CSKY ISA
USERGUIDE

SKY

Statement:

C-SKY Microsystems Co., Ltd. reserves all rights of this document.
Contents of this document can be altered, updated, deleted or changed, and no further notice

will be given.

Copyright © 2001-2017 C-SKY Microsystems Co., Ltd.

Company address: 3 XiDoumen Rd,BldgA,15F,Hangzhou,China
Post Code: 310012

Tel: 0571-88157059

Fax: 0571-88157059-8888

Homepage: www.c-sky.com

E-mail: info@c-sky.com

Version history:

Version | Date Description Author
C-SKY
The first version of user manual for CSKY
1.0 7/2/2010 Microsystems
instructions
Co., Ltd.
1. Add 16-bit multiply instructions
C-SKY
2. Modify the descriptions about immediate operands '
1.1 7/9/2010 _ Microsystems
of some instructions
. Co., Ltd.
3. Adjust the instruction code
1. Correct some coding and description errors
C-SKY
2. Modify the name of jmplr instruction
1.2 8/3/2010 _ Microsystems
3. Modify the binary coding formats of ins, zext and
Co., Ltd.
sext operands
1. Modify the name of 16-bit instruction
2. Modify the codes of bmaski, bgenr, mvc, mvev and
rts instructions C-SKY
1.3 10/13/2010 | 3. Modify rotl instruction act Microsystems
4. Add ff0 and Irw instructions Co., Ltd.
5. Modify the link register and define it as R15
6. Correct tstnbz instruction coding errors
1. Modify the binary coding formats of ins, zext and
sext operands
2. Adjust the code of rts16 instruction
3. Correct coding errors and descriptions of lrw, 1dm,
stm, ldm16 and stm16 instructions
4. Modify the description about link register of jump | C-SKY
1.4 11/13/2010 | instruction Microsystems
5. Add idly instruction Co., Ltd.
6. Modify operand assembly formats and descriptions
of all load/store instructions
7. Modify operand assembly format of trap instruction
8. Add descriptions about bit width of mnemonic
instruction
1. Adjust the arrangement of instruction term list, add | C-SKY
1.5 01/13/2011 | unified instructions, and give uniform descriptions to | Microsystems

16-bit and 32-bit instructions with the same function

Co., Ltd.

in instruction term list

2. Modify the mnemonic symbols of 32-bit
instructions and add the suffix of 32

3. Add not16, 1dq16 and stq16 instructions

4. Modify descriptions and instruction formats of ldq
and stq instructions

5. Modify tstnbz instruction

6. Modify mov instruction; the range of movl6
register is 32

7. Delete unaligned exception of jsril6

8. Modify andn32, asr32, Is132, 1sr32, subc32, subu32
and rtol32 instruction compiling results

9. Add bkpt16 instruction

10. Modify the code of mulsh32 instruction

C-SKY
1. Modify the definition of bmaski instruction
1.6 02/11/2011 Microsystems
function
Co., Ltd.
1. Adjust RZ and RY/IMMS coding positions of 32-bit
C-SKY
instructions
1.7 03/29/2011)) Microsystems
2. Modify the codes of jmp32, jsr32 and rts32
Co., Ltd.
instructions
1. Adjust the highest bit of 16-bit and 32-bit
instructions
2. Adjust the codes of clrf, clrt, decf, dect, incf and | C-SKY
1.8 04/14/2011 | inct as well as their pseudo instructions — movf and | Microsystems
movt Co., Ltd.
3. Adjust the codes of pldr and pldw
4. Add ixd instruction
C-SKY
1. Add 1d32.d and st32.d instructions
1.9 05/17/2011 Microsystems
2. Add sce instruction
Co., Ltd.
C-SKY
1. Delete R15 register of supervisor mode
1.10 05/24/2011 Microsystems
2. Adjust the codes of br32, bsr32, br16 and bsrl6
Co., Ltd.
C-SKY
1.11 05/25/2011 | 1. Modify the operation of idly instruction Microsystems

Co., Ltd.

o SKY

1. Modify the operation of bsr32 and bsrl6 | C-SKY
1.12 05/27/2011 | instructions Microsystems
2. Adjust the codes of bkpt32 and bkpt16 instructions | Co., Ltd.
1. Add grs instruction
2. Add Irs.w, Irs.h, Irs.b, srs.w, srs.h and srs.b
instructions C-SKY
1.13 11/15/2011 | 3. Correct the offset of 1d.d and st.d Microsystems
4. Modify abnormal descriptions of pldr and pldw | Co., Ltd.
instructions
5. Add descriptions about special operand of divs
1. Adjust the operands and codes of 16-bit instructions
2. Adjust the operands and codes of some 32-bit
instructions
3. Add push and pop instructions
4. Add addi(sp) and subi(sp) instructions
5. Add jmp16, jsr16 and mvcv16 instructions
6. Add the definition about oimm18 operand of addi32
7. Delete jsril6, rotlil6 and mvcl6 instructions
C-SKY
8. Delete ldm16 and stm16 instructions '
1.14 01/09/2012 Microsystems
9. Delete be and bne instructions
Co., Ltd.
10. Modify the range of Irw16 operand
11. Modify the code of grs instruction
12. Modify the definition of stack pointer register
13. Modify the jump range restriction of bsr
instruction
14. Correct the description of mvtc instruction
15. Correct the description of cmpnei register type
16. Correct other errors
C-SKY
1. Add bmset32, bmclr32, cmpix32 and jmpixl6 '
1.14.1 02/06/2012 Microsystems
instructions
Co., Ltd.
1. Add jmpix32 instruction
C-SKY
2. Modify the operands of push and pop instructions _
1.14.2 | 02/13/2012 Microsystems
3. Modify the offset displacement of ld.d and st.d
Co., Ltd.
instructions
C-SKY
1.14.3 | 02/15/2012 | 1. Modify the codes of jmpi32 and jsri32 '
Microsystems

Co., Ltd.
1. Correct the errors in coding mode of instruction set
and description of operand type
o C-SKY
L144 | 0330201 2 Corr‘ect the abnormal description of load/store Microsystems
Instructions
3. Correct mvtc code co. Ld
4. Modify jsr16 code
C-SKY
1.15 04/16/2012 | 1. Add floating point subset Microsystems
Co., Ltd.
C-SKY
1.15.1 | 06/07/2012 | 1. Delete FMTD, FMTS, FMFD and FMFS Microsystems
Co., Ltd.
1. Add FMTVRH, FMTVRL, FMFVRH and
FMFVRL C-SKY
1.15.2 | 06/28/2012 | 2. Add FLDD, FLDS, FLDRD, FLDRS, FLDMD, | Microsystems
FLDMS, FSTD, FSTS, FSTRD, FSTRS, FSTMD and | Co., Ltd.
FSTMS
1. Modify the definitions of push and pop instructions | C-SKY
1.15.3 | 07/011/2012 | 2. Add FLDM, FLDRM, FLDMM, FSTM, FSTRM | Microsystems
and FSTMM Co., Ltd.
C-SKY
1.15.4 | 08/015/2012 | 1. Correct the codes of some instructions Microsystems
Co., Ltd.
C-SKY
1.15.5 | 08/17/2012 | 1. Add FMOVM Microsystems
Co., Ltd.
C-SKY
1.15.6 | 08/17/2012 | 1. Modify the definition of co-processor instruction Microsystems
Co., Ltd.
C-SKY
1.15.7 | 12/01/2012 | 1. Modify the definitions of sync and idly instructions | Microsystems
Co., Ltd.
C-SKY
1.15.8 | 10/14/2013 | 1. Add bpop.h, bpop.w, bpush.h and bpush.w Microsystems

Co., Ltd.

1. Correct the names of FCMPZLSD and FCMPZLSS

instructions
2. Correct the descriptions of FCMPZLSD,
FCMPZLSS, FDTOSI, FDTOUI, FSITOD, FSITOS, | C-SKY
1.159 | 31/3/2014 FSTOSI, FSTOUI, FUITOD and FUITOS instructions | Microsystems
3. Correct the codes of VFPU instructions like | Co., Ltd.
FABSD, FABSM and FABSS
4. Delete cmpix instruction
5. Add strap and srte instructions
1. Delete bsr16 instruction C-SKY
1.15.10 | 15/5/2014 2. Add btstil6 instruction Microsystems
3. Modify the code of Irw16 instruction Co., Ltd.
1. Correct the descriptions of FSTM and FLDM
2. Correct the description of FMULD instruction
C-SKY
3. Add FLRWS and FLRWD instructions
1.15.11 | 13/12/2014)) Microsystems
4. Add niel6, nirl6, ipush16 and ipop16 instructions
_ . Co., Ltd.
5. Modity the name of floating point data operation
instruction
1. Correct the descriptions of overflow bits of muls,
mulsa, mulss, mulu, mulua and mulus instructions
C-SKY
2. Supplement the descriptions of mulsha, mulshs,
1.15.12 | 22/12/2014 Microsystems
mulsw, mulswa, mulsws, mfhis and mflos instructions Co. Lid
o., Ltd.

3. Supplement the descriptions of vmulsh, vmulsha,

vmulshs, vmulsw, vmulswa and vmulsws instructions

Content
1. INTRODUCTION 1
L1, INTRODUCTION ...ccoouiiiiiiiiiiiiiniitiieie sttt 11
1.2, INSTRUCTION MIXING MODEccoiuiiiiiimiiiiiiiiiieeeniiteeeie st 11
1.3, PROGRAMMING MODEL.......ccoeuiiiiiiiiiiiiiiniiniieeisteeent et e e 12
1.3.1. General-purpoSe FEQISIOTcccoeocurouiiiesiee ettt ettt 14
1.3.2. AIEINALIVE FEQISTOT ...ttt ettt 15
1.3.3. ACCUTUIATOT FEZISTOTooeeeieieeee ettt e 15
1.3.4. PFrOZFAIMN COUNLET ...ttt e 15
1.3.5. CORAIION/CATTY DIt ... 16
2. 32-BIT INSTRUCTION SET 17
2.1. FUNCTIONAL CLASSIFICATION OF 32-BIT INSTRUCTIONScccoouiiiiiniimeniiriieneeneeeneeneeene 17
2.1.1. Data operation iMSIIUCHION.c...ccuveeueeeeieerieeiieeiieeeseeeseesreasseesiaeessaeesaesesee e 17
2.1.2. Branch jump iNSIUCHIONcc.cccoeeviiiiiiiiiiiiiietenieseeie ettt 21
2.1.3. Memory ACCESS MMSIIUCIIONccueeeuieeieiesiieie ettt ettt ettt 21
2.1.4. CO-PFrOCESSOF INSITUCHION ..ottt sttt 23
2.1.5. Privileged INSIUCHIONccccoovivuiiiiiiiiiiiiiieieteeieeeee ettt 23
2.1.6. Special fUncCtion INSITUCIIONcccoccvecieiaieieieiesie e ee ettt eee s eneas 24
2.2. ENCODING OF 32-BIT INSTRUCTIONSc.oouiiiiiiiiiiiieienisieeenieiestene et 24
2210 JUIP TYPC .ottt 25
2.2.2. Immediate OPerand tyPe..............cccovieiiiiiiiiiiieii st 25
2,230 REZISICE TYPE ...ttt 26
2.3. OPERAND ADDRESSING MODE OF 32-BIT INSTRUCTIONSccciiiuinuiieniiniieneieeneneeneneane 26
2.3.1. Addressing mode of jump-type iNStITUCIIONScccccoeeeeeiaiaieieiesieeeeee e 26
2.3.2. Addressing mode of immediate operand-type inStructionscccceeeeceeverenns 27
2.3.3. Addressing mode of register-type inStrUCHIONScocceeveeeeieiaieieseeeeeeeeeeeenens 29
3. 16-BIT INSTRUCTION SET 32
3.1. MAPPING MODE OF 32-BIT/16-BIT INSTRUCTIONSc.ccosuruemirinmimirmerenereeneiesnereneseeneaennenens 32
3.2. FUNCTIONAL CLASSIFICATION OF 16-BIT INSTRUCTIONScccoouiiiiiiiieniiniieneieeeeneeneneee 37
3.2.1. Data operation iNSIFUCHION.cccoeeeuieeieeeeieesiieeeieeesee st eeireeeiseeieeasaeeseeeesee e 37
3.2.2. Branch jump inSIPUCHONc..c.ccueueieeeieeeee ettt ettt ettt saeeaeeneas 39
3.2.3. MemoOry ACCESS IMSIFUCLIONcc.eeoueeeiiiiesieeeee ettt ettt 39
3.3. CODING MODE OF 16-BIT INSTRUCTIONScccouiiiuiiiiiininieieniiieieieseeseene e 40
33010 JUIIPD VP . ettt 40

4.

5.

6.

3.3.2. Immediate Operand (ype.............cccccoucuevirciiiiesieiiieeeee e
3.3.3. REGISIEH 1YDC ..ttt
3.4, OPERAND ADDRESSING MODE OF 16-BIT INSTRUCTIONSccccoeruiueunnninnns
3.4.1. Addressing mode of jump-type inStruCtionscccecoeeeeveceeeeeannnns.
3.4.2. Addressing mode of immediate operand-type instructions...................
3.4.3. Addressing mode of register-type inStruCtions.................ccoceeveeeeannne.

FLOATING POINT INSTRUCTION SET

4.1. FUNCTIONAL CLASSIFICATION OF FLOATING POINT INSTRUCTIONS

4.1.1. Data operation iNSIUCHON.c.ccceeviieeeiierieit et
4.1.2. Vector operation iNSIFUCHIONccccccueeeereeneeniaeesiesieeeeee e
4.1.3. Transfer inSIIUCHION.cccccoeriecineeiiine et
4.1.4. Memory access iNSITUCHIONcc.ccevuirininiiieiaieieeenencee s
4.2. CODING MODE OF FLOATING POINT INSTRUCTIONS........ccccouruirmiirrieeeenenene
4.2.1. REGISIEE LYPC ...

4.3. OPERAND ADDRESSING MODE OF FLOATING POINT INSTRUCTIONS

4.3.1. Addressing mode of register-type inStruCtions.................ccoceceeeeceannn..

TERM LIST OF BASIC INSTRUCTIONS

TERM LIST OF FLOATING POINT INSTRUCTIONS

433

List of charts:

CHART 1-1 MIXING PRINCIPLE OF 32-BIT/16-BIT INSTRUCTIONSceoviereeeriieresreeveeseessesseesseeseennas 12
CHART 1-2 PROGRAMMING MODEL......ccuutruttitientieieeitenitenieeseesesstesseenseensesnsesstesseensesnsesssesseensessesnnes 12
CHART 1-3 DEFINITION OF GENERAL-PURPOSE REGISTER PROGRAMMINGccccvvererreireanreenneenenens 14
CHART 2-1 LIST OF 32-BIT ADD-SUBTRACT INSTRUCTIONS......cccvieireerieereenereenreessreeseesseesseessnes 17
CHART 2-2 LIST OF 32-BIT LOGICAL OPERATION INSTRUCTIONS.ceeevieerierereenereenereesreeseesseensnens 18
CHART 2-3 LIST OF 32-BIT SHIFT INSTRUCTIONSesuterttetieteriienttenteetesieesetenseesesnsesseesseensessesanes 18
CHART 2-4 LIST OF 32-BIT COMPARE INSTRUCTIONSccccvtertrierireetreeniesreensseesseessseessesassesssseessses 18
CHART 2-5 LIST OF 32-BIT DATA TRANSFER INSTRUCTIONScccuvtertieerieereerereesereesseeeseesseesseensnes 19
CHART 2-6 LIST OF 32-BIT BIT OPERATION INSTRUCTIONS0eertvieiieeriesreenereesereessneasseesssesssseensnes 19
CHART 2-7 LIST OF 32-BIT EXTRACT AND INSERT INSTRUCTIONScccvirrrierereerereenereeseenseesneenenens 19
CHART 2-8 LIST OF 32-BIT MULTIPLY-DIVIDE INSTRUCTIONS0eestieerieereenereesereesseeeseeesseesseessnens 20
CHART 2-9 LIST OF 32-BIT MISCELLANEOUS OPERATION INSTRUCTIONScc0eerreererreereaneeenreesenens 20
CHART 2-10 LIST OF 32-BIT BRANCH INSTRUCTIONScccttertrierireetreeseesreessseessseessseessesessesssseessses 21
CHART 2-11 LIST OF 32-BIT JUMP INSTRUCTIONS.......esuterttetirteriientienseetesieesetenseesessesseesseensessesnees 21
CHART 2-12 LIST OF 32-BIT IMMEDIATE OPERAND OFFSET ACCESS INSTRUCTIONSccovveeevienenen. 21
CHART 2-13 LIST OF 32-BIT VECTOR REGISTER OFFSET ACCESS INSTRUCTIONScceevvveereeaereenenenn 22
CHART 2-14 LIST OF 32-BIT MULTI-REGISTER ACCESS INSTRUCTIONS0cevcvierieenireeereeeeenneenenens 22
CHART 2-15 LIST OF 32-BIT EXCLUSIVE ACCESS INSTRUCTIONScecouieerienereenreenseeenseenseesseensnens 22
CHART 2-16 LIST OF 32-BIT SIGN ACCESS INSTRUCTIONSc.uvterireerreeeriesreessreesreessneesseesssesssseensnes 23
CHART 2-17 LIST OF 32-BIT CO-PROCESSOR DATA TRANSFER INSTRUCTIONSccccvvervreereenreenenns 23
CHART 2-18 LIST OF 32-BIT CO-PROCESSOR MEMORY ACCESS INSTRUCTIONSccc0vervreereenereeenenn 23
CHART 2-19 LIST OF 32-BIT CO-PROCESSOR OPERATION INSTRUCTIONScc0eervierereeereanreenneeneneas 23
CHART 2-20 LIST OF 32-BIT CONTROL REGISTER OPERATION INSTRUCTIONSoeevevreereenreenreenenns 23
CHART 2-21 LIST OF 32-BIT LOW POWER CONSUMPTION INSTRUCTIONSc0eerrrererreereareenneenenens 24
CHART 2-22 LIST OF 32-BIT ABNORMAL RETURN INSTRUCTIONS......ccccuireriererrerereenereeseeeseesneensnens 24
CHART 2-23 LIST OF 32-BIT SAFE STATE INSTRUCTIONSccccvteriiieriieeriesreensreessreesseeesseesssesssseessnes 24
CHART 2-24 LIST OF 32-BIT SPECIAL FUNCTION INSTRUCTIONSceeeeuieerienereenereesereeseeeseesseensnens 24
CHART 3-1 MAPPING TABLE OF 32-BIT/16-BIT INSTRUCTIONScceertiereeereierenreereeseesresseenseeseennas 32
CHART 3-2 LIST OF 16-BIT ADD-SUBTRACT INSTRUCTIONS......cccvierireerieereerereesereessreeseesseessseensses 37
CHART 3-3 LIST OF 16-BIT LOGICAL OPERATION INSTRUCTIONS.ceeetieerierereenereenereeseenseesseensnens 37
CHART 3-4 LIST OF 16-BIT SHIFT INSTRUCTIONScerttirtteiieteriienttenteeteeieesstenseesesnsesssesseensessesnnes 38
CHART 3-5 LIST OF 16-BIT COMPARE INSTRUCTIONSccutiitirtiriienitenteetenirenitenseesessesssesseensessesnees 38
CHART 3-6 LIST OF 16-BIT DATA TRANSFER INSTRUCTIONSccccvtiriiieeieeeeeenreenseeseneessneeseesseensnens 38
CHART 3-7 LIST OF 16-BIT BIT OPERATION INSTRUCTIONS0eeeitierireerereeeeeanreenseessreessneesessseessnes 38
CHART 3-8 LIST OF 16-BIT EXTRACT AND INSERT INSTRUCTIONScccvierrierereerereenereeseenseesneenenens 39

CHART 3-9 LIST OF 16-BIT MULTIPLY-DIVIDE INSTRUCTIONSuvtieeiuiieeereeeeereeeeetreeeeetreeeenreeeennnes 39
CHART 3-10 LIST OF 16-BIT BRANCH INSTRUCTIONSccctterurierireetreeneesreessseessseessseessesassessseensses 39
CHART 3-11 LIST OF 16-BIT JUMP INSTRUCTIONS.......ccectteirierereerereerseeaseesseessseessseessseessasassesssseesssees 39
CHART 3-12 LIST OF 16-BIT IMMEDIATE OPERAND OFFSET ACCESS INSTRUCTIONSccvveeevveennnee. 40
CHART 3-13 LIST OF 16-BIT MULTI-REGISTER ACCESS INSTRUCTIONScuvviieirieeeetreeeeenreeeerreeeennnes 40
CHART 3-14 LIST OF 16-BIT BINARY TRANSLATED STACK INSTRUCTIONSccovvreeitreeeeerreeeerreeeenne 40
CHART 3-15 LIST OF 16-BIT INTERRUPT NESTING ACCELERATION INSTRUCTIONccovuveeeenrreeennnee. 40
CHART 4-1 LIST OF SINGLE-PRECISION DATA OPERATION INSTRUCTIONS.......cccvvrieerrreeeerreeeenreeeenne 48
CHART 4-2 LIST OF DOUBLE-PRECISION DATA OPERATION INSTRUCTIONScccvviierirreeeirreeeerreeeenne 49
CHART 4-3 LIST OF VECTOR OPERATION INSTRUCTIONSccuuvtieiitrieeerreeeereeeeereeeeetneeeeesveeeenneeesnnnns 50
CHART 4-4 LIST OF DATA TRANSFER INSTRUCTIONSuvviieiureeeeitreeeeireeeeeteeeeeneeeeenneeeeesneeeeenseeeennnns 51
CHART 4-5 LIST OF DATA TRANSFER INSTRUCTIONSuvviieiureeeeitieeeeinreeeeteeeeereeeeetreeeeesneeeeenseeeennns 51

10

1. Introduction

1.1. Introduction

CSKY instruction set architecture(ISA) refers to the second-generation independent
intellectual property instruction set architecture of CK-Core family. CSKY ISA has
characteristics like high performance, high code density, low power consumption and
extensibility. CSKY ISA is designed by directing at different demands for embedded applications
of high performance and low power consumption in the future. 32-bit/16-bit mixed length
encoding is adopted. Among them, with perfect functions, 32-bit instruction is used to improve
the comprehensive performance of instruction set; as the subset of 32-bit instruction, 16-bit
instruction possesses relatively simple functions, and it is applied to improve instruction code
density and to reduce power consumption.

Main characteristics of CSKY instruction set architecture are as follows:

® 32/16-bit instructions are realized by way of hybrid coding, and no performance loss will be
caused in the process of instruction switch;

® As a complete set of instruction set architecture, 32-bit instructions have perfect functions
and excellent performance;

® Most 16-bit instructions are subsets of 32-bit instructions and they can realize instructions
with the highest frequency in 32-bit instructions;

® 32-bit instructions adopt 32 general-purpose registers and 3-operand addressing mode;

® 16-bit instructions adopt 16 general-purpose registers and 2-operand addressing mode.

1.2. Instruction mixing mode

CSKY distinguishes 32-bit instructions from 16-bit instructions through two highest bits in
instruction codes. As for the two highest bits, 11 represents 32-bit instruction and the other one

means 16-bit instruction. The specific instruction mixing mode is presented in Chart 1.1.

31 30 19 0
32-bit 1 1

instruction

11

16-bit

instruction

15 14 13 0
0 0

0 1

1 0

Chart 1-1 Mixing principle of 32-bit/16-bit instructions

1.3. Programming model
: AGPR
GPR : GPR T Rl |
R31 : R3T | R4
RIS R30 ; RIS R30 | R3O
R14(user) R29 : R14(spv) R29 | RIZ
R13 R28 : R13 R28 | R
RI2 R27 RI2 R27 | R
RI11 R26 : RI11 R26 | R
R10 R25 R10 R25 | RS
RO R24 § RO R4 | RT
RS R23 § RS R23 | RO
R7 R22 i R7 R22 RS' §
R6 R21 R6 R21 |
R5 R20 : RS R20 R
R4 R19 : R4 RO | RZ
R3 RIS : R3 Rig | R i
R2 R17 : R2 RI7Z | RO
RI . : Rl R16
RO : RO
e N O e M
. m | o | i . m | o0 |
gLl titl : (Gl ay: titl
User model Supervisor model

Chart 1-2 Programming model

CR
PSR | CRO |
VBR CR1 !
EPSR CR2 :
FPSR CR3 :
EPC Cr4 |
FPC CRS5 :

|
GCR CRI1 :
GSR CRI2 |
CPID CR13 :

|
CCR CRIS :
CAPR CR19 |
PACR CR20 :
RID CR21 :
Group 0 :

CSKY defines two operation modes: user mode and supervisor mode. The above two

operation modes are corresponding to different operation rights, and their differences are mainly

reflected in two aspects: 1) access to the register; 2) use of privileged instructions.

Register accessing of user mode:

32 32-bit general-purpose registers (GPR)

32-bit program counter (PC)

12

® Condition/carry bit (C)
Accumulator register (HI and LO)

Register access rights of supervisor mode cover:
32 32-bit general-purpose registers (GPR)

16 32-bit alternative registers (AGPR)

32-bit program counter (PC)

Condition/carry bit (C)

Accumulator register (HI and LO)

Control register (CR)

The stack pointer (R14) of user mode and supervisor mode is independent, and only R14
(user) can be accessed under user mode. Under supervisor mode, R14 (spv) can be accessed;
besides, R14 (user) of user can be indirectly visited by accessing CR14 in control register
Groupl.

In CK801, 16 alternative registers (AGPR) (R0’~R15”) can be realized through hardware
allocation. We can choose to access GPR or AGPR via AF bit in PSR. Meanwhile, AF bit can be
set via mfcr and mter instructions. When AF bit in PSR is set, alternative general-purpose
register block will be selected, and the processor can choose figures from alternative
general-purpose register block for operation. When AF bit is cleared to zero, operation data will
be extracted from general-purpose register block. Alternative general-purpose register block is
used to reduce the time spent in context switch during real-time event processing.

Most instructions can be executed under two modes. However, a few instructions can be
executed only under supervisor mode; otherwise, privilege exception will be triggered. These
instructions include mfcr, mtcr, psrset, psricr, rte, rfi, wait, doze, stop, etc.

The operation right is decided by S bit of control register: 0 represents user mode and 1
means privileged user mode. The program will access register according to the rights. Common
user program is only allowed to visit register under user mode, so as to prevent it from contacting
privileged information of the system. System program under supervisor mode can access all
registers and supervisor operation can be conducted with control register.

Under user mode, condition/carry bit (C) is located in the lowest bit of PSR, and it can be
accessed and changed by common user instructions. It is the only data bit that can be visited
under user mode in PSR. High accumulator register HI and low accumulator register LO are used
to store multiplication and multiplication-accumulation results. Besides, they can be visited or
altered through mthi, mflo, mfhis, mflos, mthi and mtlo.

Besides registers that can be visited by user mode, supervisor mode also includes PSR
register containing operation control and state information, a set of abnormal shadow registers
(EPSR and EPC) used to save PSR and PC when exceptions take place, and a set of fast interrupt
shadow registers (FPSR and FPC) used to save context switch time during fast interrupt. Besides,

supervisor program can save the base address of interrupt vector table by utilizing VBR of a

13

O SKY

register, covering a global status register (GSR), a global control register (GCR), and other

relevant control registers.

1.3.1. General-purpose register

CSKY has realized 33 32-bit general-purpose registers which can be used to store

instruction operands and instruction operation results. The stack pointer (R14) of user mode and

supervisor mode is independent. Under user mode, the general-purpose register visits R14 (user);

under supervisor mode, the general-purpose register visits R14 (spv). The specific rules of

applying general-purpose register are as follows:

Chart 1-3 Definition of general-purpose register programming

Name

Function

RO

R1

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14(user), SP(user)

Stack pointer

R14(spv), SP(user)

Stack pointer

R15

Link register

R16

R17

R18

R19

R20

R21

R22

R23

14

R24
R25
R26
R27

Base address register
R28

of data segment
R29

Base address register
R30

of software vector
R31

1.3.2. Alternative register

When switching to time-critical tasks, alternative register can be used to reduce response
delay time caused by content conversion and site protection. When PSR (AF) is 1, alternative
register will be selected and all instructions that use general-purpose register in the past will
apply alternative register. On the contrary, if PSR (AF) is 0, alternative register will not be
selected. Some important parameters and pointer values will be stored in these alternative
registers. As long as alternative register is selected when task of high priority is executed, these
important data can be used.

In addition, R14 serves the task as stack pointer in alternative register, thus the independent
stack becomes more effective during realization.

In actual use, alternative register can also be accessed when AF is 1 under user mode.

When exceptions appear and abnormal service program is executed, the low bit of entry value of

abnormal service program vector will be copied to AF bit, so as to select the register block.

1.3.3. Accumulator register

Accumulator register includes two 32-bit registers (HI and LO). HI and LO can either be
used separately to store 32-bit operation results or be combined into a 64-bit register [HI,LO]
which can store multiplication and multiplication-accumulation results. Instructions of using and
altering HI/LO include mulu, mulua, mulus, muls, mulsa and mulss; in addition, CSKY provides
mthi, mflo, mfhis, mflos, mthi and mtlo which can realize the communication function between

common register and HI & LO registers.

1.3.4. Program counter

Program counter contains the current address of executing instructions. During normal
operation or exception handling of program, the processor will automatically accumulate

program counters or place a new value into the program counter according to the program

15

o SKY

operation situations. For some special instructions, program counter can also participate in
calculation as relative address. In addition, the low bit in program counter is 0 all the time unless

unaligned access exception happens.

1.3.5. Condition/carry bit

Condition or carry bit represents the result after one operation. Condition/carry bit can be
clearly set according to the results of compare instructions or unclearly set as some
high-precision arithmetic or logical instructions. In addition, special instructions such as

DEC[GT,LT,NE] and XTRB[0-3] will influence the value of condition/carry bit.

16

2. 32-bit instruction set

In this chapter, 32-bit instruction set of CSKY is introduced, covering functions, encoding

and addressing mode, etc. of the 32-bit instruction set.

