
Red Hat Enterprise MRG Realtime  – Product Overview

Red Hat Enterprise MRG – Realtime Whitepaper

1 Executive Summary
Many enterprise workloads have extremely demanding requirements for determinism – to ensure 
predictable response times at the 20 microsecond (µs) latency level.1  The difficulty has been that until 
now, all realtime operating systems have been niche offerings – absent of any COTS (Commercial Off 
The Shelf) products. Red Hat® is uniquely positioned to provide these capabilities due to its proven 
track­record of development and mainstream accepted Linux kernel realtime enhancements.  In 
response to strong customer demand, Red Hat is productizing its realtime kernel in an offering called 
Red Hat Enterprise MRG, comprised of high speed messaging, realtime kernel, and grid cluster 
scheduler.

Kernel level enhancements form the foundation of Red Hat's commercial offering. Consider that few 
computers today function completely independently.  Rather, they are typically connected in a distributed 
environment.  Red Hat's approach to a realtime solution stack extends beyond the kernel underpinnings, 
to include:

● High speed messaging – via an open source AMQP messaging middleware offering from Red 
Hat, referred to as MRG Messaging.

● Grid scheduler ­ enables enterprises and research organizations to bring the power of distributed 
computing across their entire infrastructure to tackle the largest computational problems in a 
highly efficient and effective manner.  Referred to as MRG Grid.

● Realtime Java – via strong partnership with IBM

This combination of engineering leadership, award winning Red Hat Enterprise Linux®   distribution, 
open source messaging middleware, and established partnerships yield the most comprehensive realtime 
deployment platform.  

This whitepaper describes the MRG Realtime capabilities being productized on a Red Hat Enterprise 
Linux 5.1  foundation.  It details the implementation and productization strategy aimed at meeting the 

1 20 µs is the time interval between when a trigger occurs (such as an interrupt or timer expiration) and when the 
scheduler runs the highest priority pending process running on realtime certified hardware.

Red Hat, Inc. Copyright 2007 1 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

most demanding customer workloads while at the same time preserving application compatibility. 

2 The need for enterprise realtime
Historically the concept of realtime has been most applicable to embedded monitoring devices and 
control equipment.  Today there is a growing class of enterprise applications which have demanding time 
constraints which  are unable to be satisfied with general purpose operating systems.  This often 
necessitates utilizing non­standard operating systems for certain workloads.  These niche operating 
systems put an inordinate strain on enterprise IT organizations to acquire skills in system management 
and application porting to an obscure environment.  

Red Hat has risen to the challenge to provide industry leading realtime capabilities in a commercial off 
the shelf operating system (COTS) ­  the Red Hat Enterprise Linux product family under the name MRG 
Realtime.  By integrating realtime, high performance messaging middleware capabilities and grid 
scheduler into the most popular enterprise Linux distribution (Red Hat Enterprise Linux 5), IT 
organizations do not require retraining and a broad array of 3rd party applications are at your disposal.

2.1 Example realtime enterprise workloads
The standard Red Hat Enterprise Linux releases provide high performance to meet the requirements of 
the majority of enterprise workloads.  For example, Red Hat Enterprise Linux is routinely used in world 
record breaking database benchmarks  such  as  TPC­C2,   and TPC­H.  Similarly  the  performance  for 
general purpose web and file serving leads the pack.  These workloads of file­server, database and web 
server are characterized by the need for high throughput.  

There are other classes of applications where overall raw throughput alone is insufficient.   In many 
enterprise workloads,   determinism – predictability in response time, even when the system is under  
heavy load – is the paramount objective. This class of applications necessitate realtime capabilities.  The 
following are representative examples of such scenarios:

● Financial services industry ­ here, time is money ­ in a literal sense. Guaranteed response time is 
of the essence. For example, it is not adequate if out of 100,000 transactions per minute if 99,999 
complete in 2 ms, and 1 completes in 20ms.  While that is statistically a low number, it represents 
one lost trade per minute.   Recently introduced SEC regulations can result  in severe fines if 
inconsistent trading times occur (as it hints of favoritism) – hence determinism is more important 
than ever.3  The increasing use of algorithmic trading is raising the requirements for low latency 

2 http://www.tpc.org/
3 Example government regulations concerning “best execution” and transparency include the US Securities and Exchange 

Commission Regulation National Market System (RegNMS), and the European Union's Markets in Financial Institutions 

Red Hat, Inc. Copyright 2007 2 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

and high performance.  Trading firms are admittedly engaged in a low latency arms race. 

