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Abstract 

Two complexity measures for query languages are 

proposed. Data complexity is the complexity of evaluating 

a query in the language as a function of the size of the 

database, and expression complexity is the complexity of 

ewduating a query in the language as a function of the size 

of the expression defining the query. We study the data 

and expression complexity of logical langnages - relational 

calculus and its extensions by transitive closure, fixpoint 

and second order existential quantification - and algebraic 

languages - relational algebra and its extensions by 

bounded and unbounded looping. The pattern which will 

bc shown is that the expression complexity of the investi- 

gated languages is one exponential higher then their data 

complexity, and for both types of complexity we show 

completeness in some complexity class. 
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1. Introduction 

In the last years there has been a lot of interest in 

query languages for relational databases. Following 

Codd's pioneering work [Codd] on the relational calcuhts 

and algebra, a lot of work has been done on studying and 

comparing the expressive power of several query languages 

[AU,Ba,Cttl,CII2.CH3,Chan,Coop,Pa]. The approach 

taken here is to compare query languages by investigating 

the complexity of evaluating queries in these languages. 

There are three ways to measure the complexity of 

evaluating queries in a specific language. First, one can fix 

a specific query in the hmguage and study the complexity 

of applying this query to arbitrary databases. The com- 

plexity is then given as a function of the size of the data- 

bases. We call this complexity data complexity. 

Alternatively. one can fix a specific database and 

study the complexity of applying queries represented by 

arbitrary expressions in the language. The complexity is 

then given as a function of the length of the expressions. 

We call this complexity expression complexity. 

Finally. one can study the complexity of applying 

queries represented by arbitrary expressions in the 

language to arbitrary databases. The complexity is then 

given as a fanction of the combined size of the expressions 

and the databases. We call this complexity combined com- 

ptexity. 

It turns out that combined complexity is pretty 

dosed to expression complexity, and for this reason we 
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concentrate in this paper upon data and expression com- 

plexity. These two types of complexity actually measures 

two different things. Data complexity is really a measure 

for the expressive power of the language because it 

answers the question "how difficult are the individual 

questions asked in this hmguage?". It is of interest mainly 

to users who tend to use only very specific queries. 

Expression complexity on the other hand is a measure for 

the succinctness of the language because it answers the 

question "how difficult is answering different questions 

asked in this language?". It is of interest mainly to users 

who tend to nse a variety of queries. 

There are two major types of relational query 

languages. Logical languages, e.g.. relational calculus, con- 

sist of formulas that when applied to a database return as 

an answer the set of all tuples that .satisfy them. These 

languages are non-procedural in nature. Algebraic 

languages, e.g., relational algebra, consist or programs 

whose basic operations are algebraic ones like join and 

projection. These languages are procedural in nature. 

The logical languages investigated in this paper are 

the language of first-order logic (which differs from the 

relational calculus of [Codd] in having the variables rang- 

ing over domain elements instead of tuples), and the 

languages obtained by restricting it to be quantifier-free or 

by enriching it with transitive closure, fixpoint and 

second-order quantification, respectively• The algebraic 

languages are the relational algebra and the languages 

obtained by restricting it to be projection-free or by 

enriching it with bounded looping and unbounded looping, 

respectively. 

As an example consider the language of first-order 

logic. Let ¢p be a sentence in this language of size s (a 

sentence represents a Boolean query, that is, a query that 

returns a yes/no answer), qo has at most s variables. In 

order to evaluate q~ on a database of size n, it suffices to 

cycle through at most n s possible assignments of values 

from the database to the variables, and this can be done in 

space O(logn). Thus. the set of all databases satisfying qo 

is in LOGSPACE. On the other hand, if B is a non-trivial 

database, i.e., it has a relation which is neither empty nor 

does it contain all taples over the domain of die database. 

then the set of all first-order sentences satisfied by B is 

PSPACE-complete [CM]. 

This happens to be quite a typical pattern. The 

expression complexity of the investigated languages is usu- 

ally one exponential higher thcn the data complexity, and 

for both types of complexity we will show completeness in 

some complexity class. More specifically, we will show a 

hierarchy of hmguages wbose data complexity is described 

by corapleteness in LOGSPACE. NLOGSPACE. P'I'IME, 

NPTIME and PSPACE. respectivcly, and whose expres- 

sions complexity is described by completeness in PSPACE, 

NPSPACE (=PSPACE), EXPTIME, NEXPTIME and 

EXPSPACE, respcctively. 