2.1. Functional classification of 32-bit instructions

According to functions of instruction realization, 32-bit instruction set of CSKY can be
divided into:
® Data operation instruction
Branch jump instruction
Memory access instruction
Co-processor instruction
Privileged instruction

Special function instruction
2.1.1. Data operation instruction

Data operation instruction can be further divided into:

Add-subtract instruction:

Chart 2-1 List of 32-bit add-subtract instructions

ADDU32 Add unsigned

ADDC32 Add with carry unsigned

ADDI32 Add immediate unsigned

SUBU32 Subtract unsigned

SUBC32 Subtract with borrow unsigned

SUBI32 Subtract immediate unsigned

RSUB32 Reverse subtract

IXH32 Index half-word

IXW32 Index word

IXD32 Index double word

INCF32 C=0 add immediate

INCT32 C=1 add immediate

DECF32 C=0 subtract immediate

DECT32 C=1 subtract immediate

DECGT32 Set C bit when greater than zero in subtraction
Set C bit when smaller than zero in

DECLT32 subtraction

DECNE32 Set C bit when not equal to zero in subtraction

Logical operation instruction:

17

Chart 2-2 List of 32-bit logical operation instructions

AND32 Bitwise AND

ANDI32 Bitwise AND immediate
ANDN32 Bitwise AND-NOT
ANDNI32 Bitwise AND-NOT immediate
OR32 Bitwise OR

ORI32 Bitwise OR immediate
XOR32 Bitwise XOR

XORI32 Bitwise XOR immediate
NOR32 Bitwise NOT-OR

NOT32 Bitwise NOT

Shift instruction:

Chart 2-3 List of 32-bit shift instructions

LSL32 Logical shift left

LSLI32 Logical shift left immediate
LSLC32 Logical shift left immediate to C
LSR32 Logical shift right

LSRI32 Logical shift right immediate
LSRC32 Logical shift right immediate to C
ASR32 Arithmetic shift right

ASRI32 Arithmetic shift right immediate
ASRC32 Arithmetic shift right immediate to C
ROTL32 Rotate left

ROTLI32 Rotate left immediate

XSR32 Extended shift right

Compare instruction:

Chart 2-4 List of 32-bit compare instructions

CMPNE32 Compare unequal

CMPNEI32 Compare unequal immediate

CMPHS32 Compare unsigned when greater or equal
Compare immediate unsigned when greater or

CMPHSI32 equal

CMPLT32 Compare signed when smaller

CMPLTI32 Compare immediate signed when smaller

TST32 Null-test

TSTNBZ32 Register test without byte equal to zero

Data transfer instruction:

SKY

18

Chart 2-5 List of 32-bit data transfer instructions

MOV32 Move
MOVEF32 C=0 Move
MOVT32 C=1 Move
MOVI32 Move immediate
MOVIH32 Move immediate high
MTHI32 Write transfer to high bit of accumulator
MTLO32 Write transfer to low bit of accumulator
MFHI32 Read transfer from high bit of accumulator
MFLO32 Read transfer from low bit of accumulator
Read transfer saturate from high bit of
MFHIS32 accumulator
Read transfer saturate from low bit of
MFLOS32 accumulator
MVCV32 C bit reverse move
MVC32 C bit move
MVTC32 Copy overflow bit to C bit
CLRF32 C=0 clear
CLRT32 C=1 clear
LRW32 Memory read-in
GRS32 Sign generation

Bit operation instruction:

Chart 2-6 List of 32-bit bit operation instructions

BCLRI32 Bit clear immediate
BSETI32 Bit set immediate
BTSTI32 Bit test immediate

Extract and insert instruction:

Chart 2-7 List of 32-bit extract and insert instructions

ZEXT32 Extract bit and extend unsigned
SEXT32 Extract bit and extend signed

INS32 Bit insert

ZEXTB32 Extract byte and extend unsigned
ZEXTH32 Extract half-word and extend unsigned
SEXTB32 Extract byte and extend signed
SEXTH32 Extract half-word and extend signed
XTRB0.32 Extract byte 0 and extend unsigned
XTRB1.32 Extract byte 1 and extend unsigned
XTRB2.32 Extract byte 2 and extend unsigned

SKY

19

XTRB3.32 Extract byte 3 and extend unsigned
BREV32 Bit-reverse

REVB32 Byte-reverse

REVH32 Half-word byte-reverse

Multiply-divide instruction:

Chart 2-8 List of 32-bit multiply-divide instructions

MULU32 Multiply unsigned
MULUA32 Multiply-accumulate unsigned
MULUS32 Multiply-subtract unsigned
MULS32 Multiply signed
MULSA32 Multiply-accumulate signed
MULSS32 Multiply-subtract signed
MULSH32 16-bit multiply signed
MULSHA32 16-bit multiply-accumulate signed
MULSHS32 16-bit multiply-subtract signed
MULSW32 16x32 multiply signed
MULSWA32 16x32 multiply-accumulate signed
MULSWS32 16x32 multiply-subtract signed
VMULSH32 16-bit multiply signed in two branches
16-bit multiply-accumulate signed in two
VMULSHA32 branches
16-bit multiply-subtract signed in two
VMULSHS32 branches
VMULSW32 16x32 multiply signed in two branches
16x32 multiply-accumulate signed in two
VMULSWA32 branches
16x32 multiply-subtract signed in two
VMULSWS32 branches
MULT32 Multiply
DIVU32 Divide unsigned
DIVS3?2 Divide signed

Miscellaneous operation instruction:

Chart 2-9 List of 32-bit miscellaneous operation instructions

ABS32 Absolute value

FFO0. 32 Fast find 0

FF1. 32 Fast find 1

BMASKI32 Bit mask generation immediate
BGENR32 Register bit generation

‘ BGENI32 ‘ Bit generation immediate ‘

2.1.2. Branch jump instruction

Branch jump instruction can be further divided into:

Branch instruction:

Chart 2-10 List of 32-bit branch instructions

BT32 C=1 branch instruction
BF32 C=0 branch instruction

Branch instruction when register is equal to
BEZ32 Zero

Branch instruction when register is not equal
BNEZ32 to zero

Branch instruction when register is greater
BHZ32 than zero

Branch instruction when register is smaller
BLSZ32 than or equal to zero

Branch instruction when register is smaller
BLZ32 than zero

Branch instruction when register is greater
BHSZ32 than or equal to zero

Jump instruction:

Chart 2-11 List of 32-bit jump instructions

BR32 Unconditional jump

BSR32 Jump to subprogram

JMPI32 Jump indirect

JSRI32 Jump to subprogram indirect
JMP32 Register jump

JSR32 Register jump to subprogram
RTS32 Link register jump

JMPIX32 Register index jump

2.1.3. Memory access instruction

Memory access instruction can be further divided into:

Immediate operand offset access instruction:

Chart 2-12 List of 32-bit immediate operand offset access instructions

LD32.B Load unsigned and extended byte
LD32.BS Load signed and extended byte
LD32.H Load unsigned and extended half-word
LD32.HS Load signed and extended half-word

LD32.W Load word
LD32.D Load double word
ST32.B Store byte
ST32.H Store half-word
ST32.W Store word
ST32.D Store double word

Vector register offset access instruction:

Chart 2-13 List of 32-bit vector register offset access instructions

Load unsigned and extended byte in register
LDR32.B offset addressing

Load signed and extended byte in register
LDR32.BS offset addressing

Load unsigned and extended half-word in
LDR32.H register offset addressing

Load signed and extended half-word in
LDR32.HS register offset addressing
LDR32.W Load word in register offset addressing
STR32.B Store byte in register offset addressing
STR32.H Store half-word in register offset addressing
STR32.W Store word in register offset addressing

Multi-register access instruction:

Chart 2-14 List of 32-bit multi-register access instructions

LDQ32 Load consecutive quad word
LDM32 Load consecutive multiword
STQ32 Store consecutive quad word
STM32 Store consecutive multiword
PUSH32 Push

POP32 Pop

Exclusive access instruction:

Chart 2-15 List of 32-bit exclusive access instructions

LDEX32.W

Load word exclusive

STEX32.W

Store word exclusive

Sign access instruction:

22

Chart 2-16 List of 32-bit sign access instructions

LRS32.B Load byte sign
LRS32.H Load half-word sign
LRS32.W Load word sign
SRS32.B Store byte sign
SRS32.H Store half-word sign
SRS32.W Store word sign

2.1.4. Co-processor instruction

Co-processor instruction can be further divided into:

Co-processor data transfer instruction:

Chart 2-17 List of 32-bit co-processor data transfer instructions

Read transfer from general-purpose register of
CPRGR32 CO-processor

Write transfer to general-purpose register of
CPWGR32 CO-processor

Read transfer from control register of
CPRCR32 CO-processor

Write transfer to control register of
CPWCR32 CO-processor

Read transfer from condition bit of
CPRC32 CO-processor

Co-processor memory access instruction:

Chart 2-18 List of 32-bit co-processor memory access instructions

LDCPR32 Load word to co-processor
STCPR32 Store word in co-processor

Co-processor operation instruction:

Chart 2-19 List of 32-bit co-processor operation instructions

‘ CPOP32 Co-processor operation instruction

2.1.5. Privileged instruction

Privileged instruction can be further divided into:

Control register operation instruction:

Chart 2-20 List of 32-bit control register operation instructions

MFCR32 Read from control register
MTCR32 Write to control register

23

PSRSET32

Set PSR bit

PSRCLR32

Clear PSR bit

Low power consumption instruction:

Chart 2-21 List of 32-bit low power consumption instructions

WAIT32 Enter low power consumption wait mode
DOZE32 Enter low power consumption doze mode
STOP32 Enter low power consumption stop mode

Abnormal return instruction:

Chart 2-22 List of 32-bit abnormal return instructions

RTE32

Return from abnormal and normal interrupt

RFI32

Return from fast interrupt

Safe state instruction:

Chart 2-23 List of 32-bit safe state instructions

STRAP32

Enter safe state

SRTE32

Return from safe state

2.1.6. Special function instruction

Specifically speaking, special function instruction includes:

Chart 2-24 List of 32-bit special function instructions

SYNC32 Synchronize CPU
BKPT32 Breakpoint instruction
SCE32 Set conditional execution
IDLY32 Ban interrupt identification
TRAP32 Unconditional operating system trap
PLDR32 Prefetch read data
PLDW32 Prefetch write data

WE32 Wait event

SE32 Send event

BMSET32 Set BCTM bit

BMCLR32 Clear BCTM bit

2.2. Encoding of 32-bit instructions

The 32-bit instruction set of CSKY can be divided into 3 categories in coding style:
® Jump type (J type)

24

® [mmediate operand type (I type)
® Register type (R type)

2.2.1. Jump type

The coding mode of jump type (J type) of 32-bit instructions is shown in the following

chart:
313029 26 25 0
1 1 opP Offset/User Define
2 4 26

OP field is the main operation code and instructions of this coding type can be identified
through 4-bit operation code; Offset/User Define field is the offset of jump instruction or user

defined reserved domain.

2.2.2. Immediate operand type

Immediate operand type (I type) of 32-bit instructions covers three coding modes including
18-bit immediate operand, 16-bit immediate operand and 12-bit immediate operand.

The coding mode of 18-bit immediate operand is shown in the following chart:

31 3029 2625 21 20 18 17 0

1 1 opP RZ SOP IMM18

2 4 5 3 18

OP field is the main operation code and the instruction or instruction type can be identified
through 4-bit main operation code; RZ field is the destination register field; SOP field is the
sub-operation code field; IMM18 field is the 18-bit immediate operand. The instruction type can
be gained after decoding the main operation code OP, and the specific instruction can be obtained
only after further decoding the sub-operation code SOP.

The coding mode of 16-bit immediate operand is shown in the following chart:

31 3029 26 25 2120 1615 0

1 1 opP RZ/SOP RX IMM16

2 4 5 5 16
OP field is the main operation code and the instruction or instruction type can be identified
through 4-bit main operation code; RZ/SOP field is the destination register field or sub-operation
code field; RX field is the first source register; IMMI16 field is the 16-bit immediate operand.

The coding mode of 12-bit immediate operand is shown in the following chart:

31 3029 26 25 2120 16 15 12 11 0

25

1 1 op RZ/RY RX SOP IMM12

2 4 5 5 4 12

OP field is the main operation code and the instruction or instruction type can be identified
through 4-bit main operation code; RZ/RY field is the destination register field or second source
register field; RX field is the first source register; SOP field is the sub-operation code field;
IMM12 field is the 12-bit immediate operand. The instruction type can be gained after decoding
the main operation code OP, and the specific instruction can be obtained only after further

decoding the sub-operation code SOP.

2.2.3. Register type

The coding mode of register type (R type) of 32-bit instructions is shown in the following

chart:
31 3029 26 25 2120 1615 10 9 54 0
1 1 OP RY/IMMS5 RX SOP Pcode RZ
2 4 5 5 6 5 5

OP field is the main operation code and the instruction type can be identified through 4-bit
main operation code; RY/IMMS field is the second source register field or 5-bit immediate
operand; RX is the first source register; SOP field is the sub-operation code field; Pcode is the
parallel operation code field; RZ field is the destination register field. As for some instructions,
the instruction type is gained after decoding the main operation code OP, the subclass of
instruction is obtained by decoding the sub-operation code SOP, and then the specific instruction

is identified by decoding the parallel operation code Pcode. Pcode adopts one-hot coding mode.

2.3. Operand addressing mode of 32-bit instructions

The 32-bit instruction set of CSKY follows three instruction coding modes and each coding
mode has its own operand addressing mode. In the following, various operand addressing modes
will be introduced.
2.3.1. Addressing mode of jump-type instructions

The 32-bit instructions of jump type in CSKY only have one addressing mode.

2.3.1.1. Addressing mode of 26-bit immediate operand

In the instructions that adopt the addressing mode of 26-bit immediate operand, there is an
immediate operand field with the length of 26 bits. This field is considered as offset which can

be used to generate destination address. Instruction of this format includes bsr32.

31 3029 2625 0

26

1 1 OoP Offset

2 4 26

2.3.2. Addressing mode of immediate operand-type instructions
The 32-bit instructions of immediate operand type in CSKY have six addressing modes.
2.3.2.1. Addressing mode of single register 18-bit immediate operand

In the instructions that adopt the addressing mode of single register 18-bit immediate
operand, RZ field is the destination register field or second source register field; SOP field is the
sub-operation code field; IMM18 is the 18-bit relative offset used to generate destination address.
Instructions of this format include Irs32.b, lrs32.h, lrs32.w, grs32, srs32.b, srs32.h, srs32.w and
addi32.

31 3029 2625 21 20 18 17 0

1 1 opP RZ SOP IMM18

2 4 5 3 18

2.3.2.2. Addressing mode of two register 16-bit immediate operand

In the instructions that adopt the addressing mode of two register 16-bit immediate operand,
the two register fields RX and RZ are source register field and destination register field; IMM16
field directly participates in data operation as 16-bit immediate operand. Instruction of this

format includes ori32.

31 3029 2625 2120 16 15 0

1 1 opP RZ RX IMM16

2 4 5 5 16

2.3.2.3. Addressing mode of single register 16-bit immediate operand

The instructions that adopt the addressing mode of single register 16-bit immediate operand
have two formats.

In the first format, SOP field is the sub-operation code field; RX field is the source register
field, IMM16 field can generate destination address as 16-bit relative offset; IMMI16 field can
also directly participate in data operation as 16-bit immediate operand. Instructions of this format

include bez32, bnez32, bhz32, blsz32, blz32, bhsz32, cmphsi32, cmplti32 and cmpnei32.
31 3029 2625 2120 16 15 0

1 1 opP SOP RX IMM16

27

o SKY

In the second format, SOP field is the sub-operation code field; RZ field is the destination
register field; IMM16 field can either directly participate in data operation as 16-bit immediate
operand or be left to user for definition. Instructions of this format include movi32, movih32 and

lrw32.

31 3029 2625 2120 16 15 0

1 1 opP SOP RZ IMM16

2.3.2.4. Addressing mode of 16-bit immediate operand

In the instructions that adopt the addressing mode of 16-bit immediate operand, there is an
immediate operand field with the length of 16 bits. This field is considered as offset which can

be used to generate destination address. Instructions of this format include br32, bf32, bt32,

jmpi32 and jsri32.
31 3029 26 25 2120 16 15 0
1 1 opP SOP 00000 IMM16
2 4 5 5 16

2.3.2.5. Addressing mode of two register 12-bit immediate operand

In the instructions that adopt the addressing mode of two register 12-bit immediate operand,
RZ field is the destination register field or second source register field; RX field is the first
source register field; SOP field is the sub-operation code field; IMMI12 field can be used to
generate destination address as 12-bit relative offset. Instructions of this format include 1d32.b,
1d32.h, 1d32.w, 1d32.d, 1d32.bs, 1d32.hs, 1dex32.w, pldr32, st32.b, st32.h, st32.w, st32.d, stex32.w,
pldw, addi32, subi32, andi, andni and xori.

31 3029 2625 2120 16 15 12 11 0

1 1 opP RZ RX SOP IMM12

2 4 5 5 4 12

2.3.2.6. Addressing mode of single register 12-bit immediate operand

In the instructions that adopt the addressing mode of single register 12-bit immediate
operand, RX field is the first source register field; CPRZ is the co-processor operation field; SOP
field is the sub-operation code field; IMM12 field is left to user for definition. Instructions of this

format include cprgr32, cpwgr32, cprer32, cpwer32, cpre32, 1depr32, stepr32 and cpop32.
31 3029 26 25 2120 16 15 1211 0

28

opP CPRZ SOP IMM12

2.3.3. Addressing mode of register-type instructions

The 32-bit instructions of register type in CSKY have five addressing modes.

2.3.3.1. Addressing mode of ternary register

In addressing mode of ternary register, RY is the second source register field; RX field is
the first source register field; SOP field is the sub-operation code field; Pcode is the parallel
operation code field; RZ is the destination register field. Instructions of this format include
addu32, addc32, subu32, subc32, ixh32, ixw32, ixd32, and32, andn32, or32, xor32, nor32, Is132,
Isr32, asr32, rotl32, 1dr32.b, 1dr32.h, 1dr32.w, 1dr32.bs, 1dr32.hs, str32.b, str32.h, str32.w, divu32,
divs32, mult32, mulsh32 and mulsw32.

31 3029 26 25 2120 16 15 10 9 5 4 0

1 1 OoP RY SOP Pcode

2.3.3.2. Addressing mode of two register S-bit immediate operand

Addressing mode of two register 5-bit immediate operand can be further divided into two
formats.

In the first format, IMMS field is the 5-bit immediate operand and treated as source operand;
RX field is the source register field; SOP field is the sub-operation code field; Pcode is the
parallel operation code field; RZ field is the destination register field. Instructions of this format
include decgt32, declt32, decne32, Isli32, Isri32, asri32, rotli32, Islc32, lsrc32, asrc32, xsr32,
belri32 and bseti32.

31 3029

26 25

2120

16 15

10 9

5

1 1

opP

IMMS5

RX

SOP

Pcode

RZ

2

4

5

5

6

5

5

In the second format, IMMS5 field is the 5-bit immediate operand and treated as source

operand; RX field is the source register field; SOP field is the sub-operation code field; Pcode is

the parallel operation code field; RZ field is the destination register field or second source

register field. Instructions of this format include incf32, inct32, decf32 and dect32.

31 3029

2625

2120

16 15

10 9

5

4

1 1

op

SOP

Pcode

IMM5

29

2.3.3.3. Addressing mode of two register

Instructions that adopt the addressing mode of two register can be further divided into two
formats.

In the first format, RZ field is the destination register field; RX field is the source register
field; SOP field is the sub-operation code field; Pcode is the parallel operation code field.
Instructions of this format include bgenr32, xtrb0.32, xtrb1.32, xtrb2.32, xtrb3.32, brev32,
revb32, revh32, abs32, {10.32 and ff1.32.

31 3029

26 25

2120

16 15

10 9

5

1

1

op

0

RX

SOP

Pcode

RZ

4

5

5

6

5

5

In the second format, RY field is the second source register field; SOP field is the
sub-operation code field; Pcode is the parallel operation code field; RX field is the first source
register field. Instructions of this format include cmpne32, cmphs32, cmplt32, tst32, mulu32,
mulua32, mulus32, muls32, mulsa32, mulss32, mulsha32, mulshs32, mulswa32, mulsws32,

vmulsh32, vmulsha32, vmulshs32, vmulsw32, vmulswa32 and vmulsws32.

31 3029 26 25 2120 16 15 10 9 54 0

1 1 OoP RY SOP Pcode 0

2.3.3.4. Addressing mode of single register 5-bit immediate operand

Instructions that adopt the addressing mode of single register 5-bit immediate operand can
be further divided into two formats.

In the first format, IMMS5 field is the 5-bit immediate operand and treated as source operand;
RX field is the source register field; SOP field is the sub-operation code field; Pcode is the

parallel operation code field. Instruction of this format includes btsti32.

31 3029

26 25

2120

16 15

10 9

5

1

1

OoP

IMMS5

RX

SOP

Pcode

0

4

5

5

6

5

5

In the second format, IMMS5 field is the 5-bit immediate operand and treated as source
operand; SOP field is the sub-operation code field; Pcode is the parallel operation code field; RZ

field is the destination register field. Instruction of this format includes bmaski32.

31 3029 26 25 2120 16 15 10 9 5 4 0

30

op

IMMS5

SOP

Pcode

2.3.3.5. Addressing mode of single register

Addressing mode of single register can be further divided into three formats.

In the first format, RZ is the destination register field; SOP field is the sub-operation code

field; Pcode is the parallel operation code field. Instructions of this format include mvc32 and

mvcv32.
31 3029 26 25 2120 16 15 10 9 54 0
11 OP 0 0 SOP Pcode RZ
2 4 5 5 6 5 5

In the second format, RX is the source register field; SOP field is the sub-operation code

field; Pcode is the parallel operation code field. Instruction of this format includes tstnbz32.

31 3029

26 25

2120

16 15

10 9

5 4

1 1

OP

0

RX

SOpP

Pcode

0

2

4

5

5

6

5

S

In the third format, RZ is the destination register field and source register field; SOP field is

the sub-operation code field; Pcode is the parallel operation code field. Instructions of this format

include clrf32 and clrt32.

313029

2625

2120

16 15

10 9

1 1

OP

SOP

Pcode

31

3. 16-bit instruction set

In this chapter, 16-bit instruction set of CSKY is mainly introduced, covering the mapping
mode from 32-bit instruction set to 16-bit instruction set as well as functional classification,

encoding and addressing mode of 16-bit instruction set.

3.1. Mapping mode of 32-bit/16-bit instructions

16-bit instruction set in CSKY is a subset of 32-bit instruction set, and most 16-bit
instructions have corresponding 32-bit instructions. The specific mapping mode between 32-bit

instructions and 16-bit instructions is presented in the following table:

Chart 3-1 Mapping table of 32-bit/16-bit instructions

Assembly 32-bit | 16-bit Instruction description
instruction
ADDU o o Add unsigned
ADDC o o Add with carry unsigned
ADDI o o Add immediate unsigned
SUBU o o Subtract unsigned
SUBC o o Subtract with borrow unsigned
SUBI @ o Subtract immediate unsigned
RSUB o X Reverse subtract
IXH o x Index half-word
IXw o x Index word
IXD o X Index double word
INCF o X C=0 add immediate
INCT o X C=1 add immediate
DECF o X C=0 subtract immediate
DECT o X C=1 subtract immediate
DECGT @ X Set C bit when greater than zero in subtraction
DECLT o X Set C bit when smaller than zero in subtraction
DECNE o X Set C bit when not equal to zero in subtraction
AND @ o Bitwise AND
ANDI o X Bitwise AND immediate
ANDN o o Bitwise AND-NOT
ANDNI @ X Bitwise AND-NOT immediate
OR @ o Bitwise OR
ORI @ X Bitwise OR immediate
XOR @ o Bitwise XOR
XORI @ X Bitwise XOR immediate
NOR @ o Bitwise NOT-OR
NOT o o Bitwise NOT

32

LSL Logical shift left

LSLI Logical shift left immediate

LSLC Logical shift left immediate to C

LSR Logical shift right

LSRI Logical shift right immediate

LSRC Logical shift right immediate to C

ASR Arithmetic shift right

ASRI Arithmetic shift right immediate

ASRC Arithmetic shift right immediate to C

ROTL Rotate left

ROTLI Rotate left immediate

XSR Extended shift right

CMPNE Compare unequal

CMPNEI Compare unequal immediate

CMPHS Compare unsigned when greater or equal
Compare immediate unsigned when greater or

CMPHSI equal

CMPLT Compare signed when smaller

CMPLTI Compare immediate signed when smaller

TST Null-test

TSTNBZ Register test without byte equal to zero

MOV Move

MOVF C=0 move

MOVT C=1 move

MOVI Move immediate

MOVIH Move immediate high

LRW Memory read-in

GRS Sign generation

MTHI Write transfer to high bit of accumulator

MTLO Write transfer to low bit of accumulator

MFHI Read transfer from high bit of accumulator

MFLO Read transfer from low bit of accumulator
Read transfer saturate from high bit of

MFHIS accumulator
Read transfer saturate from low bit of

MFLOS accumulator

MVCV C bit reverse move

MVC C bit move

MVTC Copy overflow bit to C bit

CLRF C=0 clear

CLRT C=1 clear

BCLRI Bit clear immediate

BSETI

Bit set immediate

SKY

33

BTSTI Bit test immediate
ZEXT Extract bit and extend unsigned
SEXT Extract bit and extend signed
INS Bit insert
ZEXTB Extract byte and extend unsigned
ZEXTH Extract half-word and extend unsigned
SEXTB Extract byte and extend signed
SEXTH Extract half-word and extend signed
XTRBO Extract byte 0 and extend unsigned
XTRBI Extract byte 1 and extend unsigned
XTRB2 Extract byte 2 and extend unsigned
XTRB3 Extract byte 3 and extend unsigned
BREV Bit-reverse
REVB Byte-reverse
REVH Half-word byte-reverse
MULU Multiply unsigned
MULUA Multiply-accumulate unsigned
MULUS Multiply-subtract unsigned
MULS Multiply signed
MULSA Multiply-accumulate signed
MULSS Multiply-subtract signed
MULSH 16-bit multiply signed
MULSHA 16-bit multiply-accumulate signed
MULSHS 16-bit multiply-subtract signed
MULSW 16x32 multiply signed
MULSWA 16x32 multiply-accumulate signed
MULSWS 16x32 multiply-subtract signed
VMULSH 16-bit multiply signed in two branches
VMULSH 16-bit multiply-accumulate signed in two
A branches

16-bit multiply-subtract signed in two
VMULSHS branches
VMULSW 16x32 multiply signed in two branches
VMULSW 16x32 multiply-accumulate signed in two
A branches
VMULSW 16x32 multiply-subtract signed in two
S branches
MULT Multiply
DIVU Divide unsigned
DIVS Divide signed
ABS Absolute value

FFO

Fast find 0

SKY

34

FF1 Fast find 1
BMASKI Bit mask generation immediate
BGENR Register bit generation
BGENI Bit generation immediate
BT C=1 branch instruction
BF C=0 branch instruction

Branch instruction when register is equal to
BEZ Zero

Branch instruction when register is not equal
BNEZ to zero

Branch instruction when register is greater
BHZ than zero

Branch instruction when register is smaller
BLSZ than or equal to zero

Branch instruction when register is smaller
BLZ than zero

Branch instruction when register is greater
BHSZ than or equal to zero
BR Unconditional jump
BSR Jump to subprogram
JMPI Jump indirect
JSRI Jump to subprogram indirect
IMP Register jump
JSR Register jump to subprogram
RTS Link register jump
LD.B Load unsigned and extended byte
LD.BS Load signed and extended byte
LD.H Load unsigned and extended half-word
LD.HS Load signed and extended half-word
LD.W Load word
LD.D Load double word
ST.B Store byte
ST.H Store half-word
ST.W Store word
ST.D Store double word

Load unsigned and extended byte in register
LDR.B offset addressing

Load signed and extended byte in register
LDR.BS offset addressing

Load unsigned and extended half-word in
LDR.H register offset addressing

Load signed and extended half-word in register
LDR.HS offset addressing

35

LDR.W Load word in register offset addressing
STR.B Store byte in register offset addressing
STR.H Store half-word in register offset addressing
STR.W Store word in register offset addressing
LDQ Load consecutive quad word
LDM Load consecutive multiword
STQ Store consecutive quad word
STM Store consecutive multiword
PUSH Push
POP Pop
BPUSH.H Binary push of translated half-word
BPUSH.W Binary push of translated word
BPOP.H Binary pop of translated half-word
BPOP.W Binary pop of translated word
NIE Interrupt nesting enable
NIR Interrupt nesting return
IPUSH Interrupt push
IPOP Interrupt pop
LDEX.W Load word exclusive
STEX.W Store word exclusive
LRS.B Load byte sign
LRS.H Load half-word sign
LRS.W Load word sign
SRS.B Store byte sign
SRS.H Store half-word sign
SRS.W Store word sign
Read transfer from general-purpose register of
CPRGR CO-Processor
Write transfer to general-purpose register of
CPWGR CO-processor
Read transfer from control register of
CPRCR CO-processor
Write transfer to control register of
CPWCR CO-processor
Read transfer from condition bit of
CPRC CO-processor
LDCPR Load word to co-processor
STCPR Store word in co-processor
CPOP Co-processor operation instruction
MFCR Read transfer from control register
MTCR Write transfer to control register
PSRSET Set PSR bit
PSRCLR Clear PSR bit

36

WAIT o x Enter low power consumption wait mode
DOZE o x Enter low power consumption doze mode
STOP o x Enter low power consumption stop mode
RTE o X Return from abnormal and normal interrupt
RFI o X Return from fast interrupt

STRAP o X Enter safe state

SRTE o X Return from safe state

SYNC o x Synchronize CPU

BKPT X o Breakpoint instruction

SCE o X Set conditional execution

IDLY o x Ban interrupt identification

TRAP @ X Unconditional operating system trap
PLDR o X Prefetch read data

PLDW o X Prefetch write data

WE @ X Wait event

SE @ x Send event

Note: o means that the instruction exists in the corresponding instruction set and X means

that the instruction does not exist in the corresponding instruction set.

3.2. Functional classification of 16-bit instructions

According to functions of instruction realization, 16-bit instruction set of CSKY can be

divided into:

® Data operation instruction

® Branch jump instruction
® Memory access instruction

3.2.1. Data operation instruction

Data operation instruction can be further divided into:

Add-subtract instruction:

Chart 3-2 List of 16-bit add-subtract instructions

ADDU16 Add unsigned

ADDCI16 Add with carry unsigned
ADDI16 Add immediate unsigned
SUBU16 Subtract unsigned

SUBC16 Subtract with borrow unsigned
SUBI16 Subtract immediate unsigned

Logical operation instruction:

Chart 3-3 List of 16-bit logical operation instructions

AND16

Bitwise AND

37

ANDNI16 Bitwise AND-NOT
ORI16 Bitwise OR
XOR16 Bitwise XOR
NOR16 Bitwise NOT-OR
NOT16 Bitwise NOT

Shift instruction:

Chart 3-4 List of 16-bit shift instructions

LSL16 Logical shift left

LSLI16 Logical shift left immediate
LSR16 Logical shift right

LSRI16 Logical shift right immediate
ASRI16 Arithmetic shift right

ASRI16 Arithmetic shift right immediate
ROTL16 Rotate left

Compare instruction:

Chart 3-5 List of 16-bit compare instructions

CMPNEI16 Compare unequal

CMPNEI16 Compare unequal immediate

CMPHS16 Compare unsigned when greater or equal
Compare immediate unsigned when greater or

CMPHSI16 equal

CMPLTI16 Compare signed when smaller

CMPLTI16 Compare immediate signed when smaller

TST16 Null-test

TSTNBZ16 Register test without byte equal to zero

Data transfer instruction:

Chart 3-6 List of 16-bit data transfer instructions

MOV16 Move

MOVI16 Move immediate
MVCV16 C bit reverse move
LRW16 Memory read-in

Bit operation instruction:

Chart 3-7 List of 16-bit bit operation instructions

BCLRI16

Bit clear immediate

SKY

38

BSETI16

Bit set immediate

BTSTI16

Bit test immediate

Extract and insert instruction:

Chart 3-8 List of 16-bit extract and insert instructions

ZEXTBI16 Extract byte and extend unsigned
ZEXTHI16 Extract half-word and extend unsigned
SEXTB16 Extract byte and extend signed
SEXTHI16 Extract half-word and extend signed
REVBI16 Byte-reverse

REVHI16 Half-word byte-reverse

Multiply-divide instruction:

Chart 3-9 List of 16-bit multiply-divide instructions

MULT16

Multiply

MULSH16

16-bit multiply signed

3.2.2. Branch jump instruction

Branch jump instruction can be further divided into:

Branch instruction:

Chart 3-10 List of 16-bit branch instructions

BT16

C=1 branch instruction

BF16

C=0 branch instruction

Jump instruction:

Chart 3-11 List of 16-bit jump instructions

BR16 Unconditional jump

IMP16 Register jump

JSR16 Register jump to subprogram
RTS16 Link register jump

JMPIX16 Register index jump

3.2.3. Memory access instruction

Memory access instruction can be further divided into:

Immediate operand offset access instruction:

SKY

39

Chart 3-12 List of 16-bit immediate operand offset access instructions

LDI16.B Load unsigned and extended byte
LD16.H Load unsigned and extended half-word
LD16.W Load word

ST16.B Store byte

ST16.H Store half-word

ST16.W Store word

Multi-register access instruction:

Chart 3-13 List of 16-bit multi-register access instructions

POP16 Pop
PUSH16 Push

Binary translated stack instructions:

Chart 3-14 List of 16-bit binary translated stack instructions

BPUSH16.H Binary push of translated half-word
BPUSH16.W Binary push of translated word
BPOP16.H Binary pop of translated half-word
BPOP16.W Binary pop of translated word

Interrupt nesting acceleration instruction:

Chart 3-15 List of 16-bit interrupt nesting acceleration instruction

NIE Interrupt nesting enable
NIR Interrupt nesting return
IPUSH Interrupt push

IPOP Interrupt pop

3.3. Coding mode of 16-bit instructions

The 16-bit instruction set of CSKY is almost consistent with the subset of 32-bit
instructions in coding style and it can be divided into three categories:

® Jump type (J type)
® [mmediate operand type (I type)

® Register type (R type)
3.3.1. Jump type

The coding mode of jump type (J type) is shown in the following chart:
151413 10 9 0

40

0 0 OP Offset

2 4 10
OP field is the main operation code and instructions of this coding type can be identified

through 4-bit main operation code; Offset field is the offset of jump instruction.

3.3.2. Immediate operand type

Immediate operand type (I type) covers four coding modes including 3-bit immediate
operand, 5-bit immediate operand, 7-bit immediate operand, and 8-bit immediate operand.

The coding mode of 3-bit immediate operand is shown in the following chart:

151413 1110 8 7 5 4 210

0 1| OP RX RZ IMM3 | SOP

2 3 3 3 3 2

OP field is the main operation code and the instruction or instruction type can be identified
through 3-bit main operation code; RZ field is the destination register field; IMM3 field is the
3-bit immediate operand; SOP field is the sub-operation code field. The instruction type can be
gained after decoding the main operation code OP, and the specific instruction can be obtained
only after further decoding the sub-operation code SOP.

The coding mode of 5-bit immediate operand has three formats and the first format is

shown in the following chart:

151413 1110 8 7 5 4 0

0 1| OP RX RZ IMMS5

2 3 3 3 5

OP field is the main operation code and the instruction or instruction type can be identified
through 3-bit main operation code; RX field is the source register field; RZ field is the
destination register field; IMMS field is the 5-bit immediate operand.

The second coding mode of 5-bit immediate operand is shown in the following chart:

151413 1110 8 7 5 4 0

1 0] OP RX RZ IMMS5

2 3 3 3 5
OP field is the main operation code and the instruction or instruction type can be identified
through 3-bit main operation code; RX field is the source register field, RZ field is the
destination register field; IMMS field is the 5-bit immediate operand.

The third coding mode of 5-bit immediate operand is shown in the following chart:

41

151413 1r1io 8 7 5 4 0

0 0 OP RX SOP IMM5

2 3 3 3 5

OP field is the main operation code and the instruction or instruction type can be identified
through 3-bit main operation code; RX field is the source register field; SOP field is the
sub-operation code field; IMMS field is the 5-bit immediate operand. The instruction type can be
gained after decoding the main operation code OP, and the specific instruction can be obtained
only after further decoding the sub-operation code SOP.

