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ABSTRACT
With the number of high-density servers in data centers rapidly
increasing, power control with performance optimization has be-
come a key challenge to gain a high return on investment, by safely
accommodating the maximized number of servers allowed by the
limited power supply and cooling facilities in a data center. Vari-
ous power control solutions have been recently proposed for high-
density servers and different components in a server to avoid sys-
tem failures due to power overload or overheating. Existing so-
lutions, unfortunately, either rely only on the processor for server
power control, with the assumption that it is the only major power
consumer, or limit power only for a single component, such as main
memory. As a result, the synergy between the processor and main
memory is impaired by uncoordinated power adaptations, result-
ing in degraded overall system performance. In this paper, we pro-
pose a novel power control solution that can precisely limit the peak
power consumption of a server below a desired budget. Our solu-
tion adapts the power states of both the processor and memory in a
coordinated manner, based on their power demands, to achieve op-
timized system performance. Our solution also features a control
algorithm that is designed rigorously based on advanced feedback
control theory for guaranteed control accuracy and system stabil-
ity. Compared with two state-of-the-art server power control so-
lutions, experimental results show that our solution achieves up
to 23% better average performance than one baseline for CPU-
intensive benchmarks and doubles the performance of the other
baseline when the power budget is tight.
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System Implementation]: Servers
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1. INTRODUCTION
Power management has become one of the first-order consider-

ations in modern enterprise data centers in recent years. The con-
stant quest for high performance leads to high peak power con-
sumption when the system is fully utilized. The power problem is
further exacerbated by the wide adoption of high-density servers
and the increasing demand for high-capacity, high-bandwidth main
memory subsystems. This is especially true for supercomputers,
which are usually equipped with very large memory size. As a re-
sult, the power supply and cooling facilities become expensive and
bulky, which may hinder the deployment of new servers in the data
centers in turn. More importantly, high peak power may cause sys-
tem failures due to power capacity overload and thermal violations.
In response, power control techniques have been proposed at dif-
ferent levels in data centers [25][31]. For example, a data center
may allocate its power budget to different Power Distribution Units
(PDU) and then, a group of racks. Further, the power budget of
a single server may be allocated by the rack in which the server
resides. Likewise, the server-level budget may be further divided
among multiple components in a server. Hence, it is important that
power is controlled at all the levels.

Power control at the server level faces several major challenges.
First, multiple components need to be manipulated simultaneously
to control the power consumption of a server. The widespread
adoption of multi-core processors and the rapid increase of ap-
plications’ memory footprints have dramatically increased the de-
mand on memory bandwidth and capacity. As a result, it is no
longer valid to assume that the processor is the only major power
consumer in a server. For example, Lin et al. [19] reported that
the main memory systems in a multi-core server box, which has
32GB of Fully-Buffered DIMMs, might have power consumption
in the same range as the processor. Hence, we need Multi-Input-
Multi-Output (MIMO) strategies to coordinate both processor and
memory for server power control. Second, the components in a
server are usually heterogeneous. Thus, we cannot simply allocate
power proportional to the activities of each individual component
since the power consumption of a single activity varies for differ-
ent components. For example, an instruction dispatched in a pro-
cessor may contribute a different amount of power from a memory
request. Therefore, we need to optimize power allocation based
on performance indicators that can characterize the real power de-
mands of the components. Third, workloads in different compo-
nents in a server are usually synergetic. For example, processor
frequency downscaling may decrease the number of memory re-
quests so that the memory power consumption decreases accord-
ingly. Therefore, the synergy among components should be care-
fully addressed during power allocation at the server level. Fourth
and most importantly, the workloads of different components are



unpredictable at design time and may vary significantly at runtime.
As a result, power control algorithms cannot rely on static power
models or open-loop estimations. They must be self-adaptive to
workload variations for improved server performance.

In recent years, various power control solutions have been pro-
posed for high-density servers. A recent solution [15] relies only
on the processor for server power control, with the assumption that
it is the only major power consumer in the server. As a result, that
solution is limited to those small form-factor servers with small-
size memory systems. Another recent paper [5] proposes to shift
power between the processor and main memory proportionally to
the number of activities. However, their solution relies on power
estimation based on measured activities and off-line profiled power
models, which may result in either power violations or performance
degradation when the workload varies. In addition, their power ac-
tuation method relies only on throttling the number of activities and
does not exploit low-power states in the processor and main mem-
ory to minimize idle power. As a result, it has unnecessarily high
idle power and a limited capacity of power adaptation.

In this paper, we propose a novel server power control solution
that can precisely control the server power consumption to a desired
budget. We periodically coordinate the processor and main mem-
ory to achieve improved performance, based on the memory queue
level, by dynamically adjusting the voltage/frequency of the pro-
cessor and placing memory ranks into different power states. Our
coordinated solution is systematically designed based on Model
Predicative Control (MPC) theory, which is an advanced optimal
MIMO control theory. Compared with two state-of-the-art server
power control solutions, our solution has the following improve-
ments. First, our solution, on average, achieves up to 23% better
performance than one baseline for CPU-intensive benchmarks and
doubles the performance of the other baseline when the power bud-
get is tight. Second, our solution significantly improves the power
adaptation capacity, which is the range between the maximum and
minimum power consumption that the server can have, due to co-
ordinating the power states of both processor and main memory.
As a result, our solution can still manage to conduct power con-
trol even when the power budget becomes very tight (e.g., due to
thermal emergency without having to shutdown the server). Third,
our solution has better power control accuracy so that it is more
robust and less vulnerable to workload variations. Specifically, the
contributions of this paper are three-fold:

• We mathematically model the power dynamics of the mem-
ory system by varying the number of memory ranks in low
power states based on a recently proposed memory power
actuation method.

• We design and analyze a MIMO power control algorithm to
control the total power of a high-density server to a budget,
while coordinating the processor and main memory for im-
proved server performance.

• We propose a new technique that uses the memory queue
level as the power demand indicator to optimally allocate
power between the processor and main memory.

The reminder of this paper is organized as follows. Section 2
introduces the power adaptation methods and provides a high-level
description of the coordinated power control architecture. Section
3 presents the system modeling, design, and analysis of our power
controller. Section 4 introduces the simulation environment and
discusses the impact of DDR3 technology on our solution. Sec-
tion 5 presents the results of our experiments. Section 6 discusses
related work and Section 7 concludes the paper.

