\) BLACKD/C|
AN

OPEN SOURCE SECURITY ANALYSIS
The State of Open Source Security
in Commercial Applications

By Mike Pittenger, Vice President, Security Strategy

Black Duck’'s On-Demand business conducts audits of customers’ software, often in merger
or acquisition situations. Typically the audits include commercial software that has been in the
market for a number of years.

From a legal standpoint, customers want to confirm their software is not subject to unneces-
sary intellectual property (IP) risk through the use of open source software under restrictive
licenses (e.g., GPL, LGPL]), or from improper reporting of the open source licenses used.

From a security standpoint, customers want to understand the security profile of their software.
While many of these companies have internal security programs and deploy security testing
tools such as static and dynamic analysis, those tools are not effective at identifying the types
of vulnerabilities disclosed every day in popular open source components. More importantly, if
a customer is not aware of all of the open source in use, they cannot defend against common
attacks against known vulnerabilities in those components.

This study covers more than 200 applications reviewed by Black Duck On-Demand over the six
months from October 2015 through March 2016. The age of the applications tested (e.g., how
old the codebase is) varies widely. All of the companies submitting
code for audit review had conducted manual reviews, and all data

was anonymized prior to Black Duck’s analysis.

YOU'RE USING OPEN SOURCE,

AND MORE THAN YOU THINK Average number
Everyone uses open source. Black Duck finds it in over 95% of the Of open source

applications we analyze for clients. It's easy to understand why. Open components n

source adds qeedgd functionality while lowering development costs each apphcation
and accelerating time to market.

C BLACKDUCK

Open source can enter a code base in a vari-
ety of ways. We commonly think of a developer
who recognizes a need for specific function-
ality, and pulls in an open source component . o
that meets the requirements. While this rep- WETE Using 100%
resents the classic example, open source en- . [T10rc Open source
ters in other ways as well. Commercial com- than they originally believed
ponents typically include open source that may
or may not be disclosed. Additionally, outsourced development teams are highly motivated to
use open source for lowering development costs and speeding time to market. In other cases,
open source is built into reusable components that are used internally.

On average
the companies

Our review found that open source comprises over 35% of the average commercial application,
and represents over 100 unique open source components in each application. When consider-
ing these numbers, it is important to remember that we are reviewing commercial applications
as opposed to code developed for internal use. In the latter category, we expect to see open
source comprising a much higher percentage of the application (75%+ is not unusual), though
with a smaller total number of components.

If the number of unique components is surprising to a reader, it is also surprising to our cus-
tomers. Those who provide a listing of the components (bill of material) they expect to be in the
applications when the audit begins are often only aware of 45% of the actual components used.
In other words, while customers may believe they are using (on average) 60-70 components,
they are actually using over 140.

IF YOU'RE USING OPEN SOURCE,

(o CHANCES ARE YOU ARE LIKELY
© '\CLUDING VULNERABILITIES
of applications KNOWN TO THE WORLD AT LARGE

reviewed contained Without visibility m’Fo the open source they use, a company is
: unable to protect itself from known vulnerabilities in those
Open source security

L components. Even when components are identified, it can be
vulnerabilities difficult to track the various projects and comb publicly available
databases for changes to the code, including newly disclosed
vulnerabilities. Since 2014 alone, the National Vulnerability Database (NVD) has reported over 6,000
new vulnerabilities in open source software.

Do the math. If the average commercial application tested includes over 100 unique open source
components, manual tracking of the components in a single application is clearly burdensome.
Multiply that by the hundreds or thousands of applications in a large enterprise, and the ability
to track risk manually is impossible.

C BLACKDUCK

THIS ISN'T AN ISOLATED INCIDENT

While a single component with an exploitable vulnerability can
be a problem, the issue is more widespread according to our
data. On average, we identified five vulnerable components in]

every application. Average number

Of course, this doesn’'t mean customers should stop using open of open source
source. It does indicate, however, that visibility into the compo- Component
nents that are included in their code base is required. This would vulnerabilities in
provide the ability to switch to newer (or at least less vulnerable) each apphcation
versions of the same components.

A single vulnerability may or may not warrant an organization’s attention. It could be minor or
unreachable by an attacker. What we found, however, goes far beyond a single vulnerability in
a single component. On average, each vulnerable component included multiple, unique vul-
nerabilities. When we look at the total number of vulnerabilities per project, the numbers are
daunting - over 22 individual vulnerabilities in any single application.

BAD NEWS, THIS

1,894 days ISN'T A NEW PROBLEM

Average age of open When a security issue is disclosed in an open source
source component component, it is often (but not always) accompanied by

1 biliti f fi an update or patch that remediates the issue. This al-
vunerabities at scan utme ¢ development teams to address the vulnerability

by updating the component. With some components, of
course, this is not a simple fix. Those with multiple APIs will require more planning and testing
to ensure the fix doesn’t break other functionality or add new vulnerabilities.