The coding mode of 7-bit immediate operand is shown in the following chart:

151413 109 8 7 5 4 0

0 0 OP IMM2|SOP/RZ IMMS5

2 4 2 3 5

OP field is the main operation code and the instruction or instruction type can be identified
through 4-bit main operation code; IMM?2 field and IMMS field are two high bits and five low
bits of 7-bit immediate operand; SOP/RZ field is the sub-operation code field or destination
register field. The instruction type can be gained after decoding the main operation code OP, and
the specific instruction can be obtained only after further decoding the sub-operation code SOP.

The coding mode of 8-bit immediate operand has two formats and the first format is shown

in the following chart:

151413 1110 8 7 0

0 0| OP |RX/RZ IMM8

2 3 3 8

OP field is the main operation code and the instruction or instruction type can be identified
through 3-bit main operation code; RZ/RX field is the destination register field or source register
field; IMMS field is the 8-bit immediate operand.

The second coding mode of 8-bit immediate operand is shown in the following chart:

151413 1110 8 7 5 4 0

1 0] OP IMM3 RZ IMMS5

2 3 3 3 5

OP field is the main operation code and the instruction or instruction type can be identified
through 3-bit main operation code; IMM3 field and IMMS field are three high bits and five low

bits of 8-bit immediate operand; RZ field is the destination register field.

42

3.3.3. Register type

Register type (R type) covers two coding modes including 3-bit operand and 2-bit operand.

The coding mode of 3-bit operand is shown in the following chart:

151413 1110 8 7 5 4 210

0 1| OP RX RZ RY |SOP

2 3 3 3 3 2

OP field is the main operation code and the instruction or instruction type can be identified
through 3-bit main operation code; RX field is the first source register field; RZ field is the
destination register field; RY field is the second source register field; SOP field is the
sub-operation code field. The instruction type can be gained after decoding the main operation
code OP, and the specific instruction can be obtained only after further decoding the
sub-operation code SOP.

The coding mode of 2-bit operand is shown in the following chart:

151413 10 9 6 5 210

0 1 OP RZ/RY RX SOP

2 4 4 4 2

OP field is the main operation code and the instruction or instruction type can be identified
through 4-bit main operation code; RZ/RY field is the destination register field and second
source register field; RX field is first source register field; SOP field is the sub-operation code
field. The instruction type can be gained after decoding the main operation code OP, and the

specific instruction can be obtained only after further decoding the sub-operation code SOP.

3.4. Operand addressing mode of 16-bit instructions

The 16-bit instruction set of CSKY follows three instruction coding modes and each coding
mode has its own operand addressing mode. In the following, various operand addressing modes
will be introduced.

3.4.1. Addressing mode of jump-type instructions
The 16-bit instructions of jump type in CSKY only have one addressing mode.

3.4.1.1. Addressing mode of 10-bit immediate operand

In the instructions that adopt the addressing mode of 10-bit immediate operand, there is an
immediate operand field with the length of 10 bits. This field is used to generate destination

address as offset. Instructions of this format include br16, bt16 and bf16.

151413 10 9 0

43

0 0 OP Offset

2 4 10

3.4.2. Addressing mode of immediate operand-type instructions
The 16-bit instructions of immediate operand type in CSKY have six addressing modes.
3.4.2.1. Addressing mode of two register 3-bit immediate operand

In the instructions that adopt the addressing mode of two register 3-bit immediate operand,
RX field is source register field; RZ field is the destination register field; IMM3 field can also
directly participate in data operation as 3-bit immediate operand; SOP field is the sub-operation

code field. Instructions of this format include addil6 and subil6.

151413 1r1io 8 7 5 4 210

0 1| OP RX RZ IMM3 | SOP

2 3 3 3 3 2

3.4.2.2. Addressing mode of two register S-bit immediate operand

The instructions that adopt the addressing mode of two register 5-bit immediate operand can
be further divided into two formats.

In the first format, RX field is source register field; RZ field is the destination register field;
IMMS field can also directly participate in data operation as 5-bit immediate operand; SOP field

is the sub-operation code field. Instructions of this format include 1sli16, Isri16 and asril6.

151413 1110 8 7 5 4 0

0 1| OP RX RZ IMMS5

2 3 3 3 5
In the second format, RX field is source register field; RZ field is the destination register
field; IMMS field can also directly participate in data operation as 5-bit immediate operand; SOP
field is the sub-operation code field. Instructions of this format include st16.b, st16.h, st16.w,

1d16.b, 1d16.h and 1d16.w.
151413 1110 8 7 5 4 0

1 0] OP RX RZ IMMS5

2 3 3 3 5

3.4.2.3. Addressing mode of single register 5-bit immediate operand

In the instructions that adopt the addressing mode of single register 5-bit immediate operand,

RX field is the source register field or destination register; SOP field is the sub-operation code

44

o SKY

field. Instructions of this format include cmphsil6, cmpltil6, cmpneil6, belril6, bsetil6 and
btstil6.

151413 1110 8 7 5 4 0

0 0 OP RX SOP IMM5

2 3 3 3 5

3.4.2.4. Addressing mode of single register 7-bit immediate operand

In the instructions that adopt the addressing mode of single register 7-bit immediate operand,
RZ field is the destination register field; IMM2 field and IMMS field can be combined into 7-bit
immediate operand to directly participate in data operation. Instruction of this format includes

lIrwle.

151413 109 8 7 5 4 0

0 0 OP IMM2 RZ IMMS5

2 4 2 3 5

3.4.2.5. Addressing mode of 7-bit immediate operand

In the instructions that adopt the addressing mode of 7-bit immediate operand, IMM2 field
and IMMS field can be combined into 7-bit immediate operand to directly participate in data
operation; SOP field is the sub-operation code field. Instructions of this format include push16,

pop16, bpush16.h, bpush16.w, bpop16.h, bpop16.w, addi16(SP) and subil 6(SP).
151413 109 8 7 5 4 0

0 0 OP IMM2| SOP IMMS5

2 4 2 3 5

3.4.2.6. Addressing mode of single register 8-bit immediate operand

The instructions that adopt the addressing mode of single register 8-bit immediate operand
can be further divided into three formats.

In the first format, RZ field is the destination register field; IMMS field can also directly
participate in data operation as 8-bit immediate operand; SOP field is the sub-operation code

field. Instructions of this format include addi16(SP), subil6(SP) and movil®6.

151413 1110 8 7 0

0 0 OP RZ IMM8

2 3 3 8

In the second format, RZ field is the source register field or destination register field; IMMS

45

o SKY

field can also directly participate in data operation as 8-bit immediate operand; SOP field is the

sub-operation code field. Instructions of this format include addil6 and subil6.

151413 1110 8 7 0

0 0 OP RZ IMM8

2 3 3 8

In the third format, RZ field is the source register field or destination register field; IMM3
field and IMMS5 field can be combined into 8-bit immediate operand to directly participate in

data operation. Instructions of this format include st16.w(SP) and 1d16.w(SP).

151413 1110 8 7 5 4 0

1 0] OP IMM3 RZ IMMS5

2 3 3 3 5

3.4.3. Addressing mode of register-type instructions
The 16-bit instructions of register type in CSKY have three addressing modes.
3.4.3.1. Addressing mode of ternary register

In the instructions that adopt the addressing mode of ternary register, the two register fields
RX and RY are the first source register field and second source register field respectively; RZ
field is the destination register field; SOP field is the sub-operation code field. Instructions of this

format include addul6 and subulé6.

151413 1110 8 7 5 4 210

0 1| OP RX RZ RY |SOP

2 3 3 3 3 2

3.4.3.2. Addressing mode of two register

The instructions that adopt the addressing mode of two register can be further divided into
three formats.

In the first format, the two register fields RX and RY are the first source register field and
second source register field respectively; SOP field is the sub-operation code field. Instructions

of this format include cmphs16, cmplt16, cmpnel6 and tst16.

151413 10 9 6 5 210

0 1 OP RY RX SOP

2 4 4 4 2

In the second format, RZ field is the destination register field; RX is the source register;

46

o SKY

SOP field is the sub-operation code field. Instructions of this format include mov16, zextb16,

zexth16, sextb16, sexth16, revb16 and revh16.
151413 10 9 6 5 210

0 1 OP RZ RX SOP

2 4 4 4 2

In the third format, RZ field is the destination register field and second source register field;
RX field is the first source register field; SOP field is the sub-operation code field. Instructions of
this format include addul6, addcl6, subul6, subcl6, and16, andnl6, orl6, xorl6, norl6, 1sl16,
Isr16, asrl6, rotl16, mult16 and mulsh16.

151413 10 9 6 5 210

0 1 OP RZ RX SOP

3.4.3.3. Addressing mode of single register

The instructions that adopt the addressing mode of single register can be further divided into
two formats.
In the first format, RX field is the source register field; SOP field is the sub-operation code

field. Instructions of this format include tstnbz16, jmp16 and jsr16.

151413

10 9

6 5

210

0

1

opP

0

RX

SOp

4

4

4

2

In the second format, RZ field is the destination register field; SOP field is the

sub-operation code field. Instruction of this format includes mvev16.

151413 10 9 6 5 210

0 1 OP RZ 0 SOP

2 4 4 4 2

47

4. Floating point instruction set

In this chapter, floating point instruction set of CSKY is introduced, covering functional

classification, encoding and addressing mode of floating point instruction set.

41.

Functional classification of floating point instructions

According to functions of instruction realization, floating point instruction set of CSKY can

be divided into:

4.1.1.

Single-precision data operation instruction
Double-precision data operation instruction
Vector operation instruction

Transfer instruction

Memory access instruction

Data operation instruction

Chart 4-1 List of single-precision data operation instructions

FSTOSI Transform single-precision floating point into
signed integer

FSTOUI Transform single-precision floating point into
unsigned integer

FSITOS Transform signed integer into single-precision
floating point

FUITOS Transform unsigned integer into
single-precision floating point

FCMPZHSS Single-precision floating point compare when
greater than or equal to zero

FCMPZLSS Single-precision floating point compare when
smaller than or equal to zero

FCMPZNES Single-precision floating point compare when
not equal to zero

FCMPZUOS Judge whether the single operand of
single-precision floating point is NaN

FCMPHSS Single-precision floating point compare when
greater than or equal

FCMPLTS Single-precision floating point compare when
smaller

FCMPNES Single-precision floating point compare when
not equal

FCMPUOS Judge whether the double operand of

single-precision floating point is NaN

FMOVS Single-precision floating point move

48

FABSS Single-precision floating point absolute value

FNEGS Single-precision floating point negate

FSQRTS Single-precision floating point square root

FRECIPS Single-precision floating point reciprocal

FADDS Single-precision floating point add

FSUBS Single-precision floating point subtract

FMULS Single-precision floating point multiply

FDIVS Single-precision floating point division

FMACS Single-precision floating point
multiply-accumulate

FMSCS Single-precision floating point
multiply-subtract

FNMACS Single-precision floating point
multiply-negate-accumulate

FNMSCS Single-precision floating point
multiply-negate-subtract

FNMULS Single-precision floating point

multiply-negate

Chart 4-2 List of double-precision data operation instructions

FDTOSI Transform double-precision floating point into
signed integer

FDTOUI Transform double-precision floating point into
unsigned integer

FSITOD Transform signed integer into
double-precision floating point

FUITOD Transform unsigned integer into
double-precision floating point

FDTOS Transform double-precision floating point into
single-precision floating point

FSTOD Transform single-precision floating point into
double-precision floating point

FCMPZHSD Double-precision floating point compare
when greater than or equal to zero

FCMPZLSD Double-precision floating point compare
when smaller than or equal to zero

FCMPZNED Double-precision floating point compare
when not equal to zero

FCMPZUOD Judge whether the single operand of
double-precision floating point is NaN

FCMPHSD Double-precision floating point compare

when greater than or equal

49

FCMPLTD Double-precision floating point compare
when smaller

FCMPNED Double-precision floating point compare
when not equal

FCMPUOD Judge whether the double operand of
double-precision floating point is NaN

FMOVD Double-precision floating point move

FABSD Double-precision floating point absolute value

FNEGD Double-precision floating point negate

FSQRTD Double-precision floating point square root

FRECIPD Double-precision floating point reciprocal

FADDD Double-precision floating point add

FSUBD Double-precision floating point subtract

FMULD Double-precision floating point multiply

FDIVD Double-precision floating point division

FMACD Double-precision floating point
multiply-accumulate

FMSCD Double-precision floating point
multiply-subtract

FNMACD Double-precision floating point
multiply-negate-accumulate

FNMSCD Double-precision floating point
multiply-negate-subtract

FNMULD Double-precision floating point

multiply-negate

4.1.2. Vector operation instruction

Chart 4-3 List of vector operation instructions

FMOVM SIMD single-precision floating point move

FABSM SIMD single-precision floating point absolute
value

FNEGM SIMD single-precision floating point negate

FADDM SIMD single-precision floating point add

FSUBM SIMD single-precision floating point subtract

FMULM SIMD single-precision floating point multiply

FMACM SIMD single-precision floating point
multiply-accumulate

FMSCM SIMD single-precision floating point

SKY

50

multiply-subtract

FNMACM

SIMD single-precision floating point

multiply-negate-accumulate

FNMSCM

SIMD single-precision floating point

multiply-negate-subtract

FNMULM

SIMD single-precision floating point

multiply-negate

4.1.3. Transfer instruction

Chart 4-4 List of data transfer instructions

FMTVRL Write transfer to low word of floating point
register

FMTVRH Write transfer to high word of floating point
register

FMFVRL Read transfer low word from floating point
register

FMFVRH Read transfer high word from floating point
register

FLRWS Single-precision floating point storage read-in

FLRWD Double-precision floating point storage
read-in

4.1.4. Memory access instruction

Chart 4-5 List of data transfer instructions

FLDS Load single-precision floating point

FLDD Load double-precision floating point

FLDM Load vector floating point

FLDRS Load single-precision floating point in register
offset addressing

FLDRD Load double-precision floating point in
register offset addressing

FLDRM Load vector floating point in register offset
addressing

FLDMS Load consecutive single-precision floating
point

FLDMD Load consecutive double-precision floating

51

point
FLDMM Load consecutive vector floating point
FSTS Store single-precision floating point
FSTD Store double-precision floating point
FSTM Store vector floating point
FSTRS Store single-precision floating point in

register offset addressing

FSTRD Store double-precision floating point in

register offset addressing

FSTRM Store vector floating point in register offset
addressing

FSTMS Store consecutive single-precision floating
point

FSTMD Store consecutive double-precision floating
point

FSTMM Store consecutive vector floating point

4.2. Coding mode of floating point instructions

Floating point instruction set of CSKY only has one category in the coding style:

® Register type (R type)

4.2.1. Register type

The coding mode of register type (R type) of 32-bit floating point instructions is shown in
the following chart:

31 26 25 24 21 20 16 15 10 9 5 4
11 Op |0] VRY |0| VRX SOP 0| VRZ
2 4 4 4 1 4

OP field is the main operation code and the instruction type can be identified through 4-bit
main operation code; VRY refers to the code of the second operand register and there are only 16
vector general-purpose registers, so a 4-bit code is required (VRX and VRZ are similar); VRX
refers to the first operand register; VRZ means destination register. SOP signifies the operation

code of the instruction.

4.3. Operand addressing mode of floating point instructions

Generally speaking, floating point instructions of CSKY follow one instruction coding

mode, and such coding mode has its own operand addressing mode. In the following, this

52

operand addressing mode will be introduced.

4.3.1. Addressing mode of register-type instructions
The floating point instructions of register type in CSKY have four addressing modes.
4.3.1.1. Addressing mode of single register

Floating point instruction set of CSKY includes several instructions that adopt the
addressing mode of single register. These instructions are mainly instructions of comparing
floating point data with 0, covering FCMPZHSS, FCMPZLSS, FCMPZNES, FCMPZUOS,
FCMPZHSD, FCMPZLSD, FCMPZNED and FCMPZUOD.

31 26 25 24 21 20 16 15 10 9 5 4 0
11 OP 0/0 0 0 0{0] VRX SOP 0/0 0 00
2 4 4 4 11 4

4.3.1.2. Addressing mode of two register

Floating point instruction set of CSKY includes several instructions that adopt the
addressing mode of two register. The first category is the register addressing mode including 1
source operand and 1 destination operand; the second category is the register addressing mode
including 2 source operands.

Instructions of the first category include FSTOSI, FSTOUI, FSITOS, FUITOS, FDTOSI,
FDTOUIL, FSITOD, FUITOD, FDTOS, FSTOD, FMOVS, FABSS, FNEGS, FSQRTS, FRECIPS,
FMOVD, FABSD, FNEGD, FSQRTD, FRECIPD, FMOVM, FABSM, FNEGM, FMTVRH,
FMTVRH, FMTVRL, FMFVRH and FMFVRL. The specific format is as follows:

31 26 25 24 21 20 19 16 15 5 4 0

11 op 0/0 0 0 0(0 VRX 0000O0OO0O1T1O0T1TQO0|0 VRZ
2 4 4 4 11 4

Instructions of the second category include FCMPHSS, FCMPLTS, FCMPNES,

FCMPUOS, FCMPHSD, FCMPLTD, FCMPNED and FCMPUOD. The specific format is as

follows:

31 26 25 24 21 20 16 15 10 9 5 4 0

11 OP |0] VRY |0|] VRX |[00000100100|/0[00O0O0
2 4 4 4 1 4

53

o SKY

4.3.1.3. Addressing mode of ternary register

Instructions that adopt the addressing mode of ternary register cover 2 source operands and
1 destination operand, and such instructions include FADDS, FSUBS, FMULS, FDIVS, FMACS,
FMSCS, FNMACS, FNMSCS, FNMULS, FADDD, FSUBD, FMULD, FDIVD, FMACD,
FMSCD, FNMACD, FNMSCD, FNMULD, FADDM FSUBM, FMULM, FMACM, FMSCM,
FNMACM, FNMSCM, FNMULM, FLDRS, FLDRD, FLDRM, FSTRS, FSTRD and FSTRM.

31 26 25 24 21 20 19 16 15 5 4

11 Q) 0] VRY |0| VRX 0000T111111°Q0|0 VRZ

2 4 4 4 11 4
4.3.1.4. Addressing mode of two register 8-bit immediate operand

In the instructions that adopt the addressing mode of two register 8-bit immediate operand,
RX field is the first source register field; VRZ field is the vector destination register field; SOP
field or S field is the sub-operation code field; IMMS field is the 8-bit immediate operand.
Instructions of this format include FLDS, FLDD, FLDM, FSTS, FSTD, FSTM, FLRWS and
FLRWD.

3130 2625 2120 16 15 87 4 3 0

1 opP 0| IMM4H RX SOP IMMA4L VRZ

54

5. Term list of basic instructions

Specific descriptions of each CSKY instruction are provided in the following and each
instruction is described in details according to the alphabetical order.

At the end of mnemonic symbol in each CSKY instruction, the figure “32” or “16” is used
to represent bit width of the instruction. For instance, “addc32” means that this instruction is
32-bit instruction of add with carry unsigned, and “addc16” means that this instruction is 16-bit
instruction of add with carry unsigned.

If bit width (such as “addc”) of the instruction in mnemonic symbol is omitted, the system
will automatically compile it into the optimized instruction.

Among them, instructions carrying # in the Chinese name are pseudo instructions.

55

ABS — Absolute value

Unified
instruction
Grammar Operation Compiling result
1Z, 1X RZ « |RX] Only 32-bit instructions exist.
abs32 rz, rx
Description: Take the absolute value of RX value and save the result in RZ.

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

Attention: The result of operand 0x80000000 is 80000000.

No influence

None
abs32 rz, rx

Take the absolute value of RX value and save the result in RZ.

Attention: The result of operand 0x80000000 is 80000000.

No influence

Exception: None
Instruction
format:
3130 2625 2120 1615 109 54 0
10001 (]000O00O0 000000 |100O0O0 RZ

56

ADDC - Add with carry unsigned

SKY

Unified

instruction

Grammar Operation Compiling result

adde rz, rx RZ < RZ+RX +C, Compiled into corresponding 16-bit or
C < carry 32-bit instructions according to the

range of register.

if (x<16) and (z<16), then
addcl6 1z, rx;

else

addc32 rz, 1z, 1X;

adde rz, rx, 1y

RZ < RX +RY +C, Compiled into corresponding 16-bit or

C < carry 32-bit instructions according to the

range of register.

if (y==z) and (x<16) and (z<16), then
addcl6 1z, rx;

else

addc32 1z, rx, ry;

Description:

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:

Instruction

Add the values in RZ/RY, RX and C bits, save the result in RZ, and save
the carry in C bit.
C « carry

None

RZ < RZ+RX + C, C « carry

addcl6 1z, 1x

Add the values in RZ, RX and C bits, save the result in RZ, and save the

carry in C bit.
C « carry

The range of register is r0-r15.

None

57

format:
1514 10 9 6 5 10
011000 RZ RX 01
32-bit
instruction
Operation: RZ <+ RX+RY + C, C « carry
Grammar: addc32 rz, rx, 1y
Description: Add the values in RX, RY and C bits, save the result in RZ, and save the
carry in C bit.
Influence on flag C « carry
bit:
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
1{10001 RY RX 000000 |0O0CO0T1O0

58

ADDI - Add immediate unsigned

SKY

Unified
instruction
Grammar Operation Compiling result
addi rz, RZ < RZ+ Compiled into corresponding 16-bit or
oimm12 zero_extend(OIMM12) 32-bit instructions according to the range
of immediate operand and register.
if (z<8) and (0imm12<257),
addil6 rz, oimmsS;
else
addi32 rz,rz, oimml2;
addi rz, rx, RZ <« RX + Compiled into corresponding 16-bit or
oimm12 zero_extend(OIMM12) 32-bit instructions according to the range

of immediate operand and register.
if (oimm12<9) and (z<8) and (x<8),
addil6 rz, rx, oimm3;
elsif (oimm12<257) and (x==z) and
(z<8),
addil6 rz, oimmsS;
else

addi32 rz, rx, oimml2;

addi rz, 28,

oimml8

RZ <« R28 +
zero_extend(OIMM18)

Only 32-bit instructions exist.

addi32 rz, r28, oimm18;

Description:
Influence on flag

bit:

Restriction:

Exception:

16-bit

Zero-extend the immediate operand with offset 1 to 32 bits, add it to
RX/RZ value, and save the result in RZ.

No influence

If the source register is R28, the range of immediate operand is

0x1-0x40000.

If the source register is not R28, the range of immediate operand is

0x1-0x1000.

None

59

instruction ----1
Operation:
Grammar:

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

1514 1110

RZ <« RZ + zero_extend(OIMMS)

addil6 rz, oimm§

Zero-extend the 8-bit immediate operand with offset 1 (OIMMS) to 32
bits, add it to RZ value, and save the result in RZ.

Attention: The binary operand IMMS is equal to OIMMS8 — 1.

No influence

The range of register is r0-r7; the range of immediate operand is 1-256.

None

0/]0100| RZ

IMM8

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the value OIMMS added into the

register requires offset 1.

00000000 —+1
00000001 —+2

11111111 —+256

16-bit
instruction ----2
Operation:
Grammar:

Description:

Influence on
flag bit:

Restriction:

RZ « RX + zero_extend(OIMM3)

addil6 rz, rx, oimm3

Zero-extend the 3-bit immediate operand with offset 1 (OIMM3) to 32
bits, add it to RX value, and save the result in RZ.

Attention: The binary operand IMM3 is equal to OIMM3 — 1.

No influence

The range of register is r0-r7; the range of immediate operand is 1-8.

60

Exception: None

Instruction

format:

1514 10 8 7 5 4 210

0j1 011 RX RZ IMM3 |10

IMM3 field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM3, the value OIMM3 added into the
register requires offset 1.

000 —+1

001 —+2

32-bit

instruction ----1

Operation: RZ <« RX + zero_extend(OIMM12)

Grammar: addi32 rz, rx, oimm12

Description: Zero-extend the 12-bit immediate operand with offset 1 (OIMM12) to 32
bits, add it to RX value, and save the result in RZ.
Attention: The binary operand IMM12 is equal to OIMM12 — 1.

Influence on flag No influence

bit:

Restriction: The range of immediate operand is 0x1-0x1000.

Exception: None

Instruction

format:

3130 26 25 2120 16 15 1211 0

1111001 RZ RX 0000 IMM12

IMM12 field — Assign the value of immediate operand without offset.
Attention: Compared with the binary operand IMM12, the value OIMM12 added into the

register requires offset 1.

61

000000000000 — +0x1
000000000001 — +0x2

111111111111 —+0x1000

32-bit
instruction ----2
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ < R28 + zero_extend(OIMM18)
addi32 rz, 128, oimm18

Zero-extend the 18-bit immediate operand with offset 1 (OIMM18) to 32

bits, add it to R28 value, and save the result in RZ.

Attention: The binary operand IMM18 is equal to OIMM18 — 1.

No influence

Restriction: The range of immediate operand is 0x1-0x40000.

Exception: None

Instruction

format:

3130 2625 21 20 18 17 0
1110011 RZ 111 IMM18

IMM18 field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM18, the value OIMM18 added into the

register requires offset 1.
00000000000000 — +0x1
00000000000001 — +0x2

I1111111111111 —+0x40000

62

SKY

ADDI(SP) — Add immediate unsigned (stack pointer)

Unified

instruction

Grammar Operation Compiling result

addi rz, sp, RZ « SP + Only 16-bit instructions exist.

imm zero_extend(IMM) addi rz, sp, imm

addi sp, sp, SP « SP+ Only 16-bit instructions exist.

imm zero_extend(IMM) addi sp, sp, imm

Description: Zero-extend the immediate operand (IMM) to 32 bits, add it to stack

Influence on flag

bit:

Restriction:

Exception:

16-bit

instruction ----1

Operation:
Grammar:

Description:

Influence on

pointer (SP) value, and save the result in RZ or SP.

No influence

The range of register is r0-r7; the range of immediate operand is
0x0-0x3fc.

None

RZ « SP + zero_extend(IMM)
addil6
Zero-extend the immediate operand (IMM) to 32 bits, add it to stack

1z, sp, imm8

pointer (SP) value, and save the result in RZ.
Attention: The immediate operand (IMM) is equal to the binary operand
IMMS8 << 2.

No influence

flag bit:
Restriction: The range of register is r0-r7; the range of immediate operand is
(0x0-0xff) << 2.

Exception: None

Instruction

format:
1514 1110 8 7 0

0/00 11 RZ IMMS

63

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the value IMM added into the register
needs to shift left by 2 bits.

00000000 — +0x0

00000001 — +0x4

11111111 —+0x3fc

16-bit

instruction ----2

Operation: SP «<— SP + zero_extend(IMM)

Grammar: addil6 sp, sp, imm

Description: Zero-extend the immediate operand (IMM) to 32 bits, add it to stack

pointer (SP) value, and save the result in SP.
Attention: The immediate operand (IMM) is equal to the binary operand
{IMM2, IMMS5} << 2.

Influence on No influence
flag bit:
Restriction: Both source and destination registers are stack pointer registers (R14); the

range of immediate operand is (0x0-0x7f) << 2.

Exception: None

Instruction

format:

1514 1110 9 8 7 5 4 0

0/0010|1IMM20 0 O IMM5

IMM field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand {IMM?2, IMMS5}, the value IMM added into
the register needs to shift left by 2 bits.

{00, 00000} —+0x0

{00, 00001} — +0x4

(11, 11111} — +0x1fc

64

Unified

instruction

ADDU — Add unsigned

SKY

Grammar

Operation

Compiling result

addu 1z, 1x

RZ <« RZ+RX

Compiled into corresponding 16-bit or
32-bit instructions according to the
range of register.
if (z<16) and (x<16), then

addul6 rz, rx;
else

addu32 rz, rz, rx;

addu rz, rx, ry

RZ <« RX+RY

Compiled into corresponding 16-bit or
32-bit instructions according to the
range of register.
if (z<8) and (x<8) and (y<8), then
addul6 rz, rx, ry;
elsif (y==z) and (x<16) and (z<16),
then
addul6 1z, rx;
else

addu32 rz, rx, ry;

Description:
Influence on flag
bit:

Exception:

16-bit
instruction -—--1
Operation:
Grammar:
Description:
Influence on flag

bit:

Add the values of RZ/RY and RX, and save the result in RZ.

No influence

None

RZ < RZ + RX
addul6 rz, rx

Add the values of RZ and RX, and save the result in RZ.

No influence

65

Restriction: The range of register is r0-r15.
Exception: None
Instruction
format:
1514 10 9 6 5 210
011000 RZ RX 00
16-bit
instruction ----2
Operation: RZ <« RX+RY
Grammar: addul6 rz, rx,ry
Description: Add the values of RX and RY, and save the result in RZ.

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

1514 11 10

No influence

The range of register is r0-r7.

None

8 7 5 4 210

0/1011] RX

32-bit instruction
Operation:
Grammar:
Description:
Influence on flag
bit:

Exception:
Instruction

format:

RZ <« RX +RY
addu32 rz, rx, ry

Add the values of RX and RY, and save the result in RZ.

No influence

None

SKY

66

3130 2625

2120

16 15

109

54

1

10001

RY

000000

00001

67

Unified

instruction

AND - Bitwise AND

SKY

Grammar

Operation Compiling result

and rz, rx

RZ < RZ and RX Compiled into corresponding 16-bit or
32-bit instructions according to the
range of register.
if (x<16) and (z<16), then
andl6 rz, rx;
else
and32

1z, 1Z, IX;

and 1z, rx, ry

RZ < RX and RY Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (y==z) and (x<16) and (z<16), then
andl6 rz, rx;

else

and32

1Z, 1X, 1Y;

Description:

Influence on flag
bit:

Exception:

16-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

Perform a bitwise-AND of the values of RZ/RY and RX, and save the
result in RZ.

No influence

None

RZ <~ RZ and RX
and16
Perform a bitwise-AND of the values of RZ and RX, and save the result
in RZ.

Iz, X

No influence

The range of register is r0-r15.

None

68

Instruction

format:

1514 10 9

10

011010

00

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ <+ RX and RY
and32 1z, rx, 1y

Perform a bitwise-AND of the values of RX and RY, and save the result

in RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 001000 |]00O0O0T1

69

ANDI — Bitwise AND immediate

Unified instruction

Grammar Operation Compiling result

andi 1z, rx, imml6 | RZ < RX and zero_extend(IMM12) Only 32-bit instructions
exist.

andi32 rz, rx, imm1l2

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise-AND with RX value, and save the result in RZ.

Influence on flag No influence

bit:

Restriction: The range of immediate operand is 0x0-0xFFF.
Exception: None

32-bit instruction

Operation: RZ <« RX and zero_extend(IMM12)
Grammar: andi32 rz, rx, imm12
Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise-AND with RX value, and save the result in RZ.

Influence on flag No influence

bit:

Restriction: The range of immediate operand is 0x0-0xFFF.
Exception: None

Instruction format:

3130 2625 2120 16 15 1211 0

1111001 RZ RX 0010 IMM12

70

Unified

instruction

ANDN - Bitwise AND-NOT

Grammar

Operation

Compiling result

andn 1z, 1X

RZ <~ RZ and (IRX)

Compiled into corresponding 16-bit or
32-bit instructions according to the range
of register.
if (x<16) and (z<16), then

andnl6 rz, rx;
else

andn32 rz, rz, rx;

andn rz, rx, ry

RZ <~ RX and (RY)

Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (x==z) and (y<16) and (z<16), then
andnl6 1z, ry;

else

andn32 1z, rz, rx;

Description:

Influence on
flag bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on

For andn rz, rx, perform a bitwise-AND of RZ value and negative value

of RX, and save the result in RZ; for andn rz, rx, ry, perform a

bitwise-AND of RX value and negative value of RY, and save the result in

RZ.

No influence

None

RZ < RZ and (IRX)

andnl6 1z, rx

Perform a bitwise-AND of RZ value and negative value of RX, and save

the result in RZ

No influence

71

flag bit:
Restriction:
Exception:
Instruction

format:

1514

10 9

The range of register is r0-r15.

None

11010

3130

32-bit

instruction
Operation:
Grammar:

Description:

Influence on
flag bit:
Exception:
Instruction

format:

2625

RZ <~ RX and (RY)

andn32 rz, rx, ry

Perform a bitwise-AND of RX value and negative value of RY, and save

the result in RZ.

No influence

None

2120 16 15

109

54

10001

RY RX 001000

00010

72

ANDNI - Bitwise AND-NOT immediate

Unified instruction

Grammar Operation Compiling result

andni 1z, rx, imml6 | RZ < RX and !(zero_extend(IMM12)) | Only 32-bit instructions
exist.

andni32 1z, rx, imm12

Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise NOT, perform a bitwise-AND with RX value, and save the

result in RZ.
Influence on flag No influence
bit:
Restriction: The range of immediate operand is 0x0-0xFFF.
Exception: None
32-bit instruction
Operation: RZ <~ RX and !(zero_extend(IMM12))
Grammar: andni32 1z, rx, imm12
Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a

bitwise NOT, perform a bitwise-AND with RX value, and save the

result in RZ.
Influence on flag No influence
bit:
Restriction: The range of immediate operand is 0x0-0xFFF.
Exception: None
Instruction format:
3130 26 25 2120 16 15 12 11 0

1111001 RZ RX 0011 IMM12

73

ASR — Arithmetic shift right

Unified

instruction

Grammar Operation Compiling result

asr 1z,1x RZ <~ RZ >>>RX[5:0] Compiled into corresponding 16-bit or

32-bit instructions according to the
range of register.
if (x<16) and (z<16), then
asrl6 rz, rx;
else

asr32 rz, rz, rx;

asr 1z, rx,ry

RZ « RX >>> RY[5:0]

Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x==z) and (y<16) and (z<16), then
asrl6 1z, ry;

else

asr32 1z, rx, ry;

Description:

Influence on flag
bit:

Exception:

For asr rz, rx, perform an arithmetic right shift on RZ value (the

original value shifts right and the copy of original sign bit will shift to the

left side), and save the result in RZ; the range of right shift is decided by
the value of six low bits of RX (RX[5:0]). If the value of RX[5:0] is

greater than 30, RZ value (0 or -1) is decided by the sign bit of the

original RZ value;

For asr rz, rx, ry, perform an arithmetic right shift on RX value (the

original value shifts right and the copy of original sign bit will shift to the

left side), and save the result in RZ; the range of right shift is decided by
the value of six low bits of RY (RY[5:0]). If the value of RY[5:0] is
greater than 30, RZ value (0 or -1) is decided by the sign bit of RX.