Table 1: DRAM power states
Power state/Transition Power/Delay

Active standby (ACT) 104.5 mW
Precharged (PRE) 76 mW

Active powerdown (APD) 19 mW
Precharged powerdown (PPD) 13.3 mW

Self refreshing (SR) 5 mW

PRE � PPD 6 ns
APD � ACT 6 ns
SR → PRE ≥ 137.5 ns

2. SYSTEM DESIGN
In this section, we first introduce the power adaptation methods

used in this paper. We next provide a high-level description of the
coordinated power control architecture.

2.1 Power Adaptation for the Main Memory
To effectively enforce the power budget of a server, it is impor-

tant to find efficient power actuators for the processor and main
memory. In this paper, we adapt the processor power consumption
by conducting the widely used DVFS technique. Our power adap-
tation method for the main memory leverages the fact that modern
memory devices have multiple power states that retain stored data.
Each power state consumes a different amount of power, whereas
the transitions between states involve different performance over-
heads. As an example, Table 1 lists the power states, power con-
sumption, and transition overheads of DDR2 SDRAM chips with
1Gb capacity [24]. Diniz et al. [3] have shown that dynamically ad-
justing the power states of different memory devices can efficiently
limit memory power consumption. By making a compromise be-
tween power saving and transition overhead based on Table 1, we
utilize two power states: the precharged (PRE) state and precharged
powerdown (PPD) state. The PRE state is an idle mode in which all
banks are precharged and awaiting row activation commands to ser-
vice a request, while the PPD state is the lowest power mode, other
than the self-refreshing mode, in which all banks are precharged
[11]. Hereinafter, we refer to the PRE state as active state and the
PPD state as sleep state, for simplicity. We use the number of ranks
in the active state as the actuator to dynamically change the mem-
ory power consumption. We place each memory rank either in the
active state or in the sleep state. A rank in the sleep state needs to
be activated first to service any arriving memory requests, which
involves some overhead. We define the active ratio as the number
of memory ranks in the active state normalized to the total number
of ranks in the memory system. For example, if we keep 4 out of
16 ranks in the active state, the active ratio is 0.25.

The active ratio is kept constant within each control period while
it is re-calculated at the end of each control period. The mem-
ory scheduler, shown in Figure 1, maintains a Most Recently Used
(MRU) queue which records the most recently accessed rank at the
head of the queue, and a status array which records the power state
of each rank (i.e., active state or sleep state). Its working process
is based, generally, on an approach proposed by a recent paper [3].
We briefly introduce it as follows.

• At the end of each control period, based on the difference be-
tween the ratios in the current and previous control periods,
some sleeping ranks at the head of the MRU queue are tran-
sitioned to the active state, or some active ranks from the tail
of the MRU queue are transitioned to the sleep state.

• Within a control period, when a memory request arrives, if
the accessed rank is in the sleep state, the active ratio is kept



unchanged by firstly switching an active rank to the sleep
state and then activating the accessed rank. Before the ac-
cessed rank becomes active, the memory access is held in
the memory queue. To avoid frequent transitioning, a rank
is chosen to be switched only if the time it has been in the
active state is longer than the break-even time [3].

Please note that the active ratio mechanism does not conflict with
existing memory power management solutions implemented in nowa-
days’ commercial servers (e.g., transition memory ranks into the
sleep state when they are idle for a certain period of time.). Our
solution only throttles the maximum number of active ranks. If the
number of ranks in the active state is smaller than our decision,
nothing needs to be done. If it is greater, some extra ranks have
to be put into the sleep state to make sure the power budget is not
violated.

2.2 Coordinated Power Control Architecture
Figure 1 is a simplified illustration of a memory controller with

multiple memory channels that can sustain multiple memory re-
quests at a given time. The memory requests generated by the
processor are sent to a memory queue in the memory controller
after a certain bus delay. The memory scheduler converts the phys-
ical address of the requests into the memory address via an address
mapping scheme. It then forwards them to the corresponding chan-
nels if the transaction queue in the channel has space. The chan-
nel scheduler reorders and schedules the requests in the transaction
queue based on a scheduling algorithm (e.g., Read or Instruction
Fetch First). Finally, the scheduled requests are converted into a
sequence of DRAM commands and serviced by the DRAM sys-
tem.

As shown in Figure 1, the key components in the server power
control loop include a power controller and a power monitor at the
server level, a queue monitor and an active ratio modulator in the
memory controller, and a DVFS modulator in the processor. The
control loop is invoked periodically. At the end of each control pe-
riod: 1) The power monitor (e.g., a power meter) measures the av-
erage server power consumption and sends the value to the power
controller. The total server power consumption is the controlled
variable. 2) The queue monitor samples the memory queue level
(i.e., the number of memory requests waiting in the queue) multi-
ple times in each control period. The average queue level is calcu-
lated at the end of each control period and used as a power demand
indicator for the power controller to coordinate the processor and
main memory for improved server performance. 3) The power con-
troller collects the power value and queue level, calculates the new
frequency level for the processor and the new active ratio for the
main memory, respectively. The processor frequency level and ac-
tive ratio are the manipulated variables. 4) The DVFS modulator
changes the processor frequency level, and the active ratio modula-
tor notifies the memory scheduler to power up/down memory ranks
as introduced in Section 2.1, accordingly.

3. COORDINATED POWER CONTROLLER
In this section, we present the system modeling, design, and

analysis of the coordinated power controller.

3.1 System Models
In order to have an effective controller design, it is important to

model the dynamics of the controlled system, namely the relation
between the controlled variable (i.e., server power consumption)
and the manipulated variables (i.e., processor frequency level and
memory active ratio). Since the total power is the sum of the pro-

cessor power and the main memory power1, we have two power
models: the processor power model and the memory power model.
We first introduce some notation. Ts is the control period. f(k)
is the average processor frequency in the kth control period. r(k)
is the active ratio of the main memory. Δf(k) is the difference
between f(k + 1) and f(k), i.e., Δf(k) = f(k + 1) − f(k).
Δr(k) is the difference between r(k + 1) and r(k), i.e., Δr(k) =
r(k + 1) − r(k). Fmax = 1 and Fmin are the maximum and
minimum processor frequency (normalized to the maximum) while
Rmax = 1 and Rmin = 0 are the maximum and minimum active
ratio, respectively. pp(k), pm(k), and p(k) are the power con-
sumption of the processor, the main memory, and the whole server,
respectively.

