

CSKY ISA

USERGUIDE

1

Statement:
C-SKY Microsystems Co., Ltd. reserves all rights of this document.

Contents of this document can be altered, updated, deleted or changed, and no further notice

will be given.

Copyright © 2001-2017 C-SKY Microsystems Co., Ltd.

Company address: 3 XiDoumen Rd,BldgA,15F,Hangzhou,China

Post Code: 310012

Tel: 0571-88157059

Fax: 0571-88157059-8888

Homepage: www.c-sky.com

E-mail: info@c-sky.com

2

Version history:

Version Date Description Author

1.0 7/2/2010
The first version of user manual for CSKY

instructions

C-SKY

Microsystems

Co., Ltd.

1.1 7/9/2010

1. Add 16-bit multiply instructions

2. Modify the descriptions about immediate operands

of some instructions

3. Adjust the instruction code

C-SKY

Microsystems

Co., Ltd.

1.2 8/3/2010

1. Correct some coding and description errors

2. Modify the name of jmplr instruction

3. Modify the binary coding formats of ins, zext and

sext operands

C-SKY

Microsystems

Co., Ltd.

1.3 10/13/2010

1. Modify the name of 16-bit instruction

2. Modify the codes of bmaski, bgenr, mvc, mvcv and

rts instructions

3. Modify rotl instruction act

4. Add ff0 and lrw instructions

5. Modify the link register and define it as R15

6. Correct tstnbz instruction coding errors

C-SKY

Microsystems

Co., Ltd.

1.4 11/13/2010

1. Modify the binary coding formats of ins, zext and

sext operands

2. Adjust the code of rts16 instruction

3. Correct coding errors and descriptions of lrw, ldm,

stm, ldm16 and stm16 instructions

4. Modify the description about link register of jump

instruction

5. Add idly instruction

6. Modify operand assembly formats and descriptions

of all load/store instructions

7. Modify operand assembly format of trap instruction

8. Add descriptions about bit width of mnemonic

instruction

C-SKY

Microsystems

Co., Ltd.

1.5 01/13/2011

1. Adjust the arrangement of instruction term list, add

unified instructions, and give uniform descriptions to

16-bit and 32-bit instructions with the same function

C-SKY

Microsystems

Co., Ltd.

3

in instruction term list

2. Modify the mnemonic symbols of 32-bit

instructions and add the suffix of 32

3. Add not16, ldq16 and stq16 instructions

4. Modify descriptions and instruction formats of ldq

and stq instructions

5. Modify tstnbz instruction

6. Modify mov instruction; the range of mov16

register is 32

7. Delete unaligned exception of jsri16

8. Modify andn32, asr32, lsl32, lsr32, subc32, subu32

and rtol32 instruction compiling results

9. Add bkpt16 instruction

10. Modify the code of mulsh32 instruction

1.6 02/11/2011
1. Modify the definition of bmaski instruction

function

C-SKY

Microsystems

Co., Ltd.

1.7 03/29/2011

1. Adjust RZ and RY/IMM5 coding positions of 32-bit

instructions

2. Modify the codes of jmp32, jsr32 and rts32

instructions

C-SKY

Microsystems

Co., Ltd.

1.8 04/14/2011

1. Adjust the highest bit of 16-bit and 32-bit

instructions

2. Adjust the codes of clrf, clrt, decf, dect, incf and

inct as well as their pseudo instructions – movf and

movt

3. Adjust the codes of pldr and pldw

4. Add ixd instruction

C-SKY

Microsystems

Co., Ltd.

1.9 05/17/2011
1. Add ld32.d and st32.d instructions

2. Add sce instruction

C-SKY

Microsystems

Co., Ltd.

1.10 05/24/2011
1. Delete R15 register of supervisor mode

2. Adjust the codes of br32, bsr32, br16 and bsr16

C-SKY

Microsystems

Co., Ltd.

1.11 05/25/2011 1. Modify the operation of idly instruction

C-SKY

Microsystems

Co., Ltd.

4

1.12 05/27/2011

1. Modify the operation of bsr32 and bsr16

instructions

2. Adjust the codes of bkpt32 and bkpt16 instructions

C-SKY

Microsystems

Co., Ltd.

1.13 11/15/2011

1. Add grs instruction

2. Add lrs.w, lrs.h, lrs.b, srs.w, srs.h and srs.b

instructions

3. Correct the offset of ld.d and st.d

4. Modify abnormal descriptions of pldr and pldw

instructions

5. Add descriptions about special operand of divs

C-SKY

Microsystems

Co., Ltd.

1.14 01/09/2012

1. Adjust the operands and codes of 16-bit instructions

2. Adjust the operands and codes of some 32-bit

instructions

3. Add push and pop instructions

4. Add addi(sp) and subi(sp) instructions

5. Add jmp16, jsr16 and mvcv16 instructions

6. Add the definition about oimm18 operand of addi32

7. Delete jsri16, rotli16 and mvc16 instructions

8. Delete ldm16 and stm16 instructions

9. Delete be and bne instructions

10. Modify the range of lrw16 operand

11. Modify the code of grs instruction

12. Modify the definition of stack pointer register

13. Modify the jump range restriction of bsr

instruction

14. Correct the description of mvtc instruction

15. Correct the description of cmpnei register type

16. Correct other errors

C-SKY

Microsystems

Co., Ltd.

1.14.1 02/06/2012
1. Add bmset32, bmclr32, cmpix32 and jmpix16

instructions

C-SKY

Microsystems

Co., Ltd.

1.14.2 02/13/2012

1. Add jmpix32 instruction

2. Modify the operands of push and pop instructions

3. Modify the offset displacement of ld.d and st.d

instructions

C-SKY

Microsystems

Co., Ltd.

1.14.3 02/15/2012 1. Modify the codes of jmpi32 and jsri32
C-SKY

Microsystems

5

Co., Ltd.

1.14.4 03/30/2012

1. Correct the errors in coding mode of instruction set

and description of operand type

2. Correct the abnormal description of load/store

instructions

3. Correct mvtc code

4. Modify jsr16 code

C-SKY

Microsystems

Co., Ltd.

1.15 04/16/2012 1. Add floating point subset

C-SKY

Microsystems

Co., Ltd.

1.15.1 06/07/2012 1. Delete FMTD, FMTS, FMFD and FMFS

C-SKY

Microsystems

Co., Ltd.

1.15.2 06/28/2012

1. Add FMTVRH, FMTVRL, FMFVRH and

FMFVRL

2. Add FLDD, FLDS, FLDRD, FLDRS, FLDMD,

FLDMS, FSTD, FSTS, FSTRD, FSTRS, FSTMD and

FSTMS

C-SKY

Microsystems

Co., Ltd.

1.15.3 07/011/2012

1. Modify the definitions of push and pop instructions

2. Add FLDM, FLDRM, FLDMM, FSTM, FSTRM

and FSTMM

C-SKY

Microsystems

Co., Ltd.

1.15.4 08/015/2012 1. Correct the codes of some instructions

C-SKY

Microsystems

Co., Ltd.

1.15.5 08/17/2012 1. Add FMOVM

C-SKY

Microsystems

Co., Ltd.

1.15.6 08/17/2012 1. Modify the definition of co-processor instruction

C-SKY

Microsystems

Co., Ltd.

1.15.7 12/01/2012 1. Modify the definitions of sync and idly instructions

C-SKY

Microsystems

Co., Ltd.

1.15.8 10/14/2013 1. Add bpop.h, bpop.w, bpush.h and bpush.w

C-SKY

Microsystems

Co., Ltd.

6

1.15.9 31/3/2014

1. Correct the names of FCMPZLSD and FCMPZLSS

instructions

2. Correct the descriptions of FCMPZLSD,

FCMPZLSS, FDTOSI, FDTOUI, FSITOD, FSITOS,

FSTOSI, FSTOUI, FUITOD and FUITOS instructions

3. Correct the codes of VFPU instructions like

FABSD, FABSM and FABSS

4. Delete cmpix instruction

5. Add strap and srte instructions

C-SKY

Microsystems

Co., Ltd.

1.15.10 15/5/2014

1. Delete bsr16 instruction

2. Add btsti16 instruction

3. Modify the code of lrw16 instruction

C-SKY

Microsystems

Co., Ltd.

1.15.11 13/12/2014

1. Correct the descriptions of FSTM and FLDM

2. Correct the description of FMULD instruction

3. Add FLRWS and FLRWD instructions

4. Add nie16, nir16, ipush16 and ipop16 instructions

5. Modify the name of floating point data operation

instruction

C-SKY

Microsystems

Co., Ltd.

1.15.12 22/12/2014

1. Correct the descriptions of overflow bits of muls,

mulsa, mulss, mulu, mulua and mulus instructions

2. Supplement the descriptions of mulsha, mulshs,

mulsw, mulswa, mulsws, mfhis and mflos instructions

3. Supplement the descriptions of vmulsh, vmulsha,

vmulshs, vmulsw, vmulswa and vmulsws instructions

C-SKY

Microsystems

Co., Ltd.

7

Content
1. INTRODUCTION .. 11

1.1. INTRODUCTION ... 11

1.2. INSTRUCTION MIXING MODE ... 11

1.3. PROGRAMMING MODEL ... 12

1.3.1. General-purpose register .. 14

1.3.2. Alternative register ... 15

1.3.3. Accumulator register .. 15

1.3.4. Program counter ... 15

1.3.5. Condition/carry bit ... 16

2. 32-BIT INSTRUCTION SET .. 17

2.1. FUNCTIONAL CLASSIFICATION OF 32-BIT INSTRUCTIONS .. 17

2.1.1. Data operation instruction .. 17

2.1.2. Branch jump instruction ... 21

2.1.3. Memory access instruction ... 21

2.1.4. Co-processor instruction .. 23

2.1.5. Privileged instruction ... 23

2.1.6. Special function instruction .. 24

2.2. ENCODING OF 32-BIT INSTRUCTIONS .. 24

2.2.1. Jump type .. 25

2.2.2. Immediate operand type .. 25

2.2.3. Register type ... 26

2.3. OPERAND ADDRESSING MODE OF 32-BIT INSTRUCTIONS .. 26

2.3.1. Addressing mode of jump-type instructions .. 26

2.3.2. Addressing mode of immediate operand-type instructions 27

2.3.3. Addressing mode of register-type instructions .. 29

3. 16-BIT INSTRUCTION SET .. 32

3.1. MAPPING MODE OF 32-BIT/16-BIT INSTRUCTIONS .. 32

3.2. FUNCTIONAL CLASSIFICATION OF 16-BIT INSTRUCTIONS .. 37

3.2.1. Data operation instruction .. 37

3.2.2. Branch jump instruction ... 39

3.2.3. Memory access instruction ... 39

3.3. CODING MODE OF 16-BIT INSTRUCTIONS .. 40

3.3.1. Jump type .. 40

8

3.3.2. Immediate operand type .. 41

3.3.3. Register type ... 43

3.4. OPERAND ADDRESSING MODE OF 16-BIT INSTRUCTIONS .. 43

3.4.1. Addressing mode of jump-type instructions .. 43

3.4.2. Addressing mode of immediate operand-type instructions 44

3.4.3. Addressing mode of register-type instructions .. 46

4. FLOATING POINT INSTRUCTION SET ... 48

4.1. FUNCTIONAL CLASSIFICATION OF FLOATING POINT INSTRUCTIONS 48

4.1.1. Data operation instruction .. 48

4.1.2. Vector operation instruction ... 50

4.1.3. Transfer instruction ... 51

4.1.4. Memory access instruction ... 51

4.2. CODING MODE OF FLOATING POINT INSTRUCTIONS ... 52

4.2.1. Register type ... 52

4.3. OPERAND ADDRESSING MODE OF FLOATING POINT INSTRUCTIONS 52

4.3.1. Addressing mode of register-type instructions .. 53

5. TERM LIST OF BASIC INSTRUCTIONS ... 55

6. TERM LIST OF FLOATING POINT INSTRUCTIONS .. 433

9

List of charts:
CHART 1-1 MIXING PRINCIPLE OF 32-BIT/16-BIT INSTRUCTIONS ... 12

CHART 1-2 PROGRAMMING MODEL .. 12

CHART 1-3 DEFINITION OF GENERAL-PURPOSE REGISTER PROGRAMMING 14

CHART 2-1 LIST OF 32-BIT ADD-SUBTRACT INSTRUCTIONS .. 17

CHART 2-2 LIST OF 32-BIT LOGICAL OPERATION INSTRUCTIONS .. 18

CHART 2-3 LIST OF 32-BIT SHIFT INSTRUCTIONS .. 18

CHART 2-4 LIST OF 32-BIT COMPARE INSTRUCTIONS ... 18

CHART 2-5 LIST OF 32-BIT DATA TRANSFER INSTRUCTIONS ... 19

CHART 2-6 LIST OF 32-BIT BIT OPERATION INSTRUCTIONS ... 19

CHART 2-7 LIST OF 32-BIT EXTRACT AND INSERT INSTRUCTIONS .. 19

CHART 2-8 LIST OF 32-BIT MULTIPLY-DIVIDE INSTRUCTIONS ... 20

CHART 2-9 LIST OF 32-BIT MISCELLANEOUS OPERATION INSTRUCTIONS ... 20

CHART 2-10 LIST OF 32-BIT BRANCH INSTRUCTIONS ... 21

CHART 2-11 LIST OF 32-BIT JUMP INSTRUCTIONS ... 21

CHART 2-12 LIST OF 32-BIT IMMEDIATE OPERAND OFFSET ACCESS INSTRUCTIONS 21

CHART 2-13 LIST OF 32-BIT VECTOR REGISTER OFFSET ACCESS INSTRUCTIONS 22

CHART 2-14 LIST OF 32-BIT MULTI-REGISTER ACCESS INSTRUCTIONS ... 22

CHART 2-15 LIST OF 32-BIT EXCLUSIVE ACCESS INSTRUCTIONS .. 22

CHART 2-16 LIST OF 32-BIT SIGN ACCESS INSTRUCTIONS .. 23

CHART 2-17 LIST OF 32-BIT CO-PROCESSOR DATA TRANSFER INSTRUCTIONS 23

CHART 2-18 LIST OF 32-BIT CO-PROCESSOR MEMORY ACCESS INSTRUCTIONS 23

CHART 2-19 LIST OF 32-BIT CO-PROCESSOR OPERATION INSTRUCTIONS ... 23

CHART 2-20 LIST OF 32-BIT CONTROL REGISTER OPERATION INSTRUCTIONS 23

CHART 2-21 LIST OF 32-BIT LOW POWER CONSUMPTION INSTRUCTIONS ... 24

CHART 2-22 LIST OF 32-BIT ABNORMAL RETURN INSTRUCTIONS ... 24

CHART 2-23 LIST OF 32-BIT SAFE STATE INSTRUCTIONS .. 24

CHART 2-24 LIST OF 32-BIT SPECIAL FUNCTION INSTRUCTIONS .. 24

CHART 3-1 MAPPING TABLE OF 32-BIT/16-BIT INSTRUCTIONS ... 32

CHART 3-2 LIST OF 16-BIT ADD-SUBTRACT INSTRUCTIONS .. 37

CHART 3-3 LIST OF 16-BIT LOGICAL OPERATION INSTRUCTIONS .. 37

CHART 3-4 LIST OF 16-BIT SHIFT INSTRUCTIONS .. 38

CHART 3-5 LIST OF 16-BIT COMPARE INSTRUCTIONS ... 38

CHART 3-6 LIST OF 16-BIT DATA TRANSFER INSTRUCTIONS ... 38

CHART 3-7 LIST OF 16-BIT BIT OPERATION INSTRUCTIONS ... 38

CHART 3-8 LIST OF 16-BIT EXTRACT AND INSERT INSTRUCTIONS .. 39

10

CHART 3-9 LIST OF 16-BIT MULTIPLY-DIVIDE INSTRUCTIONS ... 39

CHART 3-10 LIST OF 16-BIT BRANCH INSTRUCTIONS ... 39

CHART 3-11 LIST OF 16-BIT JUMP INSTRUCTIONS ... 39

CHART 3-12 LIST OF 16-BIT IMMEDIATE OPERAND OFFSET ACCESS INSTRUCTIONS 40

CHART 3-13 LIST OF 16-BIT MULTI-REGISTER ACCESS INSTRUCTIONS ... 40

CHART 3-14 LIST OF 16-BIT BINARY TRANSLATED STACK INSTRUCTIONS .. 40

CHART 3-15 LIST OF 16-BIT INTERRUPT NESTING ACCELERATION INSTRUCTION 40

CHART 4-1 LIST OF SINGLE-PRECISION DATA OPERATION INSTRUCTIONS ... 48

CHART 4-2 LIST OF DOUBLE-PRECISION DATA OPERATION INSTRUCTIONS 49

CHART 4-3 LIST OF VECTOR OPERATION INSTRUCTIONS .. 50

CHART 4-4 LIST OF DATA TRANSFER INSTRUCTIONS .. 51

CHART 4-5 LIST OF DATA TRANSFER INSTRUCTIONS .. 51

11

1. Introduction

1.1. Introduction
CSKY instruction set architecture(ISA) refers to the second-generation independent

intellectual property instruction set architecture of CK-Core family. CSKY ISA has

characteristics like high performance, high code density, low power consumption and

extensibility. CSKY ISA is designed by directing at different demands for embedded applications

of high performance and low power consumption in the future. 32-bit/16-bit mixed length

encoding is adopted. Among them, with perfect functions, 32-bit instruction is used to improve

the comprehensive performance of instruction set; as the subset of 32-bit instruction, 16-bit

instruction possesses relatively simple functions, and it is applied to improve instruction code

density and to reduce power consumption.

Main characteristics of CSKY instruction set architecture are as follows:
l 32/16-bit instructions are realized by way of hybrid coding, and no performance loss will be

caused in the process of instruction switch;
l As a complete set of instruction set architecture, 32-bit instructions have perfect functions

and excellent performance;
l Most 16-bit instructions are subsets of 32-bit instructions and they can realize instructions

with the highest frequency in 32-bit instructions;
l 32-bit instructions adopt 32 general-purpose registers and 3-operand addressing mode;
l 16-bit instructions adopt 16 general-purpose registers and 2-operand addressing mode.

1.2. Instruction mixing mode
CSKY distinguishes 32-bit instructions from 16-bit instructions through two highest bits in

instruction codes. As for the two highest bits, 11 represents 32-bit instruction and the other one

means 16-bit instruction. The specific instruction mixing mode is presented in Chart 1.1.

 31 30 19 0

32-bit

instruction

1 1

12

 15 14 13 0

16-bit

instruction

0 0

 0 1

 1 0

Chart 1-1 Mixing principle of 32-bit/16-bit instructions

1.3. Programming model

User model Supervisor model

Chart 1-2 Programming model

CSKY defines two operation modes: user mode and supervisor mode. The above two

operation modes are corresponding to different operation rights, and their differences are mainly

reflected in two aspects: 1) access to the register; 2) use of privileged instructions.

Register accessing of user mode:
l 32 32-bit general-purpose registers (GPR)
l 32-bit program counter (PC)

R14'

R13'

R12'

R11'

R10'

R9'

R8'

R7'

R6'

R5'

R4'

R3'

R2'

R1'

R15'

R0'

R31

R30

R29

R28

R27

R26

R25

R24

R23

R22

R21

R20

R19

R18

R17

R16

R15

R14(user)

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R0

HI

PSR

VBR

EPSR

FPSR

EPC

FPC

GCR

GSR

CCR

CPID

CAPR

PACR

RID

CR0

CR1

CR2

CR3

CR4

CR5

CR11

CR12

CR13

CR18

CR19

CR20

CR21

CRGPR

LO

CPC

R31

R30

R29

R28

R27

R26

R25

R24

R23

R22

R21

R20

R19

R18

R17

R16

R15

R14(spv)

R13

R12

R11

R10

R9

R8

R7

R6

R5

R4

R3

R2

R1

R0

HI

GPR

LO

CPC

普通用户模型 超级用户模型

Group 0

R14(user) CR14

Group 1

AGPR

13

l Condition/carry bit (C)
l Accumulator register (HI and LO)

Register access rights of supervisor mode cover:
l 32 32-bit general-purpose registers (GPR)
l 16 32-bit alternative registers (AGPR)
l 32-bit program counter (PC)
l Condition/carry bit (C)
l Accumulator register (HI and LO)
l Control register (CR)

The stack pointer (R14) of user mode and supervisor mode is independent, and only R14

(user) can be accessed under user mode. Under supervisor mode, R14 (spv) can be accessed;

besides, R14 (user) of user can be indirectly visited by accessing CR14 in control register

Group1.

In CK801, 16 alternative registers (AGPR) (R0’~R15’) can be realized through hardware

allocation. We can choose to access GPR or AGPR via AF bit in PSR. Meanwhile, AF bit can be

set via mfcr and mtcr instructions. When AF bit in PSR is set, alternative general-purpose

register block will be selected, and the processor can choose figures from alternative

general-purpose register block for operation. When AF bit is cleared to zero, operation data will

be extracted from general-purpose register block. Alternative general-purpose register block is

used to reduce the time spent in context switch during real-time event processing.

Most instructions can be executed under two modes. However, a few instructions can be

executed only under supervisor mode; otherwise, privilege exception will be triggered. These

instructions include mfcr, mtcr, psrset, psrlcr, rte, rfi, wait, doze, stop, etc.

The operation right is decided by S bit of control register: 0 represents user mode and 1

means privileged user mode. The program will access register according to the rights. Common

user program is only allowed to visit register under user mode, so as to prevent it from contacting

privileged information of the system. System program under supervisor mode can access all

registers and supervisor operation can be conducted with control register.

Under user mode, condition/carry bit (C) is located in the lowest bit of PSR, and it can be

accessed and changed by common user instructions. It is the only data bit that can be visited

under user mode in PSR. High accumulator register HI and low accumulator register LO are used

to store multiplication and multiplication-accumulation results. Besides, they can be visited or

altered through mfhi, mflo, mfhis, mflos, mthi and mtlo.

Besides registers that can be visited by user mode, supervisor mode also includes PSR

register containing operation control and state information, a set of abnormal shadow registers

(EPSR and EPC) used to save PSR and PC when exceptions take place, and a set of fast interrupt

shadow registers (FPSR and FPC) used to save context switch time during fast interrupt. Besides,

supervisor program can save the base address of interrupt vector table by utilizing VBR of a

14

register, covering a global status register (GSR), a global control register (GCR), and other

relevant control registers.

1.3.1. General-purpose register

CSKY has realized 33 32-bit general-purpose registers which can be used to store

instruction operands and instruction operation results. The stack pointer (R14) of user mode and

supervisor mode is independent. Under user mode, the general-purpose register visits R14 (user);

under supervisor mode, the general-purpose register visits R14 (spv). The specific rules of

applying general-purpose register are as follows:

Chart 1-3 Definition of general-purpose register programming

Name Function

R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14(user), SP(user) Stack pointer

R14(spv), SP(user) Stack pointer

R15 Link register

R16

R17

R18

R19

R20

R21

R22

R23

15

R24

R25

R26

R27

R28
Base address register

of data segment

R29

R30
Base address register

of software vector

R31

1.3.2. Alternative register

When switching to time-critical tasks, alternative register can be used to reduce response

delay time caused by content conversion and site protection. When PSR (AF) is 1, alternative

register will be selected and all instructions that use general-purpose register in the past will

apply alternative register. On the contrary, if PSR (AF) is 0, alternative register will not be

selected. Some important parameters and pointer values will be stored in these alternative

registers. As long as alternative register is selected when task of high priority is executed, these

important data can be used.

In addition, R14 serves the task as stack pointer in alternative register, thus the independent

stack becomes more effective during realization.

In actual use, alternative register can also be accessed when AF is 1 under user mode.

When exceptions appear and abnormal service program is executed, the low bit of entry value of

abnormal service program vector will be copied to AF bit, so as to select the register block.

1.3.3. Accumulator register

Accumulator register includes two 32-bit registers (HI and LO). HI and LO can either be

used separately to store 32-bit operation results or be combined into a 64-bit register [HI,LO]

which can store multiplication and multiplication-accumulation results. Instructions of using and

altering HI/LO include mulu, mulua, mulus, muls, mulsa and mulss; in addition, CSKY provides

mfhi, mflo, mfhis, mflos, mthi and mtlo which can realize the communication function between

common register and HI & LO registers.

1.3.4. Program counter

Program counter contains the current address of executing instructions. During normal

operation or exception handling of program, the processor will automatically accumulate

program counters or place a new value into the program counter according to the program

16

operation situations. For some special instructions, program counter can also participate in

calculation as relative address. In addition, the low bit in program counter is 0 all the time unless

unaligned access exception happens.

1.3.5. Condition/carry bit

Condition or carry bit represents the result after one operation. Condition/carry bit can be

clearly set according to the results of compare instructions or unclearly set as some

high-precision arithmetic or logical instructions. In addition, special instructions such as

DEC[GT,LT,NE] and XTRB[0-3] will influence the value of condition/carry bit.

17

2. 32-bit instruction set

In this chapter, 32-bit instruction set of CSKY is introduced, covering functions, encoding

and addressing mode, etc. of the 32-bit instruction set.

2.1. Functional classification of 32-bit instructions
According to functions of instruction realization, 32-bit instruction set of CSKY can be

divided into:
l Data operation instruction
l Branch jump instruction
l Memory access instruction
l Co-processor instruction
l Privileged instruction
l Special function instruction

2.1.1. Data operation instruction

Data operation instruction can be further divided into:

Add-subtract instruction:

Chart 2-1 List of 32-bit add-subtract instructions

ADDU32 Add unsigned
ADDC32 Add with carry unsigned
ADDI32 Add immediate unsigned
SUBU32 Subtract unsigned
SUBC32 Subtract with borrow unsigned
SUBI32 Subtract immediate unsigned
RSUB32 Reverse subtract
IXH32 Index half-word
IXW32 Index word
IXD32 Index double word
INCF32 C=0 add immediate
INCT32 C=1 add immediate
DECF32 C=0 subtract immediate
DECT32 C=1 subtract immediate
DECGT32 Set C bit when greater than zero in subtraction

DECLT32
Set C bit when smaller than zero in
subtraction

DECNE32 Set C bit when not equal to zero in subtraction

Logical operation instruction:

18

Chart 2-2 List of 32-bit logical operation instructions

AND32 Bitwise AND

ANDI32 Bitwise AND immediate
ANDN32 Bitwise AND-NOT
ANDNI32 Bitwise AND-NOT immediate

OR32 Bitwise OR

ORI32 Bitwise OR immediate

XOR32 Bitwise XOR
XORI32 Bitwise XOR immediate
NOR32 Bitwise NOT-OR

NOT32 Bitwise NOT

Shift instruction:

Chart 2-3 List of 32-bit shift instructions

LSL32 Logical shift left
LSLI32 Logical shift left immediate
LSLC32 Logical shift left immediate to C
LSR32 Logical shift right
LSRI32 Logical shift right immediate
LSRC32 Logical shift right immediate to C
ASR32 Arithmetic shift right
ASRI32 Arithmetic shift right immediate
ASRC32 Arithmetic shift right immediate to C
ROTL32 Rotate left
ROTLI32 Rotate left immediate
XSR32 Extended shift right

Compare instruction:

Chart 2-4 List of 32-bit compare instructions

CMPNE32 Compare unequal
CMPNEI32 Compare unequal immediate
CMPHS32 Compare unsigned when greater or equal

CMPHSI32
Compare immediate unsigned when greater or
equal

CMPLT32 Compare signed when smaller
CMPLTI32 Compare immediate signed when smaller
TST32 Null-test
TSTNBZ32 Register test without byte equal to zero

Data transfer instruction:

19

Chart 2-5 List of 32-bit data transfer instructions

MOV32 Move
MOVF32 C=0 Move
MOVT32 C=1 Move
MOVI32 Move immediate
MOVIH32 Move immediate high
MTHI32 Write transfer to high bit of accumulator
MTLO32 Write transfer to low bit of accumulator
MFHI32 Read transfer from high bit of accumulator
MFLO32 Read transfer from low bit of accumulator

MFHIS32
Read transfer saturate from high bit of
accumulator

MFLOS32
Read transfer saturate from low bit of
accumulator

MVCV32 C bit reverse move
MVC32 C bit move
MVTC32 Copy overflow bit to C bit
CLRF32 C=0 clear
CLRT32 C=1 clear
LRW32 Memory read-in
GRS32 Sign generation

Bit operation instruction:

Chart 2-6 List of 32-bit bit operation instructions

BCLRI32 Bit clear immediate
BSETI32 Bit set immediate
BTSTI32 Bit test immediate

Extract and insert instruction:

Chart 2-7 List of 32-bit extract and insert instructions

ZEXT32 Extract bit and extend unsigned
SEXT32 Extract bit and extend signed
INS32 Bit insert
ZEXTB32 Extract byte and extend unsigned
ZEXTH32 Extract half-word and extend unsigned
SEXTB32 Extract byte and extend signed
SEXTH32 Extract half-word and extend signed
XTRB0.32 Extract byte 0 and extend unsigned
XTRB1.32 Extract byte 1 and extend unsigned
XTRB2.32 Extract byte 2 and extend unsigned

20

XTRB3.32 Extract byte 3 and extend unsigned
BREV32 Bit-reverse
REVB32 Byte-reverse
REVH32 Half-word byte-reverse

Multiply-divide instruction:

Chart 2-8 List of 32-bit multiply-divide instructions

MULU32 Multiply unsigned
MULUA32 Multiply-accumulate unsigned
MULUS32 Multiply-subtract unsigned
MULS32 Multiply signed
MULSA32 Multiply-accumulate signed
MULSS32 Multiply-subtract signed
MULSH32 16-bit multiply signed
MULSHA32 16-bit multiply-accumulate signed
MULSHS32 16-bit multiply-subtract signed
MULSW32 16x32 multiply signed
MULSWA32 16x32 multiply-accumulate signed
MULSWS32 16x32 multiply-subtract signed
VMULSH32 16-bit multiply signed in two branches

VMULSHA32
16-bit multiply-accumulate signed in two
branches

VMULSHS32
16-bit multiply-subtract signed in two
branches

VMULSW32 16x32 multiply signed in two branches

VMULSWA32
16x32 multiply-accumulate signed in two
branches

VMULSWS32
16x32 multiply-subtract signed in two
branches

MULT32 Multiply

DIVU32 Divide unsigned

DIVS32 Divide signed

Miscellaneous operation instruction:

Chart 2-9 List of 32-bit miscellaneous operation instructions

ABS32 Absolute value

FF0. 32 Fast find 0
FF1. 32 Fast find 1
BMASKI32 Bit mask generation immediate
BGENR32 Register bit generation

21

BGENI32 Bit generation immediate

2.1.2. Branch jump instruction

Branch jump instruction can be further divided into:

Branch instruction:

Chart 2-10 List of 32-bit branch instructions

BT32 C=1 branch instruction
BF32 C=0 branch instruction

BEZ32
Branch instruction when register is equal to
zero

BNEZ32
Branch instruction when register is not equal
to zero

BHZ32
Branch instruction when register is greater
than zero

BLSZ32
Branch instruction when register is smaller
than or equal to zero

BLZ32
Branch instruction when register is smaller
than zero

BHSZ32
Branch instruction when register is greater
than or equal to zero

Jump instruction:

Chart 2-11 List of 32-bit jump instructions

BR32 Unconditional jump
BSR32 Jump to subprogram
JMPI32 Jump indirect
JSRI32 Jump to subprogram indirect
JMP32 Register jump
JSR32 Register jump to subprogram
RTS32 Link register jump
JMPIX32 Register index jump

2.1.3. Memory access instruction

Memory access instruction can be further divided into:

Immediate operand offset access instruction:

Chart 2-12 List of 32-bit immediate operand offset access instructions

LD32.B Load unsigned and extended byte
LD32.BS Load signed and extended byte
LD32.H Load unsigned and extended half-word
LD32.HS Load signed and extended half-word

22

LD32.W Load word
LD32.D Load double word
ST32.B Store byte
ST32.H Store half-word
ST32.W Store word
ST32.D Store double word

Vector register offset access instruction:

Chart 2-13 List of 32-bit vector register offset access instructions

LDR32.B
Load unsigned and extended byte in register
offset addressing

LDR32.BS
Load signed and extended byte in register
offset addressing

LDR32.H
Load unsigned and extended half-word in
register offset addressing

LDR32.HS
Load signed and extended half-word in
register offset addressing

LDR32.W Load word in register offset addressing
STR32.B Store byte in register offset addressing
STR32.H Store half-word in register offset addressing
STR32.W Store word in register offset addressing

Multi-register access instruction:

Chart 2-14 List of 32-bit multi-register access instructions

LDQ32 Load consecutive quad word
LDM32 Load consecutive multiword
STQ32 Store consecutive quad word
STM32 Store consecutive multiword
PUSH32 Push
POP32 Pop

Exclusive access instruction:

Chart 2-15 List of 32-bit exclusive access instructions

LDEX32.W Load word exclusive
STEX32.W Store word exclusive

Sign access instruction:

23

Chart 2-16 List of 32-bit sign access instructions

LRS32.B Load byte sign
LRS32.H Load half-word sign
LRS32.W Load word sign
SRS32.B Store byte sign
SRS32.H Store half-word sign
SRS32.W Store word sign

2.1.4. Co-processor instruction

Co-processor instruction can be further divided into:

Co-processor data transfer instruction:

Chart 2-17 List of 32-bit co-processor data transfer instructions

CPRGR32
Read transfer from general-purpose register of
co-processor

CPWGR32
Write transfer to general-purpose register of
co-processor

CPRCR32
Read transfer from control register of
co-processor

CPWCR32
Write transfer to control register of
co-processor

CPRC32
Read transfer from condition bit of
co-processor

Co-processor memory access instruction:

Chart 2-18 List of 32-bit co-processor memory access instructions

LDCPR32 Load word to co-processor
STCPR32 Store word in co-processor

Co-processor operation instruction:

Chart 2-19 List of 32-bit co-processor operation instructions

CPOP32 Co-processor operation instruction

2.1.5. Privileged instruction

 Privileged instruction can be further divided into:

Control register operation instruction:

Chart 2-20 List of 32-bit control register operation instructions

MFCR32 Read from control register
MTCR32 Write to control register

24

PSRSET32 Set PSR bit
PSRCLR32 Clear PSR bit

Low power consumption instruction:

Chart 2-21 List of 32-bit low power consumption instructions

WAIT32 Enter low power consumption wait mode
DOZE32 Enter low power consumption doze mode
STOP32 Enter low power consumption stop mode

Abnormal return instruction:

Chart 2-22 List of 32-bit abnormal return instructions

RTE32 Return from abnormal and normal interrupt
RFI32 Return from fast interrupt

Safe state instruction:

Chart 2-23 List of 32-bit safe state instructions

STRAP32 Enter safe state
SRTE32 Return from safe state

2.1.6. Special function instruction

Specifically speaking, special function instruction includes:

Chart 2-24 List of 32-bit special function instructions

SYNC32 Synchronize CPU
BKPT32 Breakpoint instruction
SCE32 Set conditional execution

IDLY32 Ban interrupt identification

TRAP32 Unconditional operating system trap
PLDR32 Prefetch read data
PLDW32 Prefetch write data
WE32 Wait event
SE32 Send event
BMSET32 Set BCTM bit
BMCLR32 Clear BCTM bit

2.2. Encoding of 32-bit instructions
The 32-bit instruction set of CSKY can be divided into 3 categories in coding style:
l Jump type (J type)

25

l Immediate operand type (I type)
l Register type (R type)

2.2.1. Jump type

The coding mode of jump type (J type) of 32-bit instructions is shown in the following

chart:

31 30 29 26 25 0

1 1 OP Offset/User Define

2 4 26

OP field is the main operation code and instructions of this coding type can be identified

through 4-bit operation code; Offset/User Define field is the offset of jump instruction or user

defined reserved domain.

2.2.2. Immediate operand type

Immediate operand type (I type) of 32-bit instructions covers three coding modes including

18-bit immediate operand, 16-bit immediate operand and 12-bit immediate operand.

The coding mode of 18-bit immediate operand is shown in the following chart:

31 30 29 26 25 21 20 18 17 0

1 1 OP RZ SOP IMM18

2 4 5 3 18

OP field is the main operation code and the instruction or instruction type can be identified

through 4-bit main operation code; RZ field is the destination register field; SOP field is the

sub-operation code field; IMM18 field is the 18-bit immediate operand. The instruction type can

be gained after decoding the main operation code OP, and the specific instruction can be obtained

only after further decoding the sub-operation code SOP.

The coding mode of 16-bit immediate operand is shown in the following chart:

31 30 29 26 25 21 20 16 15 0

1 1 OP RZ/SOP RX IMM16

2 4 5 5 16

OP field is the main operation code and the instruction or instruction type can be identified

through 4-bit main operation code; RZ/SOP field is the destination register field or sub-operation

code field; RX field is the first source register; IMM16 field is the 16-bit immediate operand.

The coding mode of 12-bit immediate operand is shown in the following chart:

31 30 29 26 25 21 20 16 15 12 11 0

26

1 1 OP RZ/RY RX SOP IMM12

2 4 5 5 4 12

OP field is the main operation code and the instruction or instruction type can be identified

through 4-bit main operation code; RZ/RY field is the destination register field or second source

register field; RX field is the first source register; SOP field is the sub-operation code field;

IMM12 field is the 12-bit immediate operand. The instruction type can be gained after decoding

the main operation code OP, and the specific instruction can be obtained only after further

decoding the sub-operation code SOP.

2.2.3. Register type

The coding mode of register type (R type) of 32-bit instructions is shown in the following

chart:

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP RY/IMM5 RX SOP Pcode RZ

2 4 5 5 6 5 5

OP field is the main operation code and the instruction type can be identified through 4-bit

main operation code; RY/IMM5 field is the second source register field or 5-bit immediate

operand; RX is the first source register; SOP field is the sub-operation code field; Pcode is the

parallel operation code field; RZ field is the destination register field. As for some instructions,

the instruction type is gained after decoding the main operation code OP, the subclass of

instruction is obtained by decoding the sub-operation code SOP, and then the specific instruction

is identified by decoding the parallel operation code Pcode. Pcode adopts one-hot coding mode.

2.3. Operand addressing mode of 32-bit instructions
The 32-bit instruction set of CSKY follows three instruction coding modes and each coding

mode has its own operand addressing mode. In the following, various operand addressing modes

will be introduced.

2.3.1. Addressing mode of jump-type instructions

The 32-bit instructions of jump type in CSKY only have one addressing mode.

2.3.1.1. Addressing mode of 26-bit immediate operand

In the instructions that adopt the addressing mode of 26-bit immediate operand, there is an

immediate operand field with the length of 26 bits. This field is considered as offset which can

be used to generate destination address. Instruction of this format includes bsr32.

31 30 29 26 25 0

27

1 1 OP Offset

2 4 26

2.3.2. Addressing mode of immediate operand-type instructions

The 32-bit instructions of immediate operand type in CSKY have six addressing modes.

2.3.2.1. Addressing mode of single register 18-bit immediate operand

In the instructions that adopt the addressing mode of single register 18-bit immediate

operand, RZ field is the destination register field or second source register field; SOP field is the

sub-operation code field; IMM18 is the 18-bit relative offset used to generate destination address.

Instructions of this format include lrs32.b, lrs32.h, lrs32.w, grs32, srs32.b, srs32.h, srs32.w and

addi32.

31 30 29 26 25 21 20 18 17 0

1 1 OP RZ SOP IMM18

2 4 5 3 18

2.3.2.2. Addressing mode of two register 16-bit immediate operand

In the instructions that adopt the addressing mode of two register 16-bit immediate operand,

the two register fields RX and RZ are source register field and destination register field; IMM16

field directly participates in data operation as 16-bit immediate operand. Instruction of this

format includes ori32.

31 30 29 26 25 21 20 16 15 0

1 1 OP RZ RX IMM16

2 4 5 5 16

2.3.2.3. Addressing mode of single register 16-bit immediate operand

The instructions that adopt the addressing mode of single register 16-bit immediate operand

have two formats.

In the first format, SOP field is the sub-operation code field; RX field is the source register

field; IMM16 field can generate destination address as 16-bit relative offset; IMM16 field can

also directly participate in data operation as 16-bit immediate operand. Instructions of this format

include bez32, bnez32, bhz32, blsz32, blz32, bhsz32, cmphsi32, cmplti32 and cmpnei32.

31 30 29 26 25 21 20 16 15 0

1 1 OP SOP RX IMM16

2 4 5 5 16

28

 In the second format, SOP field is the sub-operation code field; RZ field is the destination

register field; IMM16 field can either directly participate in data operation as 16-bit immediate

operand or be left to user for definition. Instructions of this format include movi32, movih32 and

lrw32.

31 30 29 26 25 21 20 16 15 0

1 1 OP SOP RZ IMM16

2 4 5 5 16

2.3.2.4. Addressing mode of 16-bit immediate operand

In the instructions that adopt the addressing mode of 16-bit immediate operand, there is an

immediate operand field with the length of 16 bits. This field is considered as offset which can

be used to generate destination address. Instructions of this format include br32, bf32, bt32,

jmpi32 and jsri32.

31 30 29 26 25 21 20 16 15 0

1 1 OP SOP 0 0 0 0 0 IMM16

2 4 5 5 16

2.3.2.5. Addressing mode of two register 12-bit immediate operand

In the instructions that adopt the addressing mode of two register 12-bit immediate operand,

RZ field is the destination register field or second source register field; RX field is the first

source register field; SOP field is the sub-operation code field; IMM12 field can be used to

generate destination address as 12-bit relative offset. Instructions of this format include ld32.b,

ld32.h, ld32.w, ld32.d, ld32.bs, ld32.hs, ldex32.w, pldr32, st32.b, st32.h, st32.w, st32.d, stex32.w,

pldw, addi32, subi32, andi, andni and xori.

31 30 29 26 25 21 20 16 15 12 11 0

1 1 OP RZ RX SOP IMM12

2 4 5 5 4 12

2.3.2.6. Addressing mode of single register 12-bit immediate operand

In the instructions that adopt the addressing mode of single register 12-bit immediate

operand, RX field is the first source register field; CPRZ is the co-processor operation field; SOP

field is the sub-operation code field; IMM12 field is left to user for definition. Instructions of this

format include cprgr32, cpwgr32, cprcr32, cpwcr32, cprc32, ldcpr32, stcpr32 and cpop32.

31 30 29 26 25 21 20 16 15 12 11 0

29

1 1 OP CPRZ RX SOP IMM12

2 4 5 5 4 12

2.3.3. Addressing mode of register-type instructions

 The 32-bit instructions of register type in CSKY have five addressing modes.

2.3.3.1. Addressing mode of ternary register

In addressing mode of ternary register, RY is the second source register field; RX field is

the first source register field; SOP field is the sub-operation code field; Pcode is the parallel

operation code field; RZ is the destination register field. Instructions of this format include

addu32, addc32, subu32, subc32, ixh32, ixw32, ixd32, and32, andn32, or32, xor32, nor32, lsl32,

lsr32, asr32, rotl32, ldr32.b, ldr32.h, ldr32.w, ldr32.bs, ldr32.hs, str32.b, str32.h, str32.w, divu32,

divs32, mult32, mulsh32 and mulsw32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP RY RX SOP Pcode RZ

2 4 5 5 6 5 5

2.3.3.2. Addressing mode of two register 5-bit immediate operand

Addressing mode of two register 5-bit immediate operand can be further divided into two

formats.

In the first format, IMM5 field is the 5-bit immediate operand and treated as source operand;

RX field is the source register field; SOP field is the sub-operation code field; Pcode is the

parallel operation code field; RZ field is the destination register field. Instructions of this format

include decgt32, declt32, decne32, lsli32, lsri32, asri32, rotli32, lslc32, lsrc32, asrc32, xsr32,

bclri32 and bseti32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP IMM5 RX SOP Pcode RZ

2 4 5 5 6 5 5

In the second format, IMM5 field is the 5-bit immediate operand and treated as source

operand; RX field is the source register field; SOP field is the sub-operation code field; Pcode is

the parallel operation code field; RZ field is the destination register field or second source

register field. Instructions of this format include incf32, inct32, decf32 and dect32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP RZ RX SOP Pcode IMM5

30

2 4 5 5 6 5 5

2.3.3.3. Addressing mode of two register

Instructions that adopt the addressing mode of two register can be further divided into two

formats.

In the first format, RZ field is the destination register field; RX field is the source register

field; SOP field is the sub-operation code field; Pcode is the parallel operation code field.

Instructions of this format include bgenr32, xtrb0.32, xtrb1.32, xtrb2.32, xtrb3.32, brev32,

revb32, revh32, abs32, ff0.32 and ff1.32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP 0 RX SOP Pcode RZ

2 4 5 5 6 5 5

In the second format, RY field is the second source register field; SOP field is the

sub-operation code field; Pcode is the parallel operation code field; RX field is the first source

register field. Instructions of this format include cmpne32, cmphs32, cmplt32, tst32, mulu32,

mulua32, mulus32, muls32, mulsa32, mulss32, mulsha32, mulshs32, mulswa32, mulsws32,

vmulsh32, vmulsha32, vmulshs32, vmulsw32, vmulswa32 and vmulsws32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP RY RX SOP Pcode 0

2 4 5 5 6 5 5

2.3.3.4. Addressing mode of single register 5-bit immediate operand

Instructions that adopt the addressing mode of single register 5-bit immediate operand can

be further divided into two formats.

In the first format, IMM5 field is the 5-bit immediate operand and treated as source operand;

RX field is the source register field; SOP field is the sub-operation code field; Pcode is the

parallel operation code field. Instruction of this format includes btsti32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP IMM5 RX SOP Pcode 0

2 4 5 5 6 5 5

In the second format, IMM5 field is the 5-bit immediate operand and treated as source

operand; SOP field is the sub-operation code field; Pcode is the parallel operation code field; RZ

field is the destination register field. Instruction of this format includes bmaski32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

31

1 1 OP IMM5 0 SOP Pcode RZ

2 4 5 5 6 5 5

2.3.3.5. Addressing mode of single register

Addressing mode of single register can be further divided into three formats.

In the first format, RZ is the destination register field; SOP field is the sub-operation code

field; Pcode is the parallel operation code field. Instructions of this format include mvc32 and

mvcv32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP 0 0 SOP Pcode RZ

2 4 5 5 6 5 5

In the second format, RX is the source register field; SOP field is the sub-operation code

field; Pcode is the parallel operation code field. Instruction of this format includes tstnbz32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP 0 RX SOP Pcode 0

2 4 5 5 6 5 5

In the third format, RZ is the destination register field and source register field; SOP field is

the sub-operation code field; Pcode is the parallel operation code field. Instructions of this format

include clrf32 and clrt32.

31 30 29 26 25 21 20 16 15 10 9 5 4 0

1 1 OP RZ 0 SOP Pcode 0

2 4 5 5 6 5 5

32

3. 16-bit instruction set

In this chapter, 16-bit instruction set of CSKY is mainly introduced, covering the mapping

mode from 32-bit instruction set to 16-bit instruction set as well as functional classification,

encoding and addressing mode of 16-bit instruction set.