● Network devices ­ many TELCO and network based services (including deployment in traditional 
embedded devices such as bridges and routers) are extremely sensitive to response time.  Without 
high predictability of response time in running their network control applications, there would be 
an unacceptably high rate of packet loss and general degradation of  service.

● Command and control ­ Many military and industrial control applications require deterministic 
response  time   for   control  applications.     Here  it   is     critical  that   the   priority   of   the   control 
applications does not get superseded by non­essential processes and operating system tasks.  The 
ability to fine­tune the priority of both system and application processes with high predictability 
is essential.

● Realtime java applications ­ there is a growing class of applications utilizing RTSJ (RealTime 
Standard Java) capabilities4.  Any RTSJ compliant JVM has stringent requirements on the 
operating system for low latency and priority inversion avoidance capabilities.  It is not 
uncommon for Java applications to have huge numbers of threads, ie 10's of thousands.  Such 
workloads require a fully certified combination of an RTSJ compliant JVM and underlying 
operating system to scale accordingly in a deterministic manner.

3 Low latency and predictability defined
The previously mentioned realtime workloads have 2 primary requirements:

● Predictability in response time – ensuring consistency in response times 

● Deterministic upper bound on latency – ensuring that processing will return correct results 
within a constrained period of time; every time – referred to as guaranteed response time

Predictability in response time primarily amounts to ensuring that the highest priority processes are run 
first.  Traditional Linux offerings suffer from a problem known as Priority Inversion (PI). PI can occur 
when a high priority process requires a resource (ie lock) held by a lower  priority process, hence the 
high priority process is blocked.  In the meantime the lower priority process may yield to a medium 
priority process. This medium priority process could run for a long time, effectively stalling out the 
higher priority process.  To avoid this situation our realtime product temporarily boosts the low priority 
process ­ effectively to allow it to complete its work and release the resource to the high priority process. 
This is just one of many examples.

In addition to considering priorities of user application processes, there are also a wide variety of 

Directive (MiFID).
4 http://www.rtsj.org/

Red Hat, Inc. Copyright 2007 3 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

operating system threads, including interrupt servicing.  Depending on the application workload, in 
realtime scenarios it is necessary to be able to prioritize certain application processes above some 
operating system kernel services.  For example, consider the case of an industrial control application 
running on a 4 CPU system.  For optimal  performance it may be configured to have the control 
application running exclusively on 2 processors, have all network interrupt handling performed on the 
3rd CPU, and the remainder of general operating system tasks  and non­time­critical application 
processes constrained to the 4th CPU.   

Another traditional sore­spot in Linux preventing dependable determinism is that there are numerous 
extremely lengthy kernel codepaths.  Our realtime engineers have been methodically breaking down 
unnecessary  serialization through techniques such as deferring the majority of interrupt handling to 
lower priority kernel threads.  We have also improved contention points in multiprocessor locking ­ 
yielding scalability benefits to general purpose Red Hat Enterprise Linux and realtime workloads alike. 
The traditional measure of deterministic upper bounds on latency consists of the time it takes from when 
an event triggers (such as a device interrupt, timer interrupt) to the scheduler yielding to the 
corresponding highest priority application process – referred to as scheduler latency. In the Red Hat 
Enterprise Linux­RT variant, this worst­case scheduling latency is under 25 µs  (typically under 20 µs on 
validated hardware5).  The jitter (standard deviation from the mean value) is in the 2­4 µs range. This 
bounding of system overhead is particularly important for realtime application workloads as it makes the 
overall response times (including system overhead and application execution) more predictable.

Additionally, the precision of timer granularity has been improved to the nanosecond resolution 
(provided the underlying hardware is capable).  For example, in standard Red Hat Enterprise Linux 5 the 
most precise sleep duration is 2 ms. In contrast, MRG Realtime has 10 µs capability (hardware 
dependent).

4 Red Hat ­ the Linux realtime innovation leader
Deploying Linux in realtime environments is not a new phenomenon.  Companies have been doing this 
for years.  The problem to date is that, none of the commercial offerings have been mainstream Linux ­ 
all prior realtime offerings have been the exclusive province of custom, proprietary, niche offerings. 
History has proven that niche offerings do not stand the test of time and expense constraints.  The 
profound industry trend is to mainstream COTS offerings.

In the past, there have been several attempts at integrating realtime capabilities in the mainline Linux 
codebase.  All such integration attempts consisted of proposing colossal change sets ­ typically on the 

5 Scheduling latencies are very hardware dependent. For example, the same kernel consistently yields 15  µs on a newer 
system and 150  µs on an older system (circa 2005).

