
THE COMPLEXITY OF RELATIONAL QUERY LANGUAGES

Extended Abstract

Moshe Y. Vardi ~

Depaxlment of Computer Science

Stanford University

Stanford. California 94305

Abstract

Two complexity measures for query languages are

proposed. Data complexity is the complexity of evaluating

a query in the language as a function of the size of the

database, and expression complexity is the complexity of

ewduating a query in the language as a function of the size

of the expression defining the query. We study the data

and expression complexity of logical langnages - relational

calculus and its extensions by transitive closure, fixpoint

and second order existential quantification - and algebraic

languages - relational algebra and its extensions by

bounded and unbounded looping. The pattern which will

bc shown is that the expression complexity of the investi-

gated languages is one exponential higher then their data

complexity, and for both types of complexity we show

completeness in some complexity class.

Research supported by a Weizrnann Post-doctoral Fellow-
ship, Fullbright Award. and NSF grant MCS-80-12907. Part of
this research was carried out while the author was as the Hebrew
University of Jerusalem. Israel. and was supported by Grant
1849/79 of the U.S.A.-Israel BSF.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee a n d / o r specific permission.

1. Introduction

In the last years there has been a lot of interest in

query languages for relational databases. Following

Codd's pioneering work [Codd] on the relational calcuhts

and algebra, a lot of work has been done on studying and

comparing the expressive power of several query languages

[AU,Ba,Cttl,CII2.CH3,Chan,Coop,Pa]. The approach

taken here is to compare query languages by investigating

the complexity of evaluating queries in these languages.

There are three ways to measure the complexity of

evaluating queries in a specific language. First, one can fix

a specific query in the hmguage and study the complexity

of applying this query to arbitrary databases. The com-

plexity is then given as a function of the size of the data-

bases. We call this complexity data complexity.

Alternatively. one can fix a specific database and

study the complexity of applying queries represented by

arbitrary expressions in the language. The complexity is

then given as a function of the length of the expressions.

We call this complexity expression complexity.

Finally. one can study the complexity of applying

queries represented by arbitrary expressions in the

language to arbitrary databases. The complexity is then

given as a fanction of the combined size of the expressions

and the databases. We call this complexity combined com-

ptexity.

It turns out that combined complexity is pretty

dosed to expression complexity, and for this reason we

© 1982 ACMO-89791-067-2/82/O05/O137 $00.75

137

concentrate in this paper upon data and expression com-

plexity. These two types of complexity actually measures

two different things. Data complexity is really a measure

for the expressive power of the language because it

answers the question "how difficult are the individual

questions asked in this hmguage?". It is of interest mainly

to users who tend to use only very specific queries.

Expression complexity on the other hand is a measure for

the succinctness of the language because it answers the

question "how difficult is answering different questions

asked in this language?". It is of interest mainly to users

who tend to nse a variety of queries.

There are two major types of relational query

languages. Logical languages, e.g.. relational calculus, con-

sist of formulas that when applied to a database return as

an answer the set of all tuples that .satisfy them. These

languages are non-procedural in nature. Algebraic

languages, e.g., relational algebra, consist or programs

whose basic operations are algebraic ones like join and

projection. These languages are procedural in nature.

The logical languages investigated in this paper are

the language of first-order logic (which differs from the

relational calculus of [Codd] in having the variables rang-

ing over domain elements instead of tuples), and the

languages obtained by restricting it to be quantifier-free or

by enriching it with transitive closure, fixpoint and

second-order quantification, respectively• The algebraic

languages are the relational algebra and the languages

obtained by restricting it to be projection-free or by

enriching it with bounded looping and unbounded looping,

respectively.

As an example consider the language of first-order

logic. Let ¢p be a sentence in this language of size s (a

sentence represents a Boolean query, that is, a query that

returns a yes/no answer), qo has at most s variables. In

order to evaluate q~ on a database of size n, it suffices to

cycle through at most n s possible assignments of values

from the database to the variables, and this can be done in

space O(logn). Thus. the set of all databases satisfying qo

is in LOGSPACE. On the other hand, if B is a non-trivial

database, i.e., it has a relation which is neither empty nor

does it contain all taples over the domain of die database.

then the set of all first-order sentences satisfied by B is

PSPACE-complete [CM].