3.1. Mapping mode of 32-bit/16-bit instructions
16-bit instruction set in CSKY is a subset of 32-bit instruction set, and most 16-bit

instructions have corresponding 32-bit instructions. The specific mapping mode between 32-bit

instructions and 16-bit instructions is presented in the following table:

Chart 3-1 Mapping table of 32-bit/16-bit instructions

Assembly
instruction

32-bit 16-bit Instruction description

ADDU ○ ○ Add unsigned
ADDC ○ ○ Add with carry unsigned
ADDI ○ ○ Add immediate unsigned
SUBU ○ ○ Subtract unsigned
SUBC ○ ○ Subtract with borrow unsigned
SUBI ○ ○ Subtract immediate unsigned
RSUB ○ × Reverse subtract
IXH ○ × Index half-word
IXW ○ × Index word
IXD ○ × Index double word
INCF ○ × C=0 add immediate
INCT ○ × C=1 add immediate
DECF ○ × C=0 subtract immediate
DECT ○ × C=1 subtract immediate
DECGT ○ × Set C bit when greater than zero in subtraction
DECLT ○ × Set C bit when smaller than zero in subtraction
DECNE ○ × Set C bit when not equal to zero in subtraction
AND ○ ○ Bitwise AND
ANDI ○ × Bitwise AND immediate

ANDN ○ ○ Bitwise AND-NOT

ANDNI ○ × Bitwise AND-NOT immediate
OR ○ ○ Bitwise OR
ORI ○ × Bitwise OR immediate
XOR ○ ○ Bitwise XOR

XORI ○ × Bitwise XOR immediate

NOR ○ ○ Bitwise NOT-OR
NOT ○ ○ Bitwise NOT

33

LSL ○ ○ Logical shift left
LSLI ○ ○ Logical shift left immediate
LSLC ○ × Logical shift left immediate to C
LSR ○ ○ Logical shift right
LSRI ○ ○ Logical shift right immediate
LSRC ○ × Logical shift right immediate to C
ASR ○ ○ Arithmetic shift right
ASRI ○ ○ Arithmetic shift right immediate
ASRC ○ × Arithmetic shift right immediate to C
ROTL ○ ○ Rotate left
ROTLI ○ × Rotate left immediate
XSR ○ × Extended shift right
CMPNE ○ ○ Compare unequal
CMPNEI ○ ○ Compare unequal immediate
CMPHS ○ ○ Compare unsigned when greater or equal

CMPHSI
○ ○ Compare immediate unsigned when greater or

equal
CMPLT ○ ○ Compare signed when smaller
CMPLTI ○ ○ Compare immediate signed when smaller
TST ○ ○ Null-test
TSTNBZ ○ ○ Register test without byte equal to zero
MOV ○ ○ Move
MOVF ○ × C=0 move
MOVT ○ × C=1 move
MOVI ○ ○ Move immediate
MOVIH ○ × Move immediate high
LRW ○ ○ Memory read-in
GRS ○ × Sign generation
MTHI ○ × Write transfer to high bit of accumulator
MTLO ○ × Write transfer to low bit of accumulator
MFHI ○ × Read transfer from high bit of accumulator
MFLO ○ × Read transfer from low bit of accumulator

MFHIS
○ × Read transfer saturate from high bit of

accumulator

MFLOS
○ × Read transfer saturate from low bit of

accumulator
MVCV ○ ○ C bit reverse move
MVC ○ × C bit move
MVTC ○ × Copy overflow bit to C bit
CLRF ○ × C=0 clear
CLRT ○ × C=1 clear
BCLRI ○ ○ Bit clear immediate
BSETI ○ ○ Bit set immediate

34

BTSTI ○ ○ Bit test immediate
ZEXT ○ × Extract bit and extend unsigned
SEXT ○ × Extract bit and extend signed
INS ○ × Bit insert
ZEXTB ○ ○ Extract byte and extend unsigned
ZEXTH ○ ○ Extract half-word and extend unsigned
SEXTB ○ ○ Extract byte and extend signed
SEXTH ○ ○ Extract half-word and extend signed
XTRB0 ○ × Extract byte 0 and extend unsigned
XTRB1 ○ × Extract byte 1 and extend unsigned
XTRB2 ○ × Extract byte 2 and extend unsigned
XTRB3 ○ × Extract byte 3 and extend unsigned
BREV ○ × Bit-reverse
REVB ○ ○ Byte-reverse
REVH ○ ○ Half-word byte-reverse
MULU ○ × Multiply unsigned
MULUA ○ × Multiply-accumulate unsigned
MULUS ○ × Multiply-subtract unsigned
MULS ○ × Multiply signed
MULSA ○ × Multiply-accumulate signed
MULSS ○ × Multiply-subtract signed
MULSH ○ ○ 16-bit multiply signed
MULSHA ○ × 16-bit multiply-accumulate signed
MULSHS ○ × 16-bit multiply-subtract signed
MULSW ○ × 16x32 multiply signed
MULSWA ○ × 16x32 multiply-accumulate signed
MULSWS ○ × 16x32 multiply-subtract signed
VMULSH ○ × 16-bit multiply signed in two branches
VMULSH
A

○ × 16-bit multiply-accumulate signed in two
branches

VMULSHS
○ × 16-bit multiply-subtract signed in two

branches
VMULSW ○ × 16x32 multiply signed in two branches
VMULSW
A

○ × 16x32 multiply-accumulate signed in two
branches

VMULSW
S

○ × 16x32 multiply-subtract signed in two
branches

MULT ○ ○ Multiply

DIVU ○ × Divide unsigned

DIVS ○ × Divide signed

ABS ○ × Absolute value

FF0 ○ × Fast find 0

35

FF1 ○ × Fast find 1
BMASKI ○ × Bit mask generation immediate
BGENR ○ × Register bit generation
BGENI ○ × Bit generation immediate
BT ○ ○ C=1 branch instruction
BF ○ ○ C=0 branch instruction

BEZ
○ × Branch instruction when register is equal to

zero

BNEZ
○ × Branch instruction when register is not equal

to zero

BHZ
○ × Branch instruction when register is greater

than zero

BLSZ
○ × Branch instruction when register is smaller

than or equal to zero

BLZ
○ × Branch instruction when register is smaller

than zero

BHSZ
○ × Branch instruction when register is greater

than or equal to zero
BR ○ ○ Unconditional jump
BSR ○ × Jump to subprogram
JMPI ○ × Jump indirect
JSRI ○ × Jump to subprogram indirect
JMP ○ ○ Register jump
JSR ○ ○ Register jump to subprogram
RTS ○ ○ Link register jump
LD.B ○ ○ Load unsigned and extended byte
LD.BS ○ × Load signed and extended byte
LD.H ○ ○ Load unsigned and extended half-word
LD.HS ○ × Load signed and extended half-word
LD.W ○ ○ Load word
LD.D ○ × Load double word
ST.B ○ ○ Store byte
ST.H ○ ○ Store half-word
ST.W ○ ○ Store word
ST.D ○ × Store double word

LDR.B
○ × Load unsigned and extended byte in register

offset addressing

LDR.BS
○ × Load signed and extended byte in register

offset addressing

LDR.H
○ × Load unsigned and extended half-word in

register offset addressing

LDR.HS
○ × Load signed and extended half-word in register

offset addressing

36

LDR.W ○ × Load word in register offset addressing
STR.B ○ × Store byte in register offset addressing
STR.H ○ × Store half-word in register offset addressing
STR.W ○ × Store word in register offset addressing
LDQ ○ × Load consecutive quad word
LDM ○ × Load consecutive multiword
STQ ○ × Store consecutive quad word
STM ○ × Store consecutive multiword
PUSH ○ ○ Push
POP ○ ○ Pop
BPUSH.H × ○ Binary push of translated half-word
BPUSH.W × ○ Binary push of translated word
BPOP.H × ○ Binary pop of translated half-word
BPOP.W × ○ Binary pop of translated word
NIE × ○ Interrupt nesting enable
NIR × ○ Interrupt nesting return
IPUSH × ○ Interrupt push
IPOP × ○ Interrupt pop
LDEX.W ○ × Load word exclusive
STEX.W ○ × Store word exclusive
LRS.B ○ × Load byte sign
LRS.H ○ × Load half-word sign
LRS.W ○ × Load word sign
SRS.B ○ × Store byte sign
SRS.H ○ × Store half-word sign
SRS.W ○ × Store word sign

CPRGR
○ × Read transfer from general-purpose register of

co-processor

CPWGR
○ × Write transfer to general-purpose register of

co-processor

CPRCR
○ × Read transfer from control register of

co-processor

CPWCR
○ × Write transfer to control register of

co-processor

CPRC
○ × Read transfer from condition bit of

co-processor
LDCPR ○ × Load word to co-processor
STCPR ○ × Store word in co-processor
CPOP ○ × Co-processor operation instruction
MFCR ○ × Read transfer from control register
MTCR ○ × Write transfer to control register
PSRSET ○ × Set PSR bit
PSRCLR ○ × Clear PSR bit

37

WAIT ○ × Enter low power consumption wait mode
DOZE ○ × Enter low power consumption doze mode
STOP ○ × Enter low power consumption stop mode
RTE ○ × Return from abnormal and normal interrupt
RFI ○ × Return from fast interrupt
STRAP ○ × Enter safe state
SRTE ○ × Return from safe state
SYNC ○ × Synchronize CPU
BKPT × ○ Breakpoint instruction
SCE ○ × Set conditional execution
IDLY ○ × Ban interrupt identification
TRAP ○ × Unconditional operating system trap
PLDR ○ × Prefetch read data
PLDW ○ × Prefetch write data
WE ○ × Wait event
SE ○ × Send event

Note: ○ means that the instruction exists in the corresponding instruction set and × means

that the instruction does not exist in the corresponding instruction set.

3.2. Functional classification of 16-bit instructions
According to functions of instruction realization, 16-bit instruction set of CSKY can be

divided into:
l Data operation instruction
l Branch jump instruction
l Memory access instruction

3.2.1. Data operation instruction

Data operation instruction can be further divided into:

Add-subtract instruction:

Chart 3-2 List of 16-bit add-subtract instructions

ADDU16 Add unsigned
ADDC16 Add with carry unsigned
ADDI16 Add immediate unsigned
SUBU16 Subtract unsigned
SUBC16 Subtract with borrow unsigned
SUBI16 Subtract immediate unsigned

Logical operation instruction:

Chart 3-3 List of 16-bit logical operation instructions

AND16 Bitwise AND

38

ANDN16 Bitwise AND-NOT

OR16 Bitwise OR
XOR16 Bitwise XOR
NOR16 Bitwise NOT-OR

NOT16 Bitwise NOT

Shift instruction:

Chart 3-4 List of 16-bit shift instructions

LSL16 Logical shift left
LSLI16 Logical shift left immediate
LSR16 Logical shift right
LSRI16 Logical shift right immediate
ASR16 Arithmetic shift right
ASRI16 Arithmetic shift right immediate
ROTL16 Rotate left

Compare instruction:

Chart 3-5 List of 16-bit compare instructions

CMPNE16 Compare unequal
CMPNEI16 Compare unequal immediate
CMPHS16 Compare unsigned when greater or equal

CMPHSI16
Compare immediate unsigned when greater or
equal

CMPLT16 Compare signed when smaller
CMPLTI16 Compare immediate signed when smaller
TST16 Null-test
TSTNBZ16 Register test without byte equal to zero

Data transfer instruction:

Chart 3-6 List of 16-bit data transfer instructions

MOV16 Move
MOVI16 Move immediate
MVCV16 C bit reverse move
LRW16 Memory read-in

Bit operation instruction:

Chart 3-7 List of 16-bit bit operation instructions

BCLRI16 Bit clear immediate

39

BSETI16 Bit set immediate
BTSTI16 Bit test immediate

Extract and insert instruction:

Chart 3-8 List of 16-bit extract and insert instructions

ZEXTB16 Extract byte and extend unsigned
ZEXTH16 Extract half-word and extend unsigned
SEXTB16 Extract byte and extend signed
SEXTH16 Extract half-word and extend signed
REVB16 Byte-reverse
REVH16 Half-word byte-reverse

Multiply-divide instruction:

Chart 3-9 List of 16-bit multiply-divide instructions

MULT16 Multiply
MULSH16 16-bit multiply signed

3.2.2. Branch jump instruction

Branch jump instruction can be further divided into:

Branch instruction:

Chart 3-10 List of 16-bit branch instructions

BT16 C=1 branch instruction
BF16 C=0 branch instruction

Jump instruction:

Chart 3-11 List of 16-bit jump instructions

BR16 Unconditional jump
JMP16 Register jump
JSR16 Register jump to subprogram
RTS16 Link register jump
JMPIX16 Register index jump

3.2.3. Memory access instruction

Memory access instruction can be further divided into:

Immediate operand offset access instruction:

40

Chart 3-12 List of 16-bit immediate operand offset access instructions

LD16.B Load unsigned and extended byte
LD16.H Load unsigned and extended half-word
LD16.W Load word
ST16.B Store byte
ST16.H Store half-word
ST16.W Store word

Multi-register access instruction:

Chart 3-13 List of 16-bit multi-register access instructions

POP16 Pop
PUSH16 Push

Binary translated stack instructions:

Chart 3-14 List of 16-bit binary translated stack instructions

BPUSH16.H Binary push of translated half-word
BPUSH16.W Binary push of translated word
BPOP16.H Binary pop of translated half-word
BPOP16.W Binary pop of translated word

Interrupt nesting acceleration instruction:

Chart 3-15 List of 16-bit interrupt nesting acceleration instruction

NIE Interrupt nesting enable
NIR Interrupt nesting return
IPUSH Interrupt push
IPOP Interrupt pop

3.3. Coding mode of 16-bit instructions
The 16-bit instruction set of CSKY is almost consistent with the subset of 32-bit

instructions in coding style and it can be divided into three categories:
l Jump type (J type)
l Immediate operand type (I type)
l Register type (R type)

3.3.1. Jump type

The coding mode of jump type (J type) is shown in the following chart:

15 14 13 10 9 0

41

0 0 OP Offset

2 4 10

OP field is the main operation code and instructions of this coding type can be identified

through 4-bit main operation code; Offset field is the offset of jump instruction.

3.3.2. Immediate operand type

Immediate operand type (I type) covers four coding modes including 3-bit immediate

operand, 5-bit immediate operand, 7-bit immediate operand, and 8-bit immediate operand.

The coding mode of 3-bit immediate operand is shown in the following chart:

15 14 13 11 10 8 7 5 4 2 1 0

0 1 OP RX RZ IMM3 SOP

2 3 3 3 3 2

OP field is the main operation code and the instruction or instruction type can be identified

through 3-bit main operation code; RZ field is the destination register field; IMM3 field is the

3-bit immediate operand; SOP field is the sub-operation code field. The instruction type can be

gained after decoding the main operation code OP, and the specific instruction can be obtained

only after further decoding the sub-operation code SOP.

The coding mode of 5-bit immediate operand has three formats and the first format is

shown in the following chart:

15 14 13 11 10 8 7 5 4 0

0 1 OP RX RZ IMM5

2 3 3 3 5

OP field is the main operation code and the instruction or instruction type can be identified

through 3-bit main operation code; RX field is the source register field; RZ field is the

destination register field; IMM5 field is the 5-bit immediate operand.

The second coding mode of 5-bit immediate operand is shown in the following chart:

15 14 13 11 10 8 7 5 4 0

1 0 OP RX RZ IMM5

2 3 3 3 5

OP field is the main operation code and the instruction or instruction type can be identified

through 3-bit main operation code; RX field is the source register field; RZ field is the

destination register field; IMM5 field is the 5-bit immediate operand.

The third coding mode of 5-bit immediate operand is shown in the following chart:

42

15 14 13 11 10 8 7 5 4 0

0 0 OP RX SOP IMM5

2 3 3 3 5

OP field is the main operation code and the instruction or instruction type can be identified

through 3-bit main operation code; RX field is the source register field; SOP field is the

sub-operation code field; IMM5 field is the 5-bit immediate operand. The instruction type can be

gained after decoding the main operation code OP, and the specific instruction can be obtained

only after further decoding the sub-operation code SOP.

The coding mode of 7-bit immediate operand is shown in the following chart:

15 14 13 10 9 8 7 5 4 0

0 0 OP IMM2 SOP/RZ IMM5

2 4 2 3 5

OP field is the main operation code and the instruction or instruction type can be identified

through 4-bit main operation code; IMM2 field and IMM5 field are two high bits and five low

bits of 7-bit immediate operand; SOP/RZ field is the sub-operation code field or destination

register field. The instruction type can be gained after decoding the main operation code OP, and

the specific instruction can be obtained only after further decoding the sub-operation code SOP.

The coding mode of 8-bit immediate operand has two formats and the first format is shown

in the following chart:

15 14 13 11 10 8 7 0

0 0 OP RX/RZ IMM8

2 3 3 8

OP field is the main operation code and the instruction or instruction type can be identified

through 3-bit main operation code; RZ/RX field is the destination register field or source register

field; IMM8 field is the 8-bit immediate operand.

The second coding mode of 8-bit immediate operand is shown in the following chart:

15 14 13 11 10 8 7 5 4 0

1 0 OP IMM3 RZ IMM5

2 3 3 3 5

OP field is the main operation code and the instruction or instruction type can be identified

through 3-bit main operation code; IMM3 field and IMM5 field are three high bits and five low

bits of 8-bit immediate operand; RZ field is the destination register field.

43

3.3.3. Register type

Register type (R type) covers two coding modes including 3-bit operand and 2-bit operand.

The coding mode of 3-bit operand is shown in the following chart:

15 14 13 11 10 8 7 5 4 2 1 0

0 1 OP RX RZ RY SOP

2 3 3 3 3 2

OP field is the main operation code and the instruction or instruction type can be identified

through 3-bit main operation code; RX field is the first source register field; RZ field is the

destination register field; RY field is the second source register field; SOP field is the

sub-operation code field. The instruction type can be gained after decoding the main operation

code OP, and the specific instruction can be obtained only after further decoding the

sub-operation code SOP.

The coding mode of 2-bit operand is shown in the following chart:

15 14 13 10 9 6 5 2 1 0

0 1 OP RZ/RY RX SOP

2 4 4 4 2

OP field is the main operation code and the instruction or instruction type can be identified

through 4-bit main operation code; RZ/RY field is the destination register field and second

source register field; RX field is first source register field; SOP field is the sub-operation code

field. The instruction type can be gained after decoding the main operation code OP, and the

specific instruction can be obtained only after further decoding the sub-operation code SOP.

3.4. Operand addressing mode of 16-bit instructions
The 16-bit instruction set of CSKY follows three instruction coding modes and each coding

mode has its own operand addressing mode. In the following, various operand addressing modes

will be introduced.

3.4.1. Addressing mode of jump-type instructions

The 16-bit instructions of jump type in CSKY only have one addressing mode.

3.4.1.1. Addressing mode of 10-bit immediate operand

In the instructions that adopt the addressing mode of 10-bit immediate operand, there is an

immediate operand field with the length of 10 bits. This field is used to generate destination

address as offset. Instructions of this format include br16, bt16 and bf16.

15 14 13 10 9 0

44

0 0 OP Offset

2 4 10

3.4.2. Addressing mode of immediate operand-type instructions

The 16-bit instructions of immediate operand type in CSKY have six addressing modes.

3.4.2.1. Addressing mode of two register 3-bit immediate operand

In the instructions that adopt the addressing mode of two register 3-bit immediate operand,

RX field is source register field; RZ field is the destination register field; IMM3 field can also

directly participate in data operation as 3-bit immediate operand; SOP field is the sub-operation

code field. Instructions of this format include addi16 and subi16.

15 14 13 11 10 8 7 5 4 2 1 0

0 1 OP RX RZ IMM3 SOP

2 3 3 3 3 2

3.4.2.2. Addressing mode of two register 5-bit immediate operand

The instructions that adopt the addressing mode of two register 5-bit immediate operand can

be further divided into two formats.

In the first format, RX field is source register field; RZ field is the destination register field;

IMM5 field can also directly participate in data operation as 5-bit immediate operand; SOP field

is the sub-operation code field. Instructions of this format include lsli16, lsri16 and asri16.

15 14 13 11 10 8 7 5 4 0

0 1 OP RX RZ IMM5

2 3 3 3 5

In the second format, RX field is source register field; RZ field is the destination register

field; IMM5 field can also directly participate in data operation as 5-bit immediate operand; SOP

field is the sub-operation code field. Instructions of this format include st16.b, st16.h, st16.w,

ld16.b, ld16.h and ld16.w.

15 14 13 11 10 8 7 5 4 0

1 0 OP RX RZ IMM5

2 3 3 3 5

3.4.2.3. Addressing mode of single register 5-bit immediate operand

In the instructions that adopt the addressing mode of single register 5-bit immediate operand,

RX field is the source register field or destination register; SOP field is the sub-operation code

45

field. Instructions of this format include cmphsi16, cmplti16, cmpnei16, bclri16, bseti16 and

btsti16.

15 14 13 11 10 8 7 5 4 0

0 0 OP RX SOP IMM5

2 3 3 3 5

3.4.2.4. Addressing mode of single register 7-bit immediate operand

In the instructions that adopt the addressing mode of single register 7-bit immediate operand,

RZ field is the destination register field; IMM2 field and IMM5 field can be combined into 7-bit

immediate operand to directly participate in data operation. Instruction of this format includes

lrw16.

15 14 13 10 9 8 7 5 4 0

0 0 OP IMM2 RZ IMM5

2 4 2 3 5

3.4.2.5. Addressing mode of 7-bit immediate operand

In the instructions that adopt the addressing mode of 7-bit immediate operand, IMM2 field

and IMM5 field can be combined into 7-bit immediate operand to directly participate in data

operation; SOP field is the sub-operation code field. Instructions of this format include push16,

pop16, bpush16.h, bpush16.w, bpop16.h, bpop16.w, addi16(SP) and subi16(SP).

15 14 13 10 9 8 7 5 4 0

0 0 OP IMM2 SOP IMM5

2 4 2 3 5

3.4.2.6. Addressing mode of single register 8-bit immediate operand

The instructions that adopt the addressing mode of single register 8-bit immediate operand

can be further divided into three formats.

In the first format, RZ field is the destination register field; IMM8 field can also directly

participate in data operation as 8-bit immediate operand; SOP field is the sub-operation code

field. Instructions of this format include addi16(SP), subi16(SP) and movi16.

15 14 13 11 10 8 7 0

0 0 OP RZ IMM8

2 3 3 8

In the second format, RZ field is the source register field or destination register field; IMM8

46

field can also directly participate in data operation as 8-bit immediate operand; SOP field is the

sub-operation code field. Instructions of this format include addi16 and subi16.

15 14 13 11 10 8 7 0

0 0 OP RZ IMM8

2 3 3 8

In the third format, RZ field is the source register field or destination register field; IMM3

field and IMM5 field can be combined into 8-bit immediate operand to directly participate in

data operation. Instructions of this format include st16.w(SP) and ld16.w(SP).

15 14 13 11 10 8 7 5 4 0

1 0 OP IMM3 RZ IMM5

2 3 3 3 5

3.4.3. Addressing mode of register-type instructions

The 16-bit instructions of register type in CSKY have three addressing modes.

3.4.3.1. Addressing mode of ternary register

In the instructions that adopt the addressing mode of ternary register, the two register fields

RX and RY are the first source register field and second source register field respectively; RZ

field is the destination register field; SOP field is the sub-operation code field. Instructions of this

format include addu16 and subu16.

15 14 13 11 10 8 7 5 4 2 1 0

0 1 OP RX RZ RY SOP

2 3 3 3 3 2

3.4.3.2. Addressing mode of two register

The instructions that adopt the addressing mode of two register can be further divided into

three formats.

In the first format, the two register fields RX and RY are the first source register field and

second source register field respectively; SOP field is the sub-operation code field. Instructions

of this format include cmphs16, cmplt16, cmpne16 and tst16.

15 14 13 10 9 6 5 2 1 0

0 1 OP RY RX SOP

2 4 4 4 2

In the second format, RZ field is the destination register field; RX is the source register;

47

SOP field is the sub-operation code field. Instructions of this format include mov16, zextb16,

zexth16, sextb16, sexth16, revb16 and revh16.

15 14 13 10 9 6 5 2 1 0

0 1 OP RZ RX SOP

2 4 4 4 2

In the third format, RZ field is the destination register field and second source register field;

RX field is the first source register field; SOP field is the sub-operation code field. Instructions of

this format include addu16, addc16, subu16, subc16, and16, andn16, or16, xor16, nor16, lsl16,

lsr16, asr16, rotl16, mult16 and mulsh16.

15 14 13 10 9 6 5 2 1 0

0 1 OP RZ RX SOP

2 4 4 4 2

3.4.3.3. Addressing mode of single register

The instructions that adopt the addressing mode of single register can be further divided into

two formats.

In the first format, RX field is the source register field; SOP field is the sub-operation code

field. Instructions of this format include tstnbz16, jmp16 and jsr16.

15 14 13 10 9 6 5 2 1 0

0 1 OP 0 RX SOP

2 4 4 4 2

In the second format, RZ field is the destination register field; SOP field is the

sub-operation code field. Instruction of this format includes mvcv16.

15 14 13 10 9 6 5 2 1 0

0 1 OP RZ 0 SOP

2 4 4 4 2

48

4. Floating point instruction set

In this chapter, floating point instruction set of CSKY is introduced, covering functional

classification, encoding and addressing mode of floating point instruction set.

4.1. Functional classification of floating point instructions
According to functions of instruction realization, floating point instruction set of CSKY can

be divided into:
l Single-precision data operation instruction
l Double-precision data operation instruction
l Vector operation instruction
l Transfer instruction
l Memory access instruction

4.1.1. Data operation instruction

Chart 4-1 List of single-precision data operation instructions

FSTOSI Transform single-precision floating point into
signed integer

FSTOUI Transform single-precision floating point into
unsigned integer

FSITOS Transform signed integer into single-precision
floating point

FUITOS Transform unsigned integer into
single-precision floating point

FCMPZHSS Single-precision floating point compare when
greater than or equal to zero

FCMPZLSS Single-precision floating point compare when
smaller than or equal to zero

FCMPZNES Single-precision floating point compare when
not equal to zero

FCMPZUOS Judge whether the single operand of
single-precision floating point is NaN

FCMPHSS Single-precision floating point compare when
greater than or equal

FCMPLTS Single-precision floating point compare when
smaller

FCMPNES Single-precision floating point compare when
not equal

FCMPUOS Judge whether the double operand of
single-precision floating point is NaN

FMOVS Single-precision floating point move

49

FABSS Single-precision floating point absolute value

FNEGS Single-precision floating point negate

FSQRTS Single-precision floating point square root

FRECIPS Single-precision floating point reciprocal

FADDS Single-precision floating point add

FSUBS Single-precision floating point subtract

FMULS Single-precision floating point multiply

FDIVS Single-precision floating point division

FMACS Single-precision floating point
multiply-accumulate

FMSCS Single-precision floating point
multiply-subtract

FNMACS Single-precision floating point
multiply-negate-accumulate

FNMSCS Single-precision floating point
multiply-negate-subtract

FNMULS Single-precision floating point
multiply-negate

Chart 4-2 List of double-precision data operation instructions

FDTOSI Transform double-precision floating point into
signed integer

FDTOUI Transform double-precision floating point into
unsigned integer

FSITOD Transform signed integer into
double-precision floating point

FUITOD Transform unsigned integer into
double-precision floating point

FDTOS Transform double-precision floating point into
single-precision floating point

FSTOD Transform single-precision floating point into
double-precision floating point

FCMPZHSD Double-precision floating point compare
when greater than or equal to zero

FCMPZLSD Double-precision floating point compare
when smaller than or equal to zero

FCMPZNED Double-precision floating point compare
when not equal to zero

FCMPZUOD Judge whether the single operand of
double-precision floating point is NaN

FCMPHSD Double-precision floating point compare
when greater than or equal

50

FCMPLTD Double-precision floating point compare
when smaller

FCMPNED Double-precision floating point compare
when not equal

FCMPUOD Judge whether the double operand of
double-precision floating point is NaN

FMOVD Double-precision floating point move

FABSD Double-precision floating point absolute value

FNEGD Double-precision floating point negate

FSQRTD Double-precision floating point square root

FRECIPD Double-precision floating point reciprocal

FADDD Double-precision floating point add

FSUBD Double-precision floating point subtract

FMULD Double-precision floating point multiply

FDIVD Double-precision floating point division

FMACD Double-precision floating point
multiply-accumulate

FMSCD Double-precision floating point
multiply-subtract

FNMACD Double-precision floating point
multiply-negate-accumulate

FNMSCD Double-precision floating point
multiply-negate-subtract

FNMULD Double-precision floating point
multiply-negate

4.1.2. Vector operation instruction

Chart 4-3 List of vector operation instructions

FMOVM SIMD single-precision floating point move

FABSM SIMD single-precision floating point absolute

value
FNEGM SIMD single-precision floating point negate
FADDM SIMD single-precision floating point add
FSUBM SIMD single-precision floating point subtract
FMULM SIMD single-precision floating point multiply
FMACM SIMD single-precision floating point

multiply-accumulate
FMSCM SIMD single-precision floating point

51

multiply-subtract
FNMACM SIMD single-precision floating point

multiply-negate-accumulate
FNMSCM SIMD single-precision floating point

multiply-negate-subtract
FNMULM SIMD single-precision floating point

multiply-negate

4.1.3. Transfer instruction

Chart 4-4 List of data transfer instructions

FMTVRL Write transfer to low word of floating point

register
FMTVRH Write transfer to high word of floating point

register
FMFVRL Read transfer low word from floating point

register
FMFVRH Read transfer high word from floating point

register
FLRWS Single-precision floating point storage read-in

FLRWD Double-precision floating point storage

read-in

4.1.4. Memory access instruction

Chart 4-5 List of data transfer instructions

FLDS Load single-precision floating point
FLDD Load double-precision floating point
FLDM Load vector floating point

FLDRS Load single-precision floating point in register

offset addressing
FLDRD Load double-precision floating point in

register offset addressing
FLDRM Load vector floating point in register offset

addressing
FLDMS Load consecutive single-precision floating

point

FLDMD Load consecutive double-precision floating

52

point

FLDMM Load consecutive vector floating point

FSTS Store single-precision floating point
FSTD Store double-precision floating point
FSTM Store vector floating point
FSTRS Store single-precision floating point in

register offset addressing
FSTRD Store double-precision floating point in

register offset addressing
FSTRM Store vector floating point in register offset

addressing
FSTMS Store consecutive single-precision floating

point

FSTMD Store consecutive double-precision floating

point

FSTMM Store consecutive vector floating point

4.2. Coding mode of floating point instructions
Floating point instruction set of CSKY only has one category in the coding style:
l Register type (R type)

4.2.1. Register type

The coding mode of register type (R type) of 32-bit floating point instructions is shown in

the following chart:

31 26 25 24 21 20 16 15 10 9 5 4 0

1 1 Op 0 VRY 0 VRX SOP 0 VRZ

2 4 4 4 11 4

OP field is the main operation code and the instruction type can be identified through 4-bit

main operation code; VRY refers to the code of the second operand register and there are only 16

vector general-purpose registers, so a 4-bit code is required (VRX and VRZ are similar); VRX

refers to the first operand register; VRZ means destination register. SOP signifies the operation

code of the instruction.

4.3. Operand addressing mode of floating point instructions
Generally speaking, floating point instructions of CSKY follow one instruction coding

mode, and such coding mode has its own operand addressing mode. In the following, this

53

operand addressing mode will be introduced.

4.3.1. Addressing mode of register-type instructions

The floating point instructions of register type in CSKY have four addressing modes.

4.3.1.1. Addressing mode of single register

Floating point instruction set of CSKY includes several instructions that adopt the

addressing mode of single register. These instructions are mainly instructions of comparing

floating point data with 0, covering FCMPZHSS, FCMPZLSS, FCMPZNES, FCMPZUOS,

FCMPZHSD, FCMPZLSD, FCMPZNED and FCMPZUOD.

31 26 25 24 21 20 16 15 10 9 5 4 0

1 1 OP 0 0 0 0 0 0 VRX SOP 0 0 0 0 0

2 4 4 4 11 4

4.3.1.2. Addressing mode of two register

Floating point instruction set of CSKY includes several instructions that adopt the

addressing mode of two register. The first category is the register addressing mode including 1

source operand and 1 destination operand; the second category is the register addressing mode

including 2 source operands.

Instructions of the first category include FSTOSI, FSTOUI, FSITOS, FUITOS, FDTOSI,

FDTOUI, FSITOD, FUITOD, FDTOS, FSTOD, FMOVS, FABSS, FNEGS, FSQRTS, FRECIPS,

FMOVD, FABSD, FNEGD, FSQRTD, FRECIPD, FMOVM, FABSM, FNEGM, FMTVRH,

FMTVRH, FMTVRL, FMFVRH and FMFVRL. The specific format is as follows:

31 26 25 24 21 20 19 16 15 5 4 0

1 1 OP 0 0 0 0 0 0 VRX 0 0 0 0 0 0 1 1 0 1 0 0 VRZ

2 4 4 4 11 4

Instructions of the second category include FCMPHSS, FCMPLTS, FCMPNES,

FCMPUOS, FCMPHSD, FCMPLTD, FCMPNED and FCMPUOD. The specific format is as

follows:

31 26 25 24 21 20 16 15 10 9 5 4 0

1 1 OP 0 VRY 0 VRX 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

2 4 4 4 11 4

54

4.3.1.3. Addressing mode of ternary register

Instructions that adopt the addressing mode of ternary register cover 2 source operands and

1 destination operand, and such instructions include FADDS, FSUBS, FMULS, FDIVS, FMACS,

FMSCS, FNMACS, FNMSCS, FNMULS, FADDD, FSUBD, FMULD, FDIVD, FMACD,

FMSCD, FNMACD, FNMSCD, FNMULD, FADDM FSUBM, FMULM, FMACM, FMSCM,

FNMACM, FNMSCM, FNMULM, FLDRS, FLDRD, FLDRM, FSTRS, FSTRD and FSTRM.

31 26 25 24 21 20 19 16 15 5 4 0

1 1 OP 0 VRY 0 VRX 0 0 0 0 1 1 1 1 1 1 0 0 VRZ

2 4 4 4 11 4

4.3.1.4. Addressing mode of two register 8-bit immediate operand

In the instructions that adopt the addressing mode of two register 8-bit immediate operand,

RX field is the first source register field; VRZ field is the vector destination register field; SOP

field or S field is the sub-operation code field; IMM8 field is the 8-bit immediate operand.

Instructions of this format include FLDS, FLDD, FLDM, FSTS, FSTD, FSTM, FLRWS and

FLRWD.

31 30 26 25 21 20 16 15 8 7 4 3 0

1 OP 0 IMM4H RX SOP IMM4L VRZ

55

5. Term list of basic instructions

Specific descriptions of each CSKY instruction are provided in the following and each

instruction is described in details according to the alphabetical order.

At the end of mnemonic symbol in each CSKY instruction, the figure “32” or “16” is used

to represent bit width of the instruction. For instance, “addc32” means that this instruction is

32-bit instruction of add with carry unsigned, and “addc16” means that this instruction is 16-bit

instruction of add with carry unsigned.

If bit width (such as “addc”) of the instruction in mnemonic symbol is omitted, the system

will automatically compile it into the optimized instruction.

Among them, instructions carrying # in the Chinese name are pseudo instructions.

56

ABS – Absolute value

Description: Take the absolute value of RX value and save the result in RZ.

Attention: The result of operand 0x80000000 is 80000000.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: RZ ¬ |RX|

Grammar: abs32 rz, rx

Description: Take the absolute value of RX value and save the result in RZ.

Attention: The result of operand 0x80000000 is 80000000.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 0 0 0 0 0 1 0 0 0 0 RZ

Unified

instruction

Grammar Operation Compiling result

 rz, rx RZ ¬ |RX| Only 32-bit instructions exist.

abs32 rz, rx

57

ADDC – Add with carry unsigned
Unified

instruction

Grammar Operation Compiling result

addc rz, rx RZ ¬ RZ + RX + C,

C ¬ carry

Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

addc16 rz, rx;

else

 addc32 rz, rz, rx;

addc rz, rx, ry RZ ¬ RX + RY + C,

C ¬ carry

Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (y==z) and (x<16) and (z<16), then

 addc16 rz, rx;

else

 addc32 rz, rx, ry;

Description: Add the values in RZ/RY, RX and C bits, save the result in RZ, and save

the carry in C bit.

Influence on flag

bit:

C ¬ carry

Exception: None

16-bit

instruction

Operation: RZ ¬ RZ + RX + C, C ¬ carry

Grammar: addc16 rz, rx

Description: Add the values in RZ, RX and C bits, save the result in RZ, and save the

carry in C bit.

Influence on flag

bit:

C ¬ carry

Restriction: The range of register is r0-r15.

Exception: None

Instruction

58

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 0 0 RZ RX 0 1

32-bit

instruction

Operation: RZ ¬ RX + RY + C, C ¬ carry

Grammar: addc32 rz, rx, ry

Description: Add the values in RX, RY and C bits, save the result in RZ, and save the

carry in C bit.

Influence on flag

bit:

C ¬ carry

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 0 0 0 0 0 1 0 RZ

59

ADDI - Add immediate unsigned

Description: Zero-extend the immediate operand with offset 1 to 32 bits, add it to

RX/RZ value, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: If the source register is R28, the range of immediate operand is

0x1-0x40000.

If the source register is not R28, the range of immediate operand is

0x1-0x1000.

Exception: None

16-bit

Unified

instruction

Grammar Operation Compiling result

addi rz,

oimm12

RZ ¬ RZ +

zero_extend(OIMM12)

Compiled into corresponding 16-bit or

32-bit instructions according to the range

of immediate operand and register.

if (z<8) and (oimm12<257),

addi16 rz, oimm8;

else

 addi32 rz, rz, oimm12;

addi rz, rx,

oimm12

RZ ¬ RX +

zero_extend(OIMM12)

Compiled into corresponding 16-bit or

32-bit instructions according to the range

of immediate operand and register.

if (oimm12<9) and (z<8) and (x<8),

 addi16 rz, rx, oimm3;

elsif (oimm12<257) and (x==z) and

(z<8),

 addi16 rz, oimm8;

else

 addi32 rz, rx, oimm12;

addi rz, r28,

oimm18

RZ ¬ R28 +

zero_extend(OIMM18)

Only 32-bit instructions exist.

addi32 rz, r28, oimm18;

60

instruction ----1

Operation: RZ ¬ RZ + zero_extend(OIMM8)

Grammar: addi16 rz, oimm8

Description: Zero-extend the 8-bit immediate operand with offset 1 (OIMM8) to 32

bits, add it to RZ value, and save the result in RZ.

Attention: The binary operand IMM8 is equal to OIMM8 – 1.

Influence on

flag bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 1-256.

Exception: None

Instruction

format:

15 14 11 10 8 7 0

0 0 1 0 0 RZ IMM8

IMM8 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM8, the value OIMM8 added into the

register requires offset 1.

00000000 – + 1

00000001 – +2

……

11111111 – +256

16-bit

instruction ----2

Operation: RZ ¬ RX + zero_extend(OIMM3)

Grammar: addi16 rz, rx, oimm3

Description: Zero-extend the 3-bit immediate operand with offset 1 (OIMM3) to 32

bits, add it to RX value, and save the result in RZ.

Attention: The binary operand IMM3 is equal to OIMM3 – 1.

Influence on

flag bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 1-8.

61

Exception: None

Instruction

format:

15 14 10 8 7 5 4 2 1 0

0 1 0 1 1 RX RZ IMM3 1 0

IMM3 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM3, the value OIMM3 added into the

register requires offset 1.

000 – + 1

001 – +2

……

111 – +8

32-bit

instruction ----1

Operation: RZ ¬ RX + zero_extend(OIMM12)

Grammar: addi32 rz, rx, oimm12

Description: Zero-extend the 12-bit immediate operand with offset 1 (OIMM12) to 32

bits, add it to RX value, and save the result in RZ.

Attention: The binary operand IMM12 is equal to OIMM12 – 1.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x1-0x1000.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 0 0 1 RZ RX 0 0 0 0 IMM12

IMM12 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM12, the value OIMM12 added into the

register requires offset 1.

62

000000000000 – +0x1

000000000001 – +0x2

……

111111111111 – +0x1000

32-bit

instruction ----2

Operation: RZ ¬ R28 + zero_extend(OIMM18)

Grammar: addi32 rz, r28, oimm18

Description: Zero-extend the 18-bit immediate operand with offset 1 (OIMM18) to 32

bits, add it to R28 value, and save the result in RZ.

Attention: The binary operand IMM18 is equal to OIMM18 – 1.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x1-0x40000.

Exception: None

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 1 1 1 IMM18

IMM18 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM18, the value OIMM18 added into the

register requires offset 1.

00000000000000 – +0x1

00000000000001 – +0x2

……

11111111111111 – +0x40000

63

ADDI(SP) – Add immediate unsigned (stack pointer)

Description: Zero-extend the immediate operand (IMM) to 32 bits, add it to stack

pointer (SP) value, and save the result in RZ or SP.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is

0x0-0x3fc.

Exception: None

16-bit

instruction ----1

Operation: RZ ¬ SP + zero_extend(IMM)

Grammar: addi16 rz, sp, imm8

Description: Zero-extend the immediate operand (IMM) to 32 bits, add it to stack

pointer (SP) value, and save the result in RZ.

Attention: The immediate operand (IMM) is equal to the binary operand

IMM8 << 2.

Influence on

flag bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is

(0x0-0xff) << 2.

Exception: None

Instruction

format:

15 14 11 10 8 7 0

0 0 0 1 1 RZ IMM8

Unified

instruction

Grammar Operation Compiling result

addi rz, sp,

imm

RZ ¬ SP +

zero_extend(IMM)

Only 16-bit instructions exist.

addi rz, sp, imm

addi sp, sp,

imm

SP ¬ SP+

zero_extend(IMM)

Only 16-bit instructions exist.

addi sp, sp, imm

64

IMM8 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM8, the value IMM added into the register

needs to shift left by 2 bits.

00000000 – +0x0

00000001 – +0x4

……

11111111 – +0x3fc

16-bit

instruction ----2

Operation: SP ¬ SP + zero_extend(IMM)

Grammar: addi16 sp, sp, imm

Description: Zero-extend the immediate operand (IMM) to 32 bits, add it to stack

pointer (SP) value, and save the result in SP.

Attention: The immediate operand (IMM) is equal to the binary operand

{IMM2, IMM5} << 2.

Influence on

flag bit:

No influence

Restriction: Both source and destination registers are stack pointer registers (R14); the

range of immediate operand is (0x0-0x7f) << 2.

Exception: None

Instruction

format:

15 14 11 10 9 8 7 5 4 0

0 0 0 1 0 1 IMM2 0 0 0 IMM5

IMM field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand {IMM2, IMM5}, the value IMM added into

the register needs to shift left by 2 bits.

{00, 00000} – +0x0

{00, 00001} – +0x4

……

{11, 11111} – +0x1fc

65

ADDU – Add unsigned

Description: Add the values of RZ/RY and RX, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction ----1

Operation: RZ ¬ RZ + RX

Grammar: addu16 rz, rx

Description: Add the values of RZ and RX, and save the result in RZ.

Influence on flag

bit:

No influence

Unified

instruction

Grammar Operation Compiling result

addu rz, rx RZ ¬ RZ + RX Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (z<16) and (x<16), then

addu16 rz, rx;

else

 addu32 rz, rz, rx;

addu rz, rx, ry RZ ¬ RX + RY Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (z<8) and (x<8) and (y<8), then

 addu16 rz, rx, ry;

elsif (y==z) and (x<16) and (z<16),

then

 addu16 rz, rx;

else

 addu32 rz, rx, ry;

66

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 0 0 RZ RX 0 0

16-bit

instruction ----2

Operation: RZ ¬ RX + RY

Grammar: addu16 rz, rx, ry

Description: Add the values of RX and RY, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7.

Exception: None

Instruction

format:

15 14 11 10 8 7 5 4 2 1 0

0 1 0 1 1 RX RZ RY 0 0

32-bit instruction

Operation: RZ ¬ RX + RY

Grammar: addu32 rz, rx, ry

Description: Add the values of RX and RY, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

67

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 0 0 0 0 0 0 1 RZ

68

AND – Bitwise AND

Description: Perform a bitwise-AND of the values of RZ/RY and RX, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit instruction

Operation: RZ ¬ RZ and RX

Grammar: and16 rz, rx

Description: Perform a bitwise-AND of the values of RZ and RX, and save the result

in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Unified

instruction

Grammar Operation Compiling result

and rz, rx RZ ¬ RZ and RX Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

and16 rz, rx;

else

 and32 rz, rz, rx;

and rz, rx, ry RZ ¬ RX and RY Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (y==z) and (x<16) and (z<16), then

 and16 rz, rx;

else

 and32 rz, rx, ry;

69

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 0 RZ RX 0 0

32-bit instruction

Operation: RZ ¬ RX and RY

Grammar: and32 rz, rx, ry

Description: Perform a bitwise-AND of the values of RX and RY, and save the result

in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 1 0 0 0 0 0 0 0 1 RZ

70

ANDI – Bitwise AND immediate

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise-AND with RX value, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFF.

Exception: None

32-bit instruction

Operation: RZ ¬ RX and zero_extend(IMM12)

Grammar: andi32 rz, rx, imm12

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise-AND with RX value, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFF.

Exception: None

Instruction format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 0 0 1 RZ RX 0 0 1 0 IMM12

Unified instruction

Grammar Operation Compiling result

andi rz, rx, imm16 RZ ¬ RX and zero_extend(IMM12) Only 32-bit instructions

exist.

andi32 rz, rx, imm12

71

ANDN – Bitwise AND-NOT

Description: For andn rz, rx, perform a bitwise-AND of RZ value and negative value

of RX, and save the result in RZ; for andn rz, rx, ry, perform a

bitwise-AND of RX value and negative value of RY, and save the result in

RZ.

Influence on

flag bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ RZ and (!RX)

Grammar: andn16 rz, rx

Description: Perform a bitwise-AND of RZ value and negative value of RX, and save

the result in RZ

Influence on No influence

Unified

instruction

Grammar Operation Compiling result

andn rz, rx RZ ¬ RZ and (!RX) Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (x<16) and (z<16), then

andn16 rz, rx;

else

 andn32 rz, rz, rx;

andn rz, rx, ry RZ ¬ RX and (!RY) Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (x==z) and (y<16) and (z<16), then

andn16 rz, ry;

else

 andn32 rz, rz, rx;

72

flag bit:

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 0 RZ RX 0 1

32-bit

instruction

Operation: RZ ¬ RX and (!RY)

Grammar: andn32 rz, rx, ry

Description: Perform a bitwise-AND of RX value and negative value of RY, and save

the result in RZ.

Influence on

flag bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 1 0 0 0 0 0 0 1 0 RZ

73

ANDNI – Bitwise AND-NOT immediate

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise NOT, perform a bitwise-AND with RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFF.

Exception: None

32-bit instruction

Operation: RZ ¬ RX and !(zero_extend(IMM12))

Grammar: andni32 rz, rx, imm12

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise NOT, perform a bitwise-AND with RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFF.

Exception: None

Instruction format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 0 0 1 RZ RX 0 0 1 1 IMM12

Unified instruction

Grammar Operation Compiling result

andni rz, rx, imm16 RZ ¬ RX and !(zero_extend(IMM12)) Only 32-bit instructions

exist.

andni32 rz, rx, imm12

74

ASR – Arithmetic shift right

Description: For asr rz, rx, perform an arithmetic right shift on RZ value (the

original value shifts right and the copy of original sign bit will shift to the

left side), and save the result in RZ; the range of right shift is decided by

the value of six low bits of RX (RX[5:0]). If the value of RX[5:0] is

greater than 30, RZ value (0 or -1) is decided by the sign bit of the

original RZ value;

For asr rz, rx, ry, perform an arithmetic right shift on RX value (the

original value shifts right and the copy of original sign bit will shift to the

left side), and save the result in RZ; the range of right shift is decided by

the value of six low bits of RY (RY[5:0]). If the value of RY[5:0] is

greater than 30, RZ value (0 or -1) is decided by the sign bit of RX.

Influence on flag

bit:

No influence

Exception: None

Unified

instruction

Grammar Operation Compiling result

asr rz, rx RZ ¬ RZ >>> RX[5:0] Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

asr16 rz, rx;

else

 asr32 rz, rz, rx;

asr rz, rx, ry RZ ¬ RX >>> RY[5:0] Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x==z) and (y<16) and (z<16), then

 asr16 rz, ry;

else

 asr32 rz, rx, ry;

75

16-bit instruction

Operation: RZ ¬ RZ >>> RX[5:0]

Grammar: asr16 rz, rx

Description: Perform an arithmetic right shift on RZ value (the original value shifts

right and the copy of original sign bit will shift to the left side), and save

the result in RZ; the range of right shift is decided by the value of six low

bits of RX (RX[5:0]). If the value of RX[5:0] is greater than 30, RZ value

(0 or -1) is decided by the sign bit of the original RZ value.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 0 0 RZ RX 1 0

32-bit

instruction

Operation: RZ ¬ RX >>> RY[5:0]

Grammar: asr32 rz, rx, ry

Description: Perform an arithmetic right shift on RX value (the original value shifts

right and the copy of original sign bit will shift to the left side), and save

the result in RZ; the range of right shift is decided by the value of six low

bits of RY (RY[5:0]). If the value of RY[5:0] is greater than 30, RZ value

(0 or -1) is decided by the sign bit of RX.

Influence on

flag bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 1 0 0 0 0 0 0 1 0 0 RZ

76

77

ASRC – Arithmetic shift right immediate to C

Description: Perform an arithmetic right shift on RX value (the original value shifts

right and the copy of original sign bit will shift to the left side), save

the end bit shifting out in C, and save the shifting result in RZ; the

range of right shift is decided by the value of 5-bit immediate operand

with offset 1 (OIMM5). If the value of OIMM5 is equal to 32, then the

condition bit C is the sign bit (the highest bit) of RX and RZ value (0 or

-1) is decided by the sign bit of RX.

Influence on flag

bit:

C ¬ RX[OIMM5 - 1]

Restriction: The range of immediate operand is 1-32.

Exception: None

32-bit instruction

Operation: RZ ¬ RX >>> OIMM5, C ¬ RX[OIMM5 - 1]

Grammar: asrc32 rz, rx, oimm5

Description: Perform an arithmetic right shift on RX value (the original value shifts

right and the copy of original sign bit will shift to the left side), save

the end bit shifting out in C, and save the shifting result in RZ; the

range of right shift is decided by the value of 5-bit immediate operand

with offset 1 (OIMM5). If the value of OIMM5 is equal to 32, then the

condition bit C is the sign bit (the highest bit) of RX and RZ value (0 or

-1) is decided by the sign bit of RX. Attention: The binary operand

IMM5 is equal to OIMM5 – 1.

Influence on flag

bit:

C ¬ RX[OIMM5 - 1]

Restriction: The range of immediate operand is 1-32.

Exception: None

Instruction

Unified

instruction

Grammar Operation Compiling result

asrc rz, rx, oimm5 RZ ¬ RX >>> OIMM5,

C ¬ RX[OIMM5 - 1]

Only 32-bit instructions exist.

asrc32 rz, rx, oimm5

78

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 1 0 0 1 0 0 RZ

IMM5 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM5, the shifting value OIMM5 requires

offset 1.

00000 – shift by 1 bit

00001 – shift by 2 bits

……

11111 – shift by 32 bits

79

ASRI – Arithmetic shift right immediate

Description: For asri rz, rx, imm5, perform an arithmetic right shift on RX value

(the original value shifts right and the copy of original sign bit will shift

to the left side), and save the result in RZ; the range of right shift is

decided by the value of 5-bit immediate operand (IMM5). If the value

of IMM5 is equal to zero, RZ value is equal to RX.

Influence on flag

bit:

No influence

Exception: None

16-bit instruction

Operation: RZ ¬ RX >>> IMM5

Grammar: asri16 rz, rx, imm5

Description: Perform an arithmetic right shift on RX value (the original value shifts

right and the copy of original sign bit will shift to the left side), and

save the result in RZ; the range of right shift is decided by the value of

5-bit immediate operand (IMM5). If the value of IMM5 is equal to

zero, RZ value remains unchanged.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 0-31.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

asri rz, rx, imm5 RZ ¬ RX >>> IMM5 Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<8) and (z<8), then

 asri16 rz, rx, imm5;

else

 asri32 rz, rx, imm5;

80

15 14 11 10 8 7 5 4 0

0 1 0 1 0 RX RZ IMM5

32-bit instruction

Operation: RZ ¬ RX >>> IMM5

Grammar: asri32 rz, rx, imm5

Description: Perform an arithmetic right shift on RX value (the original value shifts

right and the copy of original sign bit will shift to the left side), and

save the result in RZ; the range of right shift is decided by the value of

5-bit immediate operand (IMM5). If the value of IMM5 is equal to

zero, RZ value is equal to RX.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 0 0 0 1 0 0 RZ

81

BCLRI – Bit clear immediate

Description: Clear the bits indicated by the value of IMM5 field in RZ/RX value,

keep other bits unchanged, and save the result after clearing in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

16-bit instruction

Operation: RZ ¬ RZ[IMM5] clear

Grammar: bclri16 rz, imm5

Description: Clear the bits indicated by the value of IMM5 field in RZ value, keep

other bits unchanged, and save the result after clearing in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7;

The range of immediate operand is 0-31.

