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Abstract of “Algorithms for Sequential Decision Making”
by Michael Lederman Littman, Ph.D., Brown University, May 1996.

Sequential decision making is a fundamental task faced by any intelligent agent in
an extended interaction with its environment; it is the act of answering the question
“What should T do now?” In this thesis, I show how to answer this question when
“now” is one of a finite set of states, “do” is one of a finite set of actions, “should” is
maximize a long-run measure of reward, and “I” is an automated planning or learning
system (agent). In particular, I collect basic results concerning methods for finding
optimal (or near-optimal) behavior in several different kinds of model environments:
Markov decision processes, in which the agent always knows its state; partially observ-
able Markov decision processes (POMDPs), in which the agent must piece together its
state on the basis of observations it makes; and Markov games, in which the agent
is in direct competition with an opponent. The thesis is written from a computer-
science perspective, meaning that many mathematical details are not discussed, and
descriptions of algorithms and the complexity of problems are emphasized. New re-
sults include an improved algorithm for solving POMDPs exactly over finite horizons, a
method for learning minimax-optimal policies for Markov games, a pseudopolynomial
bound for policy iteration, and a complete complexity theory for finding zero-reward

POMDP policies.
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Chapter 1

Introduction

This thesis document was submitted to the Graduate School at Brown Uni-
versity on February 27th, 1996. This technical report (version 2.0) contains

only minor modifications from the original.

A frog jumps around a barrier to get to a delicious mealworm. A commuter tries an
unexplored route to work and ends up having to stop and ask for directions. A major
airline lowers prices for its overseas flights to try to increase demand. A pizza-delivery
company begins a month-long advertising blitz. These are examples of sequential de-
cision making; the purpose of this thesis is to explore automatic methods for choosing
the best action in situations such as these.

The essence of sequential decision making is that decisions that are made now
can have both immediate and long-term effects; the best choice to make now depends
critically on future situations and how they will be faced. In this thesis, I explore algo-
rithms, or automated procedures, for making the right decision in different sequential
decision-making problems. Each chapter of the thesis presents a specific formal model
and various algorithms for finding optimal behavior in that model. In the remainder of
this chapter, I discuss sequential decision-making problems at a high level and explore
what it means to solve them.

Some of the solution algorithms presented are extremely complicated. In the re-
mainder of this section, I give some example sequential decision-making scenarios for
which choosing the optimal or nearly optimal decision can be difficult; this should pro-
vide motivation for the importance of automatic sequential decision making, as well

as help reveal why these problems require complicated algorithms. The examples are



meant to be interesting problems worthy of additional study; none has yet been im-
plemented as a large-scale system. For some example problems being solved in science
and industry, along with estimates of how many millions of dollars their automated

solutions are saving, see Puterman’s recent textbook [126].

Budget Setting You are in charge of setting the budget for a large organization.
Unfortunately, poor planning and bad management has left your organization with a
huge amount of debt. It is your job to decide how to get the organization back in the
black. You know that over the next few years some amount of spending must be cut,
but cutting too much too soon will result in severe hardship for some members of your
organization, while cutting too slowly will result in no budget balancing at all, because
interest on the massive debt continues to compound.

Making things even more difficult are the effects on the budget of unpredictable
factors, such as the precise amount of your organization’s income over the next few
years, its overall productivity, world-wide inflation, and the introduction of innovations
that might help the organization save or even make money. On your side, you have
detailed and accurate economic models for predicting the result of various budget-
cutting options. The models can be used to reveal the probability that innovation will
be curtailed by a 5% decrease in the budget, for example. Of course, simply knowing
the probability of various events does not allow you to predict the future with certainty,
but it gives you the ability to gauge the probability, over all possible futures, that the
budget will eventually be balanced.

How can you use your knowledge of economic models and the current state of your
organization to construct a budget-cutting plan for the next decade or so that brings
down the debt with high probability as quickly as possible without destroying the

organization in the process?

Baseball Pitching Now you are a professional pitcher facing a batter you know
quite well. He hits .342, which makes him a high average hitter, but worse, he is well
known for being a great home-run hitter. He is a lefty and you a righty, so you will
not be able to get a curve ball to break away on him. There is one runner on second,
and your team is ahead by 1 in the fifth inning.

A fast ball gives you the best chance of a quick strikeout, but it is likely that the
batter is ready for it, and therefore that he has a good shot at hitting the ball out of



the park. An inside slider might be a good idea, except that if it is off by even a little,
he will belt it. What pitch do you throw to maximize your team’s chances of winning

the game, since you know the opposing batter will try to prevent you from winning?

Network Monitoring As an electrical engineer, it is your responsibility to design
a piece of equipment that plugs into the telephone network to monitor and correct
faults in a specific section of the network. The network consists of a set of switching
computers and cables that connect the switching computers to one another. At any
moment in time, the switching computers can be up or down and lightly or heavily
loaded, and the cables can be transmitting or not transmitting information.

The monitoring equipment has access to various signals and alarms emitted by the
switching computers, and it can send its own query signals to the switching computers
to elicit feedback on their status. However, it is not possible to know with certainty
the state of the network at any moment; for example, if a switching computer fails
to respond to a query, is this because it is overloaded, because it has gone down, or
because one of its incoming cables has stopped transmitting data?

In spite of the unreliable and sometimes inaccurate information, the monitoring
equipment must keep the network running as smoothly as possible. To do this, it can
send query and reset signals to the switching computers and can call for a repair person
to physically examine any of the switching computers or cables. Of course, sending out
a person can be expensive, especially late at night, but this expense is small when
compared to the revenue lost due to the failure of a switching computer. Because of
the difficulty in assessing when a switching computer has gone down, this can be an
extremely difficult decision. How do you design the monitoring equipment to make this

trade-off properly?

1.1 Sequential Decision Making

In this section, I begin to lay the groundwork for a formal model of sequential decision
making. I describe the decision maker or agent, the environment with which it interacts,

the behavior it exhibits, and the problems it might face.



1.1.1 The Agent

Through overuse, the word “agent” has come to mean very different things to different
groups of people. In the context of this work, an agent is simply the system responsible
for interacting with the world and making decisions. In the examples in the previous
section, the agents are the budget director, the pitcher, and the network monitoring
equipment. Agents can also be robots or software programs or medical equipment.
The agents “live” in an environment: a particular economic model, a baseball game,
a telephone network, the floor of an office building. The state of the environment is a
description of everything that might change from moment to moment. In the baseball
example, the state would include the position of the runners, the score, the inning, the
identity of the current batter, and the number of balls and strikes. It probably would
not include the color of the field, the number of bases, or the shape of home plate.
Figure 1.1 depicts a generic embedded agent [72] interacting with its environment.
The agent is represented by a robotic figure and the environment as a blob. Although
the agent is a decision-making entity, it is not enough for it simply to make decisions;
it needs to turn these decisions into a selection of an action a to be taken to influence
the state of the environment. The transition function 7" controls how actions alter the
state s of the environment. In all but the most trivial environments, the agent’s action
choice should be a function of its perception z of the state. The component labeled O in
the figure represents the agent’s perception function, which transforms the environment
state into a perception. For many environments, O is the identity function; that is,
the agent has access to the true state of the environment. In others, such as in the
network-monitoring example, the state of the environment is only partially observable
to the agent. The function that maps perception to action choice is labeled in the figure
with a B (for “behavior”). The component R is the agent’s reward function and r the

agent’s reward; these are discussed in more detail in Section 1.1.3.

1.1.2 The Environment

Roughly, the environment is anything external to the agent. For the purposes of this
thesis, I assume that environments are neither capricious nor malicious, but are instead
oblivious of the agent and its goals. More concretely, I assume that the environment
changes from state to state in response to the actions of the agent according to a fixed

set of rules. The transitions might be stochastic; that is, it is not necessary that the



Figure 1.1: An embedded agent interacting with its environment.

same transition occur every time the agent takes a particular action in a particular
state. However, the probabilities that govern these stochastic transitions must remain
constant over time.

This definition of environment is somewhat restrictive and deserves a bit of elab-
oration. In most real-world problems, it is possible to identify the quickly changing
aspects of the environment that constitute the state and the fixed aspects that are the
environment. However, there are often aspects of the problem that change slowly over
time. These can be modeled as part of the state, often with a large increase in com-
plexity of the state description, or can be approximated as being static and made part
of the fixed environment. A more accurate perspective would consider the environment
to be non-stationary. Such environments are of interest because they make it possible
to consider a broader range of sequential decision-making problems; however, they are
more complex mathematically and few formal models have been proposed [42]. For
this reason, previous attempts at handling non-stationary environments have focused
almost exclusively on empirical studies [93, 156]. In this thesis, I am most concerned
with the theoretical analysis of algorithms, and therefore restrict the discussion to
environments that do not change over time.

Although I focus exclusively on time-invariant environments, I do not always assume
that the agent has access to a complete environmental description. When this is the
case, it is often possible for an agent to discover the time-invariant properties and
exploit them; these problems are modeled in the reinforcement-learning framework
described below.

Elements external to the agent that obey their own (not necessarily fixed) rules can
sometimes be modeled as independent agents. For example, in the idealized baseball

example, the players on the field follow the coaches’ orders to the best of their abilities;



they are part of the environment. The opposing batter, however, is making decisions in
a way that is purposely unpredictable and combative; for this reason, the environment

can best be described as containing multiple agents.

1.1.3 Reward

To describe a sequential decision-making problem, it is not enough to specify the agent
and the environment alone. The agent’s actions need to serve some purpose: in the
problems I consider, their purpose is to maximize reward. In a sense, reward is external
to both the agent and the environment. It constitutes a specification of the problem
the agent is to solve in the course of its interaction with the environment. In many
sequential decision-making situations, there is a designer who can say for sure which
actions and states are good and which are bad, and thus can explicitly specify the
reward.

In the network-analyzer situation, for example, the rewards to the agent could be
tied to the money spent and earned by the owners of the network: this information
would be built into the agent by the designer. In the baseball example, the runs
themselves would not be considered rewards, as they are not good or bad in and of
themselves; the only true reward comes from winning the game. In the budget example,
the reward criterion would need to be very complex and would probably be a source
of considerable disagreement among the organization’s management.

An important aspect of rewards is that they are the basis of the objective crite-
rion used to judge agents’ performance; however, for rewards to have any influence
on behavior, agents must have subjective access to them. In the abstract models of
environments considered in this thesis, rewards can be predicted by agents using their
perception of the environment; this is a defining property of these models.

An interesting issue is whether there can be a notion of rewards in the “undesigned”
environments faced by biological agents. In particular, the only true reward signal
in a biological system is death, which is perceptible by the agent too late to be of
use. Simulation experiments [3] have shown that, over the span of many generations,
artificial agents can evolve their own proximal reward functions that are useful in
predicting the relative goodness and badness of situations; in principle, even biological
agents can compute their own reward functions. There is also evidence that specific

structures in the brain of some animals are reward centers [110] that behave much like



the reward functions used throughout this thesis. Of course, such analogies must not

be taken too literally.

1.1.4 Policies

A policy is an agent’s prescription for behavior. In general, an agent’s policy is very
complicated, including changes in behavior conditioned on events in the distant past.
However, when the structure of the environment is known in advance, an agent can
sometimes behave successfully with a much simpler policy.

A plan is the name for a particularly simple kind of policy in which the agent
carries out a fixed sequence of actions “with its eyes closed;” that is, it takes the same
sequence of actions regardless of what it perceives. Plans are important in completely
predictable environments when the initial state of the agent is known in advance, as is
the case, for example, with manufacturing robots.

A conditional plan admits a small amount of variation in the sequence of actions
selected. For example, a part-painting robot might be built to work successfully even if
it receives a part upside down. Its plan might have the form: gather part, check paint
level in sprayer, request more paint if paint level too low, check orientation of part,
use painting procedure A if part rightside up, use painting procedure B if part upside
down.

An extreme form of conditional plan is a stationary policy, sometimes called a
“universal plan” [138]. This type of policy has no specified sequence at all; instead,
the agent examines the entire state at each step and then chooses the action most
appropriate in the current state. For an agent to follow such a plan, it must have
access to some function that returns an action choice for every possible state. A partial
policy [43] can be used to overcome the difficulty of constructing and manipulating
complicated universal plans; however, few theoretical tools are available to assess the
success of a partial policy.

Stationary policies have several important properties that make them extremely
important. First, in highly unpredictable environments, nearly any state can follow
any other state, so any partial list of contingencies would be inadequate. Second, for
the complex success criteria I discuss in this thesis, it is hard to imagine finding optimal
behavior without reasoning about action choices in all possible states. Because of their

central importance to algorithms for sequential decision making, we often use the word



“policy” as an abbreviation for “stationary policy.”
Policies can also be stochastic if the agent must flip a weighted coin to decide
which action to take. This can be especially useful in competitive situations when it is

important for the agent to be somewhat unpredictable; see Chapter 5.

1.1.5 Problem Scenarios

My purpose in this thesis is to examine methods for producing policies that maximize
a measure of the long-run reward to an agent following it in a specific environment.
These policies can be produced under two different problem scenarios that differ in the

information available for constructing the policy: planning and reinforcement learning.

Planning In planning, a complete model of the environment is known in advance.
This makes it possible to separate the decision-making problem into two components:
the planner and the agent. The planner is responsible for taking a description of the
environment and generating a policy, typically a stationary policy. This policy is then
“downloaded” into the agent for execution in the environment. The task faced by the
planner has a well-defined input and output, which makes it relatively easy to analyze
from a traditional computer-science perspective. [ undertake this type of analysis
throughout the thesis.

Planning has been one of the primary subject areas in artificial intelligence since
the development of the STRIPS system [53]. Early work on planning focused on the
generation of plans for reaching some goal state in a deterministic environment. A more
recent trend has been to consider decision-theoretic planning, in which more complex
environmental models and optimality criteria are the norm. My interest in planning
stems from this later work; I compare my work to relevant work in decision-theoretic

planning in Section 8.1.

Reinforcement Learning The reinforcement-learning scenario is closely related to
planning, although the two frameworks differ with respect to the information available
about the environment. For a planner to function, it must have a complete description
of the environment’s states, actions, rewards, and transitions. Reinforcement learning
can be used when a model of the environment is unknown or difficult to work with
directly. The only access a reinforcement-learning agent has to information about

its environment is via perception and action, making reinforcement learning a fairly



Planning model [ planner | policy

Simulated RL __MOdel_ [simulator| €xperience | earner | policy

Model-based RL _€XPerience [ modeler model> planner | policy

Reinforcement learning _EXperience | learner M

Figure 1.2: A collection of sequential decision-making scenarios.

difficult problem. Reinforcement learning removes the distinction between planner and
agent: a reinforcement-learning agent is responsible for gathering information about
the environment, organizing it to determine a policy, and behaving according to the
policy.

An ideal reinforcement-learning agent chooses each action to maximize its long-
term reward, perfectly selecting between actions to gain information about the envi-
ronment and actions to gain reward. This goal is extremely difficult to achieve, and
most reinforcement-learning algorithms focus on gathering information so that, over
time, an optimal stationary policy can be generated. From this perspective, reinforce-
ment learning and planning are closely related: a reinforcement learner carries out its

planning in the context of direct interactions with the environment.

Hybrid Scenarios Although reinforcement learning is defined by the absence of an
a priort model of the environment and planning by the presence of such a model, the
techniques used to solve reinforcement-learning problems are useful for planning and
vice versa. Figure 1.2 illustrates some of the various ways techniques can be combined
to generate policies.

In model-based reinforcement learning, an agent uses its experience with the en-
vironment to construct an approximate model, which can be used as the input to a
planning algorithm. This approach makes excellent use of available experience, which
is often very expensive to gather, at the cost of invoking a full-fledged planning system
whenever the agent needs to update its policy. An intermediate approach is to plan

incrementally as new experience is encountered [155, 111, 119].
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In simulated reinforcement learning, a reinforcement-learning agent is introduced
into an environment with a known structure, but is forced to behave as if the structure
is not known. Although this approach seems wasteful—how could throwing away infor-
mation make decision making easier?—it can actually be a good idea if the environment
is complex and building a complete universal plan is infeasible. Using a reinforcement-
learning algorithm in such an environment can help the agent find appropriate behavior
for the most common and important states [9, 43]. The most noteworthy example of
this technique remains one of the biggest successes of reinforcement learning—Tesauro’s
backgammon-learning program [159], which is now reliably ranked as one of the world’s

best players.

1.2 Formal Models

So far, I have been very casual in discussing environments and their models. To explore
methods for automatically finding optimal behavior for environments, however, I must
now be very specific about the models I am concerned with and what we mean by
optimal behavior.

Russell and Norvig [132] argue that any problem in artificial intelligence can be
viewed as a situation faced by an agent interacting with some environment. Following
their example, I list below some dimensions along which environments may vary, and

where the environments I address in this thesis fall on these dimensions.

e finite vs. continuous states

Is there a finite collection of states in which the environment can be, like the
board positions in a game of chess, or are the states better viewed as lying in a
continuum, like the position of the sun in the sky? Continuous state-space envi-
ronments can be turned into finite state-space environments by discretizing the
state space, although this can make them difficult to solve. I will focus on finite
state spaces; however, in Chapter 7 I will show how to reason about a continuum
of possible beliefs that result from a particular finite-state problem. I also con-
sider a particular limiting case of finite state spaces, that of an environment with
a single state. Other authors [112] have addressed environments with continuous

state spaces.

e finite vs. continuous actions
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The set of action choices can also be either finite or continuous; again I will be
mainly concerned with the finite case, although Chapter 5 examines a model in
which the selected actions are actually continuous probability distributions over a
finite set of choices. Continuous actions can also be discretized, although specific

algorithms [8] can solve this type of environment more effectively.

o episodic vs. sequential

In an episodic environment, the agent faces the same problem over and over again.
I am more concerned with sequential environments, in which the agent makes a
sequence of interrelated decisions without necessarily being reset to a starting
state. Episodic environments can be viewed as a degenerate type of sequential

environment.

e accessible vs. inaccessible

The agent makes its decisions on the basis of its perception of the environment.
If the observations it makes are sufficient to reveal the entire state of the envi-
ronment, the environment is accessible, or completely observable; otherwise it is
inaccessible, or partially observable. Partially observable environments in which
the perception of the agent does not change over time are unobservable. I consider

both accessible and inaccessible environments in this thesis.

o Markovian vs. non-Markovian

In a Markovian environment!, the future evolution of the system can be predicted
on the basis of the environment’s state. In non-Markovian environments, such
as the non-stationary environments mentioned earlier, it is often important to
remember something about earlier states to predict the future accurately. My fo-
cus is on Markovian environments because of their relative tractability, although I
also consider environments that appear non-Markovian because they are partially

observable.

o fized vs. dynamic

'Markov was a Russian mathematician whose work made use of the assumption that history is
completely disregarded. Gilbert Strang, feeling this assumption provided a pessimistic view of human
existence, commented [152], “Perhaps even our lives are examples of Markov processes, but I hope
not.” In fact, all the Markov assumption really says is that anything about a system’s history that is
relevant to how it will develop in the future is somehow present in the description of the current state,
an assumption most physicists are willing to make about our universe.
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An agent in a dynamic environment must contend with the fact that the state
may change while it is deliberating on a choice of action. I focus exclusively on
the simpler fixed environments, although they less accurately reflect the problems
faced by real agents. This class of environments is defined by the assumption that
the agent can make decisions fast enough that the state does not change between

perception and action.

o deterministic vs. stochastic

As mentioned earlier, it is important for algorithms to deal with the possibility
that the environment contains stochastic transitions. [ sometimes narrow the
focus to situations in which all transitions are deterministic—there is exactly one
next state for each combination of state and action—to help understand how

decision making is simplified in this case.

e synchronous vs. asynchronous

In the synchronous environments I consider, time advances only when the agent
takes an action. Put another way, precisely one state transition in the environ-
ment occurs for each action the agent takes. In asynchronous or continuous-time
models, the environment does not “wait” for the agent to take an action but
instead changes continually; the actions serve as synchronizing events during
which the agent and environment interact. Asynchronous environments are more
general, although assuming a synchronous environment is weaker than assuming
that each action takes a fixed amount of time. It is possible to approximate an

asynchronous environment by a synchronous one by discretizing time [61].

o single vs. multiple agent

For simplicity, I consider environments with either one or two agents. Environ-
ments with more agents are worthy of study but can be extremely complicated
to analyze because of the many ways the goals and experiences of the different

agents can interact.

In summary, the environments covered in this thesis share the properties of being
finite state, finite action, sequential, Markovian, fixed, and synchronous, can be com-
pletely or partially observable, stochastic or deterministic, and can contain one or two

agents.



13

single agent multiagent
state known MDP Markov game
state observed incomplete-information
T POMDP
indirectly game

Table 1.1: Relationships among several Markov models.

In later chapters, I examine six related models in detail: Markov decision processes,
generalized Markov decision processes, alternating Markov games, Markov games, par-
tially observable Markov decision processes, and information-state Markov decision
processes. To illustrate the relationships among these models, Table 1.1 arranges sev-
eral of them into a 2 x 2 grid. Markov decision processes (MDPs) are fixed, stochastic
environments in which a single agent issues actions given knowledge of the current
state. Markov games generalize this model to allow a pair of agents to control state
transitions, either jointly or in alternation. A partially observable Markov decision
process (POMDP) counsists of a single agent that must make decisions given only par-
tial knowledge of its current state. In incomplete-information games, multiple agents
control the transitions in the environment and the agents have incomplete and perhaps
differing knowledge of the environment’s state.

To date, MDPs have been the most actively studied of these models. They have
received nearly 40 years of attention from the operations-research community, and are
a current favorite topic among reinforcement-learning and decision-theoretic planning
researchers. Markov games were developed in the economics and game-theory commu-
nities and predate even MDPs. Reinforcement-learning researchers have studied these
models in some detail. POMDPs have recently been the focus of much excitement in the
artificial-intelligence and machine-learning communities. Although their study dates
back to the early 1960s, they have not received nearly the attention enjoyed by MDPs,
in part because of their complexity. I do not address incomplete-information games;
although these model are of great interest to individuals studying, for example, the
coordination of multiple robots, only one group of researchers has explored algorithms

for incomplete-information games [85], and only for a subset of these models.
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1.3 Evaluation Criteria

The previous section began a formal treatment of environment models that I will ex-
pand upon in the coming chapters. In this section, I describe how policies, planning

algorithms, and reinforcement-learning algorithms can be evaluated and compared.

1.3.1 Policies

A policy induces a probability distribution over the set of all possible sequences of
states and actions for each possible initial state of the environment. This means that,
in principle, it is possible to take a description of a policy, an environment, and an
initial state, and compute the probability that a given sequence of states and actions
will occur.

An objective function takes the set of possible state and action sequences and their
probabilities and produces a single number, called a value. Planning and reinforcement-
learning algorithms seek an optimal policy, one that maximizes the objective function,
so the choice of objective function is a critical part of the statement of the problem to
be solved. In this section, I present a set of objective functions that can be used to
evaluate policies. Many of these objective functions have found their use in applications,
others have not. My classification is intended not to exhaust cover the range of possible
objective functions, but to provide a vocabulary for expressing the objective functions
appearing in later chapters.

Many important objective functions can be constructed using the general framework
in Table 1.2, which shows how a value can be defined as a set of transformations on

the set of all possible sequences of states and actions.

1. Starting with the set of all possible state and action sequences, the objective
function replaces each transition with a transition value, which is a representation
of its “goodness.” For an objective function measuring rewards, each transition
is replaced by its reward value. For an objective function measuring steps, each
transition is assigned a constant value, say —1. For an objective function sensitive
only to goals, all transitions are assigned a value of zero unless the transition is

to a goal state.

2. The sequence of transition values can be truncated according to the horizon;
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finite-horizon criteria cut off the sequence at a prespecified length, while goal-

based criteria cut off each sequence when it first enters a goal.

3. Each sequence of remaining transition values is then summarized. Undiscounted
criteria compute a simple sum of transition values, discounted criteria compute
a sum in which later terms are scaled down according to the discount factor 3,

and average-reward criteria compute an average of the transition values.?

4. At this point, each possible sequence of states and actions has been reduced to
a single summary value. The sequence values now need to be summarized to
compute a single summary value for the policy. Under expected-reward criteria,
this involves taking an average of the sequence values weighted by the probabil-
ity of the associated sequence. Best-case and worst-case criteria are defined by

summarizing according to the largest and smallest sequence values, respectively.

5. In multiagent environments, an additional step must be introduced. It is possible
that the other agents can modify the probability of various sequences of states
and actions. In a cooperative environment, other agents act so as to maximize
the objective function, whereas in a competitive environment, they act so as to

minimize the objective function.

The elements of Table 1.2 make it possible to evaluate a fixed policy. An optimal
policy is one that maximizes the value.

Two hundred forty-three objective functions can be constructed by combining one
element from each category. Although all these combinations appear to be meaningful,
several deserve special mention because of the attention they have received in the
literature. Table 1.3 lists several combinations and a sample of references that have
used them.

The algorithms in this thesis find policies that maximize or minimaximize expected

discounted reward over the infinite horizon. I chose these objective functions because
they have mathematical properties that make them easy to work with. In addition,
all the other objective functions can be viewed as special cases of the infinite-horizon
expected discounted reward objective function,® although specialized algorithms are

almost always more efficient in these cases.

?In the case of infinite-horizon average reward, it is necessary to compute the average as a limit.
3For example, the finite-horizon criterion can be constructed by making copies of the states, and
optimal average-reward policies can be found by setting the discount factor close to 1.
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transition values

g,: +0.2,+0.1,-9.0, +0.0, +7.1, +5.0, -2.2, -8.7, +3.9,
g,. +2.8, +4.0, +4.8, +2.9, +7.4, -2.4, -2.8, +0.4, +4.0,
g;: +3.3,-3.7,+5.0, +6.2, +0.0, +6.9, -3.6, -1.9, -5.7,

horizon truncation

q;: +0.2,+0.1,-9.0, +0.0, +7.1, +5.0, -2.2, -8.7, +3.9,
g,. +2.8, +4.0, +4.8, +2.9, +7.4, -2.4, -2.8, +0.4, +4.0,

gs: +3.3,-3.7, +5.0, +6.2, +0.0, +6.9, -3.6, -1.9, -5.7,

sequence summary

g;: -2.38 g,. +11.45 g 6.13

value summary

-16.13

Figure 1.3: Creating objective functions.
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transition values
reward r; := reward function for state s; and action a;
steps ry = —1
goals ry = +1if 5,41 is a goal, 4+0 otherwise
horizon truncation
finite k := fixed value
infinite k=00
goal k := first step into goal
sequence summary
discounted v(q) =8, Btry
undiscounted | v(q) :== Yr_o
average v(q) == lmf_o S /1
value summary
expected >-qv(q) Pr(q)
worst case min, v(q)
best case max, v(q)
other agents
none -
cooperative maximum
competitive minimum

Table 1.2: Choices for the components of the objective function.

maximum expected discounted reward over the infinite horizon (Chapter 2)
minimax expected discounted reward over the infinite horizon (Chapter 5)
maximum worst-case discounted reward over the infinite horizon [62]
minimax expected average reward over the infinite horizon [183]

maximum expected average reward over the infinite horizon [102]
maximum expected undiscounted reward until goal (cost-to-go) [29]
minimax expected undiscounted goal probability [36]

maximum expected undiscounted goal probability [87]

maximum multiagent discounted expected reward [22]

Table 1.3: Several popular objective functions.

17
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Under the discounted objective, the discount factor 0 < # < 1 controls how much
effect future rewards have on the decisions at each moment, with small values of 3 em-
phasizing near-term gain and larger values giving significant weight to later situations.
Concretely, a reward of r received t steps in the future is worth 3'r to the agent now.
Mathematically, the discount factor has the desirable property that if all immediate
rewards are bounded, then the infinite sum of the discounted rewards is also bounded.
From an applications perspective, the discount factor can be thought of as the prob-
ability that the agent will be allowed to continue gathering reward after the current

step, or, from an economic perspective, as an inverse interest rate on reward [126].

1.3.2 Planning Algorithms

When is one planning algorithm better or worse than another? There is no unique
best choice of evaluation criterion for comparing algorithms. In fact, any of the criteria
from the previous section for evaluating the possible sequences of rewards gained by
a policy could be used to evaluate the possible sequences of policies produced by a
successive-approximation planning algorithm.

As a first cut, algorithm A is better than algorithm B if A can find an optimal
policy and B cannot, or if A is more likely than B to find an optimal policy. I am
mainly interested in algorithms that are guaranteed to find an optimal policy, although
sometimes it is important to tolerate a fixed margin of error.

When both algorithms can find optimal policies, the better algorithm is the one
that can do so more quickly. Of course, not all algorithms perform well on all problems
and some algorithms use randomization, so once again it is important to decide how
to summarize the run time of algorithms over a class of environments. As in the
previous section, algorithms can be summarized according their average performance
over all environments or on one that makes them perform the worst, and by average
or worst-case run times.

In this thesis, an algorithm’s run time is measured by its worst-case expected run
time; that is, the average run time of the algorithm on the worst possible problem
instance. This measure is very popular in theoretical computer science because it
captures the reality that the algorithm has no control over the problem instance it
must solve.

More concretely, the complezity of a planning algorithm is its worst-case average run
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intractable <_ EXPTIME-complete

_ PSPACE-complete
presumed intractable

NP-complete
presumed tractable <_ NP " co-NP
RP
tractable P
NC

Figure 1.4: Some complexity classes.

time expressed as a function of the size of a description of the environment, primarily the
number of transition probabilities and rewards. For most of the problems in this thesis,
I use a very coarse measure of complexity that is relatively insensitive to the details of
how environments are described. For present purposes, an algorithm is efficient if its
complexity can be bounded above by some polynomial function, for example n° where
n is the size of the environment description. If an exponential function is a lower bound
on the complexity of an algorithm, the algorithm is inefficient.

For many problems, it can be shown that it is unlikely that any efficient algorithm
exists by appealing to results from complexity theory, which classifies problems by their
difficulty. Figure 1.4 summarizes some of the most important classes used in this thesis.
Of these, the problems in RP, P, and NC are the only ones known to be solvable in
polynomial time. For the other classes, the best known algorithms take exponential
time. However, the range of difficulty among these classes is large: problems in NPNco-
NP might be solvable in polynomial time by the best algorithm; NP-complete problems
can often be approximated in polynomial time; PSPACE-complete problems are often
quite difficult to approximate; and EXPTIME-complete problems are known not to be
solvable in polynomial time in the worst case.

Much of the uncertainty here derives from the famous open problem “Does P equal
NP?” If P=NP, then all the classes in Figure 1.4 from NP-complete down to NC have
efficient algorithms. If P#NP, then the classes from NP-complete up to EXPTIME do
not have efficient algorithms. Additional background information on complexity classes

can be found in Papadimitriou’s textbook [115] and the summary in Section A.1.
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1.3.3 Reinforcement-learning Algorithms

In a reinforcement-learning scenario, the agent must solve the same basic problem faced
in planning, but must do so without a correct description of the environment. As a
result, the range of choices for evaluating reinforcement-learning algorithms are quite
large; it is reasonable to measure the complexity of the per-experience computation,
the number of experiences needed to identify a near-optimal policy, and the value
attained by a policy learned after a particular number of experiences. A truly optimal
reinforcement-learning agent would take actions to maximize the objective function
under the restriction that its knowledge of the environment is incomplete. Such an
approach can be formalized [108], but is believed to be intractable except in the simplest
case in which there is only one state: see Gittins’ groundbreaking work on this topic [56].

In the interest of simplicity, other measures are typically used to compare reinforce-
ment-learning algorithms. One approach is to measure the regret, the amount of ad-
ditional reward an algorithm would have received had it behaved according to the
optimal policy all along. This model seems quite appropriate for evaluating reinforce-
ment learning, but has received little formal attention.

An even simpler approach is to compare reinforcement-learning algorithms by ignor-
ing the learning phase altogether and asking whether an agent will, in the limit, discover
optimal behavior. This is the best-studied approach and the one I use here. It basically
categorizes reinforcement-learning algorithms as “good” if they can be used to produce
a sequence of policies that become arbitrarily close to optimal, and “bad” otherwise.
While this is an important and useful way to categorize algorithms, a better categoriza-
tion would be based on how quickly algorithms identify near-optimal policies; because
such convergence-rate analyses can be quite complex, very little theoretical work has

been done in this direction.

1.4 Thesis Summary

A main concern of researchers in artificial intelligence is how to formalize real-world
problems. This translates to the search for models that trade off two conflicting forces:
models should be simple enough to permit efficient computer manipulation and complex
enough to capture the relevant aspects of the real world. Although I do not propose any

novel models of real-world problems, the new results I present extend the understanding
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of several existing models. In particular, I show how several existing models can be

manipulated more easily, analyzed more precisely, and viewed more generally than was

possible previously.

Each chapter of the thesis examines a particular model in detail. They are, by

chapter,

2.

Markov decision processes

Completely observable, single-agent environments. The most basic sequential
decision-making problem. This chapter provides much of the conceptual frame-
work for the remainder of the thesis. A new result in this chapter is an analysis

of the complexity of the policy-iteration algorithm.

. Generalized Markov decision processes

A set of models with a common mathematical framework. Includes all the other
models discussed in the thesis. This model is new, as is the convergence proof for
reinforcement learning in this model. The chapter itself is very mathematically

oriented.

. Alternating Markov games

Completely observable, two-agent zero-sum environments. Each agent takes some
number of actions and then turns control over to the other agent. I present the

first convergence proof for reinforcement learning in games.

. Markov games

Alternating games in which agents take actions simultaneously. 1 present a

method for finding optimal stochastic policies in this class of games.

. Partially observable Markov decision processes

Partially observable, single-agent environments. Very difficult to solve. The focus
in this chapter is on complexity results and I give the first proof of intractability

for this class of models.

. Information-state Markov decision processes

A type of continuous state-space Markov decision process derived from partially

observable environments. [ present a new algorithm for solving finite-horizon
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problems, along with theoretical results that show it is the most efficient algorithm

of its kind.

To help highlight the similarities and differences among the algorithms for solving

these models, each chapter follows the same organization:

1. Introduction

Describes the relevant aspects of the model, how it is similar to and different from

other models, and its relation to real-world problems.

2. The model
The formal definition of the model, what it means to act optimally in the model,
and foundational mathematical results.

3. Algorithms for solving the model
Describes the major approaches to solving the model along with enough analysis
to clarify the basic structure of the approaches.

4. Algorithmic analysis

Analyses of the computational complexity of the algorithms.

5. Complexity results
Analyses of the difficulty of finding optimal policies in the model and its varia-
tions.

6. Reinforcement learning in the model
Description of relevant reinforcement-learning algorithms and convergence re-
sults.

7. Open problems

List of outstanding unresolved questions pertaining to planning and reinforcement

learning in the model.

8. Related work

Summary of relevant contributions from other researchers.
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9. Contributions

Summary of the new results presented in the chapter.

In addition, each chapter has an associated appendix with important results whose
formal arguments are too complex or otherwise unenlightening to be included in the

main text.

1.5 Additional Remarks

The focus of this thesis is on algorithms, and there are important mathematical de-
tails that are left unproven. Wherever possible, I refer to other sources for additional
mathematical background. Similarly, a great deal of relevant information is left unsaid
regarding the efficient implementation of these algorithms on existing computer sys-
tems using existing computer languages. In nearly all cases, I provide “pseudocode”
implementations of the important algorithms; that is, I describe the algorithms in a
computer-language-like notation that, with some work, could be made to run on a com-
puter. The conventions I use for describing algorithms are explained in Section A.2.

The mathematical sophistication assumed is roughly at the level of basic analysis.
However, even the most mathematical of the results can be appreciated without this
background. The rest of the material should be accessible to a typical computer scien-
tist. One possible exception is that I assume a familiarity with linear programming. A
brief overview of this topic is given in Section A.3.

I present example environments throughout in a graphical notation of which Fig-
ure 1.5 is a simple example. The circles are the states of the environment, with their
“names” written inside. Each arrow that leaves a state is an action and is labeled
with its name. The numerical label on the action is the immediate reward; I write
immediate reward values with a leading sign to help distinguish them from transition
probabilities. Arrows sometimes split; this represents a stochastic transition, with the
individual transitions labeled with their probability. Thus in Figure 1.5, action a; from
state s; results in an immediate reward of +1 and a transition back to state s; with

probability 0.2.



Figure 1.5: An illustration of a simple environment.

1.6 Related Work

The baseball example was inspired by a passage in a book by pitcher Tom Seaver [142];
the hypothetical batter is Babe Ruth. The network-monitoring example was inspired by
conversations with my colleagues at Bellcore; a simple study of reinforcement learning
in a different telecommunications domain was undertaken by Boyan and Littman [27].
Additional applications are described in Puterman’s textbook [126].

Kaelbling’s book [72] provides a philosophical discussion of agents, along with an ex-
ploration of several kinds of sequential decision-making problems. Russell and Norvig’s
introductory textbook [132] views all of artificial intelligence from an agent perspective.

Interrelationships between the undiscounted-reward and the discounted-reward cri-
teria were discussed by Blackwell [19]. A survey of results concerning the average-
reward criterion was written by Arapostathis et al. [4]. Fernandez-Gaucherand, Ghosh
and Marcus [52] explored combinations of discounted and average reward as a way
to better trade off short-term and asymptotic reward. In the area of reinforcement-
learning, the average-reward criterion was studied first by Schwartz [141] and later in

detail by Mahadevan [102].

1.7 Contributions

This chapter introduced the core concepts used in the remainder of the thesis: agents,
environments, rewards, policies, planning and learning. I showed where the problems
I address fall on a categorization of environments inspired by a similar categorization
described by Russell and Norvig [132]. I explained how algorithms and policies are
evaluated in my work, and presented a novel categorization of objective functions that

includes those used in my work as well as those used by many other researchers.



Chapter 2

Markov Decision Processes

Portions of this chapter have appeared in earlier papers: “Planning and act-
ing in partially observable stochastic domains” [78] with Kaelbling and Cas-
sandra, “An introduction to reinforcement learning” [74] with Kaelbling and
Moore, and “On the complezity of solving Markov decision problems” [96]
with Dean and Kaelbling.

Consider the problem of creating a policy to guide a robot through an office build-
ing. The robot’s actions take it from hallway intersection to intersection, but are not
completely reliable. Sometimes an action fails, overshoots, or results in the robot turn-
ing too far. Fortunately, perfect sensors allow the robot to perceive the effects of its
error-plagued actions.

The assumption of perfect sensors is central to this chapter. Because the agent can
directly perceive all aspects of its current state that might be necessary to predict the
probability of the next state given its action, it is not necessary for the agent to retain

any history of its past actions or states to make optimal decisions.

2.1 Introduction

In this chapter I address the problem of choosing optimal actions in completely ob-
servable stochastic domains. The robot problem described above can be modeled as
a Markov decision process (MDP), as can other problems in robot navigation, factory
process control, transportation logistics, and a variety of other complex real-world sit-

uations.

25
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Stated ) Actions

AGENT

Figure 2.1: An MDP models the synchronous interaction between agent and environ-
ment.

The problem addressed is, given a complete and correct model of the environment
dynamics and a goal structure, find an optimal way to behave. Versions of this problem
have been addressed in the artificial-intelligence literature as planning problems, where
the focus is on goal-oriented problems in large, deterministic domains. Because we
are interested in stochastic domains, we must depart from the traditional model and
compute solutions in the form of policies instead of action sequences.

Much of the content of this chapter is a recapitulation of work in the operations-
research literature [126, 15, 44, 46, 68, 13] and the reinforcement-learning literature [153,
173, 10, 145]. The concepts and background introduced here will be built upon in all

the succeeding chapters.

2.2 Markov Decision Processes

Markov decision processes are the simplest family of models I will consider. Later
chapters depend on the results and concepts introduced here to address more complex
generalizations of MDPs. An MDP is a model of an agent interacting synchronously
with its environment. As shown in Figure 2.1, the agent takes as input the state of
the environment and generates as output actions, which themselves affect the state of
the environment. In the MDP framework, it is assumed that, although there may be
a great deal of uncertainty about the effects of an agent’s actions, there is never any
uncertainty about the agent’s current state—it has complete and perfect perceptual

abilities.

2.2.1 Basic Framework

A Markov decision process is a tuple M = (S, A, T, R, 3), where
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S is a finite set of states of the environment;

A is a finite set of actions;

T:8x A — II(S) is the state transition function, giving for each state and
agent action, a probability distribution over states (I'(s, a,s’) is the probability

of ending in state ¢, given that the agent starts in state s and takes action a);

e R:S8 x A — Ris the reward function, giving the expected immediate reward
gained by the agent for taking each action in each state (R(s, a) is the expected

reward for taking action a in state s); and

0 < B < 1is a discount factor.

In this chapter, I consider MDPs with finite state and action spaces. Many of the
important results apply to infinite-state MDPs as well. Chapter 3 examines these results

from a more general perspective.

2.2.2 Acting Optimally

Agents should act in such a way as to maximize some measure of the long-run reward re-
ceived. Section 1.3.1 presented several objective functions, including discounted finite-
horizon optimality, average-reward optimality, and discounted infinite-horizon optimal-
ity. I focus on algorithms for the discounted infinite-horizon case with some attention
to the simpler finite-horizon case. Most of the results for infinite-horizon discounted
MDPs apply to undiscounted problems in which agents are guaranteed to reach a zero-
reward absorbing state regardless of policy, the all-policies-proper case (see Chapter 3
for more details).

A policy is a description of the behavior of an agent. I consider two important
kinds of policies: stationary and non-stationary. A stationary policy, # : & — A,
specifies, for each state, an action to be taken. The choice of action depends only on
the state and is independent of the time step. A non-stationary policy is a sequence of
state-action mappings, indexed by time. In the non-stationary policy § = (7, ... ,m1),
the mapping 7 is used to choose the action on the tth-to-last step as a function of the
current state. In the finite-horizon model, there is rarely a stationary optimal policy—

the way an agent chooses its actions on the final step is generally different than the way
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it chooses them when it has a large number of steps left. In the discounted infinite-
horizon model, the quantity 1 — # can be viewed as the probability that the agent will
cease to accrue additional reward; therefore, it is as if the agent always has a constant
expected number of steps remaining: 1/(1 — ). Because the expected distance to the
horizon never changes, there is no reason to change action strategies as a function of
time—there is a stationary optimal policy [15].

Given a policy, we can evaluate the expected long-run value an agent could expect
to gain from executing it. In the finite-horizon case, let § = (m7,...,71) be a k-step
non-stationary policy and let Vt‘s(s) be the expected future reward starting in state s
and executing non-stationary policy & for ¢ steps. The value of the final step is the

immediate reward V*(s) = R(s, 1(s)). For t > 1, we can define V;(s) inductively by

V2(s) = Rs,mi(s)) + 8 D T(s,mils), )V ().
s'eS

The t-step value of being in state s and executing non-stationary policy & is the im-
mediate reward, R(s, m(s)), plus the discounted expected value of the remaining ¢ — 1
steps. To evaluate the remaining steps, we consider all possible resulting states s’, the
likelihood of their occurrence T'(s,a,s’), and their (¢ — 1)-step value under policy 9,
VEL(s).

Let V™ (s) be the expected discounted future reward for starting in state s and

executing stationary policy 7 indefinitely. The infinite-horizon value is recursively

defined by
V7™ (s) = R(s,7(s))+ 3 Z T(s,m(s),s)VT(s).

s'eS

The value function for policy 7 is the unique solution of this set of simultaneous linear
equations, one for each state s. A subroutine for finding the infinite-horizon value
function for a given policy appears in Table 2.1; it will be used later in more complex
algorithms. The system of linear equations can be solved by Gaussian elimination or
any of a number of other methods [40].

Now we know how to compute a value function, given a policy. We can also define
a policy based on a value function. Given any value function V', the greedy policy with

respect to that value function, my, is defined as

7y (s) = argmax | R(s,a)+ 3 Z T(s,a,s\V(s)
“ s'eS
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evalMDP(7, (S, A, T, R, 3)) :={
Solve the following system of linear equations:
find: v[s]
s.t.: v[s] = R(s,7(5)) + D yes T(s,m(s),s)v[s'], forall s € S

return v

Table 2.1: Computing the value function for a given policy.

This policy is obtained by taking the action in each state with the best one-step value
according to V.

It is not hard to find the optimal finite-horizon policy for a given MDP, 6; =
(7%s... 7). For 1 <t <k, we can define 7} as follows. On the final step, the
agent should maximize its immediate reward,

71 (s) = argmax R(s, a).
a

. . . . o
We can define 7 in terms of the value function for the optimal (¢ — 1)-step policy V%

(written for simplicity as V;_1):

m{(s) = argmax |R(s,a) + 3 Z T(s,a,s"\Vie1(s') |,
“ s'€S
it need not be unique.
In the discounted infinite-horizon case, given an initial state s, we want to execute
the policy 7 that maximizes V™ (s). Howard [68] showed that there exists a stationary
policy 7™ that is optimal for every starting state. The value function for this policy,

written V*, is defined by the set of equations

Vi(s) = max R(s,a)+ 3 Z T(s,a,s"\V*(s)|, (2.1)
s'es
and any greedy policy with respect to this value function is optimal [126].
The presence of the maximization operator in Equation 2.1 means the system of
equations is not linear—Gaussian elimination is not sufficient to solve it. In the next
section, I explore algorithms that solve the MDP problem; they find an optimal policy

and value function for an MDP, given its description in terms of T, R, and f.
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ValueIterationMDP({(S, A, T, R,3),€):=+
foreach s € § Viy(s) :==0
t:=0
loop
ti=t+1
foreach s € § {
foreach a € A
Qi(s,a) == R(s,a) + Yes T(s,a,s)Viei(s)
m(s) := argmax, Q(s, a)
Vils) = Quls mi ()
}
until max; |Vi(s) — Vioi(s)] < €
return m;

Table 2.2: The value-iteration algorithm for MDPs.

2.3 Algorithms for Solving Markov Decision Processes

There are many methods for finding optimal policies for MDPs. In this section, I
describe several of the more basic approaches. All of these can be found in Puterman’s

textbook [126].

2.3.1 Value Iteration

Value iteration proceeds by computing the sequence V; of discounted finite-horizon
optimal value functions, as shown in Table 2.2. It makes use of an auxiliary function,
Q¢(s, a), which is the t-step value of starting in state s, taking action a, then continuing
with the optimal (f — 1)-step non-stationary policy; these state-action value functions
are also known as @) functions. The algorithm terminates when the maximum difference
between two successive value functions, the Bellman error magnitude, is less than some
predetermined e.

It can be shown that there exists a ¢*, polynomial in |S|, |A|, logmax,, |R(s, a)|,
and 1/(1 — ), such that the greedy policy with respect to Vi« is an optimal infinite-
horizon policy [162]. Rather than calculating a bound on ¢* in advance and running
value iteration for that long, we can use the Bellman error magnitude to decide when

our current value function is good enough to generate a near-optimal greedy policy. To



31

state this precisely, if |Vi(s) — Vi—1(s)| < € for all s, then the value of the greedy policy
with respect to V; does not differ from V* by more than 2¢3/(1 — 3) at any state. That
is,

I?E%X|Vﬂvt (s) = V*(s)| < 261 f 5

This result [180] is discussed in more detail in Section 3.3.2. Tighter bounds may often

be obtained using the span semi-norm on the value function [126].

2.3.2 Policy Iteration

In the version of value iteration discussed in the previous section, each value function
V; can be interpreted as an approzimation of the value function of the optimal infinite-
horizon policy 7*, or as the value function for the optimal non-stationary policy for a
t-step discounted finite-horizon MDP. This second interpretation comes from the fact
that the initial value function, Vg, is defined to be zero for all states.

A different interpretation is possible when we define Vi as follows: let my be the
greedy policy for the zero value function, Vp, and let Vi = V7™, the value function
for policy 7g. Define a sequence of infinite-horizon non-stationary policies where §; —
(7¢y ..., T, To, W0, To, - - - ), that is, §; is the infinite-horizon policy that follows 7, then
7¢—1, and so on down to mp, which is repeated indefinitely. We can view V;, the value
function obtained on the #th iteration starting from V7, as the infinite-horizon value
function corresponding to &;.

This revised value-iteration algorithm shares the convergence properties attributed
to the algorithm in Table 2.2 (see Section 3.3.1), and possesses a few special properties
of its own. Since V; is the value function for the non-stationary infinite-horizon policy
0, and V* is the optimal infinite-horizon policy, then V*(s) > Vi(s) for all s. This
is because no infinite-horizon policy, stationary or not, can have a higher expected
discounted reward from any state than that given by the optimal value function [15].
As a result, V; converges to V* from below.

A more useful fact is that by adopting the state-action mapping m; as a stationary
infinite-horizon policy, an agent is guaranteed total expected reward that is no worse
than it would obtain following &, [126]. That is, V™ (s) > Vi(s), for all s € S.

Combining these insights leads to an elegant approach to solving MDPs, due to
Howard [68]. Like value iteration, policy iteration (Table 2.3) computes a sequence of

value functions, V;. In policy iteration, however, each value function V; is the value
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PolicyIterationMDP(M = (S, A, T, R, 5)) :=={
foreach s € § Viy(s) :==0
t:=20
loop
ti=t+1
foreach s € S and a € A {
Qi(s,a) = R(s,a) + dses T(s,a,s)Viea(s)
m(s) := argmax, Q(s, a)
V; := evalMDP(m;, M)

1
until V;_1(s) = Vi(s) for all s

return m;

Table 2.3: The policy-iteration algorithm for MDPs.

function for the greedy policy with respect to the previous value function V;_;.

Puterman [126] shows that the sequence of value functions produced in policy it-
eration converges to V* no more slowly than the value functions produced in value
iteration; this result is discussed in some detail in Section B.1. Policy iteration can
converge in fewer iterations than value iteration; however, the increased speed of con-
vergence of policy iteration can be more than offset by the increased computation per
iteration.

Another fundamental difference between value iteration and policy iteration is the
stopping criterion. Whereas value iteration can converge to the optimal value function
very gradually, policy iteration proceeds in discrete jumps. In particular, each value
function generated in policy iteration is associated with a particular policy (of which
there are |A|lS]), and each value function V; is strictly closer to V* than is V;_; [126].
Putting these facts together tells us that policy iteration requires at most |A||‘SI itera-

tions to generate an optimal value function.