This happens to be quite a typical pattern. The

expression complexity of the investigated languages is usu-

ally one exponential higher thcn the data complexity, and

for both types of complexity we will show completeness in

some complexity class. More specifically, we will show a

hierarchy of hmguages wbose data complexity is described

by corapleteness in LOGSPACE. NLOGSPACE. P'I'IME,

NPTIME and PSPACE. respectivcly, and whose expres-

sions complexity is described by completeness in PSPACE,

NPSPACE (=PSPACE), EXPTIME, NEXPTIME and

EXPSPACE, respcctively.

In this version of the paper proofs are only bdetly

sketched.

2. I)atabases, Queries and Co,nplexity

We first recall some basic definition taken mainly

from [CH2].

Definition: A relational database (or database for short) is

a tuple B=(D,R~ Rk) where D E N is a finite set

(N is the set of natural numbers) and for each l < i < k ,

R, CD a' for some a,>0. The number a, is called the rank

of R~ and B is said to be of type ~ =(av ak).

We will usually abbreviate the vector Rr. Rk

by R and write B =(D./~). Also, throughout the paper

we will assume some standard encoding for databases.

E.g., the database B=({3,5.7}.{(3,5>.<5,7>}) might be

encoded by the string ({ll,101.111}.{<ll,101>Xl01,111>}).

Definition: A query of type 6"-'*b is a partial fimction

Q: {B] B is of type ~}'--'2 ub

such that if B=(D,R-) and Q(B) is defined then

Q(B)CD b.

138

Chandra and Harel [CH1] define a query as comput-
able if it is a partial reeursive fimction and it satisfies what

they call the "consistency criterion". The qneries defined

by the langunges in this paper are all computable, so we

will not address this point any fimher.

Definition: A query language (or language for short) is a

set of expressions L and a meaning function g such that

for every expression e in L, bt(e) is a query. C(L) is the

class of queries defined by expressions in L, that is,

C(L)={Q I Q =It(e) for some eEL}

We will write Q~ for p.(e) when /x is understood

from the context.

Since queries are fimctions, we will measure their

complexity by studying how difficult it is to recognize that

a certain tuple belongs to the result of applying the query

to the database. That is, we look at the problem as a

recognition problem instead of looking at it as a computa-

tion problem. The restdt of applying the query to the

database can be obtained by checking for all possible

tuples (i.e., D b) whether they belong to the result. For

most langtmges dealt with in the paper, the complexity of

computing the result is the same as the complexity of

recognizing tuples in the result.

Definition: The graph of a query Q is the set

Gr(a)={(d,B)] dEQ(B)}.

The graph of a database B with respect to a language L is

the set

Grt.(B)={(d,e) I eEL and ,dEQe(B)}.

The data complexity of a language L is the complex-

ity of the sets Gr(Q,) for the expressions e in L. The

expression complexity of a language L is the complexity of

the sets GrL(B).

Definition: A langttage L is data-complete (or D-complete
for short) in a complexity class C if for every expression e

in L. Gr(Qe) is in C, and there is an expression e0 in L

such that all sets in C are Iogspace reducible to Gr(Q%).

L is expression-complete (or E-complete for short) in a

complexity class C if for every database B, Grt.(B) is in

C, and there is a database Bo such that all sets in C are

Iogspace reducible to GrL(Bo).

Definition: Let C be a complexity class. QC is the class

of queries whose graph is in C, i.e.,

QC={Q I Gr(Q)EC}.

3. I,ogical l ,anguages and their Complexity

The first qnery language to be studied here is the

language of first-order logic, whose tuple oriented version

is called relational calculus in [Codd].