Unified

instruction

Grammar Operation Compiling result

bclri rz, imm5 RZ ¬ RZ[IMM5] clear Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (z<8), then

bclri16 rz, imm5;

else

 bclri32 rz, rz, imm5;

bclri rz, rx, imm5 RZ ¬ RX[IMM5] clear Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x==z) and (z<8), then

 bclri16 rz, imm5;

else

 bclri32 rz, rx, imm5;

82

Exception: None

Instruction

format:

15 14 10 8 7 5 4 0

0 0 1 1 1 RZ 1 0 0 IMM5

32-bit instruction

Operation: RZ ¬ RX[IMM5] clear

Grammar: bclri32 rz, rx, imm5

Description: Clear the bits indicated by the value of IMM5 field in RX value, keep

other bits unchanged, and save the result after clearing in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 0 1 0 1 0 0 0 0 0 1 RZ

83

BEZ –Branch instruction when register is equal to zero

Description: If the register RX is equal to zero, the program will shift to label position

before execution; otherwise the program will execute the next instruction,

i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BEZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: When the register is equal to zero, the program will shift.

if(RX == 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Grammar: bez32 rx, label

Description: If the register RX is equal to zero, the program will shift to label position

before execution; otherwise the program will execute the next instruction,

i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

Unified

instruction

Grammar Operation Compiling result

bez rx, label When the register is equal to zero, the program

will shift

if (RX == 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Only 32-bit

instructions exist.

bez32 rx, label

84

of BEZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 1 0 0 0 RX Offset

85

BF – C=0 branch instruction

Description: If the condition flag bit C is equal to zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction.

Label is gained by adding the current PC to the value of sign-extending

the relative offset shifting left by 1 bit to 32 bits. The shifting range of BF

instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: When C is equal to zero, the program will shift.

if(C==0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 2

Grammar: bf16 label

Description: If the condition flag bit C is equal to zero, the program will shift to label

Unified

instruction

Grammar Operation Compiling result

bf label When C is equal to zero, the program will

shift.

if(C==0)

 PC¬PC + sign_extend(offset << 1);

else

 PC ¬ next PC;

Compiled into

corresponding 16-bit or

32-bit instructions according

to the range of jump.

if (offset<1KB), then

 bf16 label;

else

 bf32 label;

86

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 2.

Label is gained by adding the current PC to the value of sign-extending

the 10-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BF16 instruction is the address space of ±1KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

15 14 10 9 0

0 0 0 0 1 1 Offset

32-bit

instruction

Operation: When C is equal to zero, the program will shift.

if(C == 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC¬ PC + 4

Grammar: bf32 label

Description: If the condition flag bit C is equal to zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BF16 instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

87

1 1 1 0 1 0 0 0 0 1 0 0 0 0 0 0 Offset

88

BGENI – Bit generation immediate#

Description: Set the bit of RZ decided by the 5-bit immediate operand (RZ[IMM5])

and clear other bits of RZ.

Attention: If IMM5 is smaller than 16, this instruction is the pseudo

instruction of movi rz, (2)IMM5; if IMM5 is greater than 16, this

instruction is the pseudo instruction of movih rz, (2)IMM5.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit

instruction

Operation: RZ ¬ (2)IMM5;

Grammar: bgeni32 rz, imm5

Description: Set the bit of RZ decided by the 5-bit immediate operand (RZ[IMM5])

and clear other bits of RZ.

Attention: If IMM5 is smaller than 16, this instruction is the pseudo

instruction of movi32 rz, (2)IMM5; if IMM5 is greater than 16, this

instruction is the pseudo instruction of movih32 rz, (2)IMM5.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

bgeni rz, imm5 RZ ¬ (2)IMM5 Only 32-bit instructions

exist.

bgeni32 rz, imm5

89

If IMM5 is smaller than 16:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 0 0 0 0 RZ (2)IMM5

If IMM5 is greater than 16:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 0 0 0 1 RZ (2)IMM5

90

BGENR – Register bit generation

Description: If RX[5] is 0, set the register bit of RZ decided by five low bits of RX

(RX[4:0]) and clear other bits of RZ; otherwise, clear RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: If (RX[5] == 0) , then

RZ ¬ 2RX[4:0];

else

 RZ ¬ 0;

Grammar: bgenr32 rz, rx

Description: If RX[5] is 0, set the register bit of RZ decided by five low bits of RX

(RX[4:0]) and clear other bits of RZ; otherwise, clear RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 0 1 0 0 0 0 0 1 0 RZ

Unified

instruction

Grammar Operation Compiling result

bgenr rz, rx If (RX[5] == 0), then

RZ ¬ 2RX[4:0];

else

 RZ ¬ 0;

Only 32-bit instructions

exist.

bgenr32 rz, rx

91

BHSZ – Branch instruction when register is greater than or

equal to zero

Description: If the register is greater than or equal to zero, the program will shift to

label position before execution; otherwise the program will execute the

next instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BHSZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: When the register is greater than or equal to zero, the program will shift

if(RX >= 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Grammar: bhsz32 rx, label

Description: If the register RX is greater than or equal to zero, the program will shift

to label position before execution; otherwise the program will execute the

next instruction, i.e. PC ¬ PC + 4.

Unified

instruction

Grammar Operation Compiling result

bhsz rx, label When the register is greater than or equal to

zero, the program will shift

if(RX >= 0)

 PC ¬ PC + sign_extend(offset << 1);

else

 PC ¬ PC + 4;

Only 32-bit

instructions exist.

bhsz32 rx, label

92

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BHSZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 1 1 0 1 RX Offset

93

BHZ – Branch instruction when register is greater than zero

Description: If the register RX is greater than zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BHZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: When the register is greater than zero, the program will shift

if(RX > 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Grammar: bhz32 rx, label

Description: If the register RX is greater than zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

Unified

instruction

Grammar Operation Compiling result

bhz rx, label When the register is greater than zero, the

program will shift

if(RX > 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Only 32-bit

instructions exist.

bhz32 rx, label

94

of BHZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 1 0 1 0 RX Offset

95

BKPT – Breakpoint instruction

Description: Breakpoint instruction

Influence on flag

bit:

No influence

Exception: Breakpoint exception

16-bit

instruction

Operation: Trigger a breakpoint exception or enter debugging mode

Grammar: bkpt16

Description: Breakpoint instruction

Influence on flag

bit:

No influence

Exception: Breakpoint exception

Instruction

format:

15 14 10 9 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

bkpt Trigger a breakpoint exception or enter

debugging mode

Always compiled into 16-bit

instructions.

bkpt16

96

BLSZ – Branch instruction when register is smaller than or

equal to zero

Description: If the register RX is smaller than or equal to zero, the program will shift

to label position before execution; otherwise the program will execute the

next instruction, i.e. PC ß PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BLSZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: When the register is smaller than or equal to zero, the program will shift

if(RX <= 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Grammar: blsz32 rx, label

Description: If the register RX is smaller than or equal to zero, the program will shift

to label position before execution; otherwise the program will execute the

next instruction, i.e. PC ß PC + 4.

Unified

instruction

Grammar Operation Compiling result

blsz rx, label When the register is smaller than or equal to

zero, the program will shift

if(RX <= 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Only 32-bit

instructions exist.

blsz32 rx, label

97

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BLSZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 1 0 1 1 RX Offset

98

BLZ – Branch instruction when register is smaller than zero

Description: If the register RX is smaller than zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BLZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: When the register is smaller than zero, the program will shift

if(RX < 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Grammar: blz32 rx, label

Description: If the register RX is smaller than zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

Unified

instruction

Grammar Operation Compiling result

blz rx, label When the register is smaller than zero, the

program will shift

if(RX < 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Only 32-bit

instructions exist.

blz32 rx, label

99

of BLZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 1 1 0 0 RX Offset

100

BMASKI – Bit mask generation immediate

Description: Generate the immediate operand whose consecutive low bit is 1 and

high bit is 0, and save this immediate operand in RZ. Assign the bit of

consecutive low bit set as 1 for the immediate operand OIMM5

(RX[OIMM5-1:0]), and clear other bits. When OIMM5 is 0 or 32, all

bits of RX are set as 1.

Attention: When OIMM5 is 1-16, movi instruction will be executed.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0 and 17-32.

Exception: None

32-bit instruction

Operation: RZ ¬ (2)OIMM5 - 1

Grammar: bmaski32 rz, oimm5

Description: Generate the immediate operand whose consecutive low bit is 1 and

high bit is 0, and save this immediate operand in RZ. Assign the bit of

consecutive low bit set as 1 for the immediate operand OIMM5

(RX[OIMM5-1:0]), and clear other bits. When OIMM5 is 0 or 32, all

bits of RX are set as 1.

Attention: When OIMM5 is 1-16, movi instruction will be executed;

the binary operand IMM5 is equal to OIMM5 – 1.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0 and 17-32.

Exception: None

Instruction

Unified

instruction

Grammar Operation Compiling result

bmaski rz, oimm5 RZ ¬ (2)OIMM5 - 1 Only 32-bit instructions

exist.

bmaski32 rz, oimm5

101

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 RZ

IMM5 field – Assign the highest bit of consecutive low bit set as 1.

Attention: Compared with the binary operand IMM5, the immediate operand OIMM5

requires offset 1.

10000 – set 0-16 bits

10001 – set 0-17 bits

……

11111 – set 0-31 bits

102

BMCLR – Clear BCTM bit

Description: Clear BM bit of PSR.

Influence on

flag bit:

No influence

Exception: None

32-bit

instruction

Operation: Clear BM bit of status register.

PSR(BM) ¬ 0

Grammar: bmclr32

Description: Clear the BM bit of PSR.

Influence on

flag bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0

Unified instruction

Grammar Operation Compiling result

bmclr Clear BM bit of status register.

PSR(BM) ¬ 0

Only 32-bit instructions

exist.

bmclr32

103

BMSET – Set BCTM bit

Unified instruction

Grammar Operation Compiling result

bmset Set BM bit of status register.

PSR(BM) ¬ 1

Only 32-bit instructions

exist.

bmset32

Description: Set BM bit of PSR.

Influence on

flag bit:

No influence

Exception: None

32-bit

instruction

Operation: Set BM bit of status register.

PSR(BM) ¬ 1

Grammar: bmset32

Description: Set BM bit of PSR.

Influence on

flag bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0

104

BNEZ – Branch instruction when register is not equal to zero

Description: If the register RX is not equal to zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

of BNEZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: When the register is not equal to zero, the program will shift

if(RX != 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Grammar: bnez32 rx, label

Description: If the register RX is not equal to zero, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

Unified

instruction

Grammar Operation Compiling result

bnez rx, label When the register is not equal to zero, the

program will shift

if(RX != 0)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Only 32-bit instructions

exist.

bnez32 rx, label

105

of BNEZ instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 1 0 0 1 RX Offset

106

BPOP.H – Binary push of translated half-word

Description: Compare the value after subtracting 2 from the binary translated stack

pointer register (BSP) with the binary translated frame pointer register

(FP’). If the value after subtracting 2 from BSP is smaller than FP’, the

return address of subprogram (PC of the next instruction) is saved in

link register R15 and the program will shift to SVBR-12 position before

execution. Otherwise, update BSP to the top of binary translated stack

storage, and load half-word in binary translated stack storage to register

RZ after zero-extending it to 32 bits. Adopt direct addressing mode of

stack register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Update the binary translated stack register to the top of binary translated

stack storage, and load half-word from binary translated stack storage to

Unified

instruction

Grammar Operation Compiling result

bpop.h rz Update the binary translated stack

register to the top of binary

translated stack storage, and load

half-word from binary translated

stack storage to register RZ;

if (BSP - 2 < FP’)

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 BSP ¬ BSP - 2;

 RZ ¬

zero_extend(MEM[BSP]);

Only 16-bit instructions exist.

bpop.h rz;

107

register RZ;

if (BSP - 2 < FP’)

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 BSP ¬ BSP - 2;

 RZ ¬ zero_extend(MEM[BSP]);

Grammar: bpop16.h rz

Description: Compare the value after subtracting 2 from the binary translated stack

pointer register (BSP) with the binary translated frame pointer register

(FP’). If the value after subtracting 2 from BSP is smaller than FP’, the

return address of subprogram (PC of the next instruction) is saved in

link register R15 and the program will shift to SVBR-12 position before

execution. Otherwise, update BSP to the top of binary translated stack

storage, and load half-word in binary translated stack storage to register

RZ after zero-extending it to 32 bits. Adopt direct addressing mode of

stack register.

Influence on flag

bit:

No influence

Restriction: The range of register is r0 – r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

15 14 10 9 8 7 6 5 4 2 1 0

0 0 0 1 0 1 0 0 1 0 1 RZ 0 0

108

BPOP.W – Binary push of translated word

Description: Compare the value after subtracting 4 from the binary translated stack

pointer register (BSP) with the binary translated frame pointer register

(FP’). If the value after subtracting 4 from BSP is smaller than FP’, the

return address of subprogram (PC of the next instruction) is saved in

link register R15 and the program will shift to SVBR-12 position before

execution. Otherwise, update BSP to the top of binary translated stack

storage, and load word in binary translated stack storage to register RZ.

Adopt direct addressing mode of stack register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Update the binary translated stack register to the top of binary translated

stack storage, and load word from binary translated stack storage to

register RZ;

if (BSP - 4 < FP’)

Unified

instruction

Grammar Operation Compiling result

bpop.w rz Update the binary translated stack

register to the top of binary

translated stack storage, and load

word from binary translated stack

storage to register RZ;

if (BSP - 4 < FP’)

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 BSP ¬ BSP - 4;

 RZ ¬ MEM[BSP];

Only 16-bit instructions exist.

bpop.w rz;

109

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 BSP ¬ BSP - 4;

 RZ ¬ MEM[BSP];

Grammar: bpop16.w rz

Description: Compare the value after subtracting 4 from the binary translated stack

pointer register (BSP) with the binary translated frame pointer register

(FP’). If the value after subtracting 4 from BSP is smaller than FP’, the

return address of subprogram (PC of the next instruction) is saved in

link register R15 and the program will shift to SVBR-12 position before

execution. Otherwise, update BSP to the top of binary translated stack

storage, and load word in binary translated stack storage to register RZ.

Adopt direct addressing mode of stack register.

Influence on flag

bit:

No influence

Restriction: The range of register is r0 – r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

15 14 10 9 8 7 6 5 4 2 1 0

0 0 0 1 0 1 0 0 1 0 1 RZ 1 0

110

BPUSH.H – Binary push of translated half-word

Description: Compare the value after adding 2 to the binary translated stack pointer

register (BSP) with the binary translated stack top register (TOP). If the

value after adding 2 to BSP is greater than TOP, the return address of

subprogram (PC of the next instruction) is saved in link register R15

and the program will shift to SVBR-12 position before execution.

Otherwise, save half-word in register RZ into the binary translated stack

storage, and update BSP to the top of binary translated stack storage.

Adopt direct addressing mode of stack register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Save half-word in register RZ into the binary translated stack storage,

and update the binary translated stack register to the top of binary

translated stack storage;

if (BSP + 2 > TOP)

Unified

instruction

Grammar Operation Compiling result

bpush.h rz Save half-word in register RZ into

the binary translated stack storage,

and update the binary translated

stack register to the top of binary

translated stack storage;

if (BSP + 2 > TOP)

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 MEM[BSP] ¬ RZ[15:0];

 BSP ¬ BSP + 2;

Only 16-bit instructions exist.

bpush.h rz;

111

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 MEM[BSP] ¬ RZ[15:0];

 BSP ¬ BSP + 2;

Grammar: bpush16.h rz

Description: Compare the value after adding 2 to the binary translated stack pointer

register (BSP) with the binary translated stack top register (TOP). If the

value after adding 2 to BSP is greater than TOP, the return address of

subprogram (PC of the next instruction) is saved in link register R15

and the program will shift to SVBR-12 position before execution.

Otherwise, save half-word in register RZ into the binary translated stack

storage, and update BSP to the top of binary translated stack storage.

Adopt direct addressing mode of stack register.

Influence on flag

bit:

No influence

Restriction: The range of register is r0 – r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

15 14 10 9 8 7 6 5 4 2 1 0

0 0 0 1 0 1 0 0 1 1 1 RZ 0 0

112

BPUSH.W – Binary push of translated word

Description: Compare the value after adding 4 to the binary translated stack pointer

register (BSP) with the binary translated stack top register (TOP). If the

value after adding 4 to BSP is greater than TOP, the return address of

subprogram (PC of the next instruction) is saved in link register R15

and the program will shift to SVBR-12 position before execution.

Otherwise, save word in register RZ into the binary translated stack

storage, and update BSP to the top of binary translated stack storage.

Adopt direct addressing mode of stack register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Save word in register RZ into the binary translated stack storage, and

update the binary translated stack register to the top of binary translated

stack storage;

if (BSP + 4 > TOP)

Unified

instruction

Grammar Operation Compiling result

bpush.w rz Save word in register RZ into the

binary translated stack storage, and

update the binary translated stack

register to the top of binary

translated stack storage;

if (BSP + 4 > TOP)

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 MEM[BSP] ¬ RZ[31:0];

 BSP ¬ BSP + 4;

Only 16-bit instructions exist.

bpush.w rz;

113

 R15 ¬ next PC

 PC ¬ SVBR - 12

else

 MEM[BSP] ¬ RZ[31:0];

 BSP ¬ BSP + 4;

Grammar: bpush16.w rz

Description: Compare the value after adding 4 to the binary translated stack pointer

register (BSP) with the binary translated stack top register (TOP). If the

value after adding 4 to BSP is greater than TOP, the return address of

subprogram (PC of the next instruction) is saved in link register R15

and the program will shift to SVBR-12 position before execution.

Otherwise, save word in register RZ into the binary translated stack

storage, and update BSP to the top of binary translated stack storage.

Adopt direct addressing mode of stack register.

Influence on flag

bit:

No influence

Restriction: The range of register is r0 – r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

15 14 10 9 8 7 6 5 4 2 1 0

0 0 0 1 0 1 0 0 1 1 1 RZ 1 0

114

BR – Unconditional jump

Description: The program unconditionally jumps to label for execution.

Label is gained by adding the current PC to the value of sign-extending

the relative offset shifting left by 1 bit to 32 bits.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: PC ¬ PC + sign_extend(offset << 1)

Grammar: br16 label

Description: The program unconditionally jumps to label for execution.

Label is gained by adding the current PC to the value of sign-extending

the 10-bit relative offset shifting left by 1 bit to 32 bits. The jump range

of BR16 instruction is the address space of ±1KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

15 14 10 9 0

Unified

instruction

Grammar Operation Compiling result

br label PC ¬ PC + sign_extend(offset << 1) Compiled into corresponding

16-bit or 32-bit instructions

according to the range of jump.

if(offset<1KB), then

 br16 label;

else

br32 label;

115

0 0 0 0 0 1 Offset

32-bit

instruction

Operation: PC ¬ PC + sign_extend(offset << 1)

Grammar: br32 label

Description: The program unconditionally jumps to label for execution.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The jump range

of BR instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 Offset

116

BREV – Bit-reverse

Description: Perform a bitwise reverse operation on RX value and save the result in

RZ.

If RX value is “abcdefghijklmnopqrstuvwxyz012345”, RZ value changes

into “543210zyxwvutsrqponmlkjihgfedcba” after bitwise reverse

operation.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: for i=0 to 31

RZ[i] ¬ RX[31-i];

Grammar: brev32 rz, rx

Description: Perform a bitwise reverse operation on RX value and save the result in

RZ.

If RX value is “abcdefghijklmnopqrstuvwxyz012345”, RZ value changes

into “543210zyxwvutsrqponmlkjihgfedcba” after bitwise reverse

operation.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

brev rz, rx for i=0 to 31

RZ[i] ¬ RX[31-i];

Only 32-bit

instructions exist.

brev32 rz, rx

117

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 0 0 0 1 0 0 0 0 RZ

118

BSETI – Bit set immediate

Description: Set the bit indicated by the value of IMM5 field as 1 in RZ/RX value,

keep other bits unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

16-bit instruction

Operation: RZ ¬ RZ[IMM5] set

Grammar: bseti16 rz, imm5

Description: Set the bit indicated by the value of IMM5 field as 1 in RZ value, keep

other bits unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 0-31.

Exception: None

Unified

instruction

Grammar Operation Compiling result

bseti rz, imm5 RZ ¬ RZ[IMM5] set Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (z<8), then

 bseti16 rz, imm5;

else

bseti32 rz, rz, imm5;

bseti rz, rx, imm5 RZ ¬ RX[IMM5] set Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if((x==z) and (z<8), then

 bseti16 rz, imm5;

else

 bseti32 rz, rx, imm5;

119

Instruction

format:

15 14 10 8 7 5 4 0

0 0 1 1 1 RZ 1 0 1 IMM5

32-bit instruction

Operation: RZ ¬ RX[IMM5] set

Grammar: bseti32 rz, rx, imm5

Description: Set the bit indicated by the value of IMM5 field as 1 in RX value, keep

other bits unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 0 1 0 1 0 0 0 0 1 0 RZ

120

BSR – Jump to subprogram

Description: The subprogram jumps, the return address of subprogram (PC of the next

instruction) is saved in link register R15, and the program will shift to

label position before execution.

Label is gained by adding the current PC to the value of sign-extending

the relative offset shifting left by 1 bit to 32 bits.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Link and jump to the subprogram:

R15 ¬ PC+4

PC ¬ PC + sign_extend(offset << 1)

Grammar: bsr32 label

Description: The subprogram jumps, the return address of subprogram (PC of the next

instruction, i.e. PC+4 at present) is saved in link register R15, and the

program will shift to label position before execution.

Label is gained by adding the current PC to the value of sign-extending

the 26-bit relative offset shifting left by 1 bit to 32 bits. The jump range

of BSR instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

bsr label Link and jump to the subprogram:

R15 ¬ next PC

PC ¬ PC + sign_extend(offset << 1)

Only 32-bit instructions exist.

bsr32 label;

121

31 30 26 25 0

1 1 1 0 0 0 Offset

122

BT – C=1 branch instruction

Description: If the condition flag bit C is equal to 1, the program will shift to label

position before execution; otherwise the program will execute the next

instruction.

Label is gained by adding the current PC to the value of sign-extending

the relative offset shifting left by 1 bit to 32 bits. The shifting range of BT

instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: When C is equal to 1, the program will shift

if(C == 1)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 2

Grammar: bt16 label

Description: If the condition flag bit C is equal to 1, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 2.

Label is gained by adding the current PC to the value of sign-extending

Unified instruction

Grammar Operation Compiling result

bt label if(C == 1)

 PC ¬ PC + sign_extend(offset <<

1);

else

 PC ¬ next PC;

Compiled into corresponding

16-bit or 32-bit instructions

according to the range of

jump.

if (offset<1KB), then

 bt16 label;

else

bt32 label;

123

the 10-bit relative offset shifting left by 1 bit to 32 bits. The shifting

range of BT16 instruction is the address space of ±1KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

15 14 10 9 0

0 0 0 0 1 0 Offset

32-bit

instruction

Operation: When C is equal to 1, the program will shift

if(C == 1)

 PC ¬ PC + sign_extend(offset << 1)

else

 PC ¬ PC + 4

Grammar: bt32 label

Description: If the condition flag bit C is equal to 1, the program will shift to label

position before execution; otherwise the program will execute the next

instruction, i.e. PC ¬ PC + 4.

Label is gained by adding the current PC to the value of sign-extending

the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting

range of BT instruction is the address space of ±64KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 0 0 1 1 0 0 0 0 0 Offset

124

BTSTI – Bit test immediate

Description: Test the bit of RX decided by IMM5 (RX[IMM5]), and make the value of

condition bit C equal to value of this bit.

Influence on flag

bit:

C ¬ RX[IMM5]

Restriction: The range of immediate operand is 0-31.

Exception: None

16-bit instruction

Operation: C ¬ RX[IMM5]

Grammar: btsti16 rx, imm5

Description: Test the bit of RX decided by IMM5 (RX[IMM5]), and make the value

of condition bit C equal to value of this bit.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 0-31.

Exception: None

Instruction

format:

15 14 10 8 7 5 4 0

0 0 1 1 1 RX 1 1 0 IMM5

Unified instruction

Grammar Operation Compiling result

btsti rx, imm5 C ¬ RX[IMM5] Compiled into

corresponding 16-bit or

32-bit instructions according

to the range of register.

if (x<8), then

 btsti16 rx, imm5;

else

btsti32 rx, imm5;

125

32-bit

instruction

Operation: C ¬ RX[IMM5]

Grammar: btsti32 rx, imm5

Description: Test the bit of RX decided by IMM5 (RX[IMM5]), and make the value of

condition bit C equal to value of this bit.

Influence on flag

bit:

C ¬ RX[IMM5]

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 0 1 0 1 0 0 0 1 0 0 0 0 0 0 0

126

CLRF – C=0 clear

Description: If C is equal to zero, clear the register RZ; otherwise, keep the register

RZ unchanged.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: if C==0, then

RZ ¬ 0;

else

 RZ ¬ RZ;

Grammar: clrf32 rz

Description: If C is equal to zero, clear the register RZ; otherwise, keep the register

RZ unchanged.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RZ 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0

Unified instruction

Grammar Operation Compiling result

clrf rz if C==0, then

RZ ¬ 0;

else

 RZ ¬ RZ;

Only 32-bit instructions

exist.

clrf32 rz

127

CLRT – C=1 clear

Description: If C is equal to 1, clear the register RZ; otherwise, keep the register RZ

unchanged.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: if C==1, then

RZ ¬ 0;

else

 RZ ¬ RZ;

Grammar: clrt32 rz

Description: If C is equal to 1, clear the register RZ; otherwise, keep the register RZ

unchanged.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RZ 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0

Unified instruction

Grammar Operation Compiling result

clrt rz if C==1, then

RZ ¬ 0;

else

 RZ ¬ RZ;

Only 32-bit instructions

exist.

clrt32 rz

128

CMPHS – Compare unsigned when greater or equal

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. Make an unsigned comparison via cmphs; in another word,

operand is considered as unsigned number. If RX is greater than or equal

to RY, it means that the subtraction result is greater than or equal to zero.

Set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Exception: None

16-bit

instruction

Operation: Make an unsigned comparison between RX and RY.

If RX >= RY, then

C ¬ 1;

else

C ¬ 0;

Grammar: cmphs16 rx, ry

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. Make an unsigned comparison via cmphs16; in another word,

operand is considered as unsigned number. If RX is greater than or equal

to RY, it means that the subtraction result is greater than or equal to zero.

Set the condition bit C; otherwise, clear the condition bit C.

Unified

instruction

Grammar Operation Compiling result

cmphs rx, ry Make an unsigned comparison

between RX and RY.

If RX >= RY, then

C ¬ 1;

else

C ¬ 0;

Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (x<16) and (y<16), then

 cmphs16 rx, ry;

else

cmphs32 rx, ry;

129

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 0 1 RY RX 0 0

32-bit

instruction

Operation: Make an unsigned comparison between RX and RY.

If RX >= RY, then

C ¬ 1;

else

C ¬ 0;

Grammar: cmphs32 rx, ry

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. Make an unsigned comparison via cmphs32; in another word,

operand is considered as unsigned number. If RX is greater than or equal

to RY, it means that the subtraction result is greater than or equal to zero.

Set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

130

CMPHSI – Compare immediate unsigned when greater or

equal

Description: Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to 32

bits, subtract this 32-bit value from RX value, compare the result with 0,

and update C bit. Make an unsigned comparison via cmphsi; in another

word, operand is considered as unsigned number. If RX is greater than or

equal to OIMM16 after zero-extension, it means that the subtraction

result is greater than or equal to zero. Set the condition bit C; otherwise,

clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of immediate operand is 0x1-0x10000.

Exception: None

16-bit

instruction

Operation: Make an unsigned comparison between RX and immediate operand.

If RX >= zero_extend(OIMM5), then

C ¬ 1;

Unified instruction

Grammar Operation Compiling result

cmphsi rx, oimm16 Make an unsigned comparison

between RX and immediate

operand.

If RX >=

zero_

exten

d(OI

MM1

6),

C ¬ 1;

else

C ¬ 0;

Compiled into corresponding

16-bit or 32-bit instructions

according to the range of

immediate operand and register.

if (oimm16<33) and (x<8),then

 cmphsi16 rx, oimm5;

else

cmphsi32 rx, oimm16;

131

else

C ¬ 0;

Grammar: cmphsi16 rx, oimm5

Description: Zero-extend the 5-bit immediate operand with offset 1 (OIMM5) to 32

bits, subtract this 32-bit value from RX value, compare the result with 0,

and update C bit. Make an unsigned comparison via cmphsi16; in

another word, operand is considered as unsigned number. If RX is greater

than or equal to OIMM5 after zero-extension, it means that the

subtraction result is greater than or equal to zero. Set the condition bit C;

otherwise, clear the condition bit C.

Attention: The binary operand IMM5 is equal to OIMM5 – 1.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r7; the range of immediate operand is 1-32.

Exception: None

Instruction

format:

15 14 10 8 7 5 4 0

0 0 1 1 1 RX 0 0 0 IMM5

IMM5 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM5, the immediate operand OIMM5

participating in comparison requires offset 1.

00000 – make a comparison with 1

00001 – make a comparison with 2

……

11111 – make a comparison with 32

32-bit

instruction

Operation: Make an unsigned comparison between RX and immediate operand.

If RX >= zero_extend(OIMM16), then

C ¬ 1;

else

C ¬ 0;

132

Grammar: cmphsi32 rx, oimm16

Description: Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to

32 bits, subtract this 32-bit value from RX value, compare the result

with 0, and update C bit. Make an unsigned comparison via cmphsi32;

in another word, operand is considered as unsigned number. If RX is

greater than or equal to OIMM16 after zero-extension, it means that the

subtraction result is greater than or equal to zero. Set the condition bit C;

otherwise, clear the condition bit C.

Attention: The binary operand IMM16 is equal to OIMM16 – 1.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of immediate operand is 0x1-0x10000.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 1 0 0 0 RX IMM16

IMM16 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM16, the immediate operand OIMM16

participating in comparison requires offset 1.

0000000000000000 – make a comparison with 0x1

0000000000000001 – make a comparison with 0x2

……

1111111111111111 – make a comparison with 0x10000

133

CMPLT – Compare signed when smaller

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. Make a signed comparison via cmplt; in another word, operand is

considered as signed number of complement form. If RX is smaller than

RY, it means that the subtraction result is smaller than zero. Set the

condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Exception: None

16-bit

instruction

Operation: Make a signed comparison between RX and RY.

If RX < RY, then

C ¬ 1;

else

C ¬ 0;

Grammar: cmplt16 rx, ry

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. Make a signed comparison via cmplt16; in another word, operand

is considered as signed number of complement form. If RX is smaller

than RY, it means that the subtraction result is smaller than zero. Set the

condition bit C; otherwise, clear the condition bit C.

Unified

instruction

Grammar Operation Compiling result

cmplt rx, ry Make a signed comparison

between RX and RY.

If RX < RY, then

C ¬ 1;

else

C ¬ 0;

Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (y<16), then

 cmplt16 rx, ry;

else

cmplt32 rx, ry;

134

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 0 1 RY RX 0 1

32-bit

instruction

Operation: Make a signed comparison between RX and RY.

If RX < RY, then

C ¬ 1;

else

C ¬ 0;

Grammar: cmplt32 rx, ry

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. Make a signed comparison via cmplt32; in another word, operand

is considered as signed number of complement form. If RX is smaller

than RY, it means that the subtraction result is smaller than zero. Set the

condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0

135

CMPLTI – Compare immediate signed when smaller

Description: Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to 32

bits, subtract this 32-bit value from RX value, compare the result with 0,

and update C bit. Make a signed comparison via cmplti; in another word,

RX value is considered as signed number of complement form. If RX is

smaller than OIMM16 after zero-extension, it means that the subtraction

result is smaller than zero. Set the condition bit C; otherwise, clear the

condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of immediate operand is 0x1-0x10000.

Exception: None

16-bit

instruction

Operation: Make a signed comparison between RX and immediate operand.

If RX < zero_extend(OIMM5), then

C ¬ 1;

else

C ¬ 0;

Grammar: cmplti16 rx, oimm5

Description: Zero-extend the 5-bit immediate operand with offset 1 (OIMM5) to 32

bits, subtract this 32-bit value from RX value, compare the result with 0,

Unified

instruction

Grammar Operation Compiling result

cmplti rx,

oimm16

Make a signed comparison between

RX and immediate operand.

If RX < zero_extend(OIMM16),

C ¬ 1;

else

C ¬ 0;

Compiled into corresponding

16-bit or 32-bit instructions

according to the range of

immediate operand and register.

if (x<8) and (oimm16<33), then

 cmplti16 rx, oimm5;

else

cmplti32 rx, oimm16;

136

and update C bit. Make a signed comparison via cmplti16; in another

word, RX value is considered as signed number of complement form. If

RX is smaller than OIMM5 after zero-extension, it means that the

subtraction result is smaller than zero. Set the condition bit C; otherwise,

clear the condition bit C.

Attention: The binary operand IMM5 is equal to OIMM5 – 1.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r7; the range of immediate operand is 1-32.

Exception: None

Instruction

format:

15 14 10 8 7 5 4 0

0 0 1 1 1 RX 0 0 1 IMM5

IMM5 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM5, the immediate operand OIMM5

participating in comparison requires offset 1.

00000 – make a comparison with 1

00001 – make a comparison with 2

……

11111 – make a comparison with 32

32-bit instruction

Operation: Make a signed comparison between RX and immediate operand.

If RX < zero_extend(OIMM16), then

C ¬ 1;

else

C ¬ 0;

Grammar: cmplti32 rx, oimm16

Description: Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to

32 bits, subtract this 32-bit value from RX value, compare the result

with 0, and update C bit. Make a signed comparison via cmplti32; in

another word, RX value is considered as signed number of complement

form. If RX is smaller than OIMM16 after zero-extension, it means that

137

the subtraction result is smaller than zero. Set the condition bit C;

otherwise, clear the condition bit C.

Attention: The binary operand IMM16 is equal to OIMM16 – 1.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of immediate operand is 0x1-0x10000.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 1 0 0 1 RX IMM16

IMM16 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM16, the immediate operand OIMM16

participating in comparison requires offset 1.

0000000000000000 – make a comparison with 0x1

0000000000000001 – make a comparison with 0x2

……

1111111111111111 – make a comparison with 0x10000

138

CMPNE – Compare unequal

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. If RX is not equal to RY, it means that the subtraction result is not

equal to zero. Set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Exception: None

16-bit

instruction

Operation: Make a comparison between RX and RY.

If RX != RY, then

C ¬ 1;

else

C ¬ 0;

Grammar: cmpne16 rx, ry

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. If RX is not equal to RY, it means that the subtraction result is not

equal to zero. Set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r15.

Exception: None

Unified

instruction

Grammar Operation Compiling result

cmpne rx, ry Make a comparison between

RX and RY.

If RX != RY, then

C ¬ 1;

else

C ¬ 0;

Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (y<16), then

 cmpne16 rx, ry;

else

cmpne32 rx, ry;

139

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 0 1 RY RX 1 0

32-bit

instruction

Operation: Make a comparison between RX and RY.

If RX != RY, then

C ¬ 1;

else

C ¬ 0;

Grammar: cmpne32 rx, ry

Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. If RX is not equal to RY, it means that the subtraction result is not

equal to zero. Set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0

140

CMPNEI – Compare unequal immediate

Description: Subtract the value of 16-bit immediate operand that is zero-extended to

32 bits from RX value, compare the result with 0, and update C bit. If RX

is not equal to IMM16 after zero-extension, it means that the subtraction

result is not equal to zero. Set the condition bit C; otherwise, clear the

condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

16-bit

instruction

Operation: Make a comparison between RX and immediate operand.

If RX != zero_extend(IMM5), then

C ¬ 1;

else

C ¬ 0;

Grammar: cmpnei16 rx, imm5

Description: Subtract the value of 5-bit immediate operand that is zero-extended to 32

bits from RX value, compare the result with 0, and update C bit. If RX is

not equal to IMM5 after zero-extension, it means that the subtraction

result is not equal to zero. Set the condition bit C; otherwise, clear the

Unified

instruction

Grammar Operation Compiling result

cmpnei rx,

imm16

Make a comparison between RX

and immediate operand.

If RX != zero_extend(imm16),

C ¬ 1;

else

C ¬ 0;

Compiled into corresponding

16-bit or 32-bit instructions

according to the range of

immediate operand and register.

if (x<7) and (imm16<33), then

 cmpnei16 rx, imm5;

else

cmpnei32 rx, imm16;

141

condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r7;

The range of immediate operand is 0-31.

Exception: None

Instruction

format:

15 14 10 8 7 5 4 0

0 0 1 1 1 RX 0 1 0 IMM5

32-bit

instruction

Operation: Make a comparison between RX and immediate operand.

If RX != zero_extend(imm16), then

C ¬ 1;

else

C ¬ 0;

Grammar: cmpnei rx, imm16

Description: Subtract the value of 16-bit immediate operand that is zero-extended to

32 bits from RX value, compare the result with 0, and update C bit. If RX

is not equal to IMM16 after zero-extension, it means that the subtraction

result is not equal to zero. Set the condition bit C; otherwise, clear the

condition bit C.

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 1 0 1 0 RX IMM16

142

CPOP – Co-processor operation instruction

Description: This instruction executes user defined co-processor operation. The code

space of {[20-16], [14-0]} is reserved for user defined application.

Among them, bits 24-21 are agreed as co-processor numbers and used

to assign co-processor of pre-operation. As for the remaining bits, users

will define relevant operations (such as transfer of co-processor

instruction code).

Influence on flag

bit:

This co-processor operation instruction does not influence the main

assembly line flag bit, but might affect the flag bit of co-processor.

Exception: Illegal instruction exception

32-bit instruction

Operation: Co-processor operation instruction executes one or multiple user

defined co-processor operations.

Grammar: cpop32 <cpid, func>

Description: This instruction executes user defined co-processor operation. The code

space of {[20-16], [14-0]} is reserved for user defined application.

Among them, bits 24-21 are agreed as co-processor numbers and used

to assign co-processor of pre-operation. As for the remaining bits, users

will define relevant operations (such as transfer of co-processor

instruction code).

Influence on flag

bit:

This co-processor operation instruction does not influence the main

assembly line flag bit, but might affect the flag bit of co-processor.

Exception: Illegal instruction exception

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

cpop <cpid,

func>

Co-processor operation instruction

executes one or multiple user defined

co-processor operations.

Only 32-bit instructions

exist.

cpop32 <cpid, func>

143

31 30 26 25 21 20 16 15 14 0

1 1 1 1 1 1 0 CPID User-define_1 1 User-define_0

144

CPRC – Read transfer from condition bit of co-processor

Description: This instruction executes user defined read operation of co-processor

condition bit. The code space of 12 low bits is reserved for user defined

application. Among them, bits 24-21 are agreed as co-processor

numbers and used to assign co-processor of pre-operation. As for the

remaining bits, users will define relevant operations.

Influence on flag

bit:

The flag bit of main assembly line is decided by the condition bit of the

appointed co-processor.

Exception: Illegal instruction exception

32-bit instruction

Operation: Read the condition bit of co-processor to C bit of host processor;

co-processor number is user defined.

Grammar: cprc32 <cpid, func>

Description: This instruction executes user defined read operation of co-processor

condition bit. The code space of 12 low bits is reserved for user defined

application. Among them, bits 24-21 are agreed as co-processor

numbers and used to assign co-processor of pre-operation. As for the

remaining bits, users will define relevant operations.

Influence on flag

bit:

The flag bit of main assembly line is decided by the condition bit of the

appointed co-processor.

Exception: Illegal instruction exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

Unified

instruction

Grammar Operation Compiling result

cprc <cpid, func> Read the condition bit of co-processor

to C bit of host processor; co-processor

number is user defined.

Only 32-bit instructions

exist.

cprc32 <cpid, func>

145

1 1 1 1 1 1 0 CPID C 0 1 0 0 User-define

146

CPRCR – Read transfer from control register of co-processor

Description: This instruction executes user defined read operation of co-processor

control register. The code space of 12 low bits is reserved for user

defined application. Among them, bits 24-21 are agreed as co-processor

numbers and used to assign co-processor of pre-operation. As for the

remaining bits, users will define co-processor control register number

and relevant operations.

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

32-bit instruction

Operation: Read the control register of co-processor to the general-purpose register

of host processor; co-processor number and co-processor control

register number are user defined.

Grammar: cprcr32 rz, <cpid, func>

Description: This instruction executes user defined read operation of co-processor

control register. The code space of 12 low bits is reserved for user

defined application. Among them, bits 24-21 are agreed as co-processor

numbers and used to assign co-processor of pre-operation. As for the

remaining bits, users will define co-processor control register number

and relevant operations.

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

Unified

instruction

Grammar Operation Compiling result

cprcr rz, <cpid,

func>

Read the control register of

co-processor to the general-purpose

register of host processor; co-processor

number and co-processor control

register number are user defined.

Only 32-bit instructions

exist.

cprcr32 rz, <cpid, func>

147

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 1 1 1 0 CPID RZ 0 0 1 0 User-define

148

CPRGR – Read transfer from general-purpose register of

co-processor

Description: This instruction executes user defined read operation of co-processor

general-purpose register. The code space of 12 low bits is reserved for

user defined application. Among them, bits 24-21 are agreed as

co-processor numbers and used to assign co-processor of pre-operation.

As for the remaining bits, users will define co-processor

general-purpose register number and relevant operations.

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

32-bit instruction

Operation: Read the general-purpose register of co-processor to the

general-purpose register of host processor; co-processor number and

co-processor general-purpose register number are user defined.

Grammar: cprgr32 rz, <cpid, func>

Description: This instruction executes user defined read operation of co-processor

general-purpose register. The code space of 12 low bits is reserved for

user defined application. Among them, bits 24-21 are agreed as

co-processor numbers and used to assign co-processor of pre-operation.

As for the remaining bits, users will define co-processor

general-purpose register number and relevant operations.

Influence on flag No influence

Unified

instruction

Grammar Operation Compiling result

cprgr rz, <cpid,

func>

Read the general-purpose register of

co-processor to the general-purpose

register of host processor; co-processor

number and co-processor general-purpose

register number are user defined.

Only 32-bit instructions

exist.

cprgr32 rz, <cpid, func>

149

bit:

Exception: Illegal instruction exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 1 1 1 0 CPID RZ 0 0 0 0 User-define

150

CPWCR – Write transfer to control register of co-processor

Description: This instruction executes user defined write operation of co-processor

control register. The code space of 12 low bits is reserved for user

defined application. Among them, bits 24-21 are agreed as co-processor

numbers and used to assign co-processor of pre-operation. As for the

remaining bits, users will define co-processor control register number

and relevant operations.

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

32-bit instruction

Operation: Write contents in the general-purpose register of host processor into the

control register of co-processor; co-processor number and co-processor

control register number are user defined.

Grammar: cpwcr32 rx, <cpid, func>

Description: This instruction executes user defined write operation of co-processor

control register. The code space of 12 low bits is reserved for user

defined application. Among them, bits 24-21 are agreed as co-processor

numbers and used to assign co-processor of pre-operation. As for the

remaining bits, users will define co-processor control register number

and relevant operations.

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

Unified

instruction

Grammar Operation Compiling result

cpwcr rx, <cpid,

func>

Write contents in the general-purpose

register of host processor into the control

register of co-processor; co-processor

number and co-processor control register

number are user defined.

Only 32-bit instructions

exist.

cpwcr32 rx, <cpid,

func>

151

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 1 1 1 0 CPID RX 0 0 1 1 User-define

152

CPWGR – Write transfer to general-purpose register of

co-processor

Description: This instruction executes user defined write operation of co-processor

general-purpose register. The code space of 12 low bits is reserved for

user defined application. Among them, bits 8-11 are agreed as

co-processor numbers and used to assign co-processor of pre-operation.

As for the remaining bits, users will define co-processor

general-purpose register number and relevant operations.

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

32-bit instruction

Operation: Write contents in the general-purpose register of host processor into the

general-purpose register of co-processor; co-processor number and

co-processor general-purpose register number are user defined.

Grammar: cpwgr32 rx, <cpid, func>

Description: This instruction executes user defined write operation of co-processor

general-purpose register. The code space of 12 low bits is reserved for

user defined application. Among them, bits 8-11 are agreed as

co-processor numbers and used to assign co-processor of pre-operation.

As for the remaining bits, users will define co-processor

general-purpose register number and relevant operations.

Unified

instruction

Grammar Operation Compiling result

cpwgr rx, <cpid,

func>

Write contents in the general-purpose

register of host processor into the

general-purpose register of

co-processor; co-processor number and

co-processor general-purpose register

number are user defined.

Only 32-bit instructions

exist.

cpwgr32 rx, <cpid, func>

153

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 1 1 1 CPRZ RX 0 0 0 1 User-define

154

DECF – C=0 SUBTRACT IMMEDIATE

Description: If the condition bit C is 0, zero-extend the 5-bit immediate operand to

32 bits, subtract this 32-bit value from RX value, and save the result in

RZ; otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit instruction

Operation: if C==0, then

RZ ¬ RX - zero_extend(IMM5);

else

 RZ ¬ RZ;

Grammar: decf32 rz, rx, imm5

Description: If the condition bit C is 0, zero-extend the 5-bit immediate operand to

32 bits, subtract this 32-bit value from RX value, and save the result in

RZ; otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

decf rz, rx, imm5 if C==0, then

RZ ¬ RX - zero_extend(IMM5);

else

 RZ ¬ RZ;

Only 32-bit instructions

exist.

decf32 rz, rx, imm5

155

1 1 0 0 0 1 RZ RX 0 0 0 0 1 1 0 0 1 0 0 IMM5

156

DECGT – Set C bit when greater than zero in subtraction

Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

of subtracting this 32-bit value from RX value in RZ. The subtraction

result is considered as signed number of complement form. If the result

is greater than zero, set the condition bit C; otherwise, clear the

condition bit C.

Influence on flag

bit:

If the subtraction result is greater than zero, set the condition bit C;

otherwise, clear the condition bit C.

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit instruction

Operation: RZ ¬ RX - zero_extend(IMM5);

If RZ > 0, then

C ¬ 1;

else

C ¬ 0;

Grammar: decgt32 rz, rx, imm5

Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

of subtracting this 32-bit value from RX value in RZ. The subtraction

result is considered as signed number of complement form. If the result

is greater than zero, set the condition bit C; otherwise, clear the

condition bit C.

Influence on flag

bit:

If the subtraction result is greater than zero, set the condition bit C;

otherwise, clear the condition bit C.

Unified

instruction

Grammar Operation Compiling result

decgt rz, rx,

imm5

RZ ¬ RX - zero_extend(IMM5);

If RZ > 0, then

C ¬ 1;

else

C ¬ 0;

Only 32-bit instructions

exist.

decgt32 rz, rx, imm5

157

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 0 0 1 0 0 0 0 0 0 1 RZ

158

DECLT – Set C bit when smaller than zero in subtraction

Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

of subtracting this 32-bit value from RX value in RZ. The subtraction

result is considered as signed number of complement form. If the result

is smaller than zero, set the condition bit C; otherwise, clear the

condition bit C.

Influence on flag

bit:

If the subtraction result is smaller than zero, set the condition bit C;

otherwise, clear the condition bit C.

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit instruction

Operation: RZ ¬ RX - zero_extend(IMM5);

If RZ < 0, then

C ¬ 1;

else

C ¬ 0;

Grammar: declt32 rz, rx, imm5

Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

of subtracting this 32-bit value from RX value in RZ. The subtraction

result is considered as signed number of complement form. If the result

is smaller than zero, set the condition bit C; otherwise, clear the

condition bit C.

Influence on flag

bit:

If the subtraction result is smaller than zero, set the condition bit C;

otherwise, clear the condition bit C.

Unified

instruction

Grammar Operation Compiling result

declt rz, rx, imm5 RZ ¬ RX - zero_extend(IMM5);

If RZ < 0, then

C ¬ 1;

else

C ¬ 0;

Only 32-bit instructions

exist.

declt32 rz, rx, imm5

159

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 0 0 1 0 0 0 0 0 1 0 RZ

160

DECNE – Set C bit when not equal to zero in subtraction

Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

of subtracting this 32-bit value from RX value in RZ. If the result is not

equal to zero, set the condition bit C; otherwise, clear the condition bit

C.

Influence on flag

bit:

If the subtraction result is not equal to zero, set the condition bit C;

otherwise, clear the condition bit C.

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit instruction

Operation: RZ ¬ RX - zero_extend(IMM5);

If RZ != 0, then

C ¬ 1;

else

C ¬ 0;

Grammar: decne32 rz, rx, imm5

Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

of subtracting this 32-bit value from RX value in RZ. If the result is not

equal to zero, set the condition bit C; otherwise, clear the condition bit

C.

Influence on flag

bit:

If the subtraction result is not equal to zero, set the condition bit C;

otherwise, clear the condition bit C.

Restriction: The range of immediate operand is 0-31.

Exception: None

Unified

instruction

Grammar Operation Compiling result

decne rz, rx,

imm5

RZ ¬ RX - zero_extend(IMM5);

If RZ != 0, then

C ¬ 1;

else

C ¬ 0;

Only 32-bit instructions

exist.

decne32 rz, rx, imm5

161

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 0 0 1 0 0 0 0 1 0 0 RZ

162

DECT – C=1 subtract immediate

Description: If the condition bit C is 1, zero-extend the 5-bit immediate operand to

32 bits, subtract this 32-bit value from RX value, and save the result in

RZ; otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit instruction

Operation: if C==1, then

RZ ¬ RX - zero_extend(IMM5);

else

 RZ ¬ RZ;

Grammar: dect32 rz, rx, imm5

Description: If the condition bit C is 1, zero-extend the 5-bit immediate operand to

32 bits, subtract this 32-bit value from RX value, and save the result in

RZ; otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

dect rz, rx, imm5 if C==1, then

RZ ¬ RX - zero_extend(IMM5);

else

 RZ ¬ RZ;

Only 32-bit instructions

exist.

dect32 rz, rx, imm5

163

1 1 0 0 0 1 RZ RX 0 0 0 0 1 1 0 1 0 0 0 IMM5

164

DIVS – Divide signed

Description: This instruction divides RX value of register by RY value of register,

and saves the quotient in RZ. The values of RX, RY and RZ are

considered as 32-bit signed numbers.

Attention: There is no definition for the result of dividing 0x80000000

by 0xffffffff.

Influence on flag

bit:

No influence

Exception: Division by zero exception

32-bit instruction

Operation: Divide signed

RZ = RX / RY

Grammar: divs32 rz, rx, ry

Description: This instruction divides RX value of register by RY value of register,

and saves the quotient in RZ. The values of RX, RY and RZ are

considered as 32-bit signed numbers.

Attention: There is no definition for the result of dividing 0x80000000

by 0xffffffff.

Influence on flag

bit:

No influence

Exception: Division by zero exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

divs rz, rx, ry Divide signed

RZ = RX / RY

Only 32-bit instructions

exist.

divs32 rz, rx, ry

165

1 1 0 0 0 1 RY RX 1 0 0 0 0 0 0 0 0 1 0 RZ

166

DIVU – Divide unsigned

Description: This instruction divides RX value of register by RY value of register,

and saves the quotient in RZ. The values of RX, RY and RZ are

considered as 32-bit unsigned numbers.