In this version of the paper proofs are only bdetly 

sketched. 

2. I)atabases, Queries and Co,nplexity 

We first recall some basic definition taken mainly 

from [CH2]. 

Definition: A relational database (or database for short) is 

a tuple B=(D,R~ . . . . .  Rk) where D E N  is a finite set 

(N is the set of natural numbers) and for each l < i < k ,  

R, CD a' for some a,>0. The number a, is called the rank 

of R~ and B is said to be of type ~ =(av  . . . .  ak). 

We will usually abbreviate the vector Rr. . . . .  Rk 

by R and write B =(D./~). Also, throughout the paper 

we will assume some standard encoding for databases. 

E.g., the database B=({3,5.7}.{(3,5>.<5,7>}) might be 

encoded by the string ({ll,101.111}.{<ll,101>Xl01,111>}). 

Definition: A query of type 6"-'*b is a partial fimction 

Q: {B ] B is of  type ~}'--'2 ub 

such that if B=(D,R-) and Q(B) is defined then 

Q(B)CD b. 
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Chandra and Harel [CH1] define a query as comput- 
able if it is a partial reeursive fimction and it satisfies what 

they call the "consistency criterion". The qneries defined 

by the langunges in this paper are all computable, so we 

will not address this point any fimher. 

Definition: A query language (or language for short) is a 

set of expressions L and a meaning function g such that 

for every expression e in L, bt(e) is a query. C(L) is the 

class of queries defined by expressions in L, that is, 

C(L )={Q I Q =It(e) for some eEL} 

We will write Q~ for p.(e) when /x is understood 

from the context. 

Since queries are fimctions, we will measure their 

complexity by studying how difficult it is to recognize that 

a certain tuple belongs to the result of applying the query 

to the database. That is, we look at the problem as a 

recognition problem instead of looking at it as a computa- 

tion problem. The restdt of applying the query to the 

database can be obtained by checking for all possible 

tuples (i.e., D b) whether they belong to the result. For 

most langtmges dealt with in the paper, the complexity of 

computing the result is the same as the complexity of 

recognizing tuples in the result. 

Definition: The graph of a query Q is the set 

Gr(a)={(d,B) ] dEQ(B)}. 

The graph of a database B with respect to a language L is 

the set 

Grt.(B)={(d,e) I eEL and ,dEQe(B)}. 

The data complexity of a language L is the complex- 

ity of the sets Gr(Q,) for the expressions e in L.  The 

expression complexity of a language L is the complexity of 

the sets GrL(B). 

Definition: A langttage L is data-complete (or D-complete 
for short) in a complexity class C if for every expression e 

in L. Gr(Qe) is in C, and there is an expression e0 in L 

such that all sets in C are Iogspace reducible to Gr(Q%). 

L is expression-complete (or E-complete for short) in a 

complexity class C if for every database B, Grt.(B) is in 

C, and there is a database Bo such that all sets in C are 

Iogspace reducible to GrL(Bo). 

Definition: Let C be a complexity class. QC is the class 

of queries whose graph is in C, i.e., 

QC={Q I Gr(Q)EC}. 

3. I,ogical l ,anguages and their Complexity 

The first qnery language to be studied here is the 

language of first-order logic, whose tuple oriented version 

is called relational calculus in [Codd]. 

Definition: Let L be the first-order language with equality, 

with no function symbols and with Ri,R2," • • as its predi- 

cate symbols. (Note: we will use R, both as the formal 

symbol denoting a relation and as the relation itself; also 

the rank of R, will be a,). Let F be the language consist- 

ing of expressions of the form Zti0(~) where T is a formula 

of L and ~: is a vector of distinct variable containing all 

free variables of ep. If e is such an expression then ~ is 

a query Q, of type (al . . . . .  a,)--H.~l (1~1 denotes the 

length of .~). Qe is defined by 

Q,(D,R)={d6D I~1 I (p(d) is true in (D,R')}. 

Let F -  be the quantifier-free version of F. That is, 

quantifiers are not allowed in expressions of F- .  