2.3.3 Linear Programming

We saw earlier that the infinite-horizon value function for a policy 7 can be expressed
as the solution to a system of simultaneous linear equations. Table 2.1 shows how
this mathematical equivalence can be exploited to derive an efficient algorithm for

computing V7.
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mdpLP((S, A, T, R, ) :=={
Solve the following linear program:
minimize: ), v[s]
s.t.: v[s] > R(s,a)+ Y ycsT(s,a,5)v[s], forall s € S and a € A
variables: v[s|forall s € §
return v

Table 2.4: Solving an MDP via linear programming.

We also saw that the optimal value function V* can be expressed as the solution
to a system of simultaneous equations, given in Equation 2.1. Unfortunately, the
maximization operators in these equations render them non-linear, so nothing as simple
as Gaussian elimination will suffice to solve them.

The V* equations can be expressed in the more descriptive mathematical language
of linear programming. A linear program consists of a set variables, a set of linear
inequalities over these variables, and a linear objective function. D’Epenoux [45] showed
how to solve an MDP by expressing the system of equations defining the optimal value
function as a linear program (Table 2.4).

The intuition here is that, for each state s, the optimal value from s is no less than
what would be achieved by first taking action «a, for each @ € A. The minimization
ensures that we choose the least upper bound (the maximum, in other words) for each
of the v[s] variables.

An important fact from the theory of linear programming is that every linear pro-
gram has an equivalent linear program in which the roles of the variables and the
constraints are reversed. The resulting linear program, known as the dual, can also be
used to solve MDPs. One advantage of the dual formulation is that it makes it possible
to express and incorporate additional constraints on the form of the policy found [88].

The dual linear program appears in Table 2.5. The f[s’, a] variables can be thought
of as indicating the amount of “policy flow” through state s’ that exits via action a.
Under this interpretation, the constraints are flow-conservation constraints that say
that the total flow exiting state s’ is equal to the flow beginning at state s’ (always
1) plus the flow entering state s’ via all possible combinations of states and actions

weighted by their probability. The objective, then, is to maximize the value of the
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Solve the following linear program:
maximize: Y, > R(s,a)f[s,d]

s.t.: ZaEA f[8/7 a] =1+ ﬁ ZSES ZaEAT(Sv a, S/)f[87 a]v for all s’ €S
variables: f[s,a] for all s€ S and a € A

foreach s € § 7 (s) := argmax, f[s, q]
return evalMDP(x, M)

Table 2.5: Solving an MDP via the linear programming dual.

flow.

If the f[s,a] variables constitute a feasible solution to the dual (i.e., they jointly
satisfy the constraints), then >, >, R(s, a) f[s, a] can be interpreted as the sum of the
state values of the stationary stochastic policy that chooses action ¢ in state s with
probability f[s,a]/ > ,c4 f[s,a]. The stochastic policy corresponding to the optimal
value of the f[s,a] variables is optimal, as is any deterministic policy that chooses

action a in state s where f[s,a] > 0.

2.3.4 Other Methods

There are many other methods for solving mMDPs, including methods that accelerate
the convergence of value iteration by keeping explicit suboptimality bounds [15] and
by grouping and regrouping states throughout the process [17].

A different approach is illustrated in modified policy iteration [127], which has the
basic form of policy iteration with the difference that a successive-approximation algo-
rithm (basically value iteration with the policy held fixed) is used to find an approx-
imation to the value function for policy 7;. The connection between value iteration
for MDPs and successive approximation for evaluating stationary policies is explored in

somewhat more detail in Chapter 3.

2.3.5 Algorithms for Deterministic MDPs

In this section I show that deterministic MDPs can be solved very efficiently by present-

ing a novel formulation that leads to a fast algorithm.
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determMDP((S, A, N, R, 3)) := {
foreach s € § {
foreach s’ € § Al[s,s'] == —x
foreach a € A
Alls, N(s,a)] := max(A'[s, N(s,a)], R(s, a))

}
foreach k € [2...|S|] {

foreach s € § {
foreach s” € §
AF[s, s"] := maxgcs(Al[s, s’ + BAFTI[s', s"))
}
J

foreach s ¢ S
Vs] := maxgies keo.. s iefo...js) ALs, 81+ pFAs", "]/ (1 + 8Y)

return V

Table 2.6: Computing the value function for a deterministic MDP.

A deterministic MDP is one in which T'(s,a,s’) is either 0 or 1 for all s,s' € S,
a € A. The notation N(s,a) represents the unique next state resulting from taking
action a from state s in a deterministic MDP. In this section, I present two algorithms
for this problem; one runs efficiently in parallel, and the other links the deterministic
MDP problem to a general class of shortest-path problems, which results in an efficient
sequential algorithm.

Papadimitriou and Tsitsiklis [116] give a dynamic-programming algorithm for solv-
ing deterministic MDPs efficiently on a parallel machine. A sequential version of their
algorithm (given in Table 2.6) runs in |S|? + |S||A| + 2|S|* time. Here A¥[s, s"] repre-
sents the maximum reward on any path of length & from state s to state s”. The value
for state s can then be expressed as the maximum value path from s to s”, and then
from s back to itself indefinitely.

Deterministic MDPs can be cast in the closed semiring framework, and then solved
in polynomial time using a generic algorithm for solving closed semiring problems [40].
In Section B.3, I define the deterministic MDP closed semiring and prove that it has
the necessary properties.

Cormen, Leiserson and Rivest [40] present a generic algorithm for solving path

problems on closed semirings. The algorithm can find the optimal value function for a
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deterministic MDP in |S]? + |S||A| + |S|? time.

There are a few things to note about this new closed-semiring-based algorithm.
First, its sequential run time is an improvement over the algorithm given by Papadim-
itriou and Tsitsiklis, which was designed to prove that the problem is in NC. Second,
casting the problem in a more general framework helps highlight the similarities be-
tween deterministic MDPs and general path-related problems. Third, any advances in
the area of algorithms for closed semirings immediately translate into advances for

deterministic MDPs.

2.4 Algorithmic Analysis

This section provides complexity analyses of the algorithms described in the previous
section. For several of the bounds, it is necessary to assume that the components of
the reward and transition matrices are represented by rational numbers. We use B to
designate the maximum number of bits needed to represent any numerator or denomi-
nator of 3 or one of the components of T' or R. Although none of the individual results
in this section are novel, they are presented in a way that highlights the connections
between linear programming, value iteration, and policy iteration, which allows me to

draw some novel conclusions concerning their complexity.

2.4.1 Linear Programming

The linear program in Table 2.4 has |S||A| constraints and |S| variables and the dual
given in Table 2.5 has |S| constraints and |S||.4| variables. In both linear programs, the
coefficients have a number of bits polynomial in B. There are algorithms for solving
rational linear programs that take time polynomial in the number of variables and
constraints as well as the number of bits used to represent the coefficients [78, 79].
Thus, MDPs can be solved in time polynomial in |S|, |A], and B. Descendants of
Karmarkar’s algorithm [78] are considered among the most practically efficient linear-
programming algorithms.

It is popular to solve linear programs by variations of Dantzig’s simplex method [41],
which works by choosing a subset of constraints to satisfy with equality and solving the
resulting linear equations for the values of the variables. The algorithm proceeds by
iteratively swapping constraints in and out of the selected subset, continually improving

the value of the objective function. When no swaps can be made to improve the
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objective function, the optimal solution has been found. Simplex methods differ as to
their choice of pivot rule, the rule for choosing which constraints to swap in and out at
each iteration.

Although simplex methods seem to perform well in practice, Klee and Minty [81]
showed that one of Dantzig’s choices of pivoting rule could lead the simplex algorithm
to take an exponential number of iterations on some linear programs. Since then, other
pivoting rules have been suggested and almost all have been shown to result in expo-
nential run times in the worst case; none has been shown to result in a polynomial-time
implementation of simplex. Note that these results may not apply to the use of linear
programming to solve MDPs: the set of linear programs resulting from MDPs might not
include the counterexample linear programs. Some progress has been made speeding
up simplex-based methods, for instance, through the introduction of randomized ver-
sions of pivoting rules [20], some of which have been shown to result in subexponential
complexity [75].

The fact that the optimal value function for an MDP can be expressed as the solution
to a polynomial-size linear program has several important implications. First of all, it
provides a theoretically efficient way of solving MDPs. Secondly, it provides a practical
method for solving MDPs using commercial-grade implementations. Thirdly, it puts a
convenient bound on the complexity of the optimal value function, as we will see in a

moment.

Theorem 2.1 Let M = (S, A, T, R, 5) be an MDP with transitions, rewards, and the
discount factor expressed as rational numbers with numerator and denominator needing
no more B bits. The components of the optimal value function for M are rational
numbers with numerator and denominator needing no more B* bits, and B* is bounded

by a polynomial in |S|, |A|, and B.

Proof: It is well known [140, 162] that the solution to a rational linear program in
which each numerator and denominator is represented using no more than B bits, can
itself be written using rational numbers. The value of each variable in the solution
can be represented in B* bits where B* is polynomial in the size of the linear program
and B. The argument is based on a use of Cramer’s rule to get a closed form for the
solution of a system of linear equations in terms of determinants. Bounding the size
of the determinant is not hard and gives a bound on the size of the components of the

optimal solution.
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Because the optimal value function for M is the solution to just such a linear

program, B* also bounds the number of bits needed to express the optimal value

function for M. O

More on the relationship between linear programming and MDPs appears in Sec-

tion 2.4.3.

2.4.2 Value Iteration

In this section, we analyze the value-iteration algorithm described in Section 2.3.1.
When the discount factor is less than one, the sequence of value functions produced in
the course of value iteration converges to the optimal value function [126].

In the general case, each iteration takes |A||S|? steps. The focus of this section is
on the number of iterations required to reach an optimal policy. Drawing from earlier
work, I will sketch an upper bound on the number of iterations and show that there
are MDPs that take nearly that long to solve. More detailed discussions can be found

in papers by Tseng [162] (upper bound) and Condon [37] (lower bound).

Lemma 2.1 The number of iterations required by value iteration to reach an optimal

policy is bounded above by a polynomial in |S|, |A|, B, and 1/(1 — j3).
Proof: The proof consists of 5 basic steps.

1. Bound the difference between the initial value function and the optimal value

function, over all states.

Let M = maxgesqaed|R(s,a)|, the magnitude of the largest immediate reward.
Since Y72, 3'M = M/(1 — (3), the value function for any policy will have com-
ponents in the range [-M/(1 — ), M/(1 — 3)]. Thus, any choice of initial value
function with components in this range cannot differ from the optimal value

function by more than 2M/(1 — 3) at any state.

2. Show that each iteration results in an improvement of a factor of at least 3 in the

distance between the current and optimal value functions.

This is the standard “contraction mapping” result for MDPs [126] that explains
why the value functions in value iteration converge. It is proven in a general form

in Chapter 3, though the proof for the MDP case is somewhat simpler.
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3. Give an expression for the difference between current and optimal value functions

after t iterations. Show how this gives a bound on the number of iterations required
for an e-optimal policy.
After t iterations, the current value function can differ from the optimal value
function by no more than 2M3'/(1 — f3) at any state. Solving for ¢ and using
the result relating the Bellman error magnitude to the value of the associated
greedy policy (Sections 2.3.1 and 3.3.2), we can express the maximum number of
iterations needed to find an e-optimal policy, i.e., one that has an expected value
within € of the optimal policy, as

_ B +log(1/e) +log(1/(1- §) +1

< -5

4. Argue that there is a value for € > 0 for which an e-optimal policy is, in fact,

t* (2.2)

optimal.

Theorem 2.1 says that each component of the optimal value function for an MDP
can be written using B* bits, where B* is polynomial in |S|, |A| and B. This
means that if we can find a policy that is € = (1/2% *1)-optimal, the policy must

be optimal.

5. Substitute the value of € from step 4 into the bound in step 3 to get a bound on

the number of iterations needed for an exact answer.

Substituting for € in Equation 2.2 reveals that running value iteration for a num-
ber of iterations polynomial in |S|, |A|, B, and 1/(1 — ) guarantees an optimal
policy.

0

This analysis shows that value iteration runs in pseudopolynomial time, and, for
fixed discount factor §, it runs in polynomial time. Next, I examine a lower bound
that indicates that number of iterations can grow linearly with 1/(1— 3)log(1/(1-3)),

showing that value iteration is not a polynomial-time algorithm in general.

Lemma 2.2 Determining an optimal infinite-horizon policy via value iteration takes

a number of iterations proportional to 1/(1 — ) log(1/(1 — 53)) in the worst case.

Proof: Figure 2.2 illustrates a family of deterministic MDPs, each of which consists of

3 states, labeled sg, sq1, and s;. From state sg, action ¢y causes a transition to state s;



Figure 2.2: Value iteration requires number of iterations proportional to 1/(1 —
B)log(1/(1 — 3)) to generate an optimal solution for this family of MDPs.

and action a9 causes a transition to state s9. Action a; has no immediate reward but
once in state sy, there is a reward of —1 for every timestep thereafter. Action ay has
an immediate reward of —3%/(1 — 3) but state s, is a zero-cost absorbing state.!

The discounted infinite-horizon value of choosing action a; from state sg is —3/(1—
) whereas the value for action ay is —3%/(1 — 3) (larger, since 0 < 8 < 1). If we
initialize value iteration to the zero value function, the estimates of the values of these
two choices are: —3(1 — 3!)/(1 — ) and —3%/(1 — 3) at iteration ¢t > 1. Therefore,

value iteration will continue to choose the suboptimal action until iteration ¢* where

—pu- ) =
1-p 1-p3’
or
log 3 2 1-5/ (1-0)
Thus, in the worst case, value iteration has a run time that grows faster than
1/(1- 5). 0

2.4.3 Policy Iteration

Since there are |A||‘S| distinct policies, and each iteration of policy iteration strictly
improves the approximation [126], it is obvious that policy iteration terminates in at
most an exponential number of steps.

Each step of policy iteration consists of a value-iteration-like policy-improvement
step, which can be performed in O(|.A||S]?) arithmetic operations; and a policy-evalu-

ation step, which can be performed in O(|S|?) operations by solving a system of linear

'Note that these rewards can be specified by B = log(3%/(1 — 8)) = O(log(1/(1 — 3))) bits.
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equations?

. The total run time, therefore, hinges on the number of iterations needed
to find an optimal policy.

While direct complexity analyses of policy iteration have been scarce, several re-
searchers have examined a simplified family of variations of policy iteration, which I

discuss in the following section.

Sequential Improvement Policy Iteration

Whereas standard policy iteration defines the policy on step t to be

mi(s) = argmax Qu (s, a)

(see Table 2.3), sequential improvement policy iteration defines m;(s) = m—1(s) for all
but one state. To be more precise, from the set of states s for which Q:(s,m—1(s)) <
max, Q¢(s,a) (the previous action choice for s is no longer maximal), one is selected
and 7(s) is set to argmax, Q(s, a).

A detailed analogy can be constructed between the choice of state to update in
sequential improvement policy iteration and the choice of pivot rule to use in simplex.
Denardo [44] shows that the feasible bases for the linear program in Table 2.4 are in
one-to-one correspondence with the stationary deterministic policies.

As with simplex, examples have been constructed that make sequential improve-
ment policy iteration require an exponential number of iterations. Melekopoglou and
Condon [107] examine the problem of solving cost-to-go MDPs using several variations
on the sequential-improvement-policy-iteration algorithm. In a version they call simple
policy iteration, every state is labeled with a unique index and, at each iteration, the
policy is updated at the state with the smallest index of those at which the policy can
be improved. They show that the family of examples suggested by Figure 2.3, from
a particular starting policy, takes an exponential number of iterations to solve using
simple policy iteration.

An example can be constructed for each whole number n (n = 5 in Figure 2.3).

There are 2n states and they are divided into three classes: decision states (labeled

/

so through s,_1), random states (labeled s| through s/,_,

), and an absorbing state,
$n. From each decision state s;, there are two actions available: action @ results in a

transition to decision state s;4q1 and action ay results in a transition to random state

?In theory, policy evaluation can be performed faster, because it primarily requires inverting a
|S] x |S| matrix, which can be done in O(]|S|**"®) time [39].



Figure 2.3: Simple policy iteration requires an exponential number of iterations to
generate an optimal solution to the family of MDPs illustrated here.

s;,1- From random state s{, there is no choice of action and instead a random transition

takes place with probability 1/2 of reaching random state s;,; and probability 1/2 of

/

reaching decision state s;;1. Actions from decision state s,_; and random state s],_;

both result in a transition to the absorbing state s,,. This transition has a reward of
—1 in the case of decision state s,_1, whereas all other transitions have zero cost.

The initial policy is mo(s) = a1 for all s € §, so every decision state s; selects the
action that takes it to decision state s;;1. In the unique optimal policy, 7*(s) = a1
for s # sp—2 and 7*(Sp—2) = az. Although these two policies are highly similar,
Melekopoglou and Condon show that simple policy iteration steps through 2"~2 policies
before arriving at the optimal policy.

Although this example was constructed to hold for an undiscounted all-policies-
proper criterion, it also holds under the discounted criterion regardless of discount
rate. This is because the introduction of discount factor 3 > 0 causes the values
of states s; and s; to be reduced by precisely a factor of i1 regardless of the
policy, because every path from s; or s; that includes the non-zero reward has precisely
the same length. Thus, when the algorithm needs to decide whether the action for
decision state s; should be changed, the introduction of 3 scales down the values of the

succeeding states equally, but does not change the relative order of the two choices.

Parallel Improvement Policy Iteration

When the policy is improved at all states in parallel, as in standard policy iteration, the
algorithm no longer has a direct simplex analogue. It is an open question whether this
can lead to exponential run time in the worst case or whether the resulting algorithm

is guaranteed to converge in polynomial time. However, this version is strictly more
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efficient than the simple policy iteration algorithm mentioned above.

Let m; be the policy found after t iterations of policy iteration. Let V™ be the
value function associated with 7y. Let V; be the value function found by value iteration
(Table 2.2) starting with V™ as an initial value function. Puterman [126] (Theorem
6.4.6, discussed in Section B.1) showed that V7t (s) > Vi(s), for all s € S and there-
fore that policy iteration converges no more slowly than value iteration for discounted
infinite-horizon MDPs. When combined with a result by Tseng [162], presented here as
Lemma 2.1, that bounds the time needed for value iteration to find an optimal policy,
this shows that policy iteration takes polynomial time, for a fixed discount factor. Fur-
thermore, if the discount factor is included as part of the input as a rational number
with the denominator written in unary, policy iteration takes polynomial time. This
makes policy iteration a pseudopolynomial-time algorithm.

Thus, whereas policy iteration runs in polynomial time for a fixed discount factor,
simple policy iteration can take exponential time, regardless of discount factor. This
observation [96] stands in contrast to a comment by Denardo [44]. Denardo argues
that block pivoting in simplex achieves the same goal as parallel policy improvement in
policy iteration, and therefore that one should prefer commercial implementations of
simplex to casual implementations of policy iteration. This argument is based on the
misconception that one step of policy improvement on n states is equivalent in power to
n iterations of simple policy iteration. In fact, one policy improvement step on n states
can correspond to as many as 2" iterations of simple policy iteration. Thus, policy
iteration has not yet been ruled out as the preferred solution method for MDPs—more

empirical study is needed.

2.4.4 Summary
The results of this section can be summarized by the following theorem.

Theorem 2.2 To solve families of MDPs with a fized discount factor, value iteration,
policy iteration, and linear programming take polynomial time, while simple policy it-
eration can take exponential time. When the discount factor is included as part of the
mput, value iteration takes pseudopolynomial time, policy iteration takes no more than
pseudopolynomial time, and linear programming takes polynomial time. No strongly

polynomial-time algorithm is known.

Proof: The theorem follows from the preceding discussion. O
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2.5 Complexity Results

At this time, there is no algorithm that solves general MDPs in a number of arithmetic
operations polynomial in |S| and |A| (i.e., no known algorithm is strongly polynomial).
Using linear programming, however, the problem can be solved in a number of opera-
tions polynomial in |S|, |A|, and B, where B measures the number of bits needed to
write down the transitions, rewards, and discount factor.

Papadimitriou and Tsitsiklis [116] analyzed the computational complexity of MDPs.
They showed that, under discounted, average-reward, and polynomial-horizon criteria,
the problem is P-complete. This means that, although it is solvable in polynomial time,
if an efficient parallel algorithm were available, then all problems in P would be solvable
efficiently in parallel—an outcome considered unlikely by researchers in the field. Since
the linear-programming problem is also P-complete, this result implies that in terms
of parallelizability, MDPs and linear programs are equivalent: a fast parallel algorithm
for one would yield a fast parallel algorithm for the other. It is not known whether the
two problems are equivalent with respect to strong polynomiality: although it is clear
that a strongly polynomial algorithm for solving linear programs would yield one for
MDPs, the converse is still open.

Papadimitriou and Tsitsiklis also show that for deterministic MDPs, optimal value
functions can be found efficiently in parallel using a parallel implementation of the al-
gorithm in Table 2.6 (i.e., the problem is in NC). This algorithm is strongly polynomial,
suggesting that the presence of stochastic transitions makes MDPs harder to solve, in

general.

2.6 Reinforcement Learning in MDPs

In the previous sections, I explained how to find the optimal policy for an MDP given
a complete description of its states, actions, rewards, and transitions. Now I describe
two reinforcement-learning algorithms for finding optimal policies from experience. Al-
though many other reinforcement-learning algorithms have been invented, I present
these two algorithms because they are easily extended to work for decision-making

models in later chapters.
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2.6.1 Q-learning

Q-learning [173] can be viewed as a sampled, asynchronous method for estimating
the optimal state-action values, or QQ function, for an unknown MDP. The most basic
version of Q-learning keeps a table of values, Q[s, a], with an entry for each state/action
pair. The entry Q[s, a] is an estimate for the corresponding component of the optimal
Q function, defined by
Q*(s,a) = R(s,a) + ﬁZT(s, a, sYV*(s'),
o

where V* is the optimal value function. The agent uses the experience it receives to
improve its estimate, blending new information into its prior experience according to
a learning rate 0 < o < 1.

The Q function is an ideal data structure for reinforcement learning. Recall that
there are three fundamental functions in the value-iteration algorithm: the value func-
tion V, the Q function ), and the policy w. Given a model in the form of transition and
reward matrices, any of these functions can be computed from any one of the others.
Without access to T and R, however, only the Q function can be used to reconstruct
the other two: V(s) = max, Q(s,a) and 7(s) = argmax, Q(s,a). In addition, the Q
function is not difficult to estimate from experience.

The experience available to a reinforcement-learning agent in a Markov decision
process environment can be summarized by a sequence of experience tuples (s, a,r, s).
An experience tuple is a snapshot of a single transition: the agent starts in state s,
takes action a, receives reward r and ends up in state s’.

Given an experience tuple (s, a,r,s'), the Q-learning rule is

Qi al = (1~ @)Qls,al+ a (4 mgx @l )

This creates a new estimate of @*(s, a) by adding the immediate reward to the current
discounted estimate of V(s’). Because of the way r and s’ are chosen, the average
value of this new estimate is exactly R(s,a)+ 5>, T(s,a,s)V(s'). In value iteration,
we would assign this value directly to Q[s,a]. However, to get an accurate estimate,
we need to average together many independent samples. The learning rate « blends
our present estimate with our previous estimates to produce a best guess at Q(s, a); it
needs to be decreased slowly for the Q values to converge to Q* [174, 163, 69].

In Section 3.6.3, I prove that a generalization of Q-learning converges to the optimal

Q function, under certain idealized assumptions.
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2.6.2 Model-based Reinforcement Learning

Using Q-learning, it is possible to learn an optimal policy without knowing T or R
beforehand, and without even learning these functions en route. Although it guaranteed
to find optimal policies eventually and uses very little computation time per experience,
Q-learning makes extremely inefficient use of the data it gathers; it often requires a
great deal of experience to achieve good performance. In model-based reinforcement
learning, a model of the environment is unknown in advance, but is learned from
experience. The learned model can then be used to find a good policy. This approach
is especially important in applications in which computation is cheap and real-world
experience costly.

For MDPs in which the state and action spaces are small enough, the learned model
can be represented by three arrays, a count C'[s, a] of the number of times action a has
been chosen in state s, a count T¢[s,a, s'] of the number of times this has resulted in
a transition to state s, and a sum Ry[s, a] of the resulting reward. Given experience

tuple (s, a,r, sy, the arrays are updated by

T.s,a,s8] = T.s,a,s]+1
Ri[s,a] = R4[s,a]l+r
C[s,a] = C[s,a]+1.

Given these statistics, we estimate

TC[S7 a? Sl:l

- R
Clo.dl and R(s,a) =

T(s,a,s) =

The estimated model can be used in any of several ways to find a good policy.
In the certainty-equivalence approach [86], an optimal policy for the estimated model
is found at each step. This makes maximal use of the available data at the cost
of high computational overhead. In the DYNA [155], prioritized-sweeping [111] and
Queue-dyna [119] approaches, an estimated value function is maintained and updated

according to
Vis] == max (R(s, a)+ ZT(S, a, s’)V[s’]) .

Because the agent has access to a model of the environment, updates can be performed

at any state at any time.
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The convergence of model-based reinforcement learning for MDPs was shown by
Gullapalli and Barto [59]. In Section 3.6.4, I present a related theorem for a broader
class of models.

Reinforcement learning is an exciting area and new algorithms and studies are
appearing every day; this section barely scratches the surface of some of the more basic

concepts. For more information, see the survey by Kaelbling, Littman, and Moore [74].

2.7 Open Problems

Markov decision processes have been studied intensely for almost 40 years. Even so,

there are several important questions that remain unanswered.

e Is there a “clean” polynomial-time algorithm for solving MDPs, that is, one that
is not dependent on general linear programming? This question was raised by

Papadimitriou and Tsitsiklis [116] several years ago, and is still open.

e What is the worst-case time complexity of policy iteration? We have shown that
it runs in polynomial time for a fixed discount factor, but is there a polynomial
upper bound on its run time for general MDpPs? Is there an exponential lower

bound? What is its complexity for deterministic MDPs?

e Which of the standard algorithms is most efficient for solving the MDPs encoun-
tered in practice? Authorities appear to disagree as to whether policy itera-
tion [126] or value iteration [44] is most effective. Recent empirical compar-
isons [133] appear to favor modified policy iteration. In the likely event that the
best choice of algorithm depends on the structure of the MDP being solved, are

there useful guidelines for choosing the best solution method given the problem?

e Is there a computable optimal or near-optimal strategy for exploring an unknown
MDP? There is an elegant theory of optimal exploration via allocation indices for
single-state MDPs [56]; is there some way of extending this theory to general MDPs?

Or is it possible to show that the problem is somehow inherently intractable?

e There are representations for rewards and transitions that make it possible to
specify compact models for MDPs with exponential-size state spaces [87, 21, 24,

113]. What are the complexity issues? It is probably computationally intractable
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to find e-optimal policies using compact representations, but are there useful
subclasses of MDPs that can be solved efficiently? This question is explored by
Boutilier, Dean, and Hanks [23].

e The dual linear-programming formulation of MDPs has a flow-like interpretation.
Algorithms for finding min-cost flows have been studied intensively over the last
few years. Are there any flow-like algorithms that can be tailored to solve MDPs

efficiently?

These questions are interesting in their own right, but take on even more importance
in the context of the more advanced models addressed in later chapters. Resolution
of some of these open questions would shed light on questions that arise in the more

complex frameworks as well.

2.8 Related Work

In this chapter, I gave an overview of the fields of Markov decision processes and
reinforcement learning. The MDP literature is quite substantial, having been gathering
material for nearly 40 years. The early work of Bellman [13] and Howard [68] put
the field on a firm footing. Later work by Bertsekas [15], Denardo [44], Derman [46],
Puterman [126], and others, synthesized the existing material and added new results.
Puterman’s and Bertsekas’ books [126, 16] give in-depth summaries of related work in
this field.

Fundamental work in reinforcement learning and its relation to Markov decision
processes and dynamic programming includes Sutton’s thesis [153], which introduced
temporal difference (TD) methods, of which Q-learning is a special case; Watkins’
thesis [173], which developed Q-learning; and important surveys and syntheses by
Barto [10], Singh [145], and others. A survey by Kaelbling, Littman, and Moore [74]
gives a sense of the scope of the field.

Results on the convergence of reinforcement-learning methods in MDPs, most par-
ticularly Q-learning, are primarily due to Watkins and Dayan [174], Tsitsiklis [163],
and Jaakkola, Jordan, and Singh [69]. The latter two papers brought out the connec-
tion between Q-learning and work in the field of stochastic approximation. John [71]

gave a critique of the use of the asymptotic optimal policy as a target for learning.
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The convergence of model-based reinforcement-learning methods was studied by Gul-
lapalli and Barto [59]. Hernandez-Lerma and Marcus [64] examined the closely related
problem of finding an optimal policy for an MDP with a model specified by unknown
parameters; they showed how to build an asymptotically optimal non-stationary policy
for such models.

The linear programming formulation of MDPs was identified by D’Epenoux [45]
and others (see Hoffman and Karp’s paper [67] for a list). Kushner and Kleinman [88]
explored reasons for preferring the dual formulation for some applications. Denardo [44]
explicitly linked policy iteration to linear programming. Schrijver [140] provides an
excellent description of the theory and complexity of linear programming.

The section on the complexity of algorithms for solving MDPs is based on the work
of Condon [37], Melekopoglou and Condon [107], and Tseng [162]. Condon’s interest
was in a variation of the alternating Markov game model described in Chapter 4, but
she recognized that many of the bounds applied to analogous MDP algorithms as well.

Papadimitriou and Tsitsiklis [116] initiated exploration into the computational com-
plexity of solving MDPs. Their work identified deterministic models as being easier to

solve, from a worst-case complexity point of view, than their stochastic counterparts.

2.9 Contributions

In this chapter I presented many of the important results concerning mMpps. [ pro-
vided a new analysis of policy iteration based on earlier work by Puterman [126] and
Tseng [162] which resulted in a new upper-bound analysis and new insight into the con-
nection between policy improvement and value iteration. I extended Melekopoglou and
Condon’s [107] exponential lower bound for simple policy iteration to discounted MDPs,
and used this result in a summary of complexity results. I derived a fast sequential
algorithm for deterministic MDPs using the closed-semiring framework.

Overall, there has been extensive work on Markov decision processes by researchers
in operations research, dynamic programming, complexity theory, and algorithm anal-
ysis. Existing theory and algorithms have been applied quite successfully to real-world
problems in a wide array of domains (see Chapter 1 of Puterman’s book [126] for a
summary). In the next chapter, I will show that many of the basic results concerning
MDPs hold for a much broader class of models. It is an open question whether the

real-world success of MDPs will be replicated for any of the other models in this class.



Chapter 3

Generalized Markov Decision

Processes

Portions of this chapter have appeared in earlier papers: “A general-
ized reinforcement-learning model: Convergence and applications” [97]
with Szepesvdri, and “Generalized Markov decision processes: Dynamic-

programming and reinforcement-learning algorithms” [158] with Szepesvdri.

The Markov decision process model, discussed in the previous chapter, has a number of
important properties that make it easy to work with computationally. In this chapter,
I introduce a new class of models that includes MDPs as a special case, and show that
many of the properties of MDPs are shared by this more general class. The results are

presented in an abstract framework that make them easy to generalize to other models.

3.1 Introduction

This chapter builds on the ideas from the previous chapter, generalizing them wherever
possible. The model I develop here, the generalized Markov decision process includes all
the models discussed in the thesis: MDPs, alternating Markov games, Markov games,
and information-state MDPs, as well as several less-studied models. The generalized
MDP model applies to several different optimality objectives: finite-horizon, all-policies-
proper, expected discounted reward, and risk-sensitive discounted reward, to name a

few.
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The main result is that all these models have a notion of an optimal value func-
tion and an optimal policy, and that a general form of the value-iteration algorithm
converges to the optimal value function. I define a notion of a greedy policy with
respect to a value function for generalized MDPs and show how the Bellman error mag-
nitude of the value function can be used to bound the suboptimality of this policy. For
finite-state-space models with deterministic greedy policies, I show that value iteration
identifies an optimal policy in a pseudopolynomial number of iterations.

I define a version of policy iteration for generalized MDPs, and show that the al-
gorithm converges to an optimal policy; however, it is only useful for a subclass of
generalized MDPs that obey additional properties. For a different subclass of gener-
alized MDPs, I show that a form of Q-learning converges to the optimal Q function,
under the appropriate conditions. I also show that a simple model-based reinforcement-
learning algorithm converges to an optimal value function for all finite-state generalized

MDPs.

3.2 Generalized Markov Decision Processes

A generalized Markov decision process is a tuple (X, U,T,R,N,Q, @D, ), where the
fundamental quantities are a set of states X' (perhaps infinite), a finite set of actions
U, a reward function R : X X U — R, a transition function T : X x U — II(X), a
next-state function N mapping X X U to finite subsets of X', a discount factor f, a
summary operator € that defines the value of transitions based on the value of the
successor states, and a summary operator Q) that defines the value of a state based on
the values of all state-action pairs.

The defining set of quantities for a generalized MDP is analogous to the defining set
of quantities for an MDP, with a few noteworthy exceptions. First, the state space X
can be infinite. To prevent this from making the transition function unwieldy, every
state-action pair (2, u) can only lead to a finite set of next states N (z, u). The transition
probabilities for taking action u in state x are zero for all states except those in the set
N(z,u).

The most dramatic difference between generalized MDPs and MDPs is the appearance
of the summary operators, @ and €. I will define them precisely; however, they can

be motivated by defining the appropriate operators for the MDP model.
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The equations defining the optimal value function in a MDP are, for each state s,
V*(s) = max (R(s7 a)+ 8> T(s,a, s’)V*(s’)) .

This corresponds to the fact that an optimal policy in an MDP mazimizes the expected
reward. In generalized MDPs, the operator ) takes the place of the max over actions
and the operator @ takes the place of the expectation over next states. If we define

P g(s) = S T(s,0,5)g(s),

5/

and we define

®" f(s,a) = max f(s,a),

then we can rewrite the equations for the optimal value function in an MDP as

Vis) = Q" (R(s, a) + ﬂ@(s’“)v*(s')) . (3.1)

a

The essence of the generalized Markov decision process framework is that whenever
the operators @ and @ satisfy certain non-expansion properties, then Equation 3.1 is
a characterization of the unique optimal value function. Both € and &) are summary
operators: € summarizes the value of a finite set of next states for each state-action
pair, and ) summarizes the value of a finite set of actions for each state. Not all possible
definitions of @ and ) can be used to define a generalized MDPs; they must both be
non-expansions for all states and state-action pairs, respectively. In the generalized
model, the value of a state is defined by the sum of rewards along a trajectory; however,
we allow other types of summaries to take the place of maximization and expectation
in the MDP model.

For a summary operator () to be a non-expansion, it must satisfy two constraints.

Given functions h and k' over a finite set I,

min h(7) < (D h(i) < maxhi) (3.2)
el
and
O h(i) ~ QP (0)| < max|h(i) ~ H(0) (33)

el el
The first condition states that the summary of a function must lie between the largest

and smallest value of the function. The second condition states that the difference
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model/example reference ®, ) f(x,u) P, T Wg ()

disc. exp. MDP [174] max, f(z,u) oo T, u,2’)g(2))
cost-based MDP [29] min, f(z, u) Yoo Tz, u,2")g(2)
evaluating policy 7 [154] YTz, u) flz, u) Youw Tz, u,2")g(2')

alt. Markov game [26] max, or min, f(z,u) Yoo Tz, u,2")g(2!)
risk-sensitive MDP [62] max, f(z, u) Ming/e N (2,0 9(27)
evaluating risk-sensitive 7 You (@, u) flz,u) Ming/e N (2,0 9(27)
exploration-sens. MDP [71]  maxrep, >, 7(z,u)f(-) > T(x,u,2")g(a’)
Markov games [90] see text see text
information-state MDP [117] max, f(z, u) YweN(eu) L@, u,2')g(2)

Table 3.1: Examples of generalized Markov decision processes and their summary op-
erators.

between the summaries of two different functions must be no larger than the largest
difference between the functions.

Section C.1 explores different summary operators and proves that a broad class of
operators are non-expansions. For this chapter, the most important summary operators
are expectation, max, min, and the minimax operator used in Markov games. Other
interesting examples include operators for computing the median, midpoint, and mean
of a set of values.

It follows from the definitions above that finite-state MDPs, the continuous state-
space MDPs resulting from POMDPs, and Markov games all satisfy the conditions of
being a generalized MDP. Whatever we prove about generalized MDPs will apply to
all of these models. In addition, several other models are in this class, some of which
are not typically thought of as being related to MmDPs. Table 3.1 lists some sample
generalized MDPs and their summary operators. In contrast to the previous chapter,
some generalized MDPs have optimal policies that are stochastic. Throughout this
chapter, the notation 7 (z, u) is used to signify the probability that stochastic policy 7

chooses action u from state z.

3.2.1 Acting Optimally

In this section I develop a notion of optimal value functions, Q functions, and policies for
generalized MDPs. I casually use terms like “value function”, “contraction mapping,”
and “fixed-point theorem” without formally developing these concepts. Discussion of
the theory behind contraction mappings and the space of value functions is given in

Puterman’s book [126] (Appendix C and Section 6.2.2). This background is probably
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not necessary for an understanding of the results presented here; however, it is critical
for a formal treatment of this topic.
To begin, define the dynamic-programming operator H for a generalized MDP, a

function that takes a value function and creates a new value function, as

u

V(@) = Q" (R(ac, W) + ﬁ@(””’“)x/(x')) . (3.4)

The idea here is that @,,®*“)V (2') is the value of the state resulting from taking action
u from state z, R(z,u) + 8,V (2') is the value obtained by taking action u from
state z, and [HV](z) is the value of state # as obtained by one-step lookahead. For
MDPs, H is the mathematical instantiation of a single step of value iteration. We can

also define a dynamic-programming operator K that acts on Q functions,
. (,u) ()
[KQ)(x,u) = R(z,u) + P Q" Q. ).

To simplify the presentation of some of the later results, we sometimes treat ) and

P as mapping operators. To be precise, for Q function ¢ and value function V,

(R Q) =R, u,

ueU

and

DView= @ v

z'€N(z,u)
Using this notation, and the obvious extension of the definitions of addition and scalar
multiplication, we can express [HV] = QR+ /PV) and [KQ] =R+ (PR Q).
In what follows, it is helpful to establish a notion of distance between two value

functions. For value functions V; and V5, we define
Vi = Val| = sup [Vi(z) — Va(@)],

where || - || is a distance function known as the L., norm or max norm. Intuitively,
to find the distance between two value functions, we find the state where they differ
the most and call the difference between values at that state the distance between the
value functions. We can extend the notion of distance to cover Q functions as well. If

@1 and Q)5 are Q functions,

||Q1 - Q2|| = sgpm3X|Q1(ac,u) - Q2($7U)|-
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The non-expansion properties of & and € lead to a convenient property of these

operators with regard to distances.

Lemma 3.1 Let Q1 and Q3 be Q) functions and Vi and V; be value functions. Then
[®Q1 — ®Q2| < [|Q1— Q2 and || BV — D V2l < |[Vi - V|

Proof: Using the fact that @ and € are non-expansions, and Condition 3.3 for non-

expansions, we have

1R Q- QR Q: = S‘;P|[®Q1]($)—[®Qz]($)
< Slipm3X|Q1($7u)—Q2($7u)|:||Q1—Q2||7

and

1PVvi-Pval = supmax|@vl (z,u) — [P Val(a, u)

supmax  max |V1( ) = Va(a))]
u z'eN(=z

sup Vi (2 ') — 2( = 1Vi = Vall.

IN

IN

0

It is this distance-based bound that will be most convenient for proving results

about the dynamic-programming operators H and K. Here is the first.

Lemma 3.2 The H and K operators are contraction mappings if 3 < 1. In particular,
if Vi and Vy are value functions and Q1 and Q2 are @ functions, ||[HVy — HV3|| <
BlVi = V2|, and [[KQ1 — KQ2f| < B]|Q1 — Q2]|.

Proof: We address the H operator first. By Lemma 3.1 and the definition of H, we

have
|HVi = HVy|| = |QR+ 5DV - QR+ 5DV,
< (R+5EDWV) - (R+ 5D W)
< slEPVvi-pvall
< BV =Vl

Lemma 3.1 and the definition of K give us

IKQ1 — KQa| = B QP Q1] - QIEP -]l
< BlEPa - Pl
< AlQ1 — Q2|
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0

Because the operator H is guaranteed to bring two value functions closer together,
and the operator K is guaranteed to bring two Q functions closer together, they are
called contraction mappings.

A weighted maz norm is defined by ||V} — V3|, = sup, |Vi(2) —Va(z)|/w(x) for value
functions and ||Q1 — Q2]|w = sup, max, |Q1(z, u) — Q2(z, u)|/w(z) for Q functions. The
introduction of the weighting function w makes it possible for states to contribute dif-
ferently to the max norm; states with larger weights count less than states with smaller
weights. Operator H is a contraction mapping with respect to some weighted max
norm w if and only if ||HV] — HV3||w < Bul|Vi — Val|w for some 5, < 1. In MDPs, even
if the discount factor is 1, if all policies are guaranteed to reach a zero-cost absorbing
state (the all-policies-proper case), then the dynamic-programming operator H is a

contraction mapping with respect to some weighted max norm [18, 162]. Section C.2

provides a new proof of this fact in the context of finite-state generalized MDPs.

Lemma 3.3 For any generalized MDP in which

P o) = ST, u, 29 (@),

.T/
if B = 1 but all policies are guaranteed to reach a zero-reward absorbing state (the
all-policies-proper case), then the H and K operators are contraction mappings with

respect to some weighted mazx norm.

Proof: The theorem follows from the preceding discussion. O

Because all the results in this chapter are stated in terms of norms, they apply to
any update rule as long as the dynamic-programming operator under consideration is
a contraction mapping; in particular, they cover generalized MDPs with either § < 1
or the all-policies-proper condition. In the latter case, I abuse notation and use 3 to
signify the constant of contraction in the appropriate weighted max norm (i.e., Gy).
The fact that the optimal value functions are well defined does not imply that they are
meaningful; that is, it may be the case that the optimal value function is not the same
as the value function for some appropriately defined optimal policy. The results in this
section apply to value functions defined by Bellman equations; to relate the Bellman
equations to a notion of optimality, it is necessary to put forth arguments such as are

given in Puterman’s book [126].
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Theorem 3.1 For any generalized Markov decision process, if 3 < 1 then there is a
unique V*, called the optimal value function, such that V* = HV™; a unique Q*, called
the optimal Q function, such that Q* = KQ*; and an optimal (possibly stochastic)
policy, 7, such that V*(z) = >, 7 (x,u)Q*(x,u). This is also true if 3 = 1, the

all-policies-proper condition holds, and an expected value criterion is used.

Proof: Combining Lemmas 3.2 and 3.3, the H and K operators for the generalized

MDP are contraction mappings with respect to some weighted max norm. The existence

and uniqueness of V* and @Q* follow directly from the Banach fixed-point theorem.
We can define the optimal value function and the optimal Q function in terms of

each other:

vV =QQ" (3.5)

and Q* = R+ 3@ V™. These equations can be shown to be valid from the definitions
of K and H and the uniqueness of @* and V*.
By Condition 3.2 of & and Equation 3.5,

min Q"(z, u) < V*(2) < maxQ"(z,u).
Therefore, it is possible to define a stochastic policy 7* such that
Vi) =D (e, w)Q(, u).
O

The use of the word optimal is somewhat strange since V* need not be the largest
or smallest value function in any sense; it is simply the fixed point of the dynamic-
programming operator H. This terminology comes from the Markov decision process
model, where V* is the largest value function of all policies and is retained for consis-

tency.

3.2.2 Exploration-sensitive MDPs

One interesting use of generalized MDPs is as a way to formalize John’s [71] exploration-
sensitive learning algorithm. John considered the implications of insisting that agents
simultaneously act to maximize their reward and explore their environment; he found
that better performance can be achieved if a policy incorporates the condition of per-

sistent exploration. In John’s formulation, the agent is forced to adopt a policy from
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a restricted set; in one example, the agent must choose a stochastic stationary policy
that selects actions at random 5% of the time. The random actions ensure that the
agent will experience all actions in all states infinitely often; therefore, the agent will be
able to detect if its model of the environment is wrong, or if the environment changes,
or the effects of any non-Markovian dependencies that may exist.

John’s approach requires that the definition of optimality be changed to reflect the
restriction on policies. The optimal value function is given by V*(z) = sup,cp V7 (2),
where P is the set of permitted stationary policies, and the associated Bellman equa-

tions are

Vi(z) = supZﬂ'(x,u) (R(ac,u) + ﬁZT(x,u,x’)V*(x’)) ,

T€P 4

which corresponds to a generalized MDP model with @,,*“g (') = 3, P(2, u, 2')g(2')
and ®,\ f(z,u) = SUPrep 2w ¥ (2, u) f(x,u). Because 7(x,-) is a probability distri-
bution for any given state z, (X is a non-expansion and, thus, the model can properly

be considered a generalized MDP.!

3.3 Algorithms for Solving Generalized MDPs

The results of the previous section show that any generalized MDP has an optimal value
function, Q function, and policy, and that these quantities can be defined in terms of

each other. In this section, I discuss methods for finding these quantities.

3.3.1 Value Iteration

The method of wvalue iteration, or successive approximations [13, 143], is a way of
iteratively computing arbitrarily good approximations to the optimal value function
V=

A single step of the process starts with an estimate, V;_1, of the optimal value
function, and produces a better estimate V; = HV;_;. I will show that applying H

repeatedly causes the value function to become as close as desired to optimal.

Lemma 3.4 LetV; be the value function produced in the tth iteration of value iteration.

After t steps of value iteration on a generalized MDP, ||[V; — V|| < 5|Vo — V*||.

' One additional condition is that the set P be compositional; if a separate policy is selected for each
action, the combined policy must still be in P.
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Proof: We proceed by induction. The base case, ||Vo — V*|| < 8°)|Vo — V¥, is self

evident. By the inductive hypothesis we see
Ve = Vo[l = | Vics — HV| < B[Vier = VII| < 88 7IVo - V7)) = Vo — V™|

0

In some circumstances, it is helpful to state this result without reference to the
details of the initial value function Vy. Let M = sup, max, |R(z,u)| = ||R||. If the agent
received a reward of M on every step, its total expected reward would be Y52, 3'M =
M/(1-73). The same result holds for the all-policies-proper case, although the reasoning
is a bit different [162]. Thus, the zero value function, Vo = 0 cannot differ from the
optimal value function by more than M/(1 — ) at any state. This also implies that
the value function for any policy cannot differ from the optimal value function by more
than 2M/(1 — ) at any state. This allows us to restate Lemma 3.4 in a form that

bounds the number of iterations needed to find a e-optimal value function.

Theorem 3.2 Let Vi be any value function such that |Vo(z)| < M/(1 — ) for all
x € X, and let
_ [log(M) +log(3) + log(25)
log(5)
Running value iteration for t* or more steps results in a value function V' such that

|V -V <e

t*

Proof: This follows from simple algebraic manipulation of the bounds given in this

section. O

3.3.2 Computing Near-optimal Policies

In this section, we relate arbitrary generalized MDPs to the specific generalized MDP
resulting from using the summary operator @™ f(z,u) = 3, 7 (2, u) f(x, u), where
7 is some stationary probabilistic policy.

Condition 3.2 can be interpreted as saying that every time the ) operator is applied,
it must be equivalent to applying @" for some probabilistic policy #. Let V be some
value function. We define the myopic policy with respect to V' to be any = : X — II(U4)
such that

[HV](2) = > w(a,u) (R(z,u) + BED V](z,u)).

u
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The existence of such a 7 follows from the definition of H given in Equation 3.4 and
Condition 3.2; it need not be unique. Myopic policies are simply greedy policies,
generalized to models in which reward is not maximized.

For a policy 7, define H™ to be the dynamic-programming operator resulting from
the generalized MDP that shares its state space, action space, transition function, reward
function, next state function, € operator, and discount factor with the generalized MDP
in question, but uses @™ in place of ).

Because @7 is a non-expansion, the new model is itself a generalized MDP. There-
fore, we can define V™ to be the unique value function satisfying V™ = H™V™, which
we call the value function for policy .

For MpDPs, the distance between the value function for any myopic policy with
respect to V and the optimal value function can be bounded as a function of the
Bellman error magnitude, defined as ||V — HV||; the result can be shown to apply to

generalized MDPs, after a few basic results are established.

Lemma 3.5 LetV be a value function, V™ be the value function for the myopic policy
with respect to V', and V* be the optimal value function. Let € be the Bellman error

magnitude for V., e = ||V —HV||. Then, |[V-V7|| <¢e/(1-0) and ||[V-V*|| < ¢/(1-5).

Proof: This result follows easily from the contraction property of H and the triangle
inequality, which states that the distance from a to ¢ can not be larger than the distance
from a to b to ¢ (for any b).

First, note that ||V = V7| < ||V - HV|| + |HV = V7| = |V - HV|| + ||[H™V —
H™T|| < e+ B||V — V™. Grouping like terms gives ||V — V7| < ¢/(1 - 3).

Similarly, ||V - V*|| < ||V - HV||+ [|[HV = V*|| = ||V - HV||+ ||[HV — HV*|| <
€+ G|V — V*||. Grouping like terms gives ||V — V*|| < ¢/(1 — 3). O

By the definitions of H and 7, HV = QR+ PV) = Q" (R+ SPV) and
HV™ = Q"(R+ V™). We can use these equations to help bound the distance

between V7 and the V* in terms of ¢, the Bellman error magnitude.