Influence on flag

bit:

No influence

Exception: Division by zero exception

32-bit instruction

Operation: Divide unsigned

RZ = RX / RY

Grammar: divu32 rz, rx, ry

Description: This instruction divides RX value of register by RY value of register,

and saves the quotient in RZ. The values of RX, RY and RZ are

considered as 32-bit unsigned numbers.

Influence on flag

bit:

No influence

Exception: Division by zero exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 0 0 0 0 0 0 0 1 RZ

Unified

instruction

Grammar Operation Description

divu rz, rx, ry Divide unsigned

RZ = RX / RY

Only 32-bit instructions

exist.

divu32 rz, rx, ry

167

DOZE – Enter low power consumption doze mode

Description: This instruction makes the processor enter low power consumption

doze mode and wait for an interrupt to exit from this mode. At this

time, CPU clock is stopped and corresponding peripheral equipment is

also stopped.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

32-bit instruction

Operation: Enter low power consumption doze mode

Grammar: doze32

Attribute: Privileged instruction

Description: This instruction makes the processor enter low power consumption

doze mode and wait for an interrupt to exit from this mode. At this

time, CPU clock is stopped and corresponding peripheral equipment is

also stopped.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

doze Enter low power consumption doze

mode

Only 32-bit instructions

exist.

doze32

168

FF0 – Fast find 0

Description: Find the first bit that is 0 in RX and return the search result to RZ. The

search order is from the highest bit to the lowest bit of RX. If the

highest bit (RX[31]) of RX is 0, return the value of 0 to RZ. If no bit of

0 exists in RX, return the value of 32 to RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit instruction

Operation: RZ ¬ find_first_0(RX);

Grammar: ff0.32 rz, rx

Description: Find the first bit that is 0 in RX and return the search result to RZ. The

search order is from the highest bit to the lowest bit of RX. If the

highest bit (RX[31]) of RX is 0, return the value of 0 to RZ. If no bit of

0 exists in RX, return the value of 32 to RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 1 1 1 0 0 0 0 1 RZ

Unified

instruction

Grammar Operation Compiling result

ff0 rz, rx RZ ¬ find_first_0(RX); Only 32-bit instructions

exist.

ff0.32 rz, rx

169

FF1 – Fast find 1

Description: Find the first bit that is 1 in RX and return the search result to RZ. The

search order is from the highest bit to the lowest bit of RX. If the

highest bit (RX[31]) of RX is 1, return the value of 0 to RZ. If no bit of

1 exists in RX, return the value of 32 to RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit instruction

Operation: RZ ¬ find_first_1(RX);

Grammar: ff1.32 rz, rx

Description: Find the first bit that is 1 in RX and return the search result to RZ. The

search order is from the highest bit to the lowest bit of RX. If the

highest bit (RX[31]) of RX is 1, return the value of 0 to RZ. If no bit of

1 exists in RX, return the value of 32 to RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 1 1 1 0 0 0 1 0 RZ

Unified

instruction

Grammar Operation Compiling result

ff1 rz, rx RZ ¬ find_first_1(RX); Only 32-bit instructions

exist.

ff1.32 rz, rx

170

GRS – Sign generation

Description: Generate the value of sign and this value is determined by the location of

label or 32-bit immediate operand (IMM32). The value of sign is gained

by adding the current PC to the value of sign-extending the 18-bit relative

offset shifting left by 1 bit to 32 bits. The effective range of sign value is

the address space of ±256KB.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: RZ ¬ PC + sign_extend(offset << 1);

Grammar: grs rz, label

grs rz, imm32

Description: Generate the value of sign and this value is determined by the location of

label or 32-bit immediate operand (IMM32). The value of sign is gained

by adding the current PC to the value of sign-extending the 18-bit

relative offset shifting left by 1 bit to 32 bits. The effective range of sign

value is the address space of ±256KB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 0 1 1 Offset

Unified instruction

Grammar Operation Compiling result

grs rz, label

grs rz, imm32

RZ ¬ PC + sign_extend(offset << 1);

Only 32-bit instructions exist.

grs32 rz, label

grs32 rz, imm32

171

IDLY – Ban interrupt identification

Description: After idly, interrupt identification is banned for n instructions, thus an

uninterruptible instruction sequence is executed in multitask

environment.

Influence on flag

bit:

The flag bit C is cleared when idly instruction is executed. If exception

happens to the n instructions after idly instruction is executed

(including tracking or breakpoint exception), C bit is set as 1 and the

interrupt instruction sequence can be observed.

Restriction: The instructions after idly instruction can only be arithmetic and logical

instructions of single clock period, ld, st or branch instruction. In order

to minimize some potential interrupt influences, other instructions

should not be adopted; otherwise, we cannot guarantee that the

instruction will not be interrupted. If there is another idly instruction in

the instruction sequence after idly, it will be ignored. However, rte, rfi,

doze, wait and stop instructions can stop idly instruction sequence.

Idly instruction is not allowed to appear in a cycle with less than 8

instructions.

Exception: None

Remark: If idly counter stays in a non-zero state, interrupt will be shielded. If a

breakpoint exception or tracking exception happens in idly instruction

sequence, C bit will be set as 1 and operation failure will happen to the

sequence. In the process of exception handling, interrupt shielding

becomes invalid, thus the counter will be cleared.

The idly counter remains unchanged in the debugging process of using

HAD debugging port. Once the processor transforms into normal

operation from debugging mode, count will be continued.

Note: n is decided by IMM5. When IMM5 is smaller than or equal to 3,

Unified

instruction

Grammar Operation Compiling result

idly n Ban interrupt identification for n

instructions

Only 32-bit instructions

exist.

idly32 n

172

n is 4; when IMM5 is greater than 3, n is (IMM5+1).

IMM5:

00000 – n=4

00001 – n=4

00010 – n=4

00011 – n=4

00100 – n=5

……

11111 – n=32

32-bit instruction

Operation: Ban interrupt identification for n instructions

disable_int_in_following(n);

Grammar: idly32 n

Description: After idly, interrupt identification is banned for n instructions, thus an

uninterruptible instruction sequence is executed in multitask

environment.

Influence on flag

bit:

The flag bit C is cleared when idly instruction is executed. If exception

happens to the n instructions after idly instruction is executed

(including tracking or breakpoint exception), C bit is set as 1 and the

interrupt instruction sequence can be observed.

Restriction: The instructions after idly instruction can only be arithmetic and logical

instructions of single clock period, ld, st or branch instruction. In order

to minimize some potential interrupt influences, other instructions

should not be adopted; otherwise, we cannot guarantee that the

instruction will not be interrupted. If there is another idly instruction in

the instruction sequence after idly, it will be ignored. However, rte, rfi,

doze, wait and stop instructions can stop idly instruction sequence.

Idly instruction is not allowed to appear in a cycle with less than 8

instructions.

Exception: None

Remark: If idly counter stays in a non-zero state, interrupt will be shielded. If a

breakpoint exception or tracking exception happens in idly instruction

sequence, C bit will be set as 1 and operation failure will happen to the

sequence. In the process of exception handling, interrupt shielding

becomes invalid, thus the counter will be cleared.

173

The idly counter remains unchanged in the debugging process of using

HAD debugging port. Once the processor transforms into normal

operation from debugging mode, count will be continued.

Note: n is decided by IMM5. When IMM5 is smaller than or equal to 3,

n is 4; when IMM5 is greater than 3, n is (IMM5+1).

IMM5:

00000 – n=4

00001 – n=4

00010 – n=4

00011 – n=4

00100 – n=5

……

11111 – n=32

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 IMM5 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 1 0 0 0 0 0

174

INCF – C=0 add immediate

Description: If the condition bit C is 0, zero-extend the 5-bit immediate operand to

32 bits, add this 32-bit value to RX value, and save the result in RZ;

otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit instruction

Operation: if C==0, then

RZ ¬ RX + zero_extend(IMM5);

else

 RZ ¬ RZ;

Grammar: incf32 rz, rx, imm5

Description: If the condition bit C is 0, zero-extend the 5-bit immediate operand to

32 bits, add this 32-bit value to RX value, and save the result in RZ;

otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

incf rz, rx, imm5 if C==0, then

RZ ¬ RX + zero_extend(IMM5);

else

 RZ ¬ RZ;

Only 32-bit instructions

exist.

incf32 rz, rx, imm5

175

1 1 0 0 0 1 RZ RX 0 0 0 0 1 1 0 0 0 0 1 IMM5

176

INCT – C=1 add immediate

Description: If the condition bit C is 1, zero-extend the 5-bit immediate operand to

32 bits, add this 32-bit value to RX value, and save the result in RZ;

otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit instruction

Operation: if C==1, then

RZ ¬ RX + zero_extend(IMM5);

else

 RZ ¬ RZ;

Grammar: inct32 rz, rx, imm5

Description: If the condition bit C is 1, zero-extend the 5-bit immediate operand to

32 bits, add this 32-bit value to RX value, and save the result in RZ;

otherwise, keep the values of RZ and RX unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

inct rz, rx, imm5 if C==1, then

RZ ¬ RX + zero_extend(IMM5);

else

 RZ ¬ RZ;

Only 32-bit instructions

exist.

inct32 rz, rx, imm5

177

1 1 0 0 0 1 RZ RX 0 0 0 0 1 1 0 0 0 1 0 IMM5

178

INS – Bit insert

Description: Insert a section of consecutive low bits of RX into a section of

consecutive bits of RZ (RZ[MSB:LSB]) appointed by 2 5-bit

immediate operands (MSB,LSB), and keep other bits of RZ unchanged;

the consecutive low bit width of RX is assigned by MSB and LSB (i.e.

RX[MSB-LSB:0]). If MSB is equal to 31 and LSB is equal to zero, RZ

value is the same with RX value. If MSB is equal to LSB, then MSB

(i.e. LSB) bit of RZ is the lowest bit of RX, and other bits remain

unchanged. If MSB is smaller than LSB, behavior of this instruction

cannot be predicted.

Influence on flag

bit:

No influence

Restriction: The range of MSB is 0-31, the range of LSB is 0-31, and MSB should

be greater than or equal to LSB.

Exception: None

32-bit instruction

Operation: RZ[MSB:LSB] ¬ RX[MSB-LSB:0]

Grammar: ins32 rz, rx, msb, lsb

Description: Insert a section of consecutive low bits of RX into a section of

consecutive bits of RZ (RZ[MSB:LSB]) appointed by 2 5-bit

immediate operands (MSB,LSB), and keep other bits of RZ unchanged;

the consecutive low bit width of RX is assigned by MSB and LSB (i.e.

RX[MSB-LSB:0]). If MSB is equal to 31 and LSB is equal to zero, RZ

value is the same with RX value. If MSB is equal to LSB, then MSB

(i.e. LSB) bit of RZ is the lowest bit of RX, and other bits remain

unchanged. If MSB is smaller than LSB, behavior of this instruction

Unified

instruction

Grammar Operation Compiling result

ins rz, rx, msb,

lsb

RZ[MSB:LSB] ¬ RX[MSB-LSB:0] Only 32-bit instructions

exist.

ins32 rz, rx, msb, lsb

179

cannot be predicted.

Influence on flag

bit:

No influence

Restriction: The range of MSB is 0-31, the range of LSB is 0-31, and MSB should

be greater than or equal to LSB.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RZ RX 0 1 0 1 1 1 SIZE LSB

SIZE field – Assign the width of inserted bit.

Attention: The binary operand SIZE is equal to MSB-LSB.

00000 – 1

00001 – 2

……

11111 – 32

LSB field – Assign the bit that ends the insertion.

00000 – 0 bit

00001 – 1 bit

……

11111 – 31 bits

180

IPOP – Interrupt pop

Description: Load the interrupted general-purpose register site {R0~R3, R12, R13}

from the stack pointer register, and then update the stack pointer register

to the top of stack storage. Adopt direct addressing mode of stack

pointer register.

Influence on flag

bit:

No influence

Exception: Access error exception and unaligned exception

16-bit instruction

Operation: Load the interrupted general-purpose register site {R0~R3, R12, R13}

from the stack pointer register, and then update the stack pointer register

to the top of stack storage;

{R0~R3,R12,R13} ¬ MEM[SP]~MEM[SP+20];

SP¬SP+24;

Grammar: ipop16

Description: Load the interrupted general-purpose register site {R0~R3, R12, R13}

from the stack pointer register, and then update the stack pointer register

to the top of stack storage. Adopt direct addressing mode of stack

pointer register.

Influence on flag

bit:

No influence

Unified

instruction

Grammar Operation Compiling result

ipop Load the interrupted

general-purpose register site

{R0~R3, R12, R13} from the stack

pointer register, and then update the

stack pointer register to the top of

stack storage;

{R0~R3,R12,R13} ¬ MEM[SP] ~

MEM[SP+20];

SP¬SP+24;

Only 16-bit instructions exist.

ipop;

181

Exception: Access error exception and unaligned exception

Instruction

format:

15 14 10 9 8 7 5 4 0

0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 1

182

IPUSH – Interrupt pop

Description: Store the interrupted general-purpose register site {R0~R3, R12, R13}

to the stack storage, and then update the stack pointer register to the top

of stack storage. Adopt direct addressing mode of stack pointer register.

Influence on flag

bit:

No influence

Exception: Access error exception and unaligned exception

16-bit instruction

Operation: Store the interrupted general-purpose register site {R0~R3, R12, R13}

to the stack storage, and then update the stack pointer register to the top

of stack storage;

MEM[SP-4]~MEM[SP-24] ¬{R13,R12,R3~R0};

SP¬SP-24;

Grammar: ipush16

Description: Store the interrupted general-purpose register site {R0~R3, R12, R13}

to the stack storage, and then update the stack pointer register to the top

of stack storage. Adopt direct addressing mode of stack pointer register.

Influence on flag

bit:

No influence

Exception: Access error exception and unaligned exception

Instruction

Unified

instruction

Grammar Operation Compiling result

ipush Store the interrupted

general-purpose register site

{R0~R3, R12, R13} to the stack

storage, and then update the stack

pointer register to the top of stack

storage;

MEM[SP-4]~MEM[SP-24]

¬{R13,R12,R3~R0};

SP¬SP-24;

Only 16-bit instructions exist.

ipush;

183

format:

15 14 10 9 8 7 5 4 0

0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0

184

IXH – Index half-word

Description: Make RY value shift left by one bit, add it to RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: RZ ¬ RX + (RY << 1)

Grammar: ixh32 rz, rx, ry

Description: Make RY value shift left by one bit, add it to RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 1 0 0 0 0 0 1 RZ

Unified

instruction

Grammar Operation Compiling result

ixh rz, rx, ry RZ ¬ RX + (RY << 1) Only 32-bit instructions

exist.

ixh32 rz, rx, ry

185

IXW – Index word

Description: Make RY value shift left by two bits, add it to RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: RZ ¬ RX + (RY << 2)

Grammar: ixw32 rz, rx, ry

Description: Make RY value shift left by two bits, add it to RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 1 0 0 0 0 1 0 RZ

Unified

instruction

Grammar Operation Compiling result

ixw rz, rx, ry RZ ¬ RX + (RY << 2) Only 32-bit instructions

exist.

ixw32 rz, rx, ry

186

IXD – Index double word

Description: Make RY value shift left by three bits, add it to RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: RZ ¬ RX + (RY << 3)

Grammar: ixd32 rz, rx, ry

Description: Make RY value shift left by three bits, add it to RX value, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 1 0 0 0 1 0 0 RZ

Unified

instruction

Grammar Operation Compiling result

ixd rz, rx, ry RZ ¬ RX + (RY << 3) Only 32-bit instructions

exist.

ixd32 rz, rx, ry

187

JMP – Register jump

Description: The program jumps to the position appointed by register RX and the

lowest bit of RX is ignored. The jump range of JMP instruction is the

whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: Jump to the position appointed by register

PC ¬ RX & 0xfffffffe

Grammar: jmp16 rx

Description: The program jumps to the position appointed by register RX and the

lowest bit of RX is ignored. The jump range of JMP instruction is the

whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

jmp rx Jump to the position appointed by register

PC ¬ RX & 0xfffffffe

Compiled into

corresponding 16-bit or

32-bit instructions according

to the range of register.

if (x<16), then

jmp16 rx;

else

jmp32 rx;

188

15 14 10 9 6 5 2 1 0

0 1 1 1 1 0 0 0 0 0 RX 0 0

32-bit

instruction

Operation: Jump to the position appointed by register

PC ¬ RX & 0xfffffffe

Grammar: jmp32 rx

Description: The program jumps to the position appointed by register RX and the

lowest bit of RX is ignored. The jump range of JMP instruction is the

whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 0 1 1 0 RX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

189

JMPI – Jump indirect

Description: The program jumps to label position and label is loaded by storage. The

storage address is gained by adding the current PC to the value of

unsigned extending the 16-bit relative offset shifting left by 2 bits to 32

bits, and compulsively clearing the two lowest bits. The jump range of

JMPI instruction is the whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

32-bit

instruction

Operation: The program jumps to the position appointed by storage

PC ¬ MEM[(PC + zero_extend(offset << 2)) & 0xfffffffc]

Grammar: jmpi32 label

Description: The program jumps to label position and label is loaded by storage. The

storage address is gained by adding the current PC to the value of

unsigned extending the 16-bit relative offset shifting left by 2 bits to 32

bits, and compulsively clearing the two lowest bits. The jump range of

JMPI instruction is the whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Instruction

Unified

instruction

Grammar Operation Compiling result

jmpi label The program jumps to the position appointed

by storage

PC ¬ MEM[

(PC + zero_extend(offset << 2)) & 0xfffffffc]

Only 32-bit instructions

exist.

jmpi32 label

190

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 Offset

191

JMPIX – Register index jump

Description: The program jumps to the position of SVBR + RX[7:0] * IMM, IMM ∈

{16, 24, 32, 40}. The 24th high bit of RX is ignored.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: Jump to the position appointed by register index

PC ¬ SVBR + (RX & 0xff) * IMM

Grammar: jmpix16 rx, imm

Description: The program jumps to the position of SVBR + RX[7:0] * IMM, IMM ∈

{16, 24, 32, 40}. The 24th high bit of RX is ignored.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

15 14 11 10 8 7 3 0

Unified

instruction

Grammar Operation Compiling result

jmpix rx, imm Jump to the position appointed by register

index

PC ¬ SVBR + (RX & 0xff) * IMM

Compiled into

corresponding 16-bit or

32-bit instructions according

to the range of register.

if (x<16), then

jmpix16 rx;

else

jmpix32 rx;

192

0 0 1 1 1 RX 1 1 1 0 0 0 IMM2

IMM2 field – Assign the value of immediate operand.

Attention: The corresponding relation between IMM2 value of binary coding and IMM

value in jump instruction is as follows:

2’b00 – *16

2’b01 – *24

2’b10 – *32

2’b11 – *40

32-bit

instruction

Operation: Jump to the position appointed by register index

PC ¬ SVBR + (RX & 0xff) * IMM

Grammar: jmpix32 rx, imm

Description: The program jumps to the position of SVBR + RX[7:0] * IMM, IMM ∈

{16, 24, 32, 40}. The 24th high bit of RX is ignored.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 2 1 0

1 1 1 0 1 0 0 1 1 1 1 RX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 IMM2

IMM2 field – Assign the value of immediate operand.

Attention: The corresponding relation between IMM2 value of binary coding and IMM

value in jump instruction is as follows:

2’b00 – *16

2’b01 – *24

2’b10 – *32

2’b11 – *40

193

JSR – Register jump to subprogram

Description: This instruction saves the return address (PC of the next instruction, i.e.

PC+4 at present) of the subprogram in link register R15, the program is

executed after jumping to the subprogram position appointed by contents

of register RX, and the lowest bit of RX is ignored. The jump range of

JSR instruction is the whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: Link and jump to the subprogram position appointed by register

R15 ¬ PC + 4, PC ¬ RX & 0xfffffffe

Grammar: jsr16 rx

Description: This instruction saves the return address (PC of the next instruction, i.e.

PC+4 at present) of the subprogram in link register R15, the program is

executed after jumping to the subprogram position appointed by contents

of register RX, and the lowest bit of RX is ignored. The jump range of

JSR instruction is the whole address space of 4GB.

Influence on flag No influence

Unified

instruction

Grammar Operation Compiling result

jsr rx Link and jump to the subprogram position

appointed by register

R15 ¬ PC + 4,

PC ¬ RX & 0xfffffffe

Compiled into

corresponding 16-bit or

32-bit instructions

according to the range of

register.

if (x<16), then

jsr16 rx;

else

jsr32 rx;

194

bit:

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 1 0 1 1 1 1 RX 0 1

32-bit

instruction

Operation: Link and jump to the subprogram position appointed by register

R15 ¬ PC + 4, PC ¬ RX & 0xfffffffe

Grammar: jsr32 rx

Description: This instruction saves the return address (PC of the next instruction, i.e.

PC+4 at present) of the subprogram in link register R15, the program is

executed after jumping to the subprogram position appointed by contents

of register RX, and the lowest bit of RX is ignored. The jump range of

JSR instruction is the whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 0 1 1 1 RX 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

195

JSRI – Jump to subprogram indirect

Description: This instruction saves the return address (PC of the next instruction) of

the subprogram in link register R15, the program is executed after

jumping to the label position, and label is loaded by storage. The jump

range of JSR instruction is the whole address space of 4GB. The storage

address is gained by adding the current PC to the value of unsigned

extending the 16-bit relative offset shifting left by 2 bits to 32 bits, and

compulsively clearing the two lowest bits. The jump range of JSRI

instruction is the whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

32-bit

instruction

Operation: The program jumps to the subprogram position appointed by storage

R15 ¬ PC + 4, PC ¬ MEM[(PC + zero_extend(offset << 2)) &

0xfffffffc]

Grammar: jsri32 label

Description: This instruction saves the return address (PC of the next instruction, i.e.

PC+4 at present) of the subprogram in link register R15, the program is

executed after jumping to the label position, and label is loaded by

storage. The jump range of JSR instruction is the whole address space of

Unified

instruction

Grammar Operation Compiling result

jsri label The program jumps to the subprogram

position appointed by storage

R15 ¬ next PC,

PC ¬ MEM[

(PC + zero_extend(offset << 2)) &

0xfffffffc]

Only 32-bit instructions

exist.

jsri32 label;

196

4GB. The storage address is gained by adding the current PC to the value

of unsigned extending the 16-bit relative offset shifting left by 2 bits to

32 bits, and compulsively clearing the two lowest bits. The jump range of

JSRI instruction is the whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 0 1 1 1 0 0 0 0 0 Offset

197

LD.B – Load unsigned and extended byte

Description: Save the byte loaded from storage in register RZ after zero-extension to

32 bits. Adopt the addressing mode of register and immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 12-bit relative offset to

32 bits. The address space of LD.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

16-bit

instruction

Operation: Load byte from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[RX + zero_extend(offset)])

Grammar: ld16.b rz, (rx, disp)

Description: Save the byte loaded from storage in register RZ after zero-extension to

32 bits. Adopt the addressing mode of register and immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 5-bit relative offset to

32 bits. The address space of LD16.B instruction is +32B.

Attention: The offset DISP is the offset of binary operand.

Influence on flag No influence

Unified

instruction

Grammar Operation Compiling result

ld.b rz,(rx,

disp)

RZ ¬ zero_extend(MEM[RX +

zero_extend(offset)])

Compiled into 16-bit or 32-bit

instructions according to the range of

offset and register.

if (disp<32)and(x<7) and (z<7), then

ld16.b rz, (rx, disp);

else

ld32.b rz, (rx, disp);

198

bit:

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

15 14 11 10 8 7 5 4 0

1 0 0 0 0 RX RZ Offset

32-bit

instruction

Operation: Load byte from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[RX + zero_extend(offset)])

Grammar: ld32.b rz, (rx, disp)

Description: Save the byte loaded from storage in register RZ after zero-extension to

32 bits. Adopt the addressing mode of register and immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 12-bit relative offset

to 32 bits. The address space of LD32.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 RZ RX 0 0 0 0 Offset

199

LD.BS – Load signed and extended byte

Description: Save byte loaded from storage in register RZ after sign-extension to 32

bits. Adopt the addressing mode of register and immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 12-bit relative offset

to 32 bits. The address space of LD.BS instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

32-bit instruction

Operation: Load byte from storage to register, extend signed

RZ ¬ sign_extend(MEM[RX + zero_extend(offset)])

Grammar: ld32.bs rz, (rx, disp)

Description: Save byte loaded from storage in register RZ after sign-extension to 32

bits. Adopt the addressing mode of register and immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 12-bit relative offset

to 32 bits. The address space of LD32.BS instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Unified

instruction

Grammar Operation Compiling result

ld.bs rz, (rx, disp) RZ ¬ sign_extend(MEM[RX +

zero_extend(offset)])

Only 32-bit instructions exist.

ld32.bs rz, (rx, disp)

200

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 RZ RX 0 1 0 0 Offset

201

LD.D – Load double word

Description: Load double word from storage to register RZ and RZ + 1. Adopt the

addressing mode of register and immediate operand offset. The

effective address of storage is gained by adding the base register RX to

the value of unsigned extending the 12-bit relative offset shifting left

by 2 bits to 32 bits. The address space of LD.D instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

32-bit instruction

Operation: Load double word from storage to register

RZ ¬ MEM[RX + zero_extend(offset << 2)]

RZ + 1 ¬ MEM[RX + zero_extend(offset << 2) + 0x4]

Grammar: ld32.d rz, (rx, disp)

Description: Load double word from storage to register RZ and RZ + 1. Adopt the

addressing mode of register and immediate operand offset. The

effective address of storage is gained by adding the base register RX to

the value of unsigned extending the 12-bit relative offset shifting left

by 2 bits to 32 bits. The address space of LD32.D instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag No influence

Unified

instruction

Grammar Operation Compiling result

ld.d rz, (rx, disp) RZ ¬ MEM[RX +

zero_extend(offset << 2)]

RZ + 1 ¬ MEM[RX +

zero_extend(offset << 2) + 0x4]

Only 32-bit instructions exist.

ld32.d rz, (rx, disp);

202

bit:

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 RZ RX 0 0 1 1 Offset

203

LD.H – Load unsigned and extended half-word

Description: Save half-word loaded from storage in register RZ after zero-extension

to 32 bits. Adopt the addressing mode of register and immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 12-bit relative

offset shifting left by 1 bit to 32 bits. The address space of LD.H

instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 1 bit.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

16-bit instruction

Operation: Load half-word from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[RX + zero_extend(offset << 1)])

Grammar: ld16.h rz, (rx, disp)

Description: Save half-word loaded from storage in register RZ after zero-extension

to 32 bits. Adopt the addressing mode of register and immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 5-bit relative

offset shifting left by 1 bit to 32 bits. The address space of LD16.H

Unified

instruction

Grammar Operation Compiling result

ld.h rz, (rx, disp) RZ ¬ zero_extend(MEM[RX

+ zero_extend(offset << 1)])

Compiled into 16-bit or 32-bit

instructions according to the range of

offset and register.

if (disp<64)and(x<7) and (z<7), then

ld16.h rz, (rx, disp);

else

ld32.h rz, (rx, disp);

204

instruction is +64B.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 1 bit.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

15 14 11 10 8 7 5 4 0

1 0 0 0 1 RX RZ Offset

32-bit instruction

Operation: Load half-word from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[RX + zero_extend(offset << 1)])

Grammar: ld32.h rz, (rx, disp)

Description: Save half-word loaded from storage in register RZ after zero-extension

to 32 bits. Adopt the addressing mode of register and immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 12-bit relative

offset shifting left by 1 bit to 32 bits. The address space of LD32.H

instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 1 bit.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 RZ RX 0 0 0 1 Offset

205

LD.HS – Load signed and extended half-word

Description: Save half-word loaded from storage in register RZ after sign-extension

to 32 bits. Adopt the addressing mode of register and immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 12-bit relative

offset shifting left by 1 bit to 32 bits. The address space of LD.HS

instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 1 bit.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

32-bit instruction

Operation: Load half-word from storage to register, extend signed

RZ ¬ sign_extend(MEM[RX + zero_extend(offset << 1)])

Grammar: ld32.hs rz, (rx, disp)

Description: Save half-word loaded from storage in register RZ after signed

extension to 32 bits. Adopt the addressing mode of register and

immediate operand offset. The effective address of storage is gained by

adding the base register RX to the value of unsigned extending the

12-bit relative offset shifting left by 1 bit to 32 bits. The address space

of LD32.HS instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 1 bit.

Influence on flag No influence

Unified

instruction

Grammar Operation Compiling result

ld.hs rz, (rx, disp) RZ ¬ sign_extend(MEM[RX +

zero_extend(offset << 1)])

Only 32-bit instructions exist.

ld32.hs rz, (rx, disp)

206

bit:

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 RZ RX 0 1 0 1 Offset

207

LD.W – Load word

Description: Load word from storage to register RZ. Adopt the addressing mode of

register and immediate operand offset. The effective address of storage

is gained by adding the base register RX to the value obtained of

unsigned extending the 12-bit relative offset shifting left by 2 bits to 32

bits. The address space of LD.W instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

16-bit instruction

Operation: Load word from storage to register

RZ ¬ MEM[RX + sign_extend(offset << 2)]

Grammar: ld16.w rz, (rx, disp)

ld16.w rz, (sp, disp)

Description: Load word from storage to register RZ. Adopt the addressing mode of

register and immediate operand offset. When RX is SP, the effective

address of storage is gained by adding the base register RX to the value

Unified

instruction

Grammar Operation Compiling result

ld.w rz, (rx, disp) RZ ¬ MEM[RX +

zero_extend(offset << 2)]

Compiled into 16-bit or 32-bit

instructions according to the range of

offset and register.

if (x=sp) and (z<7) and (disp < 1024),

ld16.w rz, (sp, disp);

else if (disp<128) and (x<7) and (z<7),

ld16.w rz, (rx, disp);

else

ld32.w rz, (rx, disp);

208

of unsigned extending the 8-bit relative offset shifting left by 2 bits to

32 bits. When rx is other register, the effective address of storage is

gained by adding the base register RX to the value of unsigned

extending the 5-bit relative offset shifting left by 2 bits to 32 bits. The

address space of LD16.W instruction is +1KB.

Attention: The offset DISP is gained after the binary operand IMM5

shifts left by 2 bits. When the base register RX is SP, the offset DISP is

gained after the binary operand {IMM3, IMM5} shifts left by 2 bits.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

ld16.w rz, (rx, disp)

15 14 11 10 8 7 5 4 0

1 0 0 1 0 RX RZ IMM5

ld16.w rz, (sp, disp)

15 14 11 10 8 7 5 4 0

1 0 0 1 1 IMM3 RZ IMM5

32-bit instruction

Operation: Load word from storage to register

RZ ¬ MEM[RX + zero_extend(offset << 2)]

Grammar: ld32.w rz, (rx, disp)

Description: Load word from storage to register RZ. Adopt the addressing mode of

register and immediate operand offset. The effective address of storage

is gained by adding the base register RX to the value of unsigned

extending the 12-bit relative offset shifting left by 2 bits to 32 bits. The

address space of LD32.W instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag No influence

209

bit:

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 RZ RX 0 0 1 0 Offset

210

LDCPR – Load word to co-processor

Description: Load word from storage to general-purpose register of co-processor

CPRZ. Adopt the addressing mode of register and immediate operand

offset. Bits 24-21 are agreed as co-processor numbers and used to

assign co-processor of pre-operation. 12 low bits are user defined.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

32-bit instruction

Operation: Load word from storage to general-purpose register of co-processor

CPRZ ¬ MEM[RX + zero_extend(offset << 2)]

Grammar: ldcpr32 <cpid, cprz>, (rx, offset)

Description: Load word from storage to general-purpose register of co-processor

CPRZ. Adopt the addressing mode of register and immediate operand

offset. Bits 24-21 are agreed as co-processor numbers and used to

assign co-processor of pre-operation. 12 low bits are user defined.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

Unified

instruction

Grammar Operation Compiling result

ldcpr <cpid, cprz>,

(rx, offset)

CPRZ ¬ MEM[RX +

zero_extend(offset << 2)]

Only 32-bit instructions exist.

ldcpr32 <cpid, cprz>, (rx, offset)

211

1 1 1 0 1 0 0 CPID RX 0 1 1 0 User-define

212

LDEX.W – Load word exclusive

Description: Load word from storage to general-purpose register RZ. Adopt the

addressing mode of register and immediate operand offset. The

effective address of storage is gained by adding the base register RX to

the value of unsigned extending the 12-bit relative offset shifting left

by 2 bits to 32 bits. The address space of LDEX.W instruction is

+16KB.

This instruction matches STEX.W and it is used for atom operation of

“read storage – modify – write storage” in multi-core communication.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

32-bit instruction

Operation: Load word from storage to general-purpose register

RZ ¬ MEM[RX + zero_extend(offset << 2)]

Grammar: ldex32.w rz, (rx, disp)

Description: Load word from storage to general-purpose register RZ. Adopt the

addressing mode of register and immediate operand offset. The

effective address of storage is gained by adding the base register RX to

the value of unsigned extending the 12-bit relative offset shifting left

by 2 bits to 32 bits. The address space of LDEX32.W instruction is

+16KB.

This instruction matches STEX32.W and it is used for atom operation

of “read storage – modify – write storage” in multi-core

communication.

Unified instruction

Grammar Operation Compiling result

ldex.w rz, (rx, disp) RZ ¬ MEM[RX +

zero_extend(offset << 2)]

Only 32-bit instructions exist.

ldex32.w rz, (rx, disp)

213

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 RZ RX 0 1 1 1 Offset

214

LDM – Load consecutive multiword

Description: Load multiple consecutive words from storage to a group of consecutive

register files starting from register RY. In another word, load the first

word in the address appointed by storage to register RY; load the second

word to register RY+1, and the like; load the last word to register RZ.

The effective address of storage is decided by the contents of base

register RX.

Influence on flag

bit:

No influence

Restriction: RZ should be greater than and equal to RY.

The base register RX should not be included within the range of RY-RZ;

otherwise, the result will be unpredictable.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

32-bit

instruction

Operation: Load multiple consecutive words from storage to a group of consecutive

register files

dst ¬ Y; addr ¬ RX;

for (n = 0; n <= IMM5; n++){

Unified

instruction

Grammar Operation Compiling result

ldm ry-rz, (rx) Load multiple consecutive words

from storage to a group of

consecutive register files

dst ¬ Y; addr ¬ RX;

for (n = 0; n <= (Z-Y); n++){

 Rdst ¬ MEM[addr];

 dst ¬ dst + 1;

 addr ¬ addr + 4;

}

Only 32-bit instructions exist.

ldm32 ry-rz, (rx);

215

 Rdst ¬ MEM[addr];

 dst ¬ dst + 1;

 addr ¬ addr + 4;

}

Grammar: ldm32 ry-rz, (rx)

Description: Load multiple consecutive words from storage to a group of consecutive

register files starting from register RY. In another word, load the first

word in the address appointed by storage to register RY; load the second

word to register RY+1, and the like; load the last word to register RZ. The

effective address of storage is decided by the contents of base register RX.

Influence on

flag bit:

No influence

Restriction: RZ should be greater than and equal to RY.

The base register RX should not be included within the range of RY-RZ;

otherwise, the result will be unpredictable.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 1 1 0 0 0 0 1 IMM5

IMM5 field – Assign the number of destination registers, IMM5 = Z – Y.

00000 – 1 destination register

00001 – 2 destination registers

……

11111 – 32 destination registers

216

LDQ – Load consecutive quad word#

Description: Load 4 consecutive words from storage to register file [R4, R7]

(including boundary) successively. In another word, load the first word in

the address appointed by storage to register R4, load the second word to

register R5, load the third word to register R6, and load the fourth word

to register R7. The effective address of storage is decided by the contents

of base register RX.

Attention: This instruction is the pseudo instruction of ldm r4-r7, (rx).

Influence on flag

bit:

No influence

Restriction: The base register RX should not be included within the range of R4-R7;

otherwise, the result will be unpredictable.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

32-bit instruction

Operation: Load four consecutive words from storage to registers R4-R7

dst ¬ 4; addr ¬ RX;

for (n = 0; n <= 3; n++){

 Rdst ¬ MEM[addr];

 dst ¬ dst + 1;

Unified

instruction

Grammar Operation Compiling result

ldq r4-r7, (rx) Load four consecutive words from

storage to registers R4-R7

dst ¬ 4; addr ¬ RX;

for (n = 0; n <= 3; n++){

 Rdst ¬ MEM[addr];

 dst ¬ dst + 1;

 addr ¬ addr + 4;

}

Only 32-bit instructions exist.

ldq32 r4-r7, (rx);

217

 addr ¬ addr + 4;

}

Grammar: ldq32 r4-r7, (rx)

Description: Load 4 consecutive words from storage to register file [R4, R7]

(including boundary) successively. In another word, load the first word

in the address appointed by storage to register R4, load the second word

to register R5, load the third word to register R6, and load the fourth

word to register R7. The effective address of storage is decided by the

contents of base register RX.

Attention: This instruction is the pseudo instruction of ldm32 r4-r7, (rx).

Influence on flag

bit:

No influence

Restriction: The base register RX should not be included within the range of R4-R7;

otherwise, the result will be unpredictable.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 0 0 1 0 0 RX 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1

218

LDR.B – Load unsigned and extended byte in register offset

addressing

Description: Save byte loaded from storage in register RZ after zero-extension to 32

bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load byte from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[RX + RY << IMM2])

Grammar: ldr32.b rz, (rx, ry << 0)

ldr32.b rz, (rx, ry << 1)

ldr32.b rz, (rx, ry << 2)

ldr32.b rz, (rx, ry << 3)

Description: Save byte loaded from storage in register RZ after zero-extension to 32

bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Unified instruction

Grammar Operation Compiling result

ldr.b rz, (rx, ry << 0)

ldr.b rz, (rx, ry << 1)

ldr.b rz, (rx, ry << 2)

ldr.b rz, (rx, ry << 3)

Load byte from storage to register,

extend unsigned

RZ ¬ zero_extend(MEM[RX + RY

<< IMM2])

Only 32-bit instructions

exist.

ldr32.b rz, (rx, ry << 0)

ldr32.b rz, (rx, ry << 1)

ldr32.b rz, (rx, ry << 2)

ldr32.b rz, (rx, ry << 3)

219

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

ldr32.b rz, (rx, ry << 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 0 0 0 0 0 1 RZ

ldr32.b rz, (rx, ry << 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 0 0 0 0 1 0 RZ

ldr32.b rz, (rx, ry << 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 0 0 0 1 0 0 RZ

ldr32.b rz, (rx, ry << 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 0 0 1 0 0 0 RZ

220

LDR.BS – Load signed and extended byte in register offset

addressing

Description: Save byte loaded from storage in register RZ after sign-extension to 32

bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load byte from storage to register, extend signed

RZ ¬ sign_extend(MEM[RX + RY << IMM2])

Grammar: ldr32.bs rz, (rx, ry << 0)

ldr32.bs rz, (rx, ry << 1)

ldr32.bs rz, (rx, ry << 2)

ldr32.bs rz, (rx, ry << 3)

Description: Save byte loaded from storage in register RZ after sign-extension to 32

bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Unified instruction

Grammar Operation Compiling result

ldr.bs rz, (rx, ry << 0)

ldr.bs rz, (rx, ry << 1)

ldr.bs rz, (rx, ry << 2)

ldr.bs rz, (rx, ry << 3)

Load byte from storage to register,

extend signed

RZ ¬ sign_extend(MEM[RX + RY

<< IMM2])

Only 32-bit instructions

exist.

ldr32.bs rz, (rx, ry << 0)

ldr32.bs rz, (rx, ry << 1)

ldr32.bs rz, (rx, ry << 2)

ldr32.bs rz, (rx, ry << 3)

221

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

ldr32.bs rz, (rx, ry<< 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 0 0 0 0 0 1 RZ

ldr32.bs rz, (rx, ry<< 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 0 0 0 0 1 0 RZ

ldr32.bs rz, (rx, ry<< 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 0 0 0 1 0 0 RZ

ldr32.bs rz, (rx, ry<< 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 0 0 1 0 0 0 RZ

222

LDR.H – Load unsigned and extended half-word in register

offset addressing

Description: Save half-word loaded from storage in register RZ after zero-extension to

32 bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

32-bit

instruction

Operation: Load half-word from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[RX + RY << IMM2])

Grammar: ldr32.h rz, (rx, ry << 0)

ldr32.h rz, (rx, ry << 1)

ldr32.h rz, (rx, ry << 2)

ldr32.h rz, (rx, ry << 3)

Description: Save half-word loaded from storage in register RZ after zero-extension to

32 bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

Unified instruction

Grammar Operation Compiling result

ldr.h rz, (rx, ry << 0)

ldr.h rz, (rx, ry << 1)

ldr.h rz, (rx, ry << 2)

ldr.h rz, (rx, ry << 3)

Load half-word from storage to

register, extend unsigned

RZ ¬ zero_extend(MEM[RX + RY

<< IMM2])

Only 32-bit instructions

exist.

ldr32.h rz, (rx, ry << 0)

ldr32.h rz, (rx, ry << 1)

ldr32.h rz, (rx, ry << 2)

ldr32.h rz, (rx, ry << 3)

223

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

Instruction

format:

ldr32.h rz,(rx, ry << 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 1 0 0 0 0 1 RZ

ldr32.h rz,(rx, ry << 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 1 0 0 0 1 0 RZ

ldr32.h rz,(rx, ry << 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 1 0 0 1 0 0 RZ

ldr32.h rz,(rx, ry << 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 0 1 0 1 0 0 0 RZ

224

LDR.HS – Load signed and extended half-word in register

offset addressing

Description: Save half-word loaded from storage in register RZ after sign-extension to

32 bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

32-bit

instruction

Operation: Load half-word from storage to register, extend signed

RZ ¬ sign_extend(MEM[RX + RY << IMM2])

Grammar: ldr32.hs rz, (rx, ry << 0)

ldr32.hs rz, (rx, ry << 1)

ldr32.hs rz, (rx, ry << 2)

ldr32.hs rz, (rx, ry << 3)

Description: Save half-word loaded from storage in register RZ after sign-extension to

32 bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

Unified instruction

Grammar Operation Compiling result

ldr.hs rz, (rx, ry << 0)

ldr.hs rz, (rx, ry << 1)

ldr.hs rz, (rx, ry << 2)

ldr.hs rz, (rx, ry << 3)

Load half-word from storage to

register, extend signed

RZ ¬ sign_extend(MEM[RX + RY

<< IMM2])

Only 32-bit instructions

exist.

ldr32.hs rz, (rx, ry << 0)

ldr32.hs rz, (rx, ry << 1)

ldr32.hs rz, (rx, ry << 2)

ldr32.hs rz, (rx, ry << 3)

225

the value gained by making offset register RY shift left by 2-bit

immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

Instruction

format:

ldr32.hs rz, (rx, ry << 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 1 0 0 0 0 1 RZ

ldr32.hs rz, (rx, ry << 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 1 0 0 0 1 0 RZ

ldr32.hs rz, (rx, ry << 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 1 0 0 1 0 0 RZ

ldr32.hs rz, (rx, ry << 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 1 0 1 0 1 0 0 0 RZ

226

LDR.W – Load word in register offset addressing

Description: Load word from storage to register RZ. Adopt the addressing mode of

register and register offset. The effective address of storage is gained by

adding the base register RX to the value gained by making offset register

RY shift left by 2-bit immediate operand IMM2. The default value of

IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

32-bit

instruction

Operation: Load word from storage to register

RZ ¬ MEM[RX + RY << IMM2]

Grammar: ldr32.w rz, (rx, ry << 0)

ldr32.w rz, (rx, ry << 1)

ldr32.w rz, (rx, ry << 2)

ldr32.w rz, (rx, ry << 3)

Description: Load word from storage to register RZ. Adopt the addressing mode of

register and register offset. The effective address of storage is gained by

adding the base register RX to the value gained by making offset register

RY shift left by 2-bit immediate operand IMM2. The default value of

IMM2 is 0.

Influence on flag No influence

Unified instruction

Grammar Operation Compiling result

ldr.w rz, (rx, ry << 0)

ldr.w rz, (rx, ry << 1)

ldr.w rz, (rx, ry << 2)

ldr.w rz, (rx, ry << 3)

Load word from storage to register

RZ ¬ MEM[RX + RY << IMM2]

Only 32-bit instructions

exist.

ldr32.w rz, (rx, ry << 0)

ldr32.w rz, (rx, ry << 1)

ldr32.w rz, (rx, ry << 2)

ldr32.w rz, (rx, ry << 3)

227

bit:

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

Instruction

format:

ldr32.w rz, (rx, ry << 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 1 0 0 0 0 0 1 RZ

ldr32.w rz, (rx, ry << 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 1 0 0 0 0 1 0 RZ

ldr32.w rz, (rx, ry << 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 1 0 0 0 1 0 0 RZ

ldr32.w rz, (rx, ry << 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 0 RY RX 0 0 0 0 1 0 0 1 0 0 0 RZ

228

LRS.B – Load byte sign

Description: Load the byte sign in the place where label is located, and save it in

destination register RZ after zero-extension to 32 bits. Adopt the

addressing mode of register and immediate operand offset. The effective

address of storage is gained by adding base register R28 to the value of

unsigned extending the 18-bit relative offset to 32 bits. The address space

of LRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load byte sign from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[R28 + zero_extend(offset)])

Grammar: lrs32.b rz, [label]

Description: Load the byte sign in the place where label is located, and save it in

destination register RZ after zero-extension to 32 bits. Adopt the

addressing mode of register and immediate operand offset. The effective

address of storage is gained by adding base register R28 to the value of

unsigned extending the 18-bit relative offset to 32 bits. The address space

of LRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Unified

instruction

Grammar Operation Compiling result

lrs.b rz, [label] Load byte from storage to

register

RZ ¬ zero_extend(MEM[R28 +

zero_extend(offset)])

Only 32-bit instructions exist.

lrs32.b rz, [label]

229

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 0 0 0 Offset

230

LRS.H – Load half-word sign

Description: Load the half-word sign in the place where label is located, and save it in

destination register RZ after zero-extension to 32 bits. Adopt the

addressing mode of register and immediate operand offset. The effective

address of storage is gained by adding base register R28 to the value of

unsigned extending the 18-bit relative offset shifting left by 1 bit to 32

bits. The address space of LRS.H instruction is +512KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load half-word sign from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[R28 + zero_extend(offset << 1)])

Grammar: lrs32.h rz, [label]

Description: Load the half-word sign in the place where label is located, and save it in

destination register RZ after zero-extension to 32 bits. Adopt the

addressing mode of register and immediate operand offset. The effective

address of storage is gained by adding base register R28 to the value of

unsigned extending the 18-bit relative offset shifting left by 1 bit to 32

bits. The address space of LRS.H instruction is +512KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Unified

instruction

Grammar Operation Compiling result

lrs.h rz, [label] RZ ¬ zero_extend(MEM[R28 +

zero_extend(offset << 1)])

Only 32-bit instructions exist.

lrs32.h rz, [label]

231

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 0 0 1 Offset

232

LRS.W – Load word sign

Description: Load the word sign in the place where label is located, and save it in

destination register RZ after zero-extension to 32 bits. Adopt the

addressing mode of register and immediate operand offset. The effective

address of storage is gained by adding base register R28 to the value of

unsigned extending the 18-bit relative offset shifting left by 2 bits to 32

bits. The address space of LRS.W instruction is +1024KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load word sign from storage to register, extend unsigned

RZ ¬ zero_extend(MEM[R28 + zero_extend(offset << 2)])

Grammar: lrs32.w rz, [label]

Description: Load the word sign in the place where label is located, and save it in

destination register RZ after zero-extension to 32 bits. Adopt the

addressing mode of register and immediate operand offset. The effective

address of storage is gained by adding base register R28 to the value of

unsigned extending the 18-bit relative offset shifting left by 2 bits to 32

bits. The address space of LRS.W instruction is +1024KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Unified

instruction

Grammar Operation Compiling result

lrs.w rz, [label] RZ ¬ zero_extend(MEM[R28 +

zero_extend(offset << 2)])

Only 32-bit instructions exist.

lrs32.w rz, [label]

233

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 0 1 0 Offset

234

LRW – Memory read-in

Description: Load the word in the place where label is located or 32-bit immediate

operand (IMM32) to destination register RZ. The storage address is

gained by adding PC to the relative offset shifting left by 2 bits, unsigned

extending it to 32 bits, and compulsively clearing the two lowest bits. The

load range of LRW instruction is the whole address space of 4GB.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

16-bit

instruction----1

Operation: Load word from storage to register

RZ ¬ zero_extend(MEM[(PC + zero_extend(offset << 2)) & 0xfffffffc])

Grammar: lrw16 rz, label

lrw16 rz, imm32

Description: Load the word in the place where label is located or 32-bit immediate

operand (IMM32) to destination register RZ. The storage address is

Unified

instruction

Grammar Operation Compiling result

lrw rz, label

lrw rz, imm32

Load word from storage to register

RZ ¬ zero_extend(MEM[(PC +

zero_extend(offset << 2)) & 0xfffffffc])

Compiled into

corresponding 16-bit or

32-bit instructions

according to the range of

load

if(offset<1020B), then

 lrw16 label;

 lrw16 imm32;

else

lrw32 label;

 lrw32 imm32;

235

gained by adding PC to the 8-bit relative offset shifting left by 2 bits,

unsigned extending it to 32 bits, and compulsively clearing the two

lowest bits. The load range of LRW instruction is the whole address space

of 4GB.

Attention: The relative offset is equal to the binary code {1, ~{IMM2,

IMM5}}.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of relative offset is 0x80-0xfe.

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Instruction

format:

15 14 11 10 9 8 7 5 4 0

0 0 0 0 0 0 IMM2 RZ IMM5

16-bit

instruction----2

Operation: Load word from storage to register

RZ ¬ zero_extend(MEM[(PC + zero_extend(offset << 2)) & 0xfffffffc])

Grammar: lrw16 rz, label

lrw16 rz, imm32

Description: Load the word in the place where label is located or 32-bit immediate

operand (IMM32) to destination register RZ. The storage address is

gained by adding PC to the 8-bit relative offset shifting left by 2 bits,

unsigned extending it to 32 bits, and compulsively clearing the two

lowest bits. The load range of LRW instruction is the whole address space

of 4GB.