Memory Power Modeling. Based on the power adaptation method
of the main memory introduced in Section 2.1, we need to model
the dynamics of the relationship between the memory power con-
sumption (i.e., pm(k)) and active ratio (i.e., r(k)). However, a
well-established physical equation is unavailable between pm(k)
and r(k). Therefore, we use a standard approach to this problem
called system identification [6]. Instead of trying to build an analyt-
ical equation between pm(k) and r(k), we infer their relationship
by collecting data in the simulation environment introduced in Sec-
tion 4 and establish a statistical model based on the measured data.

First, we examine the relationship between pm(k) and r(k) based
on experiments with 12 randomly selected workloads from SPEC
CPU2000. Figure 2 plots the memory power consumption with
the standard deviation under different active ratios for 5 workloads.
Each data point in the curve is the average of 10 values which are
sampled every 64 million CPU cycles (i.e., the control period intro-
duced in Section 4). The data points in the same curve are produced
by forwarding the same number of instructions of the workload. As
shown in Figure 2, the memory power consumption decreases when
the active ratio decreases. The reduction of the memory power has
two parts: the reduction of idle power due to the decreased number
of ranks in the active state and the reduction of activity power due
to the reduced available memory bandwidth. As shown in the fig-
ure, the curves of CPU-intensive workloads (e.g., gzip and mesa)
are closer to a linear model than those of memory-intensive work-
loads (e.g., mcf, swim, and art). This is because the decrease of the
active ratio for CPU-intensive workloads has a smaller impact on
the bandwidth, compared with the memory-intensive workloads.
Based on these experiments, we make three important observa-
tions:

1. There exhibits an approximately linear relationship between
the memory power consumption and active ratio for each
workload, except some offset.

2. The slope of all curves varies within a limited range, which
is [34.42, 53.68], based on our analysis.

3. The memory power consumption is stable with a fixed active
ratio within a certain phase. The maximum standard devia-
tion of all the data points in Figure 2 is only 6.63 W, com-
pared with the average power of 95.63W .

Using the system identification approach for each randomly se-
lected workload, we find that a linear model fits very well for all of
them (smallest R2 > 94%). Therefore, it is valid to assume that
there exists a model between the memory power consumption and
active ratio as follows:

91In this paper, since we do not change the power states of other
components in a server, we assume that their power consumption
can be approximated as a constant and is thus eliminated in the
difference power model (5) introduced later.
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Figure 1: Coordinated Power Control Architecture

pm(k) = krr(k) + Ci, (1)

where kr is a generalized parameter that may vary for different
workloads and Ci is a constant representing the offset. The dy-
namic model as a difference equation is

pm(k + 1) = pm(k) + krΔr(k). (2)

To validate our system model, we first stimulate the main mem-
ory system with pseudo-random white-noise input to change the
active ratio in a random manner. We then compare the actual power
consumption with the value predicted by our model. Figure 3 plots
the predicted power and measured power by running swim which
has the largest standard deviation. We can see that the predicted
power is adequately close to the actual power of the memory sys-
tem, even for the workload with a significant power variation.

Please note that we are not trying to find a fixed kr for all work-
loads, but to validate the linearity observed in our experiments by
using 12 randomly selected workloads from SPEC CPU2000 (5 of
them shown in Figure 2). As we prove in Section 3.4, only if the
workload exhibits an approximately linear memory power model
and the slope kr (together with the slope for the processor power
model as we discuss later) varies within a certain range, the stabil-
ity of our coordinated power control algorithm can be guaranteed.
A key advantage of the control-theoretic design approach is that it
can tolerate a certain degree of modeling errors and can adapt to
online model variations based on dynamic feedback [6]. As a re-
sult, our solution does not need to rely on power models that are
100% accurate, which is in sharp contrast to open-loop solutions
that would fail without an accurate model.

Processor Power Modeling. Raghavendra et al. [25] and Le-
furgy et al. [15] have shown that the processor power is approxi-
mately linear to the DVFS level. In this paper, we model the proces-
sor power in the same way as the memory power by using system
identification. The power consumption of a processor is modeled
as:

pp(k) = pp(k − 1) + kfΔf(k), (3)

where kf is a generalized parameter that may vary for different
workloads running in the processor. The detailed analysis of the
processor power model can be found in [15].

Server Power Modeling. The server power consumption is the
sum of power of all components in the server:

p(k) = pp(k) + pm(k) + po, (4)
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where po is the power consumption of other components, which
can be eliminated in a difference power model. Based on (2) and
(3), we can get the difference power model as follows:

p(k + 1) = p(k) + KΔv(k), (5)

where K =
[

kf kr

]
and Δv(k) =

[
Δf(k) Δr(k)

]T
.

The actual values of kf and kr at runtime may change for different
workloads and are unknown at design time. In Section 3.4, we
prove that a system, controlled by the controller designed with the
estimated parameters, can remain stable as long as the variations of
kf and kr are within allowed ranges.

3.2 Controller Design
We apply Model Predictive Control (MPC) theory [21] to design

the controller based on the system model (5). MPC is an advanced
control technique that can deal with coupled MIMO control prob-
lems with constraints on the plant and the actuators. MPC enables
us to combine power prediction, optimization, constraint satisfac-
tion, and feedback control into a single algorithm. This property
makes MPC well suited for coordinating the processor and main
memory for server power control.

A model predictive controller optimizes a cost function defined
over a time interval in the future. The controller uses the system
model to predict the control behavior over P control periods, which
is referred to as the prediction horizon, based on the feedback p(k)



from the power monitor. The control objective is to select an in-
put trajectory that minimizes the cost function while satisfying the
constraints. An input trajectory includes the control inputs in the M
control periods, which is referred to as control horizon. The con-
troller includes a least squares solver, a cost function, a reference
trajectory, and a system model. At the end of every control period,
the controller computes the control input Δv(k) that minimizes
the following cost function under constraints.