No influence

None

74

16-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ « RZ >>> RX[5:0]

asrl6 rz, rx

Perform an arithmetic right shift on RZ value (the original value shifts

right and the copy of original sign bit will shift to the left side), and save

the result in RZ; the range of right shift is decided by the value of six low
bits of RX (RX[5:0]). If the value of RX[5:0] is greater than 30, RZ value

(0 or -1) is decided by the sign bit of the original RZ value.

No influence

Restriction: The range of register is r0-r15.
Exception: None

Instruction

format:
1514 10 9 6 5 10
0Of111o00 RZ RX 10
32-bit

instruction

Operation: RZ <~ RX>>>RY][5:0]
Grammar: asr32 1z, rx, 1y
Description:

Influence on
flag bit:
Exception:
Instruction

format:

3130

2625

Perform an arithmetic right shift on RX value (the original value shifts

right and the copy of original sign bit will shift to the left side), and save

the result in RZ; the range of right shift is decided by the value of six low
bits of RY (RY[5:0]). If the value of RY[5:0] is greater than 30, RZ value
(0 or -1) is decided by the sign bit of RX.

No influence

None

2120

16 15

109

54

1110001

RY

010000

00100

75

NNwrvr

ASRC — Arithmetic shift right immediate to C

Unified

instruction

Grammar Operation Compiling result

asrc rz, rx, oimm5 | RZ <« RX >>> OIMMS5, Only 32-bit instructions exist.

C <« RX[OIMMS - 1] asrc32 rz, rx, oimm5

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:

Instruction

Perform an arithmetic right shift on RX value (the original value shifts
right and the copy of original sign bit will shift to the left side), save
the end bit shifting out in C, and save the shifting result in RZ; the
range of right shift is decided by the value of 5-bit immediate operand
with offset 1 (OIMMY). If the value of OIMMS is equal to 32, then the
condition bit C is the sign bit (the highest bit) of RX and RZ value (0 or
-1) is decided by the sign bit of RX.

C < RX[OIMMS - 1]

The range of immediate operand is 1-32.

None

RZ < RX >>> OIMMS, C <~ RX[OIMMS - 1]
asrc32 rz, rx, oimm5

Perform an arithmetic right shift on RX value (the original value shifts
right and the copy of original sign bit will shift to the left side), save
the end bit shifting out in C, and save the shifting result in RZ; the
range of right shift is decided by the value of 5-bit immediate operand
with offset 1 (OIMMY). If the value of OIMMS is equal to 32, then the
condition bit C is the sign bit (the highest bit) of RX and RZ value (0 or
-1) is decided by the sign bit of RX. Attention: The binary operand
IMMS is equal to OIMMS — 1.

C < RX[OIMMS - 1]

The range of immediate operand is 1-32.

None

SKY

77

format:
3130 2625 2120 16 15 109 54 0
1110001 IMM5 RX 010011]00100

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the shifting value OIMMS5 requires
offset 1.
00000 — shift by 1 bit

00001 — shift by 2 bits

11111 — shift by 32 bits

78

ASRI — Arithmetic shift right immediate

Unified

instruction

Grammar Operation Compiling result

asri 1z, rx, imm5 | RZ <~ RX >>>IMM5 Compiled into corresponding 16-bit or

32-bit instructions according to the
range of register.
if (x<8) and (z<8), then
asrilé rz, rx, imm5;
else

asri32 rz, rx, immb5;

Description:

Influence on flag
bit:

Exception:

16-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

For asri rz, rx, imm5, perform an arithmetic right shift on RX value
(the original value shifts right and the copy of original sign bit will shift
to the left side), and save the result in RZ; the range of right shift is
decided by the value of 5-bit immediate operand (IMMY). If the value
of IMMS is equal to zero, RZ value is equal to RX.

No influence

None

RZ < RX >>>IMM5

asrilé rz, rx, imm5

Perform an arithmetic right shift on RX value (the original value shifts
right and the copy of original sign bit will shift to the left side), and
save the result in RZ; the range of right shift is decided by the value of
5-bit immediate operand (IMMS). If the value of IMMS is equal to
zero, RZ value remains unchanged.

No influence

The range of register is r0-r7; the range of immediate operand is 0-31.

None

79

1514 1110 8 7 5 4 0
01 0 1 0 RX RZ IMMS5
32-bit instruction
Operation: RZ < RX >>>IMM5
Grammar: asri32 rz, rx, imm5
Description:

Influence on flag

bit:

Perform an arithmetic right shift on RX value (the original value shifts

right and the copy of original sign bit will shift to the left side), and

save the result in RZ; the range of right shift is decided by the value of

5-bit immediate operand (IMMY). If the value of IMMS is equal to

zero, RZ value is equal to RX.

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 IMMS5 RX 01001000100

80

BCLRI — Bit clear immediate

SKY

Unified
instruction
Grammar Operation Compiling result
belri rz, imm5 RZ « RZ[IMMS5] clear Compiled into corresponding 16-bit or
32-bit instructions according to the
range of register.
if (z<8), then
belril6 rz, immb5;
else
belri32 rz, rz, imm5;
belri 1z, rx, imm5 | RZ < RX[IMMS5] clear Compiled into corresponding 16-bit or

32-bit instructions according to the
range of register.

if (x==z) and (z<8), then

belril6 rz, immb5;
else
belri32 rz, rx, imm3;

Description:

Influence on flag
bit:

Restriction:

16-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:

Clear the bits indicated by the value of IMMS field in RZ/RX value,

keep other bits unchanged, and save the result after clearing in RZ.

No influence

The range of immediate operand is 0-31.

RZ <~ RZ[IMM5] clear

belril6 rz, imm5

Clear the bits indicated by the value of IMMS field in RZ value, keep

other bits unchanged, and save the result after clearing in RZ.

No influence

The range of register is r0-r7;

The range of immediate operand is 0-31.

81

Exception: None

Instruction

format:

1514 10 8 7 5 4 0
0j01 11 Rz |1 0 0 IMM5

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ < RX[IMMS5] clear

belri32

rz, rx, imm3

Clear the bits indicated by the value of IMMS field in RX value, keep

other bits unchanged, and save the result after clearing in RZ.

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 IMMS5 RX 001010 [0000O0T1

82

BEZ —Branch instruction when register is equal to zero

Unified
instruction
Grammar Operation Compiling result
bez rx, label When the register is equal to zero, the program | Only 32-bit
will shift instructions exist.
if (RX==0) bez32 rx, label
PC < PC +sign_extend(offset << 1)
else
PC <« PC+4
Description: If the register RX is equal to zero, the program will shift to label position

before execution; otherwise the program will execute the next instruction,
i.e. PC <« PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BEZ instruction is the address space of +64KB.

Influence on flag No influence

bit:
Exception: None
32-bit
instruction
Operation: When the register is equal to zero, the program will shift.
if(RX ==0)
PC < PC + sign_extend(offset << 1)
else
PC«PC+4
Grammar: bez32 rx, label
Description: If the register RX is equal to zero, the program will shift to label position

before execution; otherwise the program will execute the next instruction,
i.e. PC « PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

83

of BEZ instruction is the address space of +64KB.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 0
111101001000 Offset

84

BF — C=0 branch instruction

Unified
instruction
Grammar Operation Compiling result
bf label When C is equal to zero, the program will | Compiled into
shift. corresponding 16-bit or
if(C==0) 32-bit instructions according
PC«PC + sign_extend(offset << 1); to the range of jump.
else if (offset<1KB), then
PC < next PC; bfl6 label;
else
bf32 label,;
Description: If the condition flag bit C is equal to zero, the program will shift to label

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

position before execution; otherwise the program will execute the next

instruction.

Label is gained by adding the current PC to the value of sign-extending

the relative offset shifting left by 1 bit to 32 bits. The shifting range of BF

instruction is the address space of 264KB.

No influence

None

When C is equal to zero, the program will shift.

PC < PC + sign_extend(offset << 1)
else

PC <« PC+2
bfl6 label

If the condition flag bit C is equal to zero, the program will shift to label

85

Influence on flag

o SKY

position before execution; otherwise the program will execute the next
instruction, i.e. PC < PC + 2.

Label is gained by adding the current PC to the value of sign-extending
the 10-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BF16 instruction is the address space of +1KB.

No influence

bit:
Exception: None
Instruction
format:
1514 10 9 0
000011 Oftset
32-bit
instruction
Operation: When C is equal to zero, the program will shift.
if(C==0)
PC < PC +sign_extend(offset << 1)
else
PC«PC+4
Grammar: bf32 label
Description: If the condition flag bit C is equal to zero, the program will shift to label

Influence on flag

bit:
Exception:
Instruction

format:

3130

26 25

position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BF16 instruction is the address space of 64KB.

No influence

None

2120 16 15 0

86

11010

00010

00000

Offset

87

BGENI - Bit generation immediate#

Unified
instruction
Grammar Operation Compiling result
bgeni rz,imm5 | RZ « (2)™™° Only 32-bit instructions
exist.
bgeni32 rz, imm5
Description: Set the bit of RZ decided by the 5-bit immediate operand (RZ[IMMS5])

Influence on flag
bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

and clear other bits of RZ.

Attention: If IMMS5 is smaller than 16, this instruction is the pseudo
instruction of movi rz, (2)™™S; if IMMS is greater than 16, this
instruction is the pseudo instruction of movih 1z, (2)™M>,

No influence

The range of immediate operand is 0-31.

None
RZ « (2)IMM5;
bgeni32 rz, imm5

Set the bit of RZ decided by the 5-bit immediate operand (RZ[IMMS5])
and clear other bits of RZ.

Attention: If IMMS5 is smaller than 16, this instruction is the pseudo
rz, (2)MM>; if IMMS is greater than 16, this

12, (2)IMM5‘

instruction of movi32
instruction is the pseudo instruction of movih32

No influence

The range of immediate operand is 0-31.

None

88

If IMMS is smaller than 16:

3130 2625 2120 1615 0
111101010000 (2)IMM>

If IMMS is greater than 16:

3130 2625 2120 1615 0
111101010001 (2)™MM3

89

BGENR - Register bit generation

Unified
instruction
Grammar Operation Compiling result
bgenr 1z, X If (RX[5] ==0), then Only 32-bit instructions
RZ « 2RX[40l. exist.
else bgenr32 1z, rx
RZ <« 0;
Description: If RX][5] is 0, set the register bit of RZ decided by five low bits of RX

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

(RX[4:0]) and clear other bits of RZ; otherwise, clear RZ.

No influence

None

If (RX[5]==0), then

RZ « 2RX1401,
else

RZ <« 0;
bgenr32

rz, X

If RX][5] is 0, set the register bit of RZ decided by five low bits of RX
(RX[4:0]) and clear other bits of RZ; otherwise, clear RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 [000O00O0 010100]|]00O0T1O0 RZ

90

o SKY

BHSZ — Branch instruction when register is greater than or

equal to zero

Unified
instruction
Grammar Operation Compiling result
bhsz rx, label When the register is greater than or equal to | Only 32-bit
zero, the program will shift instructions exist.
if(RX >=0) bhsz32 rx, label
PC < PC +sign_extend(offset << 1);
else
PC« PC+4;

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

If the register is greater than or equal to zero, the program will shift to
label position before execution; otherwise the program will execute the
next instruction, i.e. PC <~ PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BHSZ instruction is the address space of £64KB.

No influence

None

When the register is greater than or equal to zero, the program will shift
if(RX >=0)

PC <« PC + sign_extend(offset << 1)
else

PC«PC+4
bhsz32 rx, label
If the register RX is greater than or equal to zero, the program will shift
to label position before execution; otherwise the program will execute the

next instruction, i.e. PC «<— PC + 4.

91

o SKY

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BHSZ instruction is the address space of £64KB.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 26 25 2120 16 15 0

111101001101 RX Offset

92

o

BHZ — Branch instruction when register is greater than zero

SKY

Unified
instruction
Grammar Operation Compiling result
bhz rx, label When the register is greater than zero, the | Only 32-bit
program will shift instructions exist.
if(RX > 0) bhz32 rx, label
PC < PC +sign_extend(offset << 1)
else
PC <« PC+4
Description: If the register RX is greater than zero, the program will shift to label

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BHZ instruction is the address space of +64KB.

No influence

None

When the register is greater than zero, the program will shift
if(RX > 0)

PC < PC +sign_extend(offset << 1)
else

PC«PC+4
bhz32 rx, label
If the register RX is greater than zero, the program will shift to label
position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 4.
Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

93

of BHZ instruction is the address space of +64KB.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 0
111101001010 Offset

94

BKPT — Breakpoint instruction

SKY

Unified
instruction
Grammar Operation Compiling result
bkpt Trigger a breakpoint exception or enter | Always compiled into 16-bit
debugging mode instructions.
bkpt16
Description: Breakpoint instruction

Influence on flag
bit:

Exception:

16-bit
instruction
Operation:
Grammar:
Description:
Influence on flag

bit:

No influence

Breakpoint exception

Trigger a breakpoint exception or enter debugging mode

bkpt16
Breakpoint instruction

No influence

Exception: Breakpoint exception
Instruction
format:
1514 10 9 0
0/00000|00O0O0O0O0OO0OO0OO0O0

95

o SKY

BLSZ — Branch instruction when register is smaller than or

equal to zero

Unified
instruction
Grammar Operation Compiling result
blsz rx, label When the register is smaller than or equal to | Only 32-bit
zero, the program will shift instructions exist.
if(RX <=0) blsz32 rx, label
PC < PC +sign_extend(offset << 1)
else
PC <« PC+4

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

If the register RX is smaller than or equal to zero, the program will shift
to label position before execution; otherwise the program will execute the
next instruction, i.e. PC €< PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BLSZ instruction is the address space of +64KB.

No influence

None

When the register is smaller than or equal to zero, the program will shift
if(RX <=0)

PC <« PC + sign_extend(offset << 1)
else

PC«PC+4
blsz32 rx, label
If the register RX is smaller than or equal to zero, the program will shift
to label position before execution; otherwise the program will execute the

next instruction, i.e. PC €< PC + 4.

96

o SKY

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BLSZ instruction is the address space of +64KB.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 26 25 2120 16 15 0

111101001011 RX Offset

97

o

BLZ — Branch instruction when register is smaller than zero

SKY

Unified
instruction
Grammar Operation Compiling result
blz rx, label When the register is smaller than zero, the | Only 32-bit
program will shift instructions exist.
if(RX <0) blz32 rx, label
PC < PC +sign_extend(offset << 1)
else
PC <« PC+4

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

If the register RX is smaller than zero, the program will shift to label
position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BLZ instruction is the address space of +64KB.

No influence

None

When the register is smaller than zero, the program will shift
if(RX <0)

PC < PC +sign_extend(offset << 1)
else

PC«PC+4
blz32 rx, label
If the register RX is smaller than zero, the program will shift to label
position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 4.
Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

98

of BLZ instruction is the address space of +64KB.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 0
111101001100 Offset

99

BMASKI - Bit mask generation immediate

Unified
instruction
Grammar Operation Compiling result
bmaski 1z, oimm5 | RZ « (2)°™MM5_ | Only 32-bit instructions
exist.
bmaski32 rz, oimm5
Description: Generate the immediate operand whose consecutive low bit is 1 and

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:

Instruction

high bit is 0, and save this immediate operand in RZ. Assign the bit of
consecutive low bit set as 1 for the immediate operand OIMMS5
(RX[OIMMS5-1:0]), and clear other bits. When OIMMS is 0 or 32, all
bits of RX are set as 1.

Attention: When OIMMS5 is 1-16, movi instruction will be executed.

No influence

The range of immediate operand is 0 and 17-32.

None

RZ « (2)0™MM5 _ |
bmaski32 rz, oimm5

Generate the immediate operand whose consecutive low bit is 1 and
high bit is 0, and save this immediate operand in RZ. Assign the bit of
consecutive low bit set as 1 for the immediate operand OIMMS5
(RX[OIMMS5-1:0]), and clear other bits. When OIMMS is 0 or 32, all
bits of RX are set as 1.

Attention: When OIMMS is 1-16, movi instruction will be executed;
the binary operand IMMS is equal to OIMMS — 1.

No influence

The range of immediate operand is 0 and 17-32.

None

100

format:
3130 2625 2120 16 15 109 54 0
1110001 IMM5 00000|010100 (00001

IMMS field — Assign the highest bit of consecutive low bit set as 1.

Attention: Compared with the binary operand IMMS, the immediate operand OIMMS5

requires offset 1.
10000 — set 0-16 bits
10001 — set 0-17 bits

11111 —set 0-31 bits

101

BMCLR - Clear BCTM bit

Unified instruction

Grammar Operation Compiling result
bmelr Clear BM bit of status register. Only 32-bit instructions
PSR(BM) « 0 exist.
bmclr32
Description: Clear BM bit of PSR.
Influence on No influence
flag bit:
Exception: None
32-bit
instruction
Operation: Clear BM bit of status register.
PSR(BM) <~ 0
Grammar: bmclr32
Description: Clear the BM bit of PSR.
Influence on No influence
flag bit:
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
111000000000 (00000 |000101 (00001]00000O0

102

BMSET — Set BCTM bit

Unified instruction

Grammar Operation Compiling result
bmset Set BM bit of status register. Only 32-bit instructions
PSR(BM) « 1 exist.
bmset32
Description: Set BM bit of PSR.
Influence on No influence
flag bit:
Exception: None
32-bit
instruction
Operation: Set BM bit of status register.
PSR(BM) « 1
Grammar: bmset32
Description: Set BM bit of PSR.
Influence on No influence
flag bit:
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
111000000000 | O0000 | 000100 00001 |00O0CO00O0

103

o SKY

BNEZ - Branch instruction when register is not equal to zero

Unified
instruction
Grammar Operation Compiling result
bnez rx, label When the register is not equal to zero, the | Only 32-bit instructions
program will shift exist.
if(RX !=0) bnez32 rx, label
PC < PC +sign_extend(offset << 1)
else
PC <« PC+4
Description: If the register RX is not equal to zero, the program will shift to label

position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range
of BNEZ instruction is the address space of +64KB.

Influence on flag No influence

bit:
Exception: None
32-bit
instruction
Operation: When the register is not equal to zero, the program will shift
if(RX 1=0)
PC < PC +sign_extend(offset << 1)
else
PC«PC+4
Grammar: bnez32 rx, label
Description: If the register RX is not equal to zero, the program will shift to label

position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting range

104

of BNEZ instruction is the address space of +64KB.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 0
111101001001 Offset

105

BPOP.H - Binary push of translated half-word

Unified
instruction
Grammar Operation Compiling result
bpop.h 1z Update the binary translated stack | Only 16-bit instructions exist.
register to the top of binary bpop.h r1z;
translated stack storage, and load
half-word from binary translated
stack storage to register RZ;
if (BSP - 2 <FP’)
R15 < next PC
PC <« SVBR - 12
else
BSP < BSP - 2;
RZ <~
zero_extend(MEM[BSPY));
Description: Compare the value after subtracting 2 from the binary translated stack

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

pointer register (BSP) with the binary translated frame pointer register
(FP). If the value after subtracting 2 from BSP is smaller than FP’, the
return address of subprogram (PC of the next instruction) is saved in
link register R15 and the program will shift to SVBR-12 position before
execution. Otherwise, update BSP to the top of binary translated stack
storage, and load half-word in binary translated stack storage to register
RZ after zero-extending it to 32 bits. Adopt direct addressing mode of
stack register.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Update the binary translated stack register to the top of binary translated

stack storage, and load half-word from binary translated stack storage to

106

register RZ;
if (BSP -2 <FP’)
R15 < next PC
PC <« SVBR - 12
else
BSP < BSP - 2;
RZ « zero_extend MEM[BSP]);
Grammar: bpopl6.h rz
Description: Compare the value after subtracting 2 from the binary translated stack
pointer register (BSP) with the binary translated frame pointer register
(FP). If the value after subtracting 2 from BSP is smaller than FP’, the
return address of subprogram (PC of the next instruction) is saved in
link register R15 and the program will shift to SVBR-12 position before
execution. Otherwise, update BSP to the top of binary translated stack
storage, and load half-word in binary translated stack storage to register
RZ after zero-extending it to 32 bits. Adopt direct addressing mode of
stack register.

Influence on flag No influence

bit:

Restriction: The range of register is r0 — r7.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception

Instruction

format:

15 14 109 8 76 5 4 210

0j00101(0j0Of1 O[] RZ |0]0

107

BPOP.W — Binary push of translated word

Unified

instruction

Grammar Operation Compiling result

bpop.w 1z Update the binary translated stack | Only 16-bit instructions exist.
register to the top of binary bpop.w 17;
translated stack storage, and load
word from binary translated stack
storage to register RZ;
if (BSP - 4 <FP’)
R15 < next PC
PC <« SVBR - 12
else
BSP < BSP - 4;
RZ <« MEM[BSP];

Description: Compare the value after subtracting 4 from the binary translated stack
pointer register (BSP) with the binary translated frame pointer register
(FP). If the value after subtracting 4 from BSP is smaller than FP’, the
return address of subprogram (PC of the next instruction) is saved in
link register R15 and the program will shift to SVBR-12 position before
execution. Otherwise, update BSP to the top of binary translated stack
storage, and load word in binary translated stack storage to register RZ.
Adopt direct addressing mode of stack register.

Influence on flag No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Update the binary translated stack register to the top of binary translated
stack storage, and load word from binary translated stack storage to
register RZ;
if (BSP - 4 <FP’)

108

R15 < next PC
PC <« SVBR - 12
else
BSP < BSP - 4;
RZ <« MEM[BSP];
Grammar: bpoplo.w 1z
Description: Compare the value after subtracting 4 from the binary translated stack
pointer register (BSP) with the binary translated frame pointer register
(FP). If the value after subtracting 4 from BSP is smaller than FP’, the
return address of subprogram (PC of the next instruction) is saved in
link register R15 and the program will shift to SVBR-12 position before
execution. Otherwise, update BSP to the top of binary translated stack
storage, and load word in binary translated stack storage to register RZ.
Adopt direct addressing mode of stack register.

Influence on flag No influence

bit:

Restriction: The range of register is 10 — r7.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception

Instruction

format:

15 14 109 8 76 5 4 210

0/00101|0j0|1 01| RZ |1|0

109

BPUSH.H - Binary push of translated half-word

Unified

instruction

Grammar Operation Compiling result

bpush.h rz Save half-word in register RZ into | Only 16-bit instructions exist.
the binary translated stack storage, bpush.h r1z;
and update the binary translated
stack register to the top of binary
translated stack storage;
if (BSP + 2 > TOP)
R15 < next PC
PC <« SVBR - 12
else
MEM[BSP] < RZ[15:0];
BSP < BSP +2;

Description: Compare the value after adding 2 to the binary translated stack pointer
register (BSP) with the binary translated stack top register (TOP). If the
value after adding 2 to BSP is greater than TOP, the return address of
subprogram (PC of the next instruction) is saved in link register R15
and the program will shift to SVBR-12 position before execution.
Otherwise, save half-word in register RZ into the binary translated stack
storage, and update BSP to the top of binary translated stack storage.
Adopt direct addressing mode of stack register.

Influence on flag No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

16-bit instruction

Operation: Save half-word in register RZ into the binary translated stack storage,
and update the binary translated stack register to the top of binary
translated stack storage;

if (BSP + 2 > TOP)

110

Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

Instruction

format:

1514 10 9

R15 < next PC
PC <« SVBR - 12
else
MEM[BSP] < RZ[15:0];
BSP < BSP +2;
bpushl6.h 1z
Compare the value after adding 2 to the binary translated stack pointer
register (BSP) with the binary translated stack top register (TOP). If the
value after adding 2 to BSP is greater than TOP, the return address of
subprogram (PC of the next instruction) is saved in link register R15
and the program will shift to SVBR-12 position before execution.
Otherwise, save half-word in register RZ into the binary translated stack
storage, and update BSP to the top of binary translated stack storage.
Adopt direct addressing mode of stack register.

No influence

The range of register is 10 — r7.
Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

8 76 5 4 210

0j]00101 1|0

0(1 11| RZ |00

111

BPUSH.W — Binary push of translated word

Unified

instruction

Grammar

Operation Compiling result

bpush.w 1z

Save word in register RZ into the | Only 16-bit instructions exist.
binary translated stack storage, and bpush.w rz;
update the binary translated stack
register to the top of binary
translated stack storage;
if (BSP + 4 > TOP)
R15 < next PC
PC <« SVBR - 12
else
MEM[BSP] <~ RZ[31:0];
BSP < BSP + 4;

Description:

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Compare the value after adding 4 to the binary translated stack pointer
register (BSP) with the binary translated stack top register (TOP). If the
value after adding 4 to BSP is greater than TOP, the return address of
subprogram (PC of the next instruction) is saved in link register R15
and the program will shift to SVBR-12 position before execution.
Otherwise, save word in register RZ into the binary translated stack
storage, and update BSP to the top of binary translated stack storage.
Adopt direct addressing mode of stack register.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Save word in register RZ into the binary translated stack storage, and
update the binary translated stack register to the top of binary translated
stack storage;

if (BSP + 4 > TOP)

112

Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

Instruction

format:

1514 10 9

R15 < next PC
PC <« SVBR - 12
else
MEM[BSP] <~ RZ[31:0];
BSP < BSP + 4;
bpushl6.w 1z
Compare the value after adding 4 to the binary translated stack pointer
register (BSP) with the binary translated stack top register (TOP). If the
value after adding 4 to BSP is greater than TOP, the return address of
subprogram (PC of the next instruction) is saved in link register R15
and the program will shift to SVBR-12 position before execution.
Otherwise, save word in register RZ into the binary translated stack
storage, and update BSP to the top of binary translated stack storage.
Adopt direct addressing mode of stack register.

No influence

The range of register is 10 — r7.
Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

8 76 5 4 210

0j]00101 1|0

0(1 11| RZ |1|0

113

BR — Unconditional jump

SKY

Unified
instruction
Grammar Operation Compiling result
br label PC « PC +sign_extend(offset << 1) | Compiled into corresponding
16-bit or 32-bit instructions
according to the range of jump.
if(offset<1KB), then
brl6 label;
else
br32 label;
Description: The program unconditionally jumps to label for execution.

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

1514 10 9

Label is gained by adding the current PC to the value of sign-extending
the relative offset shifting left by 1 bit to 32 bits.

No influence

None

PC < PC + sign_extend(offset << 1)

brl6 label

The program unconditionally jumps to label for execution.

Label is gained by adding the current PC to the value of sign-extending
the 10-bit relative offset shifting left by 1 bit to 32 bits. The jump range
of BR16 instruction is the address space of +1KB.

No influence

None

114

000001 Offset
32-bit
instruction
Operation: PC < PC + sign_extend(offset << 1)
Grammar: br32 label
Description:

3130

The program unconditionally jumps to label for execution.
Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The jump range

of BR instruction is the address space of +64KB.

Influence on flag No influence

bit:
Exception:
Instruction

format:

None

26 25 2120 16 15 0

1

11010

00000 (|00O0O0O0 Offset

115

BREYV - Bit-reverse

Unified
instruction
Grammar Operation Compiling result
brev 1z, rx for i=0to 31 Only 32-bit
RZJ[i] < RX[31-i]; instructions exist.
brev32 rz,rx
Description: Perform a bitwise reverse operation on RX value and save the result in

RZ.

If RX value is “abcdefghijklmnopqrstuvwxyz012345”, RZ value changes
into “543210zyxwvutsrqponmlkjihgfedcba™ after bitwise reverse
operation.

Influence on flag No influence

bit:
Exception: None
32-bit
instruction
Operation: for i=0 to 31
RZ[i] « RX[31-i];
Grammar: brev32 rz,rx
Description: Perform a bitwise reverse operation on RX value and save the result in

RZ.
If RX value is “abcdefghijklmnopqrstuvwxyz012345”, RZ value changes
into “543210zyxwvutsrqponmlkjihgfedcba” after bitwise reverse
operation.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0

116

10001

00000

011000

10000

117

Unified

instruction

BSETI — Bit set immediate

Grammar

Operation

Compiling result

bseti rz, imm5

RZ « RZ[IMMS5] set

Compiled into corresponding 16-bit
or 32-bit instructions according to
the range of register.
if (z<8), then

bsetil6 1z, immb5;
else

bseti32 1z, rz, immS3;

bseti rz, rx, imm5

RZ < RX[IMMS5] set

Compiled into corresponding 16-bit
or 32-bit instructions according to
the range of register.
if((x==z) and (z<8), then

bsetil6 rz, immb5;
else

bseti32 rz, rx, imm5;

Description:

Influence on flag
bit:
Restriction:

Exception:

16-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

Set the bit indicated by the value of IMMS field as 1 in RZ/RX value,

keep other bits unchanged, and save the result in RZ.

No influence

The range of immediate operand is 0-31.

None

RZ « RZ[IMMS5] set

bsetil6 rz, imm5

Set the bit indicated by the value of IMMS field as 1 in RZ value, keep

other bits unchanged, and save the result in RZ.

No influence

The range of register is r0-r7; the range of immediate operand is 0-31.

None

118

Instruction

format:

1514 10

0

0111 Rz

1 01

IMMS5

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ < RX[IMMS5] set

bseti32 rz, rx, imm5

Set the bit indicated by the value of IMMS field as 1 in RX value, keep

other bits unchanged, and save the result in RZ.

No influence

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 IMMS5 RX 00101000010

119

BSR — Jump to subprogram

Unified

instruction

Grammar Operation Compiling result

bsr label Link and jump to the subprogram: Only 32-bit instructions exist.
R15 <« next PC bsr32 label;
PC < PC + sign_extend(offset << 1)

Description: The subprogram jumps, the return address of subprogram (PC of the next

Influence on flag
bit:

Exception:
32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

instruction) is saved in link register R15, and the program will shift to
label position before execution.

Label is gained by adding the current PC to the value of sign-extending
the relative offset shifting left by 1 bit to 32 bits.

No influence

None

Link and jump to the subprogram:

R15 < PC+4

PC < PC +sign_extend(offset << 1)

bsr32 label

The subprogram jumps, the return address of subprogram (PC of the next
instruction, i.e. PC+4 at present) is saved in link register R15, and the
program will shift to label position before execution.

Label is gained by adding the current PC to the value of sign-extending
the 26-bit relative offset shifting left by 1 bit to 32 bits. The jump range
of BSR instruction is the address space of +64KB.

No influence

None

120

3130 2625

1111000

Offset

121

Unified instruction

BT — C=1 branch instruction

SKY

Grammar Operation Compiling result
bt label if(C==1) Compiled into corresponding
PC « PC + sign_extend(offset << | 16-bit or 32-bit instructions
1); according to the range of
else jump.
PC <« next PC; if (offset<1KB), then
btl6 label;
else
bt32 label;
Description: If the condition flag bit C is equal to 1, the program will shift to label

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

position before execution; otherwise the program will execute the next
instruction.

Label is gained by adding the current PC to the value of sign-extending
the relative offset shifting left by 1 bit to 32 bits. The shifting range of BT
instruction is the address space of 264KB.

No influence

None

When C is equal to 1, the program will shift
if(C=1)
PC < PC +sign_extend(offset << 1)

else
PC«PC+2
btl6 label

If the condition flag bit C is equal to 1, the program will shift to label
position before execution; otherwise the program will execute the next
instruction, i.e. PC <~ PC + 2.

Label is gained by adding the current PC to the value of sign-extending

122

Influence on flag

o SKY

the 10-bit relative offset shifting left by 1 bit to 32 bits. The shifting
range of BT16 instruction is the address space of +1KB.

No influence

bit:

Exception: None

Instruction

format:

1514 10 9 0
00010 Offset

3130

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

When C is equal to 1, the program will shift
if(C=1)
PC < PC +sign_extend(offset << 1)

else
PC« PC+4
bt32 label

If the condition flag bit C is equal to 1, the program will shift to label
position before execution; otherwise the program will execute the next
instruction, i.e. PC < PC + 4.

Label is gained by adding the current PC to the value of sign-extending
the 16-bit relative offset shifting left by 1 bit to 32 bits. The shifting
range of BT instruction is the address space of +64KB.