Attention: The relative offset is equal to the binary code {0, {IMM2,

IMM5}}.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of relative offset is 0x0-0x7f.

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

236

Instruction

format:

15 14 11 10 9 8 7 5 4 0

0 0 0 1 0 0 IMM2 RZ IMM5

32-bit

instruction

Operation: Load word from storage to register

RZ ¬ zero_extend(MEM[(PC + zero_extend(offset << 2)) & 0xfffffffc])

Grammar: lrw32 rz, label

lrw32 rz, imm32

Description: Load the word in the place where label is located or 32-bit immediate

operand (IMM32) to destination register RZ. The storage address is

gained by adding PC to the 16-bit relative offset shifting left by 2 bits,

unsigned extending it to 32 bits, and compulsively clearing the two

lowest bits. The load range of LRW instruction is the whole address space

of 4GB.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 0 1 0 0 RZ Offset

237

LSL – Logical shift left

Description: For lsl rz, rx, perform a logical left shift on RZ value (the original value

shifts left and 0 will shift to the right side), and save the result in RZ; the

range of left shift is decided by the value of six low bits of RX (RX[5:0]).

If the value of RX[5:0] is greater than 31, RZ will be cleared;

For lsl rz, rx, ry, perform a logical left shift on RX value (the original

value shifts left and 0 will shift to the right side), and save the result in

RZ; the range of left shift is decided by the value of six low bits of RY

(RY[5:0]). If the value of RY[5:0] is greater than 31, RZ will be cleared.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ RZ << RX[5:0]

Unified

instruction

Grammar Operation Compiling result

lsl rz, rx RZ ¬ RZ << RX[5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

lsl16 rz, rx;

else

lsl32 rz, rz, rx;

lsl rz, rx, ry RZ ¬ RX << RY[5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x==z) and (y<16) and (z<16), then

lsl16 rz, ry

else

lsl32 rz, rx, ry

238

Grammar: lsl16 rz, rx

Description: Perform a logical left shift on RZ value (the original value shifts left and

0 will shift to the right side), and save the result in RZ; the range of left

shift is decided by the value of six low bits of RX (RX[5:0]). If the value

of RX[5:0] is greater than 31, RZ will be cleared.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 0 0 RZ RX 0 0

32-bit instruction

Operation: RZ ¬ RX << RY[5:0]

Grammar: lsl32 rz, rx, ry

Description: Perform a logical left shift on RX value (the original value shifts left

and 0 will shift to the right side), and save the result in RZ; the range of

left shift is decided by the value of six low bits of RY (RY[5:0]). If the

value of RY[5:0] is greater than 31, RZ will be cleared.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 1 0 0 0 0 0 0 0 0 1 RZ

239

LSLC – Logical shift left immediate to C

Description: Perform a logical left shift on RX value (the original value shifts left

and 0 will shift to the right side), save the end bit shifting out in

condition bit C, and save the shifting result in RZ; the range of left shift

is decided by the value of 5-bit immediate operand with offset 1

(OIMM5). If the value of OIMM5 is equal to 32, then the condition bit

C is the lowest bit of RX and RZ will be cleared.

Influence on flag

bit:

C ¬ RX[32 – OIMM5]

Restriction: The range of immediate operand is 1-32.

Exception: None

32-bit instruction

Operation: RZ ¬ RX << OIMM5, C ¬ RX[32 – OIMM5]

Grammar: lslc32 rz, rx, oimm5

Description: Perform a logical left shift on RX value (the original value shifts left

and 0 will shift to the right side), save the end bit shifting out in

condition bit C, and save the shifting result in RZ; the range of left

shift is decided by the value of 5-bit immediate operand with offset 1

(OIMM5). If the value of OIMM5 is equal to 32, then the condition bit

C is the lowest bit of RX and RZ will be cleared.

Attention: The binary operand IMM5 is equal to OIMM5 – 1.

Influence on flag

bit:

C ¬ RX[32 – OIMM5]

Restriction: The range of immediate operand is 1-32.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

lslc rz, rx, oimm5 RZ ¬ RX << OIMM5, C ¬ RX[32 –

OIMM5]

Only 32-bit instructions exist.

lslc32 rz, rx, oimm5

240

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 1 0 0 0 0 1 RZ

IMM5 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM5, the shifting value OIMM5 requires

offset 1.

00000 – shift by 1 bit

00001 – shift by 2 bits

……

11111 – shift by 32 bits

241

LSLI – Logical shift left immediate

Description: Perform a logical left shift on RX value (the original value shifts left and

0 will shift to the right side), and save the result in RZ; the range of left

shift is decided by the value of 5-bit immediate operand (IMM5). If the

value of IMM5 is equal to zero, RZ value remains unchanged.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 1-31.

Exception: None

16-bit

instruction

Operation: RZ ¬ RX << IMM5

Grammar: lsli16 rz, rx, imm5

Description: Perform a logical left shift on RX value (the original value shifts left and

0 will shift to the right side), and save the result in RZ; the range of left

shift is decided by the value of 5-bit immediate operand (IMM5). If the

value of IMM5 is equal to zero, RZ value remains unchanged.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7;

The range of immediate operand is 1-31.

Exception: None

Unified

instruction

Grammar Operation Compiling result

lsli rz, rx, imm5 RZ ¬ RX << IMM5 Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x<8) and (z<8), then

lsli16 rz, rx, imm5

else

lsli32 rz, rx, imm5

242

Instruction

format:

15 14 11 10 8 7 5 4 0

0 1 0 0 0 RX RZ IMM5

32-bit instruction

Operation: RZ ¬ RX << IMM5

Grammar: lsli32 rz, rx, imm5

Description: Perform a logical left shift on RX value (the original value shifts left

and 0 will shift to the right side), and save the result in RZ; the range of

left shift is decided by the value of 5-bit immediate operand (IMM5). If

the value of IMM5 is equal to zero, RZ value is the same with RX

value.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 1-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 0 0 0 0 0 1 RZ

243

LSR – Logical shift right

Description: For lsr rz, rx, perform a logical right shift on RZ value (the original

value shifts right and 0 will shift to the left side), and save the result in

RZ; the range of right shift is decided by the value of six low bits of RX

(RX[5:0]). If the value of RX[5:0] is greater than 31, RZ will be cleared;

For lsr rz, rx, ry, perform a logical right shift on RX value (the original

value shifts right and 0 will shift to the left side), and save the result in

RZ; the range of right shift is decided by the value of six low bits of RY

(RY[5:0]). If the value of RY[5:0] is greater than 31, RZ will be cleared.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ RZ >> RX[5:0]

Unified

instruction

Grammar Operation Compiling result

lsr rz, rx RZ ¬ RZ >> RX[5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (z<16) and (x<16), then

lsr16 rz, rx;

else

lsr32 rz, rz, rx;

lsr rz, rx, ry RZ ¬ RX >> RY[5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x==z) and (z<16) and (y<16), then

lsr16 rz, ry;

else

lsr32 rz, rx, ry;

244

Grammar: lsr16 rz, rx

Description: Perform a logical right shift on RZ value (the original value shifts right

and 0 will shift to the left side), and save the result in RZ; the range of

right shift is decided by the value of six low bits of RX (RX[5:0]). If the

value of RX[5:0] is greater than 31, RZ will be cleared.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 0 0 RZ RX 0 1

32-bit instruction

Operation: RZ ¬ RX >> RY[5:0]

Grammar: lsr32 rz, rx, ry

Description: Perform a logical right shift on RX value (the original value shifts right

and 0 will shift to the left side), and save the result in RZ; the range of

right shift is decided by the value of six low bits of RY (RY[5:0]). If the

value of RY[5:0] is greater than 31, RZ will be cleared.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 1 0 0 0 0 0 0 0 1 0 RZ

245

LSRC – Logical shift right immediate to C

Description: Perform a logical right shift on RX value (the original value shifts right

and 0 will shift to the left side), save the end bit shifting out in

condition bit C, and save the shifting result in RZ; the range of right

shift is decided by the value of 5-bit immediate operand with offset 1

(OIMM5). If the value of OIMM5 is equal to 32, then the condition bit

C is the highest bit of RX and RZ will be cleared.

Influence on flag

bit:

C ¬ RX[OIMM5 - 1]

Restriction: The range of immediate operand is 1-32.

Exception: None

32-bit instruction

Operation: RZ ¬ RX >> OIMM5, C ¬ RX[OIMM5 - 1]

Grammar: lsrc32 rz, rx, oimm5

Description: Perform a logical right shift on RX value (the original value shifts right

and 0 will shift to the left side), save the end bit shifting out in condition

bit C, and save the shifting result in RZ; the range of right shift is

decided by the value of 5-bit immediate operand with offset 1

(OIMM5). If the value of OIMM5 is equal to 32, then the condition bit

C is the highest bit of RX and RZ will be cleared.

Attention: The binary operand IMM5 is equal to OIMM5 – 1.

Influence on flag

bit:

C ¬ RX[OIMM5 - 1]

Restriction: The range of immediate operand is 1-32.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

lsrc rz, rx, oimm5 RZ ¬ RX >> OIMM5,

C ¬ RX[OIMM5 - 1]

Only 32-bit instructions exist.

lsrc32 rz, rx, oimm5

246

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 1 0 0 0 1 0 RZ

IMM5 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM5, the shifting value OIMM5 requires

offset 1.

00000 – shift by 1 bit

00001 – shift by 2 bits

……

11111 – shift by 32 bits

247

LSRI – Logical shift right immediate

Description: Perform a logical right shift on RX value (the original value shifts right

and 0 will shift to the left side), and save the result in RZ; the range of

right shift is decided by the value of 5-bit immediate operand (IMM5). If

the value of IMM5 is equal to zero, RZ value remains unchanged or is the

same with RX value.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

16-bit

instruction

Operation: RZ ¬ RX >> IMM5

Grammar: lsri16 rz, rx, imm5

Description: Perform a logical right shift on RX value (the original value shifts right

and 0 will shift to the left side), and save the result in RZ; the range of

right shift is decided by the value of 5-bit immediate operand (IMM5). If

the value of IMM5 is equal to zero, RZ value remains unchanged.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 1-31.

Exception: None

Instruction

Unified

instruction

Grammar Operation Compiling result

lsri rz, rx,

imm5

RZ ¬ RX >> IMM5 Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<8) and (z<8), then

lsri16 rz, rx, imm5

else

lsri32 rz, rx, imm5

248

format:

15 14 11 10 8 7 5 4 0

0 1 0 0 1 RX RZ IMM5

32-bit

instruction

Operation: RZ ¬ RX >> IMM5

Grammar: lsri32 rz, rx, imm5

Description: Perform a logical right shift on RX value (the original value shifts right

and 0 will shift to the left side), and save the result in RZ; the range of

right shift is decided by the value of 5-bit immediate operand (IMM5). If

the value of IMM5 is equal to zero, RZ value is the same with RX value.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 0 0 0 0 1 0 RZ

249

MFCR – Read transfer from control register

Attribute: Privileged instruction

Description: Transfer contents in control register CR<x, sel> to general-purpose

register RZ.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

32-bit instruction

Operation: Transfer contents in control register to general-purpose register

RZ ¬ CR<X, sel>

Grammar: mfcr32 rz, cr<x, sel>

Attribute: Privileged instruction

Description: Transfer contents in control register CR<x, sel> to general-purpose

register RZ.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 sel CRX 0 1 1 0 0 0 0 0 0 0 1 RZ

Unified

instruction

Grammar Operation Compiling result

mfcr rz, cr<x,

sel>

Transfer contents in control register

to general-purpose register

RZ ¬ CR<X, sel>

Only 32-bit instructions exist.

mfcr32 rz, cr<x, sel>

250

MFHI – Read transfer from high bit of accumulator

Description: Transfer contents in the 32-high-bit register HI of 64-bit accumulator to

general-purpose register RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Transfer contents in high-bit accumulator register to general-purpose

register

RZ ¬ HI

Grammar: mfhi32 rz

Description: Transfer contents in the 32-high-bit register HI of 64-bit accumulator to

general-purpose register RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 0 0 1 RZ

Unified

instruction

Grammar Operation Compiling result

mfhi rz Transfer contents in high-bit

accumulator register to general-purpose

register

RZ ¬ HI

Only 32-bit instructions exist.

mfhi32 rz

251

MFHIS – Read transfer saturate from high bit of accumulator

Description: Transfer contents in the 32-high-bit register HI of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the

descriptions about guard bit in the processor manual for details about

saturation operation.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Transfer contents in high-bit accumulator register to general-purpose

register after getting the saturation value

RZ ¬ saturate(HI)

Grammar: mfhis32 rz

Description: Transfer contents in the 32-high-bit register HI of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the

descriptions about guard bit in the processor manual for details about

saturation operation.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

mfhis rz Transfer contents in high-bit

accumulator register to general-purpose

register after getting the saturation

value

RZ ¬ saturate(HI)

Only 32-bit instructions exist.

mfhis32 rz

252

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 RZ

253

MFLO – Read transfer from low bit of accumulator

Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Transfer contents in low-bit accumulator register to general-purpose

register

RZ ¬ LO

Grammar: mflo32 rz

Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 RZ

Unified

instruction

Grammar Operation Compiling result

mflo rz Transfer contents in low-bit

accumulator register to general-purpose

register

RZ ¬ LO

Only 32-bit instructions exist.

mflo32 rz

254

MFLOS – Read transfer saturate from low bit of accumulator

Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the

descriptions about guard bit in the processor manual for details about

saturation operation.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Transfer contents in low-bit accumulator register to general-purpose

register after getting the saturation value

RZ ¬ saturate(LO)

Grammar: mflos32 rz

Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the

descriptions about guard bit in the processor manual for details about

saturation operation.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

mflos rz Transfer contents in low-bit

accumulator register to general-purpose

register after getting the saturation

value

RZ ¬ saturate(LO)

Only 32-bit instructions exist.

mflos32 rz

255

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 1 0 0 RZ

256

MOV – Move#

Description: Copy the value in RX to destination register RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ RX

Grammar: mov16 rz, rx

Description: Copy the value in RX to destination register RZ.

Attention: The register index range of this instruction is r0-r31.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 1 RZ RX 1 1

32-bit

instruction

Operation: RZ ¬ RX

Grammar: mov32 rz, rx

Description: Copy the value in RX to destination register RZ.

Attention: This instruction is the pseudo instruction of lsli32 rz, rx, 0x0.

Influence on No influence

Unified

instruction

Grammar Operation Compiling result

mov rz, rx RZ ¬ RX Always compiled into 16-bit

instruction.

mov16 rz, rx

257

flag bit:

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 0 0 1 0 0 0 0 0 1 RZ

258

MOVF – C=0 move#

Description: If C is 0, copy the value of RX to destination register RZ. Otherwise,

keep the value of RZ unchanged.

Attention: This instruction is the pseudo instruction of incf rz, rx, 0x0.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: if C==0, then

RZ ¬ RX;

else

 RZ ¬ RZ;

Grammar: movf32 rz, rx

Description: If C is 0, copy the value of RX to destination register RZ. Otherwise,

keep the value of RZ unchanged.

Attention: This instruction is the pseudo instruction of incf32 rz, rx,

0x0.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

movf rz, rx if C==0, then

RZ ¬ RX;

else

 RZ ¬ RZ;

Only 32-bit instructions exist.

movf32 rz, rx

259

1 1 0 0 0 1 RZ RX 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

260

MOVI – Move immediate

Description: Zero-extend the 16-bit immediate operand to 32 bits, and transfer it to

destination register RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

16-bit instruction

Operation: RZ ¬ zero_extend(IMM8);

Grammar: movi16 rz, imm8

Description: Zero-extend the 8-bit immediate operand to 32 bits, and transfer it to

destination register RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 0-255.

Exception: None

15 14 11 10 8 7 0

0 0 1 1 0 RZ IMM8

32-bit instruction

Operation: RZ ¬ zero_extend(IMM16);

Grammar: movi32 rz, imm16

Unified

instruction

Grammar Operation Compiling result

movi16 rz, imm16 RZ ¬ zero_extend(IMM16); Compiled into corresponding

16-bit or 32-bit instructions

according to the range of

immediate operand and register.

if (imm16<256) and (z<7), then

movi16 rz, imm8;

else

movi32 rz, imm16;

261

Description: Zero-extend the 16-bit immediate operand to 32 bits, and transfer it to

destination register RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 0 0 0 0 RZ IMM16

262

MOVIH – Move immediate high

Description: Zero-extend the 16-bit immediate operand to 32 bits, perform a logical

left shift by 16 bits, and transfer the result to destination register RZ.

This instruction can generate any 32-bit immediate operand by

cooperating with ori rz, rz, imm16 instruction.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

32-bit instruction

Operation: RZ ¬ zero_extend(IMM16) << 16

Grammar: movih32 rz, imm16

Description: Zero-extend the 16-bit immediate operand to 32 bits, perform a logical

left shift by 16 bits, and transfer the result to destination register RZ.

This instruction can generate any 32-bit immediate operand by

cooperating with ori32 rz, rz, imm16 instruction.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 1 0 0 0 1 RZ IMM16

Unified

instruction

Grammar Operation Compiling result

movih rz, imm16 RZ ¬ zero_extend(IMM16) << 16 Only 32-bit instructions

exist.

movih32 rz, imm16

263

MOVT – C=1 move#

Description: If C is 1, copy the value of RX to destination register RZ. Otherwise,

keep the value of RZ unchanged.

Attention: This instruction is the pseudo instruction of inct rz, rx, 0x0.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: if C==1, then

RZ ¬ RX;

else

 RZ ¬ RZ;

Grammar: movt32 rz, rx

Description: If C is 1, copy the value of RX to destination register RZ. Otherwise,

keep the value of RZ unchanged.

Attention: This instruction is the pseudo instruction of inct32 rz, rx,

0x0.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

movt rz, rx if C==1, then

RZ ¬ RX;

else

 RZ ¬ RZ;

Only 32-bit instructions

exist.

movt32 rz, rx

264

1 1 0 0 0 1 RZ RX 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

265

MTCR – Write transfer to control register

Attribute: Privileged instruction

Description: Transfer contents in general-purpose register RX to control register

CR<z, sel>.

Influence on flag

bit:

If the target control register is not PSR, this instruction will not affect

the flag bit.

Exception: Privilege violation exception

32-bit instruction

Operation: Transfer contents in general-purpose register to control register

CR<Z, sel> ¬ RX

Grammar: mtcr32 rx, cr<z, sel>

Attribute: Privileged instruction

Description: Transfer contents in general-purpose register RX to control register

CR<z, sel>.

Influence on flag

bit:

If the target control register is not PSR, this instruction will not affect

the flag bit.

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 sel RX 0 1 1 0 0 1 0 0 0 0 1 CRZ

Unified

instruction

Grammar Operation Compiling result

mtcr rx, cr<z,

sel>

Transfer contents in general-purpose

register to control register

CR<Z, sel> ¬ RX

Only 32-bit instructions

exist.

mtcr32 rx, cr<z, sel>

266

MTHI – Write transfer to high bit of accumulator

Description: Transfer contents in general-purpose register RX to the 32-high-bit

register HI of 64-bit accumulator.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Transfer contents in general-purpose register to high-bit accumulator

register

HI ¬ RX

Grammar: mthi32 rx

Description: Transfer contents in general-purpose register RX to the 32-high-bit

register HI of 64-bit accumulator.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 1 0 0 1 1 1 0 0 0 1 0 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

mthi rx Transfer contents in general-purpose

register to high-bit accumulator register

HI ¬ RX

Only 32-bit instructions

exist.

mthi32 rx

267

MTLO – Write transfer to low bit of accumulator

Description: Transfer contents in general-purpose register RX to the 32-low-bit

register LO of 64-bit accumulator.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Transfer contents in general-purpose register to low-bit accumulator

register

LO ¬ RX

Grammar: mtlo32 rx

Description: Transfer contents in general-purpose register RX to the 32-low-bit

register LO of 64-bit accumulator.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 1 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

mtlo rx Transfer contents in general-purpose

register to low-bit accumulator register

LO ¬ RX

Only 32-bit instructions

exist.

mtlo32 rx

268

MULS – Multiply signed

Description: Multiply the contents in general-purpose register RX and RY, and put the

result in the 64-bit accumulator. The 32 high bits are stored in HI and the

32 low bits are stored in LO. All values in general-purpose register RX

and RY as well as 64-bit accumulator are considered as signed numbers.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

32-bit

instruction

Operation: Multiply two signed numbers and put the result in accumulator

{HI, LO} ¬ RX × RY

Grammar: muls32 rx, ry

Description: Multiply the contents in general-purpose register RX and RY, and put the

result in the 64-bit accumulator. The 32 high bits are stored in HI and the

32 low bits are stored in LO. All values in general-purpose register RX

and RY as well as 64-bit accumulator are considered as signed numbers.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

muls rx, ry Multiply two signed numbers and put the

result in accumulator

{HI, LO} ¬ RX × RY

Only 32-bit instructions

exist.

muls32 rx, ry

269

MULSA – Multiply-accumulate signed

Description: Multiply the contents in general-purpose register RX and RY, add the

product to value in the 64-bit accumulator, and put the result in the

accumulator. The 32 high bits of the result are stored in HI and the 32 low

bits are stored in LO. All values in general-purpose register RX and RY

as well as 64-bit accumulator are considered as signed numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Multiply two signed numbers, add the product to value in accumulator,

and put the result in accumulator

{HI, LO} ¬ {HI, LO} + RX × RY

Grammar: mulsa32 rx, ry

Description: Multiply the contents in general-purpose register RX and RY, add the

product to value in the 64-bit accumulator, and put the result in the

accumulator. The 32 high bits of the result are stored in HI and the 32 low

bits are stored in LO. All values in general-purpose register RX and RY

as well as 64-bit accumulator are considered as signed numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

mulsa rx, ry Multiply two signed numbers, add the

product to value in accumulator, and put the

result in accumulator

{HI, LO} ¬ {HI, LO} + RX × RY

Only 32-bit instructions

exist.

mulsa32 rx, ry

270

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0

271

MULSH – 16-bit multiply signed

Description: Multiply the 16 low bits of general-purpose register RX and 16 low bits

of RZ/RY, and put the result in general-purpose register RZ. All contents

in the registers are considered as signed numbers. The sign bit of source

register is the 15th bit and the sign bit of destination register is the 31st bit.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: Multiply two 16-bit signed numbers and put the result in general-purpose

register

RZ ¬ RX[15:0] × RZ[15:0]

Grammar: mulsh16 rz, rx

Description: Multiply the 16 low bits of general-purpose register RX and 16 low bits

Unified

instruction

Grammar Operation Compiling result

mulsh rz, rx Multiply two 16-bit signed

numbers and put the result in

general-purpose register

RZ ¬ RX[15:0] × RZ[15:0]

Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (x<16) and (y<16), then

 mulsh16 rz, rx;

else

mulsh32 rz, rz, rx;

mulsh rz, rx, ry Multiply two 16-bit signed

numbers and put the result in

general-purpose register

RZ ¬ RX[15:0] × RY[15:0]

Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (y==z)and(x<16)and(z<16), then

 mulsh16 rz, rx;

else

mulsh32 rz, rx, ry;

272

of RZ, and put the 32-bit result in general-purpose register RZ. All

contents in register RX and register RZ are considered as signed

numbers. The sign bit of source operand is the 15th bit and the sign bit of

result is the 31st bit.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 1 1 RZ RX 0 1

32-bit

instruction

Operation: Multiply two 16-bit signed numbers and put the result in general-purpose

register

RZ ¬ RX[15:0] × RY[15:0]

Grammar: mulsh32 rz, rx, ry

Description: Multiply the 16 low bits of general-purpose register RX and 16 low bits

of RY, and put the result in general-purpose register RZ. All contents in

register RX, RY and RZ are considered as signed numbers. The sign bit

of source register RX and RY is the 15th bit, and the sign bit of

destination register RZ is the 31st bit.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 1 0 0 0 0 0 0 1 RZ

273

MULSHA – 16-bit multiply-accumulate signed

Description: Multiply the 16 low bits of general-purpose register RX and 16 low bits

of RY, add the 32-bit result to the value in 32-low-bit register LO of

64-bit accumulator, and put the result in low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator

register LO are considered as signed numbers. The sign bit of source

operand in register RX and RY is the 15th bit and the sign bit of source

operand and result in low-bit accumulator register LO is the 31st bit.

This instruction supports 8 guard bits. See the descriptions about guard

bit in the processor manual for more details.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Multiply two 16-bit signed numbers, add the product to low-bit value in

accumulator, and put the result in low bit of accumulator

LO ¬ LO + RX[15:0] × RY[15:0]

Grammar: mulsha32 rx, ry

Description: Multiply the 16 low bits of general-purpose register RX and 16 low bits

of RY, add the 32-bit result to the value in 32-low-bit register LO of

64-bit accumulator, and put the result in low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator

register LO are considered as signed numbers. The sign bit of source

operand in register RX and RY is the 15th bit and the sign bit of source

Unified

instruction

Grammar Operation Compiling result

mulsha rx, ry Multiply two 16-bit signed numbers, add

the product to low-bit value in accumulator,

and put the result in low bit of accumulator

LO ¬ LO + RX[15:0] × RY[15:0]

Only 32-bit instructions

exist.

mulsha32 rx, ry

274

operand and result in low-bit accumulator register LO is the 31st bit.

This instruction supports 8 guard bits. See the descriptions about guard

bit in the processor manual for more details.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0

275

MULSHS – 16-bit multiply-subtract signed

Description: Subtract the value after multiplying the 16 low bits of general-purpose

register RX and 16 low bits of RY from the value in 32-low-bit register

LO of 64-bit accumulator, and put the result in low-bit accumulator

register LO. All contents in register RX and RY as well as low-bit

accumulator register LO are considered as signed numbers. The sign bit

of source operand in register RX and RY is the 15th bit and the sign bit of

source operand and result in low-bit accumulator register LO is the 31st

bit.

This instruction supports 8 guard bits. See the descriptions about guard

bit in the processor manual for more details.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Subtract the value after multiplying two 16-bit signed numbers from the

low-bit value in accumulator, and put the result in low bit of accumulator

LO ¬ LO - RX[15:0] × RY[15:0]

Grammar: mulshs32 rx, ry

Description: Subtract the value after multiplying the 16 low bits of general-purpose

register RX and 16 low bits of RY from the value in 32-low-bit register

LO of 64-bit accumulator, and put the result in low-bit accumulator

register LO. All contents in register RX and RY as well as low-bit

Unified

instruction

Grammar Operation Compiling result

mulshs rx, ry Subtract the value after multiplying two

16-bit signed numbers from the low-bit

value in accumulator, and put the result in

low bit of accumulator

LO ¬ LO - RX[15:0] × RY[15:0]

Only 32-bit instructions

exist.

mulshs32 rx, ry

276

accumulator register LO are considered as signed numbers. The sign bit

of source operand in register RX and RY is the 15th bit and the sign bit of

source operand and result in low-bit accumulator register LO is the 31st

bit.

This instruction supports 8 guard bits. See the descriptions about guard

bit in the processor manual for more details.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0

277

MULSS – Multiply-subtract signed

Description: Subtract the value after multiplying general-purpose register RX and RY

from the value in 64-bit accumulator, and put the result in accumulator.

The 32 high bits of the result are stored in HI and the 32 low bits are

stored in LO. All values in general-purpose register RX and RY as well as

64-bit accumulator are considered as signed numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Subtract the value after multiplying two signed numbers from the value

in accumulator, and put the result in accumulator

{HI, LO} ¬ {HI, LO} - RX × RY

Grammar: mulss32 rx, ry

Description: Subtract the value after multiplying general-purpose register RX and RY

from the value in 64-bit accumulator, and put the result in accumulator.

The 32 high bits of the result are stored in HI and the 32 low bits are

stored in LO. All values in general-purpose register RX and RY as well as

64-bit accumulator are considered as signed numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

Unified

instruction

Grammar Operation Compiling result

mulss rx, ry Subtract the value after multiplying two

signed numbers from the value in

accumulator, and put the result in

accumulator

{HI, LO} ¬ {HI, LO} - RX × RY

Only 32-bit instructions

exist.

mulss32 rx, ry

278

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0

279

MULSW – 16x32 multiply signed

Description: Multiply the 16 low bits of general-purpose register RX and contents of

register RY, and put the 32 high bits of result in general-purpose register

RZ. All values in general-purpose register RX and RY as well as RZ are

considered as signed numbers. The sign bit of source operand in register

RX is the 15th bit of register and the sign bit of source operand in register

RY and result in register RZ is the 31st bit of register.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Multiply 16-bit signed number and 32-bit signed number, and put the 32

high bits of result in general-purpose register

RZ ¬ (RX[15:0] × RY[31:0])[47:16]

Grammar: mulsw32 rx, ry

Description: Multiply the 16 low bits of general-purpose register RX and contents of

register RY, and put the 32 high bits of result in general-purpose register

RZ. All values in general-purpose register RX and RY as well as RZ are

considered as signed numbers. The sign bit of source operand in register

RX is the 15th bit of register and the sign bit of source operand in register

RY and result in register RZ is the 31st bit of register.

Influence on flag

bit:

No influence

Exception: None

Unified

instruction

Grammar Operation Compiling result

mulsw rz, rx, ry Multiply 16-bit signed number and 32-bit

signed number, and put the 32 high bits of

result in general-purpose register

RZ ¬ (RX[15:0] × RY[31:0])[47:16]

Only 32-bit instructions

exist.

mulsw32 rx, ry

280

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 1 0 1 0 0 0 0 1 RZ

281

MULSWA – 16x32 multiply-accumulate signed

Description: Multiply the 16 low bits of general-purpose register RX and contents of

RY, add the 32 high bits of result to the value in 32-low-bit register LO of

64-bit accumulator, and put the result in low-bit accumulator register LO.

All values in register RX and RY as well as low-bit accumulator register

LO are considered as signed numbers. The sign bit of source operand in

register RX is the 15th bit of register and the sign bit of source operand

and result in register RY and low-bit accumulator register LO is the 31st

bit of register.

This instruction supports 8 guard bits. See the descriptions about guard

bit in the processor manual for more details.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Multiply 16-bit signed number and 32-bit signed number, add the 32 high

bits of result to the value of low bit in accumulator, and put the result in

low bit of accumulator

LO ¬ LO + (RX[15:0] × RY[31:0])[47:16]

Grammar: mulswa32 rx, ry

Description: Multiply the 16 low bits of general-purpose register RX and contents of

RY, add the 32 high bits of result to the value in 32-low-bit register LO of

64-bit accumulator, and put the result in low-bit accumulator register LO.

Unified

instruction

Grammar Operation Compiling result

mulswa rx, ry Multiply 16-bit signed number and 32-bit

signed number, add the 32 high bits of

result to the value of low bit in accumulator,

and put the result in low bit of accumulator

LO ¬ LO + (RX[15:0] × RY[31:0])[47:16]

Only 32-bit instructions

exist.

mulswa32 rx, ry

282

All values in register RX and RY as well as low-bit accumulator register

LO are considered as signed numbers. The sign bit of source operand in

register RX is the 15th bit of register and the sign bit of source operand

and result in register RY and low-bit accumulator register LO is the 31st

bit of register.

This instruction supports 8 guard bits. See the descriptions about guard

bit in the processor manual for more details.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0

283

MULSWS – 16x32 multiply-subtract signed

Description: Subtract the 32 high bits of the result after multiplying the 16 low bits of

general-purpose register RX and contents of RY from the value in

32-low-bit register LO of 64-bit accumulator, and put the result in low-bit

accumulator register LO. All contents in register RX and RY as well as

low-bit accumulator register LO are considered as signed numbers. The

sign bit of source operand in register RX is the 15th bit of register and the

sign bit of source operand and result in register RY and low-bit

accumulator register LO is the 31st bit of register.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Subtract the 32 high bits of the result after multiplying 16-bit signed

number and 32-bit signed number from the value of low bit in

accumulator, and put the result in low bit of accumulator

LO ¬ LO - (RX[15:0] × RY[31:0])[47:16]

Grammar: mulsws32 rx, ry

Description: Subtract the 32 high bits of the result after multiplying the 16 low bits of

general-purpose register RX and contents of RY from the value in

32-low-bit register LO of 64-bit accumulator, and put the result in low-bit

accumulator register LO. All contents in register RX and RY as well as

Unified

instruction

Grammar Operation Compiling result

mulsws rx, ry Subtract the 32 high bits of the result after

multiplying 16-bit signed number and

32-bit signed number from the value of low

bit in accumulator, and put the result in low

bit of accumulator

LO ¬ LO - (RX[15:0] × RY[31:0])[47:16]

Only 32-bit instructions

exist.

mulsws32 rx, ry

284

low-bit accumulator register LO are considered as signed numbers. The

sign bit of source operand in register RX is the 15th bit of register and the

sign bit of source operand and result in register RY and low-bit

accumulator register LO is the 31st bit of register.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0

285

MULT – Multiply

Description: Multiply the contents of two source registers, put the 32 low bits of the

result in destination register, and abandon the 32 high bits of the result.

The result is the same no matter whether the source operand is considered

as signed number or unsigned number.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: Multiply two numbers, and put the 32 low bits of the result in

general-purpose register

RZ ¬ RX × RZ

Grammar: mult16 rz, rx

Description: Multiply the contents of general-purpose register RX and RZ, put the 32

Unified

instruction

Grammar Operation Compiling result

mult rz, rx Multiply two numbers, and put the

32 low bits of the result in

general-purpose register

RZ ¬ RX × RZ

Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (x<16) and (z<16), then

 mult16 rz, rx;

else

mult32 rz, rz, rx;

mult rz, rx, ry Multiply two numbers, and put the

32 low bits of the result in

general-purpose register

RZ ¬ RX × RY

Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (y==z) and (x<16)and (z<16),

then

 mult16 rz, rx;

else

mult32 rz, rx, ry;

286

low bits of the result in general-purpose register RZ, and abandon the 32

high bits of the result. The result is the same no matter whether the

source operand is considered as signed number or unsigned number.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 1 1 RZ RX 0 0

32-bit

instruction

Operation: Multiply two numbers, and put the 32 low bits of the result in

general-purpose register

RZ ¬ RX × RY

Grammar: mult32 rz, rx, ry

Description: Multiply the contents of general-purpose register RX and RY, put the 32

low bits of the result in general-purpose register RZ, and abandon the 32

high bits of the result. The result is the same no matter whether the

source operand is considered as signed number or unsigned number.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 0 0 1 0 0 0 0 1 RZ

287

MULU – Multiply unsigned

Description: Multiply the contents in general-purpose register RX and RY, and put the

result in the 64-bit accumulator. The 32 high bits are stored in HI and the

32 low bits are stored in LO. All values in general-purpose register RX

and RY as well as 64-bit accumulator are considered as unsigned

numbers.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

32-bit

instruction

Operation: Multiply two unsigned numbers, and put the result in accumulator

{HI, LO} ¬ RX × RY

Grammar: mulu32 rx, ry

Description: Multiply the contents in general-purpose register RX and RY, and put the

result in the 64-bit accumulator. The 32 high bits are stored in HI and the

32 low bits are stored in LO. All values in general-purpose register RX

and RY as well as 64-bit accumulator are considered as unsigned

numbers.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

mulu rx, ry Multiply two unsigned numbers, and put

the result in accumulator

{HI, LO} ¬ RX × RY

Only 32-bit instructions

exist.

mulu32 rx, ry

288

1 1 0 0 0 1 RY RX 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

289

MULUA – Multiply-accumulate unsigned

Description: Multiply the contents in general-purpose register RX and RY, add the

product to value in the 64-bit accumulator, and put the result in

accumulator. The 32 high bits of the result are stored in HI and the 32 low

bits are stored in LO. All values in general-purpose register RX and RY

as well as 64-bit accumulator are considered as unsigned numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Multiply two unsigned numbers, add the product to value in accumulator,

and put the result in accumulator

{HI, LO} ¬ {HI, LO} + RX × RY

Grammar: mulua32 rx, ry

Description: Multiply the contents in general-purpose register RX and RY, add the

product to value in the 64-bit accumulator, and put the result in

accumulator. The 32 high bits of the result are stored in HI and the 32 low

bits are stored in LO. All values in general-purpose register RX and RY

as well as 64-bit accumulator are considered as unsigned numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

mulua rx, ry Multiply two unsigned numbers, add the

product to value in accumulator, and put the

result in accumulator

{HI, LO} ¬ {HI, LO} + RX × RY

Only 32-bit instructions

exist.

mulua32 rx, ry

290

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0

291

MULUS – Multiply-subtract unsigned

Description: Subtract the value after multiplying general-purpose register RX and RY

from the value in 64-bit accumulator, and put the result in accumulator.

The 32 high bits of the result are stored in HI and the 32 low bits are

stored in LO. All values in general-purpose register RX and RY as well as

64-bit accumulator are considered as unsigned numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

32-bit

instruction

Operation: Subtract the value after multiplying two unsigned numbers from the value

in accumulator, and put the result in accumulator

{HI, LO} ¬ {HI, LO} - RX × RY

Grammar: mulus32 rx, ry

Description: Subtract the value after multiplying general-purpose register RX and RY

from the value in 64-bit accumulator, and put the result in accumulator.

The 32 high bits of the result are stored in HI and the 32 low bits are

stored in LO. All values in general-purpose register RX and RY as well as

64-bit accumulator are considered as unsigned numbers.

Influence on flag

bit:

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

Unified

instruction

Grammar Operation Compiling result

mulus rx, ry Subtract the value after multiplying two

unsigned numbers from the value in

accumulator, and put the result in

accumulator

{HI, LO} ¬ {HI, LO} - RX × RY

Only 32-bit instructions

exist.

mulus32 rx, ry

292

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0

293

MVC – C bit move

Description: Transfer the condition bit C to the lowest bit of RZ, and clear other bits of

RZ.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: RZ ¬ C

Grammar: mvc32 rz

Description: Transfer the condition bit C to the lowest bit of RZ, and clear other bits

of RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 RZ

Unified

instruction

Grammar Operation Compiling result

mvc rz RZ ¬ C Only 32-bit instructions exist.

mvc32 rz;

294

MVCV – C bit reverse move

Description: Transfer the condition bit C to the lowest bit of RZ after negation, and

clear other bits of RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ (!C)

Grammar: mvcv16 rz

Description: Transfer the condition bit C to the lowest bit of RZ after negation, and

clear other bits of RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

Unified

instruction

Grammar Operation Compiling result

mvcv rz RZ ¬ (!C) Compiled into

corresponding 16-bit or

32-bit instructions

according to the range of

register.

if (z<16), then

 mvcv16 rz;

else

mvcv32 rz;

295

0 1 1 0 0 1 RZ 0 0 0 0 1 1

32-bit

instruction

Operation: RZ ¬ (!C)

Grammar: mvcv32 rz

Description: Transfer the condition bit C to the lowest bit of RZ after negation, and

clear other bits of RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 RZ

296

MVTC – Copy overflow bit to C bit

Description: Copy the overflow bit of DCSR(CR <14,0>) to C bit.

Influence on flag

bit:

C bit is set according to the overflow bit

Exception: None

32-bit

instruction

Operation: C ¬ V

Grammar: mvtc32

Description: Copy the overflow bit of DCSR(CR <14,0>) to C bit.

Influence on flag

bit:

C bit is set according to the overflow bit

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

mvtc C ¬ V Only 32-bit instructions

exist.

mvtc32;

297

NIE – Interrupt nesting enable

Attribute: Privileged instruction

Description: Store the interrupted control register site {EPSR, EPC} to the stack

storage, then update the stack pointer register to the top of stack storage,

and initiate the interrupt and exception enable bit PSR.IE and PSR.EE.

Adopt direct addressing mode of stack pointer register.

Influence on flag

bit:

No influence

Exception: Access error exception, unaligned exception and privilege violation

exception

16-bit instruction

Operation: Store the interrupted control register site {EPSR, EPC} to the stack

storage, then update the stack pointer register to the top of stack storage,

and initiate PSR.IE and PSR.EE;

MEM[SP-4] ¬EPC;

MEM[SP-8] ¬EPSR;

SP¬SP-8;

PSR({EE,IE}) ¬ 1

Grammar: nie16

Attribute: Privileged instruction

Unified

instruction

Grammar Operation Compiling result

nie Store the interrupted control

register site {EPSR, EPC} to the

stack storage, then update the stack

pointer register to the top of stack

storage, and initiate PSR.IE and

PSR.EE;

MEM[SP-4] ¬EPC;

MEM[SP-8] ¬EPSR;

SP¬SP-8;

PSR({EE,IE}) ¬ 1

Only 16-bit instructions exist.

nie;

298

Description: Store the interrupted control register site {EPSR, EPC} to the stack

storage, then update the stack pointer register to the top of stack storage,

and initiate the interrupt and exception enable bit PSR.IE and PSR.EE.

Adopt direct addressing mode of stack pointer register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, and access

error exception

Instruction

format:

15 14 10 9 8 7 5 4 0

0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0

299

NIR – Interrupt nesting return

Attribute: Privileged instruction

Description: Load the interrupted site {EPSR, EPC} from the stack storage, and then

update the stack pointer register to the top of stack storage; restore PC

value to the value in control register EPC and restore PSR value to

EPSR value; the instruction is executed from the new PC address.

Adopt direct addressing mode of stack pointer register.

Influence on flag

bit:

No influence

Exception: Access error exception, unaligned exception and privilege violation

exception

16-bit instruction

Operation: Load the interrupted control register site {EPSR, EPC} from the stack

storage, and then update the stack pointer register to the top of stack

storage; return from interrupt

EPSR¬MEM[SP]

EPC¬MEM[SP+4];

SP¬SP+8;

PSR¬EPSR;

PC¬EPC

Unified

instruction

Grammar Operation Compiling result

nir Load the interrupted control

register site {EPSR, EPC} from the

stack storage, and then update the

stack pointer register to the top of

stack storage; return from interrupt

EPSR¬MEM[SP]

EPC¬MEM[SP+4];

SP¬SP+8;

PSR¬EPSR;

PC¬EPC

Only 16-bit instructions exist.

nir;

300

Grammar: nir16

Attribute: Privileged instruction

Description: Load the interrupted site {EPSR, EPC} from the stack storage, and then

update the stack pointer register to the top of stack storage; restore PC

value to the value in control register EPC and restore PSR value to

EPSR value; the instruction is executed from the new PC address.

Adopt direct addressing mode of stack pointer register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, and access

error exception

Instruction

format:

15 14 10 9 8 7 5 4 0

0 0 0 1 0 1 0 0 0 1 1 0 0 0 0 1

301

NOR – Bitwise NOT-OR

Description: Perform a bitwise OR of the values of RX and RY/RZ, then perform a

bitwise NOT, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ !(RZ | RX)

Grammar: nor16 rz, rx

Description: Perform a bitwise OR of the values of RZ and RX, then perform a bitwise

NOT, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Unified

instruction

Grammar Operation Compiling result

nor rz, rx RZ ¬ !(RZ | RX) Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

 nor16 rz, rx;

else

nor32 rz, rz, rx;

nor rz, rx, ry RZ ¬ !(RX | RY) Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (y==z) and (x<16) and (z<16), then

 nor16 rz, rx

else

nor32 rz, rx, ry

302

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 1 RZ RX 1 0

32-bit

instruction

Operation: RZ ¬ !(RX | RY)

Grammar: nor32 rz, rx, ry

Description: Perform a bitwise OR of the values of RX and RY, then perform a bitwise

NOT, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 1 0 0 1 0 0 1 0 0 RZ

303

NOT – Bitwise NOT#

Description: Perform a bitwise NOT of RZ/RX value and save the result in RZ.

Attention: This instruction is the pseudo instruction of nor rz, rz and nor

rz, rx, rx.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ !(RZ)

Grammar: not16 rz

Description: Perform a bitwise NOT of RZ value and save the result in RZ.

Attention: This instruction is the pseudo instruction of nor16 rz, rz.

Influence on flag

bit:

No influence

Unified

instruction

Grammar Operation Compiling result

not rz RZ ¬ !(RZ) Compiled into corresponding

16-bit or 32-bit instructions

according to the range of register.

if (z<16), then

not16 rz;

else

 not32 rz, rz;

not rz, rx RZ ¬ !(RX) Compiled into corresponding

16-bit or 32-bit instructions

according to the range of register.

if (x==z) and (z<16), then

not16 rz;

else

 not32 rz, rx;

304

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 1 RZ RZ 1 0

32-bit

instruction

Operation: RZ ¬ !(RX)

Grammar: not32 rz, rx

Description: Perform a bitwise NOT of RX value and save the result in RZ.

Attention: This instruction is the pseudo instruction of nor32 rz, rx, rx.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RX RX 0 0 1 0 0 1 0 0 1 0 0 RZ

305

OR – Bitwise OR

Description: Perform a bitwise OR of the values of RX and RY/RZ, and save the result

in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ RZ | RX

Grammar: or16 rz, rx

Description: Perform a bitwise OR of the values of RZ and RX, and save the result in

RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Unified

instruction

Grammar Operation Compiling result

or rz, rx RZ ¬ RZ | RX Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

 or16 rz, rx ;

else

or32 rz, rz, rx;

or rz, rx, ry RZ ¬ RX | RY Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (y==z) and (x<16) and (z<16), then

 or16 rz, rx

else

or32 rz, rx, ry

306

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 1 RZ RX 0 0

32-bit

instruction

Operation: RZ ¬ RX | RY

Grammar: or rz, rx, ry

Description: Perform a bitwise OR of the values of RX and RY, and save the result in

RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 1 0 0 1 0 0 0 0 1 RZ

307

ORI – Bitwise OR immediate

Description: Zero-extend the 16-bit immediate operand to 32 bits, perform a bitwise

OR with RX value, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

32-bit instruction

Operation: RZ ¬ RX | zero_extend(IMM16)

Grammar: ori32 rz, rx, imm16

Description: Zero-extend the 16-bit immediate operand to 32 bits, perform a bitwise

OR with RX value, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFFF.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 1 RZ RX IMM16

Unified

instruction

Grammar Operation Compiling result

ori rz, rx, imm16 RZ ¬ RX | zero_extend(IMM16) Only 32-bit instructions

exist.

ori32 rz, rx, imm16

308

PLDR – Prefetch read data

Description: This instruction aims to accelerate the data loading behavior. Before data

loading, PLDR instruction is started to read the data line into Cache;

when Load instruction is executed, it is aimed at D-Cache, so the data

loading efficiency is increased.

The effective address of this instruction is gained by adding the base

register RX to the value of unsigned extending the 12-bit relative offset

shifting left by two bits to 32 bits. Attention: The offset DISP is gained

after the offset of binary operand shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Prefetch read data

Grammar: pldr32 (rx, disp)

Description: This instruction aims to accelerate the data loading behavior. Before data

loading, PLDR instruction is started to read the data line into Cache;

when Load instruction is executed, D-Cache will be targeted, so the data

loading efficiency is increased.

The effective address of this instruction is gained by adding the base

register RX to the value of unsigned extending the 12-bit relative offset

shifting left by two bits to 32 bits. Attention: The offset DISP is gained

after the offset of binary operand shifts left by 2 bits.

Influence on flag

bit:

No influence

Unified

instruction

Grammar Operation Compiling result

pldr (rx, disp) Prefetch read data

MEM[RX + zero_extend(offset << 2)]

Only 32-bit instructions

exist.

pldr32 (rx, disp)

309

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 0 0 0 0 0 0 RX 0 1 1 0 Offset

310

PLDW – Prefetch write data

Description: This instruction aims to accelerate the data storage behavior under write

allocation Cache strategy. Under write allocation Cache strategy, a

backfilling operation will be caused to Cache if the store instruction

Cache is not targeted. PLDW instruction will read data to be stored into

Cache before store instruction; when Store instruction is executed,

D-Cache will be targeted, so the data storage efficiency is increased. The

effective address of this instruction is gained by adding the base register

RX to the value of unsigned extending the 12-bit relative offset shifting

left by two bits to 32 bits. Attention: The offset DISP is gained after the

offset of binary operand shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Prefetch write data

Grammar: pldw32 (rx, disp)

Description: This instruction aims to accelerate the data storage behavior under write

allocation Cache strategy. Under write allocation Cache strategy, a

backfilling operation will be caused to Cache if the store instruction

Cache is not targeted. PLDW instruction will read data to be stored into

Cache before store instruction; when Store instruction is executed,

D-Cache will be targeted, so the data storage efficiency is increased. The

effective address of this instruction is gained by adding the base register

RX to the value of unsigned extending the 12-bit relative offset shifting

Unified

instruction

Grammar Operation Compiling result

pldw (rx, disp) Prefetch write data

MEM[RX + zero_extend(offset << 2)]

Only 32-bit instructions

exist.

pldw32 (rx, disp)

311

left by two bits to 32 bits. Attention: The offset DISP is gained after the

offset of binary operand shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 1 0 0 0 0 0 RX 0 1 1 0 Offset

312

POP – Pop

Description: Load multiple consecutive words from stack storage to a group of

consecutive register files, update the stack pointer register, and realize

the function of returning from the subprogram. In another word, the

program jumps to the position appointed by link register R15 and the

lowest bit of link register is ignored. Adopt the direct addressing mode

of stack register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Load multiple consecutive words from stack storage to a group of

consecutive register files, then update the stack register to the top of

stack storage, and return from the subprogram

Unified

instruction

Grammar Operation Compiling result

pop reglist Load multiple consecutive words

from stack storage to a group of

consecutive register files, then

update the stack register to the top

of stack storage, and return from

the subprogram;

dst ¬ {reglist}; addr ¬ SP;

foreach (reglist){

 Rdst ¬ MEM[addr];

 dst ¬ next {reglist};

 addr ¬ addr + 4;

}

sp ¬ addr;

PC ¬ R15 & 0xfffffffe;

Compiled into corresponding

16-bit or 32-bit instructions

according to the range of

register

if ({reglist}<16), then

 pop16 reglist;

else

pop32 reglist;

313

dst ¬ {reglist}; addr ¬ SP;

foreach (reglist){

 Rdst ¬ MEM[addr];

 dst ¬ next {reglist};

 addr ¬ addr + 4;

}

sp ¬ addr;

PC ¬ R15 & 0xfffffffe;

Grammar: pop16 reglist

Description: Load multiple consecutive words from stack storage to a group of

consecutive register files, update the stack pointer register, and realize

the function of returning from the subprogram. In another word, the

program jumps to the position appointed by link register R15 and the

lowest bit of link register is ignored. Adopt the direct addressing mode

of stack pointer register.

Influence on flag

bit:

No influence

Restriction: The range of register is r4 – r11, r15.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

15 14 10 9 8 7 6 5 4 3 0

0 0 0 1 0 1 0 0 1 0 0 R15 LIST1

LIST1 field – Assign whether registers r4-r11 are in the register list.