Theorem 3.3 Let V' be a value function, V™ be the value function for the myopic
policy with respect to V, and V* be the optimal value function. Let € be the Bellman
error magnitude for V., e = ||V —HV||. Then, |[HV =V7|| < ef/(1-05), |[HV -V*|| <
f/(1 =), and [[VT = V*|| < 2¢5/(1 = J).
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Proof: The third statement follows from an application of the triangle inequality to

the first two statements, which we prove now. First,

[HV = V7| = ||[H"V - H'VT|| < IV - VT < e/ (1 = ).
Similarly,
[HV = V7| = [[HV - BV7[| < 5|V = V7| < e5/(1 = 53),
completing the proof. O

This result is concerned with values and not immediate rewards, so the total reward
earned by a myopic policy is not too far from optimal. The significance of the result is
that a value-iteration algorithm that stops when the Bellman error magnitude is less

than or equal to € > 0 will produce a good policy with respect to e.

3.3.3 Policy Iteration

In this section, I define a generalized version of policy iteration. Applied to MDPs, it is
equivalent to Howard’s policy-iteration algorithm [68] and applied to Markov games,
it is equivalent to Hoffman and Karp’s policy-iteration algorithm [67].

Unlike value iteration, the convergence of policy iteration seems to require that
value is maximized with respect to some set of possible actions. To capture this, we
will restrict our attention to generalized MDPs in which ) can be written

(X Q(z) = fgg[@pQ](ﬂﬁ) (3.6)
where R is a compact set and &* is a non-expansion operator for all p € R. The idea
is that R is some set of parameters or choices from which the best choice is selected.
Note that any operator can be written this way by defining @” = &); the choice of
parameterization ultimately determines the efficiency of the resulting policy-iteration
algorithm. A generalized MDP satisfying Equation 3.6 and the monotonicity property
discussed in Section 3.4.2 is called a maximizing generalized MDP.

The term p-myopic policy refers to a mapping w : X — R such that

®"Qlr) = maxi®Ql(e).
for all € A. The value function for a p-myopic policy w, V¥, is defined as the optimal
value function for the generalized MDP where ®“’(x) is used as the summary operator

in state z.
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We characterize policy iteration as follows. Start with a value function V' and
compute its p-myopic policy w and w’s value function V¥. If ||V — V¥|| < ¢, terminate
with V' as an approximation of the optimal value function. Otherwise, start over, after
assigning V := V*.

We can apply this algorithm to MDPs by taking R to be the set of actions and &*
to select the Q value for the action corresponding to p:

(® Q) = maxl@ Q) = max (e, u).
Because computing V* is equivalent to evaluating a fixed policy and can be solved by
Gaussian elimination, the resulting policy-iteration algorithm (which is just standard
policy iteration) is useful. In Markov games, we take R to be the set of probability
distributions over agent actions and &* to be a minimum over opponent actions of the
p-weighted expected QQ value. As we will see in Chapter 5, computing V* is equivalent
to solving an MDP, which is easier than finding V™ directly.

In Section 3.4.2, I argue that generalized policy iteration converges to an optimal

policy under particular restrictions on &°.

3.4 Algorithmic Analysis

This section provides additional details on how value iteration performs on specific

classes of generalized MDPs, and on the convergence of policy iteration.

3.4.1 Value Iteration

Although value iteration converges to the optimal value function (Lemma 3.4), and
the suboptimality of the myopic policies generated along the way can be bounded
(Theorem 3.3), it is not guaranteed to identify the optimal policy in a finite number of
iterations.

Let V; be the value function produced on the tth iteration of value iteration. This
section shows that, for a certain class of finite-state-space generalized MDPs, the greedy
policy with respect to Vix is optimal, for a finite ¢*.

Let A be finite, and let B be a problem-specific parameter, for example, a bound
on the number of bits needed to represent components of T and R. We say that
a quantity is polynomially bounded if there is some polynomial in |X|, U], B, and
log(1/(1— 3)) that grows asymptotically faster than that quantity. We say a quantity
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is pseudopolynomially bounded if it is polynomially bounded with respect to |X|, |U],
B, and 1/(1 - j3)

We know that @ and € have the property that for all @ and V, [RQ Q](z) =
Yum(@,w)Q(z, u) and [BV](x,v) = Ypren(aw T(, w2 )V (2') for some probability
distributions 7 and 7. If, for all @ and V', # and 7 can be expressed using only rational
numbers with a polynomially bounded number of bits, then we say that & and & are
polynomially expressible.

There are a few important polynomially expressible operators: maximum, mini-
mum, selection according to a deterministic policy, and expectation according to a set
of polynomially bounded probabilities. The operators in the risk-sensitive MDP model
described by Heger [62] are polynomially expressible. The next theorem tells us that
value iteration can be used to find optimal policies in pseudopolynomial time for models

using these operators.

Theorem 3.4 If X is finite, the number of bits needed to express R(x,u) for all x
and u 18 polynomially bounded, and Q and @ are polynomially expressible, then any

myopic policy with respect to Vi« is optimal, for some pseudopolynomially bounded t*.

Proof: Since Q) and € are polynomially expressible, there must be some optimal policy
7* and a function 7* such that [@ Q*](z) = >, 7" (z, v)Q"(z,u) and [P V*](z,u) =
e eN(eu) T (T, u, @)V (2'), where the number of bits needed to express 7* and 7" are
polynomially bounded.

By an argument similar to that in the proof of Theorem 2.1, this implies that there
is some polynomially bounded number B* such that the number of bits needed to
express each component of V* and @* is bounded by B*.

The rest of the argument parallels that in Lemma 2.1, using the contraction-
mapping property of H and Theorem 3.3. The basic idea is that, eventually, V; is
so close to V*, that the amount of reward lost by following a myopic policy with re-
spect to V! is smaller than the precision needed to specify V*. At that point, any
myopic policy must be optimal. O

3.4.2 Policy Iteration

In this section, I argue that the policy-iteration algorithm defined in Section 3.3.3

converges to the optimal value function. To do this, we will need to place an additional
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monotonicity condition on the associated summary operators.

Consider a maximizing generalized MDP in which the optimal value function is

defined by

u

(o) = Q@ ( Ries ) + 5D (x,))

and

®(9€)f(av7 1) = max p’(x)f(ac7 )

PER
for some compact set R. Assume @ and Q” are non-expansions for all p € R. Theo-
rem 3.1 gives conditions under which V* is well defined. Further assume that @ and

&®?* obey an additional monotonicity condition: if ¢g(z') > ¢'(2’), then

@(xvu)g(x/) > @(zvu)gl(x/)

v
and similarly for @”.

Not all non-expansion operators satisfy the monotonicity condition. However, all
the summary operators discussed in Section C.1, and therefore all the operators of
immediate interest, do satisfy this additional condition. The monotonicity of these
operators is proven in Section C.3.

The policy-iteration algorithm can be stated as follows. Let wg be an arbitrary
function mapping A" to R. At iteration ¢, let wy_; be the p-myopic policy with respect
to V. Terminate when ||V — V«i-1|| is small enough.

To show that policy iteration converges, I appeal to two important results. The
first is that

V= e )

meaning that the optimal value function dominates or equals the value functions for
all possible values of w. The second is a generalization of a result of Puterman [126]
that shows that the iterates of policy iteration are bounded below by the iterates of
value iteration. From these two facts, we can conclude that policy iteration converges
to the optimal value function, and furthermore, that its convergence is at least as fast

as the convergence of value iteration.

Theorem 3.5 Let

pER

V*(2) = max o) (R(av7 u) 4+ ﬂ@(””’“)v*(x’))
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and, for allw: X - R,
w . w(z),(z,u) (), g
Ve() =@ R(z,u)+ @ V¥ (")

where @ and @ are non-expansions and monotonic. Then, for all x € X,

V¥z) = wgzg}cnv (z).

Proof: This result is proven in Section C.4. O

Lemma 3.6 Let U; be the iterates of value iteration and Vi be the iterates of policy
iteration, starting from the same initial value function. For allt and x € X, Up(z) <

Vi(e) <V*(x).

Proof: The proof is Section C.4. O

Theorem 3.6 If X is finite, the number of bits needed to express R(x,u) for all x
and u is polynomially bounded, and @ and @ are polynomially expressible, then policy

tteration converges in a pseudopolynomial number of steps.

Proof: The theorem follows from Lemma 3.6, which shows that policy iteration con-
verges no more slowly than value iteration, combined with Theorem 3.4, which shows
that value iteration converges in a pseudopolynomial number of iterations under the

conditions of the theorem. O

Stronger results are available on the convergence rate of policy iteration [125, 126]
that would lead to better complexity bounds than those of Theorem 3.6; however, these
theorems do not appear to yield useful bounds for MDPs with finite state and action
spaces. This is discussed in Section B.2.

It is worth noting that the implementation of policy evaluation in finite-state-space
generalized MDPs depends on the definition of . When the expected-reward objective
is used, as it is in MDPs, policy evaluation can be implemented using a linear-equation
solver. When € is maximization or minimization, as it is in some games or under a
risk-sensitive criterion, policy evaluation is equivalent to solving an MDP and can be

accomplished using linear programming (or policy iteration!).
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3.5 Complexity Results

The difficulty of solving particular generalized MDPs depends critically on the definitions
of @ and @ and whether X" is finite. I present complexity results for specific models

in other chapters.

3.6 Reinforcement Learning in Generalized MDPs

In this section, I assume that the summary operators & and € are defined in terms
of the transition function T' and the reward function R. If both T and R are known
in advance, the techniques I described earlier in this chapter can be used to compute
optimal or near-optimal policies. In this section, I describe how reinforcement-learning
algorithms can use experience to converge to optimal policies when 7" and R are not
known in advance.

Section 2.6 described two different families of reinforcement-learning algorithms:
model-free (Q-learning), and model-based. My plan in this section is to introduce
a mathematical framework that captures algorithms from both of these classes, to
describe a new stochastic-approximation theorem that provides conditions under which
these algorithms converge, then to show how the general theorem can be applied to
prove the convergence of model-free and model-based reinforcement-learning algorithms
for generalized MDPs.

A mathematically more general presentation of these results is available [97, 158];
the goal in this section is to present the results as intuitively as possible, yet in sufficient

generality and rigor to be useful in proving theorems presented in later chapters.

3.6.1 A Generalized Reinforcement-Learning Method

A wide variety of learning algorithms can be viewed in the following way. The algorithm
begins with an initial approximation Vy of the optimal value function V*. With each
new experience, an update rule is applied to the current approximation V; to produce
a new approximation V;yy. The update rule can change as a function of time or as a
function of the experience gathered.

The simplest update rule to analyze is the dynamic-programming operator H, which
I discussed earlier in this chapter. To use H to compute V*, we define V; 11 = HV; the

resulting algorithm is value iteration, and its convergence properties were discussed in
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Section 3.3.1.

As an important step towards analyzing Q-learning-like update rules, we will con-
sider a learning rule that, in the limit, converges to HV for a fixed value function V.
We consider the family of finite-state generalized MDPs with no choice of action and
@x,(x’“)g(w’) = > T(x,u,2")g(2"), that is, models with an expected value criterion.
For this model, [HV](z) = R(z,u)+ 3%, T(z, u,2")V(2'), where u is the only possible
action. Q-learning, applied to this model, begins with an initial value function Uy and,

given experience tuple (¢, us, xj, 14y at time ¢, defines

Uppr(20) = (1 = (@) Up(@e) 4 aulay) (re + BV (27))

and Uppq(z) = Up(z) for all  # z4. The idea behind the learning rule is that U(z)
contains an estimate of the value R(z,u)+ >, T(x,u,2")V(2’). If the learning rate
« is decayed properly, U; converges to HV.

We can capture the learning rule in the form of an operator

H,(UV)(z) = { S(;)at(wt))[](x) FoeE T, i)ftiengi:e.
and define
Upr = Hi(U, V). (3.7)

Conditions for the convergence of U; to HV are provided by classic stochastic-approx-
imation theory [130].

A more advanced reinforcement-learning problem is computing V* = HV™, the
fixed point of H, instead of the value of HV for a fixed value function. Consider the

natural learning algorithm that begins with a value function V; and defines
‘/;f-l—l = Ht(‘/;H ‘/;5)7 (38)

where H; is as defined above. In a sense, this algorithm is computing HV', where V is
a moving target. It combines the simple learning algorithm in Equation 3.7 with value
iteration, and, as we will see shortly, converges to V*.

In what follows, we will use H,(U, V) to stand for a generic learning rule; it is not
difficult to express model-based reinforcement-learning algorithms and Q-learning-like
algorithms in this form. We will also see that there are very reasonable conditions

under which the learning rule captured by Equation 3.8 is guaranteed to converge to

V.
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3.6.2 A Stochastic-Approximation Theorem

The fundamental property that we will require of a sequence of operators H,(U,V) is
that it can be used to approximate the value of HV by holding V fixed and iterating
on U; this was illustrated in Equation 3.7. We say that H; approximates H at V if
iteration on U converges to HV with probability 1 uniformly over X.

The following theorem shows that, under the proper conditions, we can use an
operator H; to estimate the optimal value function V*; it is due to Szepesvari and

Littman [158].

Theorem 3.7 Let H be a contraction mapping with respect to a weighted mazx norm
with fized point V*, and let Hy approzimate H at V™. Let Vy be an arbitrary value
function, and define Viy1 = H(Vi,Vy). If there exist functions 0 < Fy(z) < 1 and
0 < G¢(z) < 1 satisfying the conditions below with probability one, then Vi converges
uniformly to V* with probability 1:

1. for all value functions Uy and Uy and all x € X,

|(H(Ur, V) () = (He(Us, V7)) ()] < Go(@) |Us — Ualf;

2. for all value functions U and V', and all x € X,

[(He(U, V) (@) = (He(U, V) (2)] < Be(2)|[V" = VIJ;

3. for all k > 0, II7_, G¢(x) converges to zero uniformly in x as n increases; and,

4. there exists 0 < 3 < 1 such that for all x € X and large enough t,

Fi(2) < B(1 - Gi(x).

Proof: The theorem is proven in Section C.5. O

Next, I describe some of the intuition behind the statement of the theorem and its

conditions.
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The iterative approximation of V* is performed by computing Viy; = H(Vy, Vi).
Because of Conditions 1 and 2, G¢(z) is the extent to which the estimated value function
depends on its present value and Fy(z) &~ 1 — Gy(2) is the extent to which the estimated
value function is based on “new” information.

In some applications, such as Q-learning, the contribution of new information needs
to decay over time to ensure that the process converges. In this case, G¢(2) needs to
converge to one. Condition 3 allows G(z) to converge to 1 as long as the convergence
is slow enough to incorporate sufficient information for the process to converge to the
right value.

Condition 4 links the values of G¢(z) and Fi(z) through some quantity 5 < 1.
If it were somehow possible to update the values synchronously over the entire state
space, the process would converge to V™ even when § = 1. In the more interesting
asynchronous case, when 3 = 1, the long-term behavior of V; is not immediately clear;
it may even be that V; converges to something other than V*. The requirement that
[ < 1 ensures that the use of outdated information in the asynchronous updates does
not cause a problem in convergence.

One of the most noteworthy aspects of this theorem is that it shows how to reduce
the problem of approximating V* to the problem of approximating H at V*; in many
cases, the latter is much easier to achieve and also to prove. For example, the theorem
makes the convergence of Q-learning a consequence of the simpler Robbins-Monro

theorem [130].

3.6.3 Generalized Q-learning for Expected Value Models

A Q-learning algorithm can be defined for the family of finite-state generalized MDPs
with @,,*Yg(2') = ¥, T(2, u,2')g(2'), that is, models with an expected value cri-
terion. Given experience tuple (@, us, 2, 1) at time ¢ and an estimate Q;(x, u) of the

optimal Q function, let
Quy1 (e, up) = (1 — (@, ug)) Qi (w4, we) + (@4, ug) (T‘t -I-ﬁ@ Qt Tpy U ) .

When (§§u(””)f(av7 u) = max, f(x,u), this is precisely the Q-learning algorithm described
in Section 2.6.1; however, a different definition of () captures the minimax-Q learning

algorithm described in Section 5.6.1.
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In this section, I derive the assumptions necessary for this learning algorithm to
satisfy the conditions of Theorem 3.7 and therefore converge to the optimal Q values.

The dynamic-programming operator defining the optimal Q function is

The Q-learning rule is equivalent to the approximate dynamic-programming operator

Ht(U7 V)(ac,u)
_ (1_ O‘t(xtvut))U(xvu)—I_at(xtvut)(rt+ﬁ®u<xé)v($;7u))7 if 2 = Ty U = Ut
Uz, u), otherwise.

If

e (X is a non-expansion and does not depend on T or R,

e 2’ is selected according to the probability distribution defined by T'(z, u, z'),
e the expected value of r given z and u is R(z, u),

e r has finite variance,

every state-action pair is updated infinitely often, and

the learning rates are decayed so that

> az,u) = oo and > azu)? < oo

tixr=x,ur=u tixr=x,ur=u

uniformly over X x U with probability 1,

then a standard result from the theory of stochastic approximation [130] can be used to
show that H; approximates H. That is, this method of using a decayed, exponentially
weighted average correctly computes the average one-step reward.

Let
1—ay(z,u), if 2 =a, and u = uy;

Gi(z,u) = {

0, otherwise,
and

F(z,u) = .
0, otherwise.

{ Boy(x,u), if 2 =z, and u = uy;
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These functions satisfy the conditions of Theorem 3.7 (Condition 3 is implied by the
restrictions placed on the sequence of learning rates ay).

Theorem 3.7 therefore implies that the generalized Q-learning algorithm converges
to the optimal Q function with probability 1. The convergence of Q-learning for dis-
counted MDPs and alternating Markov games follows easily from this result. In addition,
this result also applies to models satisfying the all-policies-proper condition by using a
weighted max norm.

It is also worth noting that a Q-learning-type algorithm can be defined for general-
ized MDPs under a worst-case-reward criterion [62]. Theorem 3.7 can be used to prove

the convergence of this algorithm [158].

3.6.4 Model-based Methods

The fundamental assumption of reinforcement learning is that the reward and tran-
sition functions are not known in advance. Although Q-learning shows that optimal
value functions can sometimes be estimated without ever explicitly learning R and
T, learning R and T makes more efficient use of experience at the expense of addi-
tional storage and computation. The parameters of R and T can be learned from
experience by keeping statistics on the expected reward for each state-action pair and
the proportion of transitions to each next state for each state-action pair. In model-
based reinforcement learning, R and T are estimated on-line, and the value function
is updated according to the approximate dynamic-programming operator derived from
these estimates. Theorem 3.7 can be used to prove the convergence of a wide array of
model-based reinforcement-learning methods.

In this section, we assume that @ may depend on T and/or R, but @ may not.
Although this is the more common case, it is possible to extend the argument below
to allow @ to depend on T and R as well.

In model-based reinforcement learning, R and T are estimated by the quantities
R, and Ty, and @' is an estimate of the @ operator defined using R, and T;. As
long as every state-action pair is visited infinitely often, there are a number of sim-
ple methods for computing R, and T} that converge to R and T. A bit more care is
needed to ensure that @ converges to @, however. For example, in expected-reward
models, @, ""g(z") = ., T(x,u,2')g(2') and the convergence of Ty to T guaran-

tees the convergence of @' to @. On the other hand, in worst-case-reward models,
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@x,(x’“)g(w’) = Mil,7(pue)>0 9(2") and it is necessary to approximate T in a way
that ensures that the set of 2’ such that T;(z,u,2’) > 0 converges to the set of 2’
such that T'(x,u,2’) > 0. This can be accomplished easily, for example, by setting
Ti(x, u,2’) = 0 if no transition from z to 2’ under u has been observed.

Assuming T and R can be estimated in a way that results in the convergence of @'

to €, the approximate dynamic-programming operator H; defined by

®, @ <Rt(x, ) + g@@,“’”V(f)) ifeen

Ulzx), otherwise,

H,(UV)(z) =

converges to H with probability 1 uniformly. Here, the set 7 C A" represents the set
of states whose values are updated on step t; one popular choice is to set 7 = {x;}.
Other algorithms use a larger 7; set to speed up learning: DYNA [156] supplements 7;
with a randomly generated set of states while prioritized sweeping [111] and Queue-
DYNA [119] use heuristics to select elements for 7, that will result in the fastest possible

convergence of the value function.

0, if x €1y
Gt(x):{ Iz Tt

1, otherwise,

The functions

and

Ft(x):{ 8, if x € 7y

0, otherwise,

satisfy the conditions of Theorem 3.7 as long as each z is in infinitely many 7; sets
(Condition 3) and the discount factor j is less than 1 (Condition 4).

As a consequence of this argument and Theorem 3.7, model-based methods can
be used to find optimal policies in MDPs, alternating Markov games, Markov games,

risk-sensitive MDPs, and exploration-sensitive MDPs.

3.7 Open Problems

The exploration of this class of models has just begun. Although generalized MDPs were
developed to generalize the specific models used in this thesis, they may be worthy of

independent study.
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e Although many relevant summary operators have been shown to have the required
non-expansion properties, is there a better, more succinct, or more intuitive char-

acterization of the summary operators used in generalized MDPs?
e Can generalized MDPs be extended to infinite action spaces?

e Some natural summary operators, like Boltzmann weighting (Section C.1), do
not have the non-expansion property. Is there a way to characterize these oper-
ators and the effect of using them in value iteration? In the case of Boltzmann

weighting, there are examples where the H operator has multiple fixed points.

e Model-free reinforcement-learning updates appear to require the use of the ex-
pected reward summary operator. Is there a general theory of how to take a given
definition of the € operator and create an appropriate model-free reinforcement-

learning algorithm?

e The class of generalized MDPs was developed primarily with regard to a discounted
reward criterion. Is it possible to extend the results to the average reward crite-

rion? Would that be interesting?

e Is it possible to extend Sutton’s TD()) algorithm [154] to the generalized MDP

model?

3.8 Related Work

This chapter’s main function is to prove some basic properties of MDPs and variants
of MppPs. Puterman [126] develops the results for MDPs with finite state and action
spaces, but also more general spaces. His work focuses exclusively on maximizing
expected reward. Van Der Wal [166] addresses a generalized set of objective criteria
for MDPs and Markov games.

The inspiration for trying to find a uniform framework for these proofs grew out of
the independent work of Shapley [143] on games and of Howard [68] and Bellman [13]
on MDPs. Both of these efforts developed the value-iteration algorithm and proved its
convergence. This chapter attempted to capture the essence of both approaches in a
unified way.

There are many, many models that satisfy the conditions of being a generalized MDP;

very few of these are interesting. In the remaining chapters of this thesis, I examine a
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few models of interest, but there are others that are worth mentioning. John [71] looks
at MDPs that maximize expected reward given that actions are chosen with respect to a
perpetually exploring policy. His learning rule for the uniform-exploration case can be
shown to be a generalized MDP and, hence, inherits the results proven in this chapter.

Heger [62, 63] has developed a collection of results, including a proof of Theorem 3.3,
for risk-sensitive MDPs: generalized MDPs that maximize worst-case reward. The results
in this chapter extend some of Heger’s results. I prove finite convergence of value
iteration and policy iteration for his minimax criterion, and make it possible to extend
risk-sensitive objective criteria to infinite state spaces and games.

The results on pseudopolynomial convergence of some generalized MDPs comes di-
rectly from the work of Tseng [162] for MDPs and Condon [36] for alternating Markov
games. The idea of bounding the greedy policy according to an approximate value
function is common knowledge in the dynamic-programming community, and was in-
troduced to the reinforcement-learning community by Williams and Baird [180] and
Singh and Yee [147].

The work presented in Section 3.6 is closely related to several previous research
efforts. Szepesvari [157] described a generalized reinforcement-learning model, and
used it to define a set of conditions under which there is an optimal policy that is
stationary, and when it can be found as the myopic policy with respect to the optimal
value function. The specific generalized MDP model presented here is both more and less
general than Szepesvari’s model; however, Theorem 3.7 is useful in both frameworks.

Jaakkola, Jordan, and Singh [69] and Tsitsiklis [163] developed the connection be-
tween stochastic-approximation theory and reinforcement learning, focusing on the MDP
model. The mathematics and insight used in Theorem 3.7 are not substantially different
from that used in the earlier papers; however, the form of Theorem 3.7 makes it par-
ticularly convenient for proving the convergence of reinforcement-learning algorithms.
Concretely, Theorem 3.7 shows that, given a contraction mapping H and an idea of
how to approximate HV™, it is often fairly easy to design algorithms that approximate
V™ itself.

Waldmann [172] developed a highly general model of dynamic-programming prob-
lems, with a focus on deriving approximation bounds. Vendu and Poor [167] introduced
a class of abstract dynamic-programming models that is far more comprehensive than
the model discussed here. In addition to permitting non-additive operators and value

functions with values from any set (not just the real numbers), they showed how, in
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the context of finite-horizon models, a weaker “commutativity” condition can replace

the monotonicity condition exploited in this chapter.

3.9 Contributions

In this chapter, I presented a new model, which I called generalized Markov decision
processes, for the purpose of making it easier to present background results that are
common to all the models covered in this thesis. The model, which defines optimal
values by a simple generalization of the Bellman equation, might be useful to researchers
studying other types of sequential decision making. I proved a series of concrete results
concerning the model, including the contraction of the dynamic-programming operator,
the convergence of value iteration and policy iteration, the convergence of a model-
free reinforcement-learning algorithm, the convergence of a model-based reinforcement-
learning algorithm. I also gave a simple new proof that all-policies-proper MDPs result in
contraction with respect to some weighted max norm, and described a new stochastic-
approximation theorem, developed in collaboration with Szepesvari [158].

The generalized MDP framework highlights common elements among several differ-
ent sequential decision-making models, and extends existing models in an interesting
way. In the following chapters, I examine several simple applications of the results from

this chapter, but there are a number of interesting directions yet to be explored.



Chapter 4
Alternating Markov Games

Portions of this chapter and the next have appeared in earlier papers:
“Markov games as a framework for multiagent reinforcement learning” [90],
and “An introduction to reinforcement learning” [74] with Kaelbling and

Moore.

Game playing has dominated the artificial-intelligence world as a problem domain ever
since the field was born. Two-player games do not fit into the established MDP frame-
work because the optimality criterion for games is typically not one of maximizing
reward in the face of a fixed environment, but one of maximizing reward against an
optimal adversary. Nonetheless, there are profound similarities between the problem of

finding an optimal policy for an MDP and that of finding an optimal policy for a game.

4.1 Introduction

In this chapter, I review some of the important similarities and differences between
MDPs and two-player games in which players alternate moves (alternating Markov
games). In the next chapter, I consider a more general class of games in which both
players choose their moves simultaneously (Markov games). Both chapters address only
zero-sum games, that is, games in which reward for one player comes directly “out of
the pocket” of the other.

Interest in finding optimal policies for games is spread over several different fields:

complexity theorists have linked the (open) question of the existence of polynomial-time

76
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algorithms for finding optimal policies for alternating games to the equivalence of par-
ticular Turing-machine models [36]; reinforcement-learning researchers have adapted
MDP-based learning algorithms to a very general class of games [90] and many re-
searchers have used reinforcement learning in these environments; economists and game
theorists [168, 166, 143] have studied Markov games as a model for understanding the

behavior of individuals in multiagent systems.

4.2 Alternating Markov Games

In this chapter, I describe alternating Markov games, in which stochastic control of
the state transitions alternates between an agent and its opponent. This includes most
standard board games like backgammon, chess, and tic-tac-toe, but also captures more
complex situations in which rewards are issued throughout the interaction. The identity
of the player in control of the transition is part of the state description, and control

does not necessarily change hands after every action.

4.2.1 Basic Framework

In its general form, a Markov game, sometimes called a stochastic game [114], is defined
by a set of states, S, and a collection of action sets, Ay, As, ..., A, one for each agent
in the environment. State transitions are a stochastic function of the current state and
one action from each agent: T'(s, ay, az, ..., a,s') is the probability of a transition from
s to s’ when agent 1 chooses a; € Aj, agent 2 chooses a3 € Aj, etc. Agent ¢ also has an
associated reward function, R;(ay, ag, ... ,ax), and attempts to maximize its expected
sum of discounted rewards, E{} 7, ﬁjri_l_]«}, where ri_l_j is the reward received j steps
into the future by agent .

In this chapter and the next, I consider a well-studied specialization of Markov
games in which there are only two agents and they have diametrically opposed goals.
This makes it possible to represent the agents’ instantaneous rewards with a single
reward function that one agent seeks to maximize and the other, called the opponent,
seeks to minimize. The set A; denotes the agent’s action set, and Ay denotes the
opponent’s action set. In this chapter, only one agent has an action choice in each
state; 8y signifies the states in § in which the agent has a choice of action, and &,
signifies the other states. It is not necessary to assume that control strictly alternates

between the two players; Section D.1 shows that, from a complexity standpoint, such
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an assumption does not change the class of models considered. The function R(a,s)
denotes the immediate reward to the agent for taking action ¢ € Ay in state s € &y
or the immediate reward to the agent for its opponent taking action ¢ € Ay in state
s € 8.

Restricting the model to two-player zero-sum games simplifies the mathematics but
makes it impossible to consider important phenomena such as cooperation. Nonethe-
less, the present model subsumes MDPs, which are just alternating Markov games in
which |Az| = 1 or [S3] = 0. In the next chapter, I consider a generalization of alternat-

ing Markov games in which the players select their moves synchronously.

4.2.2 Acting Optimally

Ag in Chapter 2, an optimal policy is one that maximizes the expected sum of dis-
counted reward. There are subtleties in applying this objective to Markov games,
however. First, consider the parallel scenario in MDPs.

In an MDP, an optimal policy is one that maximizes the expected sum of discounted
reward; it is undominated, meaning that there is no state from which any other policy
can achieve a better expected sum of discounted reward. Every MDP has at least one
optimal policy, and of the optimal policies for a given MDP, at least one is stationary
and deterministic. This means that, for any MDP, there is a policy 7 : § — A that is
optimal. The policy 7 is called stationary because it does not change as a function of
time, and it is called deterministic because the same action is always chosen whenever
the agent is in state s, for all s € S.

For many games, there is no policy that is undominated because performance de-
pends critically on the choice of opponent. How, then, can we define an optimal policy?
In the game-theory literature, this difficulty is resolved by evaluating each policy with
respect to the opponent that makes it look the worst. This performance measure prefers
conservative strategies that can force any opponent to a stalemate over more daring
ones that accrue a great deal of reward against some opponents and lose a great deal
to others. This is the essence of minimax: Behave so as to maximize your reward in
the worst case.

Given this definition of optimality, alternating Markov games share several impor-
tant properties with MDPs: every alternating Markov game has a non-empty set of

optimal policies, at least one of which is stationary and deterministic [36].
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As in MDPs, the discount factor, 3, can be thought of as the probability that the
game will be allowed to continue after the current move, i.e., 1 — 3 is the probability
that a zero-value forced draw will be proclaimed on any given move.

Another connection between alternating Markov games and MDPs is that, if we hold
the opponent’s policy fixed, the agent faces a stationary environment and any of the
MDP algorithms of Chapter 2 can be used to find an optimal counter strategy. This fact
will be helpful in deriving an efficient policy-iteration algorithm for alternating Markov

games.

4.2.3 Simple Stochastic Games

Condon [36] reduced alternating Markov games to their simplest possible form, which
she called “simple stochastic games.” In this model, there are four kinds of states:
states in which the agent deterministically controls the transitions, states in which
the opponent deterministically controls the transitions, states in which neither player
controls the transition but instead a transition is made to one of two states with equal
probability, and absorbing “win” states (one for each player) that end the game when
they are reached. The model includes a single transition with a non-zero reward, no
discount factor, two actions per state, and only deterministic transitions and probability
1/2 transitions. Nonetheless, it is possible to show that any alternating Markov game
with rational immediate rewards and transition probabilities can be transformed to
an equivalent simple stochastic game with at most a polynomial increase in problem
size [36, 183].

Although the simple stochastic game model is elegant, its connection to the tradi-
tional MDP is somewhat indirect; I will focus on the alternating Markov game model,

although the results I present apply to simple stochastic games as well.

4.3 Algorithms for Solving Alternating Markov Games

In this section, I review methods for finding optimal policies for alternating Markov
games. The algorithms here are all variations of algorithms for solving Markov decision

processes.
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4.3.1 Value Iteration

In an MDP, given Q*(s, a), an agent can maximize its reward using the “greedy” strategy
of always choosing the action with the highest Q value. This strategy is greedy in the
sense that it treats Q*(s,a) as a surrogate for immediate reward and then acts to
maximize its immediate gain. It is optimal because the Q function is an accurate
summary of future rewards.

A similar observation can be exploited in alternating Markov games. First, we re-
define V*(s) to be the expected reward to the agent for following the optimal minimax
policy against an optimal opponent starting from state s, and Q*(s, a) to be the ex-
pected reward for the agent taking action a (if s € §;) or the opponent taking action
a (otherwise) and both players continuing optimally thereafter. Then the value of a
state s € § in an alternating Markov game is
Vo(s) = max, cd, @%(s,a1) ifs€ S

ming, e 4, Q*(s,az2) otherwise,

and the value of a state-action pair (s, a) is

Q" (s,a) = R(s,a) + ﬁZT(s, a,sYV*(s).

5/
The resulting recursive equations look much like the equations for ¢ and V in MDPs,

and indeed the analogous value-iteration algorithm converges to the correct values [36].

4.3.2 Policy Iteration

Policy iteration in Markov decision processes proceeds by alternating between comput-
ing the value of the current policy and finding the greedy policy for the current value
function. In alternating Markov games, there are essentially two active policies at any
given time, and as a result, there are several choices for generalizing policy iteration to
alternating Markov games.

Table 4.1 gives a generic policy-iteration algorithm for alternating Markov games.
It follows the MDP algorithm quite closely, alternating between policy evaluation and
policy improvement, and makes use of two important subroutines: evalGame and
improvePoliciesGame. The evalGame subroutine, given in Table 4.2, simply computes

the value function that results from the agent following policy 7y and the opponent



81

PolicyIterationGame(M = (51,82, 41,43, T, R, 3)) := {

foreach s € §; 71(s) := a, for some a € A;

foreach s € Sy m3(s) := a, for some a € A,

Vo := evalGame(ry, m2, M)

t:=20

loop
ti=t+1
(71, 72) := improvePoliciesGame(7y, 7g, Vi—1, M)
V; := evalGame(ry, 72, M)

until V;_1(s) = Vi(s) for all s

return (7, 72)

Table 4.1: The policy-iteration algorithm for alternating Markov games.

evalGame(7wy, 7a, (S1,S2, 41, A3, T, R, 3)) := {
Solve the following system of linear equations:
find: v[s]
s.t.: v[s] = R(s,m1(s)) + B2 yes T(s,mi(s),s)v[s], for all s € S
and: vfs] = R(s,ma(s)) + 5 Lyes T (s, ma(s), s')v[s'], for all s € S

return v

Table 4.2: Computing the value function for a given pair of policies.
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following policy 7; as in MDPs, the value function is computed by solving a system of
linear equations.

At this high level, the policy-iteration algorithm is identical to the one described
in Chapter 2. The difference is in the implementation of improvePoliciesGame. How
should we choose new policies for the players that are closer to the optimal policies?

Let Vi_; be a value function and 7y and 7wy be policies for the agent and the
opponent. There are at least four sensible choices for constructing policies 7] and 7}

that are improvements relative to V;_;:
1. let 71 and 75 both be greedy with respect to V;_q;

2. let 7] be greedy with respect to V;_;, and 7} be the optimal policy for the

opponent given that the agent is following 7{;

3. let 7, be greedy with respect to V;_;, and 7] be the optimal policy for the

opponent given that the agent is following 7};

4. let 7] be the optimal policy for the agent given that the opponent is following 7,
and let 7} be the optimal policy for the opponent given that the agent is following

.

These choices are not all equivalent; in fact, only choices 2 and 3, which are duals,
lead to algorithms that converge in general [37]. We therefore base the implementation
of our improvePoliciesGame subroutine in Table 4.3 on choice 2. Since we need 7y to
be the optimal counter-strategy to the greedy 7y, Table 4.4 shows how to compute the
optimal counter-strategy for a fixed policy. The basic idea is that, once one player’s
actions are fixed, only one player is left with any choice of action; the resulting model
is an MDP. The algorithms in Table 4.4 make use of MDP policy iteration to solve the
resulting one-player game, though any of the MDP algorithms from Chapter 2 would
suffice. In the routine for computing an optimal policy for the opponent given a fixed
policy for the agent, the rewards are negated; this is because the opponent’s job is to
minimize reward and the MDP algorithms from the previous chapter mazimize reward.

The value function computed in the process of finding the optimal 75 given 7y is
the same value function that is found when evaluating the resulting policies. A more
efficient implementation would save this value function instead of throwing it away and

recomputing it.
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improvePoliciesGame(ry, 7o, V, M = (81,82, A1, A2, T, R, 5)) :={
foreach s € S
71 (5) = argmax,e g, (R(5, @) + B S es T(s, 0 V()
Ty := counterStratGame2(r, M)
return (7, 72)

}

Table 4.3: Computing improved policies for both players.

counterStratGame2(ny, (S1, S, A1, 43, T, R, 3)) := {
foreach s € S and ' € S and a € A; {
if (s € 8y) T'(s,a,5) :=T(s,a,s)
else T'(s,a, ') := T(s,71(s), s)
foreach s € S and a € A; R/(s,a) := —R(s,a)
return(PolicyIterationMDP((S; U Sy, As, T/, R, 3)))

}

counterStratGamel(ng, (S1,Ss, A1, 43, T, R, 3)) := {
foreach s € S and s’ € S and a € A; {
if (s€ 81) T'(s,a,s) :=T(s,a,s)
else T'(s,a,s") := T(s, m2(s), s)
return(PolicyIterationMDP({S; U 8y, Ay, T, R, 3)))

}

Table 4.4: Computing the optimal counter-strategy for player 2 given a policy for player
1, and vice versa.
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4.3.3 Polynomial-time Algorithms for Simple Games

There is no algorithm that is known to solve general alternating Markov games in
polynomial time, although it is easy to believe that such an algorithm exists [37]. This
section examines algorithms that provably solve simplified classes of alternating Markov

games in polynomial time.

Cycle-free Games

We say that an alternating Markov game is cycle free if, aside from designated zero-
reward absorbing states, there is absolutely no way that any state can be revisited.
Games with a non-renewable resource, such as spaces on the board in tic-tac-toe or
Connect-Four, are cycle free. Cycle-free games are easy to solve, because no more than
|S1] + |Sz2| steps can elapse before the absorbing state is reached. These games can
be solved in polynomial time using value iteration, or by a procedure referred to as
DAG-SP [28], which I will describe now.

In a cycle-free game, all states can be categorized by the largest possible number of
transitions that can elapse between an agent occupying the state and the agent reaching
an absorbing state. Let d(s) be the maximum number of transitions (distance) from s

to an absorbing state. We can define d by

0 if s is absorbing,

d(s) =
=) 1+ maxy o [{T(s,a,s’) > 0}d(s) otherwise.

Here I{e} is the indicator function for boolean expression e; I{e} = 1 if ¢ is true, and
0 otherwise. We are guaranteed that d(s) < |S1]| 4 |Sz| for all s in non-cycle games.
In addition, if ¢ is reachable from s in a single transition, d(s') < d(s). As a result,
an algorithm can solve the Bellman equations by assigning values to states in order of
increasing d(s).

Of course, it is not necessary to compute and sort these distances explicitly; a
topological sort [40] of the transition graph accomplishes the same purpose much more

easily.

Deterministic Goal-reward Games

In many games, like checkers, it is possible to return to the same board configuration

over and over again. The DAG-SP algorithm from the previous section can not be



85

applied to these games. However, checkers can be characterized as a deterministic
goal-reward game and can be solved efficiently (relative to the astronomical size of its
state space!) by an algorithm closely related to Dijkstra’s shortest-path algorithm [40].

Like cycle-free games, reward-goal games have a set of absorbing states. Unlike
cycle-free games, the only non-zero rewards in a reward-goal game are issued imme-
diately upon entering an absorbing state. This means that the optimal values in de-
terministic reward-goal games can be conveniently characterized; there is at most one
non-zero reward reached in any game. The optimal value for any state in a determinis-
tic reward-goal game is either zero or can be written 357, where r is one of the non-zero
rewards, and k is the number of steps before the non-zero reward is reached.

We can solve deterministic goal-reward games efficiently by carefully working back-
wards from the absorbing states. At an intuitive level, this is accomplished by taking
the largest reward and propagating it backwards to states in Sy (the maximizing states).
Similarly, the most negative reward can be propagated backwards through the states
in S; (the minimizing states). Once this process gets stuck, the remaining states all
have value zero.

More precisely, the algorithm begins by defining V'(s) = 0 for all absorbing states
and leaving it undefined otherwise. Define a lower bound [ and upper bound u on the
value of each state as follows. If s € 8y, I(s) is the value of

gréi}l{(R(S, a) + BV (N (s, a))),

where the maximization is over actions such that V(N (s, a)) is defined; recall that N is
the next-state function. If V(N (s, a)) is undefined for all a, I(s) is undefined. Because
the value [(s) is attainable for some action, the true value of V'(s) is at least this large.
For s € Sy, u(s) is defined analogously.

If s € 8§, we can compute an upper bound on V(s) as follows. We define an

optimistic Q value to be
Q(s,a) = R(s,a) + V(N (s, a))

if V(N(s,a))is defined. If V(N(s,a)) is not defined, Q(s,a) = max, maxy 37V (s')
where the maximization of ¢ is over all §' such that V(s') is defined, and the maxi-
mization over d is over path lengths from s to s’ when « is taken as the first action. If

V(') < 0, this quantity is maximized when d = co. The value u(s) = max, Q(s,a) is
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an upper bound on the value of V' (s) because the Q values are computed optimistically.
For s € Sy, I(s) is defined analogously.

If, for any s, V(s) is undefined and I(s) = u(s), then we can define V(s) = I(s). This
will happen if V(NN (s, a)) is defined for all @, or one of the actions for which V(N (s, a))
is defined dominates the optimistic estimate for all the other actions. This can happen,
for example, when s € §; and s is one step away from the largest defined V (s').

Each time a new V (s) is defined, the upper and lower bounds need to be recomputed.
If, at any time, there is no s for which V'(s) is undefined and I(s) = u(s), we can set all
the undefined V'(s) values to zero. This can be justified by induction on the value of d
in the definition of the optimistic bounds above, but intuitively, each of the states for
which V (s) is undefined would prefer to be in a zero-reward cycle to any other outcome
they could ensure.

A straightforward implementation of this algorithm in which the upper and lower
bounds are recomputed from scratch at each iteration runs in polynomial time. How-
ever, a more efficient implementation can be created by storing the optimistic Q values
in priority queues. This novel algorithm was inspired by Condon’s [36] algorithm for
deterministic simple stochastic games and Boyan and Moore’s [28] application of Di-
jsktra’s algorithm to deterministic MDPs. Condon’s algorithm is a great deal simpler,

but is only defined for undiscounted games with a unique goal state.

Deterministic Constant-reward-cycle Games

The algorithm of the previous section can be extended using ideas from the cycle-free-
game algorithm to solve a wider class of games in polynomial time.

In a constant-reward-cycle game, for every possible cycle of states there exists a
value r such that every immediate reward on that cycle is exactly r. In the goal-reward
games of the previous section, r is zero. In other games, several different values of r are
possible depending on the cycle. These games can be solved by clustering the states
according to whether they can participate in any cycles, and, if so, the value of r for
those cycles. Note that all the actions a from state s that can result in a cycle must
have the same immediate reward.

The transition graph for a deterministic alternating Markov game is the graph
consisting of one node for each state, and one directed edge for each state-action pair.

There is an edge in the transition graph from node s to node ¢ if there is some action
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a for which N(s,a) = s’. We can partition the states of the game by their strongly
connected components [40] in the transition graph. Each component consists of either
a single state or a set of states in which every pair of states in the set is involved in a
cycle. Thus, by assumption, each component ¢ has a single immediate-reward value,
which we write as r..

We will label each of the nodes of the graph with its value. Begin by making V'(s)
undefined for all states s. Asin the cycle-free-game algorithm, consider each component
¢ in reverse topological order, i.e., starting with the components that can reach no other
components. For all states within a given component, all rewards are equal, except for
those that result in a transition out of the component. Values can be assigned to all the
states in the component using a variation of the deterministic goal-reward algorithm
of the previous section.

It is not obvious that this algorithm has any practical application over that of
the goal-reward algorithm. However, it is interesting in that it is the most general

polynomial-time algorithm known for solving alternating Markov games.

4.3.4 Other Algorithms

Condon [37] surveyed algorithms for the simple stochastic game model. The results
of Zwick and Paterson [183] and Condon [36] show that the discounted alternating
Markov game model is polynomially reducible to the simple stochastic game model;
this means that any of the simple stochastic game algorithms can also be used to solve
alternating Markov games, indirectly. However, most of the algorithms in Condon’s
paper can be applied to alternating Markov games with little or no change.

In addition to algorithms designed for alternating games, any algorithm that can
solve general Markov games can solve alternating Markov games as well. Chapter 5

discusses these more general algorithms.

4.4 Algorithmic Analysis

The correctness of and run time bounds for the algorithms in Section 4.3 follow from

the analogous algorithms for generalized Markov decision processes (Chapter 3).

Lemma 4.1 Alternating Markov games are a type of generalized Markov decision pro-

cess.
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Proof: To show that alternating Markov games are a form of generalized MDP, we
need to define the state space, action space, reward and transition functions, and
optimality equations. Let X = §1USy, U = Ay X Az, R(z, (a1,az2)) = R(z,a;) if s € §;
and R(z,az) otherwise, and T'(z, (a1, az),2') = T(x,ay,2’) if s € & and T(z,az,2’)

otherwise. The optimality equations are

Ve(s) = { max, ed, Q@ (s,a1), ifseS (4.1)

ming,e4, Q*(s,az), otherwise,

and

Q" (s,a) = R(s,a) + ﬁZT(s, a,sYV*(s).

The relevant summary operators are shown to be non-expansions in Section C.1. [

4.4.1 Value Iteration

Lemma 4.1 and Theorem 3.4 together imply that the value-iteration algorithm for
alternating Markov games converges to the optimal value function.

In addition, Condon [36] shows that the complexity (in terms of bits) of the optimal
value function is bounded by a polynomial in the size of the description of the game.
As discussed in Theorem 3.4, this fact can be used to show that value iteration can
be used to find optimal policies in pseudopolynomial time, or polynomial time for
fixed discount factor, for discounted alternating Markov games and all-policies-proper

alternating Markov games.

4.4.2 Policy Iteration

To apply the policy-iteration algorithm for generalized MDPs to alternating Markov
games, the optimality equations (Equation 4.1) must be rewritten so that the outermost

operator is a maximization. This can be accomplished as follows:

Q*(s,a1), it se &

ar€A | ming, e, @*(s,az), otherwise,

V*(s) = max {

and

Q*(s,a) = R(s,a) + ﬁZT(s, a, sYV*(s').

The resulting policy-iteration algorithm is exactly the algorithm of Section 4.3.2,

in which policy evaluation is accomplished by solving a minimum-reward MDP. A dual
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algorithm can be obtained by placing the minimization on the outside and performing
policy evaluation using a maximum-reward MDP.

By Lemma 3.6, the policy-iteration algorithm for games converges no more slowly
than value iteration, finding an optimal policy and value function in a pseudopolynomial

number of iterations.

4.4.3 Linear Programming

No one has yet been able to reduce the problem of solving an alternating Markov
game to that of solving a polynomial-size linear program. This is somewhat surprising
because, as with MDPs, the optimal value function for an alternating Markov game is
the solution to a polynomial-size set of linear equations. In addition, there is a very
natural linear program that would seem to solve this problem perfectly.

In this section, I describe the linear program that seems to solve alternating Markov
games, and give a simple example that shows why it does not. This issue is also treated
in a paper by Condon [37].

The optimal value function V for an alternating Markov game satisfies the Bellman
equations in Equation 4.1. Section 2.3.3 described a linear program that solved a similar
set of equations. In that formulation, the maximization operator is implemented as the
least upper bound; that is, there is a constraint demanding that V'(s) is greater than
or equal to the one-step value for each action, and the objective function minimizes
V(s). An analogous technique can be used to implement the minimum operator.

This leads to the natural assumption that these two techniques could be combined
to create a linear program whose solution is exactly the value of an alternating Markov
game. Table 4.5 provides the “algorithm” suggested by this idea.

Unfortunately, the objective function cannot be used to jointly ensure that the
maximization and minimizations are implemented properly. Figure 4.1 depicts a 4-state
deterministic alternating Markov game for which the linear-programming algorithm in
Table 4.5 does not work.

In this example, states s; and s} are nominally controlled by the agent and state
s9 is nominally controlled by the opponent. However, the single actions available from
states s; and s| lead to state s9, and the single action available from state sy leads to
an absorbing state. In the corresponding linear program, V(sy) > 3/4 V(sy), V(s}) >
3/4V(s2), V(sz) <1,and V(s1)+ V(s]) — V(sz) needs to be minimized. Although it
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gameLP(<517 827 A17 A27 T7 R7 ﬁ>) = {

Solve the following linear program:
minimize: Y s v[s] — 2.5, v]$]
s.t.: v[s] > R(s,a)+ B3 csT(s,a,s)v[s], for all s € §; and a € Ay
and: v[s] < R(s,a)+ Y yesT(s,a,5)v[s], for all s € Sy and a € A,
variables: v[s|forall s € §

return v

Table 4.5: Trying to solve an alternating Markov game via linear programming. This
algorithm is incorrect.

max min +0
() e

Figure 4.1: A small deterministic alternating Markov game for which the natural linear-
programming formulation does not specify the optimal value function (5 = 3/4).
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is true that the optimal value function (V(s1) = 3/4, V(s}) = 3/4, V(s3) = 1) satisfies
the constraints and has an objective value of 1/2, the incorrect value function V'(s) = 0
for all s also satisfies the constraints and has a smaller objective value.

This shows that the naive application of linear programming to the problem of
solving alternating Markov games (even deterministic ones) is incorrect. Although
there are simple modifications that can be applied to repair this example, no general
solution is known; it is possible that the problem can be formulated and solved as a

linear program, but no one has yet found a way to do this.

4.5 Complexity Results

Condon [36] showed that, like MDPs, simple stochastic games can be solved by finding
an optimal value function and that the optimal value function can be written as the
solution to a polynomial-size set of linear equations. This is roughly because the solu-
tion to a simple stochastic game can be expressed as a pair of deterministic stationary
policies (one for each player) that are in equilibrium, meaning that neither player has
any incentive to change its policy if the other player’s policy stays fixed.

