Red Hat Enterprise MRG Realtime — Product Overview

Red Hat Enterprise MRG - Realtime Whitepaper

~ MRG

1 Executive Summary

Many enterprise workloads have extremely demanding requirements for determinism — to ensure
predictable response times at the 20 microsecond (us) latency level.! The difficulty has been that until
now, all realtime operating systems have been niche offerings —absent of any COTS (Commercial Off
The Shelf) products. Red Hat® is uniquely positioned to provide these capabilities due to its proven
track-record of development and mainstream accepted Linux kernel realtime enhancements. In
response to strong customer demand, Red Hat is productizing its realtime kernel in an offering called
Red Hat Enterprise MRG, comprised of high speed messaging, realtime kernel, and grid cluster
scheduler.

Kernel level enhancements form the foundation of Red Hat's commercial offering. Consider that few
computers today function completely independently. Rather, they are typically connected in adistributed
environment. Red Hat's approachto a realtime solution stack extends beyond the kernelunderpinnings,
to include:

e High speed messaging — via an open source AMQP messaging middleware offering from Red

Hat, referred to as MRG Messaging.

e Grid scheduler - enables enterprises and research organizations to bring the power of distributed
computing across their entire infrastructure to tackle the largest computational problems in a
highly efficient and effective manner. Referred to as MRG Grid.

e Realtime Java — via strong partnership with IBM

This combination of engineering leadership, award winning Red Hat Enterprise Linux® distribution,
open source messaging middleware, and established partnerships yied the most comprehensive realtime
deployment platform.

This whitepaper describes the MRG Realtime capabilities being productized on a Red Hat Enterprise
Linux 5.1 foundation. It details the implementation and productization strategy aimed at meeting the

1 20 ps is the time interval between when a trigger occurs (such as an interrupt or timer expiration) and when the
scheduler runs the highest priority pending process running on realtime certified hardware.

Red Hat, Inc. Copyright 2007 1 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

most demanding customer workloads while at the same time preserving application compatibility.

2 The need for enterprise realtime

Historically the concept of realtime hasbeen most applicable to embedded maitoring devices and
control equipment. Today thereis a growing class of enterprise applications which have demanding time
constraints which are unable to be satisfied with general purpose operating systems. This often
necessitates utilizing non-standard operating sys¢ems for certain workloads. These niche operating
systems put an inordinae strain on enterprise I'T organizations to acquire skills in system management
and application porting to an obscure environment.

Red Hat has risen to the challenge to provide industry leading realtime capabilities in a commercial off
the shelf operating system (COTS) - the Red Hat Enterprise Linux product family under the name MRG
Realtime. By integrating realtime, high performance messaging middleware capabilities and grid
scheduler into the most popular enterprise Linux distribution (Red Hat Enterprise Linux 5), IT
organizations do not require retraining and abroad array of 3rd party applications are at your disposal.

2.1 Example realtime enterprise workloads

The standard Red Hat Enterprise Linux releases provide high performance to meet the requirements of
the majority of enterprise workloads. For example, Red Hat Enterprise Linux is routinely used in world
record breaking database benchmarks such as TPC-C®, and TPC-H. Similarly the performance for
general purpose web and file serving leads the pack. These workloads of file-server, database and web
server are characterized by the need for high throughput.

There are other classes of applications where overall raw throughput alone is insufficient. In many
enterprise workloads, determinism — predictability in response time, even when the system is under
heavy load — is the paramount objective. This class of applications necessitate realtime capabilities. The
following are representative examples of such scenarios:

e Financial services industry - here, time is money - in a literal sense. Guaranteed response time is
of the essence. For example, it is not adequate if out of 100,000 transactions per minute if 99,999
complete in 2 ms, and 1 completes in 20ms. While that is statistically a low number, it represents
one lost trade per minute. Recently introduced SEC regulations can result in severe fines if
inconsistent trading times occur (as it hints of favoritism) — hence determinism is more important
than ever.” The increasing use of algorithmic trading is raising the requirements for low latency

2 http://www.tpc.org/
3 Example government regulations concerning “best execution” and transparency include the US Securities and Exchange
Commission Regulation National Market System (RegNMS), and the European Union's Markets in Financial Institutions

Red Hat, Inc. Copyright 2007 2 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

and high performance. Trading firms are admittedly engagedin a low latency arms race.

e Network devices - many TELCO and network based services (including deployment in traditional
embedded devices such as bridges and routers) are extremely sensitive to response time. Without
high predictability of response time in running their network control applications, there would be
an unacceptably high rate of packet loss and general degradation of service.

e Command and control - Many military and industrial control applications require deterministic
response time for control applications. Here it is critical that the priority of the control
applications does not get superseded by non-essential processes and operating system tasks. The
ability to fine-tune the priority of both system and application processes with high predictability
1s essential.