0000 – r4-r11 are not in the register list

0001 – r4 is in the register list

0010 – r4-r5 are in the register list

0011 – r4-r6 are in the register list

……

1000 – r4-r11 are in the register list

R15 field – Assign whether register r15 is in the register list.

314

0 – r15 is not in the register list

1 – r15 is in the register list

32-bit instruction

Operation: Load multiple consecutive words from stack storage to a group of

consecutive register files

dst ¬ {reglist}; addr ¬ SP;

foreach (reglist){

 Rdst ¬ MEM[addr];

 dst ¬ next {reglist};

 addr ¬ addr + 4;

}

sp ¬ addr;

PC ¬ R15 & 0xfffffffe;

Grammar: pop32 reglist

Description: Load multiple consecutive words from stack storage to a group of

consecutive register files, update the stack pointer register, and realize

the function of returning from the subprogram. In another word, the

program jumps to the position appointed by link register R15 and the

lowest bit of link register is ignored. Adopt the direct addressing mode

of stack pointer register.

Influence on flag

bit:

No influence

Restriction: The range of register is r4 – r11, r15, r16 - r17, r28.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 R28 LIST2 R15 LIST1

LIST1 field – Assign whether registers r4-r11 are in the register list.

315

0000 – r4-r11 are not in the register list

0001 – r4 is in the register list

0010 – r4-r5 are in the register list

0011 – r4-r6 are in the register list

……

1000 – r4-r11 are in the register list

R15 field – Assign whether register r15 is in the register list.

0 – r15 is not in the register list

1 – r15 is in the register list

LIST2 field – Assign whether registers r16-r17 are in the register list.

000 – r16-r19 are not in the register list

001 – r16 is in the register list

010 – r16-r17 are in the register list

R28 field – Assign whether register r28 is in the register list.

0 – r28 is not in the register list

1 – r28 is in the register list

316

PSRCLR – Clear PSR bit

Attribute: Privileged instruction

Description: The selected PSR bit is cleared (1 means that it is selected). The 5-bit

immediate operand IMM5 is used to code the control bit to be cleared, and

the corresponding relation is as follows:

Various bits of immediate operand

IMM5

Corresponding PSR control bit

Imm5[0] AF

Imm5[1] FE

Imm5[2] IE

Imm5[3] EE

Imm�[4] Retain

Influence on

flag bit:

No influence

Exception: Privilege violation exception

32-bit

instruction

Operation: Clear a certain bit or several bits of status register

PSR({EE, IE, FE, AF}) ¬ 0

Grammar: psrclr32 ee, ie, fe, af

Or the operand can be any combination of ee, ie, fe and af.

Attribute: Privileged instruction

Description: The selected PSR bit is cleared (1 means that it is selected). The 5-bit

immediate operand IMM5 is used to code the control bit to be cleared, and

the corresponding relation is as follows:

Various bits of immediate operand Corresponding PSR control bit

Unified instruction

Grammar Operation Compiling result

psrclr ee, ie, fe, af

Or the operand can be any

combination of ee, ie, fe and

af.

Clear a certain bit or several bits

of status register

PSR({EE, IE, FE, AF}) ¬ 0

Only 32-bit instructions

exist.

psrclr32 ee, ie, fe, af

317

IMM5

�mm5[0] AF

Imm5[1] FE

Imm5[2] IE

Imm5[3] EE

Imm5[4] Retain

Influence on

flag bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 IMM5 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0 0 0 0 0

318

PSRSET – Set PSR bit

Attribute: Privileged instruction

Description: The selected PSR bit is set (1 means that it is selected). The 5-bit immediate

operand IMM5 is used to code the control bit to be cleared, and the

corresponding relation is as follows:

Various bits of immediate operand

IMM5

Corresponding PSR control bit

Imm5[�] AF

Imm5[1] �E

Imm5[2� IE

Imm5[3] EE

Imm�[4] Retain

Influence on

flag bit:

No influence

Exception: Privilege violation exception

32-bit

instruction

Operation: Set several bits of status register

PSR({EE, IE, FE, AF}) ¬ 1

Grammar: psrset32 ee, ie, fe, af

Or the operand can be any combination of ee, ie, fe and af.

Attribute: Privileged instruction

Description: The selected PSR bit is set (1 means that it is selected). The 5-bit immediate

operand IMM5 is used to code the control bit to be cleared, and the

corresponding relation is as follows:

Various bits of immediate operand Corresponding PSR control bit

Unified instruction

Grammar Operation Compiling result

psrset ee, ie, fe, af

Or the operand can be any

combination of ee, ie, fe and

af.

Set several bits of status

register

PSR({EE, IE, FE, AF}) ¬ 1

Only 32-bit instructions exist.

psrset32 ee, ie, fe, af

319

IMM5

Imm5[0] AF

Imm5[1] FE

Im�5[2] IE

Imm5[3] EE

Imm5[4] Retain

Influence on

flag bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 IMM5 0 0 0 0 0 0 1 1 1 0 1 0 0 0 0 1 0 0 0 0 0

320

PUSH – Push

Description: Store words in register list to stack storage, and update stack register to

the top of stack storage. Adopt the direct addressing mode of stack

register.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Store words in register list to stack storage

src ¬ {reglist}; addr ¬ SP;

foreach (reglist){

 MEM[addr] ¬ Rsrc;

 src ¬ next {reglist};

 addr ¬ addr - 4;

}

sp ¬ addr

Grammar: push16 reglist

Description: Store words in register list to stack storage, and update stack register to

Unified

instruction

Grammar Operation Compiling result

push reglist Store words in register list to stack

storage, and update stack register to

the top of stack storage;

src ¬ {reglist}; addr ¬ SP;

foreach (reglist){

 addr ¬ addr - 4;

MEM[addr] ¬ Rsrc;

 src ¬ next {reglist};

}

sp ¬ addr;

Compiled into corresponding

16-bit or 32-bit instructions

according to the range of

register

if ({reglist}<16), then

 push16 reglist;

else

push32 reglist;

321

the top of stack storage. Adopt the direct addressing mode of stack

register.

Influence on flag

bit:

No influence

Restriction: The range of register is r4 – r11, r15.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

15 14 10 9 8 7 6 5 4 3 0

0 0 0 1 0 1 0 0 1 1 0 R15 LIST1

LIST1 field – Assign whether registers r4-r11 are in the register list.

0000 – r4-r11 are not in the register list

0001 – r4 is in the register list

0010 – r4-r5 are in the register list

0011 – r4-r6 are in the register list

……

1000 – r4-r11 are in the register list

R15 field – Assign whether register r15 is in the register list.

0 – r15 is not in the register list

1 – r15 is in the register list

32-bit instruction

Operation: Load multiple consecutive words from stack storage to a group of

consecutive register files

src ¬ {reglist}; addr ¬ SP;

foreach (reglist){

 MEM[addr] ¬ Rsrc;

 src ¬ next {reglist};

 addr ¬ addr - 4;

322

}

sp ¬ addr

Grammar: push32 reglist

Description: Store words in register list to stack storage, and update stack register to

the top of stack storage. Adopt the direct addressing mode of stack

register.

Influence on flag

bit:

No influence

Restriction: The range of register is r4 – r11, r15, r16 - r17, r28.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 10 9 8 7 6 5 4 3 0

1 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 R28 LIST2 R15 LIST1

LIST1 field – Assign whether registers r4-r11 are in the register list.

0000 – r4-r11 are not in the register list

0001 – r4 is in the register list

0010 – r4-r5 are in the register list

0011 – r4-r6 are in the register list

……

1000 – r4-r11 are in the register list

R15 field – Assign whether register r15 is in the register list.

0 – r15 is not in the register list

1 – r15 is in the register list

LIST2 field – Assign whether registers r16-r17 are in the register list.

000 – r16-r19 are not in the register list

001 – r16 is in the register list

010 – r16-r17 are in the register list

R28 field – Assign whether register r28 is in the register list.

323

0 – r28 is not in the register list

1 – r28 is in the register list

324

REVB – Byte-reverse

Description: Get the reverse order of RX value according to the byte, keep bit order

inside the byte unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ[31:24] ¬ RX[7:0];

RZ[23:16] ¬ RX[15:8];

RZ[15:8] ¬ RX[23:16];

RZ[7:0] ¬ RX[31:24];

Grammar: revb16 rz, rx

Description: Get the reverse order of RX value according to the byte, keep bit order

inside the byte unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

Unified

instruction

Grammar Operation Compiling result

revb rz, rx RZ[31:24] ¬ RX[7:0];

RZ[23:16] ¬ RX[15:8];

RZ[15:8] ¬ RX[23:16];

RZ[7:0] ¬ RX[31:24];

Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

 revb16 rz, rx;

else

revb32 rz, rx;

325

0 1 1 1 1 0 RZ RX 1 0

32-bit

instruction

Operation: RZ[31:24] ¬ RX[7:0];

RZ[23:16] ¬ RX[15:8];

RZ[15:8] ¬ RX[23:16];

RZ[7:0] ¬ RX[31:24];

Grammar: revb32 rz, rx

Description: Get the reverse order of RX value according to the byte, keep bit order

inside the byte unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 0 0 0 0 0 1 0 0 RZ

326

REVH – Half-word byte-reverse

Description: Get the reverse order of RX value within half-word according to the byte.

In another word, two bytes in the high half-word and two bytes in the low

half-word are exchanged. Keep the bit order between two half-words and

the bit order inside the byte unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ[31:24] ¬ RX[23:16];

RZ[23:16] ¬ RX[31:24];

RZ[15:8] ¬ RX[7:0];

RZ[7:0] ¬ RX[15:8];

Grammar: revh16 rz, rx

Description: Get the reverse order of RX value within half-word according to the byte.

In another word, two bytes in the high half-word and two bytes in the low

half-word are exchanged. Keep the bit order between two half-words and

the bit order inside the byte unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Unified

instruction

Grammar Operation Compiling result

revh rz, rx RZ[31:24] ¬ RX[23:16];

RZ[23:16] ¬ RX[31:24];

RZ[15:8] ¬ RX[7:0];

RZ[7:0] ¬ RX[15:8];

Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

 revh16 rz, rx;

else

revh32 rz, rx;

327

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 1 0 RZ RX 1 1

32-bit

instruction

Operation: RZ[31:24] ¬ RX[23:16];

RZ[23:16] ¬ RX[31:24];

RZ[15:8] ¬ RX[7:0];

RZ[7:0] ¬ RX[15:8];

Grammar: revh32 rz, rx

Description: Get the reverse order of RX value within half-word according to the byte.

In another word, two bytes in the high half-word and two bytes in the low

half-word are exchanged. Keep the bit order between two half-words and

the bit order inside the byte unchanged, and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 0 0 0 0 1 0 0 0 RZ

328

RFI – Return from fast interrupt

Attribute: Privileged instruction

Description: Restore PC value to value saved in control register FPC and restore PSR

value to value saved in FPSR; the instruction is executed from the new PC

address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

32-bit

instruction

Operation: Return from fast interrupt

PC ¬ FPC, PSR ¬ FPSR

Grammar: rfi32

Attribute: Privileged instruction

Description: Restore PC value to value saved in control register FPC and restore PSR

value to value saved in FPSR; the instruction is executed from the new PC

address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

rfi Return from fast interrupt

PC ¬ FPC, PSR ¬ FPSR

Only 32-bit instructions

exist.

rfi32

329

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 0

330

ROTL – Rotate left

Description: For rotl rz, rx, perform a ring left shift on RZ value (the original value

shifts left and the bit shifting out from left side will shift to the right

side), and save the result in RZ; the range of left shift is decided by the

value of six low bits of RX (RX[5:0]). If the value of RX[5:0] is greater

than 31, RZ will be cleared;

For lsl rz, rx, ry, perform a ring left shift on RX value (the original

value shifts left and the bit shifting out from left side will shift to the right

side), and save the result in RZ; the range of left shift is decided by the

value of six low bits of RY (RY[5:0]). If the value of RY[5:0] is greater

than 31, RZ will be cleared.

Influence on flag

bit:

No influence

Exception: None

16-bit

Unified

instruction

Grammar Operation Compiling result

rotl rz, rx RZ ¬ RZ <<<< RX[5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

 rotl16 rz, rx ;

else

rotl32 rz, rz, rx;

rotl rz, rx, ry RZ ¬ RX <<<< RY[5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x==z) and (y<16) and (z<16), then

 rotl16 rz, ry

else

rotl32 rz, rx, ry

331

instruction

Operation: RZ ¬ RZ <<<< RX[5:0]

Grammar: rotl16 rz, rx

Description: Perform a ring left shift on RZ value (the original value shifts left and the

bit shifting out from left side will shift to the right side), and save the

result in RZ; the range of left shift is decided by the value of six low bits

of RX (RX[5:0]). If the value of RX[5:0] is greater than 31, RZ will be

cleared.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 0 0 RZ RX 1 1

32-bit

instruction

Operation: RZ ¬ RX <<<< RY[5:0]

Grammar: rotl32 rz, rx, ry

Description: Perform a ring left shift on RX value (the original value shifts left and the

bit shifting out from left side will shift to the right side), and save the

result in RZ; the range of left shift is decided by the value of six low bits

of RY (RY[5:0]). If the value of RY[5:0] is greater than 31, RZ will be

cleared.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 1 0 0 0 0 0 1 0 0 0 RZ

332

ROTLI – Rotate left immediate

Description: Perform a ring left shift on RX value (the original value shifts left and the

bit shifting out from left side will shift to the right side), and save the

result in RZ; the range of left shift is decided by the value of 5-bit

immediate operand (IMM5). If the value of IMM5 is equal to zero, RZ

value is the same with RX value.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

32-bit

instruction

Operation: RZ ¬ RX <<<< IMM5

Grammar: rotli32 rz, rx, imm5

Description: Perform a ring left shift on RX value (the original value shifts left and

the bit shifting out from left side will shift to the right side), and save the

result in RZ; the range of left shift is decided by the value of 5-bit

immediate operand (IMM5). If the value of IMM5 is equal to zero, RZ

value is the same with RX value.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 0 0 1 0 0 0 RZ

Unified

instruction

Grammar Operation Compiling result

rotli rz, rx,

imm5

RZ ¬ RX <<<< IMM5 rotli32 rz, rx, imm5;

333

334

RSUB – Reverse subtract#

Description: Subtract RX value from RY value and save the result in RZ.

Attention: This instruction is the pseudo instruction of subu rz, ry, rx.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: RZ ¬ RY - RX

Grammar: rsub32 rz, rx, ry

Description: Subtract RX value from RY value and save the result in RZ.

Attention: This instruction is the pseudo instruction of subu32 rz, ry, rx.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RX RY 0 0 0 0 0 0 0 0 1 0 0 RZ

Unified

instruction

Grammar Operation Compiling result

rsub rz, rx, ry RZ ¬ RY - RX Only 32-bit instructions

exist.

rsub32 rz, rx, ry

335

RTS – Return from subprogram#

Description: The program jumps to the position appointed by link register R15 and the

lowest bit of link register is ignored. The jump range of RTS16

instruction is the whole address space of 4GB.

This instruction is used to realize the function of returning from

subprogram.

Attention: This instruction is the pseudo instruction of jmp r15.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: The program jumps to the position appointed by link register

PC ¬ R15 & 0xfffffffe

Grammar: rts16

Description: The program jumps to the position appointed by link register R15 and the

lowest bit of link register is ignored. The jump range of RTS16

instruction is the whole address space of 4GB.

This instruction is used to realize the function of returning from

subprogram.

Attention: This instruction is the pseudo instruction of jmp16 r15.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

rts The program jumps to the position

appointed by link register

PC ¬ R15 & 0xfffffffe

Always compiled into 16-bit

instruction.

rts16

336

15 14 10 9 6 5 2 1 0

0 1 1 1 1 0 0 0 0 0 1 1 1 1 0 0

32-bit

instruction

Operation: The program jumps to the position appointed by link register

PC ¬ R15 & 0xfffffffe

Grammar: rts32

Description: The program jumps to the position appointed by link register R15 and the

lowest bit of link register is ignored. The jump range of RTS instruction

is the whole address space of 4GB.

This instruction is used to realize the function of returning from

subprogram.

Attention: This instruction is the pseudo instruction of jmp32 r15.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 0

1 1 1 0 1 0 0 0 1 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

337

RTE – Return from abnormal and normal interrupt

Attribute: Privileged instruction

Description: Restore PC value to value saved in control register EPC and restore PSR

value to value saved in EPSR; the instruction is executed from the new

PC address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

32-bit instruction

Operation: Return from abnormal and normal interrupt

PC ¬ EPC, PSR ¬ EPSR

Grammar: rte32

Attribute: Privileged instruction

Description: Restore PC value to value saved in control register EPC and restore PSR

value to value saved in EPSR; the instruction is executed from the new

PC address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

rte Return from abnormal and normal interrupt

PC ¬ EPC, PSR ¬ EPSR

Only 32-bit instructions

exist.

rte32

338

SCE – Set conditional execution

Description: SCE instruction is used to set the conditional execution bits of the

following 4 instructions. The operand COND is a 4-bit binary

immediate operand. The lowest bit refers to the condition bit of the first

instruction after sce instruction; the second lowest bit refers to the

condition bit of the second instruction after sce instruction, and the like.

If the condition bit is 1, it means that normal execution is realized when

C is 1; if the condition bit is 0, it means that normal execution is

realized when C is 0. If C bit does meet the condition bit, conditional

execution instruction will not generate any influence. The value used to

judge C bit is subject to the value when sce instruction is executed.

Influence on flag

bit:

When exception or interrupt happens to the following 4 instructions,

conditional execution bit will be saved in EPSR or FPSR.

Restriction: Instructions that can be set by sce instruction only include arithmetic

operation instruction, multiply-divide instructions, and byte, half-word

and word load/store instructions of immediate operand addressing

mode; besides, these instructions should not affect condition bit C.

Instructions that cannot be set by sce instruction include but are not

limited to: branch jump instruction, load/store instruction of register

addressing mode, load/store instruction of double word, load/store

instruction of multiword, co-processor instruction, privileged

instruction, special function instruction, floating point instruction, and

vector multimedia instruction.

The operand is a 4-bit binary immediate operand.

Exception: None

Remark: The instruction sequence is:

sce 0101

mov r1, r0

Unified

instruction

Grammar Operation Compiling result

sce cond Set the conditional execution bits of the

following 4 instructions

Only 32-bit instructions

exist.

sce32 cond

339

mov r3, r2

mov r5, r4

mov r7, r6

The condition bit of sce instruction is 0101. If C bit is 0 when sce

instruction is executed, the second and fourth mov instructions meet the

execution condition, and the result is written into register 3 and register

7; the first and third mov instructions do not meet the execution

condition, and the result will not be written into destination register.

32-bit instruction

Operation: Set the conditional execution bits of the following 4 instructions

set_condition_execution(COND);

Grammar: sce32 cond

Description: SCE instruction is used to set the conditional execution bits of the

following 4 instructions. The operand COND is a 4-bit binary

immediate operand. The lowest bit refers to the condition bit of the first

instruction after sce instruction; the second lowest bit refers to the

condition bit of the second instruction after sce instruction, and the like.

If the condition bit is 1, it means that normal execution is realized when

C is 1; if the condition bit is 0, it means that normal execution is

realized when C is 0. If C bit does meet the condition bit, conditional

execution instruction will not generate any influence. The value used to

judge C bit is subject to the value when sce instruction is executed.

Influence on flag

bit:

When exception or interrupt happens to the following 4 instructions,

conditional execution bit will be saved in EPSR or FPSR.

Restriction: Instructions that can be set by sce instruction only include arithmetic

operation instruction, multiply-divide instructions, and byte, half-word

and word load/store instructions of immediate operand addressing

mode; besides, these instructions should not affect condition bit C.

Instructions that cannot be set by sce instruction include but are not

limited to: branch jump instruction, load/store instruction of register

addressing mode, load/store instruction of double word, load/store

instruction of multiword, co-processor instruction, privileged

instruction, special function instruction, floating point instruction, and

vector multimedia instruction.

The operand is a 4-bit binary immediate operand.

340

Exception: None

Instruction

format:

Remark: The instruction sequence is:

sce32 0101

mov32 r1, r0

mov32 r3, r2

mov32 r5, r4

mov32 r7, r6

The condition bit of sce instruction is 0101. If C bit is 0 when sce

instruction is executed, the second and fourth mov instructions meet the

execution condition, and the result is written into register 3 and register

7; the first and third mov instructions do not meet the execution

condition, and the result will not be written into destination register.

31 30 26 25 24 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 COND 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0

341

SE – Send event

Description: As a communication mechanism between processor core and peripheral

equipment, it can be used for multi-core communication.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Send events to the external part of processor

Grammar: se32

Description: As a communication mechanism between processor core and peripheral

equipment, it can be used for multi-core communication.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

se Send events to the external part of

processor

Only 32-bit instructions

exist.

se32

342

SEXT – Extract bit and extend signed

Description: Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed

by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits,

and save the result in RZ. If MSB is equal to 31 and LSB is equal to

zero, RZ value is the same with RX value. If MSB is equal to LSB, RZ

value is the result after one-bit sign-extension of RX[MSB] (i.e.

RX[LSB]). If MSB is smaller than LSB, behavior of this instruction is

unpredictable.

Influence on flag

bit:

No influence

Restriction: The range of MSB is 0-31, the range of LSB is 0-31, and MSB should

be greater than or equal to LSB.

Exception: None

32-bit instruction

Operation: RZ ¬ sign_extend(RX[MSB:LSB])

Grammar: sext32 rz, rx, msb, lsb

Description: Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed

by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits,

and save the result in RZ. If MSB is equal to 31 and LSB is equal to

zero, RZ value is the same with RX value. If MSB is equal to LSB, RZ

value is the result after one-bit sign-extension of RX[MSB] (i.e.

RX[LSB]). If MSB is smaller than LSB, behavior of this instruction is

unpredictable.

Influence on flag

bit:

No influence

Restriction: The range of MSB is 0-31, the range of LSB is 0-31, and MSB should

be greater than or equal to LSB.

Exception: None

Unified instruction

Grammar Operation Compiling result

sext rz, rx, msb, lsb RZ ¬ sign_extend(RX[MSB:LSB]) Only 32-bit instructions

exist.

sext32 rz, rx, msb, lsb

343

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 LSB RX 0 1 0 1 1 0 MSB RZ

MSB field – Assign the starting bit of

extraction.

00000 – 0

00001 – 1

……

11111 – 31

LSB field – Assign the end bit of

extraction.

00000 – 0 bit

00001 – 1 bit

……

11111 – 31 bits

344

SEXTB – Extract byte and extend signed#

Description: Sign-extend low bytes of RX (RX[7:0]) to 32 bits, and save the result in

RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ sign_extend(RX[7:0]);

Grammar: sextb16 rz, rx

Description: Sign-extend low bytes of RX (RX[7:0]) to 32 bits, and save the result in

RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 0 1 RZ RX 1 0

32-bit

instruction

Operation: RZ ¬ sign_extend(RX[7:0]);

Unified

instruction

Grammar Operation Compiling result

sextb rz, rx RZ ¬ sign_extend(RX[7:0]); Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (z<16) and (x<16), then

 sextb16 rz, rx;

else sextb32 rz, rx;

345

Grammar: sextb32 rz, rx

Description: Sign-extend low bytes of RX (RX[7:0]) to 32 bits, and save the result in

RZ.

Attention: This instruction is the pseudo instruction of sext32 rz, rx,

0x7, 0x0.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 0 1 1 0 0 0 1 1 1 RZ

346

SEXTH – Extract half-word and extend signed#

Description: Sign-extend low half-word of RX (RX[15:0]) to 32 bits, and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ sign_extend(RX[15:0]);

Grammar: sexth16 rz, rx

Description: Sign-extend low half-word of RX (RX[15:0]) to 32 bits, and save the

result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format

15 14 10 9 6 5 2 1 0

0 1 1 1 0 1 RZ RX 1 1

32-bit instruction

Operation: RZ ¬ sign_extend(RX[15:0]);

Grammar: sexth32 rz, rx

Unified

instruction

Grammar Operation Compiling result

sexth rz, rx RZ ¬ sign_extend(RX[15:0]); Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (z<16) and (x<16), then

 sexth16 rz, rx;

else sexth32 rz, rx;

347

Description: Sign-extend low half-word of RX (RX[15:0]) to 32 bits, and save the

result in RZ.

Attention: This instruction is the pseudo instruction of sext32 rz, rx,

0x15, 0x0.

Influence on flag

bit:

No influence

Exception: None

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 0 1 1 0 0 1 1 1 1 RZ

348

SRS.B – Store byte sign

Description: Store the lowest byte sign in register RZ to the position of label. Adopt

the addressing mode of register and unsigned immediate operand offset.

The effective address of storage is gained by adding the base register RX

to the value of unsigned extending the 18-bit relative offset to 32 bits.

The address space of SRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store the lowest byte sign in register to storage

MEM[R28 + zero_extend(offset)] ¬ RZ[7:0]

Grammar: srs32.b rz, [label]

Description: Store the lowest byte sign in register RZ to the position of label. Adopt

the addressing mode of register and unsigned immediate operand offset.

The effective address of storage is gained by adding the base register RX

to the value of unsigned extending the 18-bit relative offset to 32 bits.

The address space of SRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

Unified

instruction

Grammar Operation Compiling result

srs.b rz, [label] Store the lowest byte sign in

register to storage

MEM[R28 +

zero_extend(offset)] ¬ RZ[7:0]

Only 32-bit instructions exist.

srs32.b rz, [label]

349

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 1 0 0 Offset

350

SRS.H – Store half-word sign

Description: Store the lowest half-word sign in register RZ to the position of label.

Adopt the addressing mode of register and unsigned immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 18-bit relative offset

shifting left by one bit to 32 bits. The address space of SRS.H instruction

is +512KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store the lowest half-word sign in register to storage

MEM[R28 + zero_extend(offset << 1)] ¬ RZ[7:0]

Grammar: srs32.h rz, [label]

Description: Store the lowest half-word sign in register RZ to the position of label.

Adopt the addressing mode of register and unsigned immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 18-bit relative offset

shifting left by one bit to 32 bits. The address space of SRS.H instruction

is +512KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Unified

instruction

Grammar Operation Compiling result

srs.h rz, [label] Store the lowest half-word sign

in register to storage

MEM[R28 + zero_extend(offset

<< 1)] ¬ RZ[7:0]

Only 32-bit instructions exist.

srs32.h rz, [label]

351

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 1 0 1 Offset

352

SRS.W – Store word sign

Description: Store the lowest word sign in register RZ to the position of label. Adopt

the addressing mode of register and unsigned immediate operand offset.

The effective address of storage is gained by adding the base register RX

to the value of unsigned extending the 18-bit relative offset shifting left

by two bits to 32 bits. The address space of SRS.W instruction is

+1024KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store the lowest word sign in register to storage

MEM[R28 + zero_extend(offset << 2)] ¬ RZ[7:0]

Grammar: srs32.w rz, [label]

Description: Store the lowest word sign in register RZ to the position of label. Adopt

the addressing mode of register and unsigned immediate operand offset.

The effective address of storage is gained by adding the base register RX

to the value of unsigned extending the 18-bit relative offset shifting left

by two bits to 32 bits. The address space of SRS.W instruction is

+1024KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Unified

instruction

Grammar Operation Compiling result

srs.w rz, [label] Store the lowest word sign in

register to storage

MEM[R28 + zero_extend(offset

<< 2)] ¬ RZ[7:0]

Only 32-bit instructions exist.

srs32.w rz, [label]

353

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 21 20 18 17 0

1 1 0 0 1 1 RZ 1 1 0 Offset

354

SRTE – Return from safe state

Attribute: Privileged instruction

Description: Restore PC value to value saved in control register SPC and restore PSR

value to value saved in SPSR; the instruction is executed from the new PC

address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

32-bit instruction

Operation: Return from safe state

PC ¬ SPC, PSR ¬ SPSR

Grammar: srte32

Attribute: Privileged instruction

Description: Restore PC value to value saved in control register SPC and restore PSR

value to value saved in SPSR; the instruction is executed from the new PC

address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

srte Return from safe state

PC ¬ SPC, PSR ¬ SPSR

Only 32-bit instructions exist.

srte32

355

ST.B – Store byte

Description: Store the lowest byte in register RZ to storage. Adopt the addressing

mode of register and unsigned immediate operand offset. The effective

address of storage is gained by adding the base register RX to the value

of unsigned extending the 12-bit relative offset to 32 bits. The address

space of ST.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB write invalid exception

16-bit instruction

Operation: Store the lowest byte in register to storage

MEM[RX + zero_extend(offset)] ¬ RZ[7:0]

Grammar: st16.b rz, (rx, disp)

Description: Store the lowest byte in register RZ to storage. Adopt the addressing

mode of register and unsigned immediate operand offset. The effective

address of storage is gained by adding the base register RX to the value

of unsigned extending the 5-bit relative offset to 32 bits. The address

space of ST16.B instruction is +32B.

Attention: The offset DISP is the offset of binary operand.

Influence on flag No influence

Unified

instruction

Grammar Operation Compiling result

st.b rz, (rx, disp) Store the lowest byte in register to

storage

MEM[RX + zero_extend(offset)]

¬ RZ[7:0]

Compiled into 16-bit or 32-bit

instructions according to the

range of offset and register.

if (disp<32) and (x<7) and (z<7),

then

 st16.b rz, (rx, disp);

else

st32.b rz, (rx, disp);

356

bit:

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Instruction

format:

15 14 11 10 8 7 5 4 0

1 0 1 0 0 RX RZ IMM5

32-bit instruction

Operation: Store the lowest byte in register to storage

MEM[RX + zero_extend(offset)] ¬ RZ[7:0]

Grammar: st32.b rz, (rx, disp)

Description: Store the lowest byte in register RZ to storage. Adopt the addressing

mode of register and unsigned immediate operand offset. The effective

address of storage is gained by adding the base register RX to the value

of unsigned extending the 12-bit relative offset to 32 bits. The address

space of ST32.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 1 RZ RX 0 0 0 0 Offset

357

ST.D – Store double word

Description: Store double word in register RZ and RZ + 1 to storage. Adopt the

addressing mode of register and unsigned immediate operand offset.

The effective address of storage is gained by adding the base register

RX to the value of unsigned extending the 12-bit relative offset shifting

left by two bits to 32 bits. The address space of ST.D instruction is

+16KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

32-bit instruction

Operation: Store double word in register to storage

MEM[RX + zero_extend(offset << 2)] ¬ RZ[31:0]

MEM[RX + zero_extend(offset << 2) + 0x4] ¬ RZ + 1[31:0]

Grammar: st32.d rz, (rx, disp)

Description: Store double word in register RZ and RZ + 1 to storage. Adopt the

addressing mode of register and unsigned immediate operand offset.

The effective address of storage is gained by adding the base register

RX to the value of unsigned extending the 12-bit relative offset shifting

left by two bits to 32 bits. The address space of ST32.D instruction is

+16KB.

Unified

instruction

Grammar Operation Compiling result

st.d rz, (rx, disp) Store double word in register to storage

MEM[RX + zero_extend(offset<< 2)] ¬

RZ[31:0]

MEM[RX + zero_extend(offset<< 2) +

0x4] ¬ RZ + 1[31:0]

Only 32-bit instructions

exist.

st32.d rz, (rx, disp);

358

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 1 RZ RX 0 0 1 1 Offset

359

ST.H – Store half-word

Description: Store low half-word in register RZ to storage. Adopt the addressing

mode of register and unsigned immediate operand offset. The effective

address of storage is gained by adding the base register RX to the value

of unsigned extending the 12-bit relative offset shifting left by one bit to

32 bits. The address space of ST.H instruction is +8KB.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Store low half-word in register to storage

MEM[RX + zero_extend(offset << 1)] ¬ RZ[15:0]

Grammar: st16.h rz, (rx, disp)

Description: Store low half-word in register RZ to storage. Adopt the addressing

mode of register and unsigned immediate operand offset. The effective

address of storage is gained by adding the base register RX to the value

of unsigned extending the 5-bit relative offset shifting left by one bit to

32 bits. The address space of ST16.H instruction is +64B.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 1 bit.

Influence on flag No influence

Unified

instruction

Grammar Operation Compiling result

st.h rz, (rx, disp) Store the lowest byte in

register to storage

MEM[RX +

zero_extend(offset<< 1)] ¬

RZ[15:0]

Compiled into 16-bit or 32-bit

instructions according to the range

of offset and register.

if (disp<64)and(x<7)and(z<7), then

 st16.h rz, (rx, disp);

else

st32.h rz, (rx, disp);

360

bit:

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

15 14 11 10 8 7 5 4 0

1 0 1 0 1 RX RZ IMM5

32-bit instruction

Operation: Store low half-word in register to storage

MEM[RX + zero_extend(offset << 1)] ¬ RZ[15:0]

Grammar: st32.h rz, (rx, disp)

Description: Store low half-word in register RZ to storage. Adopt the addressing

mode of register and unsigned immediate operand offset. The effective

address of storage is gained by adding the base register RX to the value

of unsigned extending the 12-bit relative offset shifting left by one bit to

32 bits. The address space of ST32.H instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 1 bit.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 1 RZ RX 0 0 0 1 Offset

361

ST.W – Store word

Description: Store word in register RZ to storage. Adopt the addressing mode of

register and unsigned immediate operand offset. The effective address

of storage is gained by adding the base register RX to the value of

unsigned extending the 12-bit relative offset shifting left by two bits to

32 bits. The address space of ST.W instruction is +16KB.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Store word in register to storage

MEM[RX + zero_extend(offset << 2)] ¬ RZ[31:0]

Grammar: st16.w rz, (rx, disp)

st16.w rz, (sp, disp)

Description: Store word in register RZ to storage. Adopt the addressing mode of

register and unsigned immediate operand offset. When rx=sp, the

effective address of storage is gained by adding the base register RX to

the value of unsigned extending the 8-bit relative offset shifting left by

two bits to 32 bits. When rx is other register, the effective address of

Unified

instruction

Grammar Operation Compiling result

st.w rz, (rx, disp) Store word in register to

storage

MEM[RX +

zero_extend(offset<< 2)] ¬

RZ[31:0]

Compiled into 16-bit or 32-bit

instructions according to the range of

offset and register.

if (x=sp) and (z<7) and (disp < 1024),

 st16.w rz, (sp, disp);

else if (disp<128) and (x<7) and (z<7),

 st16.w rz, (rx, disp);

else

st32.w rz, (rx, disp);

362

storage is gained by adding the base register RX to the value of

unsigned extending the 5-bit relative offset shifting left by two bits to

32 bits. The address space of ST16.W instruction is +1KB.

Attention: The offset DISP is gained after the binary operand IMM5

shifts left by two bits. When the base register RX is SP, the offset DISP

is gained after the binary operand {IMM3, IMM5} shifts left by two

bits.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

st16.w rz, (rx, disp)

15 14 11 10 8 7 5 4 0

1 0 1 1 0 RX RZ IMM5

st16.w rz, (sp, disp)

15 14 11 10 8 7 5 4 0

1 0 1 1 1 IMM3 RZ IMM5

32-bit instruction

Operation: Store word in register to storage

MEM[RX + zero_extend(offset << 2)] ¬ RZ[31:0]

Grammar: st32.w rz, (rx, disp)

Description: Store word in register RZ to storage. Adopt the addressing mode of

register and unsigned immediate operand offset. The effective address

of storage is gained by adding the base register RX to the value of

unsigned extending the 12-bit relative offset shifting left by two bits to

32 bits. The address space of ST32.W instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

363

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 1 RZ RX 0 0 1 0 Offset

364

STCPR – Store word in co-processor

Description: Store word in general-purpose register of co-processor CPRZ to

storage. Adopt the addressing mode of register and immediate operand

offset. Bits 24-21 are agreed as co-processor numbers and used to

assign co-processor of pre-operation. 12 low bits are user defined.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Operation: Store word in general-purpose register of co-processor to storage

MEM[RX + sign_extend(offset << 2)] ¬ CPRZ

Grammar: stcpr32 <cpid, cprz>, (rx, offset)

Description: Store word in general-purpose register of co-processor CPRZ to

storage. Adopt the addressing mode of register and immediate operand

offset. Bits 24-21 are agreed as co-processor numbers and used to

assign co-processor of pre-operation. 12 low bits are user defined.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

Unified instruction

Grammar Operation Compiling result

stcpr <cpid, cprz>,

(rx, offset)

Store word in general-purpose register

of co-processor to storage

MEM[RX + sign_extend(offset << 2)]

¬ CPRZ

Only 32-bit instructions

exist.

stcpr32 <cpid, cprz>, (rx,

offset)

365

1 1 1 0 1 0 0 CPID RX 0 1 1 1 User-define

366

STEX.W – Store word exclusive

Description: Store word in general-purpose register RZ to storage. If exclusive

storage succeeds, the source register RZ returns to 1; if the source

register returns to zero, it means failure of exclusive storage. STEX.W

adopts the addressing mode of register and immediate operand offset.

The effective address of storage is gained by adding the base register

RX to the value of unsigned extending the 12-bit relative offset shifting

left by two bits to 32 bits. The address space of STEX.W instruction is

+16KB.

This instruction matches LDEX.W and it is used for atom operation of

“read storage – modify – write storage” in multi-core communication.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

32-bit instruction

Operation: If exclusive storage of word succeeds, then

 MEM[RX + sign_extend(offset << 2)] ¬ RZ;

 RZ ¬ 1;

else

 RZ ¬ 0;

Unified instruction

Grammar Operation Compiling result

stex.w rz, (rx, disp) If exclusive storage of word succeeds, then

MEM[RX +

sign_extend(offset << 2)] ¬ RZ;

 RZ ¬ 1;

else

 RZ ¬ 0;

Only 32-bit instructions

exist.

stex32.w rz, (rx, disp)

367

Grammar: stex32.w rz, (rx, disp)

Description: Store word in general-purpose register RZ to storage. If exclusive

storage succeeds, the source register RZ returns to 1; if the source

register returns to zero, it means failure of exclusive storage.

STEX32.W adopts the addressing mode of register and immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 12-bit relative

offset shifting left by two bits to 32 bits. The address space of

STEX32.W instruction is +16KB.

This instruction matches LDEX32.W and it is used for atom operation

of “read storage – modify – write storage” in multi-core

communication.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 0 1 1 1 RZ RX 0 1 1 1 Offset

368

STM – Store consecutive multiword

Description: Store contents in a group of consecutive register files starting from RY to

a group of consecutive storage addresses successively. In another word,

store contents in register RY to the address of the first word in the address

appointed by storage; store the contents in register RY+1 to the address of

the second word in the address appointed by storage, and the like; store

the contents in register RZ to the address of the last word in the address

appointed by storage. The effective address of storage is decided by the

contents of base register RX.

Influence on flag

bit:

No influence

Restriction: RZ should be greater than or equal to RY.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

32-bit

instruction

Operation: Store contents in a group of consecutive register files to a group of

consecutive storage addresses successively

Unified

instruction

Grammar Operation Compiling result

stm ry-rz, (rx) Store contents in a group of

consecutive register files to a group

of consecutive storage addresses

successively

src ¬ Y; addr ¬ RX;

for (n = 0; n <=(Z-Y); n++){

 MEM[addr] ¬ Rsrc;

 src ¬ src + 1;

 addr ¬ addr + 4;

}

Only 32-bit instructions exist.

stm32 ry-rz, (rx)

369

src ¬ Y; addr ¬ RX;

for (n = 0; n <= IMM5; n++){

 MEM[addr] ¬ Rsrc;

 src ¬ src + 1;

 addr ¬ addr + 4;

}

Grammar: stm32 ry-rz, (rx)

Description: Store contents in a group of consecutive register files starting from RY to

a group of consecutive storage addresses successively. In another word,

store contents in register RY to the address of the first word in the address

appointed by storage; store the contents in register RY+1 to the address of

the second word in the address appointed by storage, and the like; store

the contents in register RZ to the address of the last word in the address

appointed by storage. The effective address of storage is decided by the

contents of base register RX.

Influence on flag

bit:

No influence

Restriction: RZ should be greater than or equal to RY.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 1 1 1 0 0 0 0 1 IMM5

IMM5 field – Assign the number of destination registers, IMM5 = Z – Y.

00000 – 1 destination register

00001 – 2 destination registers

……

11111 – 32 destination registers

370

STOP – Enter low power consumption stop mode

Description: This instruction makes the processor enter low power consumption

mode and wait for an interrupt to exit from this mode. At this time, CPU

clock is stopped and corresponding peripheral equipment is also

stopped.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

32-bit instruction

Operation: Enter low power consumption stop mode

Grammar: stop32

Attribute: Privileged instruction

Description: This instruction makes the processor enter low power consumption

mode and wait for an interrupt to exit from this mode. At this time, CPU

clock is stopped and corresponding peripheral equipment is also

stopped.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

stop Enter low power consumption stop mode Only 32-bit instructions

exist.

stop32

371

STQ – Store consecutive quad word#

Description: Store words in register file [R4,R7] (including boundary) to a group of

consecutive storage addresses successively. In another word, store

contents in register R4 to the address of the first word in the address

appointed by storage; store contents in register R5 to the address of the

second word in the address appointed by storage; store contents in

register R6 to the address of the third word in the address appointed by

storage; store contents in register R7 to the address of the fourth word

in the address appointed by storage. The effective address of storage is

decided by the contents of base register RX.

Attention: This instruction is the pseudo instruction of stm r4-r7, (rx).

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

32-bit instruction

Operation: Store words in registers R4-R7 to a group of consecutive storage

addresses successively

src ¬ 4; addr ¬ RX;

for (n = 0; n <= 3; n++){

Unified

instruction

Grammar Operation Compiling result

stq r4-r7, (rx) Store words in registers R4-R7 to a

group of consecutive storage

addresses successively

src ¬ 4; addr ¬ RX;

for (n = 0; n <= 3; n++){

 MEM[addr] ¬ Rsrc;

 src ¬ src + 1;

 addr ¬ addr + 4; }

Only 32-bit instructions exist.

stq32 r4-r7, (rx);

372

 MEM[addr] ¬ Rsrc;

 src ¬ src + 1;

 addr ¬ addr + 4; }

Grammar: stq32 r4-r7, (rx)

Description: Store words in register file [R4,R7] (including boundary) to a group of

consecutive storage addresses successively. In another word, store

contents in register R4 to the address of the first word in the address

appointed by storage; store contents in register R5 to the address of the

second word in the address appointed by storage; store contents in

register R6 to the address of the third word in the address appointed by

storage; store contents in register R7 to the address of the fourth word

in the address appointed by storage. The effective address of storage is

decided by the contents of base register RX.

Attention: This instruction is the pseudo instruction of stm r4-r7, (rx).

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 0 0 1 0 0 RX 0 0 0 1 1 1 0 0 0 0 1 0 0 0 1 1

373

STR.B – Store byte in register offset addressing

Description: Store the lowest byte in register RZ to storage. Adopt the addressing

mode of register and register offset. The effective address of storage is

gained by adding the base register RX to the value after offset register

RY shifts left by 2-bit immediate operand IMM2. The default value of

IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB write invalid exception

32-bit instruction

Operation: Store the lowest byte in register to storage

MEM[RX + RY << IMM2] ¬ RZ[7:0]

Grammar: str32.b rz, (rx, ry << 0)

str32.b rz, (rx, ry << 1)

str32.b rz, (rx, ry << 2)

str32.b rz, (rx, ry << 3)

Description: Store the lowest byte in register RZ to storage. Adopt the addressing

mode of register and register offset. The effective address of storage is

gained by adding the base register RX to the value after offset register

RY shifts left by 2-bit immediate operand IMM2. The default value of

IMM2 is 0.

Unified instruction

Grammar Operation Compiling result

str.b rz, (rx, ry <<

0)

str.b rz, (rx, ry <<

1)

str.b rz, (rx, ry <<

2)

str.b rz, (rx, ry <<

3)

Store the lowest byte in register to

storage

MEM[RX + RY << IMM2] ¬ RZ[7:0]

Only 32-bit instructions

exist.

str32.b rz, (rx, ry << 0)

str32.b rz, (rx, ry << 1)

str32.b rz, (rx, ry << 2)

str32.b rz, (rx, ry << 3)

374

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB write invalid exception

Instruction

format:

str32.b rz, (rx, ry << 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 0 0 0 0 0 1 RZ

str32.b rz, (rx, ry << 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 0 0 0 0 1 0 RZ

str32.b rz, (rx, ry << 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 0 0 0 1 0 0 RZ

str32.b rz, (rx, ry << 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 0 0 1 0 0 0 RZ

375

STR.H – Store half-word in register offset addressing

Description: Store low half-word in register RZ to storage. Adopt the addressing

mode of register and register offset. The effective address of storage is

gained by adding the base register RX to the value after offset register

RY shifts left by 2-bit immediate operand IMM2. The default value of

IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

32-bit instruction

Operation: Store low half-word in register to storage

MEM[RX + RY << IMM2] ¬ RZ[15:0]

Grammar: str32.h rz, (rx, ry << 0)

str32.h rz, (rx, ry << 1)

str32.h rz, (rx, ry << 2)

str32.h rz, (rx, ry << 3)

Description: Store low half-word in register RZ to storage. Adopt the addressing

mode of register and register offset. The effective address of storage is

gained by adding the base register RX to the value after offset register

RY shifts left by 2-bit immediate operand IMM2. The default value of

IMM2 is 0.

Unified instruction

Grammar Operation Compiling result

str.h rz, (rx, ry <<

0)

str.h rz, (rx, ry <<

1)

str.h rz, (rx, ry <<

2)

str.h rz, (rx, ry <<

3)

Store low half-word in register to

storage

MEM[RX + RY << IMM2] ¬

RZ[15:0]

Only 32-bit instructions

exist.

str32.h rz, (rx, ry << 0)

str32.h rz, (rx, ry << 1)

str32.h rz, (rx, ry << 2)

str32.h rz, (rx, ry << 3)

376

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

str32.h rz, (rx, ry << 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 1 0 0 0 0 1 RZ

str32.h rz, (rx, ry << 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 1 0 0 0 1 0 RZ

str32.h rz, (rx, ry << 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 1 0 0 1 0 0 RZ

str32.h rz, (rx, ry << 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 0 1 0 1 0 0 0 RZ

377

STR.W – Store word in register offset addressing

Description: Store word in register RZ to storage. Adopt the addressing mode of

register and register offset. The effective address of storage is gained by

adding the base register RX to the value after offset register RY shifts

left by 2-bit immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

32-bit instruction

Operation: Store word in register to storage

MEM[RX + RY << IMM2] ¬ RZ[31:0]

Grammar: str32.w rz, (rx, ry << 0)

str32.w rz, (rx, ry << 1)

str32.w rz, (rx, ry << 2)

str32.w rz, (rx, ry << 3)

Description: Store word in register RZ to storage. Adopt the addressing mode of

register and register offset. The effective address of storage is gained by

adding the base register RX to the value after offset register RY shifts

left by 2-bit immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Unified instruction

Grammar Operation Compiling result

str.w rz, (rx, ry <<

0)

str.w rz, (rx, ry <<

1)

str.w rz, (rx, ry <<

2)

str.w rz, (rx, ry <<

3)

Store word in register to storage

MEM[RX + RY << IMM2] ¬

RZ[31:0]

Only 32-bit instructions

exist.

str32.w rz, (rx, ry << 0)

str32.w rz, (rx, ry << 1)

str32.w rz, (rx, ry << 2)

str32.w rz, (rx, ry << 3)

378

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

str32.w rz, (rx, ry << 0)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 1 0 0 0 0 0 1 RZ

str32.w rz, (rx, ry << 1)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 1 0 0 0 0 1 0 RZ

str32.w rz, (rx, ry << 2)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 1 0 0 0 1 0 0 RZ

str32.w rz, (rx, ry << 3)

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 1 0 1 RY RX 0 0 0 0 1 0 0 1 0 0 0 RZ

379

STRAP – Enter safe state

Attribute: Privileged instruction

Description: Save the current PC value in control register SPC and save the current

PSR in control register SPSR; the program enters safe state and is

executed from the safe entry address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

32-bit instruction

Operation: Enter safe state

SPC ¬ PC, SPSR ¬ PSR

Grammar: strap32

Attribute: Privileged instruction

Description: Save the current PC value in control register SPC and save the current

PSR in control register SPSR; the program enters safe state and is

executed from the safe entry address.

Influence on flag

bit:

No influence

Exception: Privilege violation exception

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

strap Enter safe state

SPC ¬ PC, SPSR ¬ PSR

Only 32-bit instructions exist.

strap32

380

SUBC – Subtract with borrow unsigned

Unified

instruction

Grammar Operation Compiling result

subc rz, rx RZ ¬ RZ - RX – (!C),

C ¬ borrow

Compiled into corresponding 16-bit or

32-bit instructions according to the range of

register.

if (x<16) and (z<16), then

subc16 rz, rx;

else

 subc32 rz, rz, rx;

subc rz, rx, ry RZ ¬ RX - RY - (!C),

C ¬ borrow

Compiled into corresponding 16-bit or

32-bit instructions according to the range of

register.

if (x==z) and (y<16) and (z<16), then

 subc16 rz, ry;

else

 subc32 rz, rx, ry;

Description: For subc rz, rx, subtract the value of register RX and negative value of

C bit from the value of RZ; for subc rz, rx, ry, subtract the value of

register RY and negative value of C bit from the value of RX. Save the

result in RZ and save borrow in C bit. For this subtract instruction, if

borrow happens, C bit should be cleared; otherwise, C bit should be set.

Influence on flag

bit:

C ¬ borrow

Exception: None

16-bit instruction

Operation: RZ ¬ RZ - RX – (!C), C ¬ borrow

Grammar: subc16 rz, rx

Description: Subtract the value of register RX and negative value of C bit from the

value of RZ, save the result in RZ, and save borrow in C bit. For this

subtract instruction, if borrow happens, C bit should be cleared;

otherwise, C bit should be set.

381

Influence on flag

bit:

C ¬ borrow

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 0 0 RZ RX 1 1

32-bit instruction

Operation: RZ ¬ RX - RY – (!C), C ¬ borrow

Grammar: subc32 rz, rx, ry

Description: Subtract the value of register RY and negative value of C bit from the

value of RX, save the result in RZ, and save borrow in C bit. For this

subtract instruction, if borrow happens, C bit should be cleared;

otherwise, C bit should be set.