No influence

None

26 25 2120 16 15 0

1

11010

00011 (00000O0 Offset

123

Unified instruction

BTSTI — Bit test immediate

Grammar

Operation

Compiling result

btsti rx, imm35

C <« RX[IMM5]

Compiled into
corresponding 16-bit or
32-bit instructions according
to the range of register.
if (x<8), then

btstil6 rx, immb5;

else

btsti32 rx, imm5;

Description:

Influence on flag
bit:
Restriction:

Exception:

16-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

15 14 10

Test the bit of RX decided by IMMS (RX[IMMS5]), and make the value of

condition bit C equal to value of this bit.

C <« RX[IMM5]

The range of immediate operand is 0-31.

None

C <« RX[IMM5]

btstil6 rx, imm35

Test the bit of RX decided by IMMS5 (RX[IMMS5]), and make the value

of condition bit C equal to value of this bit.

No influence

The range of register is r0-r7; the range of immediate operand is 0-31.

None

0/01 11} RX

110 IMMS5

124

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

C <« RX[IMMS5]

btsti32 rx, imm35

Test the bit of RX decided by IMMS (RX[IMMS5]), and make the value of
condition bit C equal to value of this bit.

C <« RX[IMM5]

Restriction: The range of immediate operand is 0-31.
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
10001 IMM5 RX 00101000100 (0000O0

125

Unified instruction

CLRF - C=0 clear

Grammar Operation Compiling result
clef 1z if C==0, then Only 32-bit instructions
RZ « 0; exist.
else clrf32 rz
RZ <« RZ;
Description: If C is equal to zero, clear the register RZ; otherwise, keep the register

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

RZ unchanged.

No influence

None

if C==0, then
RZ < 0;
else
RZ <« RZ;
clrf32 rz
If C is equal to zero, clear the register RZ; otherwise, keep the register

RZ unchanged.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RZ 00000|]00O10O11 (00001 000O00O0

126

CLRT - C=1 clear

Unified instruction

Grammar Operation Compiling result
clrt 1z if C==1, then Only 32-bit instructions
RZ « 0; exist.
else clrt32 1z
RZ <« RZ;
Description: If C is equal to 1, clear the register RZ; otherwise, keep the register RZ
unchanged.
Influence on flag No influence
bit:
Exception: None
32-bit
instruction
Operation: if C==1, then
RZ « 0;
else
RZ <« RZ;
Grammar: clrt32 1z
Description: If C is equal to 1, clear the register RZ; otherwise, keep the register RZ
unchanged.
Influence on flag No influence
bit:
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
1110001 RZ 00000001011 |00010]|]00000O0

127

CMPHS - Compare unsigned when greater or equal

Unified
instruction
Grammar Operation Compiling result
cmphs rx, ry Make an unsigned comparison | Compiled into corresponding 16-bit
between RX and RY. or 32-bit instructions according to
If RX >=RY, then the range of register.
Ce1; if (x<16) and (y<16), then
else cmphsl6 rx, ry;
C«0; else
cmphs32 rx, ry;
Description: Subtract RY value from RX value, compare the result with 0, and update

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

C bit. Make an unsigned comparison via cmphs; in another word,
operand is considered as unsigned number. If RX is greater than or equal
to RY, it means that the subtraction result is greater than or equal to zero.
Set the condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the comparison result

None

Make an unsigned comparison between RX and RY.
If RX >= RY, then
C«1;
else
C«0;
cmphslé rx, ry
Subtract RY value from RX value, compare the result with 0, and update
C bit. Make an unsigned comparison via cmphsl6; in another word,
operand is considered as unsigned number. If RX is greater than or equal

to RY, it means that the subtraction result is greater than or equal to zero.

Set the condition bit C; otherwise, clear the condition bit C.

128

Influence on flag Set the condition bit C according to the comparison result

bit:

Restriction: The range of register is r0-r15.
Exception: None
Instruction
format:
1514 10 9 6 5 210
0] 11001 RY RX 00
32-bit
instruction
Operation: Make an unsigned comparison between RX and RY.
If RX >=RY, then
C«1;
else
C«0;
Grammar: cmphs32 r1x, 1y
Description: Subtract RY value from RX value, compare the result with 0, and update

C bit. Make an unsigned comparison via cmphs32; in another word,
operand is considered as unsigned number. If RX is greater than or equal
to RY, it means that the subtraction result is greater than or equal to zero.
Set the condition bit C; otherwise, clear the condition bit C.

Influence on flag Set the condition bit C according to the comparison result

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0

1110001 RY RX 000001 00001 |000O00O0

129

o

CMPHSI — Compare immediate unsigned when greater or

Unified instruction

equal

SKY

Grammar

Operation Compiling result

cmphsi rx, oimm16

Make an unsigned comparison | Compiled into corresponding
between RX and immediate | 16-bit or 32-bit instructions
operand. according to the range of
IfRX >= immediate operand and register.

zero_ | if (oimm16<33) and (x<8),then

exten cmphsil6 rx, oimmS5;
d(OI | else
MMI1 cmphsi32 rx, oimm16;
6),
C«1;
else
C«0;

Description:

Influence on flag
bit:
Restriction:

Exception:

16-bit
instruction

Operation:

Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to 32
bits, subtract this 32-bit value from RX value, compare the result with 0,
and update C bit. Make an unsigned comparison via cmphsi; in another
word, operand is considered as unsigned number. If RX is greater than or
equal to OIMMI16 after zero-extension, it means that the subtraction
result is greater than or equal to zero. Set the condition bit C; otherwise,
clear the condition bit C.

Set the condition bit C according to the comparison result

The range of immediate operand is 0x1-0x10000.

None

Make an unsigned comparison between RX and immediate operand.
If RX >= zero_extend(OIMMS5), then
C«1;

1

30

else
C«0;
Grammar: cmphsil6 rx, oimm5
Description: Zero-extend the 5-bit immediate operand with offset 1 (OIMMS) to 32

bits, subtract this 32-bit value from RX value, compare the result with 0,
and update C bit. Make an unsigned comparison via cmphsil6; in
another word, operand is considered as unsigned number. If RX is greater
than or equal to OIMMS after zero-extension, it means that the
subtraction result is greater than or equal to zero. Set the condition bit C;
otherwise, clear the condition bit C.

Attention: The binary operand IMMS is equal to OIMMS — 1.

Influence on flag Set the condition bit C according to the comparison result

bit:

Restriction: The range of register is r0-r7; the range of immediate operand is 1-32.
Exception: None
Instruction
format:
1514 10 8 7 5 4 0

0j0 111 RX |0 00 IMMS5

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the immediate operand OIMMS5
participating in comparison requires offset 1.

00000 — make a comparison with 1

00001 — make a comparison with 2

11111 — make a comparison with 32

32-bit
instruction
Operation: Make an unsigned comparison between RX and immediate operand.
If RX >=zero_extend(OIMM16), then
C«1;
else
C«0;

131

Grammar:

Description:

Influence on flag

cmphsi32 rx, oimm16

Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to

32 bits, subtract this 32-bit value from RX value, compare the result

with 0, and update C bit. Make an unsigned comparison via cmphsi32;

in another word, operand is considered as unsigned number. If RX is

greater than or equal to OIMM16 after zero-extension, it means that the

subtraction result is greater than or equal to zero. Set the condition bit C;

otherwise, clear the condition bit C.
Attention: The binary operand IMM16 is equal to OIMM16 — 1.

Set the condition bit C according to the comparison result

bit:

Restriction: The range of immediate operand is 0x1-0x10000.

Exception: None

Instruction

format:

3130 2625 2120 1615 0
111101011000 RX IMM16

IMM16 field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM16, the immediate operand OIMM16

participating in comparison requires offset 1.

0000000000000000 — make a comparison with 0x1
0000000000000001 — make a comparison with 0x2

I111111111111111 — make a comparison with 0x10000

132

CMPLT - Compare signed when smaller

Unified
instruction
Grammar Operation Compiling result
cmplt rx, ry Make a signed comparison | Compiled into corresponding 16-bit or
between RX and RY. 32-bit instructions according to the
If RX <RY, then range of register.
Ce1; if (x<16) and (y<16), then
else cmpltl6 rx, ry;
C«0; else
cmplt32 rx, ry;
Description: Subtract RY value from RX value, compare the result with 0, and update

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

C bit. Make a signed comparison via cmplt; in another word, operand is
considered as signed number of complement form. If RX is smaller than
RY, it means that the subtraction result is smaller than zero. Set the
condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the comparison result

None

Make a signed comparison between RX and RY.
If RX <RY, then
C«1;
else
C«0;
cmpltl6 rx, ry
Subtract RY value from RX value, compare the result with 0, and update
C bit. Make a signed comparison via cmpltl6; in another word, operand
is considered as signed number of complement form. If RX is smaller

than RY, it means that the subtraction result is smaller than zero. Set the

condition bit C; otherwise, clear the condition bit C.

133

Influence on flag

bit:

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r15.
Exception: None
Instruction
format:
1514 10 9 5 0
0] 11001 RY RX 01
32-bit
instruction
Operation: Make a signed comparison between RX and RY.
If RX <RY, then
C«1;
else
C«0;
Grammar: cmplt32 rx,ry
Description:

Influence on flag

bit:

Subtract RY value from RX value, compare the result with 0, and update

C bit. Make a signed comparison via cmplt32; in another word, operand

is considered as signed number of complement form. If RX is smaller

than RY, it means that the subtraction result is smaller than zero. Set the

condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the comparison result

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY 000001 |]OOOI1O0O]|]00O0O0ODDO

134

CMPLTI — Compare immediate signed when smaller

SKY

Unified
instruction
Grammar Operation Compiling result
cmplti rx, Make a signed comparison between | Compiled into corresponding
oimm16 RX and immediate operand. 16-bit or 32-bit instructions
If RX < zero_extend(OIMM16), according to the range of
C«1; immediate operand and register.
else if (x<8) and (0imm16<33), then
C«0; cmpltil6 rx, oimmb5;
else
cmplti32 rx, oimm16;
Description: Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to 32

Influence on flag
bit:
Restriction:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

bits, subtract this 32-bit value from RX value, compare the result with 0,
and update C bit. Make a signed comparison via cmplti; in another word,
RX value is considered as signed number of complement form. If RX is
smaller than OIMM16 after zero-extension, it means that the subtraction
result is smaller than zero. Set the condition bit C; otherwise, clear the
condition bit C.

Set the condition bit C according to the comparison result

The range of immediate operand is 0x1-0x10000.

None

Make a signed comparison between RX and immediate operand.
If RX < zero_extend(OIMMY), then
C«1;
else
C«0;
cmpltil6 rx, oimm5
Zero-extend the 5-bit immediate operand with offset 1 (OIMMS) to 32

bits, subtract this 32-bit value from RX value, compare the result with 0,

135

o SKY

and update C bit. Make a signed comparison via cmpltil6; in another
word, RX value is considered as signed number of complement form. If
RX is smaller than OIMMS5 after zero-extension, it means that the
subtraction result is smaller than zero. Set the condition bit C; otherwise,
clear the condition bit C.
Attention: The binary operand IMMS is equal to OIMMS5 — 1.

Influence on flag Set the condition bit C according to the comparison result

bit:

Restriction: The range of register is r0-r7; the range of immediate operand is 1-32.
Exception: None
Instruction
format:
1514 10 8 7 5 4 0

0j0 111 RX [0 01 IMMS5

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the immediate operand OIMMS5
participating in comparison requires offset 1.

00000 — make a comparison with 1

00001 — make a comparison with 2

11111 — make a comparison with 32

32-bit instruction

Operation: Make a signed comparison between RX and immediate operand.
If RX < zero_extend(OIMM16), then
C«1;
else
C«0;
Grammar: cmplti32 rx, oimm16
Description: Zero-extend the 16-bit immediate operand with offset 1 (OIMM16) to

32 bits, subtract this 32-bit value from RX value, compare the result
with 0, and update C bit. Make a signed comparison via cmplti32; in
another word, RX value is considered as signed number of complement

form. If RX is smaller than OIMM16 after zero-extension, it means that

136

o SKY

the subtraction result is smaller than zero. Set the condition bit C;
otherwise, clear the condition bit C.
Attention: The binary operand IMM16 is equal to OIMM16 — 1.
Influence on flag Set the condition bit C according to the comparison result
bit:
Restriction: The range of immediate operand is 0x1-0x10000.
Exception: None
Instruction

format:

3130 26 25 2120 1615 0

1111010 11001 RX IMM16

IMM16 field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM16, the immediate operand OIMM16
participating in comparison requires offset 1.

0000000000000000 — make a comparison with 0x1

0000000000000001 — make a comparison with 0x2

I111111111111111 — make a comparison with 0x10000

137

Unified

instruction

CMPNE — Compare unequal

Grammar

Operation Compiling result

cmpne X, ry

Make a comparison between | Compiled into corresponding 16-bit or

RX and RY. 32-bit instructions according to the
If RX !=RY, then range of register.

Ce1; if (x<16) and (y<16), then
else cmpnel6 rx, ry;

C«0; else

cmpne32 rx,ry;

Description:

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

Subtract RY value from RX value, compare the result with 0, and update
C bit. If RX is not equal to RY, it means that the subtraction result is not
equal to zero. Set the condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the comparison result

None

Make a comparison between RX and RY.
If RX !=RY, then
C«1;
else
C«0;
cmpnel6 rx, ry
Subtract RY value from RX value, compare the result with 0, and update
C bit. If RX is not equal to RY, it means that the subtraction result is not
equal to zero. Set the condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the comparison result

The range of register is r0-r15.

None

138

Instruction
format:
1514 10 9 6 5 210
011001 RY RX 10
32-bit
instruction
Operation: Make a comparison between RX and RY.
If RX !=RY, then
C«1;
else
C«0;
Grammar: cmpne32 rx,ry
Description: Subtract RY value from RX value, compare the result with 0, and update

Influence on flag

bit:

C bit. If RX is not equal to RY, it means that the subtraction result is not
equal to zero. Set the condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the comparison result

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 000001 |]OO1O00]000O0ODO0

139

CMPNEI - Compare unequal immediate

Unified
instruction
Grammar Operation Compiling result
cmpnei X, Make a comparison between RX | Compiled into corresponding
imm16 and immediate operand. 16-bit or 32-bit instructions
If RX = zero_extend(imm16), according to the range of
C«1; immediate operand and register.
else if (x<7) and (imm16<33), then
C<«0; cmpneil6 rx, immS5;
else
cmpnei32 rx, imml6;
Description: Subtract the value of 16-bit immediate operand that is zero-extended to

Influence on flag

bit:
Restriction:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

32 bits from RX value, compare the result with 0, and update C bit. If RX
is not equal to IMMI16 after zero-extension, it means that the subtraction
result is not equal to zero. Set the condition bit C; otherwise, clear the
condition bit C.

Set the condition bit C according to the comparison result

The range of immediate operand is 0x0-0xFFFF.

None

Make a comparison between RX and immediate operand.
If RX !=zero_extend(IMMS), then
C«1;
else
C«0;
cmpneil6 rx, imm5
Subtract the value of 5-bit immediate operand that is zero-extended to 32
bits from RX value, compare the result with 0, and update C bit. If RX is
not equal to IMMS after zero-extension, it means that the subtraction

result is not equal to zero. Set the condition bit C; otherwise, clear the

140

Influence on flag

bit:

condition bit C.

Set the condition bit C according to the comparison result

Restriction: The range of register is r0-r7;
The range of immediate operand is 0-31.
Exception: None
Instruction
format:
1514 10 8 7 5 4 0
0/j01 11| RX |[010 IMM5

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Make a comparison between RX and immediate operand.
If RX !=zero_extend(imm16), then

C«1;
else

C«0;
cmpnei rx, imm16
Subtract the value of 16-bit immediate operand that is zero-extended to
32 bits from RX value, compare the result with 0, and update C bit. [f RX
is not equal to IMM16 after zero-extension, it means that the subtraction
result is not equal to zero. Set the condition bit C; otherwise, clear the
condition bit C.

Set the condition bit C according to the comparison result

Restriction: The range of immediate operand is 0x0-OxFFFF.

Exception: None

Instruction

format:
3130 2625 2120 1615 0
111101011010 RX IMM16

141

CPOP — Co-processor operation instruction

Unified
instruction
Grammar Operation Compiling result
cpop <cpid, Co-processor operation instruction | Only 32-bit instructions
func> executes one or multiple user defined | exist.

CO-processor operations. cpop32 <cpid, func>
Description: This instruction executes user defined co-processor operation. The code

space of {[20-16], [14-0]} is reserved for user defined application.
Among them, bits 24-21 are agreed as co-processor numbers and used
to assign co-processor of pre-operation. As for the remaining bits, users
will define relevant operations (such as transfer of co-processor
instruction code).
Influence on flag This co-processor operation instruction does not influence the main
bit: assembly line flag bit, but might affect the flag bit of co-processor.

Exception: Illegal instruction exception

32-bit instruction

Operation: Co-processor operation instruction executes one or multiple user
defined co-processor operations.

Grammar: cpop32 <cpid, func>

Description: This instruction executes user defined co-processor operation. The code
space of {[20-16], [14-0]} is reserved for user defined application.
Among them, bits 24-21 are agreed as co-processor numbers and used
to assign co-processor of pre-operation. As for the remaining bits, users
will define relevant operations (such as transfer of co-processor
instruction code).

Influence on flag This co-processor operation instruction does not influence the main

bit: assembly line flag bit, but might affect the flag bit of co-processor.
Exception: Illegal instruction exception

Instruction

format:

142

3130

26 25

2120 16 15 14

1

11111

0

CPID

User-define 1

1

User-define 0

143

CPRC - Read transfer from condition bit of co-processor

Unified

instruction

Grammar Operation Compiling result

cprc <cpid, func> | Read the condition bit of co-processor | Only 32-bit instructions
to C bit of host processor; co-processor | exist.

number is user defined.

cpre32 <cpid, func>

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

This instruction executes user defined read operation of co-processor
condition bit. The code space of 12 low bits is reserved for user defined
application. Among them, bits 24-21 are agreed as co-processor
numbers and used to assign co-processor of pre-operation. As for the
remaining bits, users will define relevant operations.

The flag bit of main assembly line is decided by the condition bit of the
appointed co-processor.

Illegal instruction exception

Read the condition bit of co-processor to C bit of host processor;
co-processor number is user defined.

cpre32 <cpid, func>

This instruction executes user defined read operation of co-processor
condition bit. The code space of 12 low bits is reserved for user defined
application. Among them, bits 24-21 are agreed as co-processor
numbers and used to assign co-processor of pre-operation. As for the
remaining bits, users will define relevant operations.

The flag bit of main assembly line is decided by the condition bit of the
appointed co-processor.

Illegal instruction exception

2120 16 15 12 11

144

11111

0

CPID

0100

User-define

145

CPRCR - Read transfer from control register of co-processor

Unified
instruction
Grammar Operation Compiling result
cprer 1z, <cpid, Read the control register of | Only 32-bit instructions
func> co-processor to the general-purpose | exist.
register of host processor; co-processor | cprcr32 rz, <cpid, func>
number and co-processor control
register number are user defined.
Description: This instruction executes user defined read operation of co-processor

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

control register. The code space of 12 low bits is reserved for user
defined application. Among them, bits 24-21 are agreed as co-processor
numbers and used to assign co-processor of pre-operation. As for the
remaining bits, users will define co-processor control register number
and relevant operations.

No influence

Illegal instruction exception

Read the control register of co-processor to the general-purpose register
of host processor; co-processor number and co-processor control
register number are user defined.

cprer32 rz, <cpid, func>

This instruction executes user defined read operation of co-processor
control register. The code space of 12 low bits is reserved for user
defined application. Among them, bits 24-21 are agreed as co-processor
numbers and used to assign co-processor of pre-operation. As for the
remaining bits, users will define co-processor control register number

and relevant operations.

No influence

Illegal instruction exception

146

Instruction

format:
3130 2625 2120 16 15 12 11 0
11111110 CPID 0010 User-define

147

CPRGR - Read transfer from general-purpose register of

CO-processor

Unified
instruction
Grammar Operation Compiling result
cprgr rz, <cpid, Read the general-purpose register of | Only 32-bit instructions
func> co-processor to the general-purpose | exist.
register of host processor; co-processor | cprgr32 rz, <cpid, func>
number and co-processor general-purpose
register number are user defined.
Description: This instruction executes user defined read operation of co-processor

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

general-purpose register. The code space of 12 low bits is reserved for
user defined application. Among them, bits 24-21 are agreed as
co-processor numbers and used to assign co-processor of pre-operation.
As for the remaining bits, users will define co-processor
general-purpose register number and relevant operations.

No influence

Illegal instruction exception

Read the general-purpose register of co-processor to the
general-purpose register of host processor; co-processor number and
co-processor general-purpose register number are user defined.

cprgr32 rz, <cpid, func>

This instruction executes user defined read operation of co-processor
general-purpose register. The code space of 12 low bits is reserved for
user defined application. Among them, bits 24-21 are agreed as
co-processor numbers and used to assign co-processor of pre-operation.
As for the remaining bits, users will define co-processor
general-purpose register number and relevant operations.

No influence

148

bit:

Exception: Illegal instruction exception

Instruction

format:
3130 26 25 2120 16 15 12 11 0
I1f111111]0 CPID 0000 User-define

149

CPWCR - Write transfer to control register of co-processor

Unified
instruction
Grammar Operation Compiling result
cpwer X, <cpid, | Write contents in the general-purpose | Only 32-bit instructions
func> register of host processor into the control | exist.
register of co-processor; co-processor | cpwer32 rx, <cpid,
number and co-processor control register | func>
number are user defined.
Description: This instruction executes user defined write operation of co-processor

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

control register. The code space of 12 low bits is reserved for user
defined application. Among them, bits 24-21 are agreed as co-processor
numbers and used to assign co-processor of pre-operation. As for the
remaining bits, users will define co-processor control register number
and relevant operations.

No influence

Illegal instruction exception

Write contents in the general-purpose register of host processor into the
control register of co-processor; co-processor number and co-processor
control register number are user defined.

cpwerd2 rx, <cpid, func>

This instruction executes user defined write operation of co-processor
control register. The code space of 12 low bits is reserved for user
defined application. Among them, bits 24-21 are agreed as co-processor
numbers and used to assign co-processor of pre-operation. As for the
remaining bits, users will define co-processor control register number

and relevant operations.

No influence

Illegal instruction exception

150

Instruction

format:
3130 2625 2120 16 15 12 11 0
11111110 CPID 0011 User-define

151

CPWGR - Write transfer to general-purpose register of

Unified

instruction

CO-processor

Grammar

Operation Compiling result

cpwgr rx, <cpid,

Write contents in the general-purpose | Only 32-bit instructions

func> register of host processor into the | exist.
general-purpose register of | cpwgr32 rx, <cpid, func>
co-processor; co-processor number and
co-processor general-purpose register
number are user defined.
Description: This instruction executes user defined write operation of co-processor

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

general-purpose register. The code space of 12 low bits is reserved for
user defined application. Among them, bits 8-11 are agreed as
co-processor numbers and used to assign co-processor of pre-operation.
As for the remaining bits, users will define co-processor
general-purpose register number and relevant operations.

No influence

Illegal instruction exception

Write contents in the general-purpose register of host processor into the
general-purpose register of co-processor; co-processor number and
co-processor general-purpose register number are user defined.
cpwgrd2 rx, <cpid, func>

This instruction executes user defined write operation of co-processor
general-purpose register. The code space of 12 low bits is reserved for
user defined application. Among them, bits §-11 are agreed as
co-processor numbers and used to assign co-processor of pre-operation.
As for the remaining bits, users will define co-processor

general-purpose register number and relevant operations.

152

Influence on flag

bit:

No influence

Exception: Illegal instruction exception

Instruction

format:
3130 26 25 2120 16 15 12 11 0
I{11111 CPRZ 0001 User-define

153

DECF - C=0 SUBTRACT IMMEDIATE

Unified
instruction
Grammar Operation Compiling result
decf rz, rx, imm5 | if C==0, then Only 32-bit instructions
RZ <« RX - zero_extend(IMMY5); exist.
else decf32 rz, rx, imm5
RZ <« RZ;

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

3130 2625

If the condition bit C is 0, zero-extend the 5-bit immediate operand to
32 bits, subtract this 32-bit value from RX value, and save the result in
RZ; otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

if C==0, then
RZ <~ RX - zero_extend(IMMY);

else
RZ <« RZ;
decf32 rz, rx, imm5

If the condition bit C is 0, zero-extend the 5-bit immediate operand to
32 bits, subtract this 32-bit value from RX value, and save the result in
RZ; otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

2120 16 15 109 54 0

154

10001

000011

00100

155

DECGT - Set C bit when greater than zero in subtraction

Unified
instruction
Grammar Operation Compiling result
decgt 1z, rx, RZ <« RX - zero_extend(IMMS5); Only 32-bit instructions
imm5 IfRZ >0, then exist.
C«1; decgt32 rz, rx, imm5
else
C«0;
Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

of subtracting this 32-bit value from RX value in RZ. The subtraction
result is considered as signed number of complement form. If the result
is greater than zero, set the condition bit C; otherwise, clear the
condition bit C.

If the subtraction result is greater than zero, set the condition bit C;
otherwise, clear the condition bit C.

The range of immediate operand is 0-31.

None

RZ <« RX - zero_extend(IMMS5);
IfRZ > 0, then

C«1;
else

C«0;
decgt32 1z, rx, imm5
Zero-extend the 5-bit immediate operand to 32 bits and save the result
of subtracting this 32-bit value from RX value in RZ. The subtraction
result is considered as signed number of complement form. If the result
is greater than zero, set the condition bit C; otherwise, clear the
condition bit C.
If the subtraction result is greater than zero, set the condition bit C;

otherwise, clear the condition bit C.

156

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 IMM5 00010000001

157

DECLT - Set C bit when smaller than zero in subtraction

Unified
instruction
Grammar Operation Compiling result
declt 1z, rx, imm5 | RZ < RX - zero_extend(IMM5); Only 32-bit instructions
If RZ <0, then exist.
C«1; declt32 rz, rx, imm5
else
C«0;

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Zero-extend the 5-bit immediate operand to 32 bits and save the result
of subtracting this 32-bit value from RX value in RZ. The subtraction
result is considered as signed number of complement form. If the result
is smaller than zero, set the condition bit C; otherwise, clear the
condition bit C.

If the subtraction result is smaller than zero, set the condition bit C;
otherwise, clear the condition bit C.

The range of immediate operand is 0-31.

None

RZ <« RX - zero_extend(IMMS5);
IfRZ <0, then

C«1;
else

C«0;
declt32 rz, rx, imm5
Zero-extend the 5-bit immediate operand to 32 bits and save the result
of subtracting this 32-bit value from RX value in RZ. The subtraction
result is considered as signed number of complement form. If the result
is smaller than zero, set the condition bit C; otherwise, clear the
condition bit C.
If the subtraction result is smaller than zero, set the condition bit C;

otherwise, clear the condition bit C.

158

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 IMM5 00010000010

159

DECNE - Set C bit when not equal to zero in subtraction

Unified
instruction
Grammar Operation Compiling result
decne 1z, rx, RZ <« RX - zero_extend(IMMS5); Only 32-bit instructions
imm5 IfRZ '=0, then exist.
C«1; decne32 rz, rx, imm5
else
C«0;
Description: Zero-extend the 5-bit immediate operand to 32 bits and save the result

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

of subtracting this 32-bit value from RX value in RZ. If the result is not
equal to zero, set the condition bit C; otherwise, clear the condition bit
C.

If the subtraction result is not equal to zero, set the condition bit C;
otherwise, clear the condition bit C.

The range of immediate operand is 0-31.

None

RZ <« RX - zero_extend(IMMS5);
If RZ != 0, then

C«1;
else

C«0;
decne32 rz, rx, imm5
Zero-extend the 5-bit immediate operand to 32 bits and save the result
of subtracting this 32-bit value from RX value in RZ. If the result is not
equal to zero, set the condition bit C; otherwise, clear the condition bit
C.
If the subtraction result is not equal to zero, set the condition bit C;
otherwise, clear the condition bit C.
The range of immediate operand is 0-31.

None

160

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110001 IMM5 00010000100

161

DECT — C=1 subtract immediate

Unified
instruction
Grammar Operation Compiling result
dect rz, rx, imm5 | if C==1, then Only 32-bit instructions
RZ <« RX - zero_extend(IMMY5); exist.
else dect32 1z, rx, imm5
RZ <« RZ;

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

3130 2625

If the condition bit C is 1, zero-extend the 5-bit immediate operand to
32 bits, subtract this 32-bit value from RX value, and save the result in
RZ; otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

if C==1, then

RZ <~ RX - zero_extend(IMMY);
else

RZ <« RZ;
dect32 rz, rx, imm35
If the condition bit C is 1, zero-extend the 5-bit immediate operand to
32 bits, subtract this 32-bit value from RX value, and save the result in

RZ; otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

2120 16 15 109 54 0

162

10001

000011

01000

163

DIVS - Divide signed

Unified
instruction
Grammar Operation Compiling result
divs 1z, 1X, Y Divide signed Only 32-bit instructions
RZ=RX/RY exist.
divs32 1z, rx, 1y
Description: This instruction divides RX value of register by RY value of register,

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

and saves the quotient in RZ. The values of RX, RY and RZ are
considered as 32-bit signed numbers.

Attention: There is no definition for the result of dividing 0x80000000
by OxfTfTiftt.

No influence

Division by zero exception

Divide signed
RZ=RX/RY
divs32 1z, rx, 1y
This instruction divides RX value of register by RY value of register,
and saves the quotient in RZ. The values of RX, RY and RZ are
considered as 32-bit signed numbers.

Attention: There is no definition for the result of dividing 0x80000000
by OxfTftiftt.

No influence

Division by zero exception

2120 16 15 109 54 0

164

10001

RY

100000

00010

165

DIVU - Divide unsigned

SKY

Unified
instruction
Grammar Operation Description
divu 1z, rx, 1y Divide unsigned Only 32-bit instructions
RZ=RX/RY exist.
divu32 rz, rx, ry
Description: This instruction divides RX value of register by RY value of register,

Influence on flag
bit:

Exception:

32-bit instruction

Operation:
Grammar:

Description:

Influence on flag

bit:

and saves the quotient in RZ. The values of RX, RY and RZ are
considered as 32-bit unsigned numbers.

No influence

Division by zero exception

Divide unsigned
RZ=RX/RY
divu32 rz, rx, ry
This instruction divides RX value of register by RY value of register,
and saves the quotient in RZ. The values of RX, RY and RZ are
considered as 32-bit unsigned numbers.

No influence

Exception: Division by zero exception
Instruction
format:
3130 2625 2120 16 15 109 54 0
10001 RY RX 100000 (00001 RZ

166

DOZE — Enter low power consumption doze mode

Unified
instruction
Grammar Operation Compiling result
doze Enter low power consumption doze | Only 32-bit instructions
mode exist.
doze32
Description: This instruction makes the processor enter low power consumption

Influence on flag
bit:

Exception:

32-bit instruction
Operation:
Grammar:
Attribute:

Description:

Influence on flag

bit:

doze mode and wait for an interrupt to exit from this mode. At this

time, CPU clock is stopped and corresponding peripheral equipment is

also stopped.

No influence

Privilege violation exception

Enter low power consumption doze mode

doze32

Privileged instruction

This instruction makes the processor enter low power consumption

doze mode and wait for an interrupt to exit from this mode. At this

time, CPU clock is stopped and corresponding peripheral equipment is

also stopped.

No influence

Exception: Privilege violation exception

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110000100000 (00000(010100(00001 00000

167

FFO0 — Fast find 0

Unified

instruction

Grammar Operation Compiling result

ff0 rz rx RZ « find_first O(RX); Only 32-bit instructions
exist.
ff0.32 1z, 1x

Description: Find the first bit that is 0 in RX and return the search result to RZ. The

Influence on flag
bit:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

search order is from the highest bit to the lowest bit of RX. If the
highest bit (RX[31]) of RX is 0, return the value of 0 to RZ. If no bit of

0 exists in RX, return the value of 32 to RZ.

No influence

None

RZ « find first O(RX);

1£0.32

Iz, 1X

Find the first bit that is 0 in RX and return the search result to RZ. The

search order is from the highest bit to the lowest bit of RX. If the
highest bit (RX[31]) of RX is 0, return the value of 0 to RZ. If no bit of

0 exists in RX, return the value of 32 to RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 (]000O00O0 011111]0000O01 RZ

168

FF1 — Fast find 1

Unified

instruction

Grammar Operation Compiling result

ffl rz,rx RZ « find_first 1(RX); Only 32-bit instructions
exist.
ff1.32 1z, 1x

Description: Find the first bit that is 1 in RX and return the search result to RZ. The

Influence on flag
bit:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

search order is from the highest bit to the lowest bit of RX. If the
highest bit (RX[31]) of RX is 1, return the value of 0 to RZ. If no bit of

1 exists in RX, return the value of 32 to RZ.

No influence

None

RZ « find first 1(RX);

ff1.32

Iz, 1X

Find the first bit that is 1 in RX and return the search result to RZ. The

search order is from the highest bit to the lowest bit of RX. If the
highest bit (RX[31]) of RX is 1, return the value of 0 to RZ. If no bit of

1 exists in RX, return the value of 32 to RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 (]000O00O0 011111]00010 RZ

169

Unified instruction

GRS - Sign generation

Grammar Operation Compiling result
grs 1z, label RZ « PC + sign_extend(offset << 1); Only 32-bit instructions exist.
grs 1z, imm32 grs32 1z, label

grs32 rz, imm32
Description: Generate the value of sign and this value is determined by the location of

Influence on flag
bit:

Exception:
32-bit
instruction
Operation:

Grammar:

Description:

Influence on flag

bit:

label or 32-bit immediate operand (IMM32). The value of sign is gained
by adding the current PC to the value of sign-extending the 18-bit relative
offset shifting left by 1 bit to 32 bits. The effective range of sign value is
the address space of £256KB.