Clearly, F is more expressive then F- .  

Example: Let R1 be a binary relation describing the flights 

of an airline company, i.e., Rl(x,y) means that the com- 

pany has a flight from city x to city y. The expression 

(x,y ).~(R l(x,z )/\R t(z ~v )) 

represents the query Q of type (2)'+2 which returns the 

composition of Rt with itself, i.e., the pairs of cities that 
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are connected by exactly two flights. 

A useful query is that which returns the pairs of 

cities that are connected by any positive number of flights. 

It was shown by Aho and Ullman [AU] that no expression 

in F represents this query. This is the motivation for 

enriching F by the transitive closure construct [Z1]. 

Definition: Let TF be the language obtained by adding to 

F expressions of the form ~'.(x,y).~(x,y), where 

(x,y).qv(x,y) is an expression of F. If e is such an expres- 

sion then ~(e) is a query Qe of type (~)---~2 defined by 

O~(D,R)=(Qi~,y).~(D,R)) ~ (~ stands for transitive closure). 

Example: The desired query mentioned above is 

represented by ,r.(x ,y).R l(x ,y). 

Let R2 be a ternary relation describing flights of 

several airline companies, i.e., R2(x,y,z) means that com- 

pany x has a flight from city y to city z. Consider the 

query which return all triples (u,v,w) such that v and w 

are connected by a positive number of flights all by the 

same company u. There is no way of representing this 

query in TF. This is the motivation for enriching F by 

the fixpoint construct. 

Definition: Let YF be the language obtained by adding to 

F expressions of the form TR.2.cp(~), where ~..cp(~) is an 

expression of F and R is a predicate symbol of rank 122 [ 

that occurs positively in cp (i.e.. each occurrence of R in 

is under an even number of negations). If e is such an 

expression then ~(e) is a query Qe of type (if)Dial. 
Q,(D,I~) is a relation R such that Q,. , (D,R,R)=R and 

for any relation R', if Q~.,p(D,R',R)=R' then R~.R' .  In 

other words, Qe(D,R-) is the least fixpoint of the query 

Q£~. 

Chandra and Harel [CH2] have shown that all the 

expressions in YF define total queries, 

Example: The above mentioned query is represented by 

the following expression of YF: 

TR. (x,y,z).(R 2(x,y,z)\/~u (R 2(x,y,u ) l \R (x,u,z ))). 

YF is more expressive then TF, because the query 

defined by the expression "r.(x,y).~x,y) of TF is also 

defined by the following expression of YF: 

T R. (x,y ).( ~ x,y )\/~ z( qg(x,z ) / \R (z,y ))). 

Consider now the query which returns the pair of 

cities connected by direct flights by an even number of air- 

line companies. There is no way to express this query in 

YF [CH2]. It can however be expressed by using second- 

order existential quantification. 

Definition: Let SF be the language obtained by adding to 

F expressions of the form Y,.~R. ~p(2), where Y.~(Y) is an 

expression of F. If e is such an expression and R is of 

arity a then bt(e) is a query Qe of type (h-)--*l .~ [ defined 

by 

Qe( O ,R )= { d 6D I ~ I I there is a relation R CO a s.t. 

~0(d) is true in (D,R ,R-)}. 

Example: The above mentioned query is represented-by 

the following expression of SF: 

(tt ,v ).~R. (Yxyz (( R (x,y )/ \R (x ,z )'-",y = z) 

/ \  (R (y,x )/kR (z,x )-'-~y = z ) 

/ \  ( ~ R  (x .y )V--1R (z ,x)) 

/ \ ( R  2(x,u ,v)--'~]w(R(x,w)VR(w,x))) 

/ \  (a (x,y ) ~  R 2(x,u ,v )/XR 2(v,u ,v )))). 

It is easy to show that queries defined by expressions 

in ,I"F can be defined by using second-order universal 

quantification. It is also true, though less trivial, that such 

queries can be defined by using second-order existential 

quantification. This can be shown by complexity 
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arguments [CH2] or by the technique of [JS]. Thus, SF is 

more expressive than YF. 

The expressiveness relation between the languages 

defined so far can be summed up as 

a(F )QQ(F)CQ(TF)CQ(YF)CQ(SF), 

(We use C to denote containment and C to denote proper 

containmen0. 