Influence on flag

bit:

C ¬ borrow

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 0 0 0 1 0 0 0 RZ

382

SUBI – Subtract immediate unsigned

Unified

instruction

Grammar Operation Compiling result

subi rz, oimm12 RZ ¬ RZ -

zero_extend(OIMM12)

Compiled into corresponding 16-bit or 32-bit

instructions according to the range of register.

if (oimm12<257) and (z<8), then

subi16 rz, oimm8;

else

 subi32 rz, rz, oimm12;

subi rz, rx,

oimm12

RZ ¬ RX -

zero_extend(OIMM12)

Compiled into corresponding 16-bit or 32-bit

instructions according to the range of register.

if (oimm12<8) and (z<8) and (x<8), then

 subi16 rz, rx, oimm3;

elsif (x==z) and (z<8) and (oimm12<257),

then

 subi16 rz, oimm8;

else

 subi32 rz, rx, oimm12;

Description: Zero-extend the 12-bit immediate operand with offset 1 (OIMM12) to 32

bits, subtract this 32-bit number from RZ/RX value, and save the result in

RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x1-0x1000.

Exception: None

16-bit

instruction----1

Operation: RZ ¬ RZ - zero_extend(OIMM8)

Grammar: subi16 rz, oimm8

Description: Zero-extend the 8-bit immediate operand with offset 1 (OIMM8) to 32

bits, subtract this 32-bit number from RZ value, and save the result in

RZ.

383

Attention: The binary operand IMM8 is equal to OIMM8 – 1.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 1-256.

Exception: None

Instruction

format:

15 14 11 10 8 7 0

0 0 1 0 1 RZ IMM8

IMM8 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM8, the value OIMM8 subtracted from the

register requires offset 1.

00000000 – -1

00000001 – -2

……

11111111 – -256

16-bit

instruction----2

Operation: RZ ¬ RX - zero_extend(OIMM3)

Grammar: subi16 rz, rx, oimm3

Description: Zero-extend the 3-bit immediate operand with offset 1 (OIMM3) to 32

bits, subtract this 32-bit number from RX value, and save the result in

RZ.

Attention: The binary operand IMM3 is equal to OIMM3 – 1.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 1-8.

Exception: None

Instruction

format:

15 14 10 8 7 5 4 2 1 0

384

0 1 0 1 1 RX RZ IMM3 1 1

IMM3 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM3, the value OIMM3 subtracted from the

register requires offset 1.

000 – -1

001 – -2

……

111 – -8

32-bit

instruction

Operation: RZ ¬ RX - zero_extend(OIMM12)

Grammar: subi32 rz, rx, oimm12

Description: Zero-extend the 12-bit immediate operand with offset 1 (OIMM12) to 32

bits, subtract this 32-bit number from RX value, and save the result in

RZ.

Attention: The binary operand IMM12 is equal to OIMM12 – 1.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x1-0x1000.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 0 0 1 RZ RX 0 0 0 1 IMM12

IMM12 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM12, the value OIMM12 subtracted from

the register requires offset 1.

000000000000 – -0x1

000000000001 – -0x2

……

385

111111111111 – -0x1000

386

SUBI(SP) – Subtract immediate unsigned (stack pointer)

Description: Zero-extend the immediate operand (IMM) to 32 bits, make it shift left

by 2 bits, subtract it from the value of stack pointer (SP), and save the

result in SP.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0x1fc.

Exception: None

16-bit

instruction

Operation: SP ¬ SP - zero_extend(IMM)

Grammar: subi sp, sp, imm

Description: Zero-extend the immediate operand (IMM) to 32 bits, make it shift left by

2 bits, subtract it from the value of stack pointer (SP), and save the result

in stack pointer.

Attention: The immediate operand (IMM) is equal to the binary operand

{IMM2, IMM5} << 2.

Influence on

flag bit:

No influence

Restriction: The source and destination registers are both stack instruction register

(R14); the range of immediate operand is (0x0-0x7f) << 2.

Exception: None

Instruction

format:

15 14 11 10 9 8 7 5 4 0

0 0 0 1 0 1 IMM2 0 0 1 IMM5

Unified

instruction

Grammar Operation Compiling result

subi sp, sp,

imm

SP ¬ SP-

zero_extend(IMM)

Only 16-bit instructions exist.

subi sp, sp, imm

387

IMM field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand {IMM2, IMM5}, the value IMM added into

the register needs to shift left by 2 bits.

{00, 00000} – -0x0

{00, 00001} – -0x4

……

{11, 11111} – -0x1fc

388

SUBU – Subtract unsigned

Unified

instruction

Grammar Operation Compiling result

subu rz, rx

sub rz, rx

RZ ¬ RZ - RX Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (z<16) and (x<16), then

subu16 rz, rx;

else

 subu32 rz, rz, rx;

subu rz, rx, ry RZ ¬ RX - RY Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (z<8) and (x<8) and (y<8), then

 subu16 rz, rx, ry;

elsif (x==z) and (z<16) and (y<16), then

 subu16 rz, ry;

else

 subu32 rz, rx, ry;

Description: For subu rz, rx, subtract RX value from RZ value and save the result in

RZ.

For subu rz, rx, ry, subtract RY value from RX value and save the result

in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction----1

Operation: RZ ¬ RZ - RX

Grammar: subu16 rz, rx

sub16 rz, rx

Description: Subtract RX value from RZ value and save the result in RZ.

389

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 0 0 RZ RX 1 0

16-bit

instruction----2

Operation: RZ ¬ RX- RY

Grammar: subu16 rz, rx, ry

sub16 rz, rx, ry

Description: Subtract RY value from RX value and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r7.

Exception: None

Instruction

format:

15 14 11 10 8 7 5 4 2 1 0

0 1 0 1 1 RX RZ RY 0 1

32-bit

instruction

Operation: RZ ¬ RX - RY

Grammar: subu32 rz, rx, ry

Description: Subtract RY value from RX value and save the result in RZ.

Influence on flag No influence

390

bit:

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 0 0 0 0 0 0 1 0 0 RZ

391

SYNC – Synchronize CPU

Description: When the processor meets sync instruction, the instruction will be

suspended according to the indication range of immediate operand till all

operations are completed. In another word, there is no instruction that is

not completed.

The lowest bit of immediate operand (IMM5[0]) refers to the range of

waiting for operation. If this bit is 0, the instruction will be suspended till

all operations (including internal core, L2 Cache and bus) are completed.

If this bit is 1, the instruction will be suspended till all operations in the

core are completed.

Influence on flag

bit:

No influence

Exception: None

32-bit

instruction

Operation: Synchronize CPU

Grammar: sync32 imm5

Description: When the processor meets sync instruction, the instruction will be

suspended according to the indication range of immediate operand till all

operations are completed. In another word, there is no instruction that is

not completed.

The lowest bit of immediate operand (IMM5[0]) refers to the range of

waiting for operation. If this bit is 0, the instruction will be suspended till

all operations (including internal core, L2 Cache and bus) are completed.

If this bit is 1, the instruction will be suspended till all operations in the

core are completed.

Unified

instruction

Grammar Operation Compiling result

sync imm5 Synchronize CPU Only 32-bit instructions

exist.

sync32 imm5

392

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 IMM5 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0

393

TRAP – Operating system trap

Description: When the processor meets trap instruction, trap exception operation

happens.

Influence on flag

bit:

No influence

Exception: Trap exception

32-bit

instruction

Operation: Trigger trap exception

Grammar: trap32 0,

trap32 1,

trap32 2,

trap32 3

Description: When the processor meets trap instruction, trap exception operation

happens.

Influence on flag

bit:

No influence

Exception: Trap exception

Instruction

format:

trap32 0

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Description

trap 0,

trap 1

trap 2,

trap 3

Trigger trap exception Only 32-bit instructions

exist.

trap32 0,

trap32 1

trap32 2,

trap32 3

394

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

trap32 1

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0

trap32 2

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0

trap32 3

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 1 0 0 0 0 0

395

TST – Null-test

Unified

instruction

Grammar Operation Compiling result

tst rx, ry If (RX & RY) != 0, then

C ¬ 1;

else

 C ¬ 0;

Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (x<16) and (y<16), then

tst16 rx, ry;

else

 tst32 rx, ry;

Description: Test the bitwise AND result of RX and RY values.

If the result is not equal to zero, set the condition bit C; otherwise, clear

the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the bitwise AND result

Exception: None

16-bit

instruction

Operation: If (RX & RY) != 0, then

C ¬ 1;

else

 C ¬ 0;

Grammar: tst16 rx, ry

Description: Test the bitwise AND result of RX and RY values.

If the result is not equal to zero, set the condition bit C; otherwise, clear

the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the bitwise AND result

Restriction: The range of register is r0-r15.

Exception: None

Instruction

396

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 0 RY RX 1 0

32-bit

instruction

Operation: If (RX & RY) != 0, then

C ¬ 1;

else

 C ¬ 0;

Grammar: tst32 rx, ry

Description: Test the bitwise AND result of RX and RY values.

If the result is not equal to zero, set the condition bit C; otherwise, clear

the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the bitwise AND result

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

397

TSTNBZ – Register test without byte equal to zero

Unified

instruction

Grammar Operation Compiling result

tstnbz16 rx If ((RX[31:24] != 0)

&(RX[23:16] != 0)

&(RX[15: 8] != 0)

&(RX[7 : 0] != 0)), then

C ¬ 1;

else

 C ¬ 0;

Compiled into corresponding 16-bit

or 32-bit instructions according to

the range of register.

if (x<16), then

tstnbz16 rx;

else

 tstnbz32 rx;

Description: Test whether there is byte equal to zero in RX. If there is no byte equal to

zero in RX, set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the bitwise AND result

Exception: None

16-bit

instruction

Operation: If ((RX[31:24] != 0)

&(RX[23:16] != 0)

&(RX[15: 8] != 0)

&(RX[7 : 0] != 0)), then

C ¬ 1;

else

 C ¬ 0;

Grammar: tstnbz16 rx

Description: Test whether there is byte equal to zero in RX. If there is no byte equal to

zero in RX, set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the bitwise AND result

Restriction: The range of register is r0-r15.

Exception: None

398

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 0 0 0 0 0 RX 1 1

32-bit

instruction

Operation: If ((RX[31:24] != 0)

&(RX[23:16] != 0)

&(RX[15: 8] != 0)

&(RX[7 : 0] != 0)), then

C ¬ 1;

else

 C ¬ 0;

Grammar: tstnbz32 rx

Description: Test whether there is byte equal to zero in RX. If there is no byte equal to

zero in RX, set the condition bit C; otherwise, clear the condition bit C.

Influence on flag

bit:

Set the condition bit C according to the bitwise AND result

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0

399

VMULSH – 16-bit multiply signed in two branches

Description: Save the result of multiplying the 16 high bits of general-purpose register

RX and 16 high bits of RY in the high-bit accumulator register HI. Save

the result of multiplying the 16 low bits of general-purpose register RX

and 16 low bits of RY in the low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

bits of source operands in register RX and RY are the 31st bit and the 15th

bit of the register respectively; the sign bit of results in high-bit register

HI and low-bit register LO is the 31st bit of the register.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

32-bit

instruction

Operation: Multiply the 16-bit signed numbers in two branches respectively and put

the result in accumulator

HI ¬ RX[31:16] × RY[31:16]

LO ¬ RX[15:0] × RY[15:0]

Grammar: vmulsh32 rx, ry

Description: Save the result of multiplying the 16 high bits of general-purpose register

RX and 16 high bits of RY in the high-bit accumulator register HI. Save

the result of multiplying the 16 low bits of general-purpose register RX

and 16 low bits of RY in the low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

Unified

instruction

Grammar Operation Compiling result

vmulsh rx, ry Multiply the 16-bit signed numbers in two

branches respectively and put the result in

accumulator

HI ¬ RX[31:16] × RY[31:16]

LO ¬ RX[15:0] × RY[15:0]

Only 32-bit instructions

exist.

vmulsh32 rx, ry

400

bits of source operands in register RX and RY are the 31st bit and the 15th

bit of the register respectively; the sign bit of results in high-bit register

HI and low-bit register LO is the 31st bit of the register.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0

401

VMULSHA – 16-bit multiply-accumulate signed in two

branches

Description: Add the 32-bit result of multiplying the 16 high bits of general-purpose

register RX and 16 high bits of RY to the value in 32-high-bit register HI

of 64-bit accumulator, and save the result in the high-bit accumulator

register HI. Add the 32-bit result of multiplying the 16 low bits of

general-purpose register RX and 16 low bits of RY to the value in

32-low-bit register LO of 64-bit accumulator, and save the result in the

low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator

register LO and high-bit register LO are considered as signed numbers.

The sign bits of source operands in register RX and RY are the 31st bit

and the 15th bit of the register respectively; the sign bit of operands and

results in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

32-bit

Unified

instruction

Grammar Operation Compiling result

vmulsha rx, ry Multiply the 16-bit signed numbers in two

branches respectively, add the results to the

high-bit and low-bit values of accumulator

respectively, and put the result in

accumulator

HI ¬ HI + RX[31:16] × RY[31:16]

LO ¬ LO + RX[15:0] × RY[15:0]

Only 32-bit instructions

exist.

vmulsha32 rx, ry

402

instruction

Operation: Multiply the 16-bit signed numbers in two branches respectively, add the

results to the high-bit and low-bit values of accumulator respectively, and

put the result in accumulator

HI ¬ HI + RX[31:16] × RY[31:16]

LO ¬ LO + RX[15:0] × RY[15:0]

Grammar: vmulsha32 rx, ry

Description: Add the 32-bit result of multiplying the 16 high bits of general-purpose

register RX and 16 high bits of RY to the value in 32-high-bit register HI

of 64-bit accumulator, and save the result in the high-bit accumulator

register HI. Add the 32-bit result of multiplying the 16 low bits of

general-purpose register RX and 16 low bits of RY to the value in

32-low-bit register LO of 64-bit accumulator, and save the result in the

low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator

register LO and high-bit register LO are considered as signed numbers.

The sign bits of source operands in register RX and RY are the 31st bit

and the 15th bit of the register respectively; the sign bit of operands and

results in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0

403

VMULSHS – 16-bit multiply-subtract signed in two branches

Description: Subtract the value of multiplying the 16 high bits of general-purpose

register RX and 16 high bits of RY from the value in 32-high-bit register

HI of 64-bit accumulator, and save the result in the high-bit accumulator

register HI. Subtract the value of multiplying the 16 low bits of

general-purpose register RX and 16 low bits of RY from the value in

32-low-bit register LO of 64-bit accumulator, and save the result in the

low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator

register LO and high-bit register LO are considered as signed numbers.

The sign bits of source operands in register RX and RY are the 31st bit

and the 15th bit of the register respectively; the sign bit of operands and

results in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

32-bit

instruction

Operation: Subtract the value of multiplying the 16-bit signed numbers in two

Unified

instruction

Grammar Operation Compiling result

vmulshs rx, ry Subtract the value of multiplying the 16-bit

signed numbers in two branches from the

high-bit and low-bit values of accumulator

respectively, and put the result in

accumulator

HI ¬ HI - RX[31:16] × RY[31:16]

LO ¬ LO - RX[15:0] × RY[15:0]

Only 32-bit instructions

exist.

vmulshs32 rx, ry

404

branches from the high-bit and low-bit values of accumulator

respectively, and put the result in accumulator

HI ¬ HI - RX[31:16] × RY[31:16]

LO ¬ LO - RX[15:0] × RY[15:0]

Grammar: vmulshs32 rx, ry

Description: Subtract the value of multiplying the 16 high bits of general-purpose

register RX and 16 high bits of RY from the value in 32-high-bit register

HI of 64-bit accumulator, and save the result in the high-bit accumulator

register HI. Subtract the value of multiplying the 16 low bits of

general-purpose register RX and 16 low bits of RY from the value in

32-low-bit register LO of 64-bit accumulator, and save the result in the

low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator

register LO and high-bit register LO are considered as signed numbers.

The sign bits of source operands in register RX and RY are the 31st bit

and the 15th bit of the register respectively; the sign bit of operands and

results in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 1 1 0 0 0 0 1 0 0 0 0 0 0 0

405

VMULSW – 16x32 multiply signed in two branches

Description: Save the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY in high-bit accumulator

register HI. Save the 32 high bits of the result after multiplying the 16

low bits of general-purpose register RX and contents of RY in low-bit

accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

bits of source operands in register RX are the 31st bit and the 15th bit of

the register respectively; the sign bit of operand in register RY and results

in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

32-bit

instruction

Operation: Multiply 16-bit signed numbers in two branches with a 32-bit signed

number respectively, and put the result in accumulator

HI ¬ (RX[31:16] × RY[31:0])[47:16]

LO ¬ (RX[15:0] × RY[31:0])[47:16]

Grammar: vmulsw32 rx, ry

Description: Save the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY in high-bit accumulator

Unified

instruction

Grammar Operation Compiling result

vmulsw rx, ry Multiply 16-bit signed numbers in two

branches with a 32-bit signed number

respectively, and put the result in

accumulator

HI ¬ (RX[31:16] × RY[31:0])[47:16]

LO ¬ (RX[15:0] × RY[31:0])[47:16]

Only 32-bit instructions

exist.

vmulsw32 rx, ry

406

register HI. Save the 32 high bits of the result after multiplying the 16

low bits of general-purpose register RX and contents of RY in low-bit

accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

bits of source operands in register RX are the 31st bit and the 15th bit of

the register respectively; the sign bit of operand in register RY and results

in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Influence on flag

bit:

Overflow bit is cleared

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 1 1 0 1 0 0 0 0 1 0 0 0 0 0

407

VMULSWA – 16x32 multiply-accumulate signed in two

branches

Description: Add the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY to the value in

32-high-bit register HI of 64-bit accumulator, and save the result in

high-bit accumulator register HI. Add the 32 high bits of the result after

multiplying the 16 low bits of general-purpose register RX and contents

of RY to the value in 32-low-bit register LO of 64-bit accumulator, and

save the result in low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

bits of source operands in register RX are the 31st bit and the 15th bit of

the register respectively; the sign bit of operand in register RY and results

in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

32-bit

Unified

instruction

Grammar Operation Compiling result

vmulswa rx, ry Multiply 16-bit signed numbers in two

branches with a 32-bit signed number

respectively, add the results to the high-bit

and low-bit values of accumulator

respectively, and put the result in

accumulator

HI ¬ HI + (RX[31:16] × RY[31:0])[47:16]

LO ¬ LO + (RX[15:0] × RY[31:0])[47:16]

Only 32-bit instructions

exist.

vmulswa32 rx, ry

408

instruction

Operation: Multiply 16-bit signed numbers in two branches with a 32-bit signed

number respectively, add the results to the high-bit and low-bit values of

accumulator respectively, and put the result in accumulator

HI ¬ HI + (RX[31:16] × RY[31:0])[47:16]

LO ¬ LO + (RX[15:0] × RY[31:0])[47:16]

Grammar: vmulswa32 rx, ry

Description: Add the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY to the value in

32-high-bit register HI of 64-bit accumulator, and save the result in

high-bit accumulator register HI. Add the 32 high bits of the result after

multiplying the 16 low bits of general-purpose register RX and contents

of RY to the value in 32-low-bit register LO of 64-bit accumulator, and

save the result in low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

bits of source operands in register RX are the 31st bit and the 15th bit of

the register respectively; the sign bit of operand in register RY and results

in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0

409

VMULSWS – 16x32 multiply-subtract signed in two branches

Description: Subtract the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY from the value in

32-high-bit register HI of 64-bit accumulator, and save the result in

high-bit accumulator register HI. Subtract the 32 high bits of the result

after multiplying the 16 low bits of general-purpose register RX and

contents of RY from the value in 32-low-bit register LO of 64-bit

accumulator, and save the result in low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

bits of source operands in register RX are the 31st bit and the 15th bit of

the register respectively; the sign bit of operand in register RY and results

in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

32-bit

instruction

Operation: Subtract the 32 high bits of the result after multiplying the 16-bit signed

Unified

instruction

Grammar Operation Compiling result

vmulsws rx, ry Subtract the 32 high bits of the result after

multiplying the 16-bit signed numbers in two

branches with a 32-bit signed number from

the high-bit and low-bit values of

accumulator respectively, and put the result

in accumulator

HI ¬ HI - (RX[31:16] × RY[31:0])[47:16]

LO ¬ LO - (RX[15:0] × RY[31:0])[47:16]

Only 32-bit instructions

exist.

vmulsws32 rx, ry

410

numbers in two branches with a 32-bit signed number from the high-bit

and low-bit values of accumulator respectively, and put the result in

accumulator

HI ¬ HI - (RX[31:16] × RY[31:0])[47:16]

LO ¬ LO - (RX[15:0] × RY[31:0])[47:16]

Grammar: vmulsws32 rx, ry

Description: Subtract the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY from the value in

32-high-bit register HI of 64-bit accumulator, and save the result in

high-bit accumulator register HI. Subtract the 32 high bits of the result

after multiplying the 16 low bits of general-purpose register RX and

contents of RY from the value in 32-low-bit register LO of 64-bit

accumulator, and save the result in low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

bits of source operands in register RX are the 31st bit and the 15th bit of

the register respectively; the sign bit of operand in register RY and results

in high-bit register HI and low-bit register LO is the 31st bit of the

register.

Each branch of this instruction supports 8 guard bits. See the descriptions

about guard bit in the processor manual for more details.

Influence on flag

bit:

Overflow of any branch will set the overflow bit as 1

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0

411

WAIT – Enter low power consumption wait mode

Attribute: Privileged instruction

Description: This instruction will stop execution of the current instruction and waits

for an interrupt. At this time, CPU clock is stopped. The peripheral

equipment is still in operation. Besides, interrupt might be caused, which

will make CPU exit from wait mode.

Influence on flag

bit:

No influence

Exception: Privilege violation instruction

32-bit

instruction

Operation: Enter low power consumption wait mode

Grammar: wait32

Attribute: Privileged instruction

Description: This instruction will stop execution of the current instruction and waits

for an interrupt. At this time, CPU clock is stopped. The peripheral

equipment is still in operation. Besides, interrupt might be caused, which

will make CPU exit from wait mode.

Influence on flag

bit:

No influence

Exception: Privilege violation instruction

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

Unified

instruction

Grammar Operation Compiling result

wait Enter low power consumption wait mode Only 32-bit instructions

exist.

wait32

412

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0

413

WE – Wait event

Description: WE instruction is executed and CPU enters a low power consumption

mode of waiting event. It will be aroused when other processor cores

send event.

Influence on flag

bit:

No influence

Exception: Privilege violation instruction

32-bit

instruction

Operation: Wait event

Grammar: we32

Description: WE instruction is executed and CPU enters a low power consumption

mode of waiting event. It will be aroused when other processor cores

send event.

Influence on flag

bit:

No influence

Exception: Privilege violation instruction

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 0 0

Unified

instruction

Grammar Operation Compiling result

we Wait event Only 32-bit instructions

exist.

we32

414

XOR – Bitwise XOR

Unified

instruction

Grammar Operation Compiling result

xor rz, rx RZ ¬ RZ ^ RX Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (x<16) and (z<16), then

xor16 rz, rx;

else

 xor32 rz, rz, rx;

xor rz, rx, ry RZ ¬ RX ^ RY Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (y==z) and (z<16) and (x<16), then

 xor16 rz, rx;

else

 xor32 rz, rx, ry;

Description: Perform a bitwise XOR of RX and RZ/RY values and save the result in

RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ RZ ^ RX

Grammar: xor16 rz, rx

Description: Perform a bitwise XOR of RZ and RX values and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

415

format:

15 14 10 9 6 5 2 1 0

0 1 1 0 1 1 RZ RX 0 1

32-bit

instruction

Operation: RZ ¬ RX ^ RY

Grammar: xor32 rz, rx, ry

Description: Perform a bitwise XOR of RX and RY values and save the result in RZ.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 RY RX 0 0 1 0 0 1 0 0 0 1 0 RZ

416

XORI – Bitwise XOR immediate

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a bitwise

XOR with RX value, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFF.

Exception: None

32-bit

instruction

Operation: RZ ¬ RX ^ zero_extend(IMM12)

Grammar: xori32 rz, rx, imm12

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a bitwise

XOR with RX value, and save the result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of immediate operand is 0x0-0xFFF.

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 12 11 0

1 1 1 0 0 1 RZ RX 0 1 0 0 IMM12

Unified

instruction

Grammar Operation Compiling result

xori rz, rx, imm16 RZ ¬ RX ^ zero_extend(IMM12) Only 32-bit instructions

exist.

xori32 rz, rx, imm12

417

XSR – Extended shift right

Description: Perform a ring right shift on RX value with condition bit C ({RX,C}) (the

original value shifts right and the bit shifting out from right side will shift

to the left side), save the lowest bit ([0]) of the shifting result in C bit, and

save the highest bit ([32:1]) in RZ; the range of right shift is decided by

the value of 5-bit immediate operand with offset 1 (OIMM5). If the value

of OIMM5 is equal to 32, condition bit C is the highest bit of RX.

Influence on flag

bit:

C ¬ RX[OIMM5 - 1]

Restriction: The range of immediate operand is 1-32.

Exception: None

32-bit

instruction

Operation: {RZ,C} ¬{RX,C} >>>> OIMM5

Grammar: xsr32 rz, rx, oimm5

Description: Perform a ring right shift on RX value with condition bit C ({RX,C})

(the original value shifts right and the bit shifting out from right side will

shift to the left side), save the lowest bit ([0]) of the shifting result in C

bit, and save the highest bit ([32:1]) in RZ; the range of right shift is

decided by the value of 5-bit immediate operand with offset 1 (OIMM5).

If the value of OIMM5 is equal to 32, condition bit C is the highest bit of

RX.

Attention: The binary operand IMM5 is equal to OIMM5 – 1.

Influence on flag

bit:

C ¬ RX[OIMM5 - 1]

Restriction: The range of immediate operand is 1-32.

Unified

instruction

Grammar Operation Compiling result

xsr rz, rx, oimm5 {RZ,C} ¬{RX,C} >>>> OIMM5 Only 32-bit instructions

exist.

xsr32 rz, rx, oimm5

418

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 IMM5 RX 0 1 0 0 1 1 0 1 0 0 0 RZ

IMM5 field – Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM5, the shifting value OIMM5 requires

offset 1.

00000 – shift by 1 bit

00001 – shift by 2 bits

……

11111 – shift by 32 bits

419

XTRB0 – Extract byte 0 and extend unsigned

Description: Extract byte 0 of RX (RX[31:24]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

32-bit

instruction

Operation: RZ ¬ zero_extend(RX[31:24]);

if (RX[31:24] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Grammar: xtrb0.32 rz, rx

Description: Extract byte 0 of RX (RX[31:24]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

xtrb0 rz, rx RZ ¬ zero_extend(RX[31:24]);

if (RX[31:24] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Only 32-bit instructions

exist.

xtrb0.32 rz, rx

420

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 1 0 0 0 0 0 0 1 RZ

421

XTRB1 – Extract byte 1 and extend unsigned

Description: Extract byte 1 of RX (RX[23:16]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

32-bit

instruction

Operation: RZ ¬ zero_extend(RX[23:16]);

if (RX[23:16] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Grammar: xtrb1.32 rz, rx

Description: Extract byte 1 of RX (RX[23:16]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

xtrb1 rz, rx RZ ¬ zero_extend(RX[23:16]);

if (RX[23:16] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Only 32-bit instructions

exist.

xtrb1.32 rz, rx

422

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 1 0 0 0 0 0 1 0 RZ

423

XTRB2 – Extract byte 2 and extend unsigned

Description: Extract byte 2 of RX (RX[15:8]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

32-bit

instruction

Operation: RZ ¬ zero_extend(RX[15:8]);

if (RX[15:8] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Grammar: xtrb2.32 rz, rx

Description: Extract byte 2 of RX (RX[15:8]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

xtrb2 rz, rx RZ ¬ zero_extend(RX[15:8]);

if (RX[15:8] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Only 32-bit instructions

exist.

xtrb2.32 rz, rx

424

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 1 0 0 0 0 1 0 0 RZ

425

XTRB3 – Extract byte 3 and extend unsigned

Description: Extract byte 3 of RX (RX[7:0]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

32-bit

instruction

Operation: RZ ¬ zero_extend(RX[7:0]);

if (RX[7:0] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Grammar: xtrb3.32 rz, rx

Description: Extract byte 3 of RX (RX[7:0]) to the low bit of RZ (RZ[7:0]), and

conduct zero-extension. If the result is equal to zero, clear C bit;

otherwise, set C bit.

Influence on flag

bit:

If the result is equal to zero, clear C bit; otherwise, set C bit.

Exception: None

Instruction

format:

Unified

instruction

Grammar Operation Compiling result

xtrb3 rz, rx RZ ¬ zero_extend(RX[7:0]);

if (RX[7:0] == 0), then

 C ¬ 0;

else

 C ¬ 1;

Only 32-bit instructions

exist.

xtrb3.32 rz, rx

426

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 1 1 0 0 0 1 0 0 0 RZ

427

ZEXT – Extract bit and extend unsigned

Description: Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed

by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits, and

save the result in RZ. If MSB is equal to 31 and LSB is equal to zero, RZ

value is the same with RX value. If MSB is equal to LSB, RZ value is the

result after one-bit zero-extension of RX[MSB] (i.e. RX[LSB]). If MSB

is smaller than LSB, behavior of this instruction is unpredictable.

Influence on flag

bit:

No influence

Restriction: The range of MSB is 0-31, the range of LSB is 0-31, and MSB should be

greater than or equal to LSB.

Exception: None

32-bit

instruction

Operation: RZ ¬ zero_extend(RX[MSB:LSB])

Grammar: zext32 rz, rx, msb, lsb

Description: Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed

by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits, and

save the result in RZ. If MSB is equal to 31 and LSB is equal to zero, RZ

value is the same with RX value. If MSB is equal to LSB, RZ value is the

result after one-bit zero-extension of RX[MSB] (i.e. RX[LSB]). If MSB

is smaller than LSB, behavior of this instruction is unpredictable.

Influence on flag

bit:

No influence

Restriction: The range of MSB is 0-31, the range of LSB is 0-31, and MSB should be

greater than or equal to LSB.

Exception: None

Instruction

Unified instruction

Grammar Operation Compiling result

zext rz, rx, msb, lsb RZ ¬ zero_extend(RX[MSB:LSB]) Only 32-bit instructions

exist.

zext32 rz, rx, msb, lsb

428

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 LSB RX 0 1 0 1 0 1 MSB RZ

MSB field – Assign the starting bit of

extraction.

00000 – 0

00001 – 1

……

11111 – 31

LSB field – Assign the end bit of

extraction.

00000 – 0 bit

00001 – 1 bit

……

11111 – 31 bits

429

ZEXTB – Extract byte and extend unsigned#

Unified

instruction

Grammar Operation Compiling result

zextb rz, rx RZ ¬ zero_extend(RX[7:0]); Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

zextb16 rz, rx;

else

 zextb32 rz, rx

Description: Zero-extend low byte of RX (RX[7:0]) to 32 bits and save the result in

RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ zero_extend(RX[7:0]);

Grammar: zextb16 rz, rx

Description: Zero-extend low byte of RX (RX[7:0]) to 32 bits and save the result in

RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format:

15 14 10 9 6 5 2 1 0

0 1 1 1 0 1 RZ RX 0 0

32-bit instruction

Operation: RZ ¬ zero_extend(RX[7:0]);

430

Grammar: zextb32 rz, rx

Description: Zero-extend low byte of RX (RX[7:0]) to 32 bits and save the result in

RZ.

Attention: This instruction is the pseudo instruction of zext32 rz, rx,

0x7, 0x0.

Influence on flag

bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 0 1 0 1 0 0 1 1 1 RZ

431

ZEXTH – Extract half-word and extend unsigned#

Unified

instruction

Grammar Operation Compiling result

zexth rz, rx RZ ¬ zero_extend(RX[15:0]); Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

zexth16 rz, rx;

else

 zexth32 rz, rx

Description: Zero-extend low half-word of RX (RX[15:0]) to 32 bits and save the

result in RZ.

Influence on flag

bit:

No influence

Exception: None

16-bit

instruction

Operation: RZ ¬ zero_extend(RX[15:0]);

Grammar: zexth16 rz, rx

Description: Zero-extend low half-word of RX (RX[15:0]) to 32 bits and save the

result in RZ.

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.

Exception: None

Instruction

format

15 14 10 9 6 5 2 1 0

0 1 1 1 0 1 RZ RX 0 1

32-bit

instruction

432

Operation: RZ ¬ zero_extend(RX[15:0]);

Grammar: zexth32 rz, rx

Description: Zero-extend low half-word of RX (RX[15:0]) to 32 bits and save the result in

RZ.

Attention: This instruction is the pseudo instruction of zext32 rz, rx, 0x15,

0x0.

Influence on

flag bit:

No influence

Exception: None

Instruction

format:

31 30 26 25 21 20 16 15 10 9 5 4 0

1 1 0 0 0 1 0 0 0 0 0 RX 0 1 0 1 0 1 0 1 1 1 1 RZ

433

6. Term list of floating point instructions

Specific descriptions of each floating point instruction realized by CK810 are provided in

the following and each instruction is described in details according to the alphabetical order. The

floating point instructions of CK810 are 32-bit instructions and independent vector

general-purpose register (VR) is adopted.

434

FABSD – Double-precision floating point absolute value

Data type Double-precision floating point

Description:
Take the absolute value of double-precision floating point in vrx and save

the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= |vrx|

Grammar: fabsd vrz, vrx

Data type Double-precision floating point

Description:
Take the absolute value of double-precision floating point in vrx and save

the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fabsd vrz, vrx vrz= |vrx| Only 32-bit instructions

exist.

fabsd vrz, vrx

435

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 0 0 1 1 0 0 VRZ

436

FABSM – SIMD single-precision floating point absolute value

Data type Single-precision floating point

Description:

As single instruction multiple data (SIMD), this instruction takes the

absolute value of single-precision floating point in vrx[31:0] and saves the

result in vrz[31:0]; it takes the absolute value of single-precision floating

point in vrx[63:32] and saves the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]= |vrx[31:0]|; vrz[63:32] = |vrx[63:32]|

Grammar: fabsm vrz, vrx

Data type Single-precision floating point

Description:

As single instruction multiple data (SIMD), this instruction takes the

absolute value of single-precision floating point in vrx[31:0] and saves the

result in vrz[31:0]; it takes the absolute value of single-precision floating

point in vrx[63:32] and saves the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fabsm vrz, vrx vrz[31:0]= |vrx[31:0]|; vrz[63:32] =

|vrx[63:32]|

Only 32-bit instructions

exist.

fabsm vrz, vrx

437

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 0 0 0 0 1 1 0 0 VRZ

438

FABSS – Single-precision floating point absolute value

Data type Single-precision floating point

Description:
Take the absolute value of single-precision floating point in vrx and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= |vrx|

Grammar: fabss vrz, vrx

Data type Single-precision floating point

Description:
Take the absolute value of single-precision floating point in vrx and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fabss vrz, vrx vrz= |vrx| Only 32-bit instructions

exist.

fabss vrz, vrx

439

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 0 0 1 1 0 0 VRZ

440

FADDD – Double-precision floating point add

Data type Double-precision floating point

Description:
Add double-precision floating points in vrx and vry, and save the result in

vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx+vry

Grammar: faddd vrz, vrx,vry

Data type Double-precision floating point

Description:
Add double-precision floating points in vrx and vry, and save the result in

vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

faddd vrz, vrx,vry vrz= vrx+vry Only 32-bit instructions

exist.

faddd vrz, vrx,vry

441

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 0 0 0 0 0 0 VRZ

442

FADDM – SIMD single-precision floating point add

Data type Single-precision floating point

Description:

Add single-precision floating points in vrx[31:0] and vry[31:0], and save the

result in vrz[31:0]; add single-precision floating points in vrx[63:32] and

vry[63:32], and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]= vrx[31:0]+vry[31:0]; vrz[63:32]= vrx[63:32]+vry[63:32]

Grammar: faddm vrz, vrx,vry

Data type Single-precision floating point

Description:

Add single-precision floating points in vrx[31:0] and vry[31:0], and save the

result in vrz[31:0]; add single-precision floating points in vrx[63:32] and

vry[63:32], and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

faddm vrz, vrx,vry vrz[31:0]= vrx[31:0]+vry[31:0];

vrz[63:32]= vrx[63:32]+vry[63:32]

Only 32-bit instructions

exist.

faddm vrz, vrx,vry

443

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 0 0 0 0 0 0 VRZ

444

FADDS – Single-precision floating point add

Data type Single-precision floating point

Description:
Add single-precision floating points in vrx and vry, and save the result in

vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx+vry

Grammar: fadds vrz, vrx,vry

Data type Single-precision floating point

Description:
Add single-precision floating points in vrx and vry, and save the result in

vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fadds vrz, vrx,vry vrz= vrx+vry Only 32-bit instructions

exist.

fadds vrz, vrx,vry

445

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 0 0 0 0 0 0 VRZ

446

FCMPHSD – Double-precision floating point compare when

greater than or equal

Data type Double-precision floating point

Description:
Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx>=vry
set C;

else
clear C.

Grammar: fcmphsd vrx, vry

Data type Double-precision floating point

Description:
Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmphsd vrx, vry If vrx>=vry
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmphsd vrx, vry

447

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0

448

FCMPHSS – Single-precision floating point compare when

greater than or equal

Data type Single-precision floating point

Description:
Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx>=vry
set C;

else
clear C.

Grammar: fcmphss vrx, vry

Data type Single-precision floating point

Description:
Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmphss vrx, vry If vrx>=vry
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmphss vrx, vry

449

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

450

FCMPLTD – Double-precision floating point compare when

smaller

Data type Double-precision floating point

Description:
Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx<vry
set C;

else
clear C.

Grammar: fcmpltd vrx, vry

Data type Double-precision floating point

Description:
Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpltd vrx, vry If vrx<vry
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpltd vrx, vry

451

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 0 1 1 0 1 0 0 0 0 0

452

FCMPLTS – Single-precision floating point compare when

smaller

Data type Single-precision floating point

Description:
Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx<vry
set C;

else
clear C.

Grammar: fcmplts vrx, vry

Data type Single-precision floating point

Description:
Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear

the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmplts vrx, vry If vrx<vry
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmplts vrx, vry

453

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0

454

FCMPNED – Double-precision floating point compare when

not equal

Data type Double-precision floating point

Description:
Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;

otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx!=vry
set C;

else
clear C.

Grammar: fcmpned vrx, vry

Data type Double-precision floating point

Description:
Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;

otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpned vrx, vry If vrx!=vry
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpned vrx, vry

455

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 0 1 1 1 0 0 0 0 0 0

456

FCMPNES – Single-precision floating point compare when not

equal

Data type Single-precision floating point

Description:
Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;

otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx!=vry
set C;

else
clear C.

Grammar: fcmpnes vrx, vry

Data type Single-precision floating point

Description:
Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;

otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpnes vrx, vry If vrx!=vry
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpnes vrx, vry

457

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

458

FCMPUOD – Judge whether the double operand of

double-precision floating point is NaN

Data type Double-precision floating point

Description:
If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx==NaN || vry==NaN
set C;

else
clear C.

Grammar: fcmpuod vrx, vry

Data type Double-precision floating point

Description:
If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpuod vrx, vry If vrx==NaN || vry==NaN
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpuod vrx, vry

459

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 0 1 1 1 1 0 0 0 0 0

460

FCMPUOS – Judge whether the double operand of

single-precision floating point is NaN

Data type Single-precision floating point

Description:
If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx==NaN||vry==NaN
set C;

else
clear C.

Grammar: fcmpuos vrx, vry

Data type Single-precision floating point

Description:
If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpuos vrx, vry If vrx==NaN||vry==NaN
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpuos vrx, vry

461

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0

462

FCMPZHSD – Double-precision floating point compare when

greater than or equal to zero

Data type Double-precision floating point

Description:
If vrx is greater than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx>=0
set C;

else
clear C.

Grammar: fcmpzhsd vrx

Data type Double-precision floating point

Description:
If vrx is greater than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpzhsd vrx If vrx>=0
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpzhsd vrx

463

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0

464

FCMPZHSS – Single-precision floating point compare when

greater than or equal to zero

Data type Single-precision floating point

Description:
If vrx is greater than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx>=0
set C;

else
clear C.

Grammar: fcmpzhss vrx

Data type Single-precision floating point

Description:
If vrx is greater than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fcmpzhss vrx If vrx>=0
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpzhss vrx

465

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

466

FCMPZLSD – Double-precision floating point compare when

smaller than or equal to zero

Data type Double-precision floating point

Description:
If vrx is smaller than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx<0
set C;

else
clear C.

Grammar: fcmpzlsd vrx

Data type Double-precision floating point

Description:
If vrx is smaller than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpzlsd vrx If vrx<0
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpzlsd vrx

467

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

468

FCMPZLSS – Single-precision floating point compare when

smaller than or equal to zero

Data type Single-precision floating point

Description:
If vrx is smaller than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx<0
set C;

else
clear C.

Grammar: fcmpzlss vrx

Data type Single-precision floating point

Description:
If vrx is smaller than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fcmpzlss vrx If vrx<0
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpzlss vrx

469

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0

470

FCMPZNED – Double-precision floating point compare when

not equal to zero

Data type Double-precision floating point

Description:
If vrx is not equal to zero, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx!=0
set C;

else
clear C.

Grammar: fcmpzned vrx

Data type Double-precision floating point

Description:
If vrx is not equal to zero, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpzned vrx If vrx!=0
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpzned vrx

471

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0

472

FCMPZNES – Single-precision floating point compare when

not equal to zero

Data type Single-precision floating point

Description:
If vrx is not equal to zero, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx!=0
set C;

else
clear C.

Grammar: fcmpznes vrx

Data type Single-precision floating point

Description:
If vrx is not equal to zero, set the condition bit C; otherwise, clear the

condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fcmpznes vrx If vrx!=0
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpznes vrx

473

Instruction code

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0

474

FCMPZUOD – Judge whether the single operand of

double-precision floating point is NaN

Data type Double-precision floating point

Description: If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx==NaN
set C;

else
clear C.

Grammar: fcmpzuod vrx

Data type Double-precision floating point

Description: If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fcmpzuod vrx If vrx==NaN
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpzuod vrx

475

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0

476

FCMPZUOS – Judge whether the single operand of

single-precision floating point is NaN

Data type Single-precision floating point

Description: If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:

If vrx==NaN
set C;

else
clear C.

Grammar: fcmpzuos vrx

Data type Single-precision floating point

Description: If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Influence on

flag bit:

Yes

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fcmpzuos vrx If vrx==NaN
set C;

else
clear C.

Only 32-bit instructions

exist.

fcmpzuos vrx

477

31 26 25 24 21 20 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0 0

478

FDIVD – Double-precision floating point multiply

Data type Double-precision floating point

Description:
Divide double-precision floating points in vrx and vry by each other, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx/vry

Grammar: fdivd vrz, vrx,vry

Data type Double-precision floating point

Description:
Divide double-precision floating points in vrx and vry by each other, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 1 1 0 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fdivd vrz, vrx,vry vrz= vrx/vry Only 32-bit instructions

exist.

fdivd vrz, vrx,vry

479

FDIVS – Single-precision floating point multiply

Data type Single-precision floating point

Description:
Divide single-precision floating points in vrx and vry by each other, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx/vry

Grammar: fdivs vrz, vrx,vry

Data type Single-precision floating point

Description:
Divide single-precision floating points in vrx and vry by each other, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 1 1 0 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fdivs vrz, vrx,vry vrz= vrx/vry Only 32-bit instructions

exist.

fdivs vrz, vrx,vry

480

FDTOS – Transform double-precision floating point into

single-precision floating point

Data type Double-precision floating point

Description:
Transform double-precision floating point in vrx into single-precision

floating point, and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (float)vrx

Grammar: fdtos vrz, vrx

Data type Double-precision floating point

Description:
Transform double-precision floating point in vrx into single-precision

floating point, and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fdtos vrz, vrx vrz= (float)vrx Only 32-bit instructions

exist.

fdtos vrz, vrx

481

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 0 1 1 0 0 VRZ

482

FDTOSI – Transform double-precision floating point into

signed integer

Data type Double-precision floating point

Description:

Transform double-precision floating point in vrx into signed integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (signed long)vrx

Grammar: fdtosi.rm vrz, vrx

Data type Double-precision floating point

Description:

Transform double-precision floating point in vrx into signed integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

Unified instruction

Grammar Operation Compiling result

fdtosi.rm vrz, vrx

where rm is rn/rz/rpi/rni

vrz= (signed long)vrx Only 32-bit instructions

exist.

fdtosi.rm vrz, vrx

483

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 0 1 0 RM 0 VRZ

484

FDTOUI – Transform double-precision floating point into

unsigned integer

Data type Double-precision floating point

Description:

Transform double-precision floating point in vrx into unsigned integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (unsigned long)vrx

Grammar: fdtoui.rm vrz, vrx

Data type Double-precision floating point

Description:

Transform double-precision floating point in vrx into unsigned integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

Unified instruction

Grammar Operation Compiling result

fdtoui.rm vrz, vrx

where rm is rn/rz/rpi/rni

vrz= (long)vrx Only 32-bit instructions

exist.

fdtoui.rm vrz, vrx

485

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 0 1 1 RM 0 VRZ

486

FLDD – Load double-precision floating point

Description: Load double-precision floating point from storage to vector register

VRZ. Adopt the addressing mode of register and immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 8-bit relative offset

shifting left by 2 bits to 32 bits. The address space of FLDD instruction

is +1KB.

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

32-bit instruction

Operation: Load double-precision floating point from storage to vector register

VRZ[63:0] ¬ MEM[RX + zero_extend(offset << 2)];

VRZ[127:64] ¬ 64’b0;

Grammar: fldd vrz, (rx, disp)

Description: Load double-precision floating point from storage to vector register

VRZ. Adopt the addressing mode of register and immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 8-bit relative offset

shifting left by 2 bits to 32 bits. The address space of FLDD instruction

is +1KB.

Unified

instruction

Grammar Operation Compiling result

fldd vrz, (rx, disp) VRZ[63:0] ¬ MEM[RX +

zero_extend(offset << 2)];

VRZ[127:64] ¬ 64’b0;

Only 32-bit instructions exist.

fldd vrz, (rx, disp)

487

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 0 0 0 0 1 IMM4L VRZ

488

FLDM – Load vector floating point

Description: Load two single-precision floating points from storage to vector

register VRZ. Adopt the addressing mode of register and immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 8-bit relative

offset shifting left by 3 bits to 32 bits. The address space of FLDM

instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by three bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

32-bit instruction

Operation: Load vector floating point from storage to vector register

VRZ[63:0] ¬ MEM[RX + zero_extend(offset << 3)];

VRZ[127:64] ¬ 64’b0;

Grammar: fldm vrz, (rx, disp)

Description: Load two single-precision floating points from storage to vector

register VRZ. Adopt the addressing mode of register and immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 8-bit relative

offset shifting left by 3 bits to 32 bits. The address space of FLDM

instruction is +1KB.

Unified

instruction

Grammar Operation Compiling result

fldm vrz, (rx,

disp)

VRZ[63:0] ¬ MEM[RX +

zero_extend(offset << 3)];

VRZ[127:64] ¬ 64’b0;

Only 32-bit instructions exist.

fldm vrz, (rx, disp)

489

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by three bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 0 0 0 1 0 IMM4L VRZ

490

FLDMD – Load consecutive double-precision floating point

Description: Load multiple consecutive double-precision floating points from storage

to a group of consecutive vector register files starting from vector register

VRY successively. In another word, load the first double word of the

address appointed by storage to vector register VRY; load the second

double word to register VR(Y+1), and the like; load the last double word

to register VRZ. The effective address of storage is decided by the

contents of base register RX.

Influence on flag

bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load multiple consecutive double-precision floating points from storage

to a group of consecutive vector register files

dst ¬ Y; addr ¬ RX;

for (n = 0; n <= (Z-Y); n++){

Unified

instruction

Grammar Operation Compiling result

fldmd vry-vrz,

(rx)

Load multiple consecutive

double-precision floating points from

storage to a group of consecutive

vector register files

dst ¬ Y; addr ¬ RX;

for (n = 0; n <= (Z-Y); n++){

 VRdst[63:0] ¬ MEM[addr];

 VRdst[127:64] ¬ 64’b0;

 dst ¬ dst + 1;

 addr ¬ addr + 8;

}

Only 32-bit instructions exist.

fldmd vry-vrz, (rx);

491

 VRdst[63:0] ¬ MEM[addr];

 VRdst[127:64] ¬ 64’b0;

 dst ¬ dst + 1;

 addr ¬ addr + 8;

}

Grammar: fldmd vry-vrz, (rx)

Description: Load multiple consecutive double-precision floating points from storage

to a group of consecutive vector register files starting from vector register

VRY successively. In another word, load the first word of the address

appointed by storage to vector register VRY; load the second word to

register VR(Y+1), and the like; load the last word to register VRZ. The

effective address of storage is decided by the contents of base register RX.

Influence on

flag bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4 RX 0 0 1 1 0 0 0 1 0 0 0 0 VRY

IMM4 field – Assign the number of destination registers, IMM4 = Z – Y.

0000 – 1 destination register

0001 – 2 destination registers

……

1111 – 16 destination registers

492

FLDMM – Load consecutive vector floating point

Description: Load multiple consecutive vector floating points (each vector floating

point includes two single-precision floating points) from storage to a

group of consecutive vector register files starting from vector register

VRY successively. In another word, load the first double word of the

address appointed by storage to vector register VRY; load the second

double word to register VR(Y+1), and the like; load the last double word

to register VRZ. The effective address of storage is decided by the

contents of base register RX.

Influence on flag

bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load multiple consecutive vector floating points from storage to a group

of consecutive vector register files

dst ¬ Y; addr ¬ RX;

Unified

instruction

Grammar Operation Compiling result

fldmd vry-vrz,

(rx)

Load multiple consecutive vector

floating points from storage to a

group of consecutive vector register

files

dst ¬ Y; addr ¬ RX;

for (n = 0; n <= (Z-Y); n++){

 VRdst[63:0] ¬ MEM[addr];

 VRdst[127:64] ¬ 64’b0;

 dst ¬ dst + 1;

 addr ¬ addr + 8;

}

Only 32-bit instructions exist.

fldmm vry-vrz, (rx);

493

for (n = 0; n <= (Z-Y); n++){

 VRdst[63:0] ¬ MEM[addr];

 VRdst[127:64] ¬ 64’b0;

 dst ¬ dst + 1;

 addr ¬ addr + 8;

}

Grammar: fldmd vry-vrz, (rx)

Description: Load multiple consecutive vector floating points (each vector floating

point includes two single-precision floating points) from storage to a

group of consecutive vector register files starting from vector register

VRY successively. In another word, load the first word of the address

appointed by storage to vector register VRY; load the second word to

register VR(Y+1), and the like; load the last word to register VRZ. The

effective address of storage is decided by the contents of base register RX.