No influence

None

RZ « PC + sign_extend(offset << 1);
grs 1z, label
ars

Generate the value of sign and this value is determined by the location of

rz, imm32

label or 32-bit immediate operand (IMM32). The value of sign is gained
by adding the current PC to the value of sign-extending the 18-bit
relative offset shifting left by 1 bit to 32 bits. The effective range of sign
value is the address space of £256KB.

No influence

Exception: None

Instruction

format:

3130 2625 21 20 18 17 0
1110011 RZ 011 Offset

170

IDLY - Ban interrupt identification

Unified
instruction
Grammar Operation Compiling result
idly n Ban interrupt identification for n | Only 32-bit instructions
instructions exist.
idly32 n
Description: After idly, interrupt identification is banned for n instructions, thus an

uninterruptible instruction sequence is executed in multitask
environment.

Influence on flag The flag bit C is cleared when idly instruction is executed. If exception

bit: happens to the n instructions after idly instruction is executed
(including tracking or breakpoint exception), C bit is set as 1 and the
interrupt instruction sequence can be observed.

Restriction: The instructions after idly instruction can only be arithmetic and logical
instructions of single clock period, 1d, st or branch instruction. In order
to minimize some potential interrupt influences, other instructions
should not be adopted; otherwise, we cannot guarantee that the
instruction will not be interrupted. If there is another idly instruction in
the instruction sequence after idly, it will be ignored. However, rte, rfi,
doze, wait and stop instructions can stop idly instruction sequence.

Idly instruction is not allowed to appear in a cycle with less than 8

instructions.
Exception: None
Remark: If idly counter stays in a non-zero state, interrupt will be shielded. If a

breakpoint exception or tracking exception happens in idly instruction
sequence, C bit will be set as 1 and operation failure will happen to the
sequence. In the process of exception handling, interrupt shielding
becomes invalid, thus the counter will be cleared.

The idly counter remains unchanged in the debugging process of using
HAD debugging port. Once the processor transforms into normal

operation from debugging mode, count will be continued.

Note: n is decided by IMMS. When IMMS is smaller than or equal to 3,

171

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Restriction:

Exception:

Remark:

n is 4; when IMMS is greater than 3, n is (IMMS5+1).

IMMS:
00000 —n=4
00001 —n=4
00010 —n=4
00011 —n=4
00100 —n=5
11111 —n=32

Ban interrupt identification for n instructions

disable int in_following(n);

idly32 n

After idly, interrupt identification is banned for n instructions, thus an
uninterruptible instruction sequence is executed in multitask
environment.

The flag bit C is cleared when idly instruction is executed. If exception
happens to the n instructions after idly instruction is executed
(including tracking or breakpoint exception), C bit is set as 1 and the
interrupt instruction sequence can be observed.

The instructions after idly instruction can only be arithmetic and logical
instructions of single clock period, 1d, st or branch instruction. In order
to minimize some potential interrupt influences, other instructions
should not be adopted; otherwise, we cannot guarantee that the
instruction will not be interrupted. If there is another idly instruction in
the instruction sequence after idly, it will be ignored. However, rte, rfi,
doze, wait and stop instructions can stop idly instruction sequence.

Idly instruction is not allowed to appear in a cycle with less than 8
instructions.

None

If idly counter stays in a non-zero state, interrupt will be shielded. If a
breakpoint exception or tracking exception happens in idly instruction
sequence, C bit will be set as 1 and operation failure will happen to the
sequence. In the process of exception handling, interrupt shielding

becomes invalid, thus the counter will be cleared.

172

o SKY

The idly counter remains unchanged in the debugging process of using
HAD debugging port. Once the processor transforms into normal

operation from debugging mode, count will be continued.

Note: n is decided by IMMS. When IMMS is smaller than or equal to 3,
n is 4; when IMMS is greater than 3, n is (IMMS5+1).
IMMS5:
00000 — n=4
00001 —n=4
00010 — n=4
00011 —n=4
00100 —n=5
11111 — n=32
Instruction

format:

3130 2625 2120 16 15 109 54 0

1110000 IMMS5 00000000111 0000100000

173

INCF - C=0 add immediate

Unified
instruction
Grammar Operation Compiling result
incf rz, rx, imm5 | if C==0, then Only 32-bit instructions
RZ <« RX + zero_extend(IMMS); exist.
else incf32 rz, rx, imm5

RZ <« RZ;

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

3130 2625

If the condition bit C is 0, zero-extend the 5-bit immediate operand to
32 bits, add this 32-bit value to RX value, and save the result in RZ;
otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

if C==0, then
RZ <~ RX + zero_extend(IMMS);

else
RZ <« RZ;
incf32 rz, rx, imm5

If the condition bit C is 0, zero-extend the 5-bit immediate operand to
32 bits, add this 32-bit value to RX value, and save the result in RZ;
otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

2120 16 15 109 54 0

174

10001

000011

00001

175

INCT - C=1 add immediate

Unified
instruction
Grammar Operation Compiling result
inct 1z, rx, imm5 | if C==1, then Only 32-bit instructions
RZ <« RX + zero_extend(IMMS); exist.
else inct32 rz, rx, imm35

RZ <« RZ;

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

3130 2625

If the condition bit C is 1, zero-extend the 5-bit immediate operand to
32 bits, add this 32-bit value to RX value, and save the result in RZ;
otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

if C==1, then

RZ <~ RX + zero_extend(IMMS);
else

RZ <« RZ;
inct32 rz, rx, imm35
If the condition bit C is 1, zero-extend the 5-bit immediate operand to
32 bits, add this 32-bit value to RX value, and save the result in RZ;
otherwise, keep the values of RZ and RX unchanged.

No influence

The range of immediate operand is 0-31.

None

2120 16 15 109 54 0

176

10001

000011

00010

177

INS — Bit insert

Unified
instruction
Grammar Operation Compiling result
ins rz, rx, msb, RZ[MSB:LSB] <— RX[MSB-LSB:0] Only 32-bit instructions
Isb exist.
ins32 rz, rx, msb, Isb

Description:

Influence on flag
bit:

Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Insert a section of consecutive low bits of RX into a section of
consecutive bits of RZ (RZ[MSB:LSB]) appointed by 2 5-bit
immediate operands (MSB,LSB), and keep other bits of RZ unchanged;
the consecutive low bit width of RX is assigned by MSB and LSB (i.e.
RX[MSB-LSB:0]). If MSB is equal to 31 and LSB is equal to zero, RZ
value is the same with RX value. If MSB is equal to LSB, then MSB
(i.e. LSB) bit of RZ is the lowest bit of RX, and other bits remain
unchanged. If MSB is smaller than LSB, behavior of this instruction
cannot be predicted.

No influence

The range of MSB is 0-31, the range of LSB is 0-31, and MSB should
be greater than or equal to LSB.

None

RZ[MSB:LSB] <~ RX[MSB-LSB:0]
ins32 rz, rx, msb, Isb

Insert a section of consecutive low bits of RX into a section of
consecutive bits of RZ (RZ[MSB:LSB]) appointed by 2 5-bit
immediate operands (MSB,LSB), and keep other bits of RZ unchanged;
the consecutive low bit width of RX is assigned by MSB and LSB (i.e.
RX[MSB-LSB:0]). If MSB is equal to 31 and LSB is equal to zero, RZ
value is the same with RX value. If MSB is equal to LSB, then MSB
(i.e. LSB) bit of RZ is the lowest bit of RX, and other bits remain

unchanged. If MSB is smaller than LSB, behavior of this instruction

178

Influence on flag

bit:

cannot be predicted.

No influence

Restriction: The range of MSB is 0-31, the range of LSB is 0-31, and MSB should
be greater than or equal to LSB.
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
1110001 RZ RX 010111 SIZE LSB

SIZE field — Assign the width of inserted bit.
Attention: The binary operand SIZE is equal to MSB-LSB.

00000 -1
00001 -2

11111 -32

LSB field — Assign the bit that ends the insertion.

00000 — 0 bit
00001 — 1 bit

11111 — 31 bits

179

IPOP — Interrupt pop

h’SKY

Unified
instruction
Grammar Operation Compiling result
ipop Load the interrupted | Only 16-bit instructions exist.
general-purpose register site ipop;
{RO~R3, R12, R13} from the stack
pointer register, and then update the
stack pointer register to the top of
stack storage;
{RO~R3,R12,R13} «~ MEM[SP] ~
MEM][SP+20];
SP<«-SP+24;
Description: Load the interrupted general-purpose register site {RO~R3, R12, R13}

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

from the stack pointer register, and then update the stack pointer register

to the top of stack storage. Adopt direct addressing mode of stack

pointer register.

No influence

Access error exception and unaligned exception

Load the interrupted general-purpose register site {RO~R3, R12, R13}

from the stack pointer register, and then update the stack pointer register

to the top of stack storage;

{RO~R3,R12,R13} <~ MEM[SP]~MEM[SP+20];

SP<«-SP+24;
ipopl6

Load the interrupted general-purpose register site {RO~R3, R12, R13}

from the stack pointer register, and then update the stack pointer register

to the top of stack storage. Adopt direct addressing mode of stack

pointer register.

No influence

180

Exception: Access error exception and unaligned exception
Instruction
format:

1514 109 8 7 5 4

0j00101(0]0]|O

1

00011

181

IPUSH - Interrupt pop

Unified
instruction
Grammar Operation Compiling result
ipush Store the Only 16-bit instructions exist.
general-purpose ipush;
{RO~R3, R12, R13} to the stack
storage, and then update the stack
pointer register to the top of stack
storage;
MEM][SP-4]~MEM][SP-24]
«{R13,R12,R3~R0};
SP<«-SP-24;
Description: Store the interrupted general-purpose register site {RO~R3, R12, R13}

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:
Exception:

Instruction

to the stack storage, and then update the stack pointer register to the top

of stack storage. Adopt direct addressing mode of stack pointer register.

No influence

Access error exception and unaligned exception

Store the interrupted general-purpose register site {RO~R3, R12, R13}

to the stack storage, and then update the stack pointer register to the top

of stack storage;

MEMI[SP-4]~MEM[SP-24] < {R13,R12,R3~R0};

SP<«SP-24;
ipush16

Store the interrupted general-purpose register site {RO~R3, R12, R13}
to the stack storage, and then update the stack pointer register to the top

of stack storage. Adopt direct addressing mode of stack pointer register.

No influence

Access error exception and unaligned exception

format:
15 14 109 8 7 5 4
0j]00O101 |0(0]O 1100010

183

SKY

IXH — Index half-word

Unified
instruction
Grammar Operation Compiling result
ixh 1z, rx, ry RZ « RX+(RY <<1) Only 32-bit instructions
exist.
ixh32 rz, rx, 1y
Description: Make RY value shift left by one bit, add it to RX value, and save the

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

result in RZ.

No influence

None

RZ < RX + (RY << 1)

ixh32 rz, rx, ry

Make RY value shift left by one bit, add it to RX value, and save the

result in RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 000010]|]00O0O01 RZ

184

IXW — Index word

SKY

Unified
instruction
Grammar Operation Compiling result
IXW 17, IX, Ty RZ « RX + (RY << 2) Only 32-bit instructions
exist.
ixw32 1z, rx, ry
Description: Make RY value shift left by two bits, add it to RX value, and save the

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

result in RZ.

No influence

None
RZ <« RX + (RY <<2)
ixw32 1z, rx, ry

Make RY value shift left by two bits, add it to RX value, and save the

result in RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 000010]|]00O0OT1O0 RZ

185

SKY

IXD — Index double word

Unified
instruction
Grammar Operation Compiling result
ixd 1z, 1X, 1Y RZ « RX + (RY << 3) Only 32-bit instructions
exist.
ixd32 rz, rx,ry
Description: Make RY value shift left by three bits, add it to RX value, and save the

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

result in RZ.

No influence

None
RZ < RX + (RY << 3)
ixd32 rz, rx,ry

Make RY value shift left by three bits, add it to RX value, and save the

result in RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 00001000100 RZ

186

JMP — Register jump

Unified
instruction
Grammar Operation Compiling result
jmp rx Jump to the position appointed by register | Compiled into
PC <« RX & Oxfftfftfe corresponding 16-bit or
32-bit instructions according
to the range of register.
if (x<16), then
jmpl6é rx;
else
jmp32 rx;
Description: The program jumps to the position appointed by register RX and the

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

lowest bit of RX is ignored. The jump range of JMP instruction is the
whole address space of 4GB.

No influence

None

Jump to the position appointed by register

PC < RX & Oxfftfffte

jmpl6é rx

The program jumps to the position appointed by register RX and the
lowest bit of RX is ignored. The jump range of JMP instruction is the
whole address space of 4GB.

No influence

None

187

1514 10 9 6 5 210

0/11110|0000O0 RX 0 0

32-bit
instruction
Operation: Jump to the position appointed by register
PC « RX & Oxffftfffe
Grammar: jmp32 rx
Description: The program jumps to the position appointed by register RX and the

lowest bit of RX is ignored. The jump range of JMP instruction is the
whole address space of 4GB.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 26 25 2120 16 15 0

111101000110 RX 0000OO0OO0OO0O0O0OO0OOOOOO

188

JMPI — Jump indirect

Unified

instruction

Grammar Operation Compiling result

jmpi label The program jumps to the position appointed | Only 32-bit instructions
by storage exist.
PC < MEM] jmpi32 label
(PC + zero_extend(offset << 2)) & Oxfffttftc]

Description: The program jumps to label position and label is loaded by storage. The

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

Instruction

storage address is gained by adding the current PC to the value of
unsigned extending the 16-bit relative offset shifting left by 2 bits to 32
bits, and compulsively clearing the two lowest bits. The jump range of
JMPI instruction is the whole address space of 4GB.

No influence

Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

The program jumps to the position appointed by storage
PC <~ MEMJ(PC + zero_extend(offset << 2)) & Oxf{ftfftfc]
jmpi32 label

The program jumps to label position and label is loaded by storage. The
storage address is gained by adding the current PC to the value of
unsigned extending the 16-bit relative offset shifting left by 2 bits to 32
bits, and compulsively clearing the two lowest bits. The jump range of

JMPI instruction is the whole address space of 4GB.

No influence

Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

189

format:
3130 2625 2120 16 15 0
1111010101 10(00000O0 Offset

190

JMPIX — Register index jump

Unified
instruction
Grammar Operation Compiling result
jmpix rx,imm | Jump to the position appointed by register | Compiled into
index corresponding 16-bit or
PC < SVBR + (RX & 0xff) * IMM 32-bit instructions according
to the range of register.
if (x<16), then
jmpix16 rx;
else
jmpix32 rx;
Description: The program jumps to the position of SVBR + RX[7:0] * IMM, IMM €&

{16, 24, 32, 40}. The 24™ high bit of RX is ignored.

Influence on flag No influence

bit:
Exception: None
16-bit
instruction
Operation: Jump to the position appointed by register index
PC <~ SVBR + (RX & 0xff) * IMM
Grammar: jmpix16 rx, imm
Description: The program jumps to the position of SVBR + RX[7:0] * IMM, IMM €&

{16, 24, 32, 40}. The 24™ high bit of RX is ignored.
Influence on flag No influence
bit:
Exception: None
Instruction

format:

15 14 1110 8 7 3 0

191

0 0111 RX 111000 (IMM2

IMM?2 field — Assign the value of immediate operand.

Attention: The corresponding relation between IMM2 value of binary coding and IMM
value in jump instruction is as follows:

2°b00 — *16

2°b01 — *24

2°b10 — *32

2’b11 — *40

32-bit

instruction

Operation: Jump to the position appointed by register index
PC <« SVBR + (RX & 0xff) * IMM

Grammar: jmpix32 rx, imm

Description: The program jumps to the position of SVBR + RX[7:0] * IMM, IMM &
{16, 24, 32, 40}. The 24™ high bit of RX is ignored.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 26 25 2120 16 15 210

111101001111 RX 00000000000O0CO0O IMM2

IMM?2 field — Assign the value of immediate operand.

Attention: The corresponding relation between IMM2 value of binary coding and IMM
value in jump instruction is as follows:

2°b00 — *16

2°b01 — *24

2°b10 — *32

2°bl11 — *40

192

JSR — Register jump to subprogram

Unified
instruction
Grammar Operation Compiling result
jsrorx Link and jump to the subprogram position | Compiled into
appointed by register corresponding 16-bit or
R15 « PC +4, 32-bit instructions
PC <+ RX & Oxfftfftfe according to the range of
register.
if (x<16), then
jsrl6 rx;
else
jsr32 rx;
Description: This instruction saves the return address (PC of the next instruction, i.e.

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

PC+4 at present) of the subprogram in link register R15, the program is
executed after jumping to the subprogram position appointed by contents
of register RX, and the lowest bit of RX is ignored. The jump range of
JSR instruction is the whole address space of 4GB.

No influence

None

Link and jump to the subprogram position appointed by register
R15 <« PC +4, PC « RX & Oxffftfffe

jsrl6 rx
This instruction saves the return address (PC of the next instruction, i.e.
PC+4 at present) of the subprogram in link register R15, the program is
executed after jumping to the subprogram position appointed by contents
of register RX, and the lowest bit of RX is ignored. The jump range of
JSR instruction is the whole address space of 4GB.

No influence

193

bit:
Exception: None
Instruction
format:
1514 10 9 6 5 210
0)11110|1111 RX 0 1
32-bit
instruction
Operation: Link and jump to the subprogram position appointed by register
R15 <« PC + 4, PC « RX & Oxffftfffe
Grammar: jsr32 rx
Description: This instruction saves the return address (PC of the next instruction, i.e.

Influence on flag

bit:

PC+4 at present) of the subprogram in link register R15, the program is
executed after jumping to the subprogram position appointed by contents
of register RX, and the lowest bit of RX is ignored. The jump range of
JSR instruction is the whole address space of 4GB.

No influence

Exception: None

Instruction

format:

3130 2625 2120 16 15 0
11101000111 RX 0000O0OO0OO0OOO0OOO0OO0OOO0OO0OO

194

JSRI — Jump to subprogram indirect

Unified
instruction
Grammar Operation Compiling result
jsri label The program jumps to the subprogram | Only 32-bit instructions
position appointed by storage exist.
R15 <« next PC, jsri32 label;
PC < MEM[
(PC + zero_extend(offset <<2)) &
Oxfftfftfc]
Description: This instruction saves the return address (PC of the next instruction) of

the subprogram in link register R15, the program is executed after
jumping to the label position, and label is loaded by storage. The jump
range of JSR instruction is the whole address space of 4GB. The storage
address is gained by adding the current PC to the value of unsigned
extending the 16-bit relative offset shifting left by 2 bits to 32 bits, and
compulsively clearing the two lowest bits. The jump range of JSRI
instruction is the whole address space of 4GB.

Influence on flag No influence

bit:

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch
exception, and TLB read invalid exception

32-bit

instruction

Operation: The program jumps to the subprogram position appointed by storage
R15 « PC + 4, PC « MEMJ[(PC + zero_extend(offset << 2)) &
Ox fftfttfc]

Grammar: jsri32 label

Description: This instruction saves the return address (PC of the next instruction, i.e.

PC+4 at present) of the subprogram in link register R15, the program is
executed after jumping to the label position, and label is loaded by

storage. The jump range of JSR instruction is the whole address space of

195

o SKY

4GB. The storage address is gained by adding the current PC to the value
of unsigned extending the 16-bit relative offset shifting left by 2 bits to
32 bits, and compulsively clearing the two lowest bits. The jump range of
JSRI instruction is the whole address space of 4GB.

Influence on flag No influence

bit:
Exception: Access error exception, TLB unrecoverable exception, TLB mismatch
exception, and TLB read invalid exception
Instruction
format:
3130 26 25 2120 16 15 0
111101010111 (00000 Offset

196

LD.B — Load unsigned and extended byte

Unified
instruction
Grammar Operation Compiling result
ldb rz(rx, RZ « zero_extend MEM[RX + | Compiled into 16-bit or 32-bit
disp) zero_extend(offset)]) instructions according to the range of
offset and register.
if (disp<32)and(x<7) and (z<7), then
1d16.b rz, (rx, disp);
else
1d32.b rz, (rx, disp);
Description: Save the byte loaded from storage in register RZ after zero-extension to

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

32 bits. Adopt the addressing mode of register and immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 12-bit relative offset to
32 bits. The address space of LD.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load byte from storage to register, extend unsigned

RZ « zero_extend MEM[RX + zero_extend(offset)])

1d16.b 1z, (rx, disp)

Save the byte loaded from storage in register RZ after zero-extension to
32 bits. Adopt the addressing mode of register and immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 5-bit relative offset to
32 bits. The address space of LD16.B instruction is +32B.

Attention: The offset DISP is the offset of binary operand.

No influence

197

bit:
Restriction: The range of register is r0-r7.
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
1514 i 8 7 5 4 0
11000 0| RX RZ Offset
32-bit
instruction
Operation: Load byte from storage to register, extend unsigned
RZ « zero_extend MEM[RX + zero_extend(offset)])
Grammar: 1d32.b 1z, (rx, disp)
Description: Save the byte loaded from storage in register RZ after zero-extension to

Influence on flag

bit:

32 bits. Adopt the addressing mode of register and immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 12-bit relative offset
to 32 bits. The address space of LD32.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
3130 2625 2120 1615 12 11 0
{10110 RZ RX 0000 Offset

198

LD.BS — Load signed and extended byte

SKY

Unified

instruction

Grammar Operation Compiling result

ld.bs 1z, (rx, disp) | RZ « sign_extend MEM[RX + Only 32-bit instructions exist.
zero_extend(offset)]) 1d32.bs 1z, (rx, disp)

Description: Save byte loaded from storage in register RZ after sign-extension to 32

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

bits. Adopt the addressing mode of register and immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 12-bit relative offset
to 32 bits. The address space of LD.BS instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

No influence
Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Load byte from storage to register, extend signed

RZ « sign_extend(MEM[RX + zero_extend(offset)])
1d32.bs 1z, (rx, disp)

Save byte loaded from storage in register RZ after sign-extension to 32
bits. Adopt the addressing mode of register and immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 12-bit relative offset
to 32 bits. The address space of LD32.BS instruction is +4KB.
Attention: The offset DISP is the offset of binary operand.

No influence
Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

199

Instruction

format:

3130 2625 2120 1615 12 11 0
1110110 0100 Offset

200

LD.D - Load double word

SKY

Unified

instruction

Grammar Operation Compiling result

ldd 1z (rx,disp) | RZ < MEM[RX + Only 32-bit instructions exist.
zero_extend(offset << 2)] 1d32.d rz, (rx, disp);
RZ + 1 « MEM[RX +
zero_extend(offset <<2) + 0x4]

Description: Load double word from storage to register RZ and RZ + 1. Adopt the

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

addressing mode of register and immediate operand offset. The
effective address of storage is gained by adding the base register RX to
the value of unsigned extending the 12-bit relative offset shifting left
by 2 bits to 32 bits. The address space of LD.D instruction is +16KB.
Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Load double word from storage to register

RZ <« MEM[RX + zero_extend(offset << 2)]

RZ +1 < MEM|RX + zero_extend(offset << 2) + 0x4]
1d32.d
Load double word from storage to register RZ and RZ + 1. Adopt the

1z, (rx, disp)

addressing mode of register and immediate operand offset. The
effective address of storage is gained by adding the base register RX to
the value of unsigned extending the 12-bit relative offset shifting left
by 2 bits to 32 bits. The address space of LD32.D instruction is +16KB.
Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

No influence

201

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

3130 2625 2120 1615 12 11 0
{10110 RZ RX 0011 Offset

202

LD.H -

Unified

instruction

Load unsigned and extended half-word

Grammar

Operation Compiling result

ldh rz (rx, disp)

RZ « zero_extend(MEM[RX | Compiled into 16-bit or 32-bit

+ zero_extend(offset << 1)]) instructions according to the range of

offset and register.

if (disp<64)and(x<7) and (z<7), then
1d16.h rz, (rx, disp);

else

1d32.h rz, (rx, disp);

Description:

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Description:

Save half-word loaded from storage in register RZ after zero-extension
to 32 bits. Adopt the addressing mode of register and immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 12-bit relative
offset shifting left by 1 bit to 32 bits. The address space of LD.H
instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 1 bit.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Load half-word from storage to register, extend unsigned

RZ < zero_extendMEM[RX + zero_extend(offset << 1)])

1d16.h rz, (rx, disp)

Save half-word loaded from storage in register RZ after zero-extension
to 32 bits. Adopt the addressing mode of register and immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 5-bit relative

offset shifting left by 1 bit to 32 bits. The address space of LD16.H

203

Influence on flag

bit:

instruction is +64B.
Attention: The offset DISP is gained after the offset of binary operand
shifts left by 1 bit.

No influence

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

1514 1110 7 5 4 0
10001 RX RZ Offset

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Load half-word from storage to register, extend unsigned
RZ « zero_extendMEM[RX + zero_extend(offset << 1)])
1d32.h rz, (rx, disp)

Save half-word loaded from storage in register RZ after zero-extension
to 32 bits. Adopt the addressing mode of register and immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 12-bit relative
offset shifting left by 1 bit to 32 bits. The address space of LD32.H
instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 1 bit.

No influence

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

3130 2625 2120 1615 12 11 0
110110 RZ RX 0001 Offset

204

LD.HS - Load signed and extended half-word

SKY

Unified

instruction

Grammar Operation Compiling result

Idhs 1z, (rx, disp) | RZ « sign_extend MEM[RX + Only 32-bit instructions exist.
zero_extend(offset << 1)]) 1d32.hs 1z, (rx, disp)

Description: Save half-word loaded from storage in register RZ after sign-extension

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

to 32 bits. Adopt the addressing mode of register and immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 12-bit relative
offset shifting left by 1 bit to 32 bits. The address space of LD.HS
instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 1 bit.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Load half-word from storage to register, extend signed

RZ « sign_extend(MEM[RX + zero_extend(offset << 1)])
1d32.hs 1z, (rx, disp)

Save half-word loaded from storage in register RZ after signed
extension to 32 bits. Adopt the addressing mode of register and
immediate operand offset. The effective address of storage is gained by
adding the base register RX to the value of unsigned extending the
12-bit relative offset shifting left by 1 bit to 32 bits. The address space
of LD32.HS instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 1 bit.

No influence

205

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

3130 2625 2120 1615 12 11 0
{10110 RZ RX 0101 Offset

206

LD.W — Load word

Unified

instruction

Grammar Operation Compiling result

ldw rz, (rx, disp) | RZ < MEM|[RX + Compiled into 16-bit or 32-bit
zero_extend(offset << 2)] instructions according to the range of

offset and register.

if (x=sp) and (z<7) and (disp < 1024),
1d16.w 1z, (sp, disp);

else if (disp<128) and (x<7) and (z<7),
1d16.w 1z, (rx, disp);

else

1d32.w rz, (rx, disp);

Description:

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Description:

Load word from storage to register RZ. Adopt the addressing mode of
register and immediate operand offset. The effective address of storage
is gained by adding the base register RX to the value obtained of
unsigned extending the 12-bit relative offset shifting left by 2 bits to 32
bits. The address space of LD.W instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Load word from storage to register

RZ < MEM[RX + sign_extend(offset << 2)]

1d16.w 1z, (rx, disp)

1d16.w 1z, (sp, disp)

Load word from storage to register RZ. Adopt the addressing mode of
register and immediate operand offset. When RX is SP, the effective

address of storage is gained by adding the base register RX to the value

207

o SKY

of unsigned extending the 8-bit relative offset shifting left by 2 bits to
32 bits. When rx is other register, the effective address of storage is
gained by adding the base register RX to the value of unsigned
extending the 5-bit relative offset shifting left by 2 bits to 32 bits. The
address space of LD16.W instruction is +1KB.

Attention: The offset DISP is gained after the binary operand IMMS5
shifts left by 2 bits. When the base register RX is SP, the offset DISP is
gained after the binary operand {IMM3, IMMS5} shifts left by 2 bits.

Influence on flag No influence

bit:

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

1d16.w 1z, (rx, disp)

1514 1o 8 7 5 4 0

1/0010] RX RZ IMMS5

1d16.w 1z, (sp, disp)

1514 1110 8 7 5 4 0

11001 1] IMM3 RZ IMMS5

32-bit instruction

Operation: Load word from storage to register
RZ <« MEM|[RX + zero_extend(offset << 2)]

Grammar: 1d32.w 1z, (rx, disp)

Description: Load word from storage to register RZ. Adopt the addressing mode of
register and immediate operand offset. The effective address of storage
is gained by adding the base register RX to the value of unsigned
extending the 12-bit relative offset shifting left by 2 bits to 32 bits. The
address space of LD32.W instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

Influence on flag ~ No influence

208

o SKY

bit:

Exception: Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read
invalid exception

Instruction

format:

3130 2625 2120 1615 12 11 0
{10110 RZ RX 0010 Offset

209

LDCPR - Load word to co-processor

Unified

instruction

Grammar Operation Compiling result

ldepr <cpid, cprz>, | CPRZ <~ MEM[RX + Only 32-bit instructions exist.

(rx, offset)

zero_extend(offset << 2)] ldepr32 <cpid, cprz>, (rx, offset)

3130

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

Instruction

format:

2625

Load word from storage to general-purpose register of co-processor
CPRZ. Adopt the addressing mode of register and immediate operand
offset. Bits 24-21 are agreed as co-processor numbers and used to
assign co-processor of pre-operation. 12 low bits are user defined.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Load word from storage to general-purpose register of co-processor
CPRZ « MEM[RX + zero_extend(offset <<2)]

ldepr32 <cpid, cprz>, (rx, offset)

Load word from storage to general-purpose register of co-processor
CPRZ. Adopt the addressing mode of register and immediate operand
offset. Bits 24-21 are agreed as co-processor numbers and used to
assign co-processor of pre-operation. 12 low bits are user defined.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

2120 1615 12 11 0

210

11010

0

CPID

0110

User-define

211

Unified instruction

LDEX.W — Load word exclusive

Grammar Operation Compiling result
ldex.w 1z, (rx, disp) | RZ < MEM[RX + Only 32-bit instructions exist.
zero_extend(offset << 2)] ldex32.w 1z, (rx, disp)

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Load word from storage to general-purpose register RZ. Adopt the
addressing mode of register and immediate operand offset. The
effective address of storage is gained by adding the base register RX to
the value of unsigned extending the 12-bit relative offset shifting left
by 2 bits to 32 bits. The address space of LDEX.W instruction is
+16KB.

This instruction matches STEX.W and it is used for atom operation of
“read storage — modify — write storage” in multi-core communication.
Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Load word from storage to general-purpose register

RZ <« MEM|[RX + zero_extend(offset << 2)]

ldex32.w rz, (rx, disp)

Load word from storage to general-purpose register RZ. Adopt the
addressing mode of register and immediate operand offset. The
effective address of storage is gained by adding the base register RX to
the value of unsigned extending the 12-bit relative offset shifting left
by 2 bits to 32 bits. The address space of LDEX32.W instruction is
+16KB.

This instruction matches STEX32.W and it is used for atom operation
of “read storage — modify — write storage” in multi-core

communication.

212

o SKY

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

3130 2625 2120 1615 12 11 0

1{10110 RZ RX 0111 Offset

213

Unified

instruction

LDM - Load consecutive multiword

Grammar

Operation Compiling result

ldm ry-rz, (rx)

Load multiple consecutive words | Only 32-bit instructions exist.
from storage to a group of | ldm32 ry-rz, (rx);
consecutive register files
dst < Y; addr < RX;
for (n=0; n <= (Z-Y); nt++){
Rdst « MEM]addr];
dst < dst+ 1;
addr <« addr + 4;

}

Description:

Influence on flag
bit:

Restriction:

Exception:

32-bit
instruction

Operation:

Load multiple consecutive words from storage to a group of consecutive
register files starting from register RY. In another word, load the first
word in the address appointed by storage to register RY; load the second
word to register RY+1, and the like; load the last word to register RZ.
The effective address of storage is decided by the contents of base
register RX.

No influence

RZ should be greater than and equal to RY.
The base register RX should not be included within the range of RY-RZ;
otherwise, the result will be unpredictable.
Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

Load multiple consecutive words from storage to a group of consecutive
register files

dst < Y; addr < RX;

for (n = 0; n <= IMMS5; nt++){

214

Grammar:

Description:

Influence on

Rdst « MEM]addr];

dst < dst + 1;

addr <« addr + 4;
H
1dm32 ry-rz, (rx)
Load multiple consecutive words from storage to a group of consecutive
register files starting from register RY. In another word, load the first
word in the address appointed by storage to register RY; load the second
word to register RY+1, and the like; load the last word to register RZ. The
effective address of storage is decided by the contents of base register RX.

No influence

flag bit:
Restriction: RZ should be greater than and equal to RY.
The base register RX should not be included within the range of RY-RZ;
otherwise, the result will be unpredictable.
Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB read invalid exception
Instruction
format:
3130 2625 2120 16 15 109 54 0
1110100 RY RX 00011100001 IMM35

IMMS field — Assign the number of destination registers, IMMS =Z - Y.