Definition: Let L be the first-order language with equality,

with no function symbols and with Ri,R2," • • as its predi-

cate symbols. (Note: we will use R, both as the formal

symbol denoting a relation and as the relation itself; also

the rank of R, will be a,). Let F be the language consist-

ing of expressions of the form Zti0(~) where T is a formula

of L and ~: is a vector of distinct variable containing all

free variables of ep. If e is such an expression then ~ is

a query Q, of type (al a,)--H.~l (1~1 denotes the

length of .~). Qe is defined by

Q,(D,R)={d6D I~1 I (p(d) is true in (D,R')}.

Let F - be the quantifier-free version of F. That is,

quantifiers are not allowed in expressions of F- .

Clearly, F is more expressive then F- .

Example: Let R1 be a binary relation describing the flights

of an airline company, i.e., Rl(x,y) means that the com-

pany has a flight from city x to city y. The expression

(x,y).~(R l(x,z)/\R t(z ~v))

represents the query Q of type (2)'+2 which returns the

composition of Rt with itself, i.e., the pairs of cities that

139

are connected by exactly two flights.

A useful query is that which returns the pairs of

cities that are connected by any positive number of flights.

It was shown by Aho and Ullman [AU] that no expression

in F represents this query. This is the motivation for

enriching F by the transitive closure construct [Z1].

Definition: Let TF be the language obtained by adding to

F expressions of the form ~'.(x,y).~(x,y), where

(x,y).qv(x,y) is an expression of F. If e is such an expres-

sion then ~(e) is a query Qe of type (~)---~2 defined by

O~(D,R)=(Qi~,y).~(D,R)) ~ (~ stands for transitive closure).

Example: The desired query mentioned above is

represented by ,r.(x ,y).R l(x ,y).

Let R2 be a ternary relation describing flights of

several airline companies, i.e., R2(x,y,z) means that com-

pany x has a flight from city y to city z. Consider the

query which return all triples (u,v,w) such that v and w

are connected by a positive number of flights all by the

same company u. There is no way of representing this

query in TF. This is the motivation for enriching F by

the fixpoint construct.

Definition: Let YF be the language obtained by adding to

F expressions of the form TR.2.cp(~), where ~..cp(~) is an

expression of F and R is a predicate symbol of rank 122 [

that occurs positively in cp (i.e.. each occurrence of R in

is under an even number of negations). If e is such an

expression then ~(e) is a query Qe of type (if)Dial.
Q,(D,I~) is a relation R such that Q,. , (D,R,R)=R and

for any relation R', if Q~.,p(D,R',R)=R' then R~.R' . In

other words, Qe(D,R-) is the least fixpoint of the query

Q£~.

Chandra and Harel [CH2] have shown that all the

expressions in YF define total queries,

Example: The above mentioned query is represented by

the following expression of YF:

TR. (x,y,z).(R 2(x,y,z)\/~u (R 2(x,y,u) l \R (x,u,z))).

YF is more expressive then TF, because the query

defined by the expression "r.(x,y).~x,y) of TF is also

defined by the following expression of YF:

T R. (x,y).(~ x,y)\/~ z(qg(x,z) / \R (z,y))).

Consider now the query which returns the pair of

cities connected by direct flights by an even number of air-

line companies. There is no way to express this query in

YF [CH2]. It can however be expressed by using second-

order existential quantification.

Definition: Let SF be the language obtained by adding to

F expressions of the form Y,.~R. ~p(2), where Y.~(Y) is an

expression of F. If e is such an expression and R is of

arity a then bt(e) is a query Qe of type (h-)--*l .~ [defined

by

Qe(O ,R)= { d 6D I ~ I I there is a relation R CO a s.t.

~0(d) is true in (D,R ,R-)}.

Example: The above mentioned query is represented-by

the following expression of SF:

(tt ,v).~R. (Yxyz ((R (x,y)/ \R (x ,z)'-",y = z)

/ \ (R (y,x)/kR (z,x)-'-~y = z)

/ \ (~ R (x .y)V--1R (z ,x))

/ \ (R 2(x,u ,v)--'~]w(R(x,w)VR(w,x)))

/ \ (a (x,y) ~ R 2(x,u ,v)/XR 2(v,u ,v)))).