Let us now consider the data and expression com- 

plexity of F , F, TF, YF and SF, respectively. We use a 

fixed database Bo=(Do,Ro), where D0={0,1} and 

R0={<l>}. 

Theorem !: F is D-complete and E-complete in 

LOGSPACE. 

Proof: For LOGSPACE, hardness by a logspace reduction 

is trivial, so it suffices to show membership. For eEF-, 
Gr(Qe) is clearly in LOGSPACE (see next theorem). The 

fact that for every database B, Gr~, (B)ELOGSPACE fol- 

lows from the fact that Boolean expressions can be 

evaluated in logarithmic space [Ly]. 13 

Theorem 2: F is D-complete in LOGSPACE and E- 

complete in PSPACE. 

Proof: To test whether dEQx.~(B), a straightforward algo- 

rithm cycles through all possible substitutions for the 

quantified variables. This algorithm has a logarithmic 

space data complexity and polynomial space expression 

complexity. 

D-compbteness: Trivial. 

E-completeness: By reduction from Quantified Boolean 

Formulas of Stockmeyer [St] it follows that Gre(Bo) is 
PSI'ACE-hard [CM]. [3 

The classification of F as having a logarithmic space 

data complexity is quite crude and can be further refined. 

For an expression eEF, let qn(e) be the number of 

quantifiers in e. Let 2DFA(k) denote the class of sets 

accepted by a two-way detemfinistic finite automaton with 

k heads. Recall that LOGSPACE = LJ2DFA(k)[Ha]. 
kEN 

Theorem 3: Let eEF; then Gr(Q,)62DFA(qn(e)+2). 
Proof: qn(e) heads are needed to move over the domain; 

thus giving an assignment of elements to the qn(e) 

quantified variables, an additional head is needed to move 

over the assignment of elements to the free variables, and 

the last head is needed to move over the relations. The 

interaction between the last head and the first qn(e)+l 
heads gives truth values to the atomic formtilas in e. [] 

Interestingly, it is known that, for all kEN, 
2DFA(k) is properly contained 2DFA(k+2) [Ib], and it 

follows from the results of [CFI2] that 

C({e J eEFandqn(e)=k})  is properly contained in 

C({e J eEF and qn(e)=k +2}). 

Theorem 4: TF is D-complete in NLOGSPACE and E- 

complete in PSPACE. 

Proof: To test whether (a,b)EQ~.~x,y).r(B) we guess a 

sequence a = a~,a2, . . . .  ak = b and test whether 

(a~,a~l)EQ(x,y).~(B) for l<i<k. This algorithm has a 

nondeterministic logarithmic space data complexity, and a 

nondeterministic polynomial spacc expression complexity. 

D-completeness: Let eo be r.(x.y).R(x.y). Gr(eo) is 

NLOGSPACE-hard by reduction from Graph Accessibility 

problem [Jo]. 

E-completeness: Follows from the fact that 

PSPACE=NPSPACE and FCTF. [] 

Theorem 5: YF is D-complete in PTIME and E-complete 

in EXPTIME. 

Proof: Let the fixpoint expression e be TR.~.q~(~), where 

R is of rank I x J. The algorithm of [CH2] for evaluating 

Qe(D,R) builds a sequence of increasing approximations 

for R starting with the empty relation. Since the cardinal- 

ity of Qe(D,I~) is bounded by IDJ lel, the length of the 

sequence has the same bound. Hence, this algorithm has a 

polynomial time data complexity and an exponential time 

expression complexity. 

D-completeness: Follows by reduction from Path System 
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Accessibility problem [JL]. 

E-completeness: We show that any set accepted by an 

exponential time deterministic Turing machine is Iogspace 

reducible to GrrF(llo). The idea is to encode a computa- 

tion of length 2" by a 2n + m  - a r y  relation R (m depends 

on the machine in question). 

g(al . . . . .  an,anti . . . . .  a2n.a2n÷l . . . . .  a2n)m) means 

that after i computation steps the machine has a symbol tr 

in its j - t h  tape square, where (at. . . . .  a.), 

(a.+l . . . . .  a2,). and (a2.+t . . . . .  a2.~,,) are binary 

encodings of i, j and o, respectively. The movements of 

the machine are simulated by the fixpoint operation. [] 

The algorithm outlined above for evaluating 

Q~(D,R-) makes at most I D I I~l iterations, and the cost of 

each iteration is O(I I~1 I ' ID  I ~11~11) for some constant 

c. (I I ~ l l  denotes the size of the encoding of ct). The 

following theorem shows that the rank of R and the size 

of tp gives also a lower bound on the complexity of 

Gr(Q,). 