00000 — 1 destination register

00001 — 2 destination registers

11111 — 32 destination registers

215

LDQ — Load consecutive quad word#

Unified

instruction

Grammar Operation Compiling result

ldq rd-17, (rx) Load four consecutive words from | Only 32-bit instructions exist.
storage to registers R4-R7 1dq32 r4-r7, (rx);
dst < 4; addr < RX;
for (n=0; n <=3; nt+){
Rdst « MEM]addr];
dst < dst+ 1;
addr <« addr + 4;

}

Description: Load 4 consecutive words from storage to register file [R4, R7]

(including boundary) successively. In another word, load the first word in
the address appointed by storage to register R4, load the second word to
register RS, load the third word to register R6, and load the fourth word
to register R7. The effective address of storage is decided by the contents
of base register RX.

Attention: This instruction is the pseudo instruction of Idm r4-r7, (rx).

Influence on flag No influence

bit:

Restriction: The base register RX should not be included within the range of R4-R7;
otherwise, the result will be unpredictable.

Exception: Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

32-bit instruction
Operation: Load four consecutive words from storage to registers R4-R7
dst < 4; addr < RX;
for (n=0; n <=3; nt++){
Rdst « MEM]addr];

dst < dst+ 1;

216

addr <« addr + 4;
}
Grammar: 1dq32 r4-r7, (rx)
Description: Load 4 consecutive words from storage to register file [R4, R7]

(including boundary) successively. In another word, load the first word
in the address appointed by storage to register R4, load the second word
to register RS, load the third word to register R6, and load the fourth
word to register R7. The effective address of storage is decided by the
contents of base register RX.

Attention: This instruction is the pseudo instruction of Idm32 r4-r7, (rx).

Influence on flag No influence

bit:

Restriction: The base register RX should not be included within the range of R4-R7;
otherwise, the result will be unpredictable.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB read invalid exception

Instruction

format:

3130 2625 2120 16 15 109 54 0

111010000100 RX 000111100001 |000T11

217

LDR.B — Load unsigned and extended byte in register offset

addressing

Unified instruction

Grammar Operation Compiling result

ldrb 1z, (rx,ry <<0) | Load byte from storage to register, | Only 32-bit instructions
ldrb 1z, (rx, ry << 1) extend unsigned exist.

ldrb 1z, (X, 1y <<2) | RZ ¢ zero_extendMEM[RX +RY | ldr32.b 1z, (rx, ry << 0)
ldrb 1z, (rx, ry << 3) | <<IMM2]) 1dr32.b rz, (rx, 1y << 1)
1dr32.b rz, (rx, 1y << 2)
1dr32.b rz, (rx, ry << 3)

Description: Save byte loaded from storage in register RZ after zero-extension to 32
bits. Adopt the addressing mode of register and register offset. The
effective address of storage is gained by adding the base register RX to
the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM?2 is 0.

Influence on flag No influence

bit:
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
32-bit
instruction
Operation: Load byte from storage to register, extend unsigned
RZ < zero_extend MEM[RX + RY << IMM2])
Grammar: 1dr32.b rz, (rx, 1y << 0)
1dr32.b rz, (rx, 1y << 1)
1dr32.b rz, (rx, 1y << 2)
1dr32.b rz, (rx, ry << 3)
Description: Save byte loaded from storage in register RZ after zero-extension to 32

bits. Adopt the addressing mode of register and register offset. The
effective address of storage is gained by adding the base register RX to
the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM2 is 0.

218

Influence on flag No influence

bit:
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
1dr32.b rz, (rx, 1y << 0)
3130 2625 2120 16 15 109 54 0
1110100 RY 000000 |O0OO0O01
1dr32.b rz, (rx, 1y << 1)
3130 2625 2120 16 15 109 54 0
1110100 RY 00000000010
1dr32.b rz, (rx, 1y << 2)
3130 2625 2120 16 15 109 54 0
1110100 RY 00000000100
1dr32.b rz, (rx, 1y << 3)
3130 2625 2120 16 15 109 54 0
1110100 RY 00000001000

219

LDR.BS — Load signed and extended byte in register offset

addressing

Unified instruction

Grammar Operation Compiling result

ldrbs 1z, (rx,ry <<0) | Load byte from storage to register, | Only 32-bit instructions
ldrbs 1z, (rx, ry << 1) | extend signed exist.

Idrbs 1z, (rx, 1y <<2) | RZ <« sign_extend MEM[RX + RY | 1dr32.bs rz, (1x, ry <<0)
ldrbs 1z, (rx, ry << 3) | <<IMM2]) 1dr32.bs 1z, (rx, 1y << 1)
1dr32.bs rz, (rx, 1y << 2)
1dr32.bs rz, (rx, ry << 3)

Description: Save byte loaded from storage in register RZ after sign-extension to 32
bits. Adopt the addressing mode of register and register offset. The
effective address of storage is gained by adding the base register RX to
the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM?2 is 0.

Influence on flag No influence

bit:
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
32-bit
instruction
Operation: Load byte from storage to register, extend signed
RZ « sign_extend(MEM[RX + RY << IMM2])
Grammar: 1dr32.bs 1z, (rx, ry << 0)
1dr32.bs 1z, (rx, ry << 1)
1dr32.bs rz, (rx, ry << 2)
1dr32.bs rz, (rx, ry << 3)
Description: Save byte loaded from storage in register RZ after sign-extension to 32

bits. Adopt the addressing mode of register and register offset. The
effective address of storage is gained by adding the base register RX to
the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM2 is 0.

220

Influence on flag No influence

bit:

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
1dr32.bs rz, (rx, ry<< 0)
3130 2625 2120 16 15 109 54 0
1110100 RY 000100 |0000O0T1
1dr32.bs 1z, (rx, ry<< 1)
3130 2625 2120 16 15 109 54 0
1110100 RY 00010000010
1dr32.bs 1z, (rx, 1ry<< 2)
3130 2625 2120 16 15 109 54 0
1110100 RY 000100 00100
1dr32.bs rz, (rx, ry<< 3)
3130 2625 2120 16 15 109 54 0
1110100 RY 00010001000

221

LDR.H - Load unsigned and extended half-word in register

offset addressing

Unified instruction

Grammar Operation Compiling result

ldrh rz, (rx,ry <<0) | Load half-word from storage to | Only 32-bit instructions

ldrh rz, (rx,ry << 1) | register, extend unsigned exist.
Idrh 1z, (rx,1y <<2) | RZ <« zero_extend MEM[RX +RY | 1dr32.h 1z, (1x, ry <<0)
ldrh 1z, (rx, ry << 3) | <<IMM2]) 1dr32.h 1z, (rx, 1y << 1)

1dr32.h 1z, (rx, 1y << 2)
1dr32.h rz, (rx, 1y << 3)

Description: Save half-word loaded from storage in register RZ after zero-extension to
32 bits. Adopt the addressing mode of register and register offset. The
effective address of storage is gained by adding the base register RX to
the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB read invalid exception

32-bit

instruction

Operation: Load half-word from storage to register, extend unsigned
RZ « zero_extendMEM[RX + RY << IMM2])

Grammar: 1dr32.h rz, (rx, 1y << 0)
1dr32.h rz, (rx, 1y << 1)
1dr32.h 1z, (rx, 1y << 2)
1dr32.h rz, (rx, 1y << 3)

Description: Save half-word loaded from storage in register RZ after zero-extension to

32 bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

222

O SKY

the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB read invalid exception

Instruction

format:

1dr32.h rz,(rx, ry << 0)
3130 2625 2120 16 15 109 54 0

1110100 RY RX 000001 |000O0T1 RZ

1dr32.h rz,(rx, ry << 1)
3130 2625 2120 16 15 109 54 0

1110100 RY RX 000001 |00O0T1O0 RZ

1dr32.h rz,(rx, ry << 2)
3130 2625 2120 16 15 109 54 0

1110100 RY RX 000001 |00T1O00O0 RZ

1dr32.h rz,(rx, ry << 3)
3130 2625 2120 16 15 109 54 0

1110100 RY RX 00000101000 RZ

223

LDR.HS - Load signed and extended half-word in register

offset addressing

Unified instruction

Grammar Operation Compiling result

ldrhs 1z, (rx, ry <<0) | Load half-word from storage to | Only 32-bit instructions

ldrhs 1z, (rx, ry << 1) | register, extend signed exist.
Idrhs 1z, (rx, 1y <<2) | RZ <« sign_extend MEM[RX + RY | 1dr32.hs rz, (1x, ry <<0)
ldrhs 1z, (rx, ry << 3) | <<IMM2]) 1dr32.hs 1z, (rx, 1y << 1)

1dr32.hs 1z, (rx, 1y << 2)

1dr32.hs 1z, (rx, ry << 3)

Description: Save half-word loaded from storage in register RZ after sign-extension to
32 bits. Adopt the addressing mode of register and register offset. The
effective address of storage is gained by adding the base register RX to
the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM2 is 0.

Influence on flag No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB read invalid exception

32-bit

instruction

Operation: Load half-word from storage to register, extend signed
RZ « sign_extend(MEM[RX + RY << IMM2])

Grammar: 1dr32.hs 1z, (rx, ry << 0)
1dr32.hs 1z, (rx, ry << 1)
1dr32.hs 1z, (rx, 1y << 2)
1dr32.hs 1z, (rx, ry << 3)

Description: Save half-word loaded from storage in register RZ after sign-extension to

32 bits. Adopt the addressing mode of register and register offset. The

effective address of storage is gained by adding the base register RX to

224

Influence on flag

bit:

O SKY

the value gained by making offset register RY shift left by 2-bit
immediate operand IMM2. The default value of IMM2 is 0.

No influence

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB read invalid exception
Instruction
format:
1dr32.hs 1z, (rx, ry << 0)
3130 2625 2120 16 15 109 54 0
1110100 RY 000101 00001
1dr32.hs 1z, (rx, 1y << 1)
3130 2625 2120 16 15 109 54 0
1110100 RY 00010100010
1dr32.hs 1z, (rx, 1y << 2)
3130 2625 2120 16 15 109 54 0
1110100 RY 00010100100
1dr32.hs 1z, (rx, ry << 3)
3130 2625 2120 16 15 109 54 0
1110100 RY 00010101000

225

LDR.W — Load word in register offset addressing

Unified instruction

Grammar

Operation Compiling result

ldrw rz, (rx, ry <<0) | Load word from storage to register Only 32-bit instructions
ldrw 1z, (rx, 1y <<1) | RZ < MEM[RX + RY << IMM2] exist.

ldrw rz, (rx, 1y << 2) ldr32.w 1z, (rx, ry << 0)
ldrw 1z, (rx, ry << 3) ldr32.w 1z, (r1x, ry << 1)

ldr32.w 1z, (1x, ry << 2)
ldr32.w 1z, (1x, ry << 3)

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

Load word from storage to register RZ. Adopt the addressing mode of
register and register offset. The effective address of storage is gained by
adding the base register RX to the value gained by making offset register
RY shift left by 2-bit immediate operand IMM2. The default value of
IMM2 is 0.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB read invalid exception

Load word from storage to register

RZ < MEM[RX + RY << IMM2]

ldr32.w 1z, (rx, ry << 0)

ldr32.w 1z, (1x, ry << 1)

ldr32.w 1z, (1x, ry << 2)

ldr32.w 1z, (rx, ry << 3)

Load word from storage to register RZ. Adopt the addressing mode of
register and register offset. The effective address of storage is gained by
adding the base register RX to the value gained by making offset register
RY shift left by 2-bit immediate operand IMM2. The default value of
IMM2 is 0.

No influence

226

SKY

bit:
Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB read invalid exception
Instruction
format:
1dr32.w 1z, (rx, ry << 0)
3130 2625 2120 16 15 109 54 0
1110100 RY 000010 |000O01
ldr32.w 1z, (1x, ry << 1)
3130 2625 2120 16 15 109 54 0
1110100 RY 00001000010
ldr32.w 1z, (1x, ry << 2)
3130 2625 2120 16 15 109 54 0
1110100 RY 00001000100
ldr32.w 1z, (1x, ry << 3)
3130 2625 2120 16 15 109 54 0
1110100 RY 00001001000

227

Unified

instruction

LRS.B - Load byte sign

Grammar

Operation Compiling result

Irs.b rz, [label]

Load byte from storage to | Only 32-bit instructions exist.
register Irs32.b 1z, [label]
RZ « zero extend MEM[R28 +

zero_extend(offset)])

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Load the byte sign in the place where label is located, and save it in
destination register RZ after zero-extension to 32 bits. Adopt the
addressing mode of register and immediate operand offset. The effective
address of storage is gained by adding base register R28 to the value of
unsigned extending the 18-bit relative offset to 32 bits. The address space
of LRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load byte sign from storage to register, extend unsigned

RZ « zero_extend MEM[R28 + zero_extend(offset)])

Irs32.b 1z, [label]

Load the byte sign in the place where label is located, and save it in
destination register RZ after zero-extension to 32 bits. Adopt the
addressing mode of register and immediate operand offset. The effective
address of storage is gained by adding base register R28 to the value of
unsigned extending the 18-bit relative offset to 32 bits. The address space
of LRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

No influence

228

o SKY

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

3130 2625 21 20 18 17 0
1110011 RZ 000 Offset

229

Unified

instruction

LRS.H - Load half-word sign

Grammar

Operation Compiling result

Irs.h rz, [label]

RZ « zero_extend(MEM[R28 + | Only 32-bit instructions exist.
zero_extend(offset << 1)]) Irs32.h 1z, [label]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

Load the half-word sign in the place where label is located, and save it in
destination register RZ after zero-extension to 32 bits. Adopt the
addressing mode of register and immediate operand offset. The effective
address of storage is gained by adding base register R28 to the value of
unsigned extending the 18-bit relative offset shifting left by 1 bit to 32
bits. The address space of LRS.H instruction is +512KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load half-word sign from storage to register, extend unsigned

RZ « zero_extendMEM[R28 + zero_extend(offset << 1)])

Irs32.h 1z, [label]

Load the half-word sign in the place where label is located, and save it in
destination register RZ after zero-extension to 32 bits. Adopt the
addressing mode of register and immediate operand offset. The effective
address of storage is gained by adding base register R28 to the value of
unsigned extending the 18-bit relative offset shifting left by 1 bit to 32
bits. The address space of LRS.H instruction is +512KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

230

Instruction

format:

3130 2625 21 20 18 17 0
1110011 001 Offset

231

Unified

instruction

LRS.W — Load word sign

Grammar

Operation Compiling result

Irs.w 1z, [label]

RZ « zero_extend(MEM[R28 + | Only 32-bit instructions exist.

zero_extend(offset << 2)]) Irs32.w rz, [label]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

Load the word sign in the place where label is located, and save it in
destination register RZ after zero-extension to 32 bits. Adopt the
addressing mode of register and immediate operand offset. The effective
address of storage is gained by adding base register R28 to the value of
unsigned extending the 18-bit relative offset shifting left by 2 bits to 32
bits. The address space of LRS.W instruction is +1024KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load word sign from storage to register, extend unsigned

RZ « zero_extendMEM[R28 + zero_extend(offset << 2)])

Irs32.w rz, [label]

Load the word sign in the place where label is located, and save it in
destination register RZ after zero-extension to 32 bits. Adopt the
addressing mode of register and immediate operand offset. The effective
address of storage is gained by adding base register R28 to the value of
unsigned extending the 18-bit relative offset shifting left by 2 bits to 32
bits. The address space of LRS.W instruction is +1024KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

232

Instruction

format:

3130 2625 21 20 18 17 0
1110011 010 Offset

233

LRW — Memory read-in

Unified

instruction

Grammar Operation Compiling result

Irw 1z, label Load word from storage to register Compiled into

Irw 1z, imm32 | RZ « zero_extend(MEM[(PC + corresponding 16-bit or

zero_extend(offset << 2)) & Oxffftfttc]) 32-bit instructions
according to the range of
load
if(offset<1020B), then
Irwl6 label;

Irwl6 1mm32;

else
Irw32 label;
Irw32 imm32;

Description:

Influence on flag
bit:

Exception:

16-bit
instruction----1
Operation:

Grammar:

Description:

Load the word in the place where label is located or 32-bit immediate
operand (IMM32) to destination register RZ. The storage address is
gained by adding PC to the relative offset shifting left by 2 bits, unsigned
extending it to 32 bits, and compulsively clearing the two lowest bits. The
load range of LRW instruction is the whole address space of 4GB.

No influence

Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Load word from storage to register

RZ < zero_extend MEM[(PC + zero_extend(offset << 2)) & Oxffftfftc])
Irwl6 1z, label

Irwl6 rz, imm32

Load the word in the place where label is located or 32-bit immediate

operand (IMM32) to destination register RZ. The storage address is

234

o SKY

gained by adding PC to the 8-bit relative offset shifting left by 2 bits,
unsigned extending it to 32 bits, and compulsively clearing the two

lowest bits. The load range of LRW instruction is the whole address space

of 4GB.
Attention: The relative offset is equal to the binary code {1, ~{IMM2,
IMMS5} .
Influence on flag No influence
bit:
Restriction: The range of register is r0-r7; the range of relative offset is 0x80-0xfe.
Exception: Access error exception, TLB unrecoverable exception, TLB mismatch
exception, and TLB read invalid exception
Instruction
format:
1514 11109 8 7 5 4 0
0{0 00 O0|0(IMM2 RZ IMMS5
16-bit

instruction----2

Operation: Load word from storage to register
RZ « zero_extend MEM[(PC + zero_extend(offset << 2)) & Oxffftfftc])

Grammar: Irwl6 1z, label
Irwl6 rz, imm32

Description: Load the word in the place where label is located or 32-bit immediate
operand (IMM32) to destination register RZ. The storage address is
gained by adding PC to the 8-bit relative offset shifting left by 2 bits,
unsigned extending it to 32 bits, and compulsively clearing the two

lowest bits. The load range of LRW instruction is the whole address space

of 4GB.
Attention: The relative offset is equal to the binary code {0, {IMM2,
IMMS5} }.
Influence on flag No influence
bit:
Restriction: The range of register is r0-r7; the range of relative offset is 0x0-0x7f.
Exception: Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

235

Instruction
format:
1514 11109 8 7 5 4 0
0/]0 01 0]|0(IMM2] RZ IMMS5
32-bit
instruction
Operation: Load word from storage to register
Grammar: Irw32 1z, label
Irw32 rz, imm32
Description:

Influence on flag

bit:

RZ « zero_extend MEM[(PC + zero_extend(offset << 2)) & Oxffftfftc])

Load the word in the place where label is located or 32-bit immediate

operand (IMM32) to destination register RZ. The storage address is

gained by adding PC to the 16-bit relative offset shifting left by 2 bits,

unsigned extending it to 32 bits, and compulsively clearing the two

lowest bits. The load range of LRW instruction is the whole address space

of 4GB.

No influence

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch
exception, and TLB read invalid exception
Instruction
format:
3130 26 25 2120 16 15 0
111101010100 RZ Offset

236

LSL — Logical shift left

Unified

instruction

Grammar Operation Compiling result

Isl rz, rx RZ <~ RZ << RX][5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the
range of register.
if (x<16) and (z<16), then
Isl16 1z, rx;
else

Is132 1z, 1z, rX;

Isl rz,rx, 1y

RZ « RX << RY[5:0]

Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x==z) and (y<16) and (z<16), then
Isl16 1z, 1y

else

Is132 rz, rx, 1y

Description:

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Forlsl rz, rx, perform a logical left shift on RZ value (the original value

shifts left and 0 will shift to the right side), and save the result in RZ; the
range of left shift is decided by the value of six low bits of RX (RX[5:0]).
If the value of RX[5:0] is greater than 31, RZ will be cleared,

For Isl rz, rx, ry, perform a logical left shift on RX value (the original

value shifts left and 0 will shift to the right side), and save the result in

RZ; the range of left shift is decided by the value of six low bits of RY
(RY[5:0]). If the value of RY[5:0] is greater than 31, RZ will be cleared.

No influence

None

RZ « RZ << RX[5:0]

237

Grammar:

Description:

Influence on flag

bit:

o SKY

Isl16 1z, rx

Perform a logical left shift on RZ value (the original value shifts left and
0 will shift to the right side), and save the result in RZ; the range of left
shift is decided by the value of six low bits of RX (RX[5:0]). If the value
of RX[5:0] is greater than 31, RZ will be cleared.

No influence

Restriction: The range of register is r0-r15.
Exception: None

Instruction

format:

1514 10 9 6 5 210
011100 RZ RX 00

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

b

it:

Exception:

Instruction

format:

3130 2625

RZ < RX << RY[5:0]

Is132 rz, rx, ry

Perform a logical left shift on RX value (the original value shifts left
and 0 will shift to the right side), and save the result in RZ; the range of
left shift is decided by the value of six low bits of RY (RY[5:0]). If the
value of RY[5:0] is greater than 31, RZ will be cleared.

No influence

None

2120 16 15 109 54 0

1

10001

RY RX 010000 00001 RZ

238

LSLC - Logical shift left immediate to C

Unified

instruction

Grammar Operation Compiling result

Islc 1z, rx, oimm5 | RZ <~ RX << OIMMS5, C «— RX[32 — | Only 32-bit instructions exist.

OIMMS5] Islc32 rz, rx, oimm5

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

Perform a logical left shift on RX value (the original value shifts left
and 0 will shift to the right side), save the end bit shifting out in
condition bit C, and save the shifting result in RZ; the range of left shift
is decided by the value of 5-bit immediate operand with offset 1
(OIMMS). If the value of OIMMS is equal to 32, then the condition bit
C is the lowest bit of RX and RZ will be cleared.

C < RX][32 - OIMMS5]

The range of immediate operand is 1-32.

None

RZ < RX << OIMMS, C «— RX[32 — OIMMS5]
Islc32 1z, rx, oimm35

Perform a logical left shift on RX value (the original value shifts left
and 0 will shift to the right side), save the end bit shifting out in
condition bit C, and save the shifting result in RZ; the range of left
shift is decided by the value of 5-bit immediate operand with offset 1
(OIMMS). If the value of OIMMS is equal to 32, then the condition bit
C is the lowest bit of RX and RZ will be cleared.

Attention: The binary operand IMMS is equal to OIMMS — 1.

C « RX[32 — OIMM5]

The range of immediate operand is 1-32.

None

239

3130 2625

2120

16 15

109

54

1

10001

IMMS5

RX

010011

00001

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the shifting value OIMMS5 requires
offset 1.
00000 — shift by 1 bit

00001 — shift by 2 bits

11111 — shift by 32 bits

240

LSLI — Logical shift left immediate

Unified

instruction

Grammar Operation Compiling result

Isli rz, rx, imm5 | RZ < RX << IMMS5 Compiled into corresponding 16-bit

or 32-bit instructions according to the
range of register.
if (x<8) and (z<8), then

Islil6 rz, rx, imm5

else

Isli32 rz, rx, imm5

Description:

Influence on flag
bit:
Restriction:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:

Exception:

Perform a logical left shift on RX value (the original value shifts left and

0 will shift to the right side), and save the result in RZ; the range of left

shift is decided by the value of 5-bit immediate operand (IMMY). If the

value of IMMS is equal to zero, RZ value remains unchanged.

No influence

The range of immediate operand is 1-31.

None

RZ < RX << IMM5

Islil6 rz, rx, imm5

Perform a logical left shift on RX value (the original value shifts left and

0 will shift to the right side), and save the result in RZ; the range of left

shift is decided by the value of 5-bit immediate operand (IMMS). If the

value of IMMS is equal to zero, RZ value remains unchanged.

No influence

The range of register is r0-r7;

The range of immediate operand is 1-31.

None

241

Instruction
format:
1514 1110 8 7 5 4 0
0/1000| RX RZ IMMS5
32-bit instruction
Operation: RZ <« RX << IMMS5
Grammar: Isli32 rz, rx, imm5
Description: Perform a logical left shift on RX value (the original value shifts left

Influence on flag

bit:

and 0 will shift to the right side), and save the result in RZ; the range of
left shift is decided by the value of 5-bit immediate operand (IMMY). If
the value of IMMS is equal to zero, RZ value is the same with RX
value.

No influence

Restriction: The range of immediate operand is 1-31.

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110001 IMM5 RX 01001000001 RZ

242

LSR - Logical shift right

Unified

instruction

Grammar Operation Compiling result

Isr rz, rx RZ <~ RZ >> RX][5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the
range of register.
if (z<16) and (x<16), then
Isr16 1z, rx;
else

Isr32 rz, rz, rx;

Isr rz, rx, ry

RZ < RX >> RY[5:0]

Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x==z) and (z<16) and (y<16), then
Isr16 1z, ry;

else

1sr32 rz, rx, 1y;

Description:

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

For Isr 1z, rx, perform a logical right shift on RZ value (the original

value shifts right and 0 will shift to the left side), and save the result in

RZ; the range of right shift is decided by the value of six low bits of RX
(RX[5:0]). If the value of RX[5:0] is greater than 31, RZ will be cleared,

For Isr 1z, rx, ry, perform a logical right shift on RX value (the original

value shifts right and 0 will shift to the left side), and save the result in

RZ; the range of right shift is decided by the value of six low bits of RY
(RY[5:0]). If the value of RY[5:0] is greater than 31, RZ will be cleared.

No influence

None

RZ « RZ >> RX[5:0]

243

Grammar:

Description:

Influence on flag

bit:

o SKY

Isrl16 rz, rx

Perform a logical right shift on RZ value (the original value shifts right
and 0 will shift to the left side), and save the result in RZ; the range of
right shift is decided by the value of six low bits of RX (RX][5:0]). If the
value of RX[5:0] is greater than 31, RZ will be cleared.

No influence

Restriction: The range of register is r0-r15.
Exception: None

Instruction

format:

1514 10 9 6 5 210
011100 RZ RX 01

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Exception:

Instruction

format:

3130 2625

RZ < RX >>RY[5:0]

1sr32 1z, 1x, 1y

Perform a logical right shift on RX value (the original value shifts right
and 0 will shift to the left side), and save the result in RZ; the range of
right shift is decided by the value of six low bits of RY (RY[5:0]). If the
value of RY[5:0] is greater than 31, RZ will be cleared.

No influence

None

2120 16 15 109 54 0

1

10001

RY RX 01000000010 RZ

244

LSRC - Logical shift right immediate to C

h’SKY

Unified

instruction

Grammar Operation Compiling result

Isrc rz, rx, oimm5 | RZ < RX >> OIMMS5, Only 32-bit instructions exist.
C « RX[OIMMS - 1] Isrc32 rz, rx, oimm5

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

Perform a logical right shift on RX value (the original value shifts right
and 0 will shift to the left side), save the end bit shifting out in
condition bit C, and save the shifting result in RZ; the range of right
shift is decided by the value of 5-bit immediate operand with offset 1
(OIMMS). If the value of OIMMS is equal to 32, then the condition bit
C is the highest bit of RX and RZ will be cleared.

C < RX[OIMMS - 1]

The range of immediate operand is 1-32.

None

RZ < RX >> OIMMS, C < RX[OIMMS - 1]

Isrc32 rz, rx, oimm5

Perform a logical right shift on RX value (the original value shifts right
and 0 will shift to the left side), save the end bit shifting out in condition
bit C, and save the shifting result in RZ; the range of right shift is
decided by the value of 5-bit immediate operand with offset 1
(OIMMS). If the value of OIMMS is equal to 32, then the condition bit
C is the highest bit of RX and RZ will be cleared.

Attention: The binary operand IMMS is equal to OIMMS5 — 1.

C < RX[OIMMS - 1]

The range of immediate operand is 1-32.

None

245

3130 2625

2120

16 15

109

54

1

10001

IMMS5

RX

010011

00010

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the shifting value OIMMS5 requires
offset 1.
00000 — shift by 1 bit

00001 — shift by 2 bits

11111 — shift by 32 bits

246

LSRI - Logical shift right immediate

SKY

Unified
instruction
Grammar Operation Compiling result
Isri 1z, X, RZ < RX >>IMMS5 Compiled into corresponding 16-bit or
imm5 32-bit instructions according to the
range of register.
if (x<8) and (z<8), then
Isril6 rz, rx, imm35
else
Isri32 rz, rx, imm35
Description: Perform a logical right shift on RX value (the original value shifts right

Influence on flag
bit:
Restriction:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:

Instruction

and 0 will shift to the left side), and save the result in RZ; the range of
right shift is decided by the value of 5-bit immediate operand (IMMS). If
the value of IMMS is equal to zero, RZ value remains unchanged or is the
same with RX value.

No influence

The range of immediate operand is 0-31.

None
RZ < RX >>IMM5
Isril6 rz, rx, imm5

Perform a logical right shift on RX value (the original value shifts right
and 0 will shift to the left side), and save the result in RZ; the range of
right shift is decided by the value of 5-bit immediate operand (IMMS5). If
the value of IMMS is equal to zero, RZ value remains unchanged.

No influence

The range of register is r0-r7; the range of immediate operand is 1-31.

None

247

format:
1514 1110 8 7 5 4 0
01 0 0 1 RX RZ IMMS5
32-bit
instruction
Operation: RZ < RX >>IMMS5
Grammar: Isri32 rz, rx, imm35
Description: Perform a logical right shift on RX value (the original value shifts right

and 0 will shift to the left side), and save the result in RZ; the range of
right shift is decided by the value of 5-bit immediate operand (IMMS5). If
the value of IMMS is equal to zero, RZ value is the same with RX value.

Influence on flag No influence

bit:

Restriction: The range of immediate operand is 0-31.

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 IMMS5 RX 010010 (00010 RZ

248

MFCR - Read transfer from control register

Unified
instruction
Grammar Operation Compiling result
mfer 1z, cr<x, Transfer contents in control register | Only 32-bit instructions exist.
sel> to general-purpose register mfcr32 rz, cr<x, sel>
RZ <« CR<X, sel>
Attribute: Privileged instruction
Description: Transfer contents in control register CR<x, sel> to general-purpose

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:
Attribute:

Description:

Influence on flag

bit:

register RZ.

No influence

Privilege violation exception

Transfer contents in control register to general-purpose register
RZ <« CR<X, sel>

mfcr32 rz, cr<x, sel>

Privileged instruction

Transfer contents in control register CR<x, sel> to general-purpose
register RZ.

No influence

Exception: Privilege violation exception
Instruction
format:
3130 2625 2120 16 15 109 54 0
10000 sel CRX 011000 (00001 RZ

249

MFHI - Read transfer from high bit of accumulator

Unified

instruction

Grammar Operation Compiling result

mfhi 1z Transfer ~ contents in high-bit | Only 32-bit instructions exist.
accumulator register to general-purpose | mfthi32 rz
register
RZ « HI

Description: Transfer contents in the 32°high-bit register HI of 64-bit accumulator to

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

general-purpose register RZ.

No influence

None

Transfer contents in high-bit accumulator register to general-purpose
register

RZ « HI

mfhi32 1z

Transfer contents in the 32-high-bit register HI of 64-bit accumulator to
general-purpose register RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 {00000 |]000O00O0 100111 00001 RZ

250

MFHIS — Read transfer saturate from high bit of accumulator

Unified
instruction
Grammar Operation Compiling result
mfhis 1z Transfer ~ contents in high-bit | Only 32-bit instructions exist.
accumulator register to general-purpose | mthis32 rz
register after getting the saturation
value
RZ « saturate(HI)
Description: Transfer contents in the 32-high-bit register HI of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the
descriptions about guard bit in the processor manual for details about
saturation operation.

Influence on flag No influence

bit:

Exception: None

32-bit

instruction

Operation: Transfer contents in high-bit accumulator register to general-purpose
register after getting the saturation value
RZ « saturate(HI)

Grammar: mfhis32 1z

Description: Transfer contents in the 32-high-bit register HI of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the
descriptions about guard bit in the processor manual for details about
saturation operation.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

251

3130

2625

2120

16 15

109

54

1

10001

00000

00000

1001160

00001

252

MFLO — Read transfer from low bit of accumulator

Unified

instruction

Grammar Operation Compiling result

mflo 1z Transfer contents in low-bit | Only 32-bit instructions exist.
accumulator register to general-purpose | mflo32 rz
register
RZ <~ LO

Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ.

Influence on flag No influence

bit:

Exception: None

32-bit

instruction

Operation: Transfer contents in low-bit accumulator register to general-purpose
register
RZ <~ LO

Grammar: mflo32 1z

Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ.

Influence on flag No influence

bit:

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 {00000 |]000O00O0 100111 00100 RZ

253

MFLOS — Read transfer saturate from low bit of accumulator

Unified
instruction
Grammar Operation Compiling result
mflos rz Transfer contents in low-bit | Only 32-bit instructions exist.
accumulator register to general-purpose | mflos32 1z
register after getting the saturation
value
RZ « saturate(LO)
Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the
descriptions about guard bit in the processor manual for details about
saturation operation.

Influence on flag No influence

bit:

Exception: None

32-bit

instruction

Operation: Transfer contents in low-bit accumulator register to general-purpose
register after getting the saturation value
RZ « saturate(LO)

Grammar: mflos32 1z

Description: Transfer contents in the 32-low-bit register LO of 64-bit accumulator to

general-purpose register RZ after getting the saturation value. See the
descriptions about guard bit in the processor manual for details about
saturation operation.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

254

3130

2625

2120

16 15

109

54

1

10001

00000

00000

1001160

00100

255

MOYV — Move#
Unified
instruction
Grammar Operation Compiling result
mov 1z, rx RZ <+ RX Always compiled into 16-bit

instruction.

movl6 rz, rx

Description:
Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

Copy the value in RX to destination register RZ.