V (k) =

P∑

i=1

‖p(k + i|k) − ref(k + i|k)‖2
Q(i) +

M−1∑

i=0

‖Δv(k + i|k) + v(k + i|k) −Vmax‖2
R(i) (6)

where Vmax =
[

Fmax Rmax

]T
, Q(i) is the tracking error

weight, and R(i) is the control penalty weight vector. The notation
x(k + i|k) means that the value of variable x at time (k + i)T
depends on the conditions at time kT . The first term in the cost
function represents the tracking error, i.e., the difference between
the total power p(k + i|k) and a reference trajectory ref(k + i|k).
The reference trajectory defines an ideal trajectory along which the
total power p(k + i|k) should change from the current value p(k)
to the set point Ps (i.e., power budget of the server)[21]. The sec-
ond term in the cost function (6) represents the control penalty.
The control penalty term causes the controller to optimize sys-
tem performance by minimizing the difference between the highest
power states of the processor and the main memory, Vmax, and the
new power states, v(k + i + 1|k) = Δv(k + i|k) + v(k + i|k),
along the control horizon. The control weight vector, R(i) =[

Rc Rm

]
1×M

, is tuned, based on the memory queue level,
to shift power to either the processor (i.e., Rc) or the main mem-
ory (i.e., Rm), which will be discussed in Section 3.3. This con-
trol problem is subject to two sets of constraints. First, both the
DVFS level of the processor and the active ratio of the main mem-
ory should be within allowed physical ranges. Second, the total
power consumption should not be higher than the desired power
constraint.

Based on the above analysis, the problem of server power control
has been modeled as a constrained MIMO optimal control problem,
which can be easily transformed to a standard constrained least-
squares problem [21]. Please note that the computational complex-
ity and runtime overhead of an MPC controller can be significantly
reduced by optimizing the original MPC algorithm. For example,
a hardware implementation of an improved MPC algorithm with 4
inputs (we have 2 inputs in the paper) and 1 output (e.g., the server
power) only takes 4.7μs at a clock frequency of 20MHz [12].
Compared with the power control period (i.e., 20ms) as discussed
in Section 4.1, the computation overhead can be considered small
(< 0.02%). Therefore, it is feasible to use MPC in practice for
server power control.

3.3 Weight Allocation in Coordinated Controller
The power controller discussed above can precisely control the

total server power consumption to the desired budget by solving
an optimization problem. However, it cannot guarantee that the
power states of the processor and main memory are coordinated to
achieve further improved performance. The experiments in Section
5.4 demonstrate that the system performance, in terms of Instruc-
tions Per Cycle (IPC), differs significantly by giving different pref-
erences to the processor and main memory. In this subsection, we
introduce a simple, but efficient, coordination scheme that allocates
the control penalty weights for the processor and main memory
based on the memory queue level, so that improved performance

can be achieved. The reason why we use the memory queue level
as the indicator is as follows: (1) the memory queue physically ex-
ists in many memory controllers [9], so it does not incur any other
implementation overhead. (2) More importantly, when compared
with other related metrics such as CPU stall time or L2 cache miss
ratio, the queue level is a fair indicator for all workloads and can
quantitatively reflect the power demand of the memory system. For
example, if the queue level increases, it means that the memory re-
quires more power to increase its capability so that the waiting time
of the memory requests in the queue can be decreased.

In this paper, we propose an algorithm called Moving Average
(MA) to assign weights in the coordinated controller as follows.
We keep the weight of the processor (i.e., Rc) constant at 1 and
adjust the weight of the memory (i.e., Rm) at runtime. At the end
of each control period, the controller calculates the moving aver-
age of the queue level qa(k) in a window with a size of L, af-
ter receiving the queue level q(k) from the queue level monitor.
Specifically, qa(k) =

∑L−1
i=0 q(k − i). Clearly, the selection of

the window size is a trade-off between a smooth weight allocation
for the main memory and the response speed to memory workload
variations. Based on our experiments, we found that the window
size of 4 works well for most workloads. If the moving average of
queue level qa(k) is higher than the reference level Qref , we set
the weight of the memory as (qa(k)−Qref )α + 1 to indicate that
the memory needs more power. If qa(k) is smaller than Qref , the
weight of the memory is set as (qa(k)/Qref )β , which is lower than
1, to indicate that the processor needs more power. Both α and β
are experiential parameters that map the queue level to the weight.
Based on our profiling experiments with SPEC CPU 2000, we find
that α = 10 and β = 2 have approximately the best results.

The selection of the reference level Qref also plays an impor-
tant role in the allocation scheme. Due to the dependencies among
instructions, the length of the memory queue usually stops increas-
ing when the processor stalls, instead of increasing infinitely. We
define the saturation level as the maximum queue level that can
be accumulated before the processor stalls. Clearly, the saturation
level relies highly on the degree of dependency among the instruc-
tions. The stronger the dependency, the smaller the saturation level.
If Qref is too high (e.g., higher than the saturation level), the pro-
cessor may stall before the queue level can be accumulated to the
reference level. Likewise, if Qref is too low, the preference is more
likely to be always given to the processor. Both of these may lead to
degraded performance. Based on our profiling experiments, most
workloads have a saturation level from 6 to 50. Without loss of gen-
erality, we set the reference level Qref as 4. Note that no reference
level can be guaranteed to be always optimal in terms of perfor-
mance for all workloads, since the interaction between the proces-
sor and memory is interleaved among instructions at runtime.

3.4 Control Analysis for Model Variations
A fundamental benefit of the control-theoretic approach is that

it gives us confidence for system stability, even when the system
power model (5) may change at runtime due to workload variations.
We say that a system is stable if the total power p(k) converges to
the desired set point Ps, that is, limk→∞ p (k) = Ps.

We now outline the general steps to analyze the stability of the
system controlled by the coordinated power controller, when the
actual system model is different from the estimated model used
to design the coordinated controller. First, given a specific system,
we derive the control inputs Δv(k) that minimize the cost function
based on the estimated system model (5) with estimated parameters
K. Second, we construct the actual system model by assuming the
actual parameter k′

f = gfkf and k′
r = grkr for the processor and



memory, respectively, where gf and gr represent the unknown sys-
tem gain. Third, we derive the closed-loop system model by sub-
stituting the control inputs derived in the first step into the actual
system model. Finally, we analyze the stability of the closed-loop
system by computing the poles of the closed-loop system. Accord-
ing to control theory, if all the poles locate inside the unit circle in
the complex space, the controlled system is stable.