It is easy to show that queries defined by expressions

in ,I"F can be defined by using second-order universal

quantification. It is also true, though less trivial, that such

queries can be defined by using second-order existential

quantification. This can be shown by complexity

140

arguments [CH2] or by the technique of [JS]. Thus, SF is

more expressive than YF.

The expressiveness relation between the languages

defined so far can be summed up as

a(F)QQ(F)CQ(TF)CQ(YF)CQ(SF),

(We use C to denote containment and C to denote proper

containmen0.

Let us now consider the data and expression com-

plexity of F , F, TF, YF and SF, respectively. We use a

fixed database Bo=(Do,Ro), where D0={0,1} and

R0={<l>}.

Theorem !: F is D-complete and E-complete in

LOGSPACE.

Proof: For LOGSPACE, hardness by a logspace reduction

is trivial, so it suffices to show membership. For eEF-,
Gr(Qe) is clearly in LOGSPACE (see next theorem). The

fact that for every database B, Gr~, (B)ELOGSPACE fol-

lows from the fact that Boolean expressions can be

evaluated in logarithmic space [Ly]. 13

Theorem 2: F is D-complete in LOGSPACE and E-

complete in PSPACE.

Proof: To test whether dEQx.~(B), a straightforward algo-

rithm cycles through all possible substitutions for the

quantified variables. This algorithm has a logarithmic

space data complexity and polynomial space expression

complexity.

D-compbteness: Trivial.

E-completeness: By reduction from Quantified Boolean

Formulas of Stockmeyer [St] it follows that Gre(Bo) is
PSI'ACE-hard [CM]. [3

The classification of F as having a logarithmic space

data complexity is quite crude and can be further refined.

For an expression eEF, let qn(e) be the number of

quantifiers in e. Let 2DFA(k) denote the class of sets

accepted by a two-way detemfinistic finite automaton with

k heads. Recall that LOGSPACE = LJ2DFA(k)[Ha].
kEN

Theorem 3: Let eEF; then Gr(Q,)62DFA(qn(e)+2).
Proof: qn(e) heads are needed to move over the domain;

thus giving an assignment of elements to the qn(e)

quantified variables, an additional head is needed to move

over the assignment of elements to the free variables, and

the last head is needed to move over the relations. The

interaction between the last head and the first qn(e)+l
heads gives truth values to the atomic formtilas in e. []

Interestingly, it is known that, for all kEN,
2DFA(k) is properly contained 2DFA(k+2) [Ib], and it

follows from the results of [CFI2] that

C({e J eEFandqn(e)=k}) is properly contained in

C({e J eEF and qn(e)=k +2}).

Theorem 4: TF is D-complete in NLOGSPACE and E-

complete in PSPACE.

Proof: To test whether (a,b)EQ~.~x,y).r(B) we guess a

sequence a = a~,a2, ak = b and test whether

(a~,a~l)EQ(x,y).~(B) for l<i<k. This algorithm has a

nondeterministic logarithmic space data complexity, and a

nondeterministic polynomial spacc expression complexity.

D-completeness: Let eo be r.(x.y).R(x.y). Gr(eo) is

NLOGSPACE-hard by reduction from Graph Accessibility

problem [Jo].

E-completeness: Follows from the fact that

PSPACE=NPSPACE and FCTF. []

Theorem 5: YF is D-complete in PTIME and E-complete

in EXPTIME.

Proof: Let the fixpoint expression e be TR.~.q~(~), where

R is of rank I x J. The algorithm of [CH2] for evaluating

Qe(D,R) builds a sequence of increasing approximations

for R starting with the empty relation. Since the cardinal-

ity of Qe(D,I~) is bounded by IDJ lel, the length of the

sequence has the same bound. Hence, this algorithm has a

polynomial time data complexity and an exponential time

expression complexity.

D-completeness: Follows by reduction from Path System

141

Accessibility problem [JL].