From these observations, it is relatively straightforward to see that the problem of
finding a minimax optimal policy is in the complexity class NPNco-NP [36]. This is
because we can guess a policy for either player and verify its optimality in polynomial
time using a polynomial-time algorithm for solving the resulting MDP.

There are very few problems that are in NPNco-NP and yet are not known to be
solvable in polynomial time. Unfortunately, this is one of them. Although there are
dozens of natural algorithms for solving the problem, Condon [37] showed that almost
all of them are either wrong or run in exponential time in the worst case.

Condon shows that the deterministic-transition version of the simple stochastic
game problem can be solved in polynomial time. Zwick and Paterson [183] tried to ex-
tend this result by considering deterministic alternating Markov games, that is, games
with general rewards and discounting but only deterministic transitions. They ex-
pressed confidence that this problem is in P, but were unable to prove it. They did
show that the discounted version is solvable in pseudopolynomial time using an argu-
ment closely related to the proof that value iteration is pseudopolynomial for MDPs.

Section 4.3.3 gave a polynomial time algorithm for a subclass of deterministic alter-

nating Markov games in which every cycle (a sequence of transitions from a state back
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to itself) consists of identical immediate rewards. Although this broadens the class of
games known to be solvable in polynomial time, there is still a great deal of room for
improvement.

The polynomial-horizon version of general alternating Markov games is P-complete.
P-hardness follows easily from the analogous result for MDPs, proven by Papadimitriou
and Tsitsiklis [116] and value iteration can be used to solve polynomial-horizon games
in polynomial time. However, unlike MDPs, the problem remains P-hard even when
all transitions are deterministic. This can be shown by an easy reduction from the
monotone circuit-value problem [57]—essentially, the opponent takes the place of the

stochastic transitions in Papadimitriou and Tsitsiklis” MDP proof [116].

4.6 Reinforcement Learning in Alternating Games

As mentioned in the introduction, game playing is one of the best studied domains for
reinforcement learning. One application, well ahead of its time, was Samuel’s checkers
playing system [134]; it employed a training scheme similar to the updates used in
value iteration and Q-learning. Tesauro [160] used the TD(A) algorithm [154] to find
an excellent policy for backgammon.

Tesauro’s work is interesting for many reasons. I include a brief description here
for its motivational appeal. Backgammon has approximately 1020 states, making
table-based reinforcement learning virtually impossible. Instead, Tesauro used a back-
propagation-based three-layer neural network as a function approximator for the value
function, mapping board position to an estimate of the probability of victory for the
current player. Basic TD-Gammon used very little pre-defined knowledge of the game,
and the representation of a board position was a direct encoding, sufficiently power-
ful only to permit the neural network to distinguish between conceptually different
positions. The more advanced TD-Gammon was provided with the same raw state
information supplemented by a number of hand-crafted features of backgammon board
positions. The results have been exceptional.

Although experiments with other games have in some cases produced interesting
learning behavior, no success close to that of TD-Gammon has been repeated. Other
games that have been studied include Go [139] and Chess [161]. It is an open question
as to how the success of TD-Gammon might be repeated in other domains.

The main challenges these projects face, however, are in designing algorithms that
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can deal with the huge state spaces that results from formalizing traditional board
games as alternating Markov games. The alternating-Markov-game approach is most
appropriate for problems with undecomposable state spaces and general reward func-
tions.

How does one go about using reinforcement learning to solve an alternating Markov
game? Because of the many similarities between alternating Markov games and MDPs,
researchers have simply used variations of existing reinforcement-learning algorithms
to solve games. In the next sections, I show that this is perfectly acceptable, as long

as updates are performed correctly.

4.6.1 Simple Minimax-Q Learning

The Q-learning update rule for MDPs can also be applied to alternating Markov games:
Q[s,a] := (1 — @)Q[s, a] + a(r 4+ BV (s')) for experience tuple (s, a,r,s’y. This learning
rule converges to the optimal Q function assuming that every action is experienced in
every state infinitely often and that new estimates are blended with previous ones using
a slow enough exponentially weighted average (see Section 3.6.3). The major difference

is that
V(s') = max, 4, Q(s',ay) if s €8
ming c 4, @5, a3) otherwise,
whereas in MDPs, it is a simple maximization.
The algorithm is a generalization of QQ-learning, and existing convergence results
do not directly apply. It is also a special case of the minimax-Q learning algorithm,
described in the next chapter. The convergence theorem for generalized Q-learning,

stated in Section 3.6.3, applies to simple minimax-Q learning as a consequence of

Lemma 4.1.

Theorem 4.1 Simple minimaz-Q) learning converges to the optimal @) wvalues with

probability 1 under the appropriate conditions.

Proof: The theorem follows from the results in Section 3.6.3. O
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4.6.2 Self-play Approach

There are many other ways of adapting MDP-oriented reinforcement-learning algorithms
to Markov games [26]. Some take advantage of the fact that, often, a complete tran-
sition model for the game is known in advance, making sampled updates unnecessary;
others exploit the agent-opponent symmetry that is present in many games by storing
Q[s, a] values for s € & only and noting that Q*(s1,a1) = —Q*(sz,az) when (s, a;)
and (sg,aq) are symmetric state-action pairs (described below). Many of these ap-
proaches are special cases or simplifications of simple minimax-Q) learning and their
convergence to optimal minimax policies follows from Theorem 4.1.

The self-play algorithm can be applied to the class of symmetric, alternating Markov
games. In these games the action space for the two agents is the same, A; = Ay, and
the state space can be split into a set Sy of states stochastically controlled by the agent,
and a set &y of states stochastically controlled by the opponent. The sizes of §; and
Sy are the same and all transitions from states in §; (Sz) have zero probability of
remaining in §; (Sz). Furthermore, we can define a “board flipping function” f that
maps each s; € 8§ to some s; € 8 and vice versa. The flipping function has the
property that R(s,a) = —R(f(s),a), and T'(s,a,s’) = T(f(s),a, f(s')). This is just a
complicated way to say that any move for the agent can be turned into into an identical
move for the opponent and vice versa.

Because of the symmetry in this class of games, the optimal value function V* and
Q function Q* satisfy V*(s) = —=V*(f(s)) and Q*(s,a) = —Q*(f(s), a), for any state s
and action a. An easy way to see this is to notice that the zero value function satisfies
these properties and that they are preserved by a step of value iteration. This suggests
that the self-play algorithm need only maintain Q values for the states in &;. Using

the symmetry properties, we can write the updates as:

Qlstva)i= (1= )@l + o (7 = 7 min QLF (). )

for a transition from s; to sy and

Qlf(s2).) 1= (1= QU (2.l + (7 = ymin QLo )

for a transition from s, to sy.
It is easy to see that each update is precisely a simple minimax-Q learning update

with the values of & being updated in different ways. The fact that some states are
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updated “out of order” just means that they are being updated more often but still in
the proper way; this can only improve convergence. In applications in which the model
is known in advance [160], it is not even necessary to represent the ( values explicitly;

instead, the value function can be modified directly, as in value iteration.

Theorem 4.2 Self-play algorithms converge to the optimal ) values with probability 1

under the appropriate conditions.

Proof: This follows fairly easily from the results of Section 3.6.3. O

4.6.3 Non-converging Update Rules

There are approaches to learning games that do not converge in general. In this section,
I examine an approach that treats the opponent as part of the stochastic environment.

Consider a game in which all transitions, except to an absorbing goal state, result
in zero reward. Imagine that the agent is in state sy. After taking an action ay, the
resulting state is s and control belongs to the opponent. The opponent now takes an
action, bringing the state to s| and returns control back to the agent. Under the simple

minimax-Q learning rule, two updates are performed,

Qls1, 1] := (1 - )Qs1, au] + @ (ﬁ min Q[527a/2]) 7

)

Qls2, as) i= (1 — a)Q[s2, as] + « (ﬁ H(llzltXQ[S/h a’l]) )

1
However, from the agent’s point of view, there was only one transition—from state s;

to state s| via action a;. This implies a single update,

Qs1, ax] == (1 = a)Q[s1, 1] + a (ﬂ max Q[sy, 0/1]) :

a;

If the opponent chooses its actions according to a fixed policy, this update rule will
converge to the value of the optimal counter-policy, and not the minimax optimal policy.
If the opponent adopts a non-stationary policy, the update rule will not necessarily
converge to anything meaningful.

One of the main results of this section, then, is that it is possible to learn opti-

mal minimax strategies for games using reinforcement learning. The popular self-play
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method, in which a system learns about a game by playing it against itself for a long
time, can be shown to converge to an optimal strategy as long as the simple minimax-
Q learning update rule is used, and the system visits all possible game configurations

often enough.

4.7 Open Problems

The most glaring open problems with respect to alternating Markov games involve the

existence of polynomial-time algorithms.

e Can alternating Markov games be solved in polynomial time?

e What if we restrict ourselves to deterministic alternating Markov games? We
know that by making the problem any simpler, for example, by restricting rewards
to be zero except upon entering an absorbing state, polynomial-time algorithms

exist, so the deterministic problem is in a perfect position to be solved.

o Like alternating Markov games, the problem of deciding whether a given number
is prime is in the class NPNco-NP. Primes can be recognized by a randomized
algorithm in polynomial time with a bounded probability of error. Perhaps a
randomized algorithm for alternating Markov games would be easier to find.
There is a randomized subexponential-time algorithm [101]; is there one that

runs in polynomial time?

e A connection can be made between deterministic MDPs and min-cost flow prob-
lems (see Chapter 2). Can these connections be exploited to find an efficient

algorithm for alternating Markov games?

4.8 Related Work

The study of games has been divided among several different disciplines: game theory,
reinforcement learning, and computational complexity. Although there has been some
cross fertilization between these fields, many of the fundamental results have been
discovered separately by individual researchers in the different areas.

The study of the computational properties of games in the game-theory litera-

ture dates back at least to the work of von Neumann and Morgenstern [168], which
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addressed solutions to the single-state simultaneous-action games known as matrix
games. Shapley [143] extended these concepts to multi-stage Markov games. Sur-
veys of Markov games from a game-theory perspective have been written by Van Der
Wal [166] and Vrieze [170]. A shorter survey is also available in a game-theory overview
edited by Peters and Vrieze [120]. Filar [54] specifically examined the difference between
simultaneous- and alternating-action games.

It is interesting to note that many of the great minds of computer science worked
on creating game-playing programs. Russell and Norvig’s artificial intelligence text-
book [132] lists contributions by Babbage, Zermelo, Von Neumann, Wiener, Shannon,
Turing, and Knuth.

Alternating Markov games have been the source of a great deal of attention in
the reinforcement-learning world. One of the earliest systems for game playing was
Samuel’s checker-playing program [134], which improved with experience and was in-
spired by many of the same insights that underlie simple minimax-Q learning. More re-
cent examples of learning in alternating Markov games include Tesauro’s backgammon
player [160]; Boyan’s backgammon and tic-tac-toe players [26]; Schraudolph, Dayan
and Sejnowski’s Go player [139]; and Thrun’s chess player [161].

In the complexity and algorithms literature, Condon [36] initiated the study of
simple stochastic games, “the simplest possible restriction of Shapley’s model, which
retains just enough complexity so that no polynomial time algorithm is known.” The
model is essentially an undiscounted alternating Markov game with restricted transition
probabilities and action sets and rewards only of plus and minus one upon transition to
a zero-reward absorbing state. Condon showed that solving a “stopping” (all-policies-
proper) simple stochastic game is actually equivalent to solving an alternating Markov
game. She describes connections from this problem to Markov games, as well as to
important open problems in complexity theory. Later work [37] examined algorithmic
approaches to the problem, with the hope of finding a polynomial-time algorithm to
solve it. Although this problem is still open, Ludwig [101] was able to show that
the problem of finding the optimal value function for a simple stochastic game can
be solved in subexponential time. Zwick and Paterson [183] examined deterministic
average-reward and deterministic discounted games and showed that these problems are
no harder than solving simple stochastic games, that pseudopolynomial-time algorithms

exist, and that no polynomial-time algorithms are known.
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4.9 Contributions

In this chapter, I described a generalization of Markov decision processes to a type of
multiagent environment called an alternating Markov game. I proved a new theorem
showing that strictly alternating Markov games are just as hard to solve as alternat-
ing Markov games. I described the extension of value iteration and policy iteration
to games, and explained that no polynomial-time algorithm is known for solving this
class of models. I derived a new algorithm for solving constant reward-cycle alternat-
ing Markov games in polynomial time, by combining the core algorithmic ideas of two
previous polynomial-time algorithms. I showed, for the first time, that reinforcement-
learning algorithms developed for alternating Markov games converge to optimal min-
imax policies.

It seems inevitable that a polynomial-time algorithm for alternating Markov games
will be found. There are important algorithmic ideas that have been recently discovered
in the context of solving min-cost flow problems and hard combinatorial optimization
problems, and some of these ideas are likely to be useful in finding provably efficient
algorithms for alternating Markov games. This would settle one of the more intriguing
open problems in the area of sequential decision making, and perhaps spark interest in

developing useful applications.



Chapter 5

Markov Games

Markov games, also called stochastic games, are a model of sequential decision making
that both predates and generalizes Markov decision processes. The topic was originally
studied by Shapley [143]. This chapter generalizes the previous chapter by considering
two-player Markov games in which rewards and transitions are determined by the

simultaneous actions of both players.

5.1 Introduction

Most board games (chess, checkers, tic-tac-toe, etc.) are played by people taking turns
changing the state of the game. This form of game is very convenient for humans to
play because it requires no hidden information or implied trust; all players have access
to all information at all times.

There are familiar conflict situations that have a more simultaneous quality to
them. In football, for example, the offensive and defensive coaches call plays without
knowing what the other coach will do. In hockey, a player taking a penalty shot decides
whether to shoot high or low, while the goalie commits to blocking one or the other
type of shot. In business, MCI decides to start an ad campaign defending itself against
whatever negative claims AT&T might be making. All these examples have the prop-
erty that the two decision makers choose a course of action that becomes immediately
apparent to the other decision maker; decisions are made in the face of information
that is complete except for the current decision of the other player. This is a different
kind of information structure from alternating games, in which nothing is hidden, and

incomplete-information games like poker in which information remains hidden through

99
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a sequence of decisions. It is these simultaneous-action complete-information games

that are the subject of this chapter.

5.2 Markov Games

The set of Markov games subsumes both Markov decision processes and alternating

Markov games, described in previous chapters, as special cases.

5.2.1 Basic Framework

As before, A; and Ay represent the action choices available to the agent and its oppo-
nent. Instead of partitioning the state space according to which player has control of
transitions, here the players control the transitions together. The functions R(s, ay, az)
and T'(s, a1, ag, ') represent the immediate rewards to the agent and transition proba-
bilities resulting from the agent taking action a; € A; and the opponent taking action
ay € A, from state s.

An important special case is when |S| = 1. The resulting game is called a matriz
game; it is the earliest form of game studied in the game-theory literature [168]. The
name “matrix game” comes from the fact that the relevant parameters can be sum-
marized by a |A;| X |A3] matrix consisting of the immediate reward values. Solving a

matrix game is known to be polynomially equivalent to solving a linear program [47].

5.2.2 Acting Optimally

As with alternating Markov games, I mainly consider the problem of finding minimax-
optimal policies. Once again, I consider only the discounted expected value criterion.
It is possible to define a notion of undiscounted rewards for Markov games, but not all
Markov games have optimal strategies in the undiscounted case [114]. This is because,
in some games, it is best to postpone risky actions indefinitely but not to avoid them
forever.

Like MDPs and alternating Markov games, every Markov game has a stationary
optimal policy. Unlike the other models, however, there are Markov games with no
deterministic optimal policy. A classic example is “Rock, Paper, Scissors,” in which
any deterministic policy can be consistently defeated, whereas the optimal stochastic

policy always breaks even. The need for stochastic action choice stems from the agent’s
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Agent
rock paper scissors
rock 0 1 -1
Opponent paper -1 0 1
scissors 1 -1 0

Table 5.1: The matrix game for “Rock, Paper, Scissors.”

uncertainty of its opponent’s current action and its requirement to avoid being “second
guessed.”
Like alternating Markov games, when one player’s policy is held fixed, the other

player’s optimal counter strategy can be found as the solution to an MDP.

5.3 Algorithms for Solving Markov Games

In this section, I briefly review methods for finding optimal policies for Markov games
using extensions of the value-iteration and policy-iteration algorithms. Both methods

rely on a subroutine for finding the optimal stochastic policy to a matrix game.

5.3.1 Matrix Games

In this section, I describe the problem of finding an optimal policy for a single-state
Markov game. Although this type of game is a very special case, the linear program
used to solve it forms the basis for multi-state algorithms.

A matriz game is defined by the matrix R of immediate rewards. Component
R(ay, a3) is the reward to the agent for choosing action a; when the opponent chooses
action ay. The agent’s goal is to choose actions to maximize its expected reward while
the opponent’s goal is to minimize it. Table 5.1 gives the matrix game corresponding
to the well-known game of “Rock, Paper, Scissors.”

The agent’s policy p is a probability distribution over the actions in 4;. For “Rock,
Paper, Scissors,” p is made up of 3 components: p[rock], p[paper]|, and p[scissors].
Under a minimax criterion, the optimal agent’s minimum expected reward should be
as large as possible. How can we find a policy that achieves this? Imagine that we
would be satisfied with a policy that is guaranteed an expected score of v no matter
which action the opponent chooses. The inequalities in Table 5.2, with p > 0, constrain

the components of p to represent exactly those policies—any solution to the inequalities
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plpaper] — p[scissors] >wv (vs. rock)
—  p[rock] + p[scissors] >wv (vs. paper)
plrock] — p[paper] > v (vs. scissors)
plrock] + p[paper] + p[scissors] =1

Table 5.2: Linear constraints on the solution to a matrix game.

matrixLP(A;, Ag, R) := {
Solve the following linear program:
maximize: v
sit.: v <30, ea, plar]R(ar, az), for all ag € Ay
and: play] > 0, for all ay € Ay

and: ZGQEAQ p[az] =1
variables: v, plasy] for all ay € A,

return p

Table 5.3: Solving a matrix game via linear programming.

would suffice.

For p to be optimal, we must identify the largest v for which there is some value of p
that makes the constraints hold. Linear programming can be used solve this problem;
in this example, it finds a value of 0 for v and (1/3, 1/3, 1/3) for p. We can abbreviate
the general linear program as

v = max min R(ay, a a
PETI(A) az€As @ eA ( b 2),0[ 1l

where II(A;) represents the set of probability distributions over A;, and
Z R(s,ay,az)plai]
ay

expresses the expected reward to the agent for adopting stochastic policy p against the
opponent’s action ay. Table 5.3 gives a subroutine for computing an optimal policy for
the agent in a matrix game.

The value found by the subroutine in Table 5.3 is the largest reward that the agent
can guarantee itself; this is sometimes called the maximin value. An alternate definition
is for the value to be the smallest amount of reward the opponent can force the agent

to get; this is sometimes called the minimax value. An important result about matrix
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games, as well as the more general Markov games, is that the maximin and minimax
values are equal [168, 143]. Using the maximin definition, the agent is the only one
that needs to choose actions stochastically, because once the agent’s policy is fixed,
the opponent faces a simple minimization problem (or MDP, in the Markov-game case)

that can be optimized by a deterministic policy.

5.3.2 Value Iteration

In MDPs and alternating Markov games, the problem of finding an optimal policy can
be reduced to that of finding the optimal QQ values. The same is true for general Markov
games, although the process of extracting the optimal policy from the optimal Q values
is somewhat more complex.

Define V*(s) to be the expected reward to the agent when both players follow
minimax optimal policies starting from state s. Define Q*(s, ay, az) to be the expected
reward to the agent taking action a; when the opponent chooses a; from state s and
both players continue optimally thereafter. The optimal choice of action from state
s, then, is one that maximizes Q*(s, a1, az) with respect to the minimizing choice of
az. This problem is identical to the problem of solving a matrix game, discussed in
Section 5.3.1.

The value of a state s € S in a Markov game is

V*(s) = max min *(s,a1,az)play],
9= g5, i, 3 @i

and the Q value of action ay against action a; in state s is

Q" (s,a1,a3) = R(s,a1,a2) + 3 X:T(s7 ay,az, s V*(s').

5

The optimal policy for the agent in state s is to choose actions according to the prob-
ability distribution 7 (s, -) that maximizes

min Z Q7 (s, a1, a2)w (s, a1).

A
42€A2 a1 €A

The resulting recursive equations look much like the Bellman equations for @* and
V*in MDPs, and indeed the analogous value-iteration algorithm converges to the correct
values [114]. Unlike MDPs however, the greedy policy is not necessarily optimal after

any finite number of steps.
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PolicyIterationMarkovGame(M = (S, A1, A3, T, R, 3),¢€) :={
foreach s € S Vy(s) :=0
t:=0
loop
ti=t+1
(71,72, Vy) := improvePoliciesMarkovGame(V;_1, M)
until max; [Vi_1(s) — Vi(s)| < €
return m

Table 5.4: The policy-iteration algorithm for Markov games.

improvePoliciesMarkovGame(V, M = (S, A;, A2, T, R, 5)) :={
foreach s € § {
foreach a; € A; and ay € A,

Q(ah a?) = R(S7 a1, a?) + ﬁ ZSIES T(S7 Ay, G2, SI)V(S/)
m1(s,+) := matrixLP(A4;, 43, Q)

}

(72, V') := counterStratMarkovGame2(my, M)
return (7, 7, V')

Table 5.5: Computing improved policies for both players.

5.3.3 Policy Iteration

The policy-iteration algorithm for alternating Markov games described in Chapter 4
extends to Markov games. As in alternating Markov games, not all possible definitions
of policy improvement lead to a convergent algorithm. An important difference between
alternating Markov games and Markov games is that there is no finite-size set of policies
that is known to include an optimal policy. As a result, policy iteration produces a
sequence of better and better policies, but will not necessarily converge in finite time.

Tables 5.4, 5.5, and 5.6 give subroutines for finding a near-optimal policy for a
Markov game via policy iteration. The underlying ideas follow those developed in

Section 4.3.2.
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counterStratMarkovGame2(ny, (S, A1, A2, T, R, 3)) := {
foreach s € S and s’ € S and ay € A,
T'(s,az,5") = Y4, 71(s,a1)T(s,a1, a2, s)
foreach s € § and ay € Ay R'(s,az) := — 3, mi(s,a1)R(s,ay,az)
return (PolicyIterationMDP((S, Ay, T', R, 3)))

Table 5.6: Computing the optimal counter-strategy for a fixed policy.

5.4 Algorithmic Analysis
The most important analytic tool for Markov games is expressed in the following lemma.
Lemma 5.1 Markov games are a type of generalized MDP.

Proof: The Bellman equations given in Section 5.3.2 look a bit different from the earlier
examples of generalized MDPs. Nonetheless, as shown in Section C.1, the Markov game
summary operator,

® flai,a2) = max min Z plai] f(ai, as)

p€ll(Ay) a2 €A2
(a1,a2)

is a non-expansion. [l

An important result concerning the analysis of algorithms for Markov games is that
the optimal value function (and policy) need not consist of rational numbers, even if
the components of the transition matrix, reward matrix, and the discount factor are
all rational. This result is discussed in more detail in Section 5.5, but it is important

to note this now because the following analyses makes use of it.

5.4.1 Matrix Games

As T mentioned earlier, solving matrix games is equivalent to linear programming [47].
This means that they can be solved exactly in polynomial time. Although an optimal
policy for a matrix game can be stochastic, the probabilities and values are guaranteed

to be rational if the transitions, rewards, and discount factor are rational.
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5.4.2 Iterative Algorithms

From Lemma 5.1 and Theorem 3.2, the value-iteration algorithm can be used to find
e-optimal value functions for Markov games

The convergence of policy iteration follows from the convergence of the policy-
iteration algorithm for generalized MDPs. Although policy iteration will not necessarily
find the optimal value function in finite time, each iteration is guaranteed to improve
the current approximate value function by a factor of 3. As a result, e-optimal approx-
imations to the optimal policy for a game can be found in time polynomial in the size

of the game, 1/(1 — /) and loge.

5.4.3 Linear Programming

Markov decision processes are Markov games in which the opponent has only one choice
of action, and matrix games are Markov games with only one state. Both of these
models can be solved exactly in polynomial time using linear programming. Given this
fact, it is perhaps surprising that no finite-size linear program can express the optimal
value function of an arbitrary Markov game [76]. This follows from the fact that linear
programs have rational solutions given rational coefficients, while Markov games can

have irrational solutions.

5.5 Complexity Results

Markov games can be solved to any desired degree of accuracy using value iteration.
However, it is not known if any algorithm can solve Markov games exactly. This is
because the optimal value function of a Markov game can consist of irrational numbers,
as was shown by Vrieze [169] using a two-state example. A similar example, which uses
only deterministic transitions is described in Section E.1; thus, it is the simultaneous-
move quality of Markov games that makes this problem very difficult.

On the other hand, polynomial-horizon problems can be solved in polynomial time
using value iteration (see Section 5.3). The value functions for finite-horizon problems
are guaranteed to consist of rational numbers as long as the immediate rewards, transi-
tions, and discount factor are rational. Both the deterministic and stochastic versions
of the problem are P-complete as they include polynomial-horizon alternating Markov

games and matrix games as special cases, both of which are P-hard. See Papadimitriou
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and Tsitsiklis’ [116] work on MDPs for related results.

5.6 Reinforcement Learning in Markov Games

In the reinforcement-learning community, Markov games with simultaneous actions
have not been examined as closely as alternating Markov games. This is probably, in
part, due to the fact that most popular games are designed for humans to play, and
simultaneous actions are cumbersome for humans to carry out.

There are a few examples of learning in simultaneous-action games, including my
earlier work on a simple soccer-like game [90], and Harmon, Baird, and Klopf’s ex-
plorations of a differential pursuit/evasion game [61]. In Harmon et al.’s work, it is
assumed that a deterministic optimal policy exists for the simultaneous-action game,

whereas, in my work, a stochastic optimal policy is sought.

5.6.1 Minimax-Q Learning

Section 4.6.1 described a Q-learning-like rule for alternating Markov games. It is
straightforward to apply the same technique to solving Markov games. An experi-
ence tuple is now (s, ay,aq,r, sy, thus both players must have access to the other’s
action choice after it is issued. The update is exactly the same as for Q-learning, with

the obvious difference that  values are indexed by the action choices for both players:
Q[S7 ay, a?] = (1 - Q)Q[Sv ay, a?] + Oé(T‘ + VV(S/)%

where

V(s') = max min s’ a1, as)plai.
(s") pEH(Al)a2€A2a§41Q[ 1, az]plaq]

Because the computation of V(s') from the current @ values involves solving a matrix
game, each learning step requires solving a linear program.

The algorithm is called minimax-@Q because it is essentially identical to the standard
Q-learning algorithm with a minimax replacing the maximization. It is described in an
earlier paper [90], which includes empirical results on a simple Markov game.

The convergence of this approach follows from the convergence of the generalized
Q-learning algorithm in Section 3.6.3. It is interesting to note that, from a convergence-
of-learning standpoint, Markov games and MDPs are equally difficult to solve, whereas,

from a complexity standpoint, Markov games are significantly harder. This highlights
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fictitiousMatrix(A;, Az, R k) = {

foreach a; € A Y[ay] :=0
foreach a; € Ay X[ag] :=0
foreacht e 1...k {

ai := argmax, ¢ 4, Y [a1]

a3 := argmin,, ¢ 4, X[as]

foreach a; € A; Y[a1] :=Y[a1] + R(a1, a3)

foreach ay € Ay XJaz] := Xlag] + R(a}, az)

P

}

return (maxg, eq, Y|a1])/k

Table 5.7: Approximating the value of a matrix game by fictitious play.

one of the differences between the criteria used to evaluate learning algorithms and

planning algorithms.

5.6.2 Solving Matrix Games by Fictitious Play

Solving a known Markov game using the method of fictitious play is reminiscent of
reinforcement learning. The basic idea is that we can identify an optimal value function
by playing two players against one another. On each step, each player chooses the
action that is the best response to the stochastic policy that the other player appears
to be using. The long-run proportion of action choices for each player converges to an
optimal stochastic policy for the matrix game.

The material in this section is summarized from an article by Vrieze and Tijs [171],
which is itself a summary of some 45 years of work in this area. The algorithm in
Table 5.7 uses the method of fictitious play to approximate the value of a matrix game.

In this subroutine, k represents the number of rounds of play to use when approx-
imating the game (the method does not necessarily converge in finite time, thus some
stopping rule must be used). At step ¢, vector Y has the property that the value Y[a;]
represents the rewards that the agent would expect to receive in t steps for action ay
if the actions chosen thus far by the opponent are representative of how it will choose
actions in the future. The agent’s best (deterministic) response to such an opponent
is to choose action aj = argmax, 4, Y[a1], the action with the maximum expected

reward.



109

At the same time, the opponent keeps a vector X with one component for each
action in Ay. Vector X represents the expected rewards the opponent would receive
in t steps when playing against an agent with a fixed stochastic policy in which action
ay is selected precisely in the proportion in which the agent has chosen it thus far;
therefore, a; = argmin,, ¢ 4, X[as] is the opponent’s optimal choice of action.

After actions a] and a} are chosen, the X and Y vectors can be updated to include
one more round of rewards. The agent’s Y vector is incremented with the rewards the

agent receives when the opponent takes action a (which it just did); similarly for X.

Lemma 5.2 In the fictitious-play algorithm, the quantities (maxq, eq, Y[a1])/k and

(ming, e, X|a1])/k converge to the value of the matriz game, as k increases.

Proof: This is proven in Vrieze and Tijs’ article [171]. O

In addition to the proof, Vrieze and Tijs include information on the rate of con-
vergence of this process, and show that the reward matrix R need not be known with
certainty for the process to converge. All that is necessary is for an estimate of R to

be available, and for that estimate to converge to R over time.

5.6.3 Solving Markov Games by Fictitious Play

The fictitious-play method for matrix games is interesting from an algorithmic or learn-
ing standpoint, but its practical use is extremely limited; solving a game using linear
programming is not difficult either conceptually or computationally.

The same is not true of Markov games, which are not known to be exactly solvable
by any algorithm. In addition, each phase of the standard iterative methods involve
solving a linear program—two, in the case of policy iteration. Therefore, there is much
to be said for applying a method like fictitious play to the Markov-game case.

Vrieze and Tijs [171] explored this problem, and found a fictious-play algorithm
for Markov games with convergence rates comparable to the matrix game case. Their
algorithm is given in Table 5.8.

Although the algorithm is a fairly straightforward extension of the algorithm from
the previous section, there are a few subtleties worth explaining. If we knew that V'
represented the optimal value function for the given Markov game, then the algorithm

would essentially be finding the value of the matrix game with payoffs

R(s,ay,az) + 3 ZT(& ar, az, 8')V(s)
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fictitiousMarkovGame(S, Ay, A3, T, R, 5,k) := {
M= mMaXseS,a;€;1,a2€Az |R(87 aa, a2)|
foreach s € § {
foreach a; € A; Ys,a1] := M/(1 - j3)
foreach ay € Ay X[s,aq] := M/(1 - )
V[s] := maxy, eq, Y[s, a1]
J
foreacht e 1...k{
foreach s € § {
ai := argmax, ¢4, Ys, a1]
a3 := argmin,, ¢ 4, X[s, as]
V[s] := min(V[s],1/t Y]s, ai])
foreach a; € A,
Y[s,a1] :=Y[s,a1] + R(s,a1,a5) + 8> o T (s, a1, a3, s)V[s]
foreach a; € A,
X[s,az) := X[s,a3] + R(s,ai,a2) + 85, T(s, a5, az, sYVI[s]
¥
¥
return(V)

}

Table 5.8: Approximating the value of a Markov game by fictitious play.
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for each s € S. However, the value of this game is V'(s), so if we knew V', there would
be no point in solving this game.

Of course, we do not know the optimal V' in advance, but the algorithm in Table 5.8
can be shown to approximate the true optimal value function from above. The algo-
rithm initializes the Y[s, ay] values with an optimistic estimate of the value of action
ap in state s. Each time the maximum value of Y[s, a;] (over all actions) decreases, we
can decrease the estimate of the value of state s accordingly.

The fictitious-play algorithm has much in common with a reinforcement-learning
approach to this problem; at each step, the players choose actions, and the choice of
actions affects the estimates and future decisions. However, it is a very strange learning
algorithm. First, for each player to learn to behave optimally, it is necessary for the
other player to choose its moves in a particular fashion; the two competing players must
collaborate on their choices. Second, updates and action choices are made in all states
simultaneously. These two difficulties make the fictious-play approach unsuitable for
use in reinforcement-learning problems.

It is likely that the second of these difficulties can be eliminated; the same algorithm
ought to converge if Q values are estimated, as in the minimax-Q learning algorithm.
On the other hand, it is difficult to imagine eliminating the first difficulty; it seems
necessary for the players to choose their actions in this highly scripted way for the

fictitious-play approach to converge to optimal behavior.

5.7 Open Problems

In this chapter, I described the problem of solving Markov games, drawing from the
fields of algorithmic analysis, reinforcement learning, and game theory. There are a

number of extensions that might prove fruitful and interesting.

e Game theorists consider two-player zero-sum games to be the simplest, and in
many ways, the least interesting, type of game. Variations that include possible
cooperation or multiple players have been considered extensively. Such models
are of interest to researchers in planning and reinforcement learning since they
could be used to capture interactions between a collection of agents solving tasks
together. Are there optimality criteria that would be appropriate for planning

and/or learning? Are there efficient algorithms for manipulating these models?
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e The use of linear programming in the innermost loop of minimax-Q learning is
problematic, because the computational complexity of each step is large and typ-
ically many steps will be needed before the system converges sufficiently. Would
approximate solutions to the linear programs suffice? The results on fictitious
play for Markov games indicate that this ought to be possible. Iterative methods
are also quite promising since the relevant linear programs change slowly over
time. Are there iterative linear-programming algorithms that would be appropri-

ate for this problem?

e The strength of the minimax criterion is that it allows the agent to converge to a
fixed strategy that is guaranteed to be “safe,” in that it does as well as possible
against the worst possible opponent. It can be argued that this is unnecessary if
the agent is allowed to adapt continually to its opponent. To what extent is this
true? In theory, any deviation from the minimax-optimal policy would leave the
agent vulnerable to a devious form of trickery in which the opponent leads the
agent to learn a poor policy and then exploits the resulting situation. Can such

an opponent be identified for, say, a regular Q-learning agent?

e The fact that rational-valued Markov games can have irrational value functions
makes it hard to discuss the complexity of the optimization problem—how should
the algorithm represent and return the irrational values? Decision problems like
“Is the optimal value function for state s at least r?” are well-defined (the
answer is just one bit), but the exact complexity is unknown. Can it be shown
to be uncomputable, perhaps by relating it to the problem of finding the roots of

polynomial equations and Galois theory [6]7

e There are criteria other than minimax that capture the competitive aspect of
games, while satisfying the conditions for being a generalized MDP. Among these
are rules in which agents choose randomly among actions that maximize their
worst-case reward and those that maximize their expected reward against a par-
ticular adversary. This criterion can be shown to result in well-defined value
functions and convergent learning, but are the optimal policies interesting? Do
they blend aggressive behavior against a known opponent with conservative ac-
tions? Are there other update rules that are more appropriate? Are they non-

expansions?
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o Markov games can be viewed as incomplete-information games with a particular
“information structure” [128] in which the state is made known to both players
every other move. It is possible that games with more elaborate information
structures can be solved just as efficiently, as long as the structure is not too
complex. For example, as long as the true state is revealed often enough, it
ought to be possible to combine a successive-approximation algorithm with an
efficient algorithm for solving game trees [84]. Would such a hybrid algorithm be

of interest? Are there any applications with this structure?

5.8 Related Work

Section 4.8 listed work related to alternating Markov games as well as the more general
Markov games discussed in this chapter.

Dobkin and Reiss [47] showed that the complexity of solving matrix games is closely
related to a set of problems in linear programming and computational geometry; it is
interesting to note that their paper was written before linear programming was known
to be solvable in polynomial time.

Work on game learning in the reinforcement-learning literature focuses almost exclu-
sively on alternating-move games. Noteworthy exceptions include work by Littman [90]
on a discrete soccer-like game, and work by Harmon, Baird, and Klopf [61] on a con-
tinuous pursuit-evasion game.

Kallenberg [76] examined a set of game-related problems that can be solved in
polynomial time by linear programming. These include one-player games (MDPs), ma-
trix games, and Markov games in which transitions are influenced by only one player.
Vrieze [170] surveyed all the algorithms listed in this chapter, as well as others.

General Markov games differ from alternating Markov games in that the players
choose actions simultaneously. Games with simultaneous actions can be viewed as a
restricted type of incomplete-information game in which the players’ actions are issued
sequentially but are not revealed until after both players have made their decisions.
Koller, Megiddo, and von Stengel [82, 84, 83] looked closely at games of partial infor-
mation. They developed algorithms that run in polynomial time with respect to the
size of the game tree, which roughly means that their results apply to Markov games
in which there are no cycles in the transition graph. Their algorithms find optimal

stochastic policies for a wide range of incomplete-information games including those
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with simultaneous actions and games that do not obey the zero-sum property.

5.9 Contributions

In this chapter, I described Markov games, a model of sequential decision making in
which two agents choose actions in parallel. T discussed several of the classic algorithms
for finding approximately optimal solutions to this type of game, and explained that
the existence of simple games with irrational solutions makes it difficult to analyze
the exact computational complexity of this model. I showed for the first time that
this difficulty persists even in deterministic games. In spite of these computational
challenges, I presented a novel result that reinforcement-learning algorithms converge
to optimal solutions for Markov games.

Because of their computational intractability, Markov games will probably continue
to be of mainly theoretical interest to researchers in the fields of reinforcement learn-
ing and operations research. However, they could potentially help provide worst-case
bounds for even more difficult problems that arise in models with uncertainty in state
estimation [123] or imprecise value functions [112]. Even if Markov games themselves
are of only marginal interest, the optimal randomness that results from solving them

is an important and powerful concept that deserves further attention.



Chapter 6

Partially Observable Markov

Decision Processes

Portions of this chapter and its associated appendiz have appeared in ear-
lier papers: “Planning and acting in partially observable stochastic do-
mains” [13] with Kaelbling and Cassandra, “Acting optimally in partially
observable stochastic domains” [32] with Cassandra and Kaelbling, and “An

introduction to reinforcement learning” [74] with Kaelbling and Moore.

Chapter 2 began with an example of a robot deciding how to navigate in a large office
building. This hypothetical robot was plagued by an environment that it could not
completely control. In spite of these difficulties, I explained how such a robot could
use a map of its environment and knowledge of its own dynamics to generate optimal
policies for navigating. A more realistic robot not only has unreliable actions, but
unreliable observations as well: sometimes a corridor looks like a corner; sometimes a
T-junction looks like an L-junction. The MDP algorithms discussed in Chapter 2 are
no longer appropriate for an agent that does not have perfect state information.

A robot with imperfect state information cannot use a policy that only maps true
location to a best choice of action. In general, the robot will have to remember some-
thing about its history of actions and observations, and use this information, together
with its knowledge of the underlying dynamics of the world, to maintain an estimate
of its location. Many engineering applications follow this approach, using methods like
the Kalman filter [77] to maintain a running estimate of the robot’s spatial uncertainty,

expressed as a Gaussian probability distribution in Cartesian space. This approach will
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not do for our robot, though. Its uncertainty may be discrete: it might be almost cer-
tain that it is in the north-east corner of either the fourth or the seventh floors, though
it might admit some chance that it is on the fifth floor, as well.

The robot must decide what actions to take given an uncertain estimate of its
location. In some cases, it might be sufficient for the robot to ignore its uncertainty
and take actions that would be appropriate for the most likely location. In other cases,
it might be better for the robot to take actions for the purpose of gathering information,
such as searching for a landmark or reading signs on the wall. In general, it will take

actions that fulfill both purposes simultaneously.

6.1 Introduction

In this chapter, I address the problem of choosing optimal actions in partially observable
stochastic domains. Problems like the one described above can be modeled as partially
observable Markov decision processes (POMDPs). In addition to their applicability to
problems of robot navigation, POMDPs are useful for solving problems of factory process
control, resource allocation under uncertainty, cost-sensitive testing, and a variety of
other complex real-world challenges [109].

One important facet of the POMDP approach is that there is no distinction drawn
between actions taken to change the state of the world and actions taken to gain
information. This is important because, in general, every action has both types of
effect. Stopping to ask questions may delay the agent’s arrival at the goal or spend
extra energy; moving forward may give the agent information that it is in a dead-end

because of the resulting crash.

6.2 Partially Observable Markov Decision Processes

Solving a POMDP involves taking a map or model of the environment which includes
state transition information, observation probabilities, and the reward structure, and

generating a plan for acting to maximize reward.

6.2.1 Basic Framework

A poMpP M = (S, A, T, R, Z2,0) is defined in part by an MDP model: a finite set S
of states, and a finite set A of actions, a transition function 7' : § X A — II(S), and a



Figure 6.1: An example partially observable environment.

reward function, R : § x A — R. In addition, it includes a finite set of observations,
Z, and an observation function O : § x A — II(Z). The quantity O(s',a, z) is the

probability of observing z € Z in state s’ after taking action a.

6.2.2 Acting Optimally

The average-reward criterion is not always well-defined for PoMDPs.! This is roughly
because, in some problems, the agent can guarantee itself a huge reward tomorrow by
doing nothing today, so it ends up doing nothing forever. This is sometimes called the
problem of the infinitely delayed splurge [121]. However, the optimal value function is
well-defined in the discounted case, which I will continue to focus on exclusively here.

Even though the optimal discounted infinite-horizon value function is well-defined,
representing a policy that can achieve the optimal value function can be quite chal-

lenging. This section reviews some approaches for representing policies.

Memoryless Policies The most naive strategy for dealing with partial observability
is to ignore it; that is, to treat observations as if they were the states of the environment
and to try to find good behavior. Figure 6.1 shows a simple domain in which the agent
is attempting to get “home” from the store. After leaving the store, there is a good
chance that the agent will end up in one of two places that look like “woods”, but that
require different actions for getting home. If we consider these states to be the same,

then the agent cannot possibly behave optimally. But how well can it do?

!This is also true for MDPs with infinite state or action spaces.
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Figure 6.2: Generic structure of memory-based solutions to POMDPs.

Problems relating to finding observation-to-state mappings in POMDPs, sometimes
called memoryless policies, have been studied in many different contexts [182, 91, 146,
70]. Finding the optimal memoryless policy is NP-hard [91], and it often has very poor
performance. In the case of the environment of Figure 6.1, for example, no memoryless
policy takes less than an infinite number of steps to goal, on average.

Some improvement can be gained by considering stochastic memoryless policies;
these are mappings from observations to probability distributions over actions. If there
is randomness in the agent’s actions, it will not get stuck in the woods forever. Although
algorithms exist for finding locally optimal stochastic policies, finding a globally optimal
policy is still NP-hard—this follows indirectly from a result by Papadimitriou and
Tsitsiklis [116]. In our woods example, the unique optimal stochastic policy is for the
agent, when in the woods, to go RIGHT with probability 2 — v/2 ~ 0.6 and LEFT with
probability v/2 —1 ~ 0.4. This can be found by solving a simple (in this case) quadratic
program. The fact that the optimal policy requires irrational numbers, even for such a

simple example, gives some indication that it is a difficult problem to solve exactly.

Memory-based Policies The only way to behave effectively in a wide-range of
environments is to use memory of previous actions and observations to create a better
estimate of the current state. There are a variety of approaches to learning policies
with memory.

Figure 6.2 illustrates the basic structure. The component on the left is the memory-
state-update module, which computes the agent’s new memory state as a function of
the agent’s present memory state, the most recent action, and the current observation.

Solution methods differ in their choice of memory state.

History-window Policies One type of memory-based policy is obtained by defining

the agent’s memory state to be a list of the £ most recent actions and observations.
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White and Scherer [178] explored algorithms for finding near-optimal policies of this
form. Platzman [121] used a more sophisticated approach that involved variable-width
windows: the amount of history stored at any given time depended on the saliency of
the most recent actions and observations.

The variable-width-window approach can make much more efficient use of a finite
memory because the number of distinct memory states needed for a fixed window of
width k is (].A|| Z])*, whereas a variable-width-window approach can involve as few or

as many memory states as needed.

Finite-memory Policies In the finite-memory approach, the memory state can be
any one of a finite number of internal states. Finite-memory policies can remember
a finite amount of information about the past; unlike history-window approaches, in-
formation can be stored for an arbitrarily long time. Both memoryless policies and
history-window policies are special cases of finite-memory policies.

Because they are more expressive, general finite-memory policies can be defined
that perform better than any history-window policy. However, this additional expres-
siveness makes optimal finite-memory policies difficult to find. A heuristic algorithm for
finding stochastic finite-memory policies has been explored [123]. The value-iteration
approach described in Chapter 7 can produce optimal finite-memory policies for some

problems [32].

Information States There are POMDPs for which no finite memory is sufficient to
define optimal behavior. In contrast, using the memory state to encode every action and
observation the agent ever encountered would be sufficient to allow optimal decisions
to be made. In many cases, an equivalent yet more convenient representation of the
past is the information state.

An information state is a probability distribution over states of the environment
indicating the likelihood, given the agent’s past experience, that the environment is
actually in each of those states. A memory-state-update module for information states
can be constructed straightforwardly using the environment model and basic probabil-
ity theory (see Section 7.2.1).

The problem of finding a policy mapping information states into actions can be
formulated as an MDP, but the MDP cannot be solved using the techniques of Chapter 2

because the state space is infinite. Chapter 7 addresses techniques for solving this
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information-state MDP.

6.3 Algorithms for Solving POMDPs

There are no practical algorithms for solving poMDPs. In Chapter 7, I present the
witness algorithm, which is the most efficient algorithm to date for solving POMDPs
exactly over a finite horizon; it solves some POMDPs very quickly and others quite
slowly. Here, I describe several algorithms that are of theoretical interest because they
help indicate the computational complexity of different types of POMDPs.

The fundamental decision problem is the following: given a poMmpr M = (S, A, T,
R, 2,0, p), a distribution over starting states z¢, and a reward bound r, is there a
policy such that the expected discounted reward starting from z¢ is at least »7 I will
assume that all the numbers involved are specified as rational numbers written with
no more than B bits. I use “POMDP” to refer to the model M, and “POMDP problem”
to refer to M combined with z¢ and the reward bound r.

The complexity of the general infinite-horizon version of this problem is not known.
It may be the case that the problem is undecidable, although attempts to prove this
have not been successful. On the other hand, the more important problem of finding
an e-optimal policy for a given POMDP problem can be solved. I address this problem

in more detail in Chapter 7.

6.3.1 Complexity Summary

In this chapter, I present results pertaining to the computational complexity of solving
24 separate variations of the POMDP problem. In this section, I describe upper bounds,
in Section 6.5 lower bounds. Here, I will briefly summarize the results.

The basic POMDP problem is, given a POMDP model, an initial distribution zg, and
a reward bound r, is there a policy with value at least r starting from 247 There are 4
dimensions along which the basic problem might be varied. For each dimension, I will
list the values it can take, abbreviations for the values to simplify later discussion, and

the relationship between the various values.

e Transitions (T'): In general, taking action « from state s results in a stochastic
transition. A simpler case is when all transitions and observations are determin-

istic. Any algorithm for solving stochastic (S) problems can be used to solve
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deterministic (D) problems by setting the probabilities to zeros and ones; any
hardness result for a deterministic problem applies to the stochastic version as

well.

e Horizon (¢): I am most interested in problems with an infinite (co) planning hori-
zon. Sometimes, however, computing answers for long enough finite horizons (F)
is sufficient. For analytic purposes, it is useful to consider problems in which the
horizon length is bounded by a polynomial in the size of the PoMDP. Polynomial
horizons (P) are a special case of finite horizons. We can create an equivalent
infinite-horizon problem for a given polynomial-horizon one by replicating the
states once for each time step in the horizon, then adding a zero-reward absorb-

ing state at the end.

e Rewards (R): I will consider general rewards (G), and a special case in which
all rewards are non-positive and the target bound is zero. In problems of the
latter type, as soon as a single negative reward is encountered with non-zero
probability, the value of the policy is less than zero and the reward bound is not
met. For this reason, these problems can be formalized using boolean reward
values (true for zero rewards, false for negative rewards), so are called boolean-
reward problems (B). Discount factors are not needed in the specification of

boolean-reward problems.

e Observations (O): When a POMDP has only one possible observation, it is unob-

servable (U). If there are one or more possible observations, I call it the general

case (G).

Table 6.1 summarizes the complexity results presented in this chapter. The paren-

3

thesized numbers are section references and represents a “don’t care” symbol.

6.3.2 Deterministic POMDPs

A deterministic PoMDP M = (S, A, N, R, Z,0bs, ), is like a general POMDP with
the exception that the transition function N : § x A — § and observation function
Obs : S x A — Z are deterministic. In this section, I show how to exploit the structure
of deterministic POMDP problems to solve them.

The following lemma provides a powerful way to reason about deterministic POMDP

problems.
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EXPTIME-hard (6.5.1), not known to be decidable

decidable (6.3.3)

in EXPTIME (6.3.2), PSPACE hard (6.5.3)

EXPTIME-comp.: EXPTIME-hard (6.5.1), in EXPTIME (6.3.3)
PSPACE-complete: PSPACE-hard (6.5.3), in PSPACE (6.3.3)
PSPACE-complete: PSPACE-hard (6.5.2), in PSPACE (6.3.3)
PSPACE-complete: PSPACE-hard (6.5.3), in PSPACE (6.3.2)
NP-complete: NP-hard (6.5.4), in NP (6.3.3)

NP-complete: NP-hard (6.5.4), in NP (6.3.2)
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Table 6.1: Summary of POMDP complexity results in this chapter.