® Realtime java applications - there is a growing class of applications utilizing RTSJ (RealTime
Standard Java) capabilities’. Any RTSJ compliant JVM has stringert requirements on the
operating system for low latency and priority inversion avoidance capabilities. It is not
uncommon for Java applications to have huge numbers of threads, ie 10's of thousands. Such
workloads require a fully certified combination of an RTSJ compliant JVM and underlying
operating system to scale accordingly in adeterministic manner.

3 Low latency and predictability defined
The previously mentioned realtime workloads have 2 primary requirements:
e Predictability in response time — ensuring consistency in response times

e Deterministic upper bound on latency — ensuring that processing wil return correct results

within a constrained period of time; every time — referred to as guaranteed response time

Predictability in response time primarily amounts to ensuring that the highest priority processes are run
first. Traditional Linux offerings sufferfrom a problem known as Priority Inversion (PI). PI can occur
when a high priority process requires a resource (ie lock) held by a lower priority process, hence the
high priority process is blocked. In the meantime the lower priority process may yield to a medium
priority process. This medium priority processcould run for a long time, effectively stalling out the
higher priority process. To avoid this situation our realtime product temporarily boosts the low priority
process - effectively to allow it to complete its work and release the resource to the high priority process.
This is just one of many examples.

In addition to considering priorities of user application processes, there are also a wide variety of

Directive (MiFID).
4 http://www.rtsj.org/

Red Hat, Inc. Copyright 2007 3 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

operating system threads, including interrupt servicing. Depending on the applicaion workload, in
realtime scenariosit is necessary to be able to prioritize certain application processes above some
operating system kernel services. For example, consider the case of an industrial control application
running on a4 CPU system. For optimal performance it may be configured to have the control
application running exclusively on 2 processors, have all network interrupt handing performed on the
3rd CPU, and the remainder of general operating system tasks and non-time-critical applicaton
processes constrained to the 4th CPU.

Another traditional sore-spot in Linux preventing dependable determinism is that there are numerous
extremely lengthy kernel codepaths. Our realtime engineers have been methodically breaking down
unnecessary serialization through techniques such as deferring the majority of interrupt handling to
lower priority kernel threads. We have also improved contention points in multiprocessor locking -
yielding scalability benefits to general purpose Red Hat Enterprise Linux and realtime workloads alike.
The traditional measure of deterministic upper bounds on latency consists of the time it takes from when
an event triggers (such as a device interrupt, timer interrupt) to the scheduler yielding to the
corresponding highest priority application process — referred to as scheduler latency. In the Red Hat
Enterprise Linux-RT variant, this worst-case scheduling latency is under 25 ps (typically under 20 us on
validated hardware’). The jitter (standard deviation from the mean value) is in the 2-4 ps range. This
bounding of system overhead is particularly important for realtime application workloads as it makes the
overall response times (including system overhead and application execution) more predictable.

Additionally, the precision of timer granularity has been improved to the nanosecond resolution
(provided the underlying hardwareis capable). For example, in standard Red Hat Enterprise Linux 5 the
most precise sleep duration is 2 ms. In contrast, MRG Realtime has 10 us capability (hardware
dependent).

4 Red Hat - the Linux realtime innovation leader

Deploying Linux in realtime enviromnments is not anew phenomenon. Companies have been doing this
for years. The problem to date is that, none of the commercial offerings have been mainstream Linux -
all prior realtime offerings have been the exclusive province of custom, proprietary, niche offerings.
History has proven that niche offerings do naot stand the test of time and expense constraints. The
profound industry trend is to mainstream COTS offerings.

In the past, there have been several attempts at integrating realtime capabilties in the mainline Linux
codebase. All such integration attempts consisted of proposing colossal change sets - typically on the

5 Scheduling latencies are very hardware dependent. For example, the same kernel consistently yields 15 ps on a newer
system and 150 ps on an older system (circa 2005).

Red Hat, Inc. Copyright 2007 4 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

order of 10's of thousands of lines of code - which in the Linux community are dubbed "patch bombs".
The fatal flaws with the "patch bomb" approach include the following:

e [t is virtually impossible for the broad community to understand and approvedue to their
enormity — termed not consumable.

e They are typically short-sighted, focusing on a niche market - and detrimental to general purpose
operation. In fact, there were so many failed attempts with realtime patch bombs that it was
decreed that it would never become mainstreamed in Linux.