E-completeness: We show that any set accepted by an

exponential time deterministic Turing machine is Iogspace

reducible to GrrF(llo). The idea is to encode a computa-

tion of length 2" by a 2n + m - a r y relation R (m depends

on the machine in question).

g(al an,anti a2n.a2n÷l a2n)m) means

that after i computation steps the machine has a symbol tr

in its j - t h tape square, where (at. a.),

(a.+l a2,). and (a2.+t a2.~,,) are binary

encodings of i, j and o, respectively. The movements of

the machine are simulated by the fixpoint operation. []

The algorithm outlined above for evaluating

Q~(D,R-) makes at most I D I I~l iterations, and the cost of

each iteration is O(I I~1 I ' ID I ~11~11) for some constant

c. (I I ~ l l denotes the size of the encoding of ct). The

following theorem shows that the rank of R and the size

of tp gives also a lower bound on the complexity of

Gr(Q,).

Theorem 6: There is a polynomial p so that for every

kEN there is an expression e=TR.~,t;~(££), with

Ix l = O (k) and I I ,p l l=O@(k)) , such that

Gr(Q~)~DTIME(n k- 1).

Proof: 'There is a polynomial p so that given a determinis-

tic Turing machine M with input alphabet Z that operates

in time O(n*), we can build an expression e with

lYl = O (k) and I l r p l l = O (p (I IMII)) , such that, for

every s e E ' . one can construct in time O(11 s I I) a data-

base B and a vcctor a of size O (J l s l l) such that

sEL(M) iff dEQ,.(B). The claim then follows from the

fact that there is a Turing machine M with

I l M I l = O (k) that operates in time O(nk). but

L(M)~DTiME(n k 1) [tlS]. []

Let YF(k) be the class of expressions

{e I eEYF and I l e l l _ < k } . The theorem above shows

that the hierarchy <C(YF(k))>keo is infinite.

Theorem 7: SF is D-complete in NPTIME and E-

complete in NEXPTIME.

Proof: To test whether d6Qe~.~(D,R), a straightforward

algorithm guesses a relation R (~D a (a is the arity of R)

and tests whether dgQ~(D,R,R). This algorithm has a

nondeterministic polynomial time data complexity and a

nondetcrministic exponential time expression complexity.

D-completeness: Shown by reduction from the Clique

problem of [Ka].

E-completeness: We show that any set accepted by a non-

deterministic exponential time Turing machine is reducible

to Grs+,(Bo). We use the encoding described in the proof

of Theorem 5. []

Remark I: Lower bounds for SF in the spirit of Theorem

6 can be shown in a similar manner.

Remark 2: Not only are YF and SF D-complete in

PTIME and NPTIME, respectively, but also every query

computable in nondeterministie polynomial time can be

defined in SF, and if we assume that one of the relations

of the database is a linear order on the elements of the

domain then every query computable in polynomial time

can be defined in YF*, which is a slight extcnsion o f] "F

(more precisely, it allows existential quantification over

conjunctions of equality formulas with expressions of YF).

Fagin [Fa] has proven the first claim for Boolean queries,

and by extending his argument we can show that

C(SF)= QNPTIME. Studying the proof in detail, we can

see that the second-order quantification is needed for two

different purposes. First. it is used to define a linear order

on the elements of the domain, and secondly it is used to

say that there exists an accepting computation on the non-

deterministic machine. If one of the relations in the data-

base is already a linear order relation, and the machine is

deterministic, then the computation can be simulated by

the fixpoint operation. Thus, C(YF' , <) = QPTIME(~).

(This fact has been also proven independently by lmmer-

man [Im2]). Let EVEN be the Boolean query that answer

142

positively for a database (D,/~) just in case that]D I is

even. Clearly, EVEN6QLOGSPACE. However, it is

known that E V E N ~ C (Y F +) [CH2]. Consequently,

C(F)CQLOGSPACE, C(TF)CQNLOGSPACE, and

C(Y F ~)CQPTIME. One may wonder whether

C(F, <) = QLOGSPACE(~) or whether

C(TF,<)=QNLOGSPACE(~) . It follows from the

results of [Iml] that the first statement does not hold, and

we conjecture that neither does the second one.