Theorem 6: There is a polynomial p so that for every 

kEN there is an expression e=TR.~,t;~(££), with 

Ix l  = O ( k )  and I I ,p l l=O@(k)) ,  such that 

Gr(Q~)~DTIME(n k- 1). 

Proof: 'There is a polynomial p so that given a determinis- 

tic Turing machine M with input alphabet Z that operates 

in time O(n*), we can build an expression e with 

lYl = O ( k )  and I l r p l l = O ( p ( I  IMII ) ) ,  such that, for 

every s e E ' .  one can construct in time O(11 s I I) a data- 

base B and a vcctor a of size O ( J l s l l )  such that 

sEL(M) iff dEQ,.(B). The claim then follows from the 

fact that there is a Turing machine M with 

I l M I l = O ( k )  that operates in time O(nk). but 

L(M)~DTiME(n k 1) [tlS]. [] 

Let YF(k) be the class of expressions 

{e I eEYF and I l e l l _ < k } .  The theorem above shows 

that the hierarchy <C(YF(k))>keo is infinite. 

Theorem 7: SF is D-complete in NPTIME and E- 

complete in NEXPTIME. 

Proof: To test whether d6Qe~.~(D,R), a straightforward 

algorithm guesses a relation R (~D a (a is the arity of R)  

and tests whether dgQ~(D,R,R).  This algorithm has a 

nondeterministic polynomial time data complexity and a 

nondetcrministic exponential time expression complexity. 

D-completeness: Shown by reduction from the Clique 

problem of [Ka]. 

E-completeness: We show that any set accepted by a non- 

deterministic exponential time Turing machine is reducible 

to Grs+,(Bo). We use the encoding described in the proof 

of Theorem 5. [] 

Remark I: Lower bounds for SF in the spirit of Theorem 

6 can be shown in a similar manner. 

Remark 2: Not only are YF and SF D-complete in 

PTIME and NPTIME, respectively, but also every query 

computable in nondeterministie polynomial time can be 

defined in SF, and if we assume that one of the relations 

of the database is a linear order on the elements of the 

domain then every query computable in polynomial time 

can be defined in YF*, which is a slight extcnsion o f ] "F  

(more precisely, it allows existential quantification over 

conjunctions of equality formulas with expressions of YF). 

Fagin [Fa] has proven the first claim for Boolean queries, 

and by extending his argument we can show that 

C(SF)= QNPTIME. Studying the proof in detail, we can 

see that the second-order quantification is needed for two 

different purposes. First. it is used to define a linear order 

on the elements of the domain, and secondly it is used to 

say that there exists an accepting computation on the non- 

deterministic machine. If one of the relations in the data- 

base is already a linear order relation, and the machine is 

deterministic, then the computation can be simulated by 

the fixpoint operation. Thus, C(YF' , < ) =  QPTIME(~). 

(This fact has been also proven independently by lmmer- 

man [Im2]). Let EVEN be the Boolean query that answer 
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positively for a database (D,/~) just in case that ]D I is 

even. Clearly, EVEN6QLOGSPACE.  However, it is 

known that E V E N ~ C ( Y F  +) [CH2]. Consequently, 

C(F)CQLOGSPACE, C(TF)CQNLOGSPACE, and 

C(Y F  ~ )CQPTIME. One may wonder whether 

C(F, <) = QLOGSPACE(~)  or whether 

C(TF,<)=QNLOGSPACE(~) .  It follows from the 

results of [Iml] that the first statement does not hold, and 

we conjecture that neither does the second one. 

4. Algebraic l , anguages  and their  Complexi ty  

Our basic algebraic query language is based on the 

relational algebra of  [Codd]. The language consists of  the 

following: 

Variables: X% ,X~ . . . . .  X d ,X ~ . . . . .  X~ .... 