Red Hat, Inc. Copyright 2007 4 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

order of 10's of thousands of lines of code ­ which in the Linux community are dubbed "patch bombs". 
The fatal flaws with the "patch bomb" approach  include the following:

● It is virtually impossible for the broad community to understand and approve due to their 
enormity – termed not consumable.

● They are typically short­sighted, focusing on a niche market ­ and detrimental to general purpose 
operation. In fact, there were so many failed attempts with realtime patch bombs that it was 
decreed that it would never become mainstreamed in Linux.

Among all the companies with strong intentions for realtime Linux capabilities, Red Hat has taken a 
unique approach.  Rather than taking a typically proprietary approach of developing realtime capabilities 
in­house and later patch­bombing the Linux kernel community upon completion, Red Hat's strategy from 
day1 has been to establish a patient multi­year incremental roadmap.  We have broken down the problem 
into first getting in enabling capabilities and infrastructure cleanup.  With each new mainstream kernel6 
version we have continued the progression.  Red Hat has been doing all of this development in a fully 
open and inclusive manner.  To avoid the stigma of prior companies failed realtime attempts, we have 
methodically proven that all of the enablers which we have successfully integrated upstream are 
demonstrated to be beneficial to general purpose computing.  In this way we have raised the overall bar 
for Linux in general.  You could say that Red Hat's approach to  mainstreaming realtime Linux can be 
summarized by the following parable:

● Question: How do you eat an elephant?

● Answer: One bite at a time.

Red Hat's open, inclusive, upstream focused strategy to delivering realtime capabilities is completely 
consistent with the well proven  Red Hat Enterprise Linux productization methodology which has made 
it the industry leading Linux distribution.  The efforts of Red Hat's engineering staff have made us the 
upstream engineering project leaders and implementers of realtime capabilities.  There we have formed a 
developer community focusing on realtime features and invited broad participation7.  An increasing 
number of Linux vendors are recognizing the success of this initiative and starting to jump on the 
bandwagon – often by abandoning their prior non­mainstream alternative.

4.1 Demonstrated mainstream realtime results
The following table highlights many of the realtime related features and infrastructure which Red Hat 

6 Mainstream kernel – refers to the primary open source kernel source tree governed by Linus Torvalds – which is the 
authoritative community kernel development source code repository from which all major Linux distributions (including 
Red Hat Enterprise Linux) are derived. http://www.kernel.org.

7 http://rt.wiki.kernel.org

Red Hat, Inc. Copyright 2007 5 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

engineers have played instrumental roles in successfully incorporating upstream.  All of these capabilities 
are included as of the mainline kernel version 2.6.18 – which forms the foundation of Red Hat Enterprise 
Linux 5.  This table of features is not a comprehensive listing – rather it focused on the larger features.

Feature Mainline
kernel 
version

Brief description

BKL preemptable 2.6.8 Increase kernel locking granularity to allow more 
concurrency

Mutex synchronization 2.6.16 Introduces a new kernel control primitive to replace 
semaphores with mutexes – which have ownership 
properties required for implementation of priority 
inheritance.  A lighter weight locking mechanism 
improving overall kernel performance.

High resolution timer 
infrastructure

2.6.16 Allows  time to be internally repesented at 
nanosecond (ns) resolution.  

Deterministic kernel timer 
event handling

2.6.16 Changed kernel timer  algorithm to be O(1) 
deterministic on event add/remove/expiration.

Lock validator 2.6.18 Efficient runtime checking to confirm correct lock 
behavior.  Can detect race conditions without actually 
hitting them. Instrumental in demonstrating 
correctness of realtime enhancements (as well as 
identifying numerous existing locking issues).

Priority inheritance futexes 2.6.18 Prevents unbounded priority inversion scenarios for 
user space processes – whereby lower priority 
processes can prevent higher priority processes from 
running. Requirement of RTSJ (realtime java) and 
telco.

Generic IRQ layer 2.6.18 Cleanup interrupt handling to factor into common 
code what was previously architecture specific. 
Laying the groundwork for later interrupt 
enhancements – to defer processing to threads.

Core time rewrite 2.6.18 Factor into common code prior architecture specific 
replication.  Laying the groundwork for later dynamic 

Red Hat, Inc. Copyright 2007 6 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

ticks and high resolution events capabilities.