Among all the companies with strong intentions for realtime Linux capabilities, Red Hat has taken a
unique approach. Rather than taking a typically proprietary approachof developing realtime capabilities
in-house and later patch-bombing the Linux kernel community upon completion, Red Hat's strategy from
day1 has been to establish a patient multi-year incremental roadmap. We have broken down the problem
into first getting in enabling capabilities and infrastructure cleanup. With each new mainstream kernel’
version we have continued the progression. Red Hat has been doing all of this development in a fully
open and inclusive manner. To avoid the stigma of prior companies failed realtime attemps, we have
methodically proven that all ofthe enablers which wehave successfully integrated upstream are
demonstrated to be beneficial to generalpurpose computing. In this way we have raised the overall bar
for Linux in general. You could say that Red Hat'sapproach to mainstreaming realtime Linux can be
summarized by the following parable:

e Question: How do you eat an elephant?
e Answer: One bite at a time.

Red Hat's open, inclusive, upstream focused strategy to delivering realtme capabilities is completely
consistent with the well proven Red Hat Enterprise Linux productization methodology which has made
it the industry leading Linux distribution. The efforts of Red Hat's engineering staff have made us the
upstream engineering projectleaders and implementers of realtime capabilties. There we have formed a
developer community focusing on realtime features and invited broad participation’. An increasing
number of Linux vendors arerecognizing the success of this initiative and starting to jump on the
bandwagon —often by abandoning their prior non-mainstream alternative.

4.1 Demonstrated mainstream realtime results

The following table highlights many of the realtime related features and infrastructure which Red Hat

6 Mainstream kernel — refers to the primary open source kernel source tree governed by Linus Torvalds — which is the
authoritative community kernel development source code repository from which all major Linux distributions (including
Red Hat Enterprise Linux) are derived. http://www.kernel.org.

7 http://rt.wiki.kernel.org

Red Hat, Inc. Copyright 2007 5 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

engineers have played insgrumental roles in successfully incorporating upstream. All of these capabilities

are included as of the mainline kernel version 2.6.18 — which forms the foundation of Red Hat Enterprise

Linux 5. This table of features is not a comprehensive listing — rather it focused on the largerfeatures.

Feature

Mainline
kernel

version

Brief description

BKL preemptable

2.6.8

Increase kernel locking granularity to allow more
concurrency

Mutex synchronization

2.6.16

Introduces a new kernel control primitive to replace
semaphores with mutexes — which have ownership
properties required for implementation of priority
inheritance. A lighter weight locking mechanism
improving overall kernel performance.

High resolution timer

infrastructure

2.6.16

Allows time to be internally repesented at
nanosecond (ns) resolution.

Deterministic kernel timer
event handling

2.6.16

Changed kernel timer algorithm to be O(1)
deterministic on event add/remove/expration.

Lock validator

2.6.18

Efficient runtime checking to confirm correctlock
behavior. Can detect race conditions without actually
hitting them. Instrumental in demonstrating
correctness of realtime enhancements (as well as
identifying numerous existing locking issues).

Priority inheritance futexes

2.6.18

Prevents unbounded priority inversion scenarios for
user space processes — whereby lower priority
processes can prevent higher priority processes from
running. Requirement of RTSJ (realtime java) and
telco.

Generic IRQ layer

2.6.18

Cleanup interrupt handling to factor into common
code what was previoudy architecture specific.
Laying the groundwork for later interrupt
enhancements —to defer processing to threads.

Core time rewrite

2.6.18

Factor into common code prior architecture specific

replication. Laying the groundwork for later dynamic

Red Hat, Inc. Copyright 2007

6 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

ticks and high resolution events capabilities.

Latency tracer 2.6.18 An efficient mechanism to measure the longest
latency codepaths (asthey are the source of non-
determinism). Useful for distinguishing kernel vs
user-space latency. Allows specifying target latency
thresholds and logging any that exceed. (The latency

tracer is not incorporated into standard RHELS.)