Terms: D,R~,Xf,... 

and ifli,12,l are terms then so are: 

t~ Xt2 Cartesian product, 

tzl..Jt2 union, 

~ t  complement, 

Proj,(t) projection of column i, 

Permo(t) permutation by O, 

Restrict, q(t) restriction of columns i and j .  

(The numbers is the terms are assumed to be written in 

unary notation). 

Definition: The language A consists o f  statements of  the 

following form: 

Xf~t  where t is a term of  rank a ,  

(Sj;S2) where Sa and $2 are statements. 

The language d is the projection-free version of  A. That 

is, projections are not allowed in terms o f  d - .  

The language BA consists of  the statements o f  A and also 

For ] t ] do S , where t is a term and S is a state- 

ment, 

The language LA consists of the statements of  BA and 

also 

While t =fgJ do S , where t is a term and S is a 

statement. 

An expression in any of  these languages is a pair (S, t)  

where S is a statement and t is an expression in the 

language. 

The semantics of  the language is as follows. Vari- 

able Xf has rank a.  All variables are initialized to ~ .  

The values of terms D, R, are fi-om the database. The 

term tlXt2 has value {<d ,~>]d6 t l ,~6 t2} ;  tll..Jt2 is set 

union if tl and t2 have the same rank: Proj,(t) deletes the 

i-th column from t, having value 

{<dz . . . . .  d, z,d~, z . . . . .  da> I dCt},  where t has rank a 

and i<a:  given a permutation 0 on {1 . . . . .  a}, where t 

has rank a ,  the value of Permo(t) is 

{<daft). . . . .  do~a)>l,t6t}; and Restrict,.i(t) has the value 

{ d l d E t  andd~=dj} ,  where t has rank a, i<a ,  and 

j < a .  

The semantics of  " , -"  and ";"  is that of  assigmnent 

and concatenation in the obvious way. For l t l d o  S 

means: execute S I t l  times, where I t l  is determined 

upon entry to the loop. We call this bounded looping. 

While t = ~ d o  S means: execute S as long as t = ~ ,  

where t is evaluated dynamically. We call this unbounded 

looping. 

An expression (S, t )  defines a query Qcs.o in the-fol- 

lowing manner: Qts.,~B) is the value of t after termina- 

tion o r S  on B, or O i f S  does not terminate on B. 

It is easy to see that A is more expressive than A - ,  

BA is more expressive than A, and LA is at least as 

expre~ive as BA. However, it is not known whether LA 

i~, mole expressive than BA. So we have 

C(A-)CC(A)CC(I~A)CC(LA) 

Theorem 8: A is D-complete in LOGSPACE and E- 

complete in PTIME. 

Proof: 

D-completeness: See next theorem. 

E-completeness: Folk)ws from the completeness in PTIME 

of  the Circuit Value problem of  [La]. [] 

143 



Theorem 9: A is D...complete in LOGSPACE and E- 

complete in PSPACE. 

Proof: For every clEF there exists e2EA such that 

Q~=  Q'2' and for every e2EA there exists e~EF such that 

Qg=Qe2 [CM,Codd]. Furthermore, the translation in 

both direction can be carried out in logarithmic space, and 

there is a constant c such that I le21l<jl let l l  and 

[ leal  [ <_c I le21 1. (The linearity of the translation from 

A to F is not trivial!). Thus, the claim follows by 

Theorem 2. t2 

Theorem 10: BA is D-complete in PTIME and E-complete 

in EXllrFIME. 

Proof: Let e =(S,t)EBA. The maximal rank of a term in 

e is bounded by I l e l l .  Hence, the cardinality of all 

terms in e is bounded by IDI  t l ' l l ,  and the number of 

steps in the execution is bounded by ]D111~112. Thus. a 

straightforward evaluation has a polynomial time data 

complexity, and an exponential time expression complex- 

ity. 

Chandra and Harel [CH2] have shown'how to simu- 

late a fixpoint query by unbounded looping. The same 

can be done with bounded looping. Furthermore, there is 

a eonsUmt c such that for every eLEYF there is e2EBA 
with I lezl I < _ c l l e l l l  and Q~i=Q~r and the translation 

can be done in logarithmic space. Thus, the claim follows 

by Theorem 5. t3 

Theorem 11: LA is D-complete in PSPACE and E- 

complete in EXPSPACE. 