Latency tracer 2.6.18 An efficient mechanism to measure the longest 
latency codepaths (as they are the source of non­
determinism).  Useful for distinguishing kernel vs 
user­space latency. Allows specifying target latency 
thresholds and logging any that exceed.  (The latency 
tracer is not incorporated into standard RHEL5.)

Although not explicitly itemized in the above table there are a class of capabilities included in Red Hat 
Enterprise Linux 5 aimed at system resource prioritization.  These capabilities (also present MRG 
Realtime) are not new to Red Hat Enterprise Linux 5, but are listed here for completeness.  These 
capabilities allow standard Red Hat Enterprise Linux 4 and Red Hat Enterprise Linux 5 to be tuned to 
provide a high level of determinism required by the vast majority of application workloads.  In fact, these 
tuning mechanisms alone when applied to standard Red Hat Enterprise Linux releases have typically 
enabled us to exceed the performance and determinism of competing Linux based realtime products.  We 
have observed that only a minority of workloads truly demand the advanced low­latency capabilities of 
MRG Realtime.  This is why we suggest that customers first try to meet their performance objectives 
with standard Red Hat Enterprise Linux.  If their needs for determinism are more demanding, then we 
suggest MRG Realtime.

● Interrupt binding – designating specific CPUs handle device interrupts.

● Application binding – restricting certain CPUs to running designated application processes.

● Memory pinning – designating that physical memory be exclusively allocated to dedicated 
processes. 

● Scheduler prioritization – ability to designate process priorities at a fine­grained level.  New to 
the realtime offering is the ability to set application priority above most operating system 
services.

Through combinations of assigning realtime application processes and critical system services to 
designated realtime CPUs, fine­grained system control is possible – yielding predictably low latency 
response times. Lower priority applications and system services are delegated to the non­realtime 
processors.

4.2 Beyond Red Hat Enterprise Linux 5
Having all of the enablers and realtime features itemized in the prior section included in mainline Linux 
was a great achievement in the delivery of Red Hat Enterprise Linux 5. This enables the general purpose 

Red Hat, Inc. Copyright 2007 7 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

COTS offering to benefit from the associated performance and determinism improvements.  As such, 
many demanding workloads have their needs fully satisfied with properly tuned Red Hat Enterprise 
Linux 5.  The Red Hat engineers continue the upstream advancement of realtime capabilities. 
Subsequent to the initial Red Hat Enterprise Linux 5 product launch, there have been additional key 
features successfully integrated upstream, and several others which continue in their development 
progression.  The following table highlights the key realtime features that Red Hat is driving for mainline 
inclusion:

Feature Mainline
kernel 
version

Brief description

Infiniband support 2.6.20 and 
later

Red Hat is working collaboratively with a community 
of Infiniband developers from many companies.  Due 
to the fast­paced nature of Infiniband development, 
the codebase in the standard Red Hat Enterprise 
Linux 5 product is ahead of mainstream kernel 
acceptance.  The same Infiniband OFED 1.2 codebase 
enhancements from standard Red Hat Enterprise 
Linux 5 are also included in MRG Realtime.  This 
infiniband support includes kernel modules as well as 
accompanying user space libraries.

Dynamic ticks 2.6.21 Rather than interrupt the system 1000 times per 
second for timing, use hardware timer interrupts to 
only wakeup as needed.  Improves timing granularity, 
reduces needless frequent interrupt handling, and 
decreases power consumption in idle times.

High resolution events 2.6.21 Increase granularity of sleep timing from the 
millisecond (ms) to microsecond range (hardware 
dependent)– critical for time sensitive applications. 
Utilizes precise hardware based timer interrupts rather 
than imprecise software timing at the granularity of 
periodic interrupts. High resolution timers are utilized 
by the following interfaces: nanosleep, itimer, posix­
timers CLOCK_MONATOMIC & 
CLOCK_REALTIME. (The conventional kernel HZ 
periodic interrupts at 1000/second continue to govern: 

Red Hat, Inc. Copyright 2007 8 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

poll/select and scheduler timeslices.)

CFS – completely fair 
scheduler

2.6.23 The objective of the CFS scheduler8 is to provide fair 
interactive response times.  It does away with the 
prior run queue, timeslice algorithm. Replacing it with 
a red/black tree representing runnable processes.  It 
performs runtime calculations based on the current 
number of runnable processes to give each one its fair 
share of the compute cycles.  Included in the CFS 
patch is a modular scheduler infrastructure. This 
allows for optimization of various aspects (ie, not 
complete scheduler replacement).  One of the initial 
initial scheduler modules is a real­time schedule, this 
is first in the priority chain.