4. Algebraic l , anguages and their Complexi ty

Our basic algebraic query language is based on the

relational algebra of [Codd]. The language consists of the

following:

Variables: X% ,X~ X d ,X ~ X~

Terms: D,R~,Xf,...

and ifli,12,l are terms then so are:

t~ Xt2 Cartesian product,

tzl..Jt2 union,

~ t complement,

Proj,(t) projection of column i,

Permo(t) permutation by O,

Restrict, q(t) restriction of columns i and j .

(The numbers is the terms are assumed to be written in

unary notation).

Definition: The language A consists o f statements of the

following form:

Xf~t where t is a term of rank a ,

(Sj;S2) where Sa and $2 are statements.

The language d is the projection-free version of A. That

is, projections are not allowed in terms o f d - .

The language BA consists of the statements o f A and also

For] t] do S , where t is a term and S is a state-

ment,

The language LA consists of the statements of BA and

also

While t =fgJ do S , where t is a term and S is a

statement.

An expression in any of these languages is a pair (S, t)

where S is a statement and t is an expression in the

language.

The semantics of the language is as follows. Vari-

able Xf has rank a. All variables are initialized to ~ .

The values of terms D, R, are fi-om the database. The

term tlXt2 has value {<d ,~>]d6 t l ,~6 t2} ; tll..Jt2 is set

union if tl and t2 have the same rank: Proj,(t) deletes the

i-th column from t, having value

{<dz d, z,d~, z da> I dCt}, where t has rank a

and i<a: given a permutation 0 on {1 a}, where t

has rank a , the value of Permo(t) is

{<daft). do~a)>l,t6t}; and Restrict,.i(t) has the value

{ d l d E t andd~=dj} , where t has rank a, i<a , and

j < a .

The semantics of " , -" and ";" is that of assigmnent

and concatenation in the obvious way. For l t l d o S

means: execute S I t l times, where I t l is determined

upon entry to the loop. We call this bounded looping.

While t = ~ d o S means: execute S as long as t = ~ ,

where t is evaluated dynamically. We call this unbounded

looping.

An expression (S, t) defines a query Qcs.o in the-fol-

lowing manner: Qts.,~B) is the value of t after termina-

tion o r S on B, or O i f S does not terminate on B.

It is easy to see that A is more expressive than A - ,

BA is more expressive than A, and LA is at least as

expre~ive as BA. However, it is not known whether LA

i~, mole expressive than BA. So we have

C(A-)CC(A)CC(I~A)CC(LA)

Theorem 8: A is D-complete in LOGSPACE and E-

complete in PTIME.

Proof:

D-completeness: See next theorem.

E-completeness: Folk)ws from the completeness in PTIME

of the Circuit Value problem of [La]. []

143

Theorem 9: A is D...complete in LOGSPACE and E-

complete in PSPACE.

Proof: For every clEF there exists e2EA such that

Q~= Q'2' and for every e2EA there exists e~EF such that

Qg=Qe2 [CM,Codd]. Furthermore, the translation in

both direction can be carried out in logarithmic space, and

there is a constant c such that I le21l<jl let l l and

[leal [<_c I le21 1. (The linearity of the translation from

A to F is not trivial!). Thus, the claim follows by

Theorem 2. t2

Theorem 10: BA is D-complete in PTIME and E-complete

in EXllrFIME.

Proof: Let e =(S,t)EBA. The maximal rank of a term in

e is bounded by I l e l l . Hence, the cardinality of all

terms in e is bounded by IDI t l ' l l , and the number of

steps in the execution is bounded by]D111~112. Thus. a

straightforward evaluation has a polynomial time data

complexity, and an exponential time expression complex-

ity.

Chandra and Harel [CH2] have shown'how to simu-

late a fixpoint query by unbounded looping. The same

can be done with bounded looping. Furthermore, there is

a eonsUmt c such that for every eLEYF there is e2EBA
with I lezl I < _ c l l e l l l and Q~i=Q~r and the translation

can be done in logarithmic space. Thus, the claim follows

by Theorem 5. t3

Theorem 11: LA is D-complete in PSPACE and E-

complete in EXPSPACE.