Lemma 6.1 For every infinite-horizon deterministic POMDP problem (S, A, N, R, Z,
Obs, 8, xo, ), there is a finite-state MDP with an equivalent optimal value. The number
of states in the MDP is no more than (14 |S])I5|.

Proof: We will construct a finite-state Markov decision process (D, A,T', R', 5} that
is equivalent to the given deterministic POMDP problem.

In the initial distribution, the probability that the agent is in state s is ag[s]. If
the agent is actually in state s, then after taking action ¢ and observing z, the agent
is in state N (s, a), assuming that Obs(N(s,a)) = z. If Obs(N (s, a)) # z, then we can
conclude that it was not possible for the agent to have been in state s initially.

This argument can be generalized to a sequence of actions and observations. For
each t > 1, let a; be the tth action and z; be the resulting observation. For each t > 0,
let Dy : S — (SU{gone}). I will refer to D; as a table, and define the value Dy (s) to be
the location of the agent at time ¢, assuming it started in state s. If D;(s) = gone, it was
not possible for the agent to have started in state s, given the actions and observations

up to time ¢. Table Dy is defined recursively by: Dgy(s) = s for all s € § and

gone, if D;_1(s) = gone
Dy(s) = or Obs(N(Dy_y(s), ar), ar) # 2;
N(Dy_1(s),a;), otherwise.

We can use elementary probability theory to express the probability that the agent
is in state s after ¢ steps in terms of Dy,

Y wo[SII{Dy(s) = s}
T (g w0l 1I{Dy(s") # gone})’ (6.1)
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where I{e} has value 1 if the boolean expression e is true and zero otherwise. Equa-
tion 6.1 simply sums up, over the initial states s’ for which the agent would now be
in state s, the probability that the agent started in state s/, and then normalizes the
result. The vector z; of probabilities is an information state, which is an adequate
summary of the past to allow optimal decisions to be made [5].

Since x; can be written entirely in terms of zg, which does not change from step to
step, and Dy which does, we can use the table D; to represent the state of the system
at time t. As there are (1+ |5|)|‘SI possible tables, the state space for a deterministic
POMDP with a known initial distribution is finite (in fact, exponential). In the following,
D represents the set of all tables.

The transitions and rewards over the state space of tables are defined as follows.

Let N/ be a next-table function given a table, action, and observation, N'(D, a, z) = D’

where
gone, if D(s) = gone
D'(s) = or Obs(N(D(s),a),a)+# =
N(D(s),a), otherwise.

The probability of observing z after taking action a from table D can be found by
probability theory to be

¥, 2ol s|I{Obs(N (D(s), ). ) = =}
3 (5 wo[sJI{Obs(N (D(s),a),a) = 2'})

Intuitively, this expression considers each state s and includes its initial probability

Pr(z|D,a) =

zo[s] in the total if the state that it maps to under table D followed by action s results
in observation z. It then normalizes this quantity so that it sums to one when all
possible observations are considered.

The probability of a transition from D to D’ under action a is the sum over obser-
vations z of the probability of observing z, given that D goes to D’ under observation
z: T"(D,a,D") = >, Pr(z|la, D)I{D’ = N'(D,a,z)}. The expected reward for action
a from table D is the sum over states of the reward from state D(s) weighted by the
probability that s was the initial state, R'(D,a) = >, I{D(s) # gone}zo[s|R(D(s), a).

The Markov decision process (D, A, T', R', 3) is equivalent to the given deterministic
POMDP problem because at each step, the set of tables and z¢ constitute a sufficient

summary of past history. O

Lemma 6.1 shows that the state space of a deterministic POMDP problem possesses
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a great deal of structure. I will next show that the transitions between states are also
constrained in a useful way.

Recall from the proof of Lemma 6.1 that we can represent the state of a deterministic
POMDP problem at any moment in time by a table D : § — (S U {gone}). Define
ng(D) = Y., I{D(s) # gone}, where I once again is a zero-one indicator function on
the given predicate. The quantity ng(D) represents the number of “non-gone” elements
in the D table. The set of possible next tables for D given action a is a singleton (i.e.,
the transition is deterministic) if and only if ng(D’) = ng(D), where D’ is the resulting
table. If there are multiple possible next tables, then the value of ng for each of the

next tables is strictly smaller than ng(D). This follows from the lemma below.
Lemma 6.2 Given a table D, and an action a, ng(D) =Y. ng(N'(D, a, 2)).

Proof: Using the definitions of ng and N’, and letting D’ be the result of applying N’
to D,

S ng(NV'(Da,2) = 35T HD(5) £ gone)
= ZZ I{D(s) # gone and Obs(N(D(s),a),a) = z}

— S H{D(s) £ gone)
= ng(D).

0

Lemma 6.2 will help prove two important results concerning deterministic POMDP

problems later in this chapter.

Infinite Horizon

Lemma 6.1 leads directly to an algorithm for solving deterministic POMDP problems:
create the finite-state MDP described in Lemma 6.1, compute the optimal value function
V* using the linear-programming algorithm of Chapter 2, and then check if V*(Dg) > r
(where Dy(s) = s for all s € §). The run time is exponential in |S]; it is in EXPTIME.

The algorithm and analysis can be improved for special cases. In the boolean-reward
case, I will show how to reduce the space requirements to be polynomial, and in the the
polynomial-horizon case, I will show how to solve the problem non-deterministically in

polynomial time. These results are presented next.
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Polynomial Horizon

The optimal #-horizon policy for a POMDP problem can be represented by a t-step
policy tree (policy trees are discussed in detail in Chapter 7, see Figure 7.3 for a useful
illustration). A t-step policy tree is a depth ¢ tree that gives the action choice for
the initial state at the root and a (¢ — 1)-step policy tree for each observation that is
possible given the initial action. A t-step policy tree tells the agent which action to
take first and how to behave depending on the observation that results.

In general, a t-step policy tree will have as many as |Z|' nodes. In a deterministic

POMDP problem, this upper bound can be lowered considerably.

Lemma 6.3 The optimal t-step policy tree for a deterministic POMDP problem has no

more than t|S| nodes.

Proof: The lemma follows from several useful facts. First, each node in a policy tree
can be associated with a table. In particular, the root node is associated with the
initial table Dg, and the observation z child of a node with action choice ¢ and table
D is associated with table N'(D, a, z).

Second, the optimal policy tree need not include any node whose associated table
D would have ng(D) = 0. Such a node could never be reached (all observations would
be impossible) and so is irrelevant to the representation of the optimal policy.

Third, the sum of the ng values over all the tables at any given level of the policy
tree is exactly |S|. This follows from the fact that ng(Dg) = |S|, and Lemma 6.2, which
says that the sum of ng values is preserved between a node and its children.

Putting these three facts together, there can be no more than |§| nodes at any of

the t levels of the optimal t-step policy tree, from which the lemma follows. O

Lemma 6.3 shows that, for a polynomial horizon, the number of nodes in the optimal
policy tree is polynomially bounded. A polynomial-size policy tree can be evaluated
in polynomial time quite easily. For a leaf, let D be the associated table and a be the
action chosen; the value of the leaf is R(D,a). For an internal node of the tree, let D
be the associated table and a be the action chosen at that node. The value of the node
is

R(D,a)+ 3 Z value of the z child .

We can now specify a polynomial-time non-deterministic (NP) algorithm for solving

polynomial-horizon deterministic POMDP problems.
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Figure 6.3: Optimal infinite-horizon policy for a deterministic POMDP.

1. Guess the optimal policy tree. By Lemma 6.3, the tree need not have more than

a polynomial number of nodes.
2. Evaluate the guessed tree in polynomial time.

3. Return “true” if the value of the root node is at least r.

Boolean Rewards

In the previous section, I showed how to exploit the special structure of the table transi-
tion function to show that the optimal polynomial-horizon policy could be represented
succinctly. A similar observation can be made for infinite-horizon policies, which makes
it possible to solve boolean-reward problems using polynomial space. Recall that in a
boolean-reward POMDP problem, all rewards are non-positive and the reward bound is
Zero.

As a consequence of Lemma 6.2, any sequence of tables followed starting from Dy
can have no more than |S| stochastic transitions in it. Let D be some table that is
reachable from Dg by following a particular optimal policy. What tables can be visited
after D7 The agent will take some number of deterministic transitions (no more than
|D|), and reach a table D’ such that ng(D’) = ng(D)—all the tables encountered along
this path will have ng values equal to ng(D) also. Then, either a loop will be entered
(a path of length no more than |D| from D’ to itself), or a stochastic transition will
occur to table D" such that ng(D”) < ng(D). Figure 6.3 depicts the structure of an
infinite-horizon policy starting from table D.

In the boolean-reward version of the deterministic infinite-horizon POMDP problem,
we want to know whether there is a policy with expected reward equal to zero starting

from zo (table Dg) given that all immediate rewards are either zero or negative. Let
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VY (D) be a boolean variable indicating whether or not a zero-reward policy exists for

an agent starting at table D. The Bellman equation for V° can be written
VD) =3a: (R (D,a) = 0AVY2: VO(N'(D,a,z))).

This is not a generalized MDP because boolean arithmetic is being used in place of
operations on real numbers.

Using the insight illustrated in Figure 6.3, we can rewrite the Bellman equation in a
computationally more convenient form. Let zpath(D, D' t) be a predicate that is true if
there is some zero-reward deterministic path from D to D’ of length ¢, and stoch(D, a)
be a predicate that is true if there is more than one possible next table resulting from

taking action a from table D. The Bellman equation can now be written

VD) = 3D':30 <t < |D|:( ng(D') = ng(D) A zpath(D, D', t) A
(30 < ¢ < |D|: zpath(D', D', t'))
V(3a : stoch(D';a) AVz : VI (N'(D', a,2))))) .

Although this formulation is complicated, it has several important properties. First,
V(D) is not defined in terms of itself. Although the definition of V% is recursive,
V9%(D) is only defined in terms of V°/(D") such that ng(D") < ng(D). Second, close
examination of the formula reveals that it can be evaluated using a polynomial amount
of space, as long as zpath can be evaluated in a polynomial amount of space.

To see that zpath can be evaluated in a polynomial amount of space, notice that it

can be expressed as

false, ift =0 and D # D',

false, if ng(D) # ng(D'),

false, if ¢t = 1 and there is no a such that
T'(D,a,D') =1 and R'(D,a) =0,

false, if + > 1 and there is no D” such that
zpath(D, D" [t/2]) and
zpath(D", D', |t/2]),

true, otherwise.

zpath(D, D' t) =

It is not hard to see that the above expression for zpath is correct; that it can be

evaluated in polynomial space follows from Savitch’s Theorem [115].
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Since V%(Dy) is true if and only if the deterministic infinite-horizon POMDP has a
zero-reward policy, and VO?(DO) can be evaluated in polynomial space, the problem of

solving boolean-reward POMDPs is in PSPACE.

6.3.3 Stochastic Transitions

When a POMDP has stochastic transitions, the set of information states reachable from
a given starting distribution can be countably infinite; this is true even when actions
are chosen according to an optimal stationary policy. As a result, although the optimal
value function can be approximated to any degree of accuracy in finite time (see Chap-
ter 7), determining whether an infinite-horizon policy can achieve an expected reward
of at least r is quite difficult, and perhaps even impossible.

There are special cases of the problem that are decidable. I will next show that
when reward is restricted to be non-positive, the existence of a zero-reward optimal
policy can be determined using an exponential amount of time. I will also show that
when the horizon is restricted to be finite, the problem is decidable, and if the horizon

is polynomially bounded, the problem can be decided in a polynomial amount of space.

Polynomial Horizon

An information state is a probability distribution over the states in &. In the next
chapter, I will explain how an information state can be updated to summarize new
information, in the form of actions and observations. For the purposes of this section,
all we need to know is that information states are sufficient summaries of past history
for predicting future transitions and rewards, and that the set of information states
reachable in a finite number of steps is finite.

The t-step value of information state x can be written

Vi(z) = max (Z z[s|R(s,a)+ 3 X:Pr(zhv7 a)Vt_l(x’)) ,

5

where Vp(2) = 0 and 2’ is the information state resulting from taking action a and
observing z from information state x. It is straightforward to evaluate this expression
in finite time for ¢ < oo and in polynomial space if ¢ is polynomially bounded [116].
The resulting optimal value can be compared to the reward bound r to answer the

decision problem for a finite-horizon POMDP problem.
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In the case of an unobservable POMDP over a polynomial horizon, the optimal policy
is a polynomial-length sequence of actions; such a policy can be guessed and evaluated

in polynomial time, therefore the associated POMDP problem is in NP.

Boolean Rewards

To compute whether a given policy achieves zero total reward, given that immediate
rewards are all non-positive, it is not necessary to keep accurate statistics about the
agent’s information state. For information state z, if 2[s] > 0 and taking action a
from state s results in a negative reward, then taking action e from information state
x results in negative reward.

It is sufficient, therefore, to group information states by the set of states to which
they assign positive probability. Using this insight, the total number of distinct groups
of information states is 2!/ — 1, the size of the power set of § minus the null set. For the
boolean-reward case, it is possible to define a boolean-reward MDP with these groups as
the states. This MDP has a zero-reward optimal policy if and only if the boolean-reward
POMDP has one, and can be solved in exponential time using the linear-programming
algorithm of Chapter 2, or by a simple graph search algorithm.

In the case of an unobservable PoMDP, the finite-state boolean-reward MDP de-
scribed above is deterministic and can be solved using polynomial space using a varia-

tion of the zpath predicate from Section 6.3.2.

6.4 Algorithmic Analysis

The presentation of the algorithms in Section 6.3 included analyses of their upper
bounds—it is worth noting that these algorithms can all be implemented to run in
exponential time because all NP, PSPACE, and EXPTIME algorithms can. Therefore,
the worst-case run times (and most of the best-case run times) for the algorithms in

the previous section are exponential.

6.5 Complexity Results

In this section, I collect what is known of the complexity of solving poMDPs. I show

that
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e the infinite-horizon problem is EXPTIME-hard and EXPTIME-complete in the

case of boolean rewards;

e the polynomial-horizon problem is PSPACE-complete [116], even in the boolean-

reward case;

e the infinite-horizon, deterministic case (observable or not) is PSPACE-hard, and

PSPACE-complete in the boolean-reward case; and

e the polynomial-horizon, deterministic problem is NP-complete, even in the bool-

ean reward, unobservable case.

Each result is a lower bound, stated in its most specific form. It is important to
keep in mind that hardness results for boolean-reward models also apply to general-
reward models, and hardness results for unobservable models also apply to partially

observable models. I will summarize the implications of these results in Section 6.5.5.

6.5.1 Infinite Horizon

The infinite-horizon, boolean-reward POMDP problem is: Given a POMDP M = (S, A, T,
R, Z,0) in which all rewards are non-positive, and a set of non-zero probability initial
states Sp, is there a policy that achieves zero reward over the infinite horizon starting
from every state in Sp?

This problem is provably intractable. In Section F.2, I show that the problem is
hard for EXPTIME, which implies that any algorithm for solving it must take expo-
nential time for infinitely many instances. See Papadimitriou’s complexity book [115]

for background information on the class EXPTIME.

6.5.2 Polynomial Horizon

The polynomial-horizon, boolean-reward POMDP problem is: Given a POMDP M =
(8§, A, T, R, Z,0)in which all rewards are non-positive, a polynomially bounded horizon
length t, and a set of non-zero probability initial states Sy, is there a policy that achieves
zero reward over t steps starting from every state in Sg7

A polynomial-time algorithm for solving this problem could be used to solve quant-
ified-boolean-formula problems in polynomial time. Since the quantified-boolean-for-
mula problem is PSPACE-hard [55], this shows that the polynomial-horizon, boolean-
reward POMDP problem is also PSPACE-hard. The proof is due to Papadimitriou and
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Tsitsiklis [116].

6.5.3 Infinite Horizon, Deterministic

The unobservable, deterministic, infinite-horizon, boolean-reward POMDP problem is:
Given a deterministic, unobservable POMDP M = (S, A, N, R) in which all rewards are
non-positive, and a set of non-zero probability initial states Sg, is there a policy that
achieves zero reward over the infinite horizon starting from every state in Sy?

A polynomial-time algorithm for solving this problem could be used to solve finite-
state-automata-intersection problems in polynomial time. Since the finite-state-auto-
mata-intersection problem is PSPACE-hard [55], this shows that the unobservable,
deterministic, infinite-horizon, boolean-reward POMDP problem is also PSPACE-hard.

The proof is given in Section F.1.

6.5.4 Polynomial Horizon, Deterministic

The unobservable, deterministic, polynomial-horizon, boolean-reward PoMDP problem
is: Given a deterministic, unobservable POMDP M = (S, A, N, R) in which all rewards
are non-positive, a polynomially bounded horizon-length ¢, and a set of non-zero prob-
ability initial states Sp, is there a policy that achieves zero reward over t steps starting
from every state in Sp?

A polynomial-time algorithm for solving this problem could be used to solve 3-CNF-
SAT problems in polynomial time. Since the 3-CNF-SAT problem is NP-hard [55],
this shows that the unobservable, deterministic, polynomial-horizon, boolean-reward
POMDP problem is also NP-hard. The proof is a corollary of the result from Sec-
tion 6.5.2, due to Papadimitriou and Tsitsiklis [116].

6.5.5 Complexity Summary

Table 6.1 summarized the complexity results (lower bounds) presented in this section,
as well as the upper bounds derived from the algorithms in Section 6.3. Figure 6.4
gives a more abstract summary. In the figure, the most general problem is at the top
and the most constrained is at the bottom, the prefix “D-” means deterministic, the
suffix “-poly” means polynomial horizon, and “UMDP” means unobservable MDP. The

exact “complete” complexity class for the boolean-reward problem is given, and when
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POMDP

EXPTIME*

D-POMDP POMDP-poly UMDP
PSPACE* PSPACE PSPACE*
D-POMDP-poly D-UMDP UMDP-poly
NP PSPACE* NP

'

D-UMDP-poly

NP

Figure 6.4: An abstract summary of complexity results for POMDPs.

the general-reward problem is not known to be in the same class, it is marked with an
asterisk.

There are a few observations worth making about the information in the figure.
Although, historically, stochastic models have been viewed as more difficult than their
deterministic counterparts, this is not consistently the case. In particular, in unobserv-
able models, restricting the problem to deterministic transitions does not change the
complexity class.

A more important simplification is shifting from infinite-horizon problems to poly-
nomial-horizon problems. This consistently improves the complexity (EXPTIME to
PSPACE, PSPACE to NP), and makes it possible to solve general-reward problems as
easily as boolean-reward problems. This provides additional support to the idea that
approximating an infinite-horizon solution by a finite-horizon solution is an efficient

approach.
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6.6 Reinforcement Learning in POMDPs

Reinforcement learning in partially observable domains is a much more difficult problem
than reinforcement learning in completely observable domains, such as MDPs or Markov
games. In general, an experience tuple in a POMDP is {ay, 2, 7;): the most recent action,
observation, and reward. Whereas, in completely observable models, it is possible for
the reinforcement learner to find the optimal value function when experience tuples are
presented in an arbitrary order, in POMDPs, the proper ordering is crucial to learning;
previous experience tuples are part of the agent’s past history, and therefore its state.

Because of these difficulties, no reinforcement-learning method for general POMDPs
is known to converge to an optimal policy. Nonetheless, there are some heuristic meth-
ods that are known to do well on simple problems. It is an open problem whether any
of these methods can be used to solve realistic problems.

As before, I classify reinforcement-learning methods according to whether or not
they learn a model of the environment, or simply try to learn a policy directly. I

subclassify model-free approaches by whether any form of short-term memory is used.

6.6.1 Model-free Methods, Memoryless

In the memoryless approach to reinforcement learning in POMDPs, the learner treats
observations as if they were states. Two consecutive experience tuples can be combined
to create an observation tuple of the form (z,_1, as, 2, r¢). This tuple is similar to the
experience tuple in MDPs, with observations replacing states.

In poMDPs for which the immediate observation completely distinguishes the cur-
rent state, this observation tuple is sufficient for learning optimal behavior (see Sec-
tion 2.6.1). In other POMDPs, it is not sufficient for learning; even if immediate obser-
vations are enough to make optimal action choices, learning which choices to make can

require additional information about past history [103].

Q-learning Many researchers have used Q-learning and other MDP-based reinforce-
ment-learning algorithms to learn policies for partially observable domains. One in-
teresting example is Wilson’s work on a 900-state PoMDP [182]. A classifier-based
approach, and later Q-learning, were both able to find acceptable memoryless policies
for this large domain. It has been shown [91] that neither approach finds the optimal

memoryless policy. In addition, there are examples that show that Q-learning can fail
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to converge or find pessimal policies in partially observable domains; see Section F.3.

Stochastic policies Even if Q-learning were able to find the optimal observation-to-
action policy, it would be of little use in general; in many problems, no observation-to-
action policy achieves acceptable levels of reward. By broadening the class of memo-
ryless policies to stochastic memoryless policies, it is possible to improve the situation
somewhat (recall the example in Figure 6.1).

Jaakkola, Singh and Jordan [70] developed a reinforcement-learning algorithm that
learns policies that choose actions probabilistically on the basis of the current obser-
vation. Their algorithm converges to locally optimal policies, meaning that no local
change to the probabilities results in improved performance, although it might be pos-
sible to adopt an entirely different policy that does substantially better. There has
been extremely little computational experience with this algorithm; it is difficult to
judge its usefulness at this time.

The algorithm itself is interesting in its use of TD(1)-type updates. This means
that, during learning, there is a great deal of record keeping and statistics gathering.
Nonetheless, the method is considered “memoryless” in that the policy that is learned
does not require the agent to maintain any memory of the past in deciding which action

to choose.

Consistent Representations Whitehead and Lin [179] demonstrate that, for some
environments, it is possible to coax a learning algorithm to adopt a good memoryless
policy, if one exists. A consistent representation, in their framework, is one in which the
states visited in the course of executing a policy can be adequately distinguished on the
basis of their observations. Whitehead and Lin present an algorithm that is appropriate

for PoMDPs in which the agent has some degree of control over its observations.

6.6.2 Model-free Methods, Memory-based

Unlike the memoryless methods, memory-based methods construct policies that require
the agent to maintain some form of short-term memory during the execution of the pol-
icy. Such policies can be significantly better than memoryless policies when the crucial
states of the environment cannot be distinguished on the basis of their observations.

There are environments for which no finite amount of memory suffices for constructing
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an optimal policy; it is not yet clear whether important or practical environments have

this property.

Suffix tree The suffix-tree approach is closely related to Platzman’s variable-width-
history-window approach [122], mentioned earlier. McCallum [105] showed how a good
policy can be learned in the absence of a model by iteratively widening the history
window at points that appear to benefit from additional history information. A closely
related technique was explored by Ring [129] from a “neural” perspective.

A recent extension of the suffix-tree approach [103], adapted to deal with large,
structured observation spaces, has been applied to a simulated highway-driving task
with over 21,000 states, 6,000 observations, and five actions. The learned policy used
about 150 internal states, and was able to handle many tricky situations; however, it

was, by no means, optimal.

Recurrent Q-learning One intuitively simple approach is to use a recurrent neural
network to learn QQ values. The network can be trained using backpropagation through
time or some other suitable technique, and learns to retain “history features” to predict
value. This approach has been studied by a number of researchers [106, 89, 137]. It
seems to work effectively on simple problems, but can suffer from convergence to local

optima on more complex problems.

Register memory Another short-term memory structure that has been studied in
the reinforcement-learning framework is storage registers [72, 91, 181, 35]. The idea here
is that the agent has explicit actions for saving information in non-volatile memory, and
for retrieving this information at a later time.? The method has been used successfully
when the number of storage registers is small (one or two), but the combinatorics

appear to make this approach impractical when the number of registers is larger.

6.6.3 Model-based Methods

As in the completely-observable case, we can learn to solve a POMDP by breaking the
process into two parts: first, learn the POMDP model from experience, then (or con-

currently) find an optimal policy for the model. Given a model, a policy can be found

2This type of memory can be viewed as a form of stigmergy [12]. The idea behind stigmergy is that
the actions of an agent change the environment in a way that affects later behavior resulting in a form
of “external memory.”
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using techniques from Chapter 7; both algorithmic methods and learning methods are
appropriate. This section describes several attempts at learning the model itself.

Chrisman [34] showed how the Baum-Welsh algorithm [11] for learning hidden
Markov models (HMMs) could be adapted to learning transition and observation func-
tions for poMDPs. He, and later McCallum [104], gave heuristic state-splitting rules
to attempt to learn the smallest possible model that captures the structure of a given
environment.

The Baum-Welsh algorithm is known to converge to locally optimal models, and
the same is probably true of its application to learning POMDP models. However,
no method is known for converging to a globally optimal model for general POMDPs.
Thus, even if an optimal policy could be found for the learned model, there is still no
guarantee that the process would converge to an optimal policy for the environment.

In their work on model-based methods for poMDPs, Chrisman and McCallum
learned a particular representation of the value function that did not require an ex-
plicit representation of the reward function. To apply the sophisticated techniques of
Chapter 7 in the context of a learned model, it is necessary to represent the reward
function R directly. Fortunately, this is not difficult to do.

Given a learned POMDP, it is possible to use the history of actions and observations
to construct an information-state experience tuple, (@, as, 7y, 2441). We want to find
a reward function R that has the property that Y, z¢[s|R(s, a;) is the expected value
of r;. Assuming the information states are properly maintained, this is equivalent to a

supervised-learning problem with a simple linear function. The update rule

AR(s,ar) = oqay[s] (T‘t - Zﬂft[s]R(Sv at)) ;

where a4 is a learning rate, can be shown to make the reward function converge to one

that predicts the immediate rewards arbitrarily accurately [66].

6.7 Open Problems

The study of algorithmic and complexity properties of POMDPs is still relatively young.
Although the results I presented in this chapter constitute significant progress towards

understanding these problems, many important issues remain unresolved.

e Given a POMDP, an initial distribution, and a reward bound, is it possible to

determine whether there is an infinite-horizon policy that can achieve the reward
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bound or better from the given initial distribution? What about when the PoMDP
is unobservable? There is some reason to believe that the problem is undecidable,

but proving this appears extremely difficult.’

e Is there is a POoMDP problem and initial distribution, all represented with rational
numbers, whose optimal value from that initial distribution has irrational value?

The answer to this might shed some light on the decidability of POMDP problems.

e Consider a POMDP in which there is a zero-reward absorbing state that is reached
with probability 1 under all policies. If the POMDP is completely observable, this
condition is the all-policies-proper condition, and the optimal value function is
bounded even if 3 = 1. Is this also true when the POMDP is partially observable?
If the minimum probability of reaching the absorbing state is non zero from all
states, say p, the answer is yes: an equivalent POMDP can be created by decreasing

the probability of reaching the absorbing state and setting the discount factor to
1-(1-p)p

e Several researchers [178, 122] have shown that POMDPs with no zero probabilities
in their transition or observation matrices can be solved arbitrarily well by policies
that remember a finite amount of history. This is because non-zero probabilities
have a tendency to make distant observations and actions irrelevant to current
decision making; this can be viewed as informational discounting, analogous to
the value discounting that makes distant future rewards irrelevant to current
decision making. Are POMDPs with informational discounting easier to solve than
general POMDPs? Are they decidable? Can the idea of informational discounting

make it possible to analyze approximate state estimators?

e Sondik [149] defines the class of finitely transient policies, and shows that these
policies can be represented as finite-memory policies. The POMDP decision prob-
lem described earlier is decidable for the class of PoMDPs with finitely transient
optimal policies, because we can simply enumerate all the finite-memory policies
until one is found that is provably optimal. Can value iteration be used to iden-
tify optimal policies for finitely transient POMDPs? Is informational discounting

guaranteed to make a POMDP finitely transient?

8Work currently in progress by Hanks uses a result from the probabilistic automata literature [118]
to show that problem of solving undiscounted POMDPs is undecidable; it is unclear whether these results
can be adapted for discounted POMDPs.
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e The problem of finding the optimal value for a finite-horizon deterministic POMDP
is NP-complete. It has been shown that there are heuristics that are useful for
finding optimal memoryless policies [91], another NP-complete problem. Are

there good heuristics for solving finite-horizon deterministic POMDPs?

e The search method used in the PSPACE algorithm for computing optimal values
for deterministic, infinite-horizon PoMDPs with boolean rewards (Section 6.3.2)
also works for general-reward POMDPs, except that the values themselves may
require an exponential number of bits to write down. Is there a way to represent
the optimal values more compactly? If so, it might be possible to extend the

PSPACE result to cover general-reward POMDPs.

e The existence of Bellman equations for the boolean-reward case (Section 6.3.2)
suggests that it might be possible to develop a theory of optimal policies for other
algebraic structures. Are there other algebraic structures that could be used in

a sequential decision-making setting?

e Is there a class of natural poMDPs? The carefully constructed hard poMDPs I
reference in this chapter do not seem very natural. Do the poMmDPs found in

real-world problems have structure that makes them any easier to solve?

e The complexity results in this chapter address the difficulty of computing exact
solutions to POMDPs. Finding approximate solutions is likely to be easier. What

is the complexity of computing approximately optimal POMDP policies?

o Is there a reinforcement-learning method that converges to an optimal policy?
Although no such algorithm is known, I believe McCallum’s suffix-tree algorithm
is close to being convergent, at least applied to PoMDPs with optimal finite-
history policies. Is there a non-trivial subclass of poMDPs that can be solved by

reinforcement learning? Would it help to consider “natural” POMDPs?

6.8 Related Work

In this chapter, I presented partially observable Markov decision processes, gave a
brief overview of solution methods that have been employed to solve them, developed

associated complexity results, and described reinforcement-learning approaches.
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The fundamental mathematical structure of POMDPs was developed by Drake [48]
and Astrém [5]. The algorithmic foundation was laid by Sondik [149, 150]. Additional
information on algorithmic approaches can be found in Section 7.8.

State estimation in a type of continuous-space POMDP was explored by Kalman [77]
and others, although the “spatial” assumptions required by Kalman’s approach are
violated for the graph-like state spaces considered in this chapter.

Several researchers have explored the problem of finding finite-memory policies for
POMDPs. Platzman [121] developed a finite-history-window approach in his thesis, and
later explored a heuristic method for finding more general stochastic finite-memory
policies [123]. White and Scherer [178] also presented bounds on the suboptimality of a
type of finite-history-window approach. Cassandra, Kaelbling, and Littman [32] showed
how finite-memory policies can sometimes be found using value iteration. Littman [91]
showed that finding good memoryless policies is NP-complete; closely related results
were proven by Papadimitriou and Tsitsiklis [116] and Koller and Megiddo [82]. Both
Littman’s and Papadimitriou and Tsitsiklis’ proofs can be extended to show that finding
optimal stochastic memoryless policies is NP-hard.

The study of the complexity of Markov decision processes was initiated by Papadim-
itriou and Tsitsiklis [116]. For poMDPs, they showed that the finite-horizon problem is
PSPACE-hard. More recent work by Burago, de Rougemont and Slissenko [31] showed
that a class of POoMDPs with bounded unobservability can be solved in polynomial time.
They introduced a parameter m which is a measure of how “unobservable” the envi-
ronment is; given that observations are a deterministic function of the state, m is the
largest number of states that possess the same observation. Special cases where m = 1
(completely observable) and m = |S| (completely unobservable) have been studied
separately.

The relevant reinforcement-learning literature is quite varied. Singh, Jaakkola and
Jordan [146] presented the theory behind defining optimal memoryless (and by ex-
tension, finite-memory) policies in partially observable reinforcement-learning environ-
ments. They argued persuasively in favor of using an undiscounted criterion. Jaakkola,
Jordan and Singh [70] described a provably convergent reinforcement-learning algo-
rithm for maximizing undiscounted reward in partially observable environments; their
algorithm finds locally optimal stochastic memoryless policies.

Wilson [182] presented results on applying a classifier-system-based memoryless

reinforcement-learning algorithm to a large partially observable environment to fairly
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good effect. Littman [91] repeated these experiments using Q-learning with similar
results. Wilson [181] recently suggested a register-memory extension to a classifier
system; Cliff and Ross [35] implemented this idea and found that it works well for
very simple problems. McCallum [105] examined a tree-based-memory approach for
simultaneously learning a predictive model and an approximate value function.

Neural networks have been used to find short-term memories for reinforcement-
learning agents. Schmidhuber [137] designed a novel connectionist learning algorithm
for Markovian and non-Markovian environments. Lin and Mitchell [89] surveyed several
different architectures including finite-history windows, observation prediction models,
and recurrent networks for approximating the optimal value function. Meeden, Mec-
Graw, and Blank [106] applied a simple backpropagation-based algorithm [2] to a re-
current network that learned to drive a remote-controlled car. Lin and Whitehead [179]
presented reinforcement-learning algorithms for learning internal representations of the
state, and an algorithm for learning to behave in such a way as to obviate the need
for internal state representation. In all these papers, the problems described would be
difficult to formalize as POMDPs; some involve continuous state spaces, others act in the
real-world in the absence of a model, and the rest have state spaces that are so large
that it would be difficult to solve them using existing algorithms. However, without
additional formal analysis, it is difficult to predict whether these results will scale well
to larger domains.

Chrisman [34] and McCallum [104] extended an algorithm for learning hidden
Markov models to the case of learning a reward and transition model for a POMDP.
Their algorithms used an impoverished linear representation for the value function,
but sophisticated rules for determining when to extend the number of states in the
approximate model; Chrisman used a rule based on the accurate prediction of observa-
tions, and McCallum used a rule based on the accurate prediction of values. Bengio and
Frasconi [14] created an algorithm for learning input/output HMMs, a model that is
equivalent to a POMDP with no rewards. Abe and Warmuth [1] studied the problem of
learning approximately correct probabilistic automata from experience. Their learning
framework is very interesting, and worth extending to poMDPs. Hernandez-Lerma and
Marcus [65] approach the problem of reinforcement-learning in POMDPs from a different
perspective; their results show that given a method for learning a parameterized model
of the environment, it is possible to use a variation of value iteration to simultaneously

learn the model and converge to an optimal policy.
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6.9 Contributions

In this chapter, I examine partially observable Markov decision processes. My funda-
mental contribution to this area is a collection of complexity results that show how
difficult it is to select optimal actions for this model, even when the problem is con-
strained in various ways. I explain that no provably convergent learning algorithm
exists and I augment the existing heuristic model-learning algorithms by devising a
new algorithm for learning the reward function for an unknown POMDP.

As the complexity results in this chapter show, POMDPs are simply too difficult
to solve. However, they are also too important to ignore. Perhaps a resolution of
this difficulty will come when researchers begin to explore applications of POMDPs to
important real-world problems. The constraints present in these applications might
be sufficient to make the corresponding POMDPs solvable. Some progress has been
made: Hansen [60] blended completely unobservable and completely observable MDPs
to form an intermediate model, and Simmons and Koenig [144] controlled a robot using
a POMDP model. From the interest that has been generated, I believe it is likely that

a great deal of additional progress will be made in the next few years.



Chapter 7

Information-State Markov

Decision Processes

Portions of this chapter and its associated appendiz have appeared in ear-
lier papers: “Planning and acting in partially observable stochastic do-
mains” [73] with Kaelbling and Cassandra, “Acting optimally in par-
tially observable stochastic domains” [32] with Cassandra and Kaelbling,
“The witness algorithm: Solving partially observable Markov decision pro-
cesses” [92], “Learning policies for partially observable environments: Scal-
ing up” [94] with Cassandra and Kaelbling, and “An efficient algorithm
for dynamic programming in partially observable Markov decision pro-

cesses” [95] with Cassandra and Kaelbling.

In this chapter, I present a number of algorithms for solving information-state Markov
decision processes. As discussed in Section 6.2.2, an information-state MDP arises
in the context of solving poMDPs when the agent encodes its history of actions and
observations as a probability vector over states of the environment. The algorithms
from Chapter 2 are not adequate because the information-state MDP has an infinite

number of states—the algorithms in Chapter 2 apply only to finite-state MDPs.

7.1 Introduction

An information state is a vector of probabilities, one probability value for each state

in the POMDP, that sums to one. Given a POMDP model, information states can be
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Figure 7.1: A POMDP agent can be decomposed into a state estimator (SE) and a policy

(7).

updated using basic probability theory and encode sufficient information for making
optimal decisions. Because they constitute a sufficient statistic for optimal behavior, it

is possible to use information states to define a particular kind of infinite-state MDP [5].

7.2 Information-state MDPs

Information-state Markov decision processes arise when the problem of controlling a
POMDP is decomposed into the two components shown in Figure 7.1. The agent makes
observations and generates actions. It uses memory to summarize its previous experi-
ence. The component labeled SE in the figure is the state estimator: it is responsible
for updating the memory state based on the most recent action and observation and
the previous memory state (it is a type of memory-state-update module, as discussed
in Section 6.2.2). The component labeled 7 is the policy: as before, it is responsible
for generating actions, but now as a function of the agent’s memory state rather than
the state of the environment.

In this chapter, the contents of the agent’s memory is an information state: a
probability distribution over states of the environment. Information states are sufficient
summaries of past history to make optimal decisions. This is because, given the agent’s
current information state, no additional data about its past actions or observations
would supply any further information about the current state of the environment.

Figure 7.2 illustrates a simple POMDP with four states, one of which is a goal state
marked with a star. There are two possible observations: one is always made when

the agent is in state 1, 2, or 4; the other, when it is in the goal state. There are two
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1 2 3 4
(R &
Figure 7.2: A simple POMDP example.

possible actions: RIGHT and LEFT. These actions succeed with probability 0.9, and
when they fail the movement is in the opposite direction. If no movement is possible
in a particular direction, then the agent remains in the same location.

We assume that the agent is initially equally likely to be in any of the three non-goal
states. Thus, its initial information state is (0.333,0.333,0.000, 0.333), where the order
of components in the vector corresponds to the order of states in the figure.

If the agent takes action RIGHT and does not observe the goal, then the new infor-
mation state is (0.100,0.450,0.000,0.450). Not observing the goal a second time after
taking action RIGHT results in an information state in which the right-most state is
most probable: (0.100,0.164,0.000,0.736). Notice that as long as the agent does not
observe the goal state, it will always have some non-zero chance that it is in any of the

non-goal states; only the third component of the information state will be zero.

7.2.1 Computing Information States

An information state # is a probability distribution over §. We let z[s] denote the
probability assigned to state s by information state z. The axioms of probability
require that 0 < z[s] < 1 for all s € § and that ), s2[s] = 1. The state estimator
must compute a new information state z’, given an old information state z, an action
a, and an observation z. The new probability of some state s’, 2'[s'], can be obtained

from basic probability theory as follows:

'[s'] = Pr(d|z,a,2)
Pr(z|s', a,z) Pr(s'|a, z)
Pr(z|a, )
Pr(z]s',a) Y, cs Pr(s'|a, z, s) Pr(s|a, z)
Pr(z|a, )
0(8/7 @, Z) Zses T(Sv a, S/)x[s]
Pr(zla, z)
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The denominator, Pr(z]a, z), can be treated as a normalizing factor, independent of ¢/,
that causes 2’ to sum to 1. The state-estimation function SE(z, a, z) has as its output
the new information state z’.

Thus, the state-estimation component of a POMDP controller can be constructed

quite simply from a given model.

7.2.2 Basic Framework

The policy component in Figure 7.1 takes an information state as input and produces
an action. Let M = (S, A, T, R, Z,0, 3) be a partially observable Markov decision pro-
cess. Because the information state is a sufficient statistic, we can treat it as a state and
define the information-state Mpp, B = (X', A, N, 7, p), where X is the |S—1|-dimensional
unit simplex representing the set of all information states, N(z,a) = {SE(z,a,z)|z €
Z} is a next-state function for information states, 7(x,a,2’) = Y, I{SE(z,q,z) =
2"} Pr(z|a, x) is the information-state transition function, and p(z,a) =3, z[s|R(s, a)
is the information-state reward function.

This information-state MDP has the property that an optimal policy for it, coupled
with the state-estimation function, will give rise to optimal behavior (in the discounted
infinite-horizon sense) in the original PomMDP [150, 5]. The remaining problem, then,
is to solve this MDP. It is very difficult to solve continuous-space MDPs in the general

case [133], but, as we shall see in the next section, the information-state MDP has special

properties that can be exploited to simplify its solution.

7.2.3 Acting Optimally

The continuous nature of the information-state MDP presents several challenges to
finding optimal behavior computationally. As in the case of finite-state MDPs, the
target is a policy that maximizes discounted expected reward, and this policy can be
defined as the greedy policy with respect to the optimal value function. Once again,
the optimal value function is well-defined and can be approximated by value iteration.
The primary difficulty is that the value function can no longer be represented by a
table of values, one for each state, because the state space itself is continuous.

There appears to be no method for representing general optimal value functions for
infinite-horizon information-state MDPs. The best we can hope for is an approximation.

In this chapter, I discuss algorithms that address this issue using a parameterized
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representation of the exact value functions produced in value iteration; algorithms
have been developed that attempt to represent approximations of the infinite-horizon

value function more directly [100], but I will not discuss these representations here.

7.3 Algorithms for Solving Information-state MDPs

The information-state MDP is a special kind of MDP, and many different algorithms are
available for solving it. The algorithms in Chapter 2 do not apply directly, because
those algorithms were designed for finite-state MDPs. However, versions of policy it-
eration [150] and value iteration [135] have been developed for the information-state
MDP.

The algorithms I present in this section are all variations of value iteration. They
find near-optimal infinite-horizon value functions by exactly solving for t-step finite-
horizon value functions for larger and larger ¢, until the difference between successive
value functions is sufficiently small. Section 7.3.1 shows that finite-horizon value func-
tions for the information-state MDP are always piecewise-linear and convex, implying
that they can be exactly represented by a finite set of linear functions. This is not nec-
essarily true for the infinite-horizon discounted value function; it remains convex [175],
but may have infinitely many facets. I present the algorithms from the simplest and
least efficient, to the most complicated and most efficient, including a novel algorithm

called the witness algorithm [95].

7.3.1 The Policy-Tree Method

In this section, I present a simple algorithm for finding ¢-step value functions that,
although impractical, serves as the basis for the more efficient algorithms developed
in the remainder of the chapter. We begin by considering the structure of optimal
finite-horizon policies.

When an agent has one step remaining, all it can do is take a single action. With
two steps to go, it can take an action, make an observation, then take another action,
perhaps depending on the previous observation. In general, an agent’s non-stationary
t-step policy can be described by a policy tree as shown in Figure 7.3. It is a tree of
depth ¢ that specifies a complete t-step policy. The top node determines the first action

to be taken. Then, depending on the resulting observation, an arc is followed to a node



Figure 7.3: A t-step policy tree.

on the next level, which determines the next action. This is a complete recipe for ¢
steps of conditional behavior.

Now, what is the expected discounted value to be gained from executing a policy
tree p? It depends on the true state of the environment when the agent starts. In the
simplest case, p is a 1-step policy tree (a single action). The value of executing that
action in state s is V,(s) = R(s,act(p)), where act(p) is the action specified in the top
node of policy tree p. More generally, if p is a t-step policy tree, then

Vp(s) = R(s,act(p))+ 3 Expected value of the future
= R(s,act(p))+j Z Pr(s'|s, act(p) Z Pr(z]s', act(p))V, subtree(p,» )(s’)
s'eS z€Z
= R(s,act(p))+j Z T(s,act(p Z O(s',act(p )Vsubtree(p,z)(sl)
s'eS z€Z
= R(s,act(p))+j Z stval(act(p), z, subtree(p, z))[s], (7.1)
z€Z

where subtree(p, z) is the (¢t — 1)-step policy subtree associated with observation z at
the top level of a t-step policy tree p, and stval(a, z, p’)[s] is the probability-weighted
value contributed by the subtree p’ in the context of a policy tree with action a at the
root when p’ is the subtree for observation z:
stval(a, z, p) Z T(s,a,s)O(s' a,z)Vy(s').
s'eS

Although this quantity has minimal intuitive appeal, it plays a crucial role in several
of the algorithms.

Because we will never know the exact state of the environment, we must be able to

determine the value of executing a policy tree p, from some information state . This



Figure 7.4: The optimal t-step value function is the upper surface of all the value
functions associated with ¢-step policy trees.

is just an expectation over states of executing p in each state, which can be computed

as a dot product:

SES

Now we have a function that represents the value of executing policy tree p in
every possible information state. To construct an optimal ¢-step policy, however, it
will generally be necessary to execute different policy trees depending on the initial
information state. Let IP; be the finite set of all t-step policy trees. Then

Vilw) = max ) [s]Vp(s).

That is, the optimal t-step value of starting in information state z is the value of
executing the policy tree that is best in z.

This definition of the value function leads to some important geometric insights
into its form. Each policy tree p induces a value function that is linear in z, and
the optimal t-step value function V; is the upper surface of those functions. So, V; is
piecewise-linear and convex, as illustrated in Figure 7.4. Consider a POMDP with only
two states. Each information state for the POMDP can be written as a vector of two
non-negative numbers, (z[s1], #[s3]), that sum to 1: it has only one degree of freedom.
The value function associated with a policy tree py, Vj, , is a linear function of 2[s;] and
is shown in the figure as a line. The value functions of other policy trees are similarly
represented. Finally, V; is the maximum of all the V},’s at each information state,
giving us the upper surface, which appears in the figure as a bold line.

When there are three states in the environment, an information state is determined
by two values. The space of information states can be visualized as a triangle in two-

space with vertices (0,0), (1,0), and (0,1). The value function associated with a single
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Figure 7.5: A value function in three dimensions.

policy tree is a plane in three-space, and the optimal value function is typically a bowl
shape that is composed of planar facets; an example is shown in Figure 7.5. This
general pattern holds in higher dimensions, but becomes difficult to contemplate and
even harder to draw!

The convexity of the optimal value function makes intuitive sense when we think
about the value of different information states. Information states that are at the
corners of the space X of information states correspond to situations in which the
agent is certain of the true underlying state. These information states have relatively
high values (unless they correspond to states that are extremely undesirable), whereas
information states closer to the “middle” correspond to high uncertainty situations in
which it is more difficult for the agent to select actions appropriately to gain long-term
reward.

Table 7.1 shows how policy trees can be used as a basis for a value-iteration algo-
rithm. For each ¢, the policy-tree method enumerates the set IP’; of all t-step policy
trees, and then calls the function BellmanErrMag to determine whether the value func-
tions represented by P; and P;_; are close together. A linear-programming algorithm
for BellmanErrMag is given in Section G.1.

The policy-tree method is, of course, hopelessly computationally intractable. Each
t-step policy tree contains (|Z|" — 1)/(|Z| — 1) nodes (the branching factor is | Z|, the
number of possible observations). Each node can be labeled with one of |A| possible

actions, so the total number of t-step policy trees is

12|~

1
A
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PolicyTreeMethod((S, A, T, R, Z,0,5),¢) :={
t: =20
loop
ti=t+1
until BellmanErrMag(P;,Pi—q) < €
return IP;

Table 7.1: Value iteration using the policy-tree method.

which grows astronomically in ¢.

It is not known whether any algorithm for computing a set of policy trees to rep-
resent the t-step value function has a better worst-case run time. This is because the
number of policy trees needed to represent the t-step value function might actually be
doubly exponential in ¢ in the worst case. For solving a finite-horizon POMDP with a
given initial belief state, the PSPACE finite-horizon algorithm of Papadimitriou and
Tsitsiklis [116], mentioned in Section 6.3.3, can be made to run in singly exponen-
tial time in ¢, which is better in the worst case. In the next few sections, I present

algorithms that run faster for POMDPs that possess simple value functions.

7.3.2 A Note on Implementation

Several of the algorithms in this section make use of sets of policy trees as a primitive
data structure. Policy trees can be represented by a tree-like data structure; however,
for efficiency of space and computation speed, other data structures might be preferred.
The policy-tree data structure needs to support the operators defined in Table 7.2.
All the necessary primitive operations on policy trees can be implemented on a
data structure that consists of a vector of values, an action, and a pointer for each

observation to a vector of values or a policy tree.

7.3.3 Useful Policy Trees

In general, the set P, of t-step policy trees contains many policy trees whose value
functions are totally dominated by or tied with value functions associated with other
policy trees. Figure 7.6 shows a situation in which the value function associated with

policy tree p, is completely dominated by (everywhere less than or equal to) the value
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tree(a, ) create a new policy tree with action @ at root
and subtree for observation z equal to 7(z)
Vo return a vector representing the value function for
policy tree p with one component per state
act(p) return the action at the root of policy tree p

subtree(p, z) return the subtree of policy tree p associated
with observation z; a subtree can be a policy
tree, or more simply, the value function of the subtree
stval(a, z,p)  return a vector representing the probability-weighted
value of following policy tree p as the observation
z subtree of a policy tree with @ at the root
R compare policy trees lexicographically according to
their value functions

Table 7.2: A list of operations needed for policy-tree-based algorithms.

function for policy tree pp. The situation with the value function for policy tree p. is
somewhat more complicated; although it is not completely dominated by any single
value function, it 4s completely dominated by p, and pp taken together.

Given a set G of policy trees representing a piecewise-linear convex value function,
it is possible to define a minimal subset I' that represents the same function that G
represents. I call the elements of this set the wuseful policy trees; it is unique up to
substitutions of policy trees with exactly the same value function. In the following
discussion, I assume that no two policy trees in G have the same value function. In
practice, it is easy to examine a set of policy trees and to throw out all but one policy
tree for each value function represented. This does not change the piecewise-linear
convex function represented and guarantees that no two policy trees yield identical
value functions (an implementation appears in Table 7.3).

Using the definition of useful policy trees directly, it appears that to determine
whether a policy tree is useful, we must perform a combinatorial search for the set I'.

The following lemma shows that usefulness is a property of the individual vectors in

G.

Lemma 7.1 Let G be a set of policy trees. A policy tree p € G is useful if and only if
there is some information state x such that V,(z) is strictly greater than Vi(z) for all

other policy trees p € G.