Interrupt handling in kernel 
threads

In progress  Converts interrupt handlers into preemptable threads. 
Lengthy interrupt paths are the biggest source of non­
determinism. By deferring most interrupt processing 
to separately schedulable threads latency vastly 
improves as does increased prioritization control 
flexibility.

Converting kernel spin locks to 
mutexes

In progress Spin locks are non­preemptable (often blocking 
interrupts) – increasing the latency of higher priority 
processes (reducing concurrency). This work lowers 
the latency of preemption points and allows the timer 
interrupt to occur – allowing high priority processes 
to run immediately.

Kernel PI (Priority 
Inheritance)

In progress  When a kernel thread is preempted while holding a 
lock, apply PI priority boost to prevent higher priority 
kernel threads from being stalled by lower priority 
threads.

Full RT­preempt In progress  Fully preemptable kernel – all interrupt handling as 
threads,  conversion of spin locks to sleep locks, 
controls to run user space processes at higher priority 
than kernel threads.  In practice this will be 

8 http://lwn.net/Articles/230574/

Red Hat, Inc. Copyright 2007 9 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

decomposed to a series of changes to utilize the 
underlying realtime foundation put in place by all the 
above features.  Performance optimizations are 
introduced for the small subset of kernel functions 
which are not preemptable to bound latency.

5 Performance Results
The primary objective of MRG Realtime is to introduce determinism into application workloads.  The 
goal is to complete the user space application transactions within a finite time window – and have as few 
outliers as possible.  The following graph depicts a comparison run the Tibco EMS9 workload on a MRG 
Realtime kernel on a tuned system vs the stock Red Hat Enterprise Linux 5 kernel running on an untuned 
system.  This workload is typical of applications used in the financial services industry, consisting of 
requests arriving over the network, the computations being run, and the results being returned. In these 
results you will notice the significantly more consistent transaction speed.  The graph displays a 10x 
reduction in variability spikes.  We consider this workload to be highly representative as it demonstrates 
an end­to­end messaging scenario.

9 http://www.tibco.com/software/messaging/enterprise_messaging_service

Red Hat, Inc. Copyright 2007 10 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

The careful reader will remark that a tuned MRG Realtime vs an untuned Red Hat Enterprise Linux 5 is 
an unfair comparison.  Agreed.  However, the reason we included the above performance chart is because 
other competitors' marketing collateral depicts their offerings vs an untuned standard Red Hat Enterprise 
Linux offering (conveniently omitting the tuning distinction).  We include the above picture to illustrate 
that comparisons are not always apples­to­apples.  Having said that, the chart below depicts results 
comparing an untuned Red Hat Enterprise Linux 5 vs a tuned Red Hat Enterprise Linux 5 vs a tuned 
MRG Realtime:

Red Hat, Inc. Copyright 2007 11 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

The above chart illustrates that the vast majority of determinism comes from proper system tuning.  The 
importance of tuning is equally applicable in the case of standard Red Hat Enterprise Linux and the 
realtime kernel (regardless of vendor).  In fact, without proper tuning, you may not see the benefits of 
realtime in your workload.  Due to the scale of the above chart, it is difficult to see the differentiation in 
determinism when running the MRG Realtime kernel.  To get a better view of that, the next diagram is a 
zoom­in comparison of a tuned Red Hat Enterprise Linux 5 vs a tuned MRG Realtime.  You will notice 
there that there is more variability in the response times in standard Red Hat Enterprise Linux 5.

Red Hat, Inc. Copyright 2007 12 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

The following chart depicts performance advantages of the realtime kernel when running the lmbench 
micro­benchmark.  Of key interest is the substantial improvement in network latency response.  Both of 
these diagrams illustrate why MRG Realtime is particularly well suited to messaging workloads.

Red Hat, Inc. Copyright 2007 13 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

6 Performance Tuning & Low Latency Techniques
Be very wary of some realtime product's marketing collateral if it touts realtime kernels as a silver bullet 
to address any and all performance bottlenecks.  Such misleading collateral commonly touts 
improvements in response times, but neglects to mention throughput degradation.  In short, realtime is 
not for every workload.  Red Hat's approach is to encourage customers to first perform standard system 
tuning practices.  For the vast majority of customers, their low latency requirements are able to be 
achieved with the standard Red Hat Enterprise Linux distribution (ie, Red Hat Enterprise Linux 3, Red 
Hat Enterprise Linux 4, Red Hat Enterprise Linux 5). 