No influence

None

RZ <~ RX

movl6 rz, rx

Copy the value in RX to destination register RZ.

Attention: The register index range of this instruction is r0-r31.

No influence

Exception: None
Instruction
format:
1514 10 9 6 5 210
011011 RZ RX 1 1
32-bit
instruction
Operation: RZ < RX
Grammar: mov32 1z, 1X
Description: Copy the value in RX to destination register RZ.

Influence on

Attention: This instruction is the pseudo instruction of Isli32 rz, rx, 0x0.

No influence

256

flag bit:
Exception:
Instruction

format:

None

3130 2625 2120

16 15 109

54

1110001

00000

010010

00001

257

MOVF - C=0 move#

Unified
instruction
Grammar Operation Compiling result
movf 1z, rx if C==0, then Only 32-bit instructions exist.
RZ < RX; movf32 1z, rx
else
RZ <« RZ;

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

If C is 0, copy the value of RX to destination register RZ. Otherwise,
keep the value of RZ unchanged.
Attention: This instruction is the pseudo instruction of incf 1z, rx, 0xO0.

No influence

None

if C==0, then
RZ <« RX;
else
RZ <« RZ;
movf32 rz, rx

If C is 0, copy the value of RX to destination register RZ. Otherwise,
keep the value of RZ unchanged.

Attention: This instruction is the pseudo instruction of incf32 rz, rx,
0x0.
No influence
None
2120 16 15 109 54 0

258

10001

000011

00001

259

MOVI — Move immediate

Unified

instruction

Grammar Operation Compiling result

movil6 1z, imm16 | RZ « zero_extend(IMM16); Compiled into corresponding
16-bit or 32-bit instructions
according to the range of

immediate operand and register.

if (imm16<256) and (z<7), then

movil6 rz, imms§;
else
movi32 rz, imml6;

Description:

Influence on flag
bit:
Restriction:

Exception:

16-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

Zero-extend the 16-bit immediate operand to 32 bits, and transfer it to
destination register RZ.

No influence

The range of immediate operand is 0x0-OxFFFF.

None

RZ <« zero_extend(IMMS);
movil6 rz, imm8

Zero-extend the 8-bit immediate operand to 32 bits, and transfer it to
destination register RZ.

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 0-255.
Exception: None

1514 1110 7 0

0/]01 10| RZ IMMS

32-bit instruction
Operation:

Grammar:

RZ « zero_extend(IMM16);

movi32 rz, immlé6

260

Description:

Influence on flag

bit:

o SKY

Zero-extend the 16-bit immediate operand to 32 bits, and transfer it to

destination register RZ.

No influence

Restriction: The range of immediate operand is 0x0-OxFFFF.

Exception: None
3130 2625 2120 16 15 0
111101010000 RZ IMM16

261

MOVIH - Move immediate high

Unified
instruction
Grammar Operation Compiling result
movih 1z, imml6 | RZ « zero_extend(IMM16) << 16 Only 32-bit instructions
exist.
movih32 rz, imml6
Description: Zero-extend the 16-bit immediate operand to 32 bits, perform a logical

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

left shift by 16 bits, and transfer the result to destination register RZ.
This instruction can generate any 32-bit immediate operand by
cooperating with ori 1z, rz, imm16 instruction.

No influence

The range of immediate operand is 0x0-OxFFFF.

None

RZ « zero_extend(IMM16) << 16
movih32 rz, imml6

Zero-extend the 16-bit immediate operand to 32 bits, perform a logical
left shift by 16 bits, and transfer the result to destination register RZ.
This instruction can generate any 32-bit immediate operand by
cooperating with ori32 rz, rz, imm16 instruction.

No influence

Restriction: The range of immediate operand is 0x0-OxFFFF.

Exception: None

Instruction

format:

3130 2625 2120 1615 0
111101010001 RZ IMM16

262

MOVT - C=1 move#

Unified
instruction
Grammar Operation Compiling result
movt 1z, rx if C==1, then Only 32-bit instructions
RZ < RX; exist.
else movt32 rz, rx
RZ <« RZ;
Description: If C is 1, copy the value of RX to destination register RZ. Otherwise,

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

keep the value of RZ unchanged.
Attention: This instruction is the pseudo instruction of inct rz, rx, 0x0.

No influence

None

if C==1, then
RZ <« RX;
else
RZ <« RZ;
movt32 rz, rx

If C is 1, copy the value of RX to destination register RZ. Otherwise,
keep the value of RZ unchanged.

Attention: This instruction is the pseudo instruction of inct32 rz, rx,
0x0.
No influence
None
2120 16 15 109 54 0

263

10001

000011

00010

264

MTCR — Write transfer to control register

Unified
instruction
Grammar Operation Compiling result
mtcer X, cr<z, Transfer contents in general-purpose | Only 32-bit instructions
sel> register to control register exist.
CR<Z, sel> « RX mter32 rx, cr<z, sel>
Attribute: Privileged instruction
Description: Transfer contents in general-purpose register RX to control register

Influence on flag
bit:

Exception:

32-bit instruction

Operation:
Grammar:
Attribute:

Description:

Influence on flag

CR<z, sel>.
If the target control register is not PSR, this instruction will not affect
the flag bit.

Privilege violation exception

Transfer contents in general-purpose register to control register

CR<Z, sel> « RX

mter32 rx, cr<z, sel>

Privileged instruction

Transfer contents in general-purpose register RX to control register
CR<z, scl>.

If the target control register is not PSR, this instruction will not affect

bit: the flag bit.
Exception: Privilege violation exception
Instruction
format:
3130 2625 2120 16 15 109 54 0
10000 sel RX 011001 00001 CRZ

265

MTHI — Write transfer to high bit of accumulator

Unified

instruction

Grammar Operation Compiling result

mthi rx Transfer contents in general-purpose | Only 32-bit instructions
register to high-bit accumulator register exist.
HI « RX mthi32 rx

Description: Transfer contents in general-purpose register RX to the 32-high-bit

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

register HI of 64-bit accumulator.

No influence

None

Transfer contents in general-purpose regi
register

HI <~ RX

mthi32 rx

ster to high-bit accumulator

Transfer contents in general-purpose register RX to the 32-high-bit

register HI of 64-bit accumulator.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 (00000 RX 100111 00010100000

266

MTLO — Write transfer to low bit of accumulator

Unified

instruction

Grammar Operation Compiling result

mtlo rx Transfer contents in general-purpose | Only 32-bit instructions
register to low-bit accumulator register exist.
LO «RX mtlo32 rx

Description: Transfer contents in general-purpose register RX to the 32-low-bit

register LO of 64-bit accumulator.

Influence on flag No influence

bit:

Exception: None

32-bit

instruction

Operation: Transfer contents in general-purpose register to low-bit accumulator
register
LO < RX

Grammar: mtlo32 rx

Description: Transfer contents in general-purpose register RX to the 32-low-bit

register LO of 64-bit accumulator.
Influence on flag No influence
bit:
Exception: None
Instruction

format:

3130 2625 2120 16 15 109 54 0

1110001 00000O0 RX 100111 (01000 00000

267

SKY

MULS — Multiply signed

Unified
instruction
Grammar Operation Compiling result
muls rx, ry Multiply two signed numbers and put the | Only 32-bit instructions
result in accumulator exist.
{HI, LO} «~ RX x RY muls32 rx, ry
Description: Multiply the contents in general-purpose register RX and RY, and put the

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

result in the 64-bit accumulator. The 32 high bits are stored in HI and the
32 low bits are stored in LO. All values in general-purpose register RX
and RY as well as 64-bit accumulator are considered as signed numbers.

Overflow bit is cleared

None

Multiply two signed numbers and put the result in accumulator
{HI, LO} <~ RX xRY

muls32 rx, ry

Multiply the contents in general-purpose register RX and RY, and put the
result in the 64-bit accumulator. The 32 high bits are stored in HI and the
32 low bits are stored in LO. All values in general-purpose register RX

and RY as well as 64-bit accumulator are considered as signed numbers.

Overflow bit is cleared

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 100011 00001 |OO0OO0ODO0OO

268

MULSA — Multiply-accumulate signed

SKY

Unified

instruction

Grammar Operation Compiling result

mulsa rx, ry Multiply two signed numbers, add the | Only 32-bit instructions
product to value in accumulator, and put the | exist.
result in accumulator mulsa32 rx, ry
{HL, LO} <« {HI, LO} + RX X RY

Description: Multiply the contents in general-purpose register RX and RY, add the

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

product to value in the 64-bit accumulator, and put the result in the
accumulator. The 32 high bits of the result are stored in HI and the 32 low
bits are stored in LO. All values in general-purpose register RX and RY
as well as 64-bit accumulator are considered as signed numbers.

Due to the overflow, the overflow bit will be set as 1

None

Multiply two signed numbers, add the product to value in accumulator,
and put the result in accumulator

{HL, LO} « {HI, LO} + RX X RY

mulsa32 rx, ry

Multiply the contents in general-purpose register RX and RY, add the
product to value in the 64-bit accumulator, and put the result in the
accumulator. The 32 high bits of the result are stored in HI and the 32 low
bits are stored in LO. All values in general-purpose register RX and RY
as well as 64-bit accumulator are considered as signed numbers.

Due to the overflow, the overflow bit will be set as 1

None

269

3130 2625

2120

16 15

109

54

1

10001

RY

100011

00010

00000

270

MULSH - 16-bit multiply signed

SKY

Unified
instruction
Grammar Operation Compiling result
mulsh rz, rx Multiply two 16-bit signed | Compiled into corresponding 16-bit
numbers and put the result in | or 32-bit instructions according to
general-purpose register the range of register.
RZ « RX[15:0] x RZ[15:0] if (x<16) and (y<16), then
mulshl6 rz, rx;
else
mulsh32 rz, rz, rx;
mulsh 1z, rx,ry | Multiply two 16-bit signed | Compiled into corresponding 16-bit
numbers and put the result in | or 32-bit instructions according to
general-purpose register the range of register.
RZ < RX[15:0] x RY[15:0] if (y==z)and(x<16)and(z<16), then
mulshl6 rz, rx;
else
mulsh32 1z, rx, ry;
Description: Multiply the 16 low bits of general-purpose register RX and 16 low bits

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

of RZ/RY, and put the result in general-purpose register RZ. All contents
in the registers are considered as signed numbers. The sign bit of source
register is the 15" bit and the sign bit of destination register is the 31 bit.

No influence

None

Multiply two 16-bit signed numbers and put the result in general-purpose

register
RZ <« RX[15:0] x RZ[15:0]
mulshl6 1z, rx

Multiply the 16 low bits of general-purpose register RX and 16 low bits

271

Influence on flag

bit:

o SKY

of RZ, and put the 32-bit result in general-purpose register RZ. All
contents in register RX and register RZ are considered as signed
numbers. The sign bit of source operand is the 15" bit and the sign bit of
result is the 31% bit.

No influence

Restriction: The range of register is r0-r15.
Exception: None
Instruction
format:
1514 10 9 6 5 210
o)1 1111 RZ RX 01
32-bit
instruction
Operation: Multiply two 16-bit signed numbers and put the result in general-purpose
register
RZ <« RX[15:0] x RY[15:0]
Grammar: mulsh32 rz, rx, ry
Description: Multiply the 16 low bits of general-purpose register RX and 16 low bits

Influence on flag

bit:

of RY, and put the result in general-purpose register RZ. All contents in
register RX, RY and RZ are considered as signed numbers. The sign bit
of source register RX and RY is the 15" bit, and the sign bit of
destination register RZ is the 31 bit.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 100100 |O0OO0O0O01 RZ

272

MULSHA - 16-bit multiply-accumulate signed

Unified

instruction

Grammar

Operation Compiling result

mulsha rx, ry

Multiply two 16-bit signed numbers, add | Only 32-bit instructions
the product to low-bit value in accumulator, | exist.
and put the result in low bit of accumulator | mulsha32 rx, ry

LO « LO + RX[15:0] x RY[15:0]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Multiply the 16 low bits of general-purpose register RX and 16 low bits
of RY, add the 32-bit result to the value in 32-low-bit register LO of
64-bit accumulator, and put the result in low-bit accumulator register LO.
All contents in register RX and RY as well as low-bit accumulator
register LO are considered as signed numbers. The sign bit of source
operand in register RX and RY is the 15" bit and the sign bit of source
operand and result in low-bit accumulator register LO is the 31% bit.

This instruction supports 8 guard bits. See the descriptions about guard
bit in the processor manual for more details.

Due to the overflow, the overflow bit will be set as 1

None

Multiply two 16-bit signed numbers, add the product to low-bit value in
accumulator, and put the result in low bit of accumulator

LO « LO + RX[15:0] x RY[15:0]

mulsha32 rx, ry

Multiply the 16 low bits of general-purpose register RX and 16 low bits
of RY, add the 32-bit result to the value in 32-low-bit register LO of
64-bit accumulator, and put the result in low-bit accumulator register LO.
All contents in register RX and RY as well as low-bit accumulator
register LO are considered as signed numbers. The sign bit of source

operand in register RX and RY is the 15" bit and the sign bit of source

273

o SKY

operand and result in low-bit accumulator register LO is the 31 bit.
This instruction supports 8 guard bits. See the descriptions about guard
bit in the processor manual for more details.

Influence on flag Due to the overflow, the overflow bit will be set as 1

bit:

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 100100 00010 ,00000

274

MULSHS - 16-bit multiply-subtract signed

Unified
instruction
Grammar Operation Compiling result
mulshs rx, ry Subtract the value after multiplying two | Only 32-bit instructions
16-bit signed numbers from the low-bit | exist.
value in accumulator, and put the result in | mulshs32 rx, ry
low bit of accumulator
LO « LO - RX[15:0] x RY[15:0]
Description: Subtract the value after multiplying the 16 low bits of general-purpose

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

register RX and 16 low bits of RY from the value in 32-low-bit register
LO of 64-bit accumulator, and put the result in low-bit accumulator
register LO. All contents in register RX and RY as well as low-bit
accumulator register LO are considered as signed numbers. The sign bit
of source operand in register RX and RY is the 15" bit and the sign bit of
source operand and result in low-bit accumulator register LO is the 31
bit.

This instruction supports 8 guard bits. See the descriptions about guard
bit in the processor manual for more details.

Due to the overflow, the overflow bit will be set as 1

None

Subtract the value after multiplying two 16-bit signed numbers from the
low-bit value in accumulator, and put the result in low bit of accumulator
LO « LO - RX[15:0] x RY[15:0]

mulshs32 rx, ry
Subtract the value after multiplying the 16 low bits of general-purpose
register RX and 16 low bits of RY from the value in 32-low-bit register

LO of 64-bit accumulator, and put the result in low-bit accumulator

register LO. All contents in register RX and RY as well as low-bit

275

o SKY

accumulator register LO are considered as signed numbers. The sign bit
of source operand in register RX and RY is the 15 bit and the sign bit of
source operand and result in low-bit accumulator register LO is the 31
bit.
This instruction supports 8 guard bits. See the descriptions about guard
bit in the processor manual for more details.

Influence on flag Due to the overflow, the overflow bit will be set as 1

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0

1110001 RY RX 100100 (00100 000600

276

MULSS — Multiply-subtract signed

SKY

Unified

instruction

Grammar Operation Compiling result

mulss X, ry Subtract the value after multiplying two | Only 32-bit instructions
signed numbers from the value in | exist.
accumulator, and put the result in | mulss32 rx,ry
accumulator
{HI, LO} < {HI, LO} - RX x RY

Description: Subtract the value after multiplying general-purpose register RX and RY

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:
Exception:

Instruction

from the value in 64-bit accumulator, and put the result in accumulator.
The 32 high bits of the result are stored in HI and the 32 low bits are
stored in LO. All values in general-purpose register RX and RY as well as
64-bit accumulator are considered as signed numbers.

Due to the overflow, the overflow bit will be set as 1

None

Subtract the value after multiplying two signed numbers from the value
in accumulator, and put the result in accumulator

{HI, LO} « {HI, LO} - RX x RY

mulss32 rx, ry

Subtract the value after multiplying general-purpose register RX and RY
from the value in 64-bit accumulator, and put the result in accumulator.
The 32 high bits of the result are stored in HI and the 32 low bits are
stored in LO. All values in general-purpose register RX and RY as well as
64-bit accumulator are considered as signed numbers.

Due to the overflow, the overflow bit will be set as 1

None

277

format:
3130 2625 2120 16 15 109 54 0
1110001 RY 100011 00100 100000

278

Unified

instruction

MULSW - 16x32 multiply signed

Grammar

Operation Compiling result

mulsw 1z, X, ry

Multiply 16-bit signed number and 32-bit | Only 32-bit instructions
signed number, and put the 32 high bits of | exist.
result in general-purpose register mulsw32 rx, ry

RZ « (RX[15:0] x RY[31:0])[47:16]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

Multiply the 16 low bits of general-purpose register RX and contents of
register RY, and put the 32 high bits of result in general-purpose register
RZ. All values in general-purpose register RX and RY as well as RZ are
considered as signed numbers. The sign bit of source operand in register
RX is the 15" bit of register and the sign bit of source operand in register
RY and result in register RZ is the 31 bit of register.

No influence

None

Multiply 16-bit signed number and 32-bit signed number, and put the 32
high bits of result in general-purpose register

RZ « (RX[15:0] x RY[31:0])[47:16]

mulsw32 rx, ry

Multiply the 16 low bits of general-purpose register RX and contents of
register RY, and put the 32 high bits of result in general-purpose register
RZ. All values in general-purpose register RX and RY as well as RZ are
considered as signed numbers. The sign bit of source operand in register
RX is the 15™ bit of register and the sign bit of source operand in register
RY and result in register RZ is the 31 bit of register.

No influence

None

279

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110001 RY 100101 00001

280

MULSWA - 16x32 multiply-accumulate signed

Unified

instruction

Grammar

Operation Compiling result

mulswa rx, ry

Multiply 16-bit signed number and 32-bit | Only 32-bit instructions
signed number, add the 32 high bits of | exist.

result to the value of low bit in accumulator, | mulswa32 rx, ry

and put the result in low bit of accumulator

LO < LO + (RX[15:0] x RY[31:0])[47:16]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Multiply the 16 low bits of general-purpose register RX and contents of
RY, add the 32 high bits of result to the value in 32-low-bit register LO of
64-bit accumulator, and put the result in low-bit accumulator register LO.
All values in register RX and RY as well as low-bit accumulator register
LO are considered as signed numbers. The sign bit of source operand in
register RX is the 15" bit of register and the sign bit of source operand
and result in register RY and low-bit accumulator register LO is the 31
bit of register.

This instruction supports 8 guard bits. See the descriptions about guard
bit in the processor manual for more details.

Due to the overflow, the overflow bit will be set as 1

None

Multiply 16-bit signed number and 32-bit signed number, add the 32 high
bits of result to the value of low bit in accumulator, and put the result in
low bit of accumulator

LO « LO + (RX[15:0] x RY[31:0])[47:16]

mulswa32 rx,ry

Multiply the 16 low bits of general-purpose register RX and contents of
RY, add the 32 high bits of result to the value in 32-low-bit register LO of

64-bit accumulator, and put the result in low-bit accumulator register LO.

281

o SKY

All values in register RX and RY as well as low-bit accumulator register
LO are considered as signed numbers. The sign bit of source operand in
register RX is the 15" bit of register and the sign bit of source operand
and result in register RY and low-bit accumulator register LO is the 31*
bit of register.
This instruction supports 8 guard bits. See the descriptions about guard
bit in the processor manual for more details.

Influence on flag Due to the overflow, the overflow bit will be set as 1

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0

1110001 RY RX 100101 (00100 100000O0

282

MULSWS — 16x32 multiply-subtract signed

Unified

instruction

Grammar

Operation Compiling result

mulsws 1x, ry

Subtract the 32 high bits of the result after | Only 32-bit instructions
multiplying 16-bit signed number and | exist.

32-bit signed number from the value of low | mulsws32 rx, ry

bit in accumulator, and put the result in low
bit of accumulator

LO < LO - (RX[15:0] x RY[31:0])[47:16]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Subtract the 32 high bits of the result after multiplying the 16 low bits of
general-purpose register RX and contents of RY from the value in
32-low-bit register LO of 64-bit accumulator, and put the result in low-bit
accumulator register LO. All contents in register RX and RY as well as
low-bit accumulator register LO are considered as signed numbers. The
sign bit of source operand in register RX is the 15™ bit of register and the
sign bit of source operand and result in register RY and low-bit
accumulator register LO is the 31 bit of register.

Due to the overflow, the overflow bit will be set as 1

None

Subtract the 32 high bits of the result after multiplying 16-bit signed
number and 32-bit signed number from the value of low bit in
accumulator, and put the result in low bit of accumulator

LO « LO - (RX[15:0] x RY[31:0])[47:16]

mulsws32 rx, ry

Subtract the 32 high bits of the result after multiplying the 16 low bits of
general-purpose register RX and contents of RY from the value in
32-low-bit register LO of 64-bit accumulator, and put the result in low-bit

accumulator register LO. All contents in register RX and RY as well as

283

Influence on flag

bit:

o SKY

low-bit accumulator register LO are considered as signed numbers. The
sign bit of source operand in register RX is the 15™ bit of register and the
sign bit of source operand and result in register RY and low-bit
accumulator register LO is the 31 bit of register.

Due to the overflow, the overflow bit will be set as 1

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 100101 01000 100000

284

MULT — Multiply

Unified
instruction
Grammar Operation Compiling result
mult rz, rx Multiply two numbers, and put the | Compiled into corresponding 16-bit
32 low bits of the result in | or 32-bit instructions according to
general-purpose register the range of register.
RZ <+ RX xRZ if (x<16) and (z<16), then
multl6 rz, rx;
else
mult32 rz, rz, rx;
mult rz, rx, ry Multiply two numbers, and put the | Compiled into corresponding 16-bit
32 low bits of the result in | or 32-bit instructions according to
general-purpose register the range of register.
RZ <+ RX xRY if (y==z) and (x<16)and (z<16),
then
multl6 rz, rx;
else
mult32 1z, rx, ry;
Description: Multiply the contents of two source registers, put the 32 low bits of the

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

result in destination register, and abandon the 32 high bits of the result.
The result is the same no matter whether the source operand is considered
as signed number or unsigned number.

No influence

None

Multiply two numbers, and put the 32 low bits of the result in
general-purpose register

RZ « RX xRZ

multl6 1z, rx

Multiply the contents of general-purpose register RX and RZ, put the 32

285

Influence on flag

bit:

o SKY

low bits of the result in general-purpose register RZ, and abandon the 32
high bits of the result. The result is the same no matter whether the
source operand is considered as signed number or unsigned number.

No influence

Restriction: The range of register is r0-r15.
Exception: None
Instruction
format:
1514 10 9 6 5 210
011111 RZ RX 00
32-bit
instruction
Operation: Multiply two numbers, and put the 32 low bits of the result in
general-purpose register
RZ « RX xRY
Grammar: mult32 rz, rx, ry
Description: Multiply the contents of general-purpose register RX and RY, put the 32

Influence on flag

bit:

low bits of the result in general-purpose register RZ, and abandon the 32
high bits of the result. The result is the same no matter whether the
source operand is considered as signed number or unsigned number.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 100001 00001 RZ

286

Unified

instruction

MULU — Multiply unsigned

Grammar

Operation Compiling result

mulu rx, ry

Multiply two unsigned numbers, and put | Only 32-bit instructions
the result in accumulator exist.

{HI, LO} «~ RX x RY mulu32 rx,ry

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

Multiply the contents in general-purpose register RX and RY, and put the
result in the 64-bit accumulator. The 32 high bits are stored in HI and the
32 low bits are stored in LO. All values in general-purpose register RX
and RY as well as 64-bit accumulator are considered as unsigned
numbers.

Overflow bit is cleared

None

Multiply two unsigned numbers, and put the result in accumulator

{HI, LO} <~ RX x RY

mulu32 rx,ry

Multiply the contents in general-purpose register RX and RY, and put the
result in the 64-bit accumulator. The 32 high bits are stored in HI and the
32 low bits are stored in LO. All values in general-purpose register RX
and RY as well as 64-bit accumulator are considered as unsigned
numbers.

Overflow bit is cleared

None

2120 16 15 109 54 0

287

10001

RY

100010

00001

288

MULUA — Multiply-accumulate unsigned

SKY

Unified

instruction

Grammar Operation Compiling result

mulua rx, ry Multiply two unsigned numbers, add the | Only 32-bit instructions
product to value in accumulator, and put the | exist.
result in accumulator mulua32 rx, ry
{HI, LO} < {HI, LO} + RX xRY

Description: Multiply the contents in general-purpose register RX and RY, add the

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

product to value in the 64-bit accumulator, and put the result in
accumulator. The 32 high bits of the result are stored in HI and the 32 low
bits are stored in LO. All values in general-purpose register RX and RY
as well as 64-bit accumulator are considered as unsigned numbers.

Due to the overflow, the overflow bit will be set as 1

None

Multiply two unsigned numbers, add the product to value in accumulator,
and put the result in accumulator

{HL, LO} « {HI, LO} + RX x RY

mulua32 rx, ry

Multiply the contents in general-purpose register RX and RY, add the
product to value in the 64-bit accumulator, and put the result in
accumulator. The 32 high bits of the result are stored in HI and the 32 low
bits are stored in LO. All values in general-purpose register RX and RY
as well as 64-bit accumulator are considered as unsigned numbers.

Due to the overflow, the overflow bit will be set as 1

None

289

3130 2625

2120

16 15

109

54

1

10001

RY

100010

00010

00000

290

MULUS — Multiply-subtract unsigned

Unified

instruction

Grammar Operation Compiling result

mulus X, ry Subtract the value after multiplying two | Only 32-bit instructions
unsigned numbers from the value in | exist.
accumulator, and put the result in | mulus32 rx,ry
accumulator
{HI, LO} < {HI, LO} - RX x RY

Description: Subtract the value after multiplying general-purpose register RX and RY

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:
Exception:

Instruction

from the value in 64-bit accumulator, and put the result in accumulator.
The 32 high bits of the result are stored in HI and the 32 low bits are
stored in LO. All values in general-purpose register RX and RY as well as
64-bit accumulator are considered as unsigned numbers.

Due to the overflow, the overflow bit will be set as 1

None

Subtract the value after multiplying two unsigned numbers from the value
in accumulator, and put the result in accumulator

{HI, LO} « {HI, LO} - RX x RY

mulus32 rx,ry

Subtract the value after multiplying general-purpose register RX and RY
from the value in 64-bit accumulator, and put the result in accumulator.
The 32 high bits of the result are stored in HI and the 32 low bits are
stored in LO. All values in general-purpose register RX and RY as well as

64-bit accumulator are considered as unsigned numbers.

Due to the overflow, the overflow bit will be set as 1

None

291

format:
3130 2625 2120 16 15 109 54 0
1110001 RY 100010 00100 ,00000O0

292

MVC - C bit move

Unified
instruction
Grammar Operation Compiling result
mvc rz RZ«C Only 32-bit instructions exist.
mvc32
Description: Transfer the condition bit C to the lowest bit of RZ, and clear other bits of

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ.

No influence

None

RZ « C

mvc32 rz

Transfer the condition bit C to the lowest bit of RZ, and clear other bits

of RZ.

No influence

Exception: None

Instruction

format:

3130 2625 21 20 16 15 10 9 54
1110001 {00000 |0000CO|0OO0O0O0O0OTI1I[0OT1O0O00O0

293

MVCYV - C bit reverse move

Unified
instruction
Grammar Operation Compiling result
mvev 1z RZ « (10C) Compiled into
corresponding 16-bit or
32-bit instructions
according to the range of
register.
if (z<16), then
mvevl6e rz;
else
mvev32 1z,
Description: Transfer the condition bit C to the lowest bit of RZ after negation, and

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

1514 10

clear other bits of RZ.

No influence

None

RZ « (10)

mvevl6e 1z

Transfer the condition bit C to the lowest bit of RZ after negation, and
clear other bits of RZ.

No influence

The range of register is r0-r15.

None

294

11001 RZ 000011
32-bit
instruction
Operation: RZ « (1C)
Grammar: mvev32 1z
Description:

Influence on flag

Transfer the condition bit C to the lowest bit of RZ after negation, and

clear other bits of RZ.

No influence

bit:
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
10001 {00000 |]00000]|]00O0OO0OO0OT1 10000

295

MVTC - Copy overflow bit to C bit

Unified
instruction
Grammar Operation Compiling result
mvtc C«V Only 32-bit instructions
exist.
mvtc32;
Description: Copy the overflow bit of DCSR(CR <14,0>) to C bit.
Influence on flag C bit is set according to the overflow bit
bit:
Exception: None
32-bit
instruction
Operation: C«V
Grammar: mvtc32
Description: Copy the overflow bit of DCSR(CR <14,0>) to C bit.
Influence on flag C bit is set according to the overflow bit
bit:
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0

1110001 {00000 (00000 |100110(100001]00000O0

296

NIE — Interrupt nesting enable

Unified
instruction
Grammar Operation Compiling result
nie Store the interrupted control | Only 16-bit instructions exist.
register site {EPSR, EPC} to the nie;
stack storage, then update the stack
pointer register to the top of stack
storage, and initiate PSR.IE and
PSR.EE;
MEM][SP-4] «-EPC;
MEM]SP-8] <—EPSR;
SP<«-SP-§;
PSR({EE,IE}) « 1
Attribute: Privileged instruction
Description: Store the interrupted control register site {EPSR, EPC} to the stack

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Attribute:

storage, then update the stack pointer register to the top of stack storage,
and initiate the interrupt and exception enable bit PSR.IE and PSR.EE.
Adopt direct addressing mode of stack pointer register.

No influence

Access error exception, unaligned exception and privilege violation

exception

Store the interrupted control register site {EPSR, EPC} to the stack
storage, then update the stack pointer register to the top of stack storage,
and initiate PSR.IE and PSR.EE;

MEM]SP-4] «<—EPC;

MEM][SP-8] <—EPSR;

SP<«-SP-§;

PSR({EE,IE}) « 1

niel6

Privileged instruction

297

Description:

Influence on flag

bit:

o SKY

Store the interrupted control register site {EPSR, EPC} to the stack
storage, then update the stack pointer register to the top of stack storage,
and initiate the interrupt and exception enable bit PSR.IE and PSR.EE.
Adopt direct addressing mode of stack pointer register.

No influence

Exception: Unaligned access exception, unaligned access exception, and access
error exception

Instruction

format:

1514 109 8 7 5 4 0

0j]00101 1|0

001 1{00000O0

298

NIR — Interrupt nesting return

Unified
instruction
Grammar Operation Compiling result
nir Load the interrupted control | Only 16-bit instructions exist.
register site {EPSR, EPC} from the nir;
stack storage, and then update the
stack pointer register to the top of
stack storage; return from interrupt
EPSR«—MEM[SP]
EPC<—MEM[SP+4];
SP<«SP+8;
PSR«EPSR;
PC«EPC
Attribute: Privileged instruction
Description: Load the interrupted site {EPSR, EPC} from the stack storage, and then

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

update the stack pointer register to the top of stack storage; restore PC

value to the value in control register EPC and restore PSR value to

EPSR value; the instruction is executed from the new PC address.

Adopt direct addressing mode of stack pointer register.

No influence

Access error exception, unaligned exception and privilege violation

exception

Load the interrupted control register site {EPSR, EPC} from the stack

storage, and then update the stack pointer register to the top of stack

storage; return from interrupt
EPSR«MEM]JSP]
EPC<MEM][SP+4];
SP<«-SP+8;

PSR«EPSR;

PC«EPC

299

SKY

Grammar:
Attribute:

Description:

Influence on flag
bit:

Exception:

Instruction

format:

1514

nirl6

Privileged instruction

Load the interrupted site {EPSR, EPC} from the stack storage, and then
update the stack pointer register to the top of stack storage; restore PC
value to the value in control register EPC and restore PSR value to
EPSR value; the instruction is executed from the new PC address.
Adopt direct addressing mode of stack pointer register.

No influence

Unaligned access exception, unaligned access exception, and access

error exception

109 8 7 5 4 0

0j]00101 1|0

001 1{00001

300

NOR - Bitwise NOT-OR

Unified

instruction

Grammar Operation Compiling result

nor rz, rx RZ « (RZ | RX) Compiled into corresponding 16-bit or

32-bit instructions according to the
range of register.
if (x<16) and (z<16), then
norl6 rz, rx;
else

nor32 rz, 1z, rx;

nor rz, rx, ry

RZ « (RX |RY) Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (y==z) and (x<16) and (z<16), then
norl6 rz, rx

else

nor32 1z, X, ry

Description:

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:

Perform a bitwise OR of the values of RX and RY/RZ, then perform a
bitwise NOT, and save the result in RZ.

No influence

None

RZ < (RZ | RX)

norl6 rz, rx

Perform a bitwise OR of the values of RZ and RX, then perform a bitwise
NOT, and save the result in RZ.

No influence

The range of register is r0-r15.

301

Exception:
Instruction

format:

1514 10 9

None

10

11011

10

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ « !|(RX | RY)

nor32 1z, 1X, 1y

Perform a bitwise OR of the values of RX and RY, then perform a bitwise
NOT, and save the result in RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 001001 00100

302

NOT - Bitwise NOT#

Unified
instruction
Grammar Operation Compiling result
