there exists ¢,€F such that

Q,‘=Q,2 [CM,Codd]. Furthermore, the translation in

both direction can be carried out in logarithmic space, and
there is a constant ¢ such that ||e;]{<cile/|] and
[lexft<c{le:l|. (The lincarity of the translation from
A to F is not trivial)). Thus, the claim follows by
Theorem 2.0

Theorem 10: BA is D-complete in PTIME and E-complete
in EXPTIME.

Proof: Let e =(S.1)€BA. The maximal rank of a term in
e is bounded by ||e]|. Hence, the cardinality of all
terms in e is bounded by |D{!'¢!!. and the number of
steps in the execution is bounded by | D] Hell2 Thys, a
straightforward evaluation has a polynomial time data
complexity, and an exponential time expression complex-
ity.

Chandra and Harel [CH2] have shown how to simu-
late a fixpoint query by unbounded looping. The same
can be done with bounded looping. Furthermore, there is
a constant ¢ such that for every e,€YF there is e;€BA
with {[ef [<c{leil] and Qe,=Q., and the translation
can be done in logarithmic space. Thus, the claim follows
by Theorem 5.0

Theorem 11: LA is D-complete in PSPACE and E-
complete in EXPSPACE.

Proof: Let e =(S.7)ELA. As in the proof of Theorem 9,
the cardinality of all terms in e is bounded by | D} Tlelt,
Thus, a straightforward evaluation has a polynomial space
data complexily, and an exponential space expression com-
plexity.

D-completeness: [CH2).

E-completeness: We show that any set accepted by an
exponential space deterministic Turing machine is logspace

reducible o Gri (By). The idea is to encode a

144

configuration of length 2" by a 2n +m-ary relation R (m
depends on the machine in question).

. .3, +m) means that the tape has sym-
bol ¢ in its j-th square, where (a,...,a,) and

R(ay,...ap,Gn 41, -« -

(@541, . .. ,a54m) are binary encodings of j and o, respec-
tively. An unbounded loop simulates the unbounded com-
putation of the machine starting from the
configuration. O

initial

Remark 3: Lower bounds for B4 and LA in the spirit of
Theorem 6 can be shown in a similar manner.

Let us now compare the expressiveness of Lhe alge-
braic languages with that of the logical languages. We
have already noted that C(F)=C(A), and since projection
corresponds to existential quantification, it follows that
C(F)=C(4). We also noted that C(YF)CC(BA) and
in fact also C(YF*)YCC(BA). However, EVEN€C(BA)
[Chan). So C(YF*)CC(BA). The relationship between
LA and SF is not clear. It is not known whether
C(SF)CC(LA), and it follows from the data complexity
of LA and SF that C(LA)YCC(SF) if and only if
PSPACE=NPTIME.

Remark 4: Since C(YF*)CC(BA) and
C(YF* <=QPTIME(S). it follows that
C(BA,Q=0PTIME(X). In a similar manner it can be
shown that C(LA,<)=QPSPACE(L).

5. Concluding Remarks

The next table summarizes the results of the preced-
ing sections.

Language || Data Complexity | Expression Complexity
F- LOGSPACE LOGSPACE
F LOGSPACE PSPACE
TF NLOGSPACE (N)PSPACE
YF PTIME EXPTIME
SF NPTIME NEXPTIME
A~ LOGSPACE PTIME
A LOGSPACE PSPACE
BA PTIME EXPTIME
LA PSPACE EXPSPACE

We now sketch two extensions of the theory that
will be described in detail in the full version of the paper.

Unlike the language F, which is closed under it logi-
cal connectives (the Boolean
quantification), TF, YF. and SF are not closed. Closing
this languages under their connectives gives us the

connectives and

languages 7', Y, and S. For these languages we can
define hierarchies of expressions and their queries (this is
done in {CH2] for £ and Y). and now we can investigate
their expressiveness and complexity. I[n [CH2] it is shown
that the first-order hierarchy is infinite and is E-complete
in the polynomial hierarchy of [St]. In [Im2] it is shown
that the fixpoint hierarchy collapses and C(Y)=C(YF*).
From [St] it follows that the second-order hierarchy is D-
complete in the polynomial hierarchy. In addition we can
show that the transitive closure hierarchy is D-complete in
the logarithmic hierarchy of [CKS], and that the second-
order hierarchy is E-complete in an exponential hierarchy
that can be define analogously.