The planning process still doesn’t explain the age of vulnerabilities found in our study. On av-
erage, the vulnerabilities we identified had been disclosed more than five years before our
analysis. This indicates that the organizations didn't know about the vulnerabilities, either be-
cause they didn't know the component was present, or had not checked public resources for
vulnerability information.

This represents a significant risk to organizations deploying these applications. The longer a
vulnerability is known, the more likely that an attacker can leverage it. And attackers often move
quickly. The 2015 Verizon Data Breach Investigation Report found that “half of the CVE's (Com-
monly Vulnerabilities and Exposures) exploited in 2014 fell within two weeks”, and “99.9% of
the exploited vulnerabilities were compromised more than a year after the CVE was published”.

In other words, you need to know where vulnerabilities exist in your code (and the open source
in your custom code) and add this to your incident-response program.

C BLACKDUCK

EVEN WELL-PUBLICIZED VULNERABILITIES
ARE NOT GETTING FIXED

Vulnerabilities in open source are particularly attractive to attackers. The ubiquity of the affect-
ed components, the public disclosure of vulnerabilities (often with sample exploits) and access
to the source code make the attacker’s job simpler. In addition, without a traditional support
model, users are typically unaware of new updates and vulnerabilities.

Some vulnerabilities garner a lot of news, while others fly

under the radar. However, when something like Heartbleed
o Is talked about in the mainstream media, including the
o nightly news, one would expect companies to take note.

Our study found over 10% of the applications tested includ-

of the app hications ed the Heartbleed vulnerability (disclosed a minimum of
ncluded the 18 months prior to our analysis), and almost 10% included
Heartbleed vulnerabllily POODLE. LogJam and FREAK each affected almost 5% of

the applications.

This illustrates the difficultly organizations have in managing open source components, and
hence the attractiveness to attackers of vulnerabilities in these components. Without a com-
prehensive list of the components used, it is nearly impossible to map new vulnerabilities to
specific applications that use the affected components. With popular components like OpenS-
SL, attackers see a target-rich environment when new vulnerabilities (and associated exploits)
are disclosed.

NOR IS BAD NEWS SOMETHING YOU CAN SAFELY IGNORE

% of High Severity (CVSS Base Score >= 7.0 39.55%

% Medium Severity (CVSS Base Score >=4, <=6.9 52.10% o

% Low Severity 8.35% o
As noted previously, vulnerabilities vary in severity and will war- of open source

ran’F different responses froman orgam;ghon. The analysis tell us, vulnerabilities in
again, that awareness of the vulnerabilities was low (or non-exis- . .
tent). Common Vulnerability Scoring System (CVSS]) base scores each apphucatlon)
(scored 1-10) are calculated by looking a combination of the sim- were rated ‘severe
plicity of exploiting the vulnerability and its impact to confidenti-
ality, integrity, and availability for the component. Our study found almost 40% of the vulnerabili-
ties had CVSS base scores greater than 7, and over 90% had base scores greater than 4.

C BLACKDUCK

CONCLUSION

Open source lowers development costs while accelerating time to market, and we expect its
adoption to continue to grow. This report highlights the fact that, even for companies that con-
ducted manual reviews, unknown (to the companies) open source permeated commercial ap-
plications.

Vulnerabilities in open source are particularly attractive to attackers. The ubiquity of the affect-
ed components provides a target-rich environment; the vulnerabilities are publicly disclosed
(often with sample exploits); and without a traditional support model, users are typically un-
aware of new updates and vulnerabilities.

It's obvious that it is impossible to defend against a threat that you don’t know exists. Organiza-
tions can address this with three simple steps:

1. CREATE OPEN SOURCE USAGE POLICIES: Understand the characteristics that are import-
ant to your organization for each type of application you build, including license obligations,
acceptable security risk and open source community support.

2. TRACK USAGE AND ENFORCE POLICIES: Automated tools like Black Duck Hub automat-
ically identify and track open source through integration with build tools, highlighting known
vulnerabilities and components that violate company policy. This inventory, or bill of materials,
is updated with every build and can be used to map new vulnerabilities to your applications.

3. MONITOR FOR NEW VULNERABILITIES: Public sources, like the National Vulnerability Da-
tabase, provide information on publicly disclosed vulnerabilities in open source and commer-
cial software.

ABOUT BLACK DUCK SOFTWARE

Organizations worldwide use Black Duck Software’s industry-leading products to automate the processes of securing and
managing open source software, eliminating the pain related to security vulnerabilities, open source license compliance and
operational risk. Black Duck is headquartered in Burlington, MA, and has offices in San Jose, CA, London, Frankfurt, Hong
Kong, Tokyo, Seoul and Beijing. For more information, visit www.blackducksoftware.com.

CONTACT

To learn more, please contact: sales(dblackducksoftware.com or +1 781.891.5100
Additional information is available at: www.blackducksoftware.com

C BLACKDUCK