A key aspect of our realtime productization includes an accumulating set of documentation in the form of 
HOWTO writeups.  These writeups describe system tuning recommendations, such as:

● dedicating cpus to specific functions such as:

● interrupt handling (aka interrupt shielding)

● high priority application threads only (not kernel)

● general kernel functions

● setting realtime scheduler priorities

Red Hat, Inc. Copyright 2007 14 Version 1.0

Context Switch 
(ave msec) 
Smaller=better

Network Latency 
(ave msec) 
Smaller=better

Local Band­
widths (GB/sec) 
Bigger=better

0
1
2
3
4
5
6
7
8
9

10
11

0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6

RHEL5 vs RHEL5­RT Lmbench Results

RHEL5 
RHEL­RT  
Percent Gain RT vs 
RHEL5



Red Hat Enterprise MRG Realtime  – Product Overview

● dedicating pinned memory, by pre­allocating per application, to avoid swapping

● using new latency tracing tools

Additional topics continue to be added over time.   In fact, many of the low­latency tuning tips apply 
equally to standard Red Hat Enterprise Linux as well as MRG Realtime – well worth checking out 
regardless of whether you ultimately elect to use MRG.

7 MRG Realtime Productization
Red Hat is taking the same proven successful approach to delivering MRG Realtime that it has made Red 
Hat Enterprise Linux the industry leading Linux distribution.  These steps include:

● Significant mainstream Linux community participation to drive upstream implementation.
● Select a stable product branch point from the ongoing upstream progression.
● Perform substantial testing – both internal and external beta testing involving partners and 

customers to shake out bugs.
● Ensure that target hardware platforms thoroughly work.
● Provide customer documentation detailing how to utilize the new capabilities – including system 

tuning and performance monitoring.
● Provide ongoing maintenance update releases and asynchronous errata – and ensure these fixes 

are fed back to the mainline community source base.
● Bug fixes
● Security fixes
● Add support for new hardware 

● Provide industry leading support and professional consulting services.
● Continue ongoing development in the upstream community context in preparation for 

advancement in later releases / updates.
MRG Realtime will be delivered as a separate product on top of a standard Red Hat Enterprise Linux 5 
install.  It will be sold and priced separately from standard Red Hat Enterprise Linux 5.  The MRG 
Realtime software includes the following components:

● A realtime kernel variant – replacing the standard Red Hat Enterprise Linux 5 kernel.  (This is a 
completely new kernel development branch vs standard Red Hat Enterprise Linux 5.  This new 
kernel is run instead of the standard Red Hat Enterprise Linux 5 kernel – it does not consist of 
modules which are loaded onto a standard Red Hat Enterprise Linux 5 kernel.)

● A few realtime specific utilities such as:
● Performance monitoring tools – ie, Latency Tracer, and GUI used for cpu binding and 

interrupt pinning.
● Configuration utilities – used to simplify control of kernel thread priorities based on 

Red Hat, Inc. Copyright 2007 15 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

functionality groupings.
● Updated versions of several utilities which are closely tied to the kernel, used for resource 

allocation – such as binding interrupts to certain cpus and exclusively dedicating cpus to 
designated user applications.

● HOWTO documentation – describing new capabilities, tuning recommendations and tips for 
performance monitoring

The user experience of deploying MRG Realtime consists of:
● First obtain entitlements and RHN register for standard Red Hat Enterprise Linux 5 and MRG 

Realtime
● Install standard Red Hat Enterprise Linux 5.1 (or later)
● Install the MRG Realtime packages  (including the replacement kernel)
● Reboot to run the realtime kernel
● Maintenance of the standard non­kernel Red Hat Enterprise Linux 5 packages follows standard 

RHN delivery
● Maintenance updates for MRG Realtime will be delivered on the MRG product RHN channel.
● Support is provided via the same contacts.  A single point of contact with Red Hat.

There are substantial benefits in delivering MRG Realtime as a product on top of standard Red Hat 
Enterprise Linux 5, including:

● Compatibility with Red Hat Enterprise Linux 5 ­  Consider that Red Hat Enterprise Linux 5 
ships with over 1000 software components. In contrast the MRG Realtime product involves a 
small handful of about a dozen components.  Hence the vast majority of Red Hat Enterprise 
Linux 5 is unchanged – this is largely attributable to getting the majority of the base platform 
enablers into stock Red Hat Enterprise Linux 5. For example, we do not replace the glibc 
(standard C runtime library) – hence application compatibility and standards conformance is 
ensured.