We already noted that expression complexity meas-
ures the succinctness of the language in question. Thus, if
we can somehow succeed in "squeezing down™ our expres-
sions, we would expect the expression complexity to
increase, while the data complexity will not change. It is
not clear whether it can be done for the logical languages,
but it is easy to do that for the algebraic languages by
using shorthands like exponentiation and binary notation.
It turns out that this can add am exponential to the

145

expression complexity. For example, The "squeezed” ver-
sion of LA is E-complete in 2EXPSPACE (the class of
language accepted by Turing machines operating in doubly
exponential space).

Acknowledgement 1 am grateful to David Harel for
arousing my interest in the subject of relational queries
I'd like also to

thank Ashok Chandra for his insightful remarks, in partic-

and for many stimulating discussions.

ular for pointing out that changing the syntax of the
language can change its expression complexity. Thanks
are also due to Nick Pippenger for supplying me with use-
ful references. and to Ron Fagin for commenting upon an
earlier draft of the paper.

References

[AU] Aho, A.V., Ullman, J.D.: Universality of data
retrieval languages. Proc. 6th ACM Symp. on
POPL, 1979, pp. 110-117.

[Ba) Bancilhon, F.: On the completeness of query
languages for relational databases. Proc. 7th
Symp. on MFCS, 1978.

[CH1] Chandra, A K., Harel, D.: Computable queries
for relational databases. JCSS 21(1980), pp. 156-

177

[CH2] Chandra, AK., Harel, D.: Structure and com-
plexity of relational queries. Proc. 21st [EEE
Symp. on FOCS, 1980, pp. 333-347. Also, to

appear in JCSS.

[CH3] Chandra, A.K., Harel, D.: Horn clauses and the
fixpoint query hierarchy. Proc. ACM Symp. on

PODS, Los Angeles, March 1982,

[Chan] Chandra, A K.: Programming primitives for data-
base languages. Proc. 8th ACM Symp. on POPL,

1981, pp. 50-62.

Chandra, AK., Kozen, D.C., Stockmeyer, L.J.:
Alternation. JACM 28(1981), pp. 114-133.

[CKS]

[cM]

[Codd]

[Coop]

[Fa]

[Ha]

[HS}

1b]

[im1}

[im2]

[Jo)

BL

(3]

[Ka]

Chandra, A K., Merin, P.M.: Optimal implemen-
tation of conjunctive queries in relational data-
bases. Proc. 9th ACM STOC, 1977, pp. 77-90.

Codd. E.F.; Relational compleieness of database
sublanguage. In Data Base Systems (Rustin, Ed.),
Prentice Hall, 1972, pp. 65-98.

Cooper, E.C.: On the expressive power of query
languages for relational databases. Proc. ACM
Symp. on PODS, Los Angeles, March 1982.

Fagin, R.: Generalized first-order spectra and
polynomial-time recognizable sets. In Complexity
of Computation (R. Karp, ed), SIAM-AMS Proc.
7(1974), pp. 43-73.

Hartmanis, J.: On non-determinacy in simple
computing devices. Acta Info. 1(1972), pp. 28-36.

Hartmanis, J., Stecarns, R.E.: On the computa-
tional complexity of algorithms. Trans. AMS

117(1965), pp. 285-306.

Ibarra, O.H.: On two-way multihead automata.
JCSS 7(1973), pp. 28-36.

Immerman. N.: Number of quantifier is better
than number of tape cells. JCSS 22(1981), pp.
384-406.

Immerman, N.: Relational queries computable in
polynomial time. This volume.

Jones, N.D.: Space bounded reducibility among
combinatorial problems. JCSS 11(1975), pp. 68-
85.

Jones, N.D.: Laaser, W.T.: Complete problems in
deterministic polynomial time. TCS 3(1977), pp.
105-117.

Jones. N.D., Selman, A.L.; Turing machines and
the spectra of first-order sentences. J. of Sym-
bolic Logic 39(1974), pp. 139-150.

Karp, R.M.: Reducibility among combinatorial
problems. In Complexity of Computer Computa-
tion (R.E. Miller and J.W. Thatcher, eds.),

{La]

Lyl

[Pa]

[su

[z

Plenum Press, 1972, pp. 85-103.

Ladner, R.E.: The circuit value problem is
logspace complete for P. SIGACT News 7(1975),
pp. 18-20.

Lynch, n.: Logspace recognition and translation
of parenthesis languages. JACM 24(1977), pp.
583-590.

Paredacns, J.: On the expressive power of the
relational algebra. 1PL 7(1978).

Stockmeyer, L.J.: The polynomial time hierarchy.
TCS 3(1977), p. 1-22.

Zioof, M.: Query-by Example: Operations on the
transitive closure. IBM Research Report

RCS5526, 1976.