Proof: A proof is given in Section G.2. U
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Figure 7.6: Some policy trees may be totally dominated by others and can be ignored.

p := any element in G
G' =G U {p}
G:=G-{p}
foreach (p € G)
} if (V,=V;) G:=G—{p}

return G'

Table 7.3: Subroutine for removing policy trees from G so that any pair of policy trees
remaining have different value functions.
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Filter(G) :={
G :=uniq(G)
=40
foreach p € G
if (dominate(p, G) # false) I' :=T' U {p}
return I’

Table 7.4: Subroutine for returning the useful policy trees in G.

dominate(p, G) :={

if (G = () then return any element in X’

Solve the following linear program:
maximize: d
s.t. Do, x[s]Vp(s) > Yo, 2[s]Vi(s) + d, for all p € G — {p}
and: Y z[s] =1
and: z[s] > 0,forall s € S
variables: d, z[s| forall s € S

if (d > 0) then return z

else return false

Table 7.5: Subroutine for finding an information state at which policy tree p dominates
all other policy trees in G.

Lemma 7.1 gives us a way of computing the set I' of useful policy trees, the minimal
set of policy trees needed to represent the value function for G. We need only loop over
the policy trees in G, testing whether there is an = where each policy tree dominates
the others (an implementation appears in Table 7.4). The domination condition itself
can be checked using linear programming (an implementation appears in Table 7.5).
The linear program can take many different forms; as presented here, a variable d is
used to represent the amount by which a policy tree p dominates all the policy trees in
G at information state . Maximizing d results in the identification of the & at which p
dominates the policy trees in G the most. If the maximum amount is negative or zero,

p does not dominate all the policy trees in G anywhere and is therefore not a member

of T'.
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EnumerationMethod({S, A, T, R, Z,0,3),¢) :={

t:=0

PO = @

loop
ti=t+1
Gi = {tree(a,T)la e A, 7€ T(Z = T:_1)}
I't :=Filter(Gy)

until BellmanErrMag(l;,T';_q) < €

return I';

Table 7.6: Value iteration in information-state MDPs using the enumeration method.

The ability to compute the set of useful policy trees serves as a basis for a more
efficient version of the value-iteration algorithm in Table 7.6, generally attributed to
Monahan [109].

Some new notation is introduced in Table 7.6. First, T()Y — ®) represents the set
of all mappings from a finite set Y to a finite set ®. For 7 € T(Y — @), 7(y) € ® for
all y € Y. There are |®|P elements in the set 7(Y — ®) and they can be enumerated
easily.

Second, tree(a, ) is the ¢-step policy tree with action a at its root, and a policy
subtree for each observation z € Z equal to 7(z), where 7 € T(Z — Pi_y). As a
demonstration of this new notation, here is a recursive definition for the set of t-step
policy trees:

Py = {tree(a,7)ja € A, T € T(Z =5 Py_y)}.

7.3.4 The Enumeration Method

The enumeration method is used by a family of algorithms that exploit the following
idea: T';_q, the set of useful policy trees for the (¢ — 1)-step value function, can be used
to construct a superset G; of the useful t-step policy trees. In constructing the policy
trees in Gy, the choice of subtree is restricted to those (¢ — 1)-step policy trees that
were useful. This is justified by the fact that, for any information state and any choice
of policy subtree, there is always a useful subtree that is at least as good at that state;
there is never any reason to include a non-useful policy subtree.

The time complexity of a single iteration of this algorithm can be divided into two
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parts: generating G; and filtering G;. There are |A||Ft_1||z| elements in G; because
there are |.A| different ways to choose the action, and |T;_; |IZ| different mappings from
Z toI';_; corresponding to the different combinations of subtrees. The value functions
for the policy trees in G; can be computed efficiently from those of the subtrees. Thus,
generating G is exponential in the number of observations.

Filtering also takes expomnential time, but even worse, it involves solving an ex-
ponential number of exponential-size linear programs. Although this algorithm may
represent a large computational savings over the policy-tree method, it still does more
work than may be necessary. The next section shows how the linear programs used to

implement the filtering stage can be made significantly smaller.

7.3.5 Lark’s Filtering Algorithm

The filtering algorithm in Table 7.4 uses the dominate subroutine to decide whether
a policy tree p dominates all others in a set G. When there is no information state
x at which p has a larger value than all policy trees in G, dominate returns false.
However, when there is such an z, dominate returns it, but Filter ignores its actual
value.

A filtering algorithm attributed to Lark [176] shows how the useful policy trees can
be identified one by one by making use of the identity of the information state x at
which one policy tree dominates the others. As a result, the size of the linear programs
used to test domination can be bounded by the size of the set of useful policy trees in
G, instead of the size of G itself.

Lark’s filtering algorithm uses the following insight. Let U be a set of policy trees
that have been determined to be useful. The set U does not equal the complete set I’
of useful policy trees if and only if some policy tree p € G dominates the policy trees
in U.

The algorithm maintains a set U of policy trees that have been determined to
be useful, and a set unchecked of policy trees that have not yet been determined
to not be useful. An iteration of the algorithm proceeds by choosing a policy tree
p from unchecked and checking whether there is an z at which it dominates all the
useful policy trees in U. If no such z exists, then p is not useful and is removed from
unchecked.

If there is an 2 at which p dominates the policy trees in U, then there is at least
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one useful policy tree still missing from U. The missing policy tree is not necessarily
p: we know that p dominates the policy trees in U at z, not that it dominates all the
policy trees in G at z. The following lemma provides one way we can use z to identify

a policy tree that is guaranteed to be useful.

Lemma 7.2 Given a set of policy trees G and an information state x, let p* be the
policy tree in G that has the largest value at x where ties are broken in favor of the

policy tree with the lexicographically greater value vector. Then p* is useful with respect

to G.

Proof: A proof appears in Section G.2. O

We say that one vector is lexicographically greater than another vector if, given
some predetermined ordering over the states in &, the first vector has a larger first
component, or the two vectors are tied on their first 7 components and the first vector
is larger in component ¢+ 1. We can use this to define an ordering relation over policy
trees: p; > py if the vector of values V), is lexicographically greater than the vector of
values V,,.

The subroutine best in Table 7.7 chooses a policy tree from a set P that has max-
imum value at an information state z and is guaranteed to be useful. The subroutine
in Table 7.8 makes use of best to identify useful policy trees from a set. As described
above, each call to dominate is given only the set of known useful policy trees. As a
result, no linear program larger than the full set of useful policy trees is constructed.
Using FilterLark in place of Filter in the value-iteration algorithm in Table 7.6

results in a much faster algorithm [95].

7.3.6 The Witness Algorithm

The poMDP value-iteration algorithms discussed in the previous sections suffer from
the problem that the set G} of possibly useful policy trees is constructed at each step.
Since the size of G; is exponential in the number of observations, these algorithms are
terribly inefficient for solving PoMDPs with more than a small number of observations
(|Z| = 6 appears to be a practical upper limit [95]).

If we hope to solve larger problems, we need to avoid generating G;. The witness
algorithm works by building up a set of useful policy trees, one by one, analogous to

the way Lark’s filtering algorithm operates, except without making use of an explicit
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best(z, P) :={
maxtree := any element in P
maxval := Y, 2[5]|Vaaxtree(s)
foreach p € P — {maxtree} {
val := Y, 2[s]V,(s)
if ((val > maxval) or ((val = maxval) and (p > maxtree))) then {
maxtree :=p
maxval := val

¥
¥

return maxtree

Table 7.7: Subroutine for finding a useful policy tree at x, given a set of policy trees

P.

FilterLark(G) :={
U:=0
unchecked := G
while (unchecked # ) {
p:= any element in unchecked
z := dominate(p, U)
if (x = false) then unchecked := unchecked — {p}

else {
p* := best(z, unchecked)
U:=UuU({p*}

unchecked := unchecked — {p*}

¥
¥

return U

Table 7.8: Lark’s method for computing the useful policy trees in G.
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WitnessOuter(M = (S, A, T, R, 2,0, 3),¢) :={

PO = @
t:=0
loop

ti=t+1

foreach a € A

I'¢ ;= WitnessInner(a,[;_1, M)

I'y :=FilterLark(|J, I'?)
until BellmanErrMag(l;,T';_q) < €
return I';

Table 7.9: Value iteration in information-state MDPs using the witness algorithm.

representation of G;. When Lark’s filtering algorithm is used in the context of value
iteration, it uses the set Gy in two ways. First, it uses Gy as a source of policy trees
that might reveal that U is incomplete; once all the policy trees in Gy are considered,
Lark’s algorithm terminates. Second, G is searched to identify a useful policy tree
given an information state x. The witness algorithm avoids both of these uses of G;.

The main difference between the high-level structure of the witness algorithm and
that of the algorithms mentioned earlier is that the witness algorithm first finds a repre-
sentation for the t-step Q functions. As a result, the outer loop of the witness algorithm
(Table 7.9) closely resembles the value-iteration algorithm for MDPs in Table 2.2, with
the set I'? playing the role of the Q function Q,(-,a).

By arguments parallel to those in Section 7.3.1, the t-step Q function for action «
is piecewise linear and convex, and can be represented by a minimal set of policy trees,
I'?. Because the value of an information state is the maximum Q value for that state,
V(z) = max, Q(z, a), it must be the case that every policy tree p in the set I'; of useful
(p)

policy trees for the ¢-step value function is in F;‘mt . Therefore, we can compute I';
given the I'? sets by finding the useful vectors in |J, I'f, which might be a good deal
larger than T.

Any of the algorithms I mentioned earlier can be used to construct I'{; however, all
need to construct the exponential-size set of possibly useful policy trees. To build up
to I'¢ without enumerating an exponential-size set, we need to answer two questions:

“How do we find useful policy trees without enumerating all policy trees?” and “How
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UsefulPolicyTreeFromState(z, a, Iy, M = (S, A, T, R, Z,0,5)) :={
foreach 2 € 7
7(2) := bestSubtree(z,a, z,I;_1, M)
return tree(a, T)

}

bestSubtree(z,a,z, P, (S, A, T,R, Z,0,5)) :={
maxtree := any element in P
maxval := Y, z[s|stval(a, z,maxtree)[s]
foreach p € P {
val := Y, z[s]stval(q, z, p)[s]
if ((val > maxval) or ((val = maxval) and (p >, . maxtree))) then {
maxtree :=p
maxval := val

}

return maxtree

Table 7.10: Computing a useful policy tree at x, given action a.

will we know when we are done?”

The first question was answered in the context of Smallwood and Sondik’s [148§]
POMDP algorithm. The subroutine UsefulPolicyTreeFromState in Table 7.10 shows
how to construct a useful (with respect to I'Y) t-step policy tree for action a that is
useful at information state x, given the set I';_;. It works much like the implementation
of best in that it identifies the policy tree with maximum value at z, breaking ties using
lexicographic ordering. Instead of considering each candidate policy tree separately, it
constructs one directly.

To see how UsefulPolicyTreeFromState works, first notice that we can build a
policy tree with maximum value at @ by maximizing the subtree values. If P# is the set

of t-step policy trees with action a at the root, then the value of the best policy tree
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at z is

peP? peP?

max V() = max (Z z[s] (R(s7 a) + ﬁz stval(a, z, subtree(p, z))[s]))

= Zx[s] (R(s,a)—l—ﬁz max stval(a,z,pz)[s])

A S P€EF
= Z z[s]R(s,a) + Z max z[s|stval(a, z, p.)[s]. (7.2)
s  Pz&le—1

This is justified by the formula for V), in Equation 7.1, and the fact that I';_; is the set
of useful (¢ — 1)-step policy trees. Equation 7.2 essentially says that we can choose the
subtree for each observation separately. The code in Table 7.10 implements this idea,
choosing the best subtree for each observation using bestSubtree. The bestSubtree
subroutine works much like best, choosing a policy tree with maximum (subtree) value
with respect to z, breaking ties lexicographically (the relation py >, . po is true if the
vector stval(a, z, p1) is lexicographically greater than stval(a, z,p2)). Close examina-
tion of Equation 7.2 reveals that breaking ties for each observation subtree in favor of
the lexicographic maximum yields the lexicographically largest policy tree when the
subtrees are combined. Therefore, by Lemma 7.2, UsefulPolicyTreeFromState re-
turns a useful policy tree, even in the case of ties, without enumerating an exponential-
size set.

To answer the question “How will we know when we are done?” we need some
additional terminology. Policy trees p; and py are neighbors if act(p;) = act(p;z), and
subtree(p;, z) = subtree(py, z) for all but one z € Z. Each t¢-step policy tree has
|Z|(|T't=1| — 1) neighbors, which can be enumerated easily. The following lemma forms

the basis of a termination test.

Lemma 7.3 Let U be a set of policy trees that have been determined to be useful with
respect to action a. The set U does not equal the complete set I'* of useful policy trees
if and only if some policy tree p, in the set of neighbors of policy trees in U, dominates

the policy trees in U.

Proof: A proof appears in Section G.5. O

Lemma 7.3 is quite powerful because it lets us determine whether a subset U of
useful policy trees is complete by examining only the relatively small set of neighboring

policy trees.
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0 X 1

Figure 7.7: Q functions can be arbitrarily more complex than their corresponding value
functions.

The code in Table 7.11 builds up the set of useful policy trees. The set unchecked is
an agenda, initialized with a single arbitrary policy tree. Each iteration takes a policy
tree p off the agenda and determines whether there is an information state z that can
“witness” the fact that p dominates the policy trees in U. If such an x is discovered,
its associated policy tree is added to U and all neighbors of the policy tree are added
to the agenda. If p does not dominate the policy trees in U, then p is removed from
the agenda. When the agenda is empty, the algorithm terminates.

Because it only ever constructs the neighbors of the useful policy trees (and not
all possibly useful policy trees), the witness algorithm runs very efficiently over a wide
range of POMDPs. Like the enumeration algorithms, however, the witness algorithm
may do more work than is necessary. In particular, the witness algorithm spends
a great deal of time finding the exact set of policy trees needed to represent the Q
functions, when, in fact, many of these policy trees may not be useful when they are
pooled to form the optimal value function; Figure 7.7 is an example value function in
which the number of policy trees in the optimal @Q function is much larger than the
number of policy trees in the optimal value function. It would be desirable to identify a
lemma analogous to Lemma 7.3 that pertains to value functions instead of Q functions.
No such lemma is known, and there are complexity-theoretic reasons to believe that it

may not exist (see Section 7.5).

7.3.7 Other Methods

Several other algorithms have been proposed to perform value-iteration updates in

information-state MDPs. Sondik [149] proposed the first such algorithm. Although



WitnessInner(a,I't_ 1, M =(S, AT R, 2,0,3)):={
U:=0
unchecked := {any element in P;}
while (unchecked # ) {
p:= any element in unchecked
z := dominate(p, U)
if (x = false) then unchecked := unchecked — {p}
else {
p* := UsefulPolicyTreeFromState(z, a,[';_1, M)
U:=UuU({p*}
unchecked := unchecked Uneighbors(p*, M)
}
}

return U

}

neighbors(p,I'1—1,(S, A, T, R, Z,0,5)) .=
U:=0
foreach z € Z 7(z) := subtree(p, 2)
foreach z € Z {
foreach p' € I',_; — {subtree(p, z)} {
T(z) =)
U :=UUtree(act(p), 1)
}
7(z) := subtree(p, z)
}

return U
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Table 7.11: Computing the set of useful t-step policy trees for action a, via the witness

algorithm.
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the algorithm is complicated and, in principle, avoids enumerating the set of possibly
useful policy trees at each iteration, it appears to run more slowly than the simpler
enumeration methods in practice [33].

Cheng [33] developed a collection of algorithms for solving poMDPs. His relaxed
region and linear support algorithms work by building up a set U of useful policy
trees using specialized algorithms for enumerating the extreme points in the sets of
information states over which each p € U dominates. The algorithms run very quickly
when |S] is small, but scale poorly because the number of extreme points can grow
exponentially with the size of the state space.

White and Scherer [177] propose an alternative approach in which the reward func-
tion is changed so that all of the algorithms discussed in this chapter will tend to run
more efficiently. This technique has not yet been combined with the witness algorithm,

and may provide some improvement.

7.4 Algorithmic Analysis

An information-state MDP is a generalized MDP with an infinite state space and maxi-
mum expected value optimality criterion. Theorem 3.2 bounds the number of iterations
needed for value iteration to identify a value function with an e-optimal policy.

In this section, I analyze the time complexity of a single step of value iteration for
several of the algorithms described in Section 7.3. I refer to the problem of computing
the set I'y of useful policy trees from a set I';_; of vectors as the one-stage POMDP
problem. The sets I'y and I';_; represent the t-step and (¢ — 1)-step value function,
respectively. The size of a one-stage POMDP problem is equal to |S| + |Z]| + | A] for
the state, observation and actions sets; plus the size of |S|?|A| + |S||A| + |S||A||Z] + 1
rational numbers for the transition function, observation function, reward function, and
discount factor; plus the size of |I';_1||S| rational numbers for the (¢ — 1)-step value
function.

Although the algorithms described earlier use policy trees to represent the (f — 1)-
step value function, it is not difficult to adapt them to work directly with sets of vectors.
I use this model here because it makes it easier to construct examples with particular
properties. I abuse notation and write I';_; for the set of vectors representing V;_1,

instead of the set of policy trees.
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7.4.1 Enumeration Algorithms

Several algorithms for finding I'; work by enumerating the set G; of possibly useful
policy trees, and then identifying which of these policy trees is useful: Monahan’s
algorithm [109] was the first and later Eagle [51] and Lark [176] provided improvements.
However, all these algorithms, regardless of their details, build Gy, the size of which is
|AJ|T—1|IZl. Thus, even if a policy tree could be identified as useful in constant time,
the run times of these algorithms are at least exponential in |Z|, making them of little

use for solving POMDPs with anything but the smallest observation sets.

7.4.2 The One-pass Algorithm

Sondik’s one-pass algorithm [149, 148] was the first exact algorithm for solving finite-
horizon PoOMDPs. At a high level, the algorithm works by taking a useful policy tree
p and constructing a set of linear constraints over the set of information states that
guarantee that p will be the optimal policy tree throughout the constrained region.
There is one constraint for each policy tree p, obtained by substituting action « for the
root of p, plus one for each neighbor of the p, trees. By identifying the optimal policy
tree in each region adjacent to the constrained region, a systematic search for optimal
policy trees can be carried out.

Because of the complicated nature of the algorithm, and its poor performance in
empirical evaluations [33], I will not present a detailed analysis of the one-pass algo-
rithm. However, it is possible to construct POMDPs in which it is necessary to create all
possible constraint sets; as a result, the worst-case run time of the one-pass algorithm is
at least (JA||T;_1])!?! iterations, which can be considerably worse than the worst-case

bound for enumeration algorithms.

7.4.3 Extreme-point Algorithms

Cheng’s linear support and relaxed region algorithms [33] make use of special-purpose
routines that enumerate the vertices of each linear region of the value function.
Bounding the number of vertices in a polyhedron is a well-studied problem [80] and
it is known that there can be an exponential number. In fact, there is a family of
one-stage POMDP problems such that, for every n, |S| =n+1, |[A|=2n+1, |Z]| =1,
ITi—1| = 1, |T¢| < 2n 4+ 1, and yet the number of vertices in one of the regions is 2".

The construction is given in Section G.3. Since visiting each vertex is just one of the



165

operations the extreme-point algorithms perform, we can expect the worst-case run

time to grow at least exponentially in the size of the one-stage POMDP problem.

7.4.4 The Witness Algorithm

This section contains a run-time analysis of the witness algorithm on one-stage POMDP
problems, in terms of the size of the problem and Y, |T'{|, the size of the sets of useful
policy trees for each action. The run time is polynomial in these quantities, although
it is not difficult to construct examples in which Y, |'?| is exponential in the size of
the one-stage POMDP problem.

At the highest level, the witness algorithm computes I'¢ for each a € A, and then
selects I'; from the union of the I'¢ sets. In computing I'¢, the total number of policy
trees added to unchecked is equal to the number of neighbors of the policy trees used to
construct the vectors in I'¢ plus the arbitrarily chosen starting policy tree, specifically,
1+|Z|(|Ty=1|-1)|T'¢|. Each pass through the “while” loop in the inner loop (Table 7.11)
either consumes an element from unchecked (1 + |Z|(|T'¢—1] — 1)|T'¢| times) or adds a

vector to U (|I'¢| times). Thus, the total number of iterations in WitnessInner is
L+ [Z[(I0ea] = DITE] 4 T

The statements in the loop in WitnessInner can all be implemented to run in
polynomial time; this includes dominate, since polynomial-time algorithms for linear
programming with polynomial-precision rational numbers exist [140]. The total run
time of WitnessInner for each a is therefore bounded by a polynomial in the size of
the one-stage POMDP problem and |T'¢|.

The WitnessOuter routine calls WitnessInner for each ¢ € A and then calls
FilterLark, which creates one linear program for each policy tree found. For one-
stage POMDP problems in which Y, |T'¢| is polynomially bounded, this implies that the
total run time is polynomial. The algorithm takes no more than exponential time in

the worst case because Y, |T¢| < |G| = |A||Ty|IZ].

7.5 Complexity Results

In this section, I present some results pertaining to the computational complexity of

the one-stage POMDP problem described in the previous section.
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It is not difficult to show that no algorithm can compute I'; from I';_; in polynomial
time for general POMDPs, simply because I'; can be exponentially large with respect
to the size of the one-stage POMDP problem. An example POMDP illustrating this
phenomenon is presented in Section G.3.

Any algorithm for computing I'; in polynomial time must only apply to a subclass
of POMDPs. We call a family of one-stage POMDP problems polynomially output bounded
if |T'4| can be bounded by a polynomial in the size of the POoMDP and T';_;.

No existing algorithm has been shown to run in polynomial time on polynomially
output-bounded one-stage POMDP problems, and the next theorem suggests that there

may be a good reason for this.

Theorem 7.1 The best algorithm for solving polynomially output-bounded one-stage

POMDP problems runs in polynomial time if and only if RP=NP.

Proof: The theorem is proved in Section G.4. O

The importance of Theorem 7.1 is that it links the problem of exactly solving one-
stage POMDPs with the complexity-theoretic question of whether RP=NP.

These results imply that further restrictions on the class of one-stage POMDP prob-
lems are needed before a polynomial-time algorithm will be found. A family of one-stage
POMDP problems is polynomially action-output bounded if 3 ., |T'¢| is bounded by a
polynomial in the size of the one-stage POMDP problem. As before, I'{ is the minimum
set of policy trees needed to represent the t-step Q function for action a.

The quantity > ,c4|¢| is an upper bound on |I';|, though the bound may be
arbitrarily loose. By focusing on polynomially action-output-bounded POMDPs, we can
solve for I'; in polynomial time as long as we can find I'¢ in polynomial time for each
a € A

The performance of the algorithms described in this chapter on this restricted class

of POMDPs is summarized in the following theorem.

Theorem 7.2 Of the existing algorithms that can be used to solve polynomially action-

output bounded POMDPs, only the witness algorithm runs in polynomial time.

Proof: The theorem follows from the run-time analyses in Section 7.4. O
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7.6 Reinforcement Learning in Information-state MDPs

I now briefly describe several approaches to learning a policy for an information-state
MDP from experience. This differs from learning a policy for a POMDP from experience
(see Section 6.6) in that here the experience tuples have the form: (z,a,2’,r); the
information states are provided instead of observations. This type of experience tuple
would arise in situations where the rewards and transition probabilities are known in
advance or when an accurate model of the environment has been learned on line.

This is an interesting application of reinforcement learning, because the model is
known in advance and yet there are still sound reasons for trying to learn the optimal
Q function from experience; for example, reinforcement learning could possibly find a
useful approximation over the important parts of the state space more quickly than
the analytical methods described earlier. Still, there are major challenges to applying
any of the algorithms discussed earlier to learning in an information-state MDP, most
particularly the fact that the optimal Q function cannot be represented by a table of
values.

In this section, I sketch several methods for finding linear or piecewise-linear convex
approximations to the optimal  functions for poMDPs. In each, a simple, parameter-
ized function representation is used to approximate the optimal @ function for each
action. In some cases, the parameterized function is linear, that is, a set of coefficients,
one for each state; it assigns values to information states by taking the dot product
of the information state and the coefficients. The approximate value function for an
information state is the maximum value assigned to that state by any of the Q func-
tions; this means that if the Q functions are approximated by linear or piecewise-linear

convex functions, the approximate value function will be piecewise linear and convex.

7.6.1 Replicated Q-learning

As described in Section 6.6, Chrisman [34] and McCallum [104] explored the problem
of learning a POMDP model in a reinforcement-learning setting. At the same time
that their algorithms attempt to learn the transition and observation probabilities,
an extension of Q-learning [173] was used to approximate Q functions for the learned
POMDP model. Although it was not the emphasis of their work, their replicated -
learning rule is of independent interest.

Replicated Q-learning generalizes Q-learning to apply to vector-valued states and
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uses a single vector, ¢,, to approximate the Q function for each action a: Q(z,a) =

25 [s1als]-

The components of the vectors are updated using the rule

Bauls) = a als) (7 + Smax Q') — uls])

The update rule is applied for every s € § each time the agent makes a state transition;
« is a learning rate, # an information state, a the action taken, r the reward received,
and 2’ the resulting information state. This rule applies the Q-learning update rule
to each component of ¢, in proportion to the probability that the agent is currently
occupying the state associated with that component.

This learning rule can be applied to the problem of solving information-state MDPs.
If the observations of the POMDP are sufficient to ensure that the agent is always certain
of its state (i.e., z[s] = 1 for some s at all times), this rule reduces exactly to standard
QQ-learning and existing convergence theorems apply (see Section 2.6.1).

The rule itself is an extremely natural extension of Q-learning to vector-valued state
spaces. In fact, an elaboration of this rule was developed independently by Connell and
Mahadevan [38] for solving a distributed-representation reinforcement-learning problem

in robotics.

7.6.2 Linear Q-learning

Although replicated Q-learning is a generalization of Q-learning, it does not extend
correctly to cases in which the agent is faced with significant uncertainty. Consider a
POMDP in which the optimal ) function can be represented with a single linear function.
Since replicated Q-learning independently adjusts each component of the approximate
linear representation of the QQ function to predict the moment-to-moment  values, the
learning rule tends to move all components of g, toward the same value.

The components of ¢, ought to be set to match the coefficients of the linear function
that predicts the QQ values. This suggests using the delta rule for neural networks [131],

which, adapted to the information-state MDP framework, becomes:

Aqqls] = « z[$] <r —I—’yrrza/LXQ(x’,a’) — Q(aaa)) )

Like the replicated Q-learning rule, this rule reduces to ordinary Q-learning when the

information state is deterministic.
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Figure 7.8: A poMDP that cannot be solved with a single linear function per action.
Unmarked rewards are zero, unmarked observations are z;, unmarked transitions are
self transitions, and the initial information state has equal probability on states s and
53.

In neural network terminology, linear Q-learning views {z, r+ g max, Q(z',a’)} as
a training instance for the function Q(-, @). Replicated Q-learning, in contrast, uses this
example as a training instance for the component ¢,[s] for every s. The rules behave
significantly differently when the components of ¢, need to have widely different values

to solve the problem at hand [94].

7.6.3 More Advanced Representations

Although replicated Q-learning and linear Q-learning seem to work quite well on small
problems, the linear functions they use are not adequate in general. As mentioned
earlier, piecewise-linear convex functions can approximate the optimal @Q functions as
closely as necessary. In contrast, the linear functions used by the learning algorithms
can result in arbitrarily bad approximations.

As a concrete example of a POMDP that cannot be solved using simple linear @ func-
tions, consider the POMDP illustrated in Figure 7.8. A policy is linearly representable
if it can be represented as the greedy policy with respect to some linear representation
of the Q functions. I will show that the optimal policy for the POMDP of Figure 7.8 is
not linearly representable, and therefore that a more complex representation is needed
to solve it.

As an aside, there is some connection between the notion of linear separability in

classification tasks and linear representability of optimal POMDP policies. Indeed, the
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argument that the optimal policy for the POMDP of Figure 7.8 is not linearly repre-
sentable fairly closely mimics the classic argument that “xor” is not linearly separa-
ble [66].

To show that the POMDP of Figure 7.8 is not linearly representable, I first describe
the optimal policy for this environment and argue that it is unique, then show that any
choice of a single vector to represent the Q values for action a; leads to a suboptimal
decision for some information state on the path from the initial state to the goal state.
The optimal policy can be represented using a single vector for actions ag, as, and ay
and two vectors for action a;.

The unique optimal policy in this environment is to take action ay to determine
whether the agent is in state sy (observation z3) or state ss3 (observation zs). If the
agent is in state sg, it needs to take action ay, then az. If the agent is in state ss, it
needs to take action aq, then ay. The expected number of steps to goal for this policy
is 3 and the value of the initial state is 1033.

To see that no other policy does as well, note that actions a3 and a4 from the initial
state are clearly suboptimal. If aq is selected as the initial action, the second action
would have to be either az or a4. For either choice, half of the time this would lead the
agent to a reward of —100, and the other half, the agent would receive 10. The average
is then —45 < 103?; thus, the unique optimal policy is the one stated above.

Given that we know how to behave optimally for this POMDP, we now need to
show that no single-vector-per-action representation can capture the optimal policy.
To do this, let us examine three particular information states, each of which places all
its probability weight on two states (s and s3). The starting information state for
this POMDP places equal weight on states s; and s3; this information state is zg =
(0,0.5,0.5,0,0). After taking the optimal action in this state (az), the agent is then
informed as to which of the two possible initial states it is in, either 25 = (0,1, 0,0, 0)
or z3 =(0,0,1,0,0).

Assume that the optimal policy can be expressed using a single vector for each
action. Let ¢; be the vector associated with action a; and ¢y be the vector associated
with ag. In the optimal policy, zo - g2 > @0 - ¢1 (a2 is optimal from the initial state),
Ty q1 > T3 - q2 (@ is optimal from s;), and 23 - ¢1 > 23 - ¢2 (aq is optimal from s3).

The first inequality can be rewritten

q1[s2] + q1[s3] < q2[s2] + @2[s3]- (7.3)
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The second two inequalities are equivalent to ¢i[s3] > ¢z[s2] and ¢1[ss] > ¢2[ss], which
together imply ¢1[s2] + ¢1[s3] > ¢2[s2] + gz[s3]. But this directly contradicts Inequal-
ity 7.3; thus, the assumption that a single vector per action suffices is in error.

Representing the optimal policy using two vectors for action a; is trivial.

7.6.4 A Piecewise-linear-convex Q-learning Algorithm

A simple approach to learning a piecewise-linear convex @ function is to maintain a
set of vectors for each action and to use a competitive updating rule: when a new
training instance (i.e., information state/value pair) arrives, the vector with the largest
dot product is selected for updating. The actual update follows the linear Q-learning
rule. In some cases, different vectors will come to cover different parts of the space
and thereby represent a more complex function than would be possible with a single
vector [94].

Although this algorithm performs well on some problems, its performance on other
problems has been disappointing. The primary difficulty is that noisy updates can cause
a vector to “sink” below the other vectors. Since this approach only updates vectors
when they are the largest for some information state, these sunken vectors can never
be recovered. A related problem plagues almost all competitive learning methods [66].

A classic approach to the sunken-vector problem is to avoid hard “winner-take-all”
updates. Parr and Russell [117] solved information-state MDPs using a differentiable
approximation of the maximum function and found they could produce good policies

for many simple POMDPs. The approach is promising enough to warrant further study.

7.7 Open Problems

Algorithms for solving information-state Markov decision processes are still being de-

veloped and many questions remain.

e Are there any provably efficient approximate solutions to the information-state

MDP?

e There are value functions for POMDPs with n states and 2n actions where the
number of vertices in a value-function region is 2”. By analogy with existing
work on counting the vertices of polyhedral regions [80], it ought to be possible to

construct an example with a constant number of actions and a logarithmic number
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of observations for which the number of vertices in some region is exponential.

Can such an example be identified?

e It is possible to find the best linear approximation (in a max norm sense) to a set
of points using linear programming. Is there an extension of this result to more
complex approximations? This would have implications for learning optimal value

functions and putting bounds on the suboptimality of a learned value function.

e In this section, I suggested that the class of polynomially action-output bounded
pOoMDPs was worthy of study. This comment was motivated by complexity-
theoretic concerns. Are there naturally occurring POMDP subclasses that can

be identified and explored?

e Are there POMDPs in which |T';| grows as a double-exponential function of t7 Are
there POMDPs in which |T;| grows a a single-exponential function of ¢? Is it ever
the case that the PSPACE algorithm of Chapter 6 is superior to the algorithms
described in this chapter?

e Although lexicographic ordering plays a crucial role in separating useful and non-
useful policy trees, there is a sense in which it is an artifact of the proof of

Lemma 7.1. Is there another simple way to quickly identify useful policy trees?

e QQ-learning is known to converge to the optimal @ function in finite-state MDPs,
under the right conditions. Reinforcement-learning methods do not appear to
converge for general information-state MDPs. Is there some way of structuring
the problem so it is solvable by reinforcement learning? Does linear Q-learning
converge to the optimal Q functions if they are linear? Does linear Q-learning
converge to an optimal policy if it is linearly representable? Schapire and War-
muth [136] showed that a minor variation of TD(A) performs reasonably well
provided that there is some linear predictor that performs well; could these re-

sults shed some light on learning good policies?

7.8 Related Work

Algorithmic approaches to solving POMDPs, especially in terms of the information-state
MDP, have been surveyed extensively. The surveys by Monahan [109], Lovejoy [100],

and White [176] are all clear, concise, and contain a great deal of useful information.
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Although in this chapter I focus on approximating the infinite-horizon problem
using exact methods for the finite-horizon, other methods have been explored. Lovejoy’s
survey cites several other methods for solving the information-state MDP in addition
to those that use a piecewise-linear convex representation of the value function; for
instance, in one class of methods, the infinite-horizon value function is approximated
using a fixed grid of information states [99].

Sondik [150] presented a policy-iteration algorithm for finding approximate solutions
to infinite-horizon poMDPs. Sawaki and Ichikawa [135] advocated the use of the value-
iteration method, effectively reducing the problem of finding an approximate infinite-
horizon value function to that of finding an exact finite-horizon value function. This is
identical to the approach taken in this chapter.

The vector representation of finite-horizon value functions was first explored by
Sondik [149] in his dissertation, which made it possible for a computational treatment
of POMDPs to commence. The policy-tree representation is implicit in his work, and was
made explicit by Cassandra, Kaelbling and Littman in the course of this research [32,
73].

Monahan [109] provided the first description of the enumeration method, also im-
plicit in Sondik’s work. Monahan attributes the enumeration algorithm to Sondik,
although later authors [33, 100] give the credit to Monahan. Smallwood and Sondik’s
one-pass algorithm [148] avoids enumeration, at the expense of extensive record keeping.
Cheng [33] developed a collection of POMDP algorithms and his Ph.D. thesis surveys
almost all the algorithms existing at the time. White and Scherer [177] extended the
reward-revision method, developed for MDPs, to POMDPs.

The development of the witness algorithm [32, 92, 95] was inspired most directly
by Cheng’s linear support algorithm [33], with the difference that standard linear pro-
gramming was to be used in place of vertex enumeration to identify missing vectors.
An early version was shown to be incorrect [92], and later versions introduced the idea
of finding a representation for the QQ functions. As presented here, the algorithm bears
a close resemblance to Lark’s filtering algorithm [176].

Chrisman [34] introduced the POMDP model to the reinforcement-learning commu-
nity. His work, and that of McCallum [104], primarily addressed learning the POMDP
model itself, and used the simplest possible representation for value functions.

Methods for solving the continuous state-space information-state MDPs that come
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from POMDPs must work with a parameterized representation of the value function. Ex-
cept in some very special cases, these representations are approximate. Reinforcement
learning and dynamic programming using approximate value functions is attracting
increasing interest. Boyan and Moore [29] examined methods for solving a particular
class of continuous state-space MDPs, Gordon [58] and Tsitsiklis and Van Roy [164]
demonstrated closely related provably convergent dynamic-programming algorithms,
and Baird [7] derived a gradient-descent rule for adjusting the parameters representing
a value function in a reinforcement-learning setting; a survey of these techniques and
others has recently been compiled [30].

The linear Q-learning and piecewise-linear convex Q-learning rules were developed
in a parallel research effort by Littman, Cassandra, and Kaelbling [94]. Independently,
Russell and Parr [117] attacked the same problem using a more complex value-function

representation that can be adjusted by gradient descent.

7.9 Contributions

Information-state MDPs arise as a way of coping with the potentially unbounded his-
tories that must be considered when solving partially observable Markov decision pro-
cesses. Exact algorithms for solving information-state MDPs over finite horizon have
been around for 25 years, though a careful complexity study of these algorithms had
not been undertaken. I provide a new worst-case analysis of several algorithms for
solving this problem, and explain that, even when the optimal value function is simple,
these algorithms can take exponential time. I develop a new complexity result that
shows that it is likely that this is an inherent difficulty with the problem, for it can
be solved in polynomial time if and only if all problems in NP can be solved in ran-
domized polynomial time. I describe a new algorithm, called the witness algorithm,
which I developed in collaboration with Cassandra and Kaelbling, and prove that it
has complexity-theoretic properties that make it extremely attractive.

In the process of developing this algorithm, I discovered the importance of breaking
ties between policy trees using a lexicographic ordering, and developed efficient algo-
rithms for doing so. The concepts I derived in this context are critical to bounding
the run time of earlier algorithms as well, although, because this is the first in-depth
analysis of these algorithms, this fact was not recognized.

In the area of reinforcement learning, I analyzed the replicated Q-learning rule
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and argued that the new linear Q-learning rule is more appropriate. I also provided
a concrete example for which no linear representation will suffice to encode optimal
behavior.

Although the witness algorithm goes a long way toward solving information-state
MDPs efficiently, it is likely that no exact algorithm will be effective for solving large-
scale POoMDPs. Other methods that make use of value-function approximation or finite-
memory policies appear more promising in the short run. It is my hope that the
techniques presented in this chapter will inspire and inform the development of more

practical approaches.



Chapter 8

Summary and Conclusions

The central thesis of this work is that designing algorithms with attention to complexity
and convergence analysis can make it possible to solve larger and more difficult sequen-
tial decision-making problems. I illustrated this point by analyzing existing algorithms
to indicate which hold the most promise for solving large problem instances, deriving
complexity results to show which problems are unlikely to be solvable efficiently with-
out additional restrictions, and inventing new algorithms with provably superior run
times, wider coverage of problem instances, or guaranteed convergence.

This chapter provides several “big-picture” comparisons among the sequential decis-
ion-making models discussed throughout the thesis. It is intended to convey a feel for
the state of the art in algorithms for sequential decision making, as well as to point the

way to the next set of problems to be solved.

8.1 Comparison to Artificial Intelligence Planning

In this section, I provide an extremely brief summary of work in planning and relate it

to the results I described.

8.1.1 Deterministic Environments

Planning in artificial intelligence is concerned with finding good behavior given a de-
scription of an environment. In traditional planning research, environments are de-
terministic and fully observable, and the objective is to find any sequence of actions

that moves the agent from a prespecified start state to any of a prespecified set of goal
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states—to solve deterministic goal-oriented MDPs.

This model is the simplest type of sequential decision-making problem considered
in this thesis. What makes it difficult and worthy of study is that the states of the
environment are represented in a propositional form. Let us consider a simple example,
adapted from a paper by Draper, Hanks, and Weld [50, 49].

The environment is a manufacturing plant and the agent’s task is to process and
ship a particular widget. At any moment in time, the widget is either painted (PA)
or not, flawed (FL) or not, blemished (BL) or not, shipped (SH) or not, rejected (RE)
or not, and the supervisor has either been notified (NO) or not. The actions available
to the agent are to: REJECT the widget, which should happen if it is flawed; PAINT
the widget, which it must do to process it; SHIP the widget, which it should do if the

widget is processed; and NOTIFY the supervisor when processing is complete.

NO. The objective is to end up in either of two goal states, FL. BL PA SH RE NO
or FL BL PA SH RE NO. The shortest valid plan is REJECT NOTIFY if the part is
flawed or PAINT SHIP NOTIFY if the part is not flawed. Traditional planners have
very little trouble finding these plans.

As there are six propositions and each can take on two values, the effective state
space consists of 26 = 64 states. In general, the size of the state space is exponential
in the number of propositions. In addition, the transitions and rewards can often be
specified compactly in terms of the propositions themselves, so a complete description
of the domain can be made significantly smaller than an exhaustive listing of the
components of the T' and R functions. This means that the fastest possible algorithm for
solving deterministic MDPs will always be exponential, simply because it must consider
each of the states independently. The challenge of traditional planning research is
to find algorithms that can run efficiently with respect to the size of the compact

representation of the environment.

8.1.2 Stochastic Environments

In spite of the difficulty of compact planning problems, researchers have begun to
reach the limits of problems that can be solved usefully as deterministic goal-oriented

problems. Work in decision-theoretic planning has broadened its scope to stochastic
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environments with more elaborate reward structures. The fundamental difference be-
tween work in operations research on MDPs and the work in artificial intelligence on
decision-theoretic planning is the representation of states and actions; planning re-
searchers work with compact propositional representations of the state space, while
MDP researchers assume a collection of unanalyzed, independent states.

Of course, this difference in assumptions translates to substantial differences in
the types of algorithms that can be used to find optimal behavior; one fundamental
difference is in the form of the output of the algorithms.

Let us restrict our attention for the moment to stochastic, goal-oriented environ-
ments. We would like to know how to behave over the finite or infinite horizon so that
the probability of reaching the goal from some start state is at least 1 — §. The output
of an MDP algorithm for this problem would be an optimal policy that lists, for each
state, the best choice of action. This is impractical for planning problems, however,
because the number of states is too large. In deterministic environments, the solution
to this is to return a plan, or sequence of actions, instead of a policy. The size of an
optimal plan is a function of the number of steps needed to reach the goal, not the size
of state space, so it can be a very efficient representation.

In a stochastic environment, a linear plan is not sufficient to describe optimal behav-
ior': it is necessary to conditionalize the actions on the results of uncertain transitions.
The simplest extension over a linear plan is a plan tree, which is an agent’s course of
action that includes “forks” that occur when an action can have multiple outcomes.
Environments that are generally deterministic can have good plan trees that are small,
and planning algorithms have been developed that can find these plan trees.

As the number of possible action outcomes grows, the branching factor for the
associated plan tree grows as well. It rapidly becomes inefficient for a plan to associate
each possible sequence of outcomes with an action. It makes more sense to map states
to actions than to construct a full plan tree. Such plans have been called “universal
plans” [138] and are equivalent to what I have been calling “policies.”

I am not aware of any detailed comparisons of MDP and planning algorithms in
uncertain domains. I understand that MDPs with hundreds of thousands of states
can be solved using current approaches, which translates to problems with perhaps 17
propositions. It is my opinion that a combination of techniques from operations research

and artificial intelligence will be needed to solve large planning problems efficiently; this

'"Kushmerick et al. [87] attempt to find good linear plans for stochastic environments.
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Figure 8.1: Plan for a partially observable environment.
issue is explored by Boutilier, Dean, and Hanks [23].

8.1.3 Partially Observable Environments

Several projects have concerned themselves with planning in partially observable en-
vironments. Plans for partially observable environments cannot be conditioned on the
underlying state, i.e., the value of the propositions. Instead, actions are endowed by the
environment with “observational effects” and these effects (noisily) reveal the values of
particular propositions.

We can extend the widget-processing example above by making the two possible
starting states equally likely and by introducing an additional action, INSPECT, which
returns either “blemished” or “not blemished” depending on the state of the BL propo-
sition. Figure 8.1 gives a simple DAG-structured plan that reaches a goal with high
probability.

Very few algorithms have been proposed for this type of problem. Of course, any
of the POMDP algorithms described in Chapter 6 can be used, once the complete state
space is constructed. The C-Buridan [50, 49] and structured policy iteration [25] algo-
rithms solve partially observable problems using compact representations directly. The
C-Buridan algorithm discovers the DAG-structured plan in Figure 8.1. Draper et al.
note that “significant search control knowledge is necessary to enable solution of even
simple examples” like the widget-processing example. This means that C-Buridan is
unlikely to have found the plan in Figure 8.1 in any reasonable amount of time without
additional information about the environment.

In contrast, the witness algorithm performed quite well on this problem. Of all
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possible three-step plans, it found one with the maximum success probability in a few
seconds using no additional information about the domain. This result illustrates two
points. First, the witness algorithm can be used to solve compactly specified planning
problems competitively with state-of-the-art planning algorithms. Second, the state
of the art in planning in POMDPs is still quite primitive. I personally believe that the
witness algorithm is not the best way to solve compact POMDPs in general. However,
I believe that insights from the witness algorithm could make important contributions
to algorithms for planning in partially observable stochastic domains.

In conclusion, I believe that the algorithms described in this thesis are quite rele-
vant to planning researchers because (a) they can be used as alternatives to existing
planning algorithms, but more importantly (b) there are important insights here that
can probably be used to complement existing planning algorithms to solve bigger and

more complex problems.

8.2 Comparison of Game Models

Table 8.1 compares and contrasts MDPs, alternating Markov games, and Markov games
using the results from Chapters 2, 4, and 5. The first row summarizes the long-term be-
havior of value iteration for each model. For both MDPs and alternating Markov games,
value iteration identifies an optimal policy in a pseudopolynomial number of iterations
(Sections 2.4.2 and 4.4.1). For Markov games, value iteration generates policies that
become closer and closer to optimal but never necessarily get there (Section 5.4.2).
The second row summarizes the result of a linear-programming approach to solving
these models. Whereas linear programs can be used to solve MDPs (Section 2.3.3), it is
not known whether alternating Markov games can be solved this way (Section 4.4.3).
However, for general Markov games, it is possible to argue that no linear program can
be used to identify the optimal policy (Section 5.4.3).

The third row describes the form of the optimal policy: for MDPs and alternating
Markov games, a stationary deterministic policy suffices, while, for general Markov
games, it is necessary to consider probabilistic policies as well. The fourth row gives
the state of our understanding of the computational complexity of solving the three
models: MDPs can be solved in polynomial time (Section 2.5); alternating Markov games
are not known to have a polynomial-time solution, but belong to the class NPNco-NP,

providing some evidence that a polynomial-time algorithm exists (Section 4.5); and
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alternating
MDPS Markov games Markov games
value iteration optimal policy optimal policy approaches optimal
naive linear program solves fails impossible
optimal policy deterministic deterministic stochastic
computational polynomial NPNco-NP irrational
complexity
reinforcement learning | approaches optimal approaches optimal approaches optimal

Table 8.1: Comparison of properties of Markov decision processes, alternating Markov
games, and Markov games.

optimal solutions to Markov games may involve irrational numbers even when the
rewards and transitions are rational, making it unlikely that any algorithm can solve
them exactly (Section 5.5). The fifth and final row states that reinforcement-learning
algorithms exist for all three models that result in arbitrarily good approximations to
the optimal policy under the proper conditions.

It is worth noting that every MDP is an alternating Markov game and every alter-
nating Markov game is a Markov game, and thus any algorithm for solving Markov

games can be used to solve MDPs as well.

8.3 Complexity Summary

There are many aspects by which the value of an algorithm can be judged, but without
either theoretical analysis or empirical evaluation, the development of algorithms is an
exercise in aesthetics: Can you find an algorithm that is sufficiently “elegant”?

Of course, sound theoretical and empirical study of an algorithm is difficult. Which
example problems are the most revealing empirically? Do the assumptions necessary
to make for the analysis to work hold in practice? How can we be sure our empirical
results generalize? Are the constants in our asymptotic analysis small enough to affect
the run time of a small to medium-size problem instance?

One major challenge in any theoretical analysis of an algorithm is to determine
whether the upper and lower bounds on the run time are “tight”, that is, whether they
accurately characterize the range of possible run times of the algorithm. If the analysis
is tight, one needs then determine whether some other algorithm might produce faster

run times. These issues can be extremely difficult to address.
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polynomial horizon infinite horizon

deterministic MDP NC [116] NC [116]

MDP P-complete [116] P-complete [116]
deterministic alternating P-complete* NPNco-NP [183], P-hard*
Markov game

alternating Markov game P-complete* NPNco-NP [36], P-hard*

deterministic Markov game P-complete* irrational®, P-hard*

Markov game P-complete irrational [169], P-hard*

o PSPACE-hard*/
3 *
deterministic unobservable MDP | NP-complete EXPTIME*
unobservable MDP NP-complete [116] PSPACE-hard*
o PSPACE-hard*/
3 *
deterministic POMDP NP-complete EXPTIME*
POMDP PSPACE-complete [116] EXPTIME-hard*

Table 8.2: Summary of complexity results for finding optimal policies.

Complexity theory can be invaluable in determining when algorithmic development
and analysis need to change direction. Complexity analysis addresses the inherent
difficulty of the problem that is being solved. Finding that infinite-horizon POMDPs
are EXPTIME-hard immediately implies that your algorithm for solving them will
not run in polynomial time—no further analysis is needed. In addition, if you do
find an algorithm that runs in exponential time, you need not bother searching for
an algorithm with better worst-case run time; at this point, it is better to focus on
algorithms for special cases, algorithms that run well on “average” problems, or some
other less traditional avenue of algorithm development.

Table 8.2 summarizes the complexity results for the various models. Results marked
with asterisks were first proven in this thesis.

A definite trend is visible in this summary: increasing the amount of uncertainty
in a problem increases the complexity of the problem. An agent in a infinite-horizon
POMDP environment faces an uncertain future because of stochastic transitions, an
uncertain state because of stochastic observations, and an indefinite horizon. The
corresponding computational complexity is extremely high. An agent in a deterministic
Markov game environment faces a different type of uncertainty: uncertainty about the
agent’s behavior and its current choice of action. Again, the complexity is high, but in

a different way.
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These results indicate that, wherever possible, it is important to eliminate uncer-
tainty from applications. Nevertheless, when significant uncertainty is present, algo-

rithms are available that find near-optimal behavior.