● Shared maintenance and testing – since the majority of packages are unchanged, the high­
volume testing and maintenance services of Red Hat Enterprise Linux 5 remain directly 
applicable.

● Broad capabilities – Red Hat Enterprise Linux 5 includes an industry leading capability set.  A 
premier example is the SELinux security features integrated throughout the distribution.  These 
same SELinux security features are fully operational in MRG Realtime.  This allows MRG 
Realtime to be unique in the Linux industry in that you don't have to make an either­or choice of 
security vs determinism. The MRG Realtime capabilities can not be used in conjunction with the 
virtualization capabilities included in Red Hat Enterprise Linux 5.10

10 Realtime capabilities can not be used in conjunction with virtualization due to the fact that the underlying hypervisor 

Red Hat, Inc. Copyright 2007 16 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

8 No need for application changes
Recall that these realtime enhancements to Red Hat Enterprise Linux are contained within the kernel. 
This means that from an application perspective the enhancements are all under the hood. No 
application changes are required to benefit from the realtime capabilities. 

This is not to say that MRG Realtime is a panacea.  Of course, latencies introduced entirely in userspace 
(sub­optimal application code,  unbounded java garbage collection, etc) are not eliminated from the 
application – nor are latencies introduced by external hardware such as network and storage. 
Applications which are latency bottlenecked due to kernel scheduling and interrupt handling will see 
benefit. 

It is worth noting that there is benefit for application recompilation on Red Hat Enterprise Linux 5 (rather 
than using unmodified applications compiled on prior Red Hat Enterprise Linux releases).  This is 
attributable to the Red Hat Enterprise Linux 5 glibc implementing pi futexes – which are a 
synchronization mechanism.  These enhancements allow uncontested lock granting to be implemented 
entirely in user space – obviating the need for system call overhead.  Since MRG Realtime uses the same 
glibc, these pi futex enhancements are applicable in a realtime deployment – in fact there are additional 
performance enhancements in the MRG Realtime kernel level for handling of contested locks.

9 Supported Hardware
As with standard Red Hat Enterprise Linux, the target hardware platforms for MRG Realtime consist of 
high­volume commodity hardware.  In other words, there is no custom, exotic hardware required in order 
to utilize the realtime capabilities.  There are fundamental hardware requirements in terms of latency, 
response times – however these requirements are readily met in most high­volume hardware shipping 
today.

In order to comprehensively test and validate our customer's needs, we are focusing our development and 
testing efforts of MRG Realtime on a subset of the overall Red Hat Enterprise Linux 5 supported 
hardware based on demonstrated customer need.  The supported architectures include x86 and x86­64 – 
both Intel and AMD processors.  We are working closely with several major manufacturers on joint 
testing initiatives to validate high­volume platforms demanded by realtime customers.  Red Hat will be 
publishing the list of fully tested configurations – please provide input to your Red Hat representative to 
ensure your platform of interest is incorporated into our test grid.

does not provide true realtime determinism. 

Red Hat, Inc. Copyright 2007 17 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

10 The broader platform picture
Today's complex IT infrastructure requires many components to work well together to form a complete 
application stack.  The foundation layer consists of verified realtime capable hardware combined with the 
MRG Realtime kernel and operating system environment.   There are other mid­tier components which 
Red Hat recognizes are essential in many deployments.  Examples include:

● Realtime Java runtime – RTSJ compliant JVM – Red Hat is closely partnering with IBM – refer 
to the following section for details.

● Messaging – reliable, high performing, secure, interoperable messaging is a key requirement of 
many distributed applications.  Red Hat is a primary founder and contributor to an industry 
consortium called Advanced Message Queuing Protocol (AMQP)11 which is developing an open 
standard for messaging middleware.  Red Hat is a key contributor to the corresponding open 
source implementation of AMQP in the Apache Qpid12 project. This high speed messaging 
capability warrants mention in this realtime whitepaper as the two technologies are 
complimentary.  The messaging feature relies on realtime features for optimal performance. 
These MRG Messaging capabilities will be supported on the standard Red Hat Enterprise Linux 5 
platform. However they will achieve optimal deterministic performance on a MRG Realtime 
foundation.

● Grid scheduling – MRG Grid ­ High Throughput Computing (HTC) delivers large amounts of 
computing power over a sustained period of time, whereas High Performance Computing (HPC) 
delivers significant computing power over a short period of time. MRG Grid provides value 
across both HTC and HPC by offering features like: Scalability for computing the largest 
workloads, powerful and easy­to­use management capabilities. The ability to cycle­steal from 
destkop workstations and schedule to remote grids for additional computing power.  The grid 
scheduler is able to use the more precise realtime priority scheduler to achieve predictable 
performance for it highest priority workloads.