Although not explicitly itemized in the above table there are a class of capabilities included in Red Hat
Enterprise Linux 5 aimed at system resource prioritization. These capabilities (also present MRG
Realtime) are not new to Red Hat Enterprise Linux 5, but are listed here for completeness. These
capabilities allow standard RedHat Enterprise Linux 4 and Red Hat Enterprise Linux 5 to be tuned to
provide a high level of determinism required by the vast majority of application workloads. In fact, these
tuning mechanisms alone when applied to standard Red Hat Enterprise Linux releases have typically
enabled us to exceed the performance and determinism of competing Linux based realtime products. We
have observed that only a minority of workloads truly demand the advancedlow-latency capabilities of
MRG Realtime. This is why we suggest that customers first try to meet their performance objectives
with standard Red Hat Enterprise Linux. If their needs for determinism are more demanding, then we
suggest MRG Realtime.

e Interrupt binding — designating specific CPUshandle device interrupts.
e Application binding — restricting certain CPUs to running designated application processes.

e Memory pinning — designating that physical memory be exclusively allocated to dedicated

processes.

e Scheduler prioritization — ability to designate process priorities at a fine-grained level. New to
the realtime offering is the ability to set application priority above mog¢ operating system
services.

Through combinations of assigning realtime application processes andcritical system services to
designated realtime CPUs, fine-grained system control is possible — yielding predictably low latency
response times. Lower priority applications and system services are delegated to the non-realtme
processors.

4.2 Beyond Red Hat Enterprise Linux 5

Having all of the enablers and realtime features itemized in the priorsection included in mainline Linux
was a great achievement in the delwvery of Red Hat Enterprise Linux 5. This enables the general purpose

Red Hat, Inc. Copyright 2007 7 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

COTS offering to benefit from the associated performanceand determinism improvements. As such,

many demanding workloads havetheir needs fully satisfied with properly tuned Red HatEnterprise

Linux 5. The Red Hat engineers continue the upstream advancement of realtime capabilities.

Subsequent to the initial Red Hat Enterprise Linux 5 product launch, therehave been additional key

features successfully integrated upstream, and several others which continue in their development

progression. The following table highlights the key realtime features that Red Hat is driving for mainline

inclusion:

Feature

Mainline
kernel

version

Brief description

Infiniband support

2.6.20 and
later

Red Hat is working collaboratively with a community
of Infiniband developers from many companes. Due
to the fast-paced nature of Infiniband development,
the codebase in the standard Red Hat Enterprise
Linux 5 product is ahead of mainstream kernel
acceptance. The same Infiniband OFED 1.2 codebase
enhancements fromstandard Red Hat Enterprise
Linux 5 are also included in MRG Realtime. This
infiniband support includes kernel modules as well as
accompanying user space libraries.

Dynamic ticks

2.6.21

Rather than interrupt the system 1000 times per
second for timing, use hardware timer interrupts to
only wakeup as needed. Improves timing granularity,
reduces needless frequentinterrupt handling, and
decreases power consumption in idle times.

High resolution events

2.6.21

Increase granularity of sleep timing from the
millisecond (ms) to microsecond range (hardware
dependent)— critical for time sensitive applications.
Utilizes precise hardware based timer interrupts rather
than imprecise software timing at the granularity of
periodic interrupts. High resolution timers are utilized
by the following interfaces: nanosleep, itimer, posix-
timers CLOCK_MONATOMIC &
CLOCK_REALTIME. (Theconventional kernel HZ
periodic interrupts at 1000/second continue to govern:

Red Hat, Inc. Copyright 2007

8 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

poll/select and scheduler timeslices.)

CFS - completely fair
scheduler

2.6.23

The objective of the CFS scheduler® is to provide fair
interactive response times. It does away with the
prior run queue, timeslice algorithm. Replacing it with
a red/black tree representing runnable processes. It
performs runtime calculations based on the current
number of runnable processes to give each one its fair
share of the compute cycles. Included in the CFS
patch is a modular scheduler infrastructure. This
allows for optimization of various aspects (ie,not
complete scheduler replacement). One of the initial
initial scheduler modules is a real-time schedule, this
is first in the priority chain.

Interrupt handling in kernel
threads

In progress

Converts interrupt handlers into preemptable threads.
Lengthy interrupt paths are the biggest source of non-
determinism. By deferring most interrupt processing
to separately schedulable threads latency vastly
improves as does increased prioritization control
flexibility.

Converting kernel spin locks to

mutexes

In progress

Spin locks are non-preemptable (oftenblocking
interrupts) — increasing the latency of higher priority
processes (reducing concurrency). This work lowers
the latency of preemption points and allows the timer
interrupt to occur — allowing high priority processes
to run immediately.

Kernel PI (Priority

Inheritance)

In progress

When a kernel thread is preempted while holding a
lock, apply PI priority boost to prevent higher priority
kernel threads from being stalled by lower priority
threads.