Following the steps above, we have proven that the closed-loop
system is guaranteed to be stable when 0 < gf , gr < 5.3. This
means that a system, controlled by the coordinated controller de-
signed based on the estimated model (5), can remain stable as long
as the real system parameters k′

f and k′
r are smaller than 5.3 times

of the values used to design the controller. This stability analysis
gives us confidence in the performance of our controller since we
use the average kf and kr of all workloads from SPEC CPU2000
at the controller design time. It is reasonable to consider that our
closed-loop system is stable for all workloads.

4. SYSTEM IMPLEMENTATION
In this section, we introduce our simulation environment and dis-

cuss the impact of DDR3 technology on our solution.

4.1 Simulation Environment
It would be ideal to test the proposed coordinated solution on a

hardware testbed. However, to our best knowledge, currently there
are few DRAM devices that are commercially available and pro-
vide external interfaces for power state adaptation, though DVFS is
widely available in many processors. Therefore, as in other mem-
ory power management projects [3][5], we can only use simulations
to evaluate the proposed coordinated solution. We integrate two
cycle-accurate simulators: SimpleScalar [2] and DRAMsim [29],
to simulate both the processor and main memory. SimpleScalar is
heavily modified to simulate a quad-core CMP with one thread per
core. To accurately simulate memory dependency, we modify the
static main memory latency in SimpleScalar and hold all instruc-
tions which require main memory accesses from dispatching until
the main memory accesses they depend on are returned by DRAM-
sim. Since the proposed solution is designed for high-end servers
with large memory capacity, DRAMsim is configured to simulate
a FB-DIMM DDR2 SDRAM system for its high bandwidth. The
memory system has a capacity of 32 GB with four channels and
specifications are based on the Micron data sheet [22]. The major
parameters of the processor and main memory are shown in Table
2. We integrate Wattch [1] with SimpleScalar to estimate the power
consumption of the processor. The power calculation in DRAMsim
is based on the power model proposed by Micron [23]. We assume
that the simulated quad-core CMP has an idle power of 50 W when
running at the lowest frequency, based on a recent quad-core Xeon
processor from Intel. Hence, the peak power of the simulated sys-
tem can be as high as 270 W. In this paper, we assume that the
processor and memory contribute the majority of the total power
consumption in a server. However, our framework described above
can be extended to include other components, such as network or
disks.

Since the new frequency level periodically received from the
controller could be any value that is not exactly one of the four
supported DVFS levels shown in Table 2, we implement the first-
order delta-sigma modulator proposed by Lefurgy et al. [15]. The
modulator approximates the desired value via a series of supported
DVFS levels. For example, to approximate 3GHz during a con-
trol period, the modulator would output the sequence, 2.8, 3.2, 2.8,
and 3.2, on a smaller timescale. Apparently, the more subinter-
vals the modulator is invoked within one control period, the better

the approximation is, but with a higher overhead. In this paper,
we choose to use 20 subintervals to approximate the desired DVFS
level. Based on Skadron et al. [27], the DVFS overhead is approx-
imately 10μs. As a result, we choose a subinterval of 1ms so that
the overhead is up to 1% in the worst case when the DVFS level
is changed every subinterval. Therefore, the coordinated control
period is 20ms, which is 64 million CPU cycles in our simulation
environment. To simulate the overhead of DVFS, we assume there
is no instruction executed during transitions [10].

The server power is calculated every control period (i.e., 64 mil-
lion CPU cycles) in our simulation environment. Many of today’s
high-density servers are equipped with built-in power measurement
circuit, such as IBM system x and p servers [14]. Those circuits
can accurately measure the server power with a sampling period
as short as 1ms, which is much shorter than the sampling period
of 20ms used in this paper. Therefore, it is realistic to precisely
measure server power at runtime at a low cost.

In real systems, the controller can be implemented in the ser-
vice processor firmware. In our simulation environment, the coor-
dinated controller is implemented as a separate process and com-
municates with the processor-memory simulator via a pipe. The
controller executes the control algorithm presented in Section 3 by
calling a Matlab library which implements a standard constrained
least-square solver. Our experiments are driven by pre-compiled
alpha binaries of SEPC CPU2000. Since our goal is to validate
the idea of shifting power between processors and memory for im-
proved performance within a certain power constraint, we generate
4 identical threads of the same workload and run each thread on
each core. To test our solution by running other coupled multi-
threaded workloads, we need to incorporate advanced workload
scheduling algorithms that can guarantee performance fairness by
allocating power among different cores, which will be our future
work. The performance is accumulated across all the cores in term
of IPC. Please note that the length of cycle is normalized to the
reciprocal of the highest frequency (i.e., 3.2GHz). Therefore, the
performance metric of IPC is equivalent to instructions per second.

4.2 Impact of DDR3 Technology
In this paper, we aim for high-end servers with high memory

bandwidth. We chose FB-DIMM memory architecture for it high
bandwidth [7]. However, our solution is not limited to a certain
DRAM technology, and can also be applied on other memory sys-
tems such as DDR3. In this section, we discuss the impact of DDR3
technology on our solution, which will be part of our future work.

Memory power model. The coordinated power control solu-
tion is designed based on the processor and memory power models
presented in Section 3.1. A similar memory power model can be
derived as long as the system consists of multiple memory ranks
whose power states can be transitioned independently, as in a DDR3
memory system. Therefore, it is reasonable to infer that a similar
memory power model can be derived for DDR3, but with a differ-
ent parameter km.