8.4 Contributions

Although much of the thesis was devoted to summarizing and unifying results from a

number of different disciplines, I also presented the novel results listed below.
e Markov decision processes

— proof that policy iteration runs in pseudopolynomial time, and in polynomial

time for any fixed discount factor
— generalized convergence proof for Q-learning

— simplified proof of the convergence of value iteration for all-policies-proper

MDPs

— demonstration that the deterministic case can be viewed in the closed semi-

ring framework
e Generalized Markov decision processes

introduction of a new model

proof of convergence of value iteration

proof of convergence of policy iteration

proof of convergence of model-free reinforcement learning

proof of convergence of model-based reinforcement learning
o Markov games

— reinforcement-learning method (minimax-Q)
— proof of convergence of reinforcement-learning methods
— proof of convergence of self-play approaches

— demonstration that the deterministic case can lead to irrational values
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— polynomial-time algorithm for a special case: constant reward-cycle alter-

nating Markov games

— proof of P-hardness for the deterministic finite-horizon case
e Partially observable Markov decision processes

— model-based algorithm (witness)
— method for learning immediate rewards in an unknown model
— proof that the deterministic polynomial-horizon case is NP-complete

— proof that the deterministic infinite-horizon case is PSPACE-hard, in EXP-
TIME, and PSPACE-complete if rewards are boolean

— proof that the stochastic infinite-horizon case is EXPTIME-hard, and EXP-

TIME-complete if rewards are boolean

— proof that a single step of value iteration using the policy-tree representation

is NP-hard under randomized reductions

— analyses of several existing algorithms for solving POMDPs.

8.5 Concluding Remarks

Sequential decision making is one of the most important problems in artificial intel-
ligence and perhaps all of computer science, and the search for efficient algorithms
is still relatively young. The most important areas of future research are (1) finding
restrictions to some of the harder problems that capture the structure of problems in
the real world while admitting efficiently computable approximate solutions, and (2)
finding efficient algorithms for models specified in structured form.

Both of these areas will require significant synergy between researchers exploring
applications and researchers inventing and analyzing new algorithms. As long as the
lines of communication remain open, there is every reason to be optimistic that the

coming years will bring more efficient algorithms for more important problems.



Appendix A

Supplementary Introductory

Information

In this appendix, I provide background material on computational complexity and
linear programming, and summarize some of the conventions I use to illustrate the

algorithms in this thesis.

A.1 Computational Complexity

The goal of research into computational complexity is to classify and categorize compu-
tational problems. The most fundamental quantity in this area is run time: How much
time does it take to solve a particular problem? At the same time, it is often useful to
constrain other quantities such as the space used or the number of processors required
in a parallel implementation.

Time is measured in terms of basic computer operations like simple logical oper-
ations or branches. In the arithmetic model, arithmetic operations are assumed to
take unit time. In the bit-operation model, the time taken for arithmetic operations
is a function of the magnitude of the numbers involved. Since we expect the numbers
used in the programs to be represented using conventional computers, we most often
restrict our attention to integers or rational numbers (the ratio of two integers). The
arithmetic model is often more intuitive to work with and when we can guarantee that
all operations will be on rational numbers of a given precision, it is easy to convert

bounds under an arithmetic model to those under a bit-operation model.
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Most complexity results are framed in terms of decision problems—problems that
require a yes/no response for each well formed input. The time and space complexity
of decision problems are given as a function of the amount of space needed to write
down an input. The goal of complexity analysis is to find, for a given class of decision
problems, how the worst-case run time of an algorithm scales as a function of the input
length. Note that many fundamental questions in this area are open. This means that
many important results are given in the slightly cumbersome form “such and such is
true only if some complexity theoretic property which is generally believed to be true

is true.” I examine examples of this in the next section.

A.1.1 Complexity classes

Here are brief descriptions of some of the complexity classes I use in this thesis.

e P: The set of decision problems that can be answered with certainty in a polyno-
mial number of operations (polynomial time). Traditionally, this class has been

equated with the set of problems that have efficient algorithms.

e NP: The set of decision problems that can be answered non-deterministically in
polynomial time. Most NP problems have the property that a “yes” answer can

be supported by a short example.

e co-NP: This is the complement of NP. Most co-NP problems have the property

that a “no” answer can be supported by a short example.

e NPNco-NP: This is the set of problems that are in both NP and co-NP. Member-
ship in this class can be taken as evidence that a problem is in P [55], although
there are some significant examples in this class whose exact complexity remains

unknown.

e NC: The set of problems that can be decided on a parallel computer using a
polynomial number of processors and polylogarithmic (O(log" n), for some k)

time. All problems in NC are in P.

e P-hard: The set of problems such that if they are in NC, all problems in P are
in NC.

e RP: The set of problems that can be decided in randomized polynomial time,

that is, if the answer is truly “yes,” an algorithm will give a “yes” answer with
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at most a bounded probability of error; if the answer is “no,” the algorithm will

say “no.” All decision problems in P are in RP and all decision problems in RP

are in NP.

o PSPACE: The set of problems that can be decided using polynomial space. All
problems in P and NP and co-NP are in PSPACE.

e EXPTIME: The set of problems decidable in exponential time. All problems in
PSPACE are in EXPTIME.

e NP-hard: The set of problems such that if they are in P, all problems in NP are
in P. Similarly for PSPACE-hard.

e NP-complete: Problems in NP that are NP-hard. They are the hardest problems
in NP and many natural decision problems are in this class. No efficient algo-
rithms are known for exactly solving problems in this class. The important and
open question “does P=NP7?” basically boils down to whether any NP-complete
problem can be solved in polynomial time. For our purposes, we assume that P
mostly likely does not equal NP and therefore that any NP-complete or NP-hard

problem is intractable in general.

o PSPACE-complete: Analogous to NP-complete. Even if P=NP, it is very likely
that PSPACE does not equal P. Showing that a problem is PSPACE-complete is

very nearly a proof of its intractability in general.

o EXPTIME-complete: The hardest problems in EXPTIME. Includes problems
that are provably intractable, therefore the class of EXPTIME-complete problems

is the easiest set of problems known to be intractable.

Saying a problem is in PSPACE (or NP or EXPTIME or NC or RP) gives an upper
bound on its difficulty, since knowing that a problem is in PSPACE, for example, means
that we never need more than polynomial space to solve it. Saying a problem is NP-hard
(or PSPACE-hard or EXPSPACE-hard or P-hard) gives a lower bound on its difficulty
since an NP-hard problem is no easier than any problem in NP. “Completeness” results
are particularly tidy since they give matching upper and lower bounds on the difficulty
and as such (with regard to current theory) exactly determine how hard a problem
is. For more background information on decision problems and NP-completeness, see

Garey and Johnson’s book [55].
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A.1.2 Reductions

A reduction is simply a mapping of an instance of one problem A to an instance of
another B, so that the solution to B can be used to solve A. Reductions are extremely
important for relating two problems to show that one is no easier than the other. For
example, by reducing A to B, we show that solving A is no more difficult than solving
B. And if the transformation from A to B and from the answer for B back to the
answer for A takes, for instance, polynomial time, then A takes no longer to solve than
B to within a polynomial factor.

One use of reductions is to show that a given problem is hard. An example, discussed
in more detail in Chapter 6, is that solving finite-horizon poMmDPs is PSPACE-hard.
The proof goes like this. Take an instance of the quantified-boolean-formula problem.
It is known that the quantified-boolean-formula problem is PSPACE-hard (PSPACE-
complete, in fact), meaning that a polynomial-time algorithm for solving the problem in
general would prove that all problems in PSPACE are solvable in polynomial time. It is
possible to show that a finite-horizon POMDP can be constructed from an instance of the
quantified-boolean-formula problem in polynomial time, and that the solution to the
POMDP could be used to provide a solution to the quantified-boolean-formula problem
in polynomial time. Since this is true, a polynomial-time algorithm for solving general
finite-horizon POMDPs would provide a polynomial-time algorithm for the quantified-
boolean-formula problem, which would, in turn, imply that all problems in PSPACE are
solvable in polynomial time. Thus the finite-horizon poMDP problem is PSPACE-hard.

It is also possible to use the notion of reductions to show how easy a given problem
is. An example of this is in Chapter 2, where the problem of solving MDPs is reduced
to the problem of solving linear programs. Since the reduction can be carried out in
polynomial time, and since linear programs can be solved in polynomial time, this
proves that MDPs can be solved in polynomial time. Interestingly, this is the only
existing proof of this fact.

In the next section, I use reductions to show that many decision problems are equal

in difficulty to their corresponding optimization problems.

A.1.3 Optimization Problems

Despite the mathematical richness of decision problems, most naturally occurring prob-

lems do not appear in a “yes/no” form, and hence the complexity classes described
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above cannot really be applied to them. Nevertheless, many optimization problems,
such as the sequential decision-making problems that are the topic of this thesis, are
polynomially reducible to decision problems.

For example, consider the following problem: given a description of an MDP, find
the optimal policy. A related decision problem might be: given a description of an
MDP, and a rational number w, and a starting state sg, is there a policy that achieves
expected reward greater than or equal to w starting from sq?

Clearly if we could solve the optimization problem, the decision problem would be
trivial—simply take the MDP, find its optimal policy, and evaluate it to see if V*(sg) >
w.

We can also use an efficient solution to the decision problem to solve the optimiza-
tion problem. The basic idea is to use binary search to find the largest possible value
for w for each sy. As long as we have a guarantee that the optimal value function con-
sists of polynomial-precision rational numbers (and we do for MDPs, see Theorem 2.1),
a polynomial-time answer to the decision problem gives a polynomial-time answer to
the optimization problem.

Thus, for this and many other problems, the decision-problem formulation and the
optimization formulation are “equivalent” in that they have the same worst-case run
time to within a polynomial factor. For many problems, it is therefore reasonable to
use the decision-problem terminology when taking about optimization problems.

These reductions almost always depend on the solution to the optimization prob-
lem being a rational number expressible with at most a polynomial number of bits.
Thus, showing that an optimization problem can have an irrational solution, even for a
problem specified with only rational values, is taken as evidence that the optimization
problem is strictly harder than its corresponding decision problem.

A stronger result might be to show that solving the optimization problem is equiv-
alent to finding exact solutions to arbitrary polynomial equations. Galois theory tells
us that there is no finite-time algorithm (restricted to simple arithmetic operations and
roots) for solving arbitrary polynomial equations [6]. Thus, such problems are, in a
sense, uncomputable. In spite of the difficulty of this class of optimization problems,
several of them admit e-optimal approximations that can be computed in time that is

a function of 1/e.



190

A.1.4 Other Complexity Concepts

There are several other complexity-theoretic concepts that are used in this thesis. They
involve the specification of a problem’s complexity when the input involves representa-
tions of numbers.

When a problem is in P, it has an algorithm whose run time scales as a polynomial in
the size of the input. When the input involves numbers, we assume that these numbers
are given in the most compact possible form, for example, as integers specified in binary
notation. Similarly, when we say a problem is NP-complete, we are stating that it is
hard with respect to a compact representation of the input numbers.

Sometimes it is interesting to consider the complexity of the problem when its input
is given in unary. This means we are considering the run time with respect to the
magnitude of the numbers involved and not the size of their representations in binary.
Presenting the input numbers in unary makes a problem easier in the following sense.
Consider the problem of determining if a number z is prime. One simple algorithm
checks every number from 2 to [\/z| to see if any divide z evenly. The run time of
this algorithm is proportional to [/z] and is thus polynomial in the input size if x is
expressed in unary, but exponential in the input size if = is expressed in binary.

With this in mind, here are some major categories of time complexity:

e strongly polynomial: The run time of the algorithm, measured in arithmetic
operations, can be bounded as a polynomial function of the size of the input,
measured as the number of numbers. An example is matrix multiplication which

needs no more than n® arithmetic operations to multiply two n by n matrices.

e polynomial: The run time of the algorithm, measured in arithmetic or bit oper-
ations, can be bounded as a polynomial function of the size of the input, mea-
sured in bits. Although all strongly-polynomial algorithms are polynomial, some
polynomial-time algorithms (such as the ellipsoid method for solving linear pro-
grams and MDPs) are not strongly polynomial because the number of arithmetic

operations needed depends on the size of the numbers involved.

e pseudo-polynomial: The run time of the algorithm, measured in arithmetic or
bit operations, can be bounded as a polynomial function of the magnitude of the
numbers in the input. An example is the value-iteration algorithm for solving

MDPs, for which the number of iterations can grow as a polynomial function of
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the magnitude of the discount factor, 1/(1 — 8). Any polynomial-time algorithm

is also pseudo-polynomial.

o NP-complete: A decision problem is NP-complete if it is in NP and the existence

of a polynomial-time algorithm to solve it would imply that P=NP.

e strongly NP-complete: A decision problem is strongly NP-complete if it is in NP
and the existence of a pseudo-polynomial-time algorithm to solve it would imply

that P=NP.

A.2 Algorithmic Examples

Throughout this thesis, I use short code fragments to make concrete the algorithms
being discussed. I use a number of conventions to help make the code fragments as
clear and simple as possible.

First of all, the notation I use does not correspond to any existing computer lan-
guage. It borrows a great deal of structure from “C,” but with a number of extensions
for more complex data types.

Table A.1 contains a meaningless subroutine that illustrates some of the conventions
used to define program fragments. In this example, a subroutine greeting is defined
to take 3 arguments, a, b, and ¢. The local variable t is initialized to zero and then
doubled and incremented by k, for each k from 1 to a. Next, a is increased by 3 if
t does not equal b and ¢ is greater than or equal to 10. Otherwise, b is raised to the
second power and c is assigned the value of b — 3. Finally, the subroutine returns the
largest value of a, b, and c.

The distinction between global and local variables should be clear depending on the
context. The data type of a given variable is not given explicitly, but again, it should
always be clear from the context or the associated text.

Typographically, names of user-defined subroutines are in typewriter font, reserved
words are bold, variables are in italics, and mathematical functions are in roman font.

For the most part, any subroutine called within the definition of another subroutine
will be defined elsewhere in the thesis. The only difficult functions that are left un-
specified are routines for solving linear programs and systems of linear equations. The
first is intended to take a set of variables, linear constraints on those variables, and an

objective function, and return bindings for the variables that satisfy the constraints and



192

greeting(a,b,c) =1
t:=20
foreach k € [1...a]t =2t + k
if ((t # b)and(c > 10)) then a :=a+ 3

else {
b= b?
c:=b—3

}

return max{a,b, c}

Table A.1: Example subroutine illustrating the sample-code conventions used through-
out this thesis.

maximize the objective function. The second finds a binding for a set of variables that
satisfies a set of equality constraints on linear functions of those variables. Although
neither of these procedures are considered standard in most programming languages,
there are many excellent commercial (and free) software packages available.

My intention is that an experienced programmer should have little trouble imple-

menting the algorithms described in this thesis.

A.3 Linear Programming

Nearly every chapter refers to, or makes use of, linear programming. Very briefly, a

linear program consists of a set of variables, a set of linear inequality constraints on

those variables, and a linear objective function to be either maximized or minimized.

Linear programming is interesting because it is one of the most difficult and general
problems that can be solved in polynomial time. The first theoretically efficient algo-
rithm for solving linear programs, the ellipsoid algorithm [79], does not appear to be
of practical use; however, refinements of Karmarkar’s [78] polynomial-time algorithm
are competitive with the fastest practical algorithms. Another algorithm for solving
linear programs, the simplex method [41], is theoretically inefficient but runs extremely
quickly in practice.

An excellent book by Schrijver [140] describes the theory of linear programs and

the algorithms used to solve them.



Appendix B

Supplementary Information on

Markov Decision Processes

In this appendix, I present an analysis of two results from Puterman’s MDP text-
book [126] and discuss their implications for the complexity of Mpps. I also prove

that deterministic MDPs are closed semirings.

B.1 Comparing Policy Iteration and Value Iteration

This result is given much more precisely in Puterman’s MDP book [126] as Theorem
6.4.6. The goal of this section is to provide intuitive verbal arguments so that the
critical points can be examined more closely. We start with a host of definitions.

Let my be an arbitrary policy. For ¢ > 0, let V; be the value function for 7, and 744
be a greedy policy with respect to V;. Thus, the V; functions form a sequence of value
functions obtained by executing policy iteration starting from wg. Let Uy be the value
function for mo (i.e., Vp) and for t > 0, let U;41 be the result of applying value iteration
to U;. Thus the U; functions form a sequence of value functions obtained by executing

value iteration starting from my’s value function. Let V* be the optimal value function.

Theorem B.1 Foralls € S andt > 0, Us(s) < Vi(s) < V*(s), and therefore policy

iteration converges no more slowly than value iteration (i.e., at least linearly).

Proof: The easy part is showing that Vi(s) < V*(s) for all s € S and all ¢ > 0. This
follows from the fact that V; is the value function for a particular policy and the optimal

value function is larger than all such value functions at all states.
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To show that U;(s) < Vi(s) for all s € S and t > 0, we proceed by induction on ¢.
For t = 0, clearly Up(s) < Vp(s) for all s € S since Uy is defined to be equal to V. This
proves the base case.

Let us assume that Uy(s) < Vi(s) for all s € S. We will use this to show that
Uit1(s) < Viqi(s) forall s € S.

First, let U/, be the value function that results from taking one step of value
iteration on V;. I will argue that U/, (s) < Viqi(s) and that U4y (s) < Uiy (s) for all
s € § and the inductive proof will follow from chaining these inequalities.

Note that U/, is the value function for a non-stationary policy that follows 71 for
one step and then 7 thereafter. This non-stationary policy is no worse than one that
follows m; forever since the non-stationary policy chooses its first action to maximize
the long term reward given that m; will be followed thereafter. Certainly this is no
worse than following m; all along. Thus Uy, (s) > Vi(s) for all s € S.

The quantity U/, (s) — Vi(s) > 0 is the amount of improvement the non-stationary
policy achieves over policy m; starting from state s. Following policy 7,41 is like using
the non-stationary policy but restarting it after each transition. This can be no worse
than the non-stationary policy since it is as if the U/ (s) — Vi(s) gain is reaped on
every step instead of just once. (This is true, although the actual argument is a bit
more subtle. It can be proven as a consequence of the results in Section 3.3.3.) Since
Vi41 is the value function for this policy, we have Viy(s) > U{,(s) for all s € S.

How does U/, compare to U;;1? Well Uj,, is the result of taking one step of value
iteration on V; and U, 44 is the result of taking one step of value iteration on U;. Using
the inductive hypothesis that Us(s) < Vi(s) for all s € S, it is easy enough to show that
Uiy1(s) < Uiy (s) for all s € S.

Chaining these results gives us the desired answer that U;41(s) < Vigi(s) for all
s € § and therefore that policy iteration converges no more slowly than value iteration

when started from the same point. O

One extremely important observation is that this argument depends on the fact that
policy updates are done in parallel. The proof does not hold for sequential improvement
variations such as simple policy iteration. The reason is that, in comparing value
iteration and policy iteration, the proof uses the fact that applying a step of either
algorithm involves finding the same greedy policy with respect to the value function

from the previous iteration. In value iteration, this greedy policy is adopted for a single
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step. In policy iteration, it is adopted as a stationary infinite-horizon policy. But deep
down, it is the same policy and therefore the two algorithms have some common ground
on which to be compared.

It is possible to imagine using Puterman’s approach to compare other pairs of
algorithms. For instance, consider a version of policy iteration in which on the tth
iteration, the action choice for state t mod |S|is flipped. It might be possible to compare
this type of “single flip” policy-iteration algorithm to a version of value iteration where
the value for state t mod |S| is modified on step ¢. Unlike simple policy iteration, it is
impossible for these algorithms to spend exponential time between considering changes
to the action choice for any given state; it is likely that these algorithms will have
similar convergence properties to true value and policy iteration.

On the other hand, it is difficult to imagine how this type of proof could be ap-
plied to simple policy iteration. In simple policy iteration, the state updated depends
on the current value function. A related version of value iteration might be one in
which the state with the lowest index number whose Bellman residual is nonzero is up-
dated. I could easily believe that such a value-iteration algorithm would have terrible
convergence properties and would therefore serve as a useless bound on simple policy
iteration.

In summary, Puterman’s proof relating value iteration to policy iteration makes
use of the fact that both perform updates with respect to greedy policies. As a result,
only parallel improvement policy iteration is covered by this theorem. Variations of
policy iteration can be discussed, but only as they relate to analogous variations of

value iteration.

B.2 On the Quadratic Convergence of Policy Iteration

Puterman [126] proves a theorem concerning the rate of convergence of policy iteration.
It shows that, under the appropriate conditions, policy iteration converges at a rate
that is quadratic (i.e., the error is squared on each iteration). The linear convergence of
policy iteration [126] can be used to show that policy iteration runs in pseudopolynomial
time (see Section 2.4.3). A proof of quadratic convergence would have even more
important implications to the complexity analysis of policy iteration, so it is worth
understanding what the theorem implies in this case. I will argue that Puterman’s

theorem applied to general finite state/action MDPs leads to a vacuous conclusion.
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Here, Py is the transition probability matrix associated with policy «.

Theorem B.2 Suppose V; is the tth value function generated by policy iteration, and
that 7y is a greedy policy with respect to Vi, and there exists a K,0 < K < oo for which

[1Pry = Pre|| < K[V = V7 (B.1)

fort=1,2,.... Then
Vs = V7l € K1V = V7P, (B2)
Proof: See Puterman [126], Theorem 6.4.8. O

I begin by considering the conditions of the theorem, particularly Inequality B.1.
First of all, as there may be more than one optimal policy, it is not necessarily the
case that ||Pr, — Pr«|| goes to zero as n increases. However, the theorem gives us the
flexibility to choose m; as any policy that is greedy with respect to V4, so we choose 7y
to be as similar as possible to 7*.

What more can we say about the convergence of the transition matrices in Inequal-
ity B.17 Convergence of V; to V* takes place in a finite number of iterations, which
we call t*. For ¢ > t*, we have equality in Inequality B.1 for all K, since both sides
are equal to zero. For t < t* in deterministic MDPs, all the entries in the transition
matrices for policies 7; and 7% are zeros and ones and the two matrices differ in at
least one component. Therefore, for deterministic MDPs, ||Pr, — Prx|| = 1 for t < ¢*
and 0 afterwards. Because deterministic MDPs are a subset of the MDPs to which this
theorem should apply, it is important to see how the theorem applies to this case.

How do we choose K so that Inequality B.1 holds for all ¢t > 17 T argued that the
left-hand side of Inequality B.1 goes to zero in one discrete jump at t*. In contrast, we
know that ||V; — V*|| goes to zero in a series of steps. Tseng [162] argues that when the
rewards and transition probabilities of an MDP are all rational numbers, and V; is the
value function for some policy, then there is a value € > 0 such that ||V; — V*|| is either
zero or greater than or equal to €. That is, any pair of value functions derived from
policies that are closer than € to one another are, in fact, exactly equal. This result
provides a range of values for K that makes Inequality B.1 hold: K > 1/e. This works
because the smallest possible value of ||V — V|| for t < t* is ¢, so K||V; — V*¥|| > 1,
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as required. In addition, any smaller value for K would not work, because € represents
the closest that the value functions for two policies can be without being equal.

I showed, at least at an abstract level, a way of satisfying Inequality B.1 by setting
K appropriately, and gave an argument that smaller values of K will not suffice. The-
orem B.2 relates the distance between the (t 4 1)-step value function and the optimal
value function to the distance between the t-step value function and the optimal value
function. For Inequality B.2 to be useful in proving the convergence rate of policy itera-
tion, it must be that successive value functions are getting closer to optimal. Therefore,

we need ||[Vig — V¥ < ||Vi = V*||, or

B
1-p
for ¢ < t*. Using the facts that ||V, — V*|| > ¢, and K = 1/¢, Inequality B.3 implies

Vi = V7l > K Ve = V7|? (B.3)

that § < 1/2. Or, to put it another way, when the discount factor is one half or
more, the convergence bound given by Theorem B.2 allows the distance between value
functions and the optimal value function to grow over successive iterations. This implies
that Theorem B.2 is mute on the convergence rate of policy iteration unless § < 1/2.
Section 2.4.3 shows that policy iteration, when the discount factor is bounded away
from one, runs in polynomial time, so it appears that Theorem B.2 contributes little
to the analysis.

Theorems related to Theorem B.2 are presented by Puterman and Brumelle [124,
125] in a more abstract setting that might make it possible to prove superlinear con-

vergence of policy iteration, given some additional analysis.

B.3 Deterministic MDPs as Closed Semirings

In this section, I show how to define deterministic MDPs as closed semirings. As a
consequence, deterministic MDPs can be solved in O(|S||A| + |S|?) time.

Let V.= RU{-o00,+o0} and L = NU {—00,0,400}. Define S = Vx L. An
element of § is a summary of the discounted finite-horizon value of a path, where the
first component gives the value and the second component gives the length. Note that
L C V. Define —co+ v = —oo for all v € Vand 400+ v = o0 for all v € V— {—o0}.
Otherwise, v + vy is defined as normal addition. For discount factor 0 < § < 1, define

B~ = 400, BY = 1, BT = 0, and otherwise 3 is defined as normal exponentiation
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for ¢ € L. Finally, define (400)(—00) = —o0, (+00)0 = 0, (+o0)v = 400 (for v €
V — {—0o0,0}), and otherwise vyv, is defined as normal multiplication.

Define operator ¢ as follows. Let (v, (1) € S and (vg, l3) € S. Then

(U17€1)7 if v > Vg,

vg, £3), if v < vy,
(v1,01) B (v2,02) = (v2,2) . P

(v1,€1), if vy = vy and 1 > lq,

(v2,£3), otherwise.

Thus, & acts as a lexicographic maximum operator over path values with ties broken in
an arbitrary but consistent way. In the language of closed semirings, it is the summary
operator.

Define operator © as (v, (1) @ (vg, {3) = (v1 + %0, 4 +/3). The ® operator can be
interpreted as a concatenation operator for a pair of paths. In the language of closed
semirings, it is the extension operator.

Define 0 = (—00, —o0) and 1 = (0,0). Then 0 acts as a sort of path sink and 1 as
the empty path. Finally, define

(0,0 = 13 (0, 0) D ((v,0)© (0,0)B (v,0) @ (0,0 © (v,0) D ...
= (0,0)if v < 0 and (vB*/(1 — ), +oc) otherwise.

Here the star is being used as an operator, not a notational symbol as in V*. It
represents the maximum value of cycling around a path zero or more times.
Now, for (S,®,®,0,1) to be a closed semiring, a collection of properties must be

satisfied.
1. (S,®,0) is a monoid.

e Sis closed under ¢. This is trivial since the result of sq & s9 is always either

S1 OT S3.

e @ is associative. This follows fairly easily from the definition because the
lexicographic ordering is total and therefore independent of the order in
which elements are combined.

e 0 is an identity for . Since both components of 0 are —oc, 0@ s = sB0 = s

for all s € S.

2. (S,®,1) is a monoid.
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o S is closed under &. This follows from the fact that L. and V are closed
under addition, V is closed under multiplication, and 8¢ € V for ¢ € L.

e (v is associative. This is easily verified algebraically.

e 1is an identity for ®. This is easy to see given that 8° =1 and v -0 = 0.

3. 0 is an annihilator: (v, 6;) ® (—o00, —o0) = (v; + 34 — 00, ; — 0) = 0 and

(—o0, —00) ® (v1,l1) = (=00 + B~>vy, —0c0 + £1) = 0.
4. ¢ is commutative. This follows from the commutativity of lexicographic maxima.
5. @ is idempotent. Again, this follows from the idempotence of maxima.

6. © distributes over . First, s1 ® (s2 & s3) = (51 @ s2) & (s1 © s3) because the
left-hand side is s; concatenated to whichever path has greater value, sy or sq;
and the right-hand side is the path with greater value between s; concatenated
to sz or sy concatenated to sz. Second, (s3 s3) @ 51 = (52 @ 51) P (51 © s3) for

similar reasons.

7. If s1, 53,83, ... 18 a countable sequence of elements in S then the infinite summary
S1 D sy @ s3@--- is well defined and in S. This follows from the fact that V and
L are closed under countable sequences of & operations. It is important that

400 € V for this reason.

8. Associativity, commutativity, and idempotence apply to infinite summaries, thus,
any infinite summary can be rewritten as an infinite summary in which each term

of the summary is included just once and the order of evaluation is arbitrary.

9. @ distributes over infinite summaries.

As a result, every deterministic MDP is a closed semiring.



Appendix C

Supplementary Information on

Generalized MDPs

In this appendix, I prove important properties of a collection of summary operators, the
contraction of dynamic-programming operators in the all-policies-proper case, the con-
vergence of policy iteration, and the convergence of a doubly asynchronous stochastic

process.

C.1 Summary Operators

In this section, I prove several properties associated with functions that summarize sets
of values. These summary operators are important for defining generalized Markov
decision processes, which involve summaries over the action set I/ and the set of next
states N (z,u) for each state-action pair (z,u).

Let I be a finite set and h : I — R. We define a summary operator () over I to be
a function that maps a real-valued function over I to a real number. The maximum
operator max;es h(¢) and the minimum operator min;es h(¢) are important examples of
summary operators.

Let h be a real-valued function over I. We say a summary operator () is a non-
expansion if it satisfies two properties:

rlnel}lh(z) < @h(z) < r?ealxh(i), (C.1)
el

200
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and

O (i) = OQn'()

el el

< max |h(i) - ()] (C.2)

I will show that the max and min summary operators are both non-expansions, after
proving a series of simpler results.

Let h and & be real-valued functions over I. For i € I, let (' be the summary
operator Oler h(i') = h(i).

Theorem C.1 The summary operator (O' is a non-expansion.

Proof: Condition C.1 requires that b, h(i') = h(i) lie between min;erh(i’) and
max;er h(i'). This holds trivially.

To see that Condition C.2 holds, note that | Qbe; h(i") — Qbe, W ()| = k(i) —
R ()] < maxyer|h () — B/ (1)]. O

I next examine a more complicated set of non-expansions. For real-valued function
h over I, let ordjc;h(i) be the nth largest value of h(i) (1 < n < [I]). According to
this definition, ord}¢;h(i) = max; h(i) and ordlglh(i) = min; ~(¢). I will show that the
ord"” summary operator is a non-expansion for all 1 < n < |I]. To do this, I show that
pairing the values of two functions in their sorted order minimizes the largest pairwise

difference between the functions.

Lemma C.1 Let hy and hy be real-valued functions over I and i1,19,13,14 € I. If
hl (21) S hl (22) and h2(23) S hz(i4), then

max{|hi(i1) — ha(i3)], [h1(i2) — ha(is)]}
< max{|hy(11) = ha(ia)], |h1(iz) — ha(is)]}-

Proof: Two bounds can be proven separately:

|ha(in) — h2(i3)] = max{hi(i1) — h2(is), halis) — k1 (21)}
max{hi(t2) — h2(i3), ha(te) — h1(ir)}
< max{|hy(i1) = h2(ig)], |hi(d2) — R2(i3)]},

IN
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and
|h(iz) — ha(ia)] = max{hi(iz) — h2(ia), ha(ia) — h1(22)}
S max{h1 (22) — hz (i3)7 h2(24) — hl (21)}
< max{|hi(i1) — ha(ta)], |h1(d2) — ha(is)|}-
Combining these two inequalities proves the lemma. O

I use Lemma C.1 to create a bound involving the ord” summary operator.

Lemma C.2 Let hy and hy be real-valued functions over I. Then

max |ord}. rhy (i) — ordi rho(i)] < max |h1(2) — ha(2)].
n 1€

Proof: Both quantities in the inequality involve taking a maximum over differences
between matched pairs of values. This lemma states that, of all possible matchings,
pairing values with the same position in a sorted list of values gives the smallest max-
imum difference.

To prove this, I argue that, from any matching that violates the sorted order we can
produce a matching that is “more sorted” without increasing the maximum difference
(and perhaps decreasing it). The idea is that we can find a pair of pairs of values that
are matched out of order, and swap the matching for that pair. By Lemma C.1, the
resulting matching has a maximum difference no larger than the previous matching.
After generating pairings that are more and more sorted, we eventually reach the totally

sorted matching. Since the initial matching was arbitrary, the lemma follows. O

That ord™ is a non-expansion follows easily from Lemma C.2.
Theorem C.2 The ord" operator is a non-expansion for all 1 < n < |I].

Proof: Condition C.1 is satisfied easily since it is always the case that ordjc ;A (i) = h(2)
for some 7 € I.
To verify Condition C.2, let h; and hy be real-valued functions over I. It follows

from Lemma C.2 that

lordierha (1) — ordjgrha (1) < max|ordierhy (i) — ordierha (i)
< ) — ha(i)).
< max|hi(i) = ha(3)]
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Since n was arbitrary, the theorem is proved. O

Theorems C.1 and C.2 state that two very specific classes of summary operators
are non-expansions. The next theorem makes it possible to create more complex non-

expansions by blending non-expansions together.

Theorem C.3 If O and O are non-expansions, then for any 0 < v < 1, the sum-

mary operator

O (i) = v h(i) + (1 = O h(i)

el el el

18 @ NON-ETPansion.

Proof: Once again, Condition C.1 is not difficult to verify since the operators are being
combined using a (convex) weighted average.

Condition C.2 follows from

(1+2)v, . (142),v .
O i - O h/@‘

el el
= O+ 1 - v)O’hi) - (u@lh’(i) (1 y)@zh’(i)) ‘
1€l 1€l 1€l €]
- (th(i) - th’(i)) +(1-v) (th(i) - @zh’(i)) ‘
el el el el
< v|O'h) - O )|+ 1 - |Ohi) - QK )
el el el el

< vmax|[h(i) = K'()] + (1 - v) max|h(i) - K'()] = max[h(i) = 1 (§)].

The proof is easily extended to weighted averages of more than two operators. O

The previous theorem demonstrated one way of making non-expansions out of other
non-expansions by averaging. The next theorem shows a more sophisticated method
for constructing non-expansions.

If O is a summary operator over I, and (O? is a summary operator over I, we

define the composition of ©O! and (O? to be a summary operator over I x Iy,

(Ql ° @2)(i1,i2)eh X12h((i1, ’2)) = @ ' @ zh((ih 22))

nely xebh

Theorem C.4 Let O = Olo®? for non-expansions O over I and O? over I,.

Then (O over I = Iy X I3 is a non-expansion.
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Proof: Let A and A’ be real-valued functions over I. For Condition C.1, we see that

O hl(inia)) = (@ °o(® ) (r )€l R((71,12))
(41,42)€1 ’
= OO rllirir)

nely xebh

< max O “h((ir, iz)
“EIli2€I2
< maxmaxh((ig,iz))

neliinel

< h((11,79)).
< (“rrig)él ((i1,12))

The argument that O, ;,)er 2((41, 12)) > ming, i,)er b((i1,72)) is similar.
For Condition C.2,

O (i) - © h/((ihiz))‘

(41,42)€1 (11,92)€T

- ‘ @ @ (41 4i2) Elh 21722 @ @ (%1,32) th 21722))‘
©) 1 © “h((ir,i2) - O ' O W (i, i)

ueh i€l ueh i€l
2 .. 2 .o
< max | () h((ir, i2)) — ) "B ((ir, 42))
n€elh |. .
1€l 12€ls
< maxmax |h((i1,12)) — A'((11,42))] = max |h((i1,42)) — A ((i1,42))].
€L ia€D (41,32)€l
This proves that () is a non-expansion. O

As a non-trivial application of the preceding theorems, I will show that the minimax
summary operator, used in Markov games, is a non-expansion. Let 4; and Ay be finite

sets. The minimaz summary operator over A; X Ay is defined as

Minimax(q, a,)ed; x4, M((@1, a2)) = per%aicl ar2n€1£2 Z pla1]h((a1, az)).
ar€A;

Let p € II(A;) and let hy be a real-valued function over A;. Define
O "hila) = Y pla)hi(ar);
a1 €A a1 €A

by Theorem C.3 and Theorem C.1, (O” is a non-expansion. Let h be a real-valued

function over A; x As. By Theorem C.2, the minimum operator is a non-expansion.
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Rewrite

.. ) I3
MIMIMAX (g ,a5) €Ay XA?h((ah az)) - pEr{l_[?.il{l) (mln OQ )(a2,a1)€A2 X A; h((ah az));

minimax is a non-expansion by Theorem C.4 and the compactness of the set II(A;) of
probability distributions over A;.
The class of non-expansions is quite broad. It is tempting to think that any operator

that satisfies Condition C.1 will be a non-expansion. This is not the case.

Lemma C.3 Define the boltzmann weighted average of h as

BOLTZZL ;4 (i) Zh(')ieh(iw
iert ) = t /T
€ icl ZiEI eh( )T

The operator BOLTZ' is not a non-expansion.

Proof: Let I = {1,2}, T = 1, h(1) = 100, A(2) = 1, A/(1) = 1, and A/(2) = 0. For
BOLTZ” to be a non-expansion, it must be the case that Conditions C.1 and C.2 hold.
Although Condition C.1 holds,

IBOLTZY ;h(i) — BOLTZL 1/ ()]
_ehl)/T . h (/T
N z@.:h )= T ~ Z A S

~ [(100+0) — (0.73140)| = 99.269 > 99 = max |A(i) — I'(i)],

proving that the operator is not a non-expansion. [l

C.2 Contractions in the All-policies-proper Case

Consider a finite-state generalized Markov decision process' under the expected reward
criterion satisfying the all-policies-proper condition. This condition states that one
state, call it g, is a zero-reward absorbing state (T'(z¢, u, 29) = 1 and R(z¢,u) = 0 for
all u), and every other state has a positive probability of reaching zo eventually, for
any policy.

In this section, we work through a novel proof that, under these conditions, the

dynamic-programming operator H is a contraction mapping under some weighted max

'Recall that generalized MDPs are defined to have a finite action set.
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norm, even if 3 = 1. Alternate proofs for the MDP case are given by Bertsekas and
Tsitsiklis [18], and Tseng [162].

Define w(zp) = 0 and w(z) = max, (1 + X weN(ew L@ u, x’)w(x’)); that is, w(z)
is the maximum expected steps to absorption from state x over all policies. This is
the Bellman equation for a simple all-policies-proper MDP, and is well defined [126].
Because of the all-policies-proper condition and the definition of w, 0 < w(z) < oo for
all # € X. Define 8, = fmax,((w(z) — 1)/w(x)); it is strictly less than one because
both w(z) and |X| are finite.

Let Vi and V5 be value functions and ¢ and @9 be Q functions with

Qi(z,u) = R(z,u)+ Z T(z,u, 2"V (2",
&N (x,u)
and

Qz(z,u) = R(z,u)+ Z T(z,u,z"\Vy(a).

z'€N(z,u)

The definitions of H, w and f3,, along with the non-expansion properties of &

imply
|V = HVl|,, = max I[HVI](xzv(—x[)Hvz](x)|
L ey B Q1](@) — (@ Q:](2)]
¢ w(x)
< maxmax |Q1($7u20(—x§22(x,u)|
< max mﬁXﬂxle%(:x’u)T(% u, ') |V1($/zv(—$;/2($/)|
nw(a) Vi(a') = Va(af)]

- mgxmgXﬂxleg(:w)T(@ ) w(z) w(a')

= mgxﬁ mgxxleg(:%u)T(xv u, xl) Q;;((xx/)) ||V1 - V2||w

w(z) —1

maXﬁLHVl — Val|w
w w(z)

< BulVi = Vallw-

IN

This shows that H is a contraction mapping with respect to the weighting function w
with contraction coefficient 3,,.
Note that the weights w are can be determined by the solution of an MDP. By

the reasoning in Theorem 2.1, each of the weights (and f,) can be written using a
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polynomial number of bits. This is important for arguing that value iteration for all-
policies-proper MDPs converges in pseudopolynomial time.

Let @1 and Q3 be Q functions. Using reasoning similar to the above,

[KQ1 — KQ2|w
= maxmax [KQu](2, u) = [KQo](x, u)|
v w(z)
= maxmax/ x/é%(:xm T(x,u,z’) [®Q] (xlzv(_w[)@’ Q2] (2")]
< maxmax [} x/é%(:w) T (@, u,") max @1 (2, UIL(_QC?Z(QC/7 u')|
< m;tXﬁ mjtx x/é%(:%u) T(x7 u, $/) ?;)U((Z/)) muz}x |Q1($’7 U/Q)U(—wl?Z($’, u/)|
< maxf mfxxle%(:%u)T(% u, 2’ Z((zl)) max max @1 (', “;)1)(—96/()22(90/7 u))|
w(z) —1
< max e I@ = Qe
S ﬁwHQl _Q2||w7

demonstrating that the K operator on Q functions is also a contraction mapping with
respect to the w weighted max norm.

It is interesting to ask whether this result holds true for different definitions of
P, such as the minimization operator. In fact, the result does not hold for either
minimization or maximization, unless the state space is entirely acyclic (no policy has

a positive probability path from a state to back itself).

C.3 Monotonicity of Several Operators

Section C.1 describes a collection of important non-expansion operators based on ele-
ment selection, ordering, convex combinations, and composition. All of these operators
obey an additional monotonicity property as well.

Summary operator (©) is monotonic if, for all real-valued functions h and b’ over a
finite set I, h(¢) > B'(7) for all 7 € I implies

O nr@) > O ).

el el
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Theorem C.5 The following summary operators are monotonic: @’ for all i € I,
ord” for all1 < n < |I|, ®(1+2)’” for all0 < v <1 if O and O are monotonic, and
Olo O if O and O are monotonic.

Proof: The monotonicity of O, @(14—2),1/7 and O o ©? follow immediately from their
definitions. The monotonicity of ord™ can be proven by considering the effect of in-
creasing h(t) to I/(7) for each ¢ € I, one at a time. A simple case analysis shows that

each increase in h(2) cannot decrease the value of ordf ;h(7). O

C.4 Policy-Iteration Convergence Proof

In this section, I develop the necessary results to show that the generalized policy-
iteration algorithm of Section 3.3.3 converges to the optimal value function. I will
first prove several simple lemmas that illuminate the fundamental properties of value
functions in maximizing generalized MDPs.

First, for maximizing generalized MDPs, a single step of value iteration on a value

function associated with a mapping w, results in a value function that is no smaller.
Lemma C.4 Forallw: X - R, HVY > V¥,

Proof: From Equation 3.4, the constraints on (), and the definition of V¢,

HV)@) = Q) (R(%U)JrﬂED(x’U)V“’(w’))

u

— max®@" (R(av7 u) + ﬂ@(%u)vw(x’))

PER

v

Q7 (R(@ W) + ﬁ@(””’“)v%x')) = V¥ (a).

u

0

Let H® be the dynamic-programming operator associated with the mapping w
w _ owl@)(=) (z.u) /
[HV](2) = @ Rz, )+ 5P V() ).

The next lemma says that the monontonicy properties of @ and € carry over to H

and HY.
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Lemma C.5 The mappings H and H* are monotonic for maximizing generalized

MDPs.

Proof: For value functions V and V', we want to show that if V> V', then HV > HV’'
and H*V > H“V'. This follows easily from the definitions and the monotonicity of

the operators involved. O

Theorem 3.5 states that the optimal value function dominates the value functions
for all w. I will now prove this using Lemmas C.4 and C.5.

From Lemma C.4, we have that V¥ < HV* for all w. Combining this with the result
of Lemma C.5, we have HV* < H(HV*). By induction and transitivity, V¥ < (H)*V«
for all integers & > 0 where (H)k corresponds to the application of H repeated k times.
Because limy_yo (H)*V¥ = V* it is not difficult to show that V¥ < V* proving
Theorem 3.5.

The final result we need relates the convergence of policy iteration to that of value
iteration. Let U; be the iterates of value iteration and V; be the iterates of policy
iteration, starting from the same initial value function. Let w; : X — R be the
sequence of mappings such that V; = V'«

Lemma 3.6 states that, for all ¢ and z € X, U(2) < Vi(z) < V*(z). We proceed
by induction. Clearly Up(z) < Vp(z), because they are defined to be equal. Now,
assume that Us(z) < Vi(z) < V*(2). By Lemma C.5, HUy(z) < HVi(z). By definition,
HU(2) = Upy1(z), and by an argument similar to the proof of Theorem 3.5,

HV, = HoHV, < (HY )V, SV = Vi,

Therefore, Uty (2) < Vigi(2). By Theorem 3.5, Viyq(2) = V¥itt < V*(z), completing
the proof of Lemma 3.6.

Lemma 3.6 and Lemma 3.4 together imply the convergence of policy iteration.
Lemma 3.6 also provides a bound on the convergence rate of the algorithm; it is no

slower than value iteration, but perhaps faster.

C.5 A Stochastic-Convergence Proof

In this section, I prove Theorem 3.7, which is useful for proving the convergence of
reinforcement-learning algorithms in generalized MDPs.
The proof relies critically on the following lemma concerning the convergence of

stochastic processes.
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Lemma C.6 Let Z be an arbitrary set and consider the sequence
2i41(2) = ge(2)2(2) + fil2)|lee(2) + e (2)]),
where z € Z and €,(z) > 0 converges to zero. Assume that for all k,
nh_}rrolo 7 ,.9:(2) =0

uniformly in z with probability 1 and fi(z) < 5(1—¢:(z)) with probability 1. Then (=)
converges to 0 with probability 1.

Proof: The proof is in a paper by Szepesvari and Littman [158]. A similar claim is

proven by Jaakkola, Jordan and Singh [69]. O

Let H be a contraction mapping with respect to a weighted max norm with fixed
point V* and let H; approximate H at V*. Let Vg be an arbitrary value function, and
define Viy; = Hy(Vi, Vy). If there exist functions 0 < Fi(z) < 1 and 0 < Gy(z) <1
satisfying the conditions below with probability one, then V; converges uniformly to

V* with probability 1:
1. for all value functions Uy and Uy and all z € X,

|(H(Ur, V) () = (He(Us, V7)) ()] < Go(@) |Us — Ualf;

2. for all value functions U and V', and all € X,

[(He(U, V) (@) = (He(U, V) (2)] < Be(2)|[V" = VIJ;

3. forall k > 0, II?_, G4(x) converges to zero uniformly in 2 as n increases; and,

4. there exists 0 < § < 1 such that for all € A’ and large enough ¢,
Fi(x) < (1 - Gi(x)).

To prove this, we will define a sequence of auxillary functions, Uy, that is guaranteed
to converge, and relate the convergence of V; to the convergence of U;. Let Uy be an
arbitrary value function and let Upyy; = H (U, V™). Since H, approximates H, U,
converges to HV* = V™ with probability 1 uniformly over X'. We will show that
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||Us — Vi|| converges to zero with probability 1, which implies that V; converges to V*.

Let

and let

5 (2) = [Ur(z) = Vi()|

Ag(e) = [Ui(z) = V()]

We know that A;(z) converges to zero because U; converges to V*.

By the triangle inequality and the constraints on Hy, we have

St41(2)

IANIA IAN A

IN

|Hi(Ur, V7) () = Hi(Vi, Vi) (@)

|He(Us, V) () = He(Ve, V) ()| + [He(Vi, V) (2) = He(Vi, Vi) ()]
1U: = Vil + Eu(2)[[V™ = Vi]]

Ve = Vil

V* = Ul + U = Vill)

16 () || + A ()

(z)
Gi(z)di(z) + Fi(x)|
Gi(z)de(z) + Fi(x)(
(z) (@)(

Inequality C.3 is now in the correct form for Lemma C.6, which tells us that & (z)

goes to zero with probability 1. This proves Theorem 3.7.



Appendix D

Supplementary Information on

Alternating Markov Games

In this appendix, I prove that Markov games in which players switch turns after every
action and Markov games in which players switch turns according to the current state

are equivalent in complexity.

D.1 Equivalence to Strictly Alternating Markov Games

There are two models that might properly be called “alternating Markov games”; in
one, control of the play strictly alternates between the two players, in the other, control
remains with a player for an unspecified number of actions before switching to the other
player. The two models are equivalent in the sense that a polynomial-time algorithm
for one could be used to solve instances of the other model in polynomial time.

A strictly alternating Markov game (SAMG) is defined by the tuple
<57 A17 A27 T7 R7 ﬁ>

and play strictly alternates between the two players. An alternating Markov game
(AMG) is defined by (S1, 82,41, 42, T, R, 5), and control belongs to player 1 if the
current state is in &1, and it belongs to player 2 otherwise. Given a SAMG, we can
create an equivalent AMG by duplicating the state space into sets §; and §3 so that
the state encodes the turn of the player, and redefining transitions so they alternate

between the two copies of the states.
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Given an AMG, we can also create an equivalent SAMG. The difficulty is that
the first player takes an unspecified number of actions in the AMG before control is
turned over to the second player. How can we make control alternate on every turn?
We can do this by introducing a number of “dummy” states where one or the other
player nominally has control, but from which the state transition is actually completely
determined.

In more detail, consider an AMG G = (81,83, 41, A2, T, R, ). We will define a
SAMG G’ = (S, A1, Ay, T', R', 3’} such that the solution to G’ can be used to quickly
find the solution to G. The set & consists of all the states in §; and &y as well as the
dummy states. For every state s; € &; and action a; € A; we introduce a new state
s9 into & and define the transition function 77 so that action a; from state s; results
in a deterministic transition to state sy, and from s, any action ag € Ay results in the
same state transitions defined by T for state-action pair (s1,a1). In this way, state s,
“Iintercepts” the transition, resulting in a (dummy) action for player 2 after player 1’s
action. This ensures that every action for player 1 is immediately followed by an action
for player 2.

We need to also introduce dummy states that intercept the incoming transitions to
the states in 8. This requires one dummy state added to & for each state in §3. Once
this transformation is complete, each transition in G has been replaced by a pair of
transitions in §’: a transition for a 8; state followed by a dummy move for player 2, or
a dummy move for player 1 followed by a transition for an & state. The transformation
has the critical property that the probability of reaching some state s in ¢ steps in G
under some policy is exactly equal to the probability of reaching s in 2¢ +1 steps under
the analogous policy in G'.

It remains to be shown how to modify R and 3 to ensure that the optimal value of
state s in G is equal to its optimal value in G'. To a first approximation, this is quite
easy. Because one step in G is equivalent to two steps in G’, we need the discount factor
to decay half as fast: 3 = /3. We then modify the rewards so that all the dummy
states have only zero-reward transitions, the states in §; have the same rewards in G’
that they have in G, and the states in &3 have their rewards increased by a factor of
1/p5'. Tt is not hard to show that the optimal value of a state s € Sy in G is precisely
equal to the optimal value of the analogous state in G’ and that the optimal value of
a state s € Sy in G is precisely equal to the optimal value of the analogous state in G’

multiplied by &'.
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A major difficulty remains. Even if G is specified using only rational numbers of B
or fewer bits, the discount factor 4’ for G’ may be irrational. I now argue that there is
a rational value for 3 that is close enough to /3 to ensure an optimal policy for G’ is
optimal for G and yet can be specified with a number of bits polynomial in the size of
G and B.