Full RT-preempt

In progress

Fully preemptable kernel— all interrupt handling as
threads, conversion of spin locks to sleep locks,
controls to run user space processes at higher priority

than kernel threads. In practice this will be

8 http://lwn.net/Articles/230574/

Red Hat, Inc. Copyright 2007

9 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

decomposed to a series of changes to utilize the
underlying realtime foundation put in place by all the
above features. Performance optimizations are
introduced for the small subset of kernel functions

which are not preemptable to bound latency.

5 Performance Results

The primary objective of MRG Realtime is to introduce determinism into application workloads. The
goal is to complete the user space application transactions wihin a finite time window — and have as few
outliers as possible. The following graph depicts a comparison run the Tibco EMS’ workload on aMRG
Realtime kernel on a tuned system vs the stock Red HatEnterprise Linux 5 kernel running on an untuned
system. This workload is typical of applications used in the financial servicesindustry, consisting of
requests arriving over the network, the computations being run, and the results being returned. In these
results you will notice the significantly more consistent transaction speed. The graph displays a 10x
reduction in variability spikes. We consider this workload to be highly representative as it demonstrates
an end-to-end messaging scenario.

9 http://www.tibco.com/software/messaging/enterprise_messaging_service

Red Hat, Inc. Copyright 2007 10 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

RHELS ws. RHELS-RT response timings

2
— PERER I I I I I T I I
o RHELS ———
m RHELS-RT
[
- 20000 -
=
)
S isgoe -
L
L
[
10000 H
L
=
:
. 5000 |
)
_ l:'] o L - 1 n
.
% E] | |] | | | | | |
2 B 50 100 150 200 250 300 350 400 450 500

BEenchmark run number

The careful reader will remark that a tuned MRG Realtime vs an untuned Red Hat Enterprise Linux 5 is
an unfair comparison. Agreed. However, the reason we included the aboveperformance chart is because
other competitors' marketing collateral depicts their offerings vs an untuned standard Red Hat Enterprise
Linux offering (conveniendy omitting the tuning distinction). We include the above picture to illustrate
that comparisons are not always apples-to-apples. Having said that, the chart below depicts results
comparing an untuned Red Hat Enterprise Linux 5 vs a tuned Red Hat Enterprise Linux 5 vs a tuned
MRG Realtime:

Red Hat, Inc. Copyright 2007 11 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

Tikhco Messages-usec

caaBaE T T T T
RHELS
FHELS tuned
ET tuned
15888 -
o
=
+
o
I laa@a -1
c
=)
o
"
m
o
se88 ‘ ‘ -
: J"- d I iy AL pr I l‘ li i#“uu I
1 Doy [e o ol i’ -l g "o r t-mrey
@] ! ! ! !
=] 2aa 488 3]} 288 lana 12@8

Time

The above chart illustrates that the vast majority of determinism comes from proper system tuning. The
importance of tuning is equally applicable in the caseof standard Red Hat Enterprise Linux and the
realtime kernel (regardless of vendor). In fact, without proper tuning, you may not see the benefits of
realtime in your workload. Due to the scale of the above chart, it is difficult to see the differentiationin
determinism when running the MRG Realtime kernel. To get a better view of that, the next diagramis a
zoom-in comparison of a tuned Red Hat Enterprise Linux 5 vs a tuned MRG Realtime. You will notice
there that there is more variability in the response times in standard Red Hat Enterprise Linux 5.

Red Hat, Inc. Copyright 2007 12 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

Tibhco Messages<usec

le@a T . T T T
RHELS tuned
ET tuned
1558 H -
1588 [-
E el k) ! 1l 4 lﬂW“ﬁ*1 ‘ 1
L (I g S 1 ih g _
1488 .
1358 -
1388 ' ' ' L :
@ 2@ 49a 68 g0 leea
Time

1288

The following chart depicts performanceadvantages of the realtime kernel when running the Imbench

micro-benchmark. Of key interest is the substantial improvement in network latency response. Both of

these diagrams illustrate why MRG Realtime is particularly well suted to messaging workloads.