High power of FB-DIMM. FB-DIMM memory modules have
relatively higher power consumption compared with conventional
memory modules, mainly due to the Advanced Memory Buffer
(AMB). For each AMB, the idle power (4-5 Watts) takes a ma-
jor part of the total power (4-8 Watts) [18][19]. However, we do
not take advantage of the high idle power of AMB. In our mem-
ory power model (1), the high idle AMB power is part of the offset
Ci, which is eliminated in the difference model (2). As a result,
the power dynamics of the memory system mainly come from the
power difference between the different power modes of memory
ranks, instead of the high idle power of FB-DIMM. If the coordi-



Table 2: Simulator parameters
Parameters Values

Processor 4 cores, 8 issues per core
Frequency scaling 3.2GHz at 1.3V, 2.8GHz at 1.15V, 1.6GHz at 0.95V, 0.8GHz at 0.8V

Functional unit 4 IntALU, 2 IntMult, 2 FPALU, 1 FPMult

L1 caches (per core) 64KB Inst/64KB Data, 2-way, 64B line size, 3-cycle hit latency
L2 cache (shared) 8MB, 8-way, 64B line size, 12-cycle hit latency

Memory 4 channels, 4 DIMMs/channel, 8 banks/DIMM, 1 rank/DIMM
Channel bandwidth 667MT/s, FB-DIMM DDR2

130

150

170

190

210

P
o

w
e
r 

(W
)

110

130

150

170

190

210

0 500 1000 1500 2000 2500 3000

P
o

w
e
r 

(W
)

Time (ms)

Coordinated Budget

Figure 4: A typical run of the coordinated solution

195

200

205

210

P
o

w
e

r 
(W

)

190

195

200

205

210

0 400 800 1200 1600 2000

P
o

w
e

r 
(W

)

Time (ms)

Estimated Measured Budget

Figure 5: Estimation error of PLI

nated solution is applied to DDR3 memory systems, similar power
dynamics can be achieved as long as DDR3 memory chips have a
similar power reduction from the PRE state to the PPD state and
the available memory bandwidth decreases similarly. Therefore,
it is reasonable to believe that DDR3 memory systems may have
power dynamics similar to FB-DIMM configured in our testbed.
As a result, the coordinated solution can achieve similar perfor-
mance improvement in DDR3 memory systems.

5. EVALUATION
In this section, we first introduce two state-of-the-art baselines.

We then compare the coordinated solution with the two baselines,
in terms of power control performance and application performance.
Finally, we investigate the impact of weight allocation on server
performance.

5.1 Baselines
Our first baseline, referred to as ProcOnly, is a server power con-

trol solution based on feedback control theory, proposed by Lefurgy
et al. [15]. ProcOnly represents a typical server power control solu-
tion that assumes the processor is the only major power consumer
in a server. ProcOnly leverages frequency scaling in the processor
to control the power consumption of the whole server to be within a
certain power budget. We compare the proposed coordinated solu-
tion against ProcOnly to highlight that coordinating the processor
and main memory, when power budget is limited, is important to
achieve better performance than only considering the processor. A
fundamental difference between the coordinated solution and Pro-
cOnly is that ProcOnly only manipulates the CPU frequency while
disregarding the synergy between the processor and main memory.

In contrast, the coordinated solution manipulates the power states
of both the processor and memory, and adaptively adjusts the power
states of the two components in a coordinated way.

The second baseline, referred to as Proportional-by-Last-Interval
(PLI), is a server power control scheme that shifts power between
the processor and main memory based on the number of activities,
proposed by Felter et al. [5]. PLI profiles the processor power
model as a function of the number of dispatched instruction per cy-
cle (DPC), while the memory power is modeled as a function of
memory bandwidth. It periodically estimates the server power con-
sumption based on the two off-line power models. Given a power
budget, in every period, PLI calculates the maximum number of ac-
tivities in the processor (i.e., dispatched instructions) and memory
(i.e., memory requests) that can occur in the next period without
violating the power budget, as the thresholds, proportionally to the
measured number of activities in the last period. The power budget
is enforced by only running the calculated numbers of activities in
the processor and main memory. There are three fundamental dif-
ferences between PLI and the coordinated solution. First of all, PLI
is based on an estimation strategy that does not explicitly measure
the power but relies on estimation, and thus cannot guarantee bud-
get enforcement when the runtime power model becomes different
from the profiled power model. Although the coordinated solution
also predicts the power consumption based on profiled power mod-
els, the fundamental advantage of the coordination solution is that
the prediction is continuously corrected based on feedback infor-
mation, as discussed in Section 3.2. Second, the power allocation
of PLI is proportional to the number of activities. In contrast, in
the coordinated solution, the power allocation is driven by a per-
formance indicator, the memory queue level. Finally, PLI enforces
the power budget by directly throttling the number of activities. In
contrast, the coordinated solution exploits different power states to
effectively reduce idle power for both the processor and memory.
When the budget is tight, our solution can allow more system activ-
ities by utilizing the reduced idle power. As a result, our solution
has a higher capacity of power adaptation and can achieve better
application performance.

5.2 Power Control Performance
In this experiment, we compare the power control performance

of the coordinated solution with the two baselines, in terms of
power control accuracy and power adaptation capacity.

Power Control Accuracy. To test the power control accuracy
of the coordinated solution in a scenario where the power budget
of the system needs to be changed at runtime due to various rea-
sons (e.g., thermal emergencies), we select a workload from SPEC
benchmarks that is not used in the profiling of the memory power
model in Section 3.1, twolf. As shown in Figure 4, the power bud-
get is reduced from 190W to 170W at time 1, 000ms, and then
restored to 190W at time 2, 000ms. We can see that the coordi-
nated solution quickly responds to the power budget reduction and
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Figure 6: Comparison of power control among the coordinated solution, ProcOnly, and PLI

Table 3: Power adaptation capacity of the proposed coordi-
nated solution and two baselines.

Coordinated ProcOnly PLI
Lowest budget (W) 105 132 191

precisely control the total power consumption of the server to the
budget by adjusting the CPU frequency of the processor and the
active ratio of the memory.

Figures 6(a) and (b) show the average power consumption under
the proposed coordinated solution, ProcOnly, and PLI with stan-
dard deviations for CPU-intensive and memory-intensive workloads,
respectively. Each bar in the figures is the average of 110 data
points after the controllers enter the steady state. The reason why
there are no results for PLI at the budgets of 190W , 180W , and
170W is because PLI is incapable of lowering the power below its
idle power (i.e., 191W ). The smaller the standard deviation is, the
smaller power variation will be, that is, the less dangerous to have
a power violation. We can see that the average power consump-
tion under both the coordinated solution and ProcOnly precisely
converges to the budgets. However, the standard deviation of Pro-
cOnly tends to be greater than the coordinated solution. For ex-
ample, the maximum standard deviation of ProcOnly in all runs is
8.94W compared to 5.1W for the coordinated solution. This is be-
cause the coordinated solution has two manipulated variables (i.e.,
CPU frequency and active ratio) which can handle larger workload
variations than ProcOnly, which has only one manipulated variable
(i.e., processor frequency). The result is consistent with the sta-
bility analysis of the coordinated solution presented in Section 3.4,
and the analysis of ProcOnly presented in [15]. The analyses show
that the stability range of the coordinated solution (i.e., (0, 5.3]) is
larger than that of ProcOnly (i.e., (0, 2)). Therefore, the coordi-
nated solution is less vulnerable to workload variations and more
robust.