Proof: Let e =(S,t)ELA. As in the proof of Theorem 9,

the cardinality of aU terms in e is bounded by IDI Ilell.

Thus. a straightforward evaluation has a polynomial space

data complexity, and an exponential space expression com-

plexity.

D-completeness: [CH2].

E-completeness: We show that any set accepted by an

exponential space deterministic Turing machine is Iogspace

reducible to GrLA(Bo). The idea is to encode a

configuration of length 2 ~ by a 2n +m-ary relation R (m

depends on the machine in question).

R(ab..,an,a, ~ z a, +m) means that the tape has sym-

bol a in its j-th square, where (a~ an) and

(a, ~1, a,~ m) are binary encodings o f j and a, respec-

tively. An unbounded loop simulates the unbounded com-

putation of the machine starting from the initial

configuration, t3

Remark 3: Lower bounds for BA and LA in the spirit of

Theorem 6 can be shown in a similar manner.

Let us now compare the expressiveness of the alge-

braic languages with that of the logical languages. We

have already noted that C (F) = C(A), and since projection

corresponds to existential quantification, it follows that

C(F-)=C(A). We also noted that C(YF)CC(BA) and

in fact also C(YF~)CC(BA). However. EVENEC(BA)
[Chan]. So C(YF+)CC(BA). The relationship between

LA and SF is not clear. It is not known whether

C(SF)CC(LA), and it follows from the data complexity

of LA and SF that C(LA)CC(SF) if and only if

PSPACE = NPTIME.

RemaA 4: Since C(YF+)CC(BA) and

C(YF +,~ = QPTIME (~), it follows that

C(BA,~=QPTIME(.<), In a similar manner it can be

shown that C(L.4 , ~ = QPSPACE(~.

5. Concluding Remarks

The next table summarizes the results of the preced-

ing sections.

144

Language

F -

F

TF

YF

SF

A-

A

BA

LA

Data Complexity Expression Complexity

LOGSPACE

LOGSPACE

NLOGSPACE

PTIME

NPT1ME

LOGSPACE

LOGSPACE

PTIME

PSPACE

LOGSPACE

PSPACE

(N)PSPACE
EXPTIME

NEXPTIME

PTIME

PSPACE

EXPTIME

EXPSPACE

We now sketch two extensions of the theory that

will be described in detail in the full version of the paper.

Unlike the language F, which is closed under it logi-

cal connectives (the Boolean connectives and

quantification). TF, YF, and SF are not closed. Closing

this languages under their connectives gives us the

languages T, Y, and S. For these languages we can

define hierarchies of expressions and their queries (this is

done in [Ct12] for F and Y). and now we can investigate

their expressiveness and complexity. In [CI12] it is shown

that the first-order hierarchy is infinite and is E-complete

in the polynomial hierarchy of [St]. In tim2] it is shown

that the fixpoint hierarchy collapses and C(Y)=C(YF~).

From [St] it follows that the second-order hierarchy is D-

complete in the polynomial hierarchy. In addition we can

show that the transitive closure hierarchy is D-complete in

the logarithmic hierarchy of [CKS], and that the second-

order hierarchy is E-complete in an exponential hiera~clty

that can be define analogously.

We already noted that expression complexity meas-

ures the succinctness of the langtmge in question. Thus, if

we can somehow succeed in "squeezing down" our expres-

sions, we would expect the expression complexity to

increase, while the data complexity will not change. It is

not clear whether it can be done for the logical languages,

but it is easy to do that for the algebraic languages by

using shorthands like exponentiation and binary notation.

It turns out that this can add an exponential to the

expression complexity. For example, The "squeezed" ver-

sion of LA is E-complete in 2EXPSPACE (the class of

language accepted by Tufing machines operating in doubly

exponential space).