Red Hat, Inc. Copyright 2007 13

Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

RHEL5 vs RHEL5-RT Lmbench Results

—_
—_

0.6
—0.55

/

- 0.5

/

- 0.45

~0.4

~0.35

~ 0.3

~0.25

~0.2

~0.15

0.1
~0.05

o == N W OO N

I
Context Switch Network Latency
(ave msec) (ave msec)
Smaller=better ~ Smaller=better

Local Band-
widths (GB/sec)
Bigger=better

0

O RHELS
B RHEL-RT

Y Percent Gain RT vs

RHEL5

6 Performance Tuning & Low Latency Techniques

Be very wary of some realtime product's marketing collateralif it touts realtime kernels as a silver bullet

to address any and all performancebottlenecks. Such misleading collateral commonly touts

improvements in response times, but neglects to mention throughput degradation. In short, realtime is

not for every workload. Red Hat's approachis to encourage customers to first perform standard system

tuning practices. For the vast majority of customers, their low latency requirements areable to be
achieved with the standard Red Hat Enterprise Linux distribution (ie, Red Hat Enterprise Linux 3, Red

Hat Enterprise Linux 4, Red Hat Enterprise Linux 5

).

A key aspect of our realtime productizaton includes an accumulating set of documentation in the form of

HOWTO writeups. These writeups describesystem tuning recommendations, such as:

e dedicating cpus to specific functions such as:

e interrupt handling (aka interrupt shielding)

e high priority application threads only (not kernel)

e general kernel functions

e setting realtime schedulerpriorities

Red Hat, Inc. Copyright 2007

14

Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

dedicating pinned memory, by pre-allocating per application, to avoid swapping

using new latency tracingtools

Additional topics continue to be added over time. In fact, many of the low-latency tuning tips apply

equally to standard Red Hat Enterprise Linux as well as MRG Realtime — well worth checkingout

regardless of whether you ultimately elect to use MRG.

7 MRG Realtime Productization

Red Hat is taking the same proven successful approachto delivering MRG Realtime that it has made Red

Hat Enterprise Linux the industry leading Linux distribution. These steps include:

Significant mainstream Linux community participation to drive upstream implementation.
Select a stable product branch point from the ongoing upstream progression.
Perform substantial testing — both internal and external beta testing involving partners and
customers to shake out bugs.
Ensure that target hardware platforms thoroughly work.
Provide customer documentation detailing how to utilize the new capabilities — including system
tuning and performance monitoring.
Provide ongoing maintenance update releases and asynchronous errata — and ensure these fixes
are fed back to the mainline community source base.

e Bug fixes

e Security fixes

e Add support for new hardware
Provide industry leading support and professional consuting services.
Continue ongoing development in the upstream community context in preparation for
advancement in laterreleases / updates.

MRG Realtime will be delivered as a separate product on top of a standard Red Hat Enterprise Linux 5

install. It will be sold and priced separately from standard Red Hat Enterprise Linux 5. The MRG

Realtime software includes the following components:

A realtime kernel variant — replacing the standard RedHat Enterprise Linux 5 kernel. (This is a
completely new kernel development branch vs standard Red Hat Enterprise Linux 5. This new
kernel is run instead of the standard Red Hat Enterprise Linux 5 kernel — it does not consist of
modules which areloaded onto a standard Red Hat Enterprise Linux 5 kernel.)
A few realtime specificutilities such as:
e Performance monitoring tools — ie, Latency Tracer, and GUI used for cpu binding and
interrupt pinning.

e Configuration utilities — used to simplify control of kernel thread priorities based on

Red Hat, Inc. Copyright 2007 15 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

functionality groupings.

e Updated versions of several utilities which are closely tied to the kernel, used for resource
allocation — such as binding interrupts to certain cpus and exclusively dedicating cpus to
designated user applications.

e HOWTO documentation — describing new capabilities, tuning recommendations and tips for
performance monitoring
The user experience of deploying MRG Realtime consists of:
e First obtain entitlements and RHN register for standard Red Hat Enterprise Linux 5 and MRG

Realtime

e Install standard Red Hat Enterprise Linux 5.1 (or later)

e Install the MRG Realtime packages (including the replacement kernel)

e Reboot to run the realtime kernel

e Maintenance of the standard non-kernelRed Hat Enterprise Linux 5 packages follows standard
RHN delivery

e Maintenance updates for MRG Realtime will be delivered on the MRG product RHNchannel.

e Supportis provided via the same contacts. A single point of contact with Red Hat.