Proof: Let e =(S,t)ELA. As in the proof of Theorem 9, 

the cardinality of aU terms in e is bounded by IDI  Ilell. 

Thus. a straightforward evaluation has a polynomial space 

data complexity, and an exponential space expression com- 

plexity. 

D-completeness: [CH2]. 

E-completeness: We show that any set accepted by an 

exponential space deterministic Turing machine is Iogspace 

reducible to GrLA(Bo). The idea is to encode a 

configuration of  length 2 ~ by a 2n +m-ary relation R (m 

depends on the machine in question). 

R(ab..,an,a, ~ z . . . . .  a, +m) means that the tape has sym- 

bol a in its j-th square, where (a~ . . . .  an) and 

(a, ~1, . . . .  a,~ m) are binary encodings o f j  and a, respec- 

tively. An unbounded loop simulates the unbounded com- 

putation of the machine starting from the initial 

configuration, t3 

Remark 3: Lower bounds for BA and LA in the spirit of 

Theorem 6 can be shown in a similar manner. 

Let us now compare the expressiveness of the alge- 

braic languages with that of the logical languages. We 

have already noted that C ( F ) =  C(A ), and since projection 

corresponds to existential quantification, it follows that 

C(F-)=C(A ). We also noted that C(YF)CC(BA) and 

in fact also C(YF~)CC(BA). However. EVENEC(BA) 
[Chan]. So C(YF+)CC(BA). The relationship between 

LA and SF is not clear. It is not known whether 

C(SF)CC(LA), and it follows from the data complexity 

of LA and SF that C(LA)CC(SF) if and only if 

PSPACE = NPTIME. 

RemaA 4: Since C(YF+)CC(BA) and 

C( YF +,~ = QPTIME (~), it follows that 

C(BA,~=QPTIME(.<), In a similar manner it can be 

shown that C(L.4 , ~ =  QPSPACE(~. 

5. Concluding Remarks 

The next table summarizes the results of the preced- 

ing sections. 
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Language 

F -  

F 

TF 

YF 

SF 

A-  

A 

BA 

LA 

Data Complexity Expression Complexity 

LOGSPACE 

LOGSPACE 

NLOGSPACE 

PTIME 

NPT1ME 

LOGSPACE 

LOGSPACE 

PTIME 

PSPACE 

LOGSPACE 

PSPACE 

(N)PSPACE 
EXPTIME 

NEXPTIME 

PTIME 

PSPACE 

EXPTIME 

EXPSPACE 

We now sketch two extensions of the theory that 

will be described in detail in the full version of the paper. 

Unlike the language F, which is closed under it logi- 

cal connectives (the Boolean connectives and 

quantification). TF, YF, and SF are not closed. Closing 

this languages under their connectives gives us the 

languages T, Y, and S. For these languages we can 

define hierarchies of expressions and their queries (this is 

done in [Ct12] for F and Y). and now we can investigate 

their expressiveness and complexity. In [CI12] it is shown 

that the first-order hierarchy is infinite and is E-complete 

in the polynomial hierarchy of [St]. In tim2] it is shown 

that the fixpoint hierarchy collapses and C(Y)=C(YF~). 

From [St] it follows that the second-order hierarchy is D- 

complete in the polynomial hierarchy. In addition we can 

show that the transitive closure hierarchy is D-complete in 

the logarithmic hierarchy of [CKS], and that the second- 

order hierarchy is E-complete in an exponential hiera~clty 

that can be define analogously. 

We already noted that expression complexity meas- 

ures the succinctness of the langtmge in question. Thus, if 

we can somehow succeed in "squeezing down" our expres- 

sions, we would expect the expression complexity to 

increase, while the data complexity will not change. It is 

not clear whether it can be done for the logical languages, 

but it is easy to do that for the algebraic languages by 

using shorthands like exponentiation and binary notation. 

It turns out that this can add an exponential to the 

expression complexity. For example, The "squeezed" ver- 

sion of LA is E-complete in 2EXPSPACE (the class of 

language accepted by Tufing machines operating in doubly 

exponential space). 
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