Influence on

flag bit:

No influence

Restriction: VRZ SHOULD BE GREATER THAN OR EQUAL TO VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4 RX 0 0 1 1 0 0 1 0 0 0 0 0 VRY

IMM4 field – Assign the number of destination registers, IMM4 = Z – Y.

0000 – 1 destination register

0001 – 2 destination registers

……

1111 – 16 destination registers

494

FLDMS – Load consecutive single-precision floating point

Description: Load multiple consecutive single-precision floating points from storage

to a group of consecutive vector register files starting from vector register

VRY successively. In another word, load the first word of the address

appointed by storage to vector register VRY; load the second word to

register VR(Y+1), and the like; load the last word to register VRZ. The

effective address of storage is decided by the contents of base register

RX.

Influence on flag

bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load multiple consecutive single-precision floating points from storage to

a group of consecutive vector register files

dst ¬ Y; addr ¬ RX;

for (n = 0; n <= (Z-Y); n++){

Unified

instruction

Grammar Operation Compiling result

fldms vry-vrz,

(rx)

Load multiple consecutive

single-precision floating points from

storage to a group of consecutive

vector register files

dst ¬ Y; addr ¬ RX;

for (n = 0; n <= (Z-Y); n++){

 VRdst[31:0] ¬ MEM[addr];

 VRdst[127:32] ¬ 96’b0;

 dst ¬ dst + 1;

 addr ¬ addr + 4;

}

Only 32-bit instructions exist.

fldms vry-vrz, (rx);

495

 VRdst ¬ MEM[addr];

 dst ¬ dst + 1;

 addr ¬ addr + 4;

}

Grammar: fldms vry-vrz, (rx)

Description: Load multiple consecutive single-precision floating points from storage to

a group of consecutive vector register files starting from vector register

VRY successively. In another word, load the first word of the address

appointed by storage to vector register VRY; load the second word to

register VR(Y+1), and the like; load the last word to register VRZ. The

effective address of storage is decided by the contents of base register RX.

Influence on

flag bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4 RX 0 0 1 1 0 0 0 0 0 0 0 0 VRY

IMM4 field – Assign the number of destination registers, IMM4 = Z – Y.

0000 – 1 destination register

0001 – 2 destination registers

……

1111 – 16 destination registers

496

FLDRD – Load double-precision floating point in register offset

addressing

Description: Load double-precision floating point from storage to register VRZ. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load double-precision floating point from storage to register

VRZ[63:0] ¬ MEM[RX + RY << IMM2];

VRZ[127:64] = 64’b0;

Grammar: fldrd vrz, (rx, ry << 0)

fldrd vrz, (rx, ry << 1)

fldrd vrz, (rx, ry << 2)

fldrd vrz, (rx, ry << 3)

Description: Load double-precision floating point from storage to register VRZ. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

Unified instruction

Grammar Operation Compiling result

fldrd vrz, (rx, ry << 0)

fldrd vrz, (rx, ry << 1)

fldrd vrz, (rx, ry << 2)

fldrd vrz, (rx, ry << 3)

Load double-precision floating point

from storage to register

VRZ[63:0] ¬ MEM[RX + RY <<

IMM2];

VRZ[127:64] = 64’b0;

Only 32-bit instructions

exist.

fldrd vrz, (rx, ry << 0)

fldrd vrz, (rx, ry << 1)

fldrd vrz, (rx, ry << 2)

fldrd vrz, (rx, ry << 3)

497

The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fldrd vrz, (rx, ry << 0)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 1 0 0 0 0 VRZ

fldrd vrz, (rx, ry << 1)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 1 0 0 1 0 VRZ

fldrd vrz, (rx, ry << 2)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 1 0 1 0 0 VRZ

fldrd vrz, (rx, ry << 3)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 1 0 1 1 0 VRZ

498

FLDRM – Load vector floating point in register offset

addressing

Description: Load two single-precision floating points from storage to register VRZ.

Adopt the addressing mode of register and register offset. The effective

address of storage is gained by adding the base register RX to the value

gained by making offset register RY shift left by 2-bit immediate operand

IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load double-precision floating point from storage to register

VRZ[63:0] ¬ MEM[RX + RY << IMM2];

VRZ[127:64] = 64’b0;

Grammar: fldrm vrz, (rx, ry << 0)

fldrm vrz, (rx, ry << 1)

fldrm vrz, (rx, ry << 2)

fldrm vrz, (rx, ry << 3)

Description: Load two single-precision floating points from storage to register VRZ.

Adopt the addressing mode of register and register offset. The effective

Unified instruction

Grammar Operation Compiling result

fldrm vrz, (rx, ry <<

0)

fldrm vrz, (rx, ry <<

1)

fldrm vrz, (rx, ry <<

2)

fldrm vrz, (rx, ry <<

3)

Load vector floating point from

storage to register

VRZ[63:0] ¬ MEM[RX + RY <<

IMM2];

VRZ[127:64] = 64’b0;

Only 32-bit instructions

exist.

fldrm vrz, (rx, ry << 0)

fldrm vrz, (rx, ry << 1)

fldrm vrz, (rx, ry << 2)

fldrm vrz, (rx, ry << 3)

499

address of storage is gained by adding the base register RX to the value

gained by making offset register RY shift left by 2-bit immediate operand

IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fldrm vrz, (rx, ry << 0)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 1 0 0 0 0 0 VRZ

fldrm vrz, (rx, ry << 1)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 1 0 0 0 1 0 VRZ

fldrm vrz, (rx, ry << 2)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 1 0 0 1 0 0 VRZ

fldrm vrz, (rx, ry << 3)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 1 0 0 1 1 0 VRZ

500

FLDRS – Load single-precision floating point in register offset

addressing

Description: Load single-precision floating point from storage to register VRZ. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load single-precision floating point from storage to register

VRZ[31:0] ¬ MEM[RX + RY << IMM2];

VRZ[127:32] =96’b0;

Grammar: fldrs vrz, (rx, ry << 0)

fldrs vrz, (rx, ry << 1)

fldrs vrz, (rx, ry << 2)

fldrs vrz, (rx, ry << 3)

Description: Load double-precision floating point from storage to register VRZ. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

Unified instruction

Grammar Operation Compiling result

fldrs vrz, (rx, ry << 0)

fldrs vrz, (rx, ry << 1)

fldrs vrz, (rx, ry << 2)

fldrs vrz, (rx, ry << 3)

Load single-precision floating point

from storage to register

VRZ[31:0] ¬ MEM[RX + RY <<

IMM2];

VRZ[127:32] = 96’b0;

Only 32-bit instructions

exist.

fldrs vrz, (rx, ry << 0)

fldrs vrz, (rx, ry << 1)

fldrs vrz, (rx, ry << 2)

fldrs vrz, (rx, ry << 3)

501

The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fldrs vrz, (rx, ry << 0)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 0 0 0 0 0 VRZ

fldrs vrz, (rx, ry << 1)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 0 0 0 1 0 VRZ

fldrs vrz, (rx, ry << 2)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 0 0 1 0 0 VRZ

fldrs vrz, (rx, ry << 3)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 0 0 0 0 1 1 0 VRZ

502

FLDS – Load single-precision floating point

Description: Load single-precision floating point from storage to register VRZ.

Adopt the addressing mode of register and immediate operand offset.

The effective address of storage is gained by adding the base register

RX to the value of unsigned extending the 8-bit relative offset shifting

left by 2 bits to 32 bits. The address space of FLDS instruction is

+1KB.

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

32-bit instruction

Operation: Load single-precision floating point from storage to register

VRZ[31:0] ¬ MEM[RX + zero_extend(offset << 2)];

VRZ[127:32] ¬ 96’b0;

Grammar: flds vrz, (rx, disp)

Description: Load single-precision floating point from storage to register VRZ.

Adopt the addressing mode of register and immediate operand offset.

The effective address of storage is gained by adding the base register

RX to the value of unsigned extending the 8-bit relative offset shifting

left by 2 bits to 32 bits. The address space of FLDS instruction is

+1KB.

Attention: The offset DISP is gained after the binary operand

Unified

instruction

Grammar Operation Compiling result

flds vrz, (rx, disp) VRZ[31:0] ¬ MEM[RX +

zero_extend(offset << 2)];

VRZ[127:32] ¬ 96’b0;

Only 32-bit instructions exist.

flds vrz, (rx, disp)

503

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 0 0 0 0 0 IMM4L VRZ

504

FLRWD – Double-precision floating point storage read-in

Description: Load the 64-bit single-precision floating point (±m.n) from storage to

floating point register VRZ. The effective address of storage is gained

by adding PC to the value of unsigned extending the relative offset

shifting left by 2 bits to 32 bits. The address space of FLRWD

instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate

operand that exceeds the expression range, the compiler might give

errors.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

32-bit instruction

Operation: Load single-precision floating point from storage to floating point

register

VRZ[63:0] ¬ MEM[(PC + zero_extend(offset << 2))&0xfffffffc];

VRZ[127:32] ¬ 64’b0;

Grammar: flrwd vrz, imm32

Description: Load the 32-bit single-precision floating point (±m.n) from storage to

floating point register VRZ. The effective address of storage is gained

by adding PC to the value of unsigned extending the relative offset

shifting left by 2 bits to 32 bits. The address space of FLRWD

instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate

Unified instruction

Grammar Operation Compiling result

flrwd vrz, ±m.n VRZ[63:0] ¬ MEM[(PC +

zero_extend(offset <<

2))&0xfffffffc];

VRZ[127:64] ¬ 64’b0;

Only 32-bit instructions exist.

flrwd vrz, ±m.n

505

operand that exceeds the expression range, the compiler might give

errors.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 13 12 11 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 1 1 0 0 1 IMM4L VRZ

506

FLRWS – Single-precision floating point storage read-in

Description: Load the 32-bit single-precision floating point (±m.n) from storage to

floating point register VRZ. The effective address of storage is gained

by adding PC to the value of unsigned extending the relative offset

shifting left by 2 bits to 32 bits. The address space of FLRWS

instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate

operand that exceeds the expression range, the compiler might give

errors.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

32-bit instruction

Operation: Load single-precision floating point from storage to floating point

register

VRZ[31:0] ¬ MEM[(PC + zero_extend(offset << 2))&0xfffffffc];

VRZ[127:32] ¬ 96’b0;

Grammar: flrws vrz, imm32

Description: Load the 32-bit single-precision floating point (±m.n) from storage to

floating point register VRZ. The effective address of storage is gained

by adding PC to the value of unsigned extending the relative offset

shifting left by 2 bits to 32 bits. The address space of FLRWS

instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate

Unified instruction

Grammar Operation Compiling result

flrws vrz, ±m.n VRZ[31:0] ¬ MEM[(PC +

zero_extend(offset <<

2))&0xfffffffc];

VRZ[127:32] ¬ 96’b0;

Only 32-bit instructions exist.

flrws vrz, ±m.n

507

operand that exceeds the expression range, the compiler might give

errors.

Influence on flag

bit:

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 13 12 11 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 1 1 0 0 0 IMM4L VRZ

508

FMACD – Double-precision floating point multiply-accumulate

Data type Double-precision floating point

Description:

Add the product of multiplying double-precision floating point in vrx and

double-precision floating point in vry to the value in vrz, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz+= vrx*vry

Grammar: fmacd vrz, vrx, vry

Data type Double-precision floating point

Description:

Add the product of multiplying double-precision floating point in vrx and

double-precision floating point in vry to the value in vrz, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fmacd vrz, vrx, vry vrz+= vrx*vry Only 32-bit instructions

exist.

fmacd vrz, vrx, vry

509

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 1 0 1 0 0 0 VRZ

510

FMACM – SIMD single-precision floating point

multiply-accumulate

Data type Single-precision floating point

Description:

Add the product of multiplying single-precision floating point in vrx[31:0]

and single-precision floating point in vry[31:0] to the value in vrz[31:0], and

save the result in vrz[31:0].

Add the product of multiplying single-precision floating point in vrx[63:32]

and single-precision floating point in vry[63:32] to the value in vrz[63:32],

and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]+= vrx[31:0]*vry[31:0], vrz[63:32]+= vrx[63:32]*vry[63:32]

Grammar: fmacm vrz, vrx, vry

Data type Single-precision floating point

Description:

Add the product of multiplying single-precision floating point in vrx[31:0]

and single-precision floating point in vry[31:0] to the value in vrz[31:0], and

save the result in vrz[31:0].

Add the product of multiplying single-precision floating point in vrx[63:32]

and single-precision floating point in vry[63:32] to the value in vrz[63:32],

and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Unified instruction

Grammar Operation Compiling result

fmacm vrz, vrx, vry vrz[31:0]+= vrx[31:0]*vry[31:0],
vrz[63:32]+= vrx[63:32]*vry[63:32]

Only 32-bit instructions

exist.

fmacm vrz, vrx, vry

511

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 1 0 1 0 0 0 VRZ

512

FMACS – Single-precision floating point multiply-accumulate

Data type Single-precision floating point

Description:

Add the product of multiplying single-precision floating point in vrx and

single-precision floating point in vry to the value in vrz, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz+= vrx*vry

Grammar: fmacs vrz, vrx, vry

Data type Single-precision floating point

Description:

Add the product of multiplying single-precision floating point in vrx and

single-precision floating point in vry to the value in vrz, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fmacs vrz, vrx, vry vrz+= vrx*vry Only 32-bit instructions

exist.

fmacs vrz, vrx, vry

513

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 1 0 1 0 0 0 VRZ

514

FMFVRH – Read transfer high word from floating point

register

Data type Single-precision floating point

Description: Transfer the high word of floating point register to rz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: rz= vrx[63:32]

Grammar: fmfvrh rz, vrx

Data type Single-precision floating point

Description: Transfer the high word of floating point register to rz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 1 0 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmfvrh rz, vrx rz= vrx[63:32] Only 32-bit instructions

exist.

fmfvrh rz, vrx

515

FMFVRL – Read transfer low word from floating point register

Data type Single-precision floating point

Description: Transfer the low word of floating point register to rz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: rz= vrx[31:0]

Grammar: fmfvrl rz, vrx

Data type Single-precision floating point

Description: Transfer the low word of floating point register to rz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 1 0 0 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmfvrl rz, vrx rz= vrx[31:0] Only 32-bit instructions

exist.

fmfvrl rz, vrx

516

FMOVD – Double-precision floating point move

Data type Double-precision floating point

Description: Transfer double-precision floating point in vrx to vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx

Grammar: fmovd vrz, vrx

Data type Double-precision floating point

Description: Transfer double-precision floating point in vrx to vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 0 0 1 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmovd vrz, vrx vrz= vrx Only 32-bit instructions

exist.

fmovd vrz, vrx

517

FMOVM – SIMD single-precision floating point move

Data type Single-precision floating point

Description: Transfer single-precision floating point in vrx to vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx

Grammar: fmovm vrz, vrx

Data type Single-precision floating point

Description: Transfer single-precision floating point in vrx to vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 0 0 0 0 1 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmovm vrz, vrx vrz= vrx Only 32-bit instructions

exist.

fmovm vrz, vrx

518

FMOVS – Single-precision floating point move

Data type Single-precision floating point

Description: Transfer single-precision floating point in vrx to vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx

Grammar: fmovs vrz, vrx

Data type Single-precision floating point

Description: Transfer single-precision floating point in vrx to vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 0 0 1 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmovs vrz, vrx vrz= vrx Only 32-bit instructions

exist.

fmovs vrz, vrx

519

FMSCD – Double-precision floating point multiply-subtract

Data type Double-precision floating point

Description:

Subtract the value in vrz from the product of multiplying double-precision

floating point in vrx and double-precision floating point in vry, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz=-vrz+ vrx*vry

Grammar: fmscd vrz, vrx, vry

Data type Double-precision floating point

Description:

Subtract the value in vrz from the product of multiplying double-precision

floating point in vrx and double-precision floating point in vry, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fmscd vrz, vrx, vry vrz=-vrz+ vrx*vry Only 32-bit instructions

exist.

fmscd vrz, vrx, vry

520

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 1 0 1 0 1 0 VRZ

521

FMSCM – SIMD single-precision floating point

multiply-subtract

Data type Single-precision floating point

Description:

Subtract the value in vrz[31:0] from the product of multiplying

single-precision floating point in vrx[31:0] and single-precision floating

point in vry[31:0], and save the result in vrz[31:0].

Subtract the value in vrz[63:32] from the product of multiplying

single-precision floating point in vrx[63:32] and single-precision floating

point in vry[63:32], and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:
vrz[31:0]=-vrz[31:0]+ vrx[31:0]*vry[31:0],
vrz[63:32]=-vrz[63:32]+vrx[63:32]*vry[63:32]

Grammar: fmscm vrz, vrx, vry

Data type Single-precision floating point

Description:

Subtract the value in vrz[31:0] from the product of multiplying

single-precision floating point in vrx[31:0] and single-precision floating

point in vry[31:0], and save the result in vrz[31:0].

Subtract the value in vrz[63:32] from the product of multiplying

single-precision floating point in vrx[63:32] and single-precision floating

point in vry[63:32], and save the result in vrz[63:32].

Unified

instruction

Grammar Operation Compiling result

fmscm vrz, vrx,

vry

vrz[31:0]=-vrz[31:0]+ vrx[31:0]*vry[31:0],
vrz[63:32]=-vrz[63:32]+vrx[63:32]*vry[63:32]

Only 32-bit

instructions exist.

fmscm vrz, vrx, vry

522

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 1 0 1 0 1 0 VRZ

523

FMSCS – Single-precision floating point multiply-subtract

Data type Single-precision floating point

Description:

Subtract the value in vrz from the product of multiplying single-precision

floating point in vrx and single-precision floating point in vry, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz=-vrz+ vrx*vry

Grammar: fmscs vrz, vrx, vry

Data type Single-precision floating point

Description:

Subtract the value in vrz from the product of multiplying single-precision

floating point in vrx and single-precision floating point in vry, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fmscs vrz, vrx, vry vrz=-vrz+ vrx*vry Only 32-bit instructions

exist.

fmscs vrz, vrx, vry

524

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 1 0 1 0 1 0 VRZ

525

FMTVRH – Write transfer to high word of floating point

register

Data type Single-precision floating point

Description: Transfer rx to the high word of floating point register.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[63:32] = rx

Grammar: fmtvrh vrz, rx

Data type Single-precision floating point

Description: Transfer rx to the high word of floating point register.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 1 0 1 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmtvrh vrz, rx vrz[63:32] = rx Only 32-bit instructions

exist.

fmtvrh vrz, rx

526

FMTVRL – Write transfer to low word of floating point

register

Data type Single-precision floating point

Description: Transfer rx to the low word of floating point register.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0] = rx

Grammar: Fmtvrl vrz, rx

Data type Single-precision floating point

Description: Transfer rx to the low word of floating point register.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 1 0 1 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmtvrl vrz, rx vrz[31:0] = rx Only 32-bit instructions

exist.

fmtvrh vrz, rx

527

FMULD – Double-precision floating point multiply

Data type Double-precision floating point

Description:
Multiply single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx*vry

Grammar: fmuld vrz, vrx,vry

Data type Double-precision floating point

Description:
Multiply double-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 1 0 0 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmuld vrz, vrx,vry vrz= vrx*vry Only 32-bit instructions

exist.

fmuld vrz, vrx,vry

528

FMULM – SIMD single-precision floating point multiply

Data type Single-precision floating point

Description:

Multiply single-precision floating points in vrx[31:0] and vry[31:0], and

save the result in vrz[31:0]; multiply single-precision floating points in

vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]= vrx[31:0]*vry[31:0]; vrz[63:32]= vrx[63:32]*vry[63:32]

Grammar: fmulm vrz, vrx,vry

Data type Single-precision floating point

Description:

Multiply single-precision floating points in vrx[31:0] and vry[31:0], and

save the result in vrz[31:0]; multiply single-precision floating points in

vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fmulm vrz, vrx,vry vrz[31:0]= vrx[31:0]*vry[31:0];

vrz[63:32]= vrx[63:32]*vry[63:32]

Only 32-bit instructions

exist.

fmulm vrz, vrx,vry

529

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 1 0 0 0 0 0 VRZ

530

FMULS – Single-precision floating point multiply

Data type Single-precision floating point

Description:
Multiply single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx*vry

Grammar: fmuls vrz, vrx,vry

Data type Single-precision floating point

Description:
Multiply single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 1 0 0 0 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fmuls vrz, vrx,vry vrz= vrx*vry Only 32-bit instructions

exist.

fmuls vrz, vrx,vry

531

FNEGD – Double-precision floating point negate

Data type Double-precision floating point

Description: Negate double-precision floating point in vrx and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= -vrx

Grammar: fnegd vrz, vrx

Data type Double-precision floating point

Description: Negate double-precision floating point in vrx and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 0 0 1 1 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fnegd vrz, vrx vrz= -vrx Only 32-bit instructions

exist.

fnegd vrz, vrx

532

FNEGM – SIMD single-precision floating point negate

Data type Single-precision floating point

Description:

Negate single-precision floating point in vrx[31:0] and save the result in

vrz[31:0]; negate single-precision floating point in vrx[63:32] and save the

result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]= -vrx[31:0]; vrz[63:32]= -vrx[63:32]

Grammar: fnegm vrz, vrx

Data type Single-precision floating point

Description:

Negate single-precision floating point in vrx[31:0] and save the result in

vrz[31:0]; negate single-precision floating point in vrx[63:32] and save the

result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

Unified instruction

Grammar Operation Compiling result

fnegm vrz, vrx vrz[31:0]= -vrx[31:0]; vrz[63:32]=
-vrx[63:32]

Only 32-bit instructions

exist.

fnegm vrz, vrx

533

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 0 0 0 0 1 1 1 0 VRZ

534

FNEGS – Single-precision floating point negate

Data type Single-precision floating point

Description: Negate single-precision floating point in vrx and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= -vrx

Grammar: fnegs vrz, vrx

Data type Single-precision floating point

Description: Negate single-precision floating point in vrx and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 0 0 1 1 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fnegs vrz, vrx vrz= -vrx Only 32-bit instructions

exist.

fnegs vrz, vrx

535

FNMACD – Double-precision floating point

multiply-negate-accumulate

Data type Double-precision floating point

Description:

Negate the product of multiplying double-precision floating point in vrx and

double-precision floating point in vry, add the result to the value in vrz, and

save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz-= vrx*vry

Grammar: fnmacd vrz, vrx, vry

Data type Double-precision floating point

Description:

Negate the product of multiplying double-precision floating point in vrx and

double-precision floating point in vry, add the result to the value in vrz, and

save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fnmacd vrz, vrx, vry vrz-= vrx*vry Only 32-bit instructions

exist.

fnmacd vrz, vrx, vry

536

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 1 0 1 1 0 0 VRZ

537

FNMACM – SIMD single-precision floating point

multiply-negate-accumulate

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in

vrx[31:0] and single-precision floating point in vry[31:0], add the result to

the value in vrz[31:0], and save the final result in vrz[31:0].

Negate the product of multiplying single-precision floating point in

vrx[63:32] and single-precision floating point in vry[63:32], add the result

to the value in vrz[63:32], and save the final result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]-= vrx[31:0]*vry[31:0], vrz[63:32]-= vrx[63:32]*vry[63:32]

Grammar: fnmacm vrz, vrx, vry

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in

vrx[31:0] and single-precision floating point in vry[31:0], add the result to

the value in vrz[31:0], and save the final result in vrz[31:0].

Negate the product of multiplying single-precision floating point in

vrx[63:32] and single-precision floating point in vry[63:32], add the result

to the value in vrz[63:32], and save the final result in vrz[63:32].

Influence on

flag bit:

None

Unified instruction

Grammar Operation Compiling result

fnmacm vrz, vrx, vry vrz[31:0]-= vrx[31:0]*vry[31:0],

vrz[63:32]-= vrx[63:32]*vry[63:32]

Only 32-bit instructions

exist.

fnmacm vrz, vrx, vry

538

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 1 0 1 1 0 0 VRZ

539

FNMACS – Single-precision floating point

multiply-negate-accumulate

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in vrx and

single-precision floating point in vry, add the result to the value in vrz, and

save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz-= vrx*vry

Grammar: fnmacs vrz, vrx, vry

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in vrx and

single-precision floating point in vry, add the result to the value in vrz, and

save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fnmacs vrz, vrx, vry vrz-= vrx*vry Only 32-bit instructions

exist.

fnmacs vrz, vrx, vry

540

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 1 0 1 1 0 0 VRZ

541

FNMSCD – Double-precision floating point

multiply-negate-subtract

Data type Double-precision floating point

Description:

Negate the product of multiplying double-precision floating point in vrx and

double-precision floating point in vry, subtract the value in vrz from the

result, and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz=- vrz-vrx*vry

Grammar: fnmscd vrz, vrx, vry

Data type Double-precision floating point

Description:

Negate the product of multiplying double-precision floating point in vrx and

double-precision floating point in vry, subtract the value in vrz from the

result, and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fnmscd vrz, vrx, vry vrz=- vrz-vrx*vry Only 32-bit instructions

exist.

fnmscd vrz, vrx, vry

542

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 1 0 1 1 1 0 VRZ

543

FNMSCM – SIMD single-precision floating point

multiply-negate-subtract

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in

vrx[31:0] and single-precision floating point in vry[31:0], subtract the value

in vrz[31:0] from the result, and save the final result in vrz[31:0].

Negate the product of multiplying single-precision floating point in

vrx[63:32] and single-precision floating point in vry[63:32], subtract the

value in vrz[63:32] from the result, and save the final result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation:
vrz[31:0]=- vrz[31:0]-vrx[31:0]*vry[31:0],
vrz[63:32]=- vrz[63:32]-vrx[63:32]*vry[63:32]

Grammar: fnmscm vrz, vrx, vry

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in

vrx[31:0] and single-precision floating point in vry[31:0], subtract the value

in vrz[31:0] from the result, and save the final result in vrz[31:0].

Negate the product of multiplying single-precision floating point in

vrx[63:32] and single-precision floating point in vry[63:32], subtract the

value in vrz[63:32] from the result, and save the final result in vrz[63:32].

Influence on

flag bit:

None

Unified instruction

Grammar Operation Compiling result

fnmscm vrz, vrx, vry vrz[31:0]=-
vrz[31:0]-vrx[31:0]*vry[31:0],
vrz[63:32]=-

vrz[63:32]-vrx[63:32]*vry[63:32]

Only 32-bit instructions

exist.

fnmscm vrz, vrx, vry

544

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 1 0 1 1 1 0 VRZ

545

FNMSCS – Single-precision floating point

multiply-negate-subtract

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in vrx and

single-precision floating point in vry, subtract the value in vrz from the

result, and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz=- vrz-vrx*vry

Grammar: fnmscs vrz, vrx, vry

Data type Single-precision floating point

Description:

Negate the product of multiplying single-precision floating point in vrx and

single-precision floating point in vry, subtract the value in vrz from the

result, and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fnmscs vrz, vrx, vry vrz=- vrz-vrx*vry Only 32-bit instructions

exist.

fnmscs vrz, vrx, vry

546

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 1 0 1 1 1 0 VRZ

547

FNMULD – Double-precision floating point multiply-negate

Data type Double-precision floating point

Description:
Multiply double-precision floating points in vrx and vry, negate the result,

and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= -(vrx*vry)

Grammar: fnmuld vrz, vrx,vry

Data type Double-precision floating point

Description:
Multiply double-precision floating points in vrx and vry, negate the result,

and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 1 0 0 0 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fnmuld vrz, vrx,vry vrz= -(vrx*vry) Only 32-bit instructions

exist.

fnmuld vrz, vrx,vry

548

FNMULM – SIMD single-precision floating point

multiply-negate

Data type Single-precision floating point

Description:

Multiply single-precision floating points in vrx[31:0] and vry[31:0], negate

the result, and save the final result in vrz[31:0]; multiply single-precision

floating points in vrx[63:32] and vry[63:32], negate the result, and save the

final result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]= -(vrx[31:0]*vry[31:0]); vrz[63:32]= -(vrx[63:32]*vry[63:32])

Grammar: fnmulm vrz, vrx,vry

Data type Single-precision floating point

Description:

Multiply single-precision floating points in vrx[31:0] and vry[31:0], negate

the result, and save the final result in vrz[31:0]; multiply single-precision

floating points in vrx[63:32] and vry[63:32], negate the result, and save the

final result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Unified instruction

Grammar Operation Compiling result

fnmulm vrz, vrx,vry vrz[31:0]= -(vrx[31:0]*vry[31:0]);

vrz[63:32]= -(vrx[63:32]*vry[63:32])

Only 32-bit instructions

exist.

fnmulm vrz, vrx,vry

549

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 1 0 0 0 1 0 VRZ

550

FNMULS – Single-precision floating point multiply-negate

Data type Single-precision floating point

Description:
Multiply single-precision floating points in vrx and vry, negate the result,

and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= -(vrx*vry)

Grammar: fnmuls vrz, vrx,vry

Data type Single-precision floating point

Description:
Multiply single-precision floating points in vrx and vry, negate the result,

and save the final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 1 0 0 0 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fnmuls vrz, vrx,vry vrz= -(vrx*vry) Only 32-bit instructions

exist.

fnmuls vrz, vrx,vry

551

FRECIPD – Double-precision floating point reciprocal

Data type Double-precision floating point

Description:
Take the reciprocal of double-precision floating point in vrx and save the

final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= 1/vrx

Grammar: frecipd vrz, vrx

Data type Double-precision floating point

Description:
Take the reciprocal of double-precision floating point in vrx and save the

final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 1 1 0 0 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

frecipd vrz, vrx vrz= 1/vrx Only 32-bit instructions

exist.

frecipd vrz, vrx

552

FRECIPS – Single-precision floating point reciprocal

Data type Single-precision floating point

Description:
Take the reciprocal of single-precision floating point in vrx and save the

final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= 1/vrx

Grammar: frecips vrz, vrx

Data type Single-precision floating point

Description:
Take the reciprocal of single-precision floating point in vrx and save the

final result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 1 1 0 0 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

frecips vrz, vrx vrz= 1/vrx Only 32-bit instructions

exist.

frecips vrz, vrx

553

FSITOD – Transform signed integer into double-precision

floating point

Data type 32-bit signed integer

Description:
Transform signed integer in vrx into double-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (double)vrx

Grammar: fsitod vrz, vrx

Data type 32-bit signed integer

Description:
Transform signed integer in vrx into double-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fsitod vrz, vrx vrz= (double)vrx Only 32-bit instructions

exist.

fsitod vrz, vrx

554

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 0 1 0 0 0 VRZ

555

FSITOS – Transform signed integer into single-precision

floating point

Data type 32-bit signed integer

Description:
Transform signed integer in vrx into single-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (float)vrx

Grammar: fsitos vrz, vrx

Data type 32-bit signed integer

Description:
Transform signed integer in vrx into single-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fsitos vrz, vrx vrz= (float)vrx Only 32-bit instructions

exist.

fsitos vrz, vrx

556

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 0 0 0 0 0 VRZ

557

FSQRTD – Double-precision floating point square root

Data type Double-precision floating point

Description:
Take the square root of double-precision floating point in vrx, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= sqrt(vrx)

Grammar: fsqrtd vrz, vrx

Data type Double-precision floating point

Description:
Take the square root of double-precision floating point in vrx, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 1 0 1 1 0 1 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fsqrtd vrz, vrx vrz= sqrt(vrx) Only 32-bit instructions

exist.

fsqrtd vrz, vrx

558

FSQRTS – Single-precision floating point square root

Data type Single-precision floating point

Description:
Take the square root of single-precision floating point in vrx, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= sqrt(vrx)

Grammar: fsqrts vrz, vrx

Data type Single-precision floating point

Description:
Take the square root of single-precision floating point in vrx, and save the

result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 0 0 0 1 1 0 1 0 0 VRZ

Unified instruction

Grammar Operation Compiling result

fsqrts vrz, vrx vrz= sqrt(vrx) Only 32-bit instructions

exist.

fsqrts vrz, vrx

559

FSTD – Store double-precision floating point

Description: Store double-precision floating point in register VRZ to storage. Adopt

the addressing mode of register and unsigned immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 8-bit relative offset

shifting left by two bits to 32 bits. The address space of FSTD

instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

32-bit instruction

Operation: Store double-precision floating point in register VRZ to storage

MEM[RX + zero_extend(offset << 2)] ¬ VRZ[63:0];

Grammar: fstd vrz, (rx, disp)

Description: Store double-precision floating point in register VRZ to storage. Adopt

the addressing mode of register and unsigned immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 8-bit relative offset

shifting left by two bits to 32 bits. The address space of FSTD

instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

Unified

instruction

Grammar Operation Compiling result

fstd vrz, (rx, disp) MEM[RX +

zero_extend(offset << 2)] ¬

VRZ[63:0];

Only 32-bit instructions exist.

fstd vrz, (rx, disp)

560

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 0 0 1 0 1 IMM4L VRZ

561

FSTM – Store vector floating point

Description: Store two single-precision floating points in register VRZ to storage.

Adopt the addressing mode of register and unsigned immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 8-bit relative

offset shifting left by three bits to 32 bits. The address space of FSTM

instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by three bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

32-bit instruction

Operation: Store two single-precision floating points in register VRZ to storage.

MEM[RX + zero_extend(offset << 3)] ¬ VRZ[63:0];

Grammar: fstm vrz, (rx, disp)

Description: Store two single-precision floating points in register VRZ to storage.

Adopt the addressing mode of register and unsigned immediate

operand offset. The effective address of storage is gained by adding the

base register RX to the value of unsigned extending the 8-bit relative

offset shifting left by three bits to 32 bits. The address space of FSTM

instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

Unified

instruction

Grammar Operation Compiling result

fstm vrz, (rx,

disp)

MEM[RX +

zero_extend(offset << 3)] ¬

VRZ[63:0];

Only 32-bit instructions exist.

fstm vrz, (rx, disp)

562

{IMM4H,IMM4L} shifts left by three bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB

unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 0 0 1 1 0 IMM4L VRZ

563

FSTMD – Store consecutive double-precision floating point

Description: Store double-precision floating points in a group of consecutive register

files starting from VRY to a group of consecutive storage addresses

successively. In other word, store contents in register VRY to the address

of the first double word in the address appointed by storage; store the

contents in register VR(Y+1) to the address of the second double word in

the address appointed by storage, and the like; store the contents in

register VRZ to the address of the last double word in the address

appointed by storage. The effective address of storage is decided by the

contents of base register RX.

Influence on flag

bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store double-precision floating points in a group of consecutive register

files to a group of consecutive storage addresses successively

src ¬ Y; addr ¬ RX;

Unified

instruction

Grammar Operation Compiling result

fstmd vry-vrz,

(rx)

Store double-precision floating points

in a group of consecutive register

files to a group of consecutive storage

addresses successively

src ¬ Y; addr ¬ RX;

for (n = 0; n <=(Z-Y); n++){

 MEM[addr] ¬ VRsrc[63:0];

 src ¬ src + 1;

 addr ¬ addr + 8;

}

Only 32-bit instructions exist.

fstmd vry-vrz, (rx);

564

for (n = 0; n <=(Z-Y); n++){

 MEM[addr] ¬ VRsrc[63:0];

 src ¬ src + 1;

 addr ¬ addr + 8;

}

Grammar: fstmd vry-vrz, (rx)

Description: Store double-precision floating points in a group of consecutive register

files starting from VRY to a group of consecutive storage addresses

successively. In other word, store contents in register VRY to the address

of the first double word in the address appointed by storage; store the

contents in register VR(Y+1) to the address of the second double word in

the address appointed by storage, and the like; store the contents in

register VRZ to the address of the last double word in the address

appointed by storage. The effective address of storage is decided by the

contents of base register RX.

Influence on

flag bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4 RX 0 0 1 1 0 1 0 1 0 0 0 0 VRY

IMM4 field – Assign the number of destination registers, IMM4 = Z – Y.

0000 – 1 destination register

0001 – 2 destination registers

……

1111 – 16 destination registers

565

FSTMM – Store consecutive vector floating point

Description: Store vector floating point (including two single-precision floating

points) in a group of consecutive register files starting from VRY to a

group of consecutive storage addresses successively. In other word, store

contents in register VRY to the address of the first double word in the

address appointed by storage; store the contents in register VR(Y+1) to

the address of the second double word in the address appointed by

storage, and the like; store the contents in register VRZ to the address of

the last double word in the address appointed by storage. The effective

address of storage is decided by the contents of base register RX.

Influence on flag

bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store vector floating points in a group of consecutive register files to a

group of consecutive storage addresses successively

src ¬ Y; addr ¬ RX;

Unified

instruction

Grammar Operation Compiling result

fstmm vry-vrz,

(rx)

Store vector floating points in a group

of consecutive register files to a

group of consecutive storage

addresses successively

src ¬ Y; addr ¬ RX;

for (n = 0; n <=(Z-Y); n++){

 MEM[addr] ¬ VRsrc[63:0];

 src ¬ src + 1;

 addr ¬ addr + 8;

}

Only 32-bit instructions exist.

fstmm vry-vrz, (rx);

566

for (n = 0; n <=(Z-Y); n++){

 MEM[addr] ¬ VRsrc[63:0];

 src ¬ src + 1;

 addr ¬ addr + 8;

}

Grammar: fstmm vry-vrz, (rx)

Description: Store vector floating point (including two single-precision floating points)

in a group of consecutive register files starting from VRY to a group of

consecutive storage addresses successively. In other word, store contents

in register VRY to the address of the first double word in the address

appointed by storage; store the contents in register VR(Y+1) to the

address of the second double word in the address appointed by storage,

and the like; store the contents in register VRZ to the address of the last

word in the address appointed by storage. The effective address of storage

is decided by the contents of base register RX.

Influence on

flag bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4 RX 0 0 1 1 0 1 1 0 0 0 0 0 VRY

IMM4 field – Assign the number of destination registers, IMM4 = Z – Y.

0000 – 1 destination register

0001 – 2 destination registers

……

1111 – 16 destination registers

567

FSTMS – Store consecutive single-precision floating point

Description: Store single-precision floating points in a group of consecutive register

files starting from VRY to a group of consecutive storage addresses

successively. In other word, store contents in register VRY to the address

of the first word in the address appointed by storage; store the contents in

register VR(Y+1) to the address of the second word in the address

appointed by storage, and the like; store the contents in register VRZ to

the address of the last word in the address appointed by storage. The

effective address of storage is decided by the contents of base register

RX.

Influence on flag

bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store single-precision floating points in a group of consecutive register

files to a group of consecutive storage addresses successively

src ¬ Y; addr ¬ RX;

Unified

instruction

Grammar Operation Compiling result

fstms vry-vrz,

(rx)

Store single-precision floating points

in a group of consecutive register

files to a group of consecutive storage

addresses successively

src ¬ Y; addr ¬ RX;

for (n = 0; n <=(Z-Y); n++){

 MEM[addr] ¬ VRsrc[31:0];

 src ¬ src + 1;

 addr ¬ addr + 4;

}

Only 32-bit instructions exist.

fstms vry-vrz, (rx);

568

for (n = 0; n <=(Z-Y); n++){

 MEM[addr] ¬ VRsrc[31:0];

 src ¬ src + 1;

 addr ¬ addr + 4;

}

Grammar: fstms vry-vrz, (rx)

Description: Store single-precision floating points in a group of consecutive register

files starting from VRY to a group of consecutive storage addresses

successively. In other word, store contents in register VRY to the address

of the first word in the address appointed by storage; store the contents in

register VR(Y+1) to the address of the second word in the address

appointed by storage, and the like; store the contents in register VRZ to

the address of the last word in the address appointed by storage. The

effective address of storage is decided by the contents of base register RX.

Influence on

flag bit:

No influence

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4 RX 0 0 1 1 0 1 0 0 0 0 0 0 VRY

IMM4 field – Assign the number of destination registers, IMM4 = Z – Y.

0000 – 1 destination register

0001 – 2 destination registers

……

1111 – 16 destination registers

569

FSTOD – Transform single-precision floating point into

double-precision floating point

Data type Single-precision floating point

Description:
Transform single-precision floating point in vrx into double-precision

floating point, and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (double)vrx

Grammar: fstod vrz, vrx

Data type Single-precision floating point

Description:
Transform single-precision floating point in vrx into double-precision

floating point, and save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fstod vrz, vrx vrz= (double)vrx Only 32-bit instructions

exist.

fstod vrz, vrx

570

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 0 1 1 1 0 VRZ

571

FSTOSI – Transform single-precision floating point into signed

integer

Data type Single-precision floating point

Description:

Transform single-precision floating point in vrx into signed integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (signed long)vrx

Grammar: fstosi.rm vrz, vrx

Data type Single-precision floating point

Description:

Transform single-precision floating point in vrx into signed integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

Unified instruction

Grammar Operation Compiling result

fstosi.rm vrz, vrx

where rm is rn/rz/rpi/rni

vrz= (signed long)vrx Only 32-bit instructions

exist.

fstosi.rm vrz, vrx

572

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 0 0 0 RM 0 VRZ

573

FSTOUI – Transform single-precision floating point into

unsigned integer

Data type Single-precision floating point

Description:

Transform single-precision floating point in vrx into unsigned integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (unsigned long)vrx

Grammar: fstoui.rm vrz, vrx

Data type Single-precision floating point

Description:

Transform single-precision floating point in vrx into unsigned integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

Unified instruction

Grammar Operation Compiling result

fstoui.rm vrz, vrx

where rm is rn/rz/rpi/rni

vrz= (unsigned long)vrx Only 32-bit instructions

exist.

fstoui.rm vrz, vrx

574

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 0 0 1 RM 0 VRZ

575

FSTRD – Store double-precision floating point in register offset

addressing

Description: Store double-precision floating point in register VRZ to storage. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store double-precision floating point to storage

MEM[RX + RY << IMM2] ¬ VRZ[63:0]

Grammar: fstrd vrz, (rx, ry << 0)

fstrd vrz, (rx, ry << 1)

fstrd vrz, (rx, ry << 2)

fstrd vrz, (rx, ry << 3)

Description: Store double-precision floating point in register VRZ to storage. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

The default value of IMM2 is 0.

Unified instruction

Grammar Operation Compiling result

fstrd vrz, (rx, ry << 0)

fstrd vrz, (rx, ry << 1)

fstrd vrz, (rx, ry << 2)

fstrd vrz, (rx, ry << 3)

Store double-precision floating point

to storage

MEM[RX + RY << IMM2] ¬

VRZ[63:0]

Only 32-bit instructions

exist.

fstrd vrz, (rx, ry << 0)

fstrd vrz, (rx, ry << 1)

fstrd vrz, (rx, ry << 2)

fstrd vrz, (rx, ry << 3)

576

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fstrd vrz, (rx, ry << 0)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 1 0 0 0 0 VRZ

fstrd vrz, (rx, ry << 1)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 1 0 0 1 0 VRZ

fstrd vrz, (rx, ry << 2)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 1 0 1 0 0 VRZ

fstrd vrz, (rx, ry << 3)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 1 0 1 1 0 VRZ

577

FSTRM – Store vector floating point in register offset

addressing

Description: Store two single-precision floating points in register VRZ to storage.

Adopt the addressing mode of register and register offset. The effective

address of storage is gained by adding the base register RX to the value

gained by making offset register RY shift left by 2-bit immediate operand

IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store vector floating point to storage

MEM[RX + RY << IMM2] ¬ VRZ[63:0]

Grammar: fstrm vrz, (rx, ry << 0)

fstrm vrz, (rx, ry << 1)

fstrm vrz, (rx, ry << 2)

fstrm vrz, (rx, ry << 3)

Description: Store two single-precision floating points in register VRZ to storage.

Adopt the addressing mode of register and register offset. The effective

address of storage is gained by adding the base register RX to the value

Unified instruction

Grammar Operation Compiling result

fstrm vrz, (rx, ry <<

0)

fstrm vrz, (rx, ry <<

1)

fstrm vrz, (rx, ry <<

2)

fstrm vrz, (rx, ry <<

3)

Store vector floating point to storage

MEM[RX + RY << IMM2] ¬

VRZ[63:0]

Only 32-bit instructions

exist.

fstrm vrz, (rx, ry << 0)

fstrm vrz, (rx, ry << 1)

fstrm vrz, (rx, ry << 2)

fstrm vrz, (rx, ry << 3)

578

gained by making offset register RY shift left by 2-bit immediate operand

IMM2. The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fstrm vrz, (rx, ry << 0)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 1 0 0 0 0 0 VRZ

fstrm vrz, (rx, ry << 1)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 1 0 0 1 0 VRZ

fstrm vrz, (rx, ry << 2)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 1 0 1 0 0 VRZ

fstrm vrz, (rx, ry << 3)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 1 0 1 1 0 VRZ

579

FSTRS – Store single-precision floating point in register offset

addressing

Description: Store single-precision floating point in register VRZ to storage. Adopt the

addressing mode of register and register offset. The effective address of

storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

The default value of IMM2 is 0.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store single-precision floating point to storage

MEM[RX + RY << IMM2] ¬ VRZ[31:0]

Grammar: fstrs vrz, (rx, ry << 0)

fstrs vrz, (rx, ry << 1)

fstrs vrz, (rx, ry << 2)

fstrs vrz, (rx, ry << 3)

Description: Store single-precision floating point in register VRZ to storage. Adopt the

addressing mode of register and register offset. The effective address of

storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

The default value of IMM2 is 0.

Unified instruction

Grammar Operation Compiling result

fstrs vrz, (rx, ry << 0)

fstrs vrz, (rx, ry << 1)

fstrs vrz, (rx, ry << 2)

fstrs vrz, (rx, ry << 3)

Store single-precision floating point

to storage

MEM[RX + RY << IMM2] ¬

VRZ[31:0]

Only 32-bit instructions

exist.

fstrs vrz, (rx, ry << 0)

fstrs vrz, (rx, ry << 1)

fstrs vrz, (rx, ry << 2)

fstrs vrz, (rx, ry << 3)

580

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fstrs vrz, (rx, ry << 0)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 0 0 0 0 0 VRZ

fstrs vrz, (rx, ry << 1)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 0 0 0 1 0 VRZ

fstrs vrz, (rx, ry << 2)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 0 0 1 0 0 VRZ

fstrs vrz, (rx, ry << 3)

31 30 26 25 21 20 16 15 8 7 6 5 4 3 0

1 1 1 1 0 1 RY RX 0 0 1 0 1 1 0 0 0 1 1 0 VRZ

581

FSTS – Store single-precision floating point

Description: Store single-precision floating point in register VRZ to storage. Adopt

the addressing mode of register and unsigned immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 8-bit relative offset

shifting left by two bits to 32 bits. The address space of FSTS

instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

32-bit instruction

Operation: Store single-precision floating point in register VRZ to storage

MEM[RX + zero_extend(offset << 2)] ¬ VRZ[31:0];

Grammar: fsts vrz, (rx, disp)

Description: Store single-precision floating point in register VRZ to storage. Adopt

the addressing mode of register and unsigned immediate operand

offset. The effective address of storage is gained by adding the base

register RX to the value of unsigned extending the 8-bit relative offset

shifting left by two bits to 32 bits. The address space of FSTS

instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

Unified

instruction

Grammar Operation Compiling result

fsts vrz, (rx, disp) MEM[RX +

zero_extend(offset << 2)] ¬

VRZ[31:0];

Only 32-bit instructions exist.

fsts vrz, (rx, disp)

582

{IMM4H,IMM4L} shifts left by two bits.

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Instruction

format:

31 30 26 25 24 21 20 16 15 8 7 4 3 0

1 1 1 1 0 1 0 IMM4H RX 0 0 1 0 0 1 0 0 IMM4L VRZ

583

FSUBD – Double-precision floating point subtract

Data type Double-precision floating point

Description:
Subtract double-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx-vry

Grammar: fsubd vrz, vrx,vry

Data type Double-precision floating point

Description:
Subtract double-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 1 0 0 0 0 0 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fsubd vrz, vrx,vry vrz= vrx-vry Only 32-bit instructions

exist.

fsubd vrz, vrx,vry

584

FSUBM – SIMD single-precision floating point subtract

Data type Single-precision floating point

Description:

Subtract single-precision floating points in vrx[31:0] and vry[31:0], and

save the result in vrz[31:0]; subtract single-precision floating points in

vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]= vrx[31:0]-vry[31:0]; vrz[63:32]= vrx[63:32]-vry[63:32]

Grammar: fsubm vrz, vrx,vry

Data type Single-precision floating point

Description:

Subtract single-precision floating points in vrx[31:0] and vry[31:0], and

save the result in vrz[31:0]; subtract single-precision floating points in

vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fsubm vrz, vrx,vry vrz[31:0]= vrx[31:0]-vry[31:0];

vrz[63:32]= vrx[63:32]-vry[63:32]

Only 32-bit instructions

exist.

fsubm vrz, vrx,vry

585

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 1 0 0 0 0 0 0 1 0 VRZ

586

FSUBS – Single-precision floating point subtract

Data type Single-precision floating point

Description:
Subtract single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= vrx-vry

Grammar: fsubs vrz, vrx,vry

Data type Single-precision floating point

Description:
Subtract single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 1 1 1 0 1 0 VRY 0 VRX 0 0 0 0 0 0 0 0 0 0 1 0 VRZ

Unified instruction

Grammar Operation Compiling result

fsubs vrz, vrx,vry vrz= vrx-vry Only 32-bit instructions

exist.

fsubs vrz, vrx,vry

587

FUITOD – Transform unsigned integer into double-precision

floating point

Data type 32-bit unsigned integer

Description:
Transform unsigned integer in vrx into double-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (double)vrx

Grammar: fuitod vrz, vrx

Data type 32-bit unsigned integer

Description:
Transform unsigned integer in vrx into double-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fuitod vrz, vrx vrz= (double)((unsigned 32)vrx[31:0]) Only 32-bit instructions

exist.

fuitod vrz, vrx

588

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 0 1 0 1 0 VRZ

589

FUITOS – Transform unsigned integer into single-precision

floating point

Data type 32-bit unsigned integer

Description:
Transform unsigned integer in vrx into single-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (float)vrx

Grammar: fuitos vrz, vrx

Data type 32-bit unsigned integer

Description:
Transform unsigned integer in vrx into single-precision floating point, and

save the result in vrz.

Influence on

flag bit:

None

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

Unified instruction

Grammar Operation Compiling result

fuitos vrz, vrx vrz= (float)vrx Only 32-bit instructions

exist.

fuitos vrz, vrx

590

1 1 1 1 0 1 0 0 0 0 0 0 VRX 0 0 0 1 1 0 1 0 0 0 1 0 VRZ

591