There are substantial benefits in delivering MRG Realtime as a product on top of standard Red Hat
Enterprise Linux 5, including:

e Compatibility with Red Hat Enterprise Linux 5 - Consider that Red Hat Enterprise Linux 5
ships with over 1000 software components. In contrast the MRG Realtime product invdves a
small handful of about a dozen components. Hence the vast majority of Red Hat Enterprise
Linux 5 is unchanged — this is largely attributable to getting the majority of the base platform
enablers into stock Red HatEnterprise Linux 5. For example, we do not replace the glibc
(standard C runtime library) — hence application compatibility and standards conformanceis
ensured.

e Shared maintenance and testing — since the majority of packages are unchanged, the high-
volume testing and maintenance services of Red Hat Enterprise Linux 5 remain directly
applicable.

e Broad capabilities — Red Hat Enterprise Linux 5 includes an industry leading capability set. A
premier example is the SELinux security features integrated throughout the distribution. These
same SELinux security featuresare fully operational in MRG Realime. This allows MRG
Realtime to be unique in the Linux industry in that you don't haveto make an either-or choice of
security vs determinsm. The MRG Realtime capabilities can not be used in conjunction with the
virtualization capabilities included in Red Hat Enterprise Linux 5."

10 Realtime capabilities can not be used in conjunction with virtualization due to the fact that the underlying hypervisor

Red Hat, Inc. Copyright 2007 16 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

8 No need for application changes

Recall that these realtime enhancements to Red Hat Enterprise Linux are contained within the kernel.
This means that from an application perspective the enhancements areall under the hood. No

application changes are required to benefit from the realtime capabilities.

This is not to say that MRG Realtime is a panacea. Of course, latencies introduced entirely in userspace
(sub-optimal application code, unbounded java garbage collection, etc) are not eliminated from the
application — nor are latencies introduced by external hardware such as network and storage.
Applications which are latency bottlenecked due to kernel scheduling and interrupt handling will see
benefit.

It is worth noting that there is benefit for application recompilaion on Red Hat Enterprise Linux 5 (rather
than using unmodified applications compiled on prior Red Hat Enterprise Linux releases). This is
attributable to the RedHat Enterprise Linux 5 glibc implementing pi futexes — which are a
synchronization mechansm. These enhancements allow uncorested lock granting to beimplemented
entirely in user space — obviating the need for system call overhead. Since MRG Realtime uses the same
glibc, these pi futex enhancements areapplicable in arealtime deployment — in fact there are additional
performance enhancements in the MRG Realtine kernel level for handling of contested locks.

9 Supported Hardware

As with standard Red Hat Enterprise Linux, the target hardware platforms for MRG Realtime consist of
high-volume commodity hardware. In other words, there is no custom, exotic hardware required in order
to utilize the realtime capabilities. There are fundamental hardware requirements in terms oflatency,
response times — however these requirements arereadily met in most high-volume hardware shipping
today.

In order to comprehensivdy test and validate our customer's needs, we are focusing our development and
testing efforts of MRG Realtime on a subset of the overall Red Hat Enterprise Linux 5 supported
hardware based on demonstrated customer need. The supported architecturesinclude x86 and x86-64 —
both Intel and AMD processors. We are working closely with several major manufacturerson joint
testing initiatives to validate high-volume platforms demanded by realtime customers. Red Hat will be
publishing the list of fully tested configurations — please provide input to your Red Hat representative to
ensure your platform ofinterest is incorporatedinto our test grid.

does not provide true realtime determinism.

Red Hat, Inc. Copyright 2007 17 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

10 The broader platform picture

Today's complex IT infrastructure requires many components to work well together to form a complete
application stack. The foundation layer consists of verified realtime capable hardware combined with the
MRG Realtime kernel and operating system environment. There are other mid-tier components which
Red Hat recognizes are essential in many deployments. Examples include:

e Realtime Java runtime — RTSJ compliant JVM —Red Hat is closely partnering with IBM — refer
to the following section for details.

e Messaging — reliable, high performing, secure, interoperable messaging is a key requirement of
many distributed applications. Red Hat is a primary founder and contributor to an industry
consortium called Advanced Message Queuing Protocd (AMQP)'' which is developing an open
standard for messaging middleware. Red Hat is a key contributor to the corresponding open
source implementation of AMQP in the ApacheQpid" project. This high speed messaging
capability warrants mention in this realtime whitepaper as the two technologies are
complimentary. The messaging feature relies on realtime featuresfor optimal performance.
These MRG Messaging capabilities will be supported on the standard Red Hat Enterprise Linux 5
platform. Howeverthey will achieve optimal deterministic performance on a MRG Realtime
foundation.

e Grid scheduling — MRG Grid - High Throughput Computing (HTC) delivers large amounts of
computing power over a sustained period of time, whereas High Performance Computing (HPC)
delivers significant computing power over a short period of time. MRG Grid provides value
across both HTC and HPC by offering features like: Scalability for computing the largest
workloads, powerful and easy-to-use managemert capabilities. The ability to cycle-steal from
destkop workstations and schedule to remote grids foradditional computing power. The grid
scheduler is able to use the more precise realtime priority scheduler to achieve predictable
performance for it highest priority workloads.