As for PLI, the average power consumption fails to converge to
the power budget due to estimation errors in most runs. For ex-
ample, the average power consumption under PLI is either smaller
(e.g., fma3a and mcf ) or larger (e.g., art) than the power budget. As
a result, PLI either violates the power budget or leads to degraded
performance. This is because PLI features a strategy that does not
explicitly measure power but estimates power based on measured
activities. As a result, it relies heavily on the accuracy of the off-
line profiling of power models so that it has the risk of violating
the power budget. To further verify our analysis of estimation inac-

curacy about PLI, Figure 5 plots both the measured and estimated
power consumption in a typical run of PLI by using lucas (0.8B
instructions are forwarded) under a power budget of 200W . We
can see that the actual power consumption (i.e., measured) is suc-
cessfully enforced to the power budget at the beginning because the
power characteristic of activities in the processor and main mem-
ory are accurately captured by the power models used by PLI for
estimation. After the time around 580ms, the power characteristic
varies. However, PLI neglects the variation due to the lack of feed-
back information and still allocates power between the processor
and memory based on the measured number of activities. This re-
sults in a constant power violation of approximately 4.5W , which
is highly undesirable and may cause system failures in real systems.

Power Adaptation Capacity. Power adaptation capacity is de-
fined as the power budget range that a control solution can achieve.
A higher power adaptation capacity means that a control solution
can still manage to conduct power control even when the power
budget becomes very tight (e.g., due to thermal emergency). PLI
caps power by throttling the number of dispatched instructions in
the processor and the number of memory requests in the main mem-
ory, instead of exploiting the low-power states. As a result, it has
the smallest power adaptation capacity among the three solutions.
As introduced in Section 5.1, a fundamental difference between the
coordinated solution and ProcOnly is that the coordinated solution
utilizes the low-power states of both the processor and main mem-
ory while ProcOnly only manipulates the DVFS level of the pro-
cessor. Therefore, the coordinated solution has the largest power
adaptation capacity. Table 3 shows the average minimum power
budget that can be achieved by the three power control algorithms
using 8 workloads randomly selected from SPEC CPU2000. If the
maximum power budget can be achieved is 270 W, we can see that
the coordinated solution improves the power adaptation capacity up
to 20% and 120%, compared with ProcOnly and PLI, respectively.

5.3 Application Performance
Now we compare the coordinated solution with the two baselines

in terms of application performance.
ProcOnly. In this experiment, we run ProcOnly and the coordi-

nated solution by using gzip under a power budget of 200 W. Figure
7(a) shows the memory bandwidth of running gzip in our simula-
tion environment by forwarding 0.4B instructions. Figures 7(b)
and (c) show the power consumption of the whole server, the pro-
cessor, and the main memory in a typical run of ProcOnly and the
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Figure 7: Comparison with ProcOnly during a typical run of gzip

coordinated solution, respectively. We can see tha gzip experiences
time-varying memory workload from a bandwidth of 0.3GB/s to
more than 3GB/s at runtime. However, ProcOnly only adjusts the
power states of the processor, disregarding the variations of mem-
ory workload. Consequently, the power consumption of the mem-
ory system is unnecessarily high even at the time when the memory
system experiences a low workload. In contrast, the proposed coor-
dinated solution adapts to the low memory workload by putting the
main memory in low-power states and putting the processor in rel-
atively high-power states. When the memory workload increases
significantly, the coordinated solution shifts power from the pro-
cessor to the main memory. As a result, performance increases by
approximately 11% when compared with ProcOnly, due to the co-
ordination between the processor and main memory. Please note
that, though the power temporarily violates the budget due to se-
vere workload variations in Figures 7(b) and (c), these overshoots
are instantaneous (i.e., in tens of milliseconds) and the system is
safe as long as the server power can be controlled back to the de-
sired budget within the designed time interval that the power supply
can sustain a power overload.

To more thoroughly investigate the performance comparison be-
tween the coordinated solution and ProcOnly, we run experiments
by using a variety of workloads under different power budgets.
Figures 8(a) and (b) show the performance comparison for CPU-
intensive and memory-intensive workloads, respectively. Perfor-
mance is measured as the average IPC of 120 data points from the
beginning of each run. As we can see, the coordinated solution
has better performance for all CPU-intensive workloads. The av-
erage improvement of the coordinated solution over ProcOnly at
each power budget is shown in Figures 8(a) (i.e., up to 23% on
average at the budget of 170W ). This is because the coordinated
solution can coordinate the power states of the processor and main
memory by dynamically shifting power between them. We can also
see that the lower the budget, the better improvement that the coor-
dinated solution can achieve over ProcOnly (i.e., the improvement
increases from 6% to 23% as the budget decreases from 210W to
170W ). This is because when the power resource becomes more
constrained, it is more important to efficiently allocate it between
the processor and main memory for improved performance. As for
the memory-intensive workloads shown in Figure 8(b), the coor-
dinated solution has similar performance to ProcOnly. This is be-
cause those memory-intensive workloads have high memory traffic
at the majority of time. As a result, the coordinated solution places
the memory in high-power states almost all the time which is sim-
ilar to what ProcOnly does. The reason why the coordinated solu-
tion has a very slightly lower performance (around 1%) than Pro-
cOnly for applu and art is because applu and art’s memory work-
load oscillates more than other memory-intensive workloads so that
the queue level varies significantly at runtime. As a result, the coor-
dinated solution has a higher overhead by frequently adjusting the
power states of the processor and main memory. This set of ex-
periments demonstrates that the coordinated solution achieves con-
siderably better application performance than ProcOnly for CPU-

intensive workloads and similar performance for memory-intensive
workloads.