Acknowledgcntent I am grateful to David Harel for

arousing my interest in the subject of relational queries

and for many stimulating discussions. I'd like also to

thank Ashok Chandra for his insightful remarks, in partic-

ular for pointing out that changing the syntax of the

language can change its expression complexity. 1'hanks

are also d:le to Nick Pippenger for supplying me with use-

ful references, and to Ron F~gin for commenting upon an

earlier draft of the paper.

References

[AU] Aho, A.V.. UIIman, J.D.: Universality of data

retrieval languages. Proc. 6th ACM Syrup. on

POPL, 1979, pp. 110-117.

[Ba] Bancilhon, F,: On the completeness of query

languages for relational databases. Proc. 7th

Syrup. on MFCS, 1978.

[CH1] Chandra, A.K., Harel, D.: Computable queries

for relational databases. JCSS 21(1980), pp. 156-

177.

[CH2] Chandi'a, A.K.. Harel, D.: Structure and com-

plexity of relational queries. Proc. 21st [EEE

Symp. on FOCS, 1980, pp. 333-347. Also, to

appear in JCSS.

[CH3] Chandra, A.K., Harcl, D.: Horn clauses and the

fixpoint query hierarchy. Proc. ACM Symp. on

PODS, Los Angeles. March 1982.

[Chan] Chandra, A.K.: Programming primitives for data-

base languages. Proc. 8th ACM Symp. on POPL,

1981, pp. 50-62.

[CKS] Chandra. A.K., Kozen, D.C., Stockmeyer, L.J.:

Alternation. JACM 28(1981), pp. 114-133.

145

[CM] Chandra, A.K., Merlin, P.M.: Optimal implemen-

tation of conjunctive queries in relational data-

bases. Proc. 9th ACM STOC, 1977, pp. 77-90.

[Codd] Codd. E.F.: Relational completeness of database

sublanguage. In Data Base Systems (Rustin, Ed.),

Prentice Hall, 1972, pp. 6508.

[Coop] Cooper, E,C.: On the expressive power of query

languages for relational databases. Proc. ACM

Syrup. on PODS, Los Angeles, March 1982.

[Fa] Fagin, R.: Generalized first-order spectra and

polynomial-time recognizable sets. In Complexity

of Computation (R. Karp, ed), SIAM-AMS Proc.

7(1974). pp. 43-73.

[Ha] Hartmanis, J.: On non-determinacy in simple

computing devices. Acta lnfo. 1(1972), pp. 28-36.

[HS] Hartmanis, J., Steams, R.E.: On the computa-

tional complexity of algorithms. Trans. AMS

117(1965), pp. 285-306.

[lb] lbarra, O.H.: On two-way multihead automata.

JCSS 7(1973), pp. 28-36.

[iml] lmmemlan. N.: Number of quantifier is better

than number of tape cells. JCSS 22(1981), pp.

384-406.

[lm2] lmmerman, N,: Relational queries computable in

polynomial time. This volume.

[Jo] Jones, N.D.: Space bounded reducibility among

combinatorial problems. JCSS 11(1975), pp. 68-

85.

[JL] Jones, N.D.: Laaser, W.T.: Complete problems in

deterministic polynomial time. TCS 3(1977), pp.

105-117.

[JS] Jones. N.D., Selman, A.L.: Turing machines aad

the spectra of first-order sentences. J. of Sym-

bolic Logic 39(1974), pp. 139-150.

[Ka] Karp. R.M.: Reducibility among combinatorial

problems. In Complexity of Computer Computa-

tion (R.E. Miller and J,W. Thatcher, eds.),

Plenum Press, 1972, pp. 85-103.

[Lal Ladner, R.E.: The circuit value problem is

logspace complete for P. SIGACT News 7(1975),

pp. 18-20.

[Ly] Lynch. n.: Logspaee recognition and translation

of parenthesis languages. JACM 24(1977), pp.

583-590.

[Pa] Paredaens, J.: On the expressive power of the

relational algebra. IPL 7(1978).

[St] Stockmeyer, L.J.: The polynomial time hierarchy.

TCS 3(1977), p. 1-22.

[ZI] Zloof, M,: Query-by Example: Operations on the

transitive closure. IBM Research Report

RC5526, 1976.

146