e Infiniband — customers seeking the lowest latency messaging capabilities often utilize infiniband
hardware. To meet these needs, included in MRG Realtime is kernel support and accompanying
libraries and utilities for infiniband support. This includes OFED-1.2 kernel level capabilities for
IB hardware drivers (mthca, ipath, ehca, amso1100, iw_cxgb3) as well as upper layer protocols
(SDP, iSER, SRP, IBolIB, VNIC). Library support for IB includes: libibverbs (for direct Verbs
API programming), librdmacm (to simplify connection management), OpenSM subnet fabric
manager, DAT-1.2 compliant dapl libraries, and OpenMPI libraries. Our AMQP messaging

11 http://www.amqp.org/
12 http://wiki.apache.org/incubator/QpidProposal

Red Hat, Inc. Copyright 2007 18 Version 1.0

Red Hat Enterprise MRG Realtime — Product Overview

middleware directly utilizes infiniband when present for optimal low-latency determinism.

11 Realtime Java

A large percentage of Linux realtime oriented customers have a requirement for realtime Java. In the
form of an RTSJ compliant JVM — which is differentiated by enhancements fordeterminism in garbage
collection, inter-JVM communication optimizations, and large thread count operation. Throughout the
development of MRG Realtime, Red Hat has been working extremely closely with IBM to ensure that
their RTSJ compliant IBM Websphere RealTime ® JVM" performs optimally. IBM's realtime JVM
also provides ahead-of-time compilation to reduce the inherent variability of dynamic compilation. This
link highlights the requirements that RTSJ has on the underlying operating system."*

Raytheon is an early adopter of IBM's RTSJ combined with Red Hat'skernel technology. This press
release highlights the initiative.” As describedin the press release, the United States Navy is deploying
the joint realtime initiatives of Red Hat and IBM in the DDGdestroyer program.

12 The Red Hat Difference — COTS Enterprise Realtime

In summary COTS (commercial off the shelf) enterprise realtime is a new way of thinking. It is much
more powerful and feature rich vs traditional hard realtime — while at the same time providing better
determinism vs general expectations of soft realtime.

The following are the distinguishing highlights making MRG Realtime the obvious choice for
deterministic Linux workloads:
e Mainstream approach — Red Hat is driving the mainstream Linux community realtime
implementation. Making Red Hat ideally pacsitioned to productize and support.
e Engineering leadership — nobody is better positioned than Red Hat to productize and support
than the team who is making it happen upstream.
e Compatibility — a shared foundation with stock Red Hat Enterprise Linux 5 yields unmatched
application compatibility and standards conformance.
e Broad feature set — a shared foundation with Red Hat Enterprise Linux 5 yields unmatched
breath of features (such as SELinux security) which can be used in conjunction with realtime.

13 http://www-306.ibm.com/software/webservers/realtime/ - a realtime J2SE compliant java virtual machine
14 http://www.rtsj.org/docs/OSPlatforms.html
15 http://www-03.ibm.com/press/us/en/pressrelease/21232.wss

Red Hat, Inc. Copyright 2007 19 Version 1.0

http://www-306.ibm.com/software/webservers/realtime/

Red Hat Enterprise MRG Realtime — Product Overview

e Messaging — the complimentary AMQP based open source messaging initiative will achieve
maximum performance on a MRG Realtime foundation.

e Product leadership — Red Hat Enterprise Linux, the recognized value leader in Linux, uniquely
applies the same development, testing, support and professional consulting service capabilities to
the realtime product.

e Single point of contact — you know us from standard Red Hat Enterprise Linux deployments all

these years.
e Partnerships — such as the close pairing of IBM's Websphere RealTime Java runtime.

Red Hat, Inc. Copyright 2007 20 Version 1.0

	1Executive Summary
	2The need for enterprise realtime
	2.1Example realtime enterprise workloads

	3Low latency and predictability defined
	4Red Hat - the Linux realtime innovation leader
	4.1Demonstrated mainstream realtime results
	4.2Beyond Red Hat Enterprise Linux 5

	5Performance Results
	6Performance Tuning & Low Latency Techniques
	7MRG Realtime Productization
	8No need for application changes
	9Supported Hardware
	10The broader platform picture
	11Realtime Java
	12The Red Hat Difference – COTS Enterprise Realtime