● Infiniband – customers seeking the lowest latency messaging capabilities often utilize infiniband 
hardware.  To meet these needs, included in MRG Realtime is kernel support and accompanying 
libraries and utilities for infiniband support.  This includes OFED­1.2 kernel level capabilities for 
IB hardware drivers (mthca, ipath, ehca, amso1100, iw_cxgb3) as well as upper layer protocols 
(SDP, iSER, SRP, IBoIB, VNIC).  Library support for IB includes: libibverbs (for direct Verbs 
API programming), librdmacm (to simplify connection management), OpenSM subnet fabric 
manager, DAT­1.2 compliant dapl libraries, and OpenMPI libraries.    Our AMQP messaging 

11 http://www.amqp.org/
12 http://wiki.apache.org/incubator/QpidProposal

Red Hat, Inc. Copyright 2007 18 Version 1.0



Red Hat Enterprise MRG Realtime  – Product Overview

middleware directly utilizes infiniband when present for optimal low­latency determinism.

11 Realtime Java
A large percentage of Linux realtime oriented customers have a requirement for realtime Java. In the 
form of an RTSJ compliant JVM – which is differentiated by enhancements for determinism in garbage 
collection, inter­JVM communication optimizations, and large thread count operation. Throughout the 
development of MRG Realtime, Red Hat has been working extremely closely with IBM to ensure that 
their RTSJ compliant IBM Websphere RealTime ® JVM13 performs optimally.  IBM's realtime JVM 
also provides ahead­of­time compilation to reduce the inherent variability of dynamic compilation. This 
link highlights the requirements that RTSJ has on the underlying operating system.14

Raytheon is an early adopter of IBM's RTSJ combined with Red Hat's kernel technology.  This press 
release highlights the initiative.15 As described in the press release, the United States Navy is deploying 
the joint realtime initiatives of Red Hat and IBM in the DDG destroyer program.

12 The Red Hat Difference – COTS Enterprise Realtime
In summary COTS (commercial off the shelf) enterprise realtime is a new way of thinking.  It is much 
more powerful and feature rich vs traditional hard realtime – while at the same time providing better 
determinism vs general expectations of soft realtime. 

The following are the distinguishing highlights making MRG Realtime the obvious choice for 
deterministic Linux workloads:

● Mainstream approach – Red Hat is driving the mainstream Linux community realtime 
implementation.  Making Red Hat ideally positioned to productize and support.

● Engineering leadership – nobody is better positioned than Red Hat to productize and support 
than the team who is making it happen upstream.

● Compatibility – a shared foundation with stock Red Hat Enterprise Linux 5 yields unmatched 
application compatibility and standards conformance.

● Broad feature set – a shared foundation with Red Hat Enterprise Linux 5 yields unmatched 
breath of features (such as SELinux security) which can be used in conjunction with realtime.

13 http://www­306.ibm.com/software/webservers/realtime/    ­ a realtime J2SE compliant java virtual machine
14 http://www.rtsj.org/docs/OSPlatforms.html
15 http://www­03.ibm.com/press/us/en/pressrelease/21232.wss

Red Hat, Inc. Copyright 2007 19 Version 1.0

http://www-306.ibm.com/software/webservers/realtime/


Red Hat Enterprise MRG Realtime  – Product Overview

● Messaging – the complimentary AMQP based open source messaging initiative will achieve 
maximum performance on a MRG Realtime foundation.

● Product leadership – Red Hat Enterprise Linux, the recognized value leader in Linux, uniquely 
applies the same development, testing, support and professional consulting service capabilities to 
the realtime product. 

● Single point of contact – you know us from standard Red Hat Enterprise Linux deployments all 
these years.

● Partnerships – such as the close pairing of IBM's Websphere RealTime Java runtime.

Red Hat, Inc. Copyright 2007 20 Version 1.0


	1Executive Summary
	2The need for enterprise realtime
	2.1Example realtime enterprise workloads

	3Low latency and predictability defined
	4Red Hat - the Linux realtime innovation leader
	4.1Demonstrated mainstream realtime results
	4.2Beyond Red Hat Enterprise Linux 5

	5Performance Results
	6Performance Tuning & Low Latency Techniques
	7MRG Realtime Productization
	8No need for application changes
	9Supported Hardware
	10The broader platform picture
	11Realtime Java
	12The Red Hat Difference – COTS Enterprise Realtime