The argument has three parts. First, there is a value € > 0 such that an e-optimal
value function yields an optimal policy. This follows from the argument in the proof of
Lemma 2.1.

Second, there is a value & > 0 such that using a discount factor of 5+ & in place
of 8 when evaluating a policy results in a value function that is no more than € away
from the true value function for that policy. Finally, the first two parts together imply
that we can use a polynomial-bit approximation of v/3 in the construction described
earlier and still be able to identify optimal policies.

We choose § < €(1—3)%/(M+(1—f)¢). Let V™ be the value function for some policy
7 under discount factor 8, and let V™ be the value function for 7 under discount factor
B+36. Let s* be the state for which [V™ (s*) — V7 (s*)| is maximized. Once again, let M
be the magnitude of the largest absolute immediate reward. Substituting definitions

reveals

= |ﬁZTs7r NV (') = V(s +5ZTH s), YV ()]

s’

IV () = V() + 63 Tsm(s), )V ()]

5/

< ﬁIV” (s*) = V7(s*)| 4+ 0M/(1 - (3 +0))

I
s
<[
~
Cn
:]

Solving for |[V™ (s*) — V7(s*)| and noting that

1-8-6 = 1-p—€l-3)/(M+(1-73)e)
= (M4+1-p)e)(1—-3)—e(1—8)*)/(M+(1-p)e)
= (M(1-25))/(M+(1-p3)e)



lets us continue with

V™ (s)

as desired.

— V()

IN

IN

IN

IN

IN

IN

215

SM/(1—=(5+0))/(1=5)

oM
(1=5)(1-(5+9))
e(1-p)*M
(1=5)1 = (B+))(M+(1-7P)e)
e(1-p)°M
(1=B)A=(B+)(M+(1-0)e

e(1—B)’M(M+(1-B)e)
(1= 5)(M+ (1= B)e)(M(1 -

5))

From the expressions for ¢ and e, it is not hard to show that the number of bits of

accuracy needed in the computation of 1/ is polynomial in the necessary parameters.

Therefore, an AMG can be turned into an equivalent SAMG with only a polynomial

increase in size. If the resulting SAMG can be solved in polynomial time, so can the

original AMG.



Appendix E

Supplementary Information on

Markov Games

In this appendix, I present a new result concerning the optimal value function of a

deterministic Markov game.

E.1 A Deterministic Markov Game with an Irrational

Value Function

The existence of deterministic stationary optimal policies for MDPs and alternating
Markov games makes it easy to show that these models can be solved in finite time,
simply by enumerating the possible policies and evaluating each one by solving a system
of linear equations.

Markov games are different, in that optimal policies are sometimes stochastic. Of
course, if the probabilities needed to express an optimal policy can be written as rational
numbers (consider the “Rock, Paper, Scissors” example from Chapter 5), it still might
be possible to identify an optimal policy in finite time. This is not generally the case
for Markov games, however; even if the transitions, rewards, and discount factor are
all represented by rational numbers, the optimal value of the game and the optimal
stochastic policy can both require irrational numbers to express.

This fact was mentioned in Shapley’s original paper [143], and a specific example
appears in Vrieze’s survey article [170]. Vrieze’s example is a stochastic Markov game,

and, because deterministic models are often easier to solve, there is reason to believe
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(apag) +1

+0

(ap, ) +2
(ar, a3)

Figure E.1: A deterministic Markov game with rational rewards and § = 3/4 for which
the optimal value function is irrational.

mi(s0,a0) = 1/2 (=5++41) =~ .702
mi(so,a1) = 1/2 (T—+41) = .298
To(s0,a9) = 1/12 (=1++V41) =~ .450
mo(s0,a3) = 1/12 (13—+/41) = .550

Table E.1: The optimal pair of stochastic policies for a deterministic Markov game.

that the deterministic case might be simpler. This does not appear to be the case for
Markov games—deterministic Markov games can have irrational value functions even
if all rewards and the discount factor are specified using rational numbers.

Counsider the three-state deterministic Markov game illustrated in Figure E.1. In
this game, state sy is a zero-reward absorbing state, state sy is a zero-reward state with
deterministic transitions to state sg, and state sg results in a transition to sg, sy, or
s2, depending on the actions chosen by the two players. From state sg, player 1 must
choose between actions ag and @y and player 2 must choose between actions as and as;
in the figure, transitions from state sg are labeled by pairs of actions.

The value of state sq in this game is V*(s¢) = —3 + /31 & 3.403, which was found
by solving a quadratic equation. This can be verified by evaluating the stochastic
policies in Table E.1. These policies are optimal because, if the agent adopts my, it
guarantees itself a value of V*(sg) regardless of the opponent’s policy. Similarly, if the
opponent adopts g, it guarantees itself V*(sg) regardless of the opponent’s policy.

The fact that optimal value functions can be irrational does not directly rule out the
possibility that an exact algorithm exists; for example, if the values are all solutions to
quadratic equations, then perhaps the equations themselves can be used to represent
the values. However, no radix-type representation for the numbers will result in an

exact algorithm.



Appendix F

Supplementary Results on

POMDPS

In this appendix, I show that solving deterministic pOMDPs is PSPACE-hard, and
solving stochastic PoMDPs is EXPTIME-hard. 1 also describe an example, due to

Chrisman, of a difficult poMDP for Q-learning.

F.1 Hardness of Deterministic POMDPs

In this section, I prove that the problem of determining whether a deterministic POMDP
has an infinite-horizon policy with zero reward is PSPACE-hard. The proof does not
make use of the observation set, therefore the hardness result applies to unobservable
POMDPs as well.

The proof relates deterministic unobservable POMDPs to finite-state automata. A
finite-state automaton is much like a deterministic MDP with a finite set of states §
and actions A, a next-state function N, and an initial state sy. A subset F of the
states of the automaton are called accepting states. A finite-state automaton accepts
string ¢ € A* (the star superscript denotes the Kleene star) if the state s reached after
executing the string of actions ¢ starting from state sg is an accepting state (i.e., it is

in F).

Lemma F.1 Given a finite-state automaton F = (S, A, N, so, F), there is a determin-
istic, unobservable, boolean-reward POMDP problem M = (SU{accept}, AU{accept}, N’
R, xo) such that F accepts string { € A* if and only if executing the action sequence {
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followed by “accept” results in zero reward and a transition to a zero-reward absorbing

state 1n M.

Proof: Create M by making a copy of F so that every transition in F is a zero-reward
transition in M. Define the state accept to be a zero-reward absorbing state. For every
state s € 8 and action ¢ € A, define N'(s,a) = N(s,a). For every accepting state
sy € F, define N'(sy, accept) = accept and R(sy, accept) = 0, and for every other state
sin 8, make N'(s, accept) = s and R(s, accept) = —1. Define ¢[sp] = 1 and z[s'] =0
for all s’ # s.

The resulting POMDP satisfies the requirements of the lemma. O

Given a finite collection of finite-state automata Fy, ..., Fi, all with the same action
set A but disjoint state sets Sy, ...Sk, we say that string £ € A* is in the intersection
of the sets of strings accepted by the finite-state automata if ¢ is accepted by all k
automata.

We can create a deterministic, unobservable, boolean-reward POMDP problem that

is equivalent to a collection of finite-state automata.

Lemma F.2 Given a collection of k finite-state automata, F; = (S;, A, N;, s, 0, F;)
for each 1 < 1 < k, there is a deterministic, unobservable, boolean-reward POMDP
problem M = (|J; S;U{accept}, AU{accept}, N', R, zo) such that string { € A* is in the
mtersection of the strings accepted by the finite-state automata if and only if executing
the action sequence £ followed by “accept” results in zero reward and a transition to a

zero-reward absorbing state in M.

Proof: The rewards R and the next state function N’ are defined analogously to
their definitions in Lemma F.1. We define z¢[s; o] = 1/k for each 1 < ¢ < k and zero
otherwise. Thus, in the initial state, there is a probability of 1/k of being in each initial
state of the collection of finite-state automata.

If, upon presentation of an action sequence ¢, finite-state automaton 7 is in state s;
for each i, then, in the information state z for M, z[s;] = 1/k for each i. As a result,
the POMDP simulates all £ of the finite-state automata concurrently. An accept action

has zero reward if only if all k¥ machines are in accepting states. O

The finite-state-automata-intersection problem is defined by a collection of finite-
state automata. The problem is to decide whether there is any sequence £ € A* in the

intersection of the sets of strings accepted by the finite-state automata; we call such
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a string ¢ an accepting string. The POMDP construction from Lemma F.2 cannot be
used directly to determine the existence of an accepting string, because any policy that
never issues the accept action will have the same value as one that issues accept after an
accepting string. To make sure that policies are penalized for not issuing an accepting
string when one exists, we can make use of a standard result that states that if there
is an accepting string, then there must be an accepting string no more than []; |S;|
symbols long. By adding a counter to the POMDP construction from Lemma F.2, we

can use it solve the finite-state-automata-intersection problem.

Lemma F.3 Given a collection of k finite-state automata F; = (S;, A, N;, 5,0, F), for
each 1 <1 <k, there is a deterministic, unobservable, boolean-reward POMDP problem
M = (8§;U{accept} U{s; ;|1 <1<k, 1< 5 <|S|}U{ine, act}, AU {accept} U{inc;|1 <
i < k},N',R,x0) such that the intersection of the strings accepted by the finite-state

automata is non-empty if and only if there is a zero-reward policy for M.

Proof: The definitions from Lemma F.2 all apply here. One slight difference is that
the initial state has zg[s; o] = 1/(2k + 1) instead of 1/k. The “new” states s; ;, inc,
and act, and actions inc; will be used to implement a set of counters that will issue a
negative reward if no accept action is chosen over the course of a sequence of [], |S;]
actions.

The initial probability on the inc and act states is zg[inc] = 0 and xo[act] = 1/(2k+
1). The 4nc¢; actions result in a transition from inc to act, and the other actions a € A
result in a transition from act to inec. If any action a € A is selected from the inc state,
there is a reward of —1. This forces the optimal policy to alternate between actions in
A and inc; actions.

As before, the actions in A correspond to transitions in all the finite-state automata
simultaneously. The in¢; actions are used to implement a counter using the s; ; states.
In the initial distribution, zo[s; 1] = 1/(2k 4 1) for all ¢, and z¢[s; ;] = 0 for all ¢ and
7 > 2. This represents the reset state for the counters.

There is one counter for each finite-state automaton in the collection; counter 1 is
the low-order counter, and counter k is the high-order counter. Action #n¢; increments

counter ¢, resets all the lower order counters, and does not change any of the higher
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order counters,

. .
541,05 v <1,

. . " . R— .. N . -/ _ .

N(Sl'7]7 cht) - Sig+1y ] S |Sz| - 17 v =1,
. .
CHED v >

The reward for all these transitions is zero. Counter ¢ is full when the probability of
being in state s; |s;| is non-zero. Incrementing a full counter results in negative reward,
R(s;s;, inc) = —1.

To maximize the number of inc; actions before a negative reward, a policy would
issue inc; until the low-order counter was full, then incy, to increment the second counter
and reset the first counter, then inc; once again. After ], |S;| increments of this kind,
all k counters will be full. Any 4nc; action at this point results in a negative reward.

If there is an accepting string for all the automata, a zero-reward policy would
alternate between selecting actions corresponding to the shortest possible accepting
string (any string shorter than [],|S;| would do), and the appropriate inc; actions.
Then, once the automata are all in their accepting states, issuing the accept action
ensures the policy a total reward of zero.

If there is no accepting string, it is impossible to avoid a negative reward; if the
accept action is selected, this will result in a negative reward, and if more than 2 [, |S;]
steps elapse without issuing accept, a negative reward will be received.

Thus, the resulting POMDP problem has a zero-reward policy if and only if there
is a string in the intersection of the sets of strings accepted by the given finite-state

automata. O

Theorem F.1 The deterministic, unobservable, boolean-reward POMDP problem is P-

SPACE-hard.

Proof: This theorem follows easily from the reduction in Lemma F.3 and the PSPACE-

completeness of the finite-state-automata-intersection problem [55]. g

F.2 Hardness of Stochastic POMDPs

In this section, I show that solving infinite-horizon boolean-reward POMDPs with sto-
chastic transitions and observations is EXPTIME-hard by showing that solving such

POMDPs yields a solution to a particular type of game on boolean formulas.
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The game was devised by Stockmeyer and Chandra [151] in their paper linking
combinatorial two-player games to the class EXPTIME. The specific EXPTIME-hard
game | use in this section is referred to as G4, or “Peek,” in their paper. It is a
particular kind of deterministic alternating Markov game played by two players taking
turns changing values of boolean variables, in an attempt to make a given formula
evaluate to “true.”

The game is defined by a choice of which player moves first, disjoint sets X and
Y of variables, an initial assignment for these variables, and a disjunctive-normal-form
boolean formula defined over the variables with 13 literals (variables or negations of
variables) per term. Such a formula is called a “13-DNF” formula. The two players
take turns changing the value of at most one of the variables in the formula; player 1
can only change the value of variables in X, and player 2 can only change the value of
variables in Y. The game is over when the 13-DNF formula evaluates to true with the
winner being the player whose action caused this to happen. The decision problem is
whether there is a winning strategy for player 2 from the initial assignment.

I will show that every game of this form has an equivalent boolean-reward poMDP
such that player 2 has a winning strategy in the game if and only if the optimal policy
in the POMDP from a given initial state has negative expected reward. I use the set
of states of the POMDP to represent the variable assignments and actions in the game,
where the states with non-zero probability in the POMDP encode the state of the game.

In the poMDP, the agent plays the role of player 1. Of course, in a POMDP there
is no second player; however, we can use the stochastic transitions to represent the
actions of the second player. Because we judge the optimal policy by whether or not
it achieves zero reward, any probability of encountering a negative reward amounts
to certain failure. This makes it possible to assume that the worst possible transition
occurs each time there is a choice; stochastic transitions are equivalent to worst-case
transitions.

A game instance is a tuple G = (1, X, Y, F, a) where 7 € {1,2} is the first player to
move, X is the set of variables that player 1 can change, Y is the set of variables that
player 2 can change, F' is the 13-DNF formula for deciding termination represented as
a set of terms each of which is a set of 13 literals, and o : X UY — {true, false} is an
initial assignment of the variables. Given G, we define the equivalent boolean-reward
POMDP problem M = (S, A, T,R, Z,0,Sy) as described below.

The set S of states consists of the literals, X U {z|z € X} UY U {yly € Y} (the
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“literal-related” states); the state X; states for each possible action of player 2, {pass}U
{tog(y)|y € Y} U {togwin(y,t)|y € Y,t € F} (the “player-2-action” states); and states
“start” and “done.” Only “start” is in the set of non-zero probability initial states, Sp.

The set A of actions consists of an action “start” for starting the game; actions for
toggling the boolean value of each of the variables, {tog(z)|z € X} U{tog(y)|y € Y}; an
action pass for passing; actions for simultaneously flipping a variable and declaring a win
for player 1 by satisfying a particular term in the formula F, {togwin(x,t)|z € Xt € F};
and actions for challenging a win declared by player 2, {challenge(y,t,l)|ly € Y,t € F,l €
L}, where L is the set of literals.

It is via the observations that player 2’s choices of actions are realized. The set Z
of observations consists of an element for each of player 2’s actions, passU {tog(y)|y €
Y} U{togwin(y,t)|y € Y,t € F}.

Roughly, here is how the states of the POMDP represent the state of the game. The
information state of the POMDP is captured by the set of states which have non-zero
probability. An assignment to the variables of the formula is represented by non-zero
probabilities on the literal-related states; in particular, if a variable v is true, state
v has non-zero probability while state v has zero probability; if a variable v is false,
state v has zero probability while state v has non-zero probability. When it is player
1’s turn, state X has non-zero probability and the player-2-action states have zero
probability. When it is player 2’s turn, exactly one of the player-2-action states has
non-zero probability. When the game is over, state “done” has non-zero probability
and all others zero, and when the game starts, state “start” has non-zero probability
and all others zero.

Initially, the probability of each of the states is 0, except for the “start” state, which
has probability 1. The “start” action causes a stochastic transition that results in the
literal-related states representing the initial assignment «, as well as a transition to
either X or all the player-2-action states. The start action results in negative reward
from all other states, meaning that it will only be chosen as the first action. Figure F.1
depicts the POMDP state space, and the transitions, rewards, and observations for the
“start” action.

Player 1 can take three types of moves, the simplest of which is to toggle a single
X variable. The tog(x) action causes the probability in states z and z to swap. In
addition, a stochastic transition is made from state X to the player-2-action states;

each of these states has a unique observation associated with it, and therefore only one
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will have non-zero probability after an observation is made. From the literal-related
states, any of the player-2-action observations can be made; as a result, they have
zero probability after a transition if and only if they had zero probability before the
transition. To prevent player 1 from choosing out of turn, negative rewards are issued
for a tog(x) action from all of the player-2-action states. Figure F.2 depicts the rewards,
transitions, and observations associated with the tog(z) actions. The second type of
move, pass, is implemented similarly, except that it may also be issued when it is player
2’s turn.

In the third type of move, player 1 can simultaneously toggle a variable and declare
a win. Recall that player 1 wins if the 13-DNF formula is true after that player’s move.
For a 13-DNF formula to be true, at least one of the terms of the formula must be true
and all 13 of the literals in that term must be true. We define action togwin(z,t) to
toggle the value of variable x € X and declare that term ¢ of the formula is true. Given
any togwin(z,t) action, all states make a transition to “done” (the game is over). Once
again, precautions are taken to ensure that player 1 moves in turn, however, additional
constraints force player 1 to take a togwin(z,t) action only when it results in a win.
This is done by placing a negative reward on every state associated with a literal that
appears negated in term ¢ (except for # which has a negative reward directly, because
its toggled value is considered in making the decision as to whether or not the term is
satisfied), and thus the action has zero reward if and only if all the literals in term ¢
are true.

Since player 2 is not explicitly represented in the POMDP, we must force the agent
(player 1) to make player 2’s moves on its behalf. To do this, we introduce tog(y)
and challenge(y, t,1) actions for each y € Y, t € F, and literal /. Once again, we use
negative rewards to ensure that the agent takes a player-2 action when it is player 2’s
turn. Player 2’s choice of action is represented by the single player-2-action state that
has non-zero probability. For action tog(y), there are negative rewards out of state X
and the other player-2-action states; this makes tog(y) the only action choice possible
when state tog(y) has non-zero probability.

The challenge(y,t,1) actions are a bit different. When state togwin(y,t) has non-
zero probability, this means that player 2 claims that toggling the value of variable
y results in a win for player 2 because term t becomes true. Player 1’s response is
to choose a literal in term ¢ that proves that term ¢ is not true. For each y, ¢, [

triple, challenge(y,t,1) results in a transition to “done” with a negative reward on the
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Figure F.1: Transitions for the “start” action. All states with no outgoing transition
have negative-reward transitions. All observations among the player-2-action states are
distinct. The union of these observations is possible from each of the other states.
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Figure F.2: Transitions for the tog(z3) action. All states with no outgoing transition
have negative-reward transitions. All observations among the player-2-action states are
distinct. The union of these observations is possible from each of the other states.
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Figure F.3: Transitions for the challenge(y,t2, ¥2) action. All states with no outgoing
transition have negative-reward transitions. All observations are equal.

transition from literal /; this means that if [ is actually true, player 1 loses. It is in
player 1’s best interest to choose a literal that proves that term ¢ is not satisfied (if
such a literal exists). Figure F.3 depicts the rewards, transitions, and observations
associated with the challenge(y,t,[) actions.

Given this construction, there is a tight analogy between reachable configurations
of states in the POMDP and legal states of the game. In particular, if player 2 has a
win, there is no policy that will prevent the agent from reaching a negative reward.
Conversely, if player 1 has a win or a draw, then player 1 has a choice of actions that
result in only zero rewards forever. Thus, a procedure for deciding whether a POMDP has
a zero-reward optimal policy can be used to decide the winner in the boolean-formula
game, after an easy transformation.

Because the boolean-formula game is known to EXPTIME-hard, solving boolean-
reward POMDPs is EXPTIME-hard. It is known that PAZEXPTIME and that there are
problems in EXPTIME that truly take exponentially long to solve. Unlike the NP and
PSPACE-hard problems described earlier, which are likely to be intractable, POMDPs

are provably intractable.

F.3 A Difficult poMDP For Q-learning

This section briefly describes an example POMDP, constructed by Chrisman, for which
a naive Q-learning algorithm learns the worst possible policy.

The POMDP is illustrated in Figure F.4 and consists of 3 states, 3 actions, and a
single observation. The discount factor is 0.9 and state s; is the start state. An optimal

policy in this environment is to take action ay, and then to alternate between actions



Figure F.4: A hard poMDP for Q-learning.

ay and ag. This policy has an immediate reward of —1 on the first step, then +1 on
every step thereafter.

There are three deterministic memoryless policies for this environment: always aq,
always a,, and always as. In the long run, always ¢y and always a; have the same
reward, alternating between 41 and —1 immediate reward.

Will now consider the behavior of a simple Q-learning agent in this environment.
The agent’s internal data structure consists of a Q function mapping sensations to
actions, therefore it is a vector of three values: Q[ay], Q[as], and Q[as]. Let us initialize
the Q values to be all zeros, and use a learning rate of 0.1. Action selection is greedy
(choose the action with the highest Q value), with ties broken according to the order:
ay, ag, as.

Here is what happens when the Q-learner faces Chrisman’s POMDP: It starts with
Q values all the same. By the tie-breaking scheme, action a; is chosen in state s; to
start. The immediate reward of —1 makes state s; look the worst. Now the agent is in
state sy with a tie between actions ay and a3. The agent chooses action ay. This results
in an immediate reward of —1 for action @y, and makes action as the best remaining
choice. After taking action as in state sz, the agent returns to state s; with all Q
values tied once again. Thus, actions a1, ay, and a3 are deterministically selected in
that order resulting in immediate rewards of —1 at every step. No policy achieves worse
performance in this environment.

This example is fairly robust to changes in the learning rate and the discount factor.

It is not robust to changes in the action selection scheme, either by choosing actions
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non-greedily or breaking ties differently. Nevertheless, it illustrates that a simple Q-

learning algorithm can perform miserably on a simple POMDP.



Appendix G

Supplementary Results on

Information-state MDPs

In this appendix, I prove several fundamental results concerning information-state
Markov decision processes. I show that it is not difficult to compute the Bellman
error magnitude when value functions are represented by policy trees, that useful pol-
icy trees can be identified easily, that there are complicated one-stage POMDPs, that
solving one-stage POMDPs is NP-complete under randomized reductions, and that wit-

nesses can be identified easily.

G.1 Computing the Bellman Error Magnitude

One method for stopping value iteration in an information-state MDP is to wait for the
maximum difference between consecutive value functions V; and V;_; to be less than
some €. The maximum difference between value functions, called the Bellman error
magnitude, is easily computed for finite-state-space models. In this section, I examine
two algorithms for computing the Bellman error magnitude in information-state MDPs
when the value functions are represented as sets of policy trees I'y and I';_;.

The first algorithm is exact and somewhat expensive, while the second is a bound
but very cheap to compute. Both run in polynomial time. The section is not intended
as an exhaustive account of possible algorithms; instead, it simply serves to show that

efficient algorithms for this problem exist.

229



230

G.1.1 An Exact Method

Briefly, the exact method considers all pairs of policy trees p; € I'y and p;_q1 € I';_q. It

uses linear programming to find an information state z* such that
1. p; dominates the policy trees in I'; at =™,
2. p;_1 dominates the policy trees in I';_; at ™, and

3. 6 = |V, (2%) = V},_, (2%)] is maximized over all z* satisfying the first two condi-

tions.

The first two conditions guarantee that V), (z*) = Vi(z*) and V),,_, (z¥) = Vi_1(27).
The third condition makes § a lower bound on the largest difference between value
functions. By finding the pair of policy trees that give the largest value for 4, the
Bellman error magnitude is identified.

An algorithm that uses this idea to compute the Bellman error magnitude appears
in Table G.1. To compute the maximum absolute value, two separate linear programs

are constructed.

G.1.2 A Bound

The previous section described a method for computing the maximum difference be-
tween two piecewise-linear and convex value functions represented as sets of policy
trees. This section describes a simpler approach that is much more efficient to compute
but only gives an upper bound on the difference.

We want to bound the biggest difference between two value functions, Vi(z) =
maxper, Vp(2) and Vi_q(2) = maxper,_, Vp(2). The following lemma gives an inexpen-

sive way to bound the biggest positive difference between V; and V;_y.

Lemma G.1 Let

6= 1 _ ‘
Il;ltflgr‘}i pt—llnellr_‘lt_l r,gleasx(vpt (8) th—l (S))

Then, for all information states x, Vi(z) — Vi_1(z) < 4.

Proof: Consider some particular information state ». Let p; = argmax,cr, V,(7),

s —_
Py = argmax,er, | Vp(2), and

pi_y = argmin max(V,x(s) — V;(s)).
peEl_y $€8 '
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BellmanErrMag(l'y, I';—1) := {
maxdiff := —o0
foreach p; € Ty, pr—y € T4y {
01 := checkpair(pi—1, i1, pe, T'y)
8y 1= checkpair(py, I'y, pr—1,Ti—1)
maxdiff := max{maxdiff,d;,ds}

}

return maxdiff

}

checkpair(p, I, p/, ") := {

Solve the following linear program:
maximize o
s.t. z[s|Vp(s) > Do, z[s]Vi(s), for all pe I' — {p}
and: Z x[s|Vy(s) > 3, x[s]Vs(s), forall pe IV — {p'}
and: 0 =3, z[s]Vp(s) — 32, x[s]Vy(s),
and: Y z[s] =1
and: z[s] > 0,forall s € S
variables: §, z[s] for all s € §

if (0 = undefined) then return —oo

else return o

Table G.1: Subroutine for computing the exact Bellman error magnitude in polynomial
time.
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Figure G.1: Upper bound on the maximum difference between value functions.

In words, pf is the best policy tree in I'; at z, p;_; is the best policy tree in I';_; at
z, and p;_, is the policy tree whose value function has the smallest possible biggest
difference from that of pf at any state. Define ¢ as in the statement of the lemma. This
situation is depicted in Figure G.1.

We can bound

Vile) =Viei(@) = Vpr(z) = Vir_ (2)
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as desired. Since z was chosen arbitrarily, the bound holds for all z € X. O

Lemma G.1 gives a one-way bound on the Bellman error magnitude. A more
complete bound can be found by reversing the roles of I'y and I';_; in the lemma and
combining the result with the bound from Lemma G.1.

Although the bound obtained this way can be arbitrarily loose, it is a good ap-
proximation in the following sense. If the policy trees in [’y are identical to the policy
trees in I';_1, the bound will (correctly) state that the Bellman error magnitude is zero.
And, although it is difficult to formalize, if the two sets are only slightly different, the
given bound will be fairly accurate.

Table G.2 provides a subroutine for the upper bound.
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BellmanErrMagBound(I';, ;1) := {
o 1= maXp,er, minpt—l €l MaXses (th(s) - th—l (S))
o = maXp, el My, el MaXses (th—l (S) - pt(s))
return max{d;, ds}

Table G.2: Computing a bound on the Bellman error magnitude.

G.2 Identifying Useful Policy Trees

In this section, I prove Lemma 7.1, which states that the useful policy trees are precisely
those that dominate the other policy trees for some information state. To show this, I
begin by proving Lemma 7.2.

Given an information state z and a set of policy trees F, let p* be the lexicographic
maximum policy tree in F' such that Vj«(z) = Vi(z). Lemma 7.2 asserts the existence
of an z’ such that p* dominates all other policy trees in F at z’.

To show this formally, we need some additional notation. Information state z is a
p-step from xy towards zy if @ = p(ag — z1) + 21, 0 < p < 1. Let e, be the vector

corresponding to the “corner” of X where all the probability mass is on state s € S.

Lemma G.2 Let W = {p € F|V,(2) > Vy(2) for all p’ € F}; that is, W is the set of
policy trees in F that dominate those in F — W at x. For all s € S, if x # ey, there is
a value p > 0 such that for the information state x' that is a p-step from x towards e,,

the policy trees in W still dominate those in F — W.

Proof: For any p € W and any p’ € F — W, define A = V,(2) — Vy(2) > 0. Let
2" = p(es — ) + . We can find a value for p > 0 such that V), is bigger than V,, at 2’

Using the linearity of the value function for policy trees, the following statements are

equivalent:
Vula') > Vy(a)

(Vp(ples —x) +2) = Vi (ples —2) +2) > 0

(1= p)(Vp(2) = Vi (@) + p(Vp(es) = Viles) > 0

(1= p)A+p(Vp(s) = Vip(s)) > 0

PA+Vp(s) = Vp(s)) < A
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Since A > 0, we can divide by it without changing the inequality. Let x = 14 (V}(s) —
Vp(s))/A. Then the above expression is equivalent to px < 1. If k < 0, the inequality
holds with p < 1. Otherwise, we can set p < 1/(2k) to satisfy the inequality.

This shows that for every s, we can find a p > 0 for each pairing of p € W and
p' € F—W such that a p-step from  to e, gives an 2’ such that V,,(2’) > Vj(2). Since
there are a finite number of ways of pairing elements in W with those in F' — W, there

is a p > 0 that works for all pairs (namely, the minimum p for any pair). O

We can now use Lemma G.2 to prove Lemma 7.2. The plan is to take successive p-
steps from z towards each corner e;. Each step is small enough so that the lexicographic
maximum policy tree in W still dominates the policy trees in F'— W, but large enough
so that some ties within W are broken.

Let Wy = W be the set of policy trees maximal at g = . By Lemma G.2, there
is an information state, xq, strictly different from x¢ if 2¢ # e, and in the direction of
es, at which the policy trees in Wy are still bigger than the others. Let W) be a subset
of Wy consisting of the policy trees maximal at z;. If 29 = e,,, let W) = Wy

It should be clear that the policy trees in Wy are precisely those p € Wy for which
Vp(s0) = Vpx(so), that is, those tied with the lexicographically maximal policy tree in
the first component.

If we apply this argument inductively for each component, W, becomes the set of all
policy trees in W that agree with V« in the first ¢ components of their value functions.
The policy trees in W, dominate those in F — W, at z;. After every state has been
considered, we are left with Ws| = {p*} with p* as the unique policy tree dominating
all others in F at zg).

This concludes the proof of Lemma 7.2. In addition to its computational impor-
tance, Lemma 7.2 is also helpful for proving Lemma 7.1, which states that a policy tree
is useful if and only if there is an information state for which it dominates all other
policy trees.

Let G be a set of policy trees and V(z) = maxpeq Vp(2) be the value function they
represent. Let I be the set of policy trees in G that dominate the other policy trees in
G for some information state. I first show that every policy tree p € I' is necessary for
representing V. Consider any « for which p dominates the policy trees in G. Such an z
exists by construction of I'. From the definition of domination, we know that no other

policy tree in G gives as large a value at z as p does. Therefore, the value function
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represented by any set U C G — {p} would have a strictly smaller value at 2 than V'
does. Thus, every p € I' is needed to represent V.
Next, we show that I' is a sufficient representation of V', that is,

Viz) = max Vp(2).

To see this, consider any « € X. Let p* be the lexicographic maximum policy tree
in G such that Vj«(2) = max,eq Vp(2). By Lemma 7.2, there exists an 2’ such that
p* dominates all other policy trees in G at z’, so p* will be included in I'. Thus,
V(z) = maxyeqVp(z) = Vpx(2) = maxper Vp(z). Since this holds for every z, T

represents the same function that G does.

G.3 Example One-stage POMDP Problems

In this section, I provide several constructions that illustrate various important POMDP
issues. I will start with a lemma that makes it easier to describe specific one-stage
POMDP problems.

Recall that to specify a one-stage POMDP problem, it is necessary to define sets S,
Z, and A; functions T, O, and R; a scalar 3; and a set I' of |S|-vectors. The set IV is

the minimum set of policy trees such that

max Vj,(z) = max max Z x[s] (R(s7 a)+ 3 ZZT(S, a,sYO(s',a,2)7(2)[s] |,

pel” a€A reT(Z2-T) ( 1)

for all € X', where T(Z — T') is the set of all functions mapping Z to I'. The set I"
of |S]-vectors can be viewed as a representation of a piecewise-linear convex function
f(z) = max,ers V() over the (]S — 1)-dimensional simplex. Because I" is defined via
a one-stage POMDP problem, the Z, A, T, O, R, 3, and T' quantities can be viewed as
a specification of a piecewise-linear convex function.

I will show that there are values for Z, A, T, O, R, 3, and T such that the
piecewise-linear convex function they specify via I’ has particular properties. I show
that by specifying a finite set K of |S|-vectors, and a finite collection A of pairs of
|S|-vectors with components between zero and one, it is possible to specify a piecewise-
linear convex function that is the solution to a one-stage POMDP problem, without

needing to identity Z, A, T, O, R, §, and T directly.
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Let K be a set of |S|-vectors. Let V be a finite set of variables, and B be the set of
all bindings mapping the elements of V to {1,2} (B =T (V — {1,2})). Let A be a set of
|S|-vectors, A = {A}|z € V,k € {1,2}}. Let the sets K and A specify a piecewise-linear
convex function f over X’ by

f(z) = max {max(x - 0), max(z - ab)} ,

ceK beB

where ap = ).y /\Z(z) for b € B.
The next lemma shows that any piecewise-linear convex function that can be spec-
ified this way can also be specified as the solution to a one-stage POMDP problem of

similar size.

Lemma G.3 Given a set of variables V, and sets K and A of |S|-vectors (|S| > |V|+2),
and a set A = {Xj]z € V,k € {1,2}} (0 < Af[s] < 1,Vs € S), there is a one-stage
POMDP problem such that

max Vp(2) = max {gnealic(x 0), mg,LX(x . ab)} .

The poMDP has |Z| = |V|, |A4| = |K|+ 1, and |T'| = 2.

Proof: Define the one-stage POMDP as follows. The set of observations is the set of
variables (£ = V), and there is one action for each vector in I and one corresponding
to the A set, A = {a,|0c € K} U{ap}. Let I" be a set of two |S|-vectors, 1 and 72, and
let 8 = 1. Define v and ~3 by

wlsT=9 (k=DIZ|(|Z]+1), if &' =|Z|+1,

0, otherwise,

for ke {1,2}.

Let each a, action result in an immediate reward of = - ¢ and a transition to state
|Z| + 2 (which has zero value under I'); for all s, R(as,s) = o[s], T(s,as,5) = 1,
O(d,a,,2) = 1/|1Z] if & = |Z] + 2 and zero otherwise. Since v[|Z]| + 2] = 0 for
ke{l,2},forall 7 € T(Z — {v1,72}) and s € S

R(s,as) + ﬁz X:T(s7 Uy, 8 )O(5 ag, 2)7(2)[s] = R(s,as) = o[s].
s (G.2)
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The ag action is a bit more complex. Define the PoMDP functions as follows,

R(s,a0) = > wibhs ;\é[s] — 17

A [s]= A8 [s]+1 .
“EED if s <|Z],
1 e
T(s,aq,8") = Z|Zl|_|_17 if s =|Z|+1, 7
1- S (s a0, ), if 8 = | 2] +2,
0, otherwise.
1, if z=14¢,
O(s,ap,2) = 0, ifs <|Z]|and z#5, ,
|é_|’ otherwise.

It is not hard to show that the components of T and O add to 1 in the proper way.
For any s € S, 7 € T(2 — I'), let b be the binding such that 7(z) = 7. for all
z € Z, then,

R(s,a0) + 8 Z X:T(s7 ag, 8 )O(s', ag, 2)7(2)[5]

= R(S7 ao) + 5 Z Z T(S7 o, S/)O(S/7 ap, 2)76(2) [S/]

_ Mlsl+A3[s] -1 Alsl = A3s] +1 11
= XZ: 5 -I-XZ: S 76(2)[Z]+XZ:WE76(2)[|Z|+1]
= > <Aﬂ8] . ;5[8] — Aﬂ;](fzﬁsl];r 1 (3—2b(=))(1Z]+1)

1 1
T E 06 - D122+ D)

z

_ Z <Aﬂs]<4 — 2b(2)) + A§[81(2—2 +20(2)) 2= 28(2) |y - 1))

= D (Mls12 = 0(2) + Al (=14 D(2)) + 1 = b(2) +b(2) = 1)

= Z Ab(zls] = aw[s]. (G.3)
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Combining Equations G.1, G.2, and G.3, we have

max Vp(7)

= max max Y z[s] (R(s,a)—|—ﬂZZT(S,a,s’)O(s’,a,z)T(Z)[s’])

a€A T€T(Z-T)

= max{ max Zx[s] (R(s,ao) —|—ﬂZZT(S,ao,s’)O(s',ao,z)T(Z)[s’]) ,

TET(Z-=T)

max max Z z[s] (R(s7 ap) + Z X:T(s7 1y, 8 )O(S', ag, 2)7(2) [s']) }

o€K t€T(Z2-T)

= max {rgleag{(x o), gneazg(x . O')} ;

therefore, the supplied vectors correspond exactly to the set of value functions obtained
by solving a one-stage POMDP problem.
O

G.3.1 Exponential Number of Useful Policy Trees

I show that there exists a family of one-stage POMDPs such that, for every n > 2,
|IS| = 2n, |A| =1, |Z]| = n, [Ti-1] = 2, and |T'y| = 2™.

Let S ={1,...,2n},and V = {1,... ,n}. For k € {1,2},let A\j[22+k - 2] =1,
and 0 otherwise. Let K = (). By Lemma G.3, there is a poMDP with |A| = 1, |Z] = n,
and |I'| = 2 such that G = Upep{d. /\Z(z)}' Note that |G| = |B| = 2IVl = 27, We
know that the set I is a subset of G. We can show that, in fact, these sets are equal,

because every policy tree in G dominates all other policy trees in G at some € X.

Lemma G.4 In the construction just described, for every b € B there is an z* € X

such that x* - ap, > z* - g for all b # b.

Proof: For a binding b, for each z € V|, let 2*[2z + b(z) — 2] = 1/n and 0 otherwise.
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The components of z* are non-negative and sum to 1, so 2* € X. Now, for any o’ € B,

iy = T Z Api(z)

= DD (@ sy ls))
= Z T[22+ () - 2]
1

which is uniquely maximized for &’ = b. O

G.3.2 Exponential Number of Vertices in a Region

In this section, I show that there is a family of one-stage POMDP problems such that,
forevery n > 2, S| =n+1, |4 =2n+1,|Z] =1, T =1, |I'| < 2n+1, and the
number of vertices in the region dominated by one of the policy trees is 2".

Once again, I will use the specification described in Lemma G.3, inductively creating
a separate piecewise-linear convex function for each n. For each n, define a set K,
containing 2n 4 1 vectors, and let ¢ be a vector such that the vectors in K,, form the
walls of an n-dimensional hypercube bounding the region {z|z - 0" > 2z -0,0 € K, }.
We define the family of POMDPs recursively, starting with n = 1. Let & = {1,2} and
V = {1}. Let Aj[s] =0 for all 2z € V, k € {1,2}, and s € S (the set A is not needed
in this construction). The notation (z,y) concatenates two vectors (or a vector and
scalar) into a single vector.

Let Ky = {(1,-1/2),(0,0),(—1,0)} and o' = (0,0). Let Q,, be the set of vertices
of the region {z|z - 0" >z -0,0 € K,,}. The vertices are the information states where
one of the other vectors in K gives the same value as o'. It is easy to verify that the
set of vertices Q; = {(0,1),(1/3,2/3)}.

Inductively define o™t = (o™, 0),

Ko = {(0,0) 10 € K} U{{0,...,0,-1),(1,...,1, 1)}

and Sp41 =S, U {n+ 2}.
Note that o1 = (0,...,0) € K,41. The vertices of ¢"*1’s region are the infor-

mation states where n 4 1 of the vectors in K, 1 give the same value as o™t Let
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x € Q. Inductively, n vectors in K, give the same value as ¢™ at z. Let ¢ be any one

of these vectors. It follows from the construction of ¢ that
(,0) - {0,0) =2 -0 =0=2a-0" = (2,0) - c"F!

and
(z,0)-(0,...,0,-1) =0 = (z,0) - o™+

n+1»

so (z,0) € X is a vertex of ¢ s region. Similarly,

(1/22,1/2) (0,00 =1/22 -0 +0=0=(1/22,1/2) - o™ !

and
(1/2 2,1/2y-(1,...,1,-1)=1/2-1/2=0=(1/2 ,1/2) - ot

so (1/2x,1/2) € X is a vertex of o™ *1’s region also. As a result,
Q1 = {{2,0): 2 € Q, }U{{(1/22,1/2) : 2 € Q,}.

Since all the vectors in K11 and Q41 are unique, |K, 41| = |Kn|+2, and [Q,41] =
2|1, |Kn] = 2n + 1 and |Q,| = 2" for all n > 2. Applying Lemma G.3, there is a
one-stage POMDP problem for each n > 2 with |S| =n+ 1, |4l =2n+ 1, |Z]| = 1,
IT| = 1, |T’| = n + 1, such that the number of vertices in one of the linear regions of

the value function is 2".

G.4 Solving One-stage pPOMDP Problems is Hard

In this section, I show that the problem of solving polynomially output-bounded one-
stage POMDP problems is NP-complete under randomized reductions. This means that
there is a randomized algorithm for solving one-stage POMDP problems in polynomial
time if and only if RP=NP. To show this, we examine a deep connection between this
problem and the wunique-satisfying-assignment problem, defined below.

A boolean formula in conjunctive normal form (CNF) is an “and” of a set of clauses
of “ors” of literals (variables and negated variables). A satisfying assignment maps each
of the variables to either “true” or “false” so the entire formula evaluates to “true.”
There is a result, proved by Valiant and Vazirani [165], that implies that there exists

a polynomial-time algorithm for finding a satisfying assignment for a formula that is



241

guaranteed to have at most one satisfying assignment only if RP=NP!. I will show
that a polynomial-time algorithm for solving polynomially output-bounded POMDPs
could be used to solve the unique-satisfying-assignment problem in polynomial time,
and therefore that such an algorithm exists only if RP=NP.

I use the specification described in Lemma G.3 and define &, V, K, and A. Take
a CNF formula consisting of a set of M > 1 clauses C, and variables V (|V| > 2).
The set of variables corresponds both to the variables in Lemma G.3 and the boolean
variables in the formula. Let § = C' x V. An element of § is a pair (¢, z) € C' x V.
There is a pair of A vectors for each variable z € V, which will encode the CNF formula.
Vector Aj indicates in which clauses variable z is unnegated and A3 indicates in which
clauses variable z is negated. More specifically, for each z € V and k € {1,2}, A} is
a |C x Vl|-vector with Aj[(c,z)] = 1 if variable z appears unnegated in clause ¢ and
A3[(e, z)] = 1 if variable z appears negated in clause c¢. All other components of the A
vectors are zero.

For a binding b € B, b(z) = 1 if variable z is true in the assignment and b(z) = 2
otherwise. Thus, if /\g(z)[(c7 z)] = 1, then clause ¢ evaluates to “true” under binding b
because of the binding of variable z in that clause. Let x be a |C' X V|-vector with each
component equal to (M —1/2)/M. For each ¢ € C, define a |C' x V|-vector o, as follows.
For all z € V, let o.[(c,2)] =14+ (M —1/2)/M — M and o.[(c’,2)] =1+ (M —1/2)/M
for ¢ # c¢. As described earlier, let ap = 3, /\Z(z)' From the definition of A, every
component of «ay is either a one or a zero.

Each oy vector corresponds to a variable assignment and the o, and x vectors are
designed to jointly dominate all possible «p vectors, except those corresponding to

satisfying assignments.

Lemma G.5 Let K = {x} U {o.|c € C}. There is an z* € X such that * - ap >

max,ex (2% - o) if and only if b is a satisfying assignment.

Proof: First, assume b is a satisfying assignment. We can construct an z* such that
z*-ap =1, but z* -k < 1 and z* -0, < 1 for all ¢ € C' as follows.

For each clause ¢ € C, pick a single variable z,. such that the binding of that variable
in b causes clause ¢ to be satisfied. Let 2*[(c, z.)] = 1/M for each ¢ € C and 0 otherwise.

Note that z* € A because M components are set to 1/M. Because of the zeros in z*

!Thanks to Avrim Blum for pointing this out.
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and the \ vectors,
P = ;gw*[m 2)] Z/Az@)[(c >
= XX Z)];Z(Z)[(a 2)]
= 2ol le ] =3 55 =1

C

Using the same 2* we see that 2*-x = (M —1/2)/M < 1, and for each clause ¢ € C,

0. = 3N (¢ 2)od(c, 2)]
=3 (x*[(c, 2)] (1 + MJ\; 2 _ M) +)2*(¢, 2)] (1 + MJ\; 5))

z

= Z (—Mx*[(c z)] —|—Z$*[(Cl7 z)] (1—|— MJ\; 5))

C/

SVE S +( ]\;%)sz ()]
M —

1

1
= 141 2: zZ < 1.
+ 14+ i i <

Thus, 2* - ap = 1 > max,ex (z* - o), for satisfying assignment b.

Now I show that, for a non-satisfying b, - o < maxsex(z - o) for all z € X. We
proceed by contradiction. Assume we have an z € A" such that max,ex (2 -0) < -y
for a non-satisfying b. Then, z -k < z-ap and z - 0. < x - o for all ¢ € C. Define
we = Y, x[(¢, 2)]. The variable w,. is the weight of clause ¢, and note that >, w. =1
it x € X. Let ¢* = argmin, w,; ¢* is a minimum weight clause.

If e -k <a-ap then (M —-1/2)/M < z-0p = @ - [sz\g(z)] < 1 — wex. The
last inequality is justified by the fact that b is not satisfying so at least one clause
contributes zero to the dot product and assuming it is the smallest weight clause gives

us the largest possible value. This restricts wex so that

< . < . + ! _ M- (G.4)
Yer=oM S oM oM -1 T MM -1) ‘

At the same time, it must be the case that z - 0.« < & - ap, which implies 1+ (M —
1/2)/M — Mwe < 1— wes and therefore wes > (M — 1/2)/(M (M — 1)). This directly
contradicts Inequality G.4, and therefore we can conclude that, for a non-satisfying b,

T - op < maxgex (2 -0) for all @ € X. O
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By Lemma G.3, there is a POMDP such that

rvne:a?/{(x -v) = max {gnealic(x o), mg,LX(x . ab)} .

This one-stage POMDP problem is derived from the unique-satisfying-assignment-prob-
lem instance and has the property that I'Y ¢ K if and only if the boolean-formula
instance is satisfiable. Because of the assumption that the boolean formula has no
more than 1 satisfying assignment, |T’| < M + 2; thus, the one-stage POMDP problem
is polynomially output bounded.

Because the one-stage POMDP problem instance can be created in polynomial time,
and the condition IV ¢ K can be checked in polynomial time, a polynomial-time
algorithm for solving polynomially output-bounded one-stage POMDP problems could
be used to find unique satisfying assignments in polynomial time. As mentioned at the
start of this section, this would imply RP=NP.

To complete the proof of Theorem 7.1, I need to argue that if RP=NP then there
is a randomized polynomial-time algorithm for solving polynomially output-bounded
one-stage POMDP problems. We can build up a set of vectors U C I one at a time by
answering the question “Is there an information state z such that max, ey z-y # Vi(2)?”
and adding the dominating vector at x into U. For polynomially output-bounded one-
stage POMDP problems, if the answer to this question is yes, then there is an z that
can be written using polynomially many bits. Such an & can be identified in non-
deterministic polynomial time using standard techniques, and therefore in randomized
polynomial time if RP=NP. Because there are at most a polynomial number of vectors

that can be added to U, the process terminates with U/ = I' in polynomial time.

G.5 Proof of the Witness Lemma

Let U be a set of useful policy trees for action a. In this section, I show that the set
U does not equal the complete set I'* of useful policy trees if and only if some policy
tree, in the set of neighbors of policy trees in U, dominates the policy trees in U.

The “if” direction is easy since the neighbor can be used to identify a policy tree
missing from U.

The “only if” direction can be rephrased as: If U # I'* then there is an information

state © € X, a policy tree p € U, and a neighbor p’ of p such that p’ dominates all
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p*Oré-u
p', constructed fromt

X

Figure G.2: An illustration of some of the quantities used in Theorem 7.3.

policy trees in U at z. Figure G.2 illustrates some of the relevant quantities used to
show this.

Start by picking p* € I' — U and choose any z such that p* dominates the policy
trees in U at z. Let p = argmaxzey Vi(z). As illustrated in the figure, p* is the
optimal policy tree at x, and p is the best policy tree in U at . By construction,
Vpr(2) > V().

If p* and p are neighbors, we are done, since we are searching for a neighbor of p
that dominates the other policy trees in U at x, and p* meets these requirements.

If p* and p are not neighbors, we will identify a neighbor p’ of p that does satisfy

these requirements. Choose an observation z* € Z such that
z -stval(a, 2%, p") > x - stval(a, 27, p).

There must be a z* satisfying this inequality since otherwise we get the contradiction

Vpr(z) = Z z[s] (R(s7 a)+ 3 Z stval(a, z,p*)[s])

5

IN

Z z[s] (R(s7 a)+ Z stval(a, z, p) [s]) =V, (z).

5

Let 7 € T(Z2 — I') where 7(z*) = subtree(p*, z*) and 7(z) = subtree(p, z) for z # z*.

Let p’ be the policy tree constructed from 7, p’ = tree(a, 7). By construction, p and



245

p’ are neighbors. In addition,

Vp(z) = Zx[s] (R(s,a) + ﬁZstval(a,z,p’)[s])

5

= Zx[s] (R(s7 a)+ 3 Z stval(a, z, p)[s] + (3 stval(a, z,p*)[s])

zFz*

> Zx[s] (R(s7 a) + ﬁz stval(a, z, p) [s]) = V,(z) = max V;(z).

s pelU

Therefore the policy tree p’ dominates all policy trees in U at .
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