It is important to note that the runtime complexity of the pro-
posed coordinated solution is comparable to that of ProcOnly, as
discussed in Section 3.2. Please also note that the performance im-
provement is highly dependent on the percentage of memory power
in the total power consumption of the system. The higher the per-
centage is, the higher the improvement will be. As presented in
[14], memory power may have a much higher percentage in many
high-end servers than our configuration (i.e., around 50%). There-
fore, the performance improvement of the coordinated solution can
be even more significant.

PLI. The high idle power places PLI in a disadvantageous situ-
ation when the power budget is tight (e.g., lower than the average
power consumption). As shown in Figures 8(a) and (b), PLI has
much lower performance than both the coordinated solution and
ProcOnly. On average across all the budgets, the coordinated so-
lution improves PLI by 110% and 120% for CPU-intensive and
memory-intensive workloads, respectively. However, as the power
budget increases, differences between PLI and the other two solu-
tions becomes smaller.

5.4 Weight Allocation Schemes
Now we investigate the control penalty weight R(i) in the cost

function (6) and the impacts of different allocation schemes on the
coordination between the processor and main memory. To high-
light the importance of the dynamic weight allocation based on the
memory queue level, we compare the proposed moving average
scheme (MA) with three static allocation schemes. The first one,
referred to as Equal, gives the same preference to the processor
and main memory by assigning an equal weight to them. The other
two, referred to as Proc-preferred and Mem-preferred, always give
preference to the processor and main memory, respectively.

To stress test the allocation schemes, we select 8 workloads and
run all of them under a tight budget, 150W , which is only approx-
imately 56% of the system’s peak power. We plot the average IPC
of 200 control periods from the beginning in Figure 9. We can ob-
serve that: 1) For CPU-intensive workloads, MA has better perfor-
mance than both Equal and Mem-preferred. The reason is that us-
ing lower processor power states unnecessarily for CPU-intensive
workloads may hurt performance significantly. At the same time,
MA has similar performance to Proc-preferred. Note that Proc-
preferred has slightly better performance than MA (around 2%) for
gcc. This is because MA has some overhead to find the best allo-
cation weight based on the memory queue level, which results in
slightly worse performance. 2) For memory-intensive workloads,
MA has significantly better performance than Proc-preferred. In
addition, MA has slightly better performance than both Equal and
Mem-preferred (with the average 2% and 6%, respectively). This is
because shifting power to the main memory for memory-intensive
workloads has less impact on performance than shifting power to
the processor for CPU-intensive workloads, since the memory la-
tency dominates the performance bottleneck.
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Figure 8: Comparison of performance among the coordinated solution, ProcOnly, and PLI
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Figure 9: Comparison of weight allocation schemes

In general, MA, which dynamically allocates control penalty
weights to the processor and main memory based on the memory
queue level, is superior to other static allocation schemes.

6. RELATED WORK
Power consumption has become one of the most important de-

sign concerns for computing systems. Much prior work has focused
on minimizing the power consumption within a specified perfor-
mance guarantee. At the cluster level, Verma et al. [28] and Hor-
vath et al. [8] propose different power management schemes to
minimize power consumption while guaranteeing the application
performance. At the server level, Li et al. develop algorithms for
power adaptation between processor and memory so that energy
can be minimized [16]. At the component level, energy conserving
algorithms have been presented for processors [33], DRAM sys-
tems [34], disks [17], and caches [13]. However, all of the solutions
cannot provide any explicit guarantees for the power consumption
to stay below the desired budget though the performance is guar-
anteed. Our work is different in that we focus on a different but
equally important problem, i.e., power control to avoid power over-
load or thermal violations.

Several power provisioning strategies have been proposed by [4]
to host the maximized number of servers allowed by the limited
power supply in data centers. Different power control solutions
have been proposed at different levels in data centers [25][31] to
maximize application performance. Shang et al. present Power-
Herd to control the peak power of interconnection networks [26].
At the server level, Lefurgy et al. propose a server power control
solution based on basic feedback control theory by assuming that
CPU is the major power contributor in servers [15]. Felter et al.
propose to cap server peak power by shifting power between the
processor and memory proportionally to the number of activities

[5]. At the cluster level, Wang et al. propose a MIMO controller
to cap the cluster power consumption [30]. Raghavendr et al. also
propose a hierarchical power control solution for server clusters
[25]. However, those solutions conduct power control by adjust-
ing only the DVFS levels of the server processors. In contrast,
our work coordinates the processor and main memory for efficient
server power capping based on an advanced optimal MIMO con-
trol theory. Our server-level power control solution can be used in
a cluster setting with a cluster-level power control loop, such as the
ones in [25] [31]. The cluster-level loop allocates power budget to
each server, where our loop precisely controls the server power to
the desired budget. As shown in Figure 4, our controller can react
quickly to a sudden budget change. The settling time is just several
control periods. Since our control period can be as short as 20ms,
the settling time is acceptably short compared with the time inter-
val for a PDU-level circuit breaker to trip, which is about 2s for a
power overload of 20% over the rated capacity [31].

Power control solutions have also been applied on different server
components to address cooling and thermal problems. For exam-
ple, Diniz et al. propose several policies to limit power consump-
tion for DRAM systems [3]. Lin et al. develop dynamic thermal
management (DTM) techniques for FB-DIMM memory systems
by DVFS [18]. Various power control solutions have also been pro-
posed to cap the power consumption of a chip multiprocessor with
per-core DVFS [10][20][32]. However, all of them focus on a sin-
gle component in servers and cannot be directly applied to server
power control.

7. CONCLUSIONS
Existing power control solutions either rely solely on processor

frequency scaling or shift power simply based on estimated sys-
tem activities. In this paper, we propose a novel server power con-
trol solution that can precisely control the power consumption of
a server to the desired budget. Our solution shifts power between
processor and main memory in a coordinated manner by dynami-
cally adjusting the voltage/frequency of the processor and placing
memory ranks into different power states, based on their power de-
mands indicated by the memory queue level, to achieve improved
server performance. We compare with two state-of-the-art server
power control solutions. One baseline relies only on processor fre-
quency scaling while the other one uses estimated system activi-



ties for power shifting. Our experimental results demonstrate that
our solution, on average, achieves up to 23% better performance
than the first baseline for CPU-intensive benchmarks and doubles
the performance of the second baseline when the power budget is
tight. In addition, our solution significantly improves the power
adaptation range and has better power control accuracy.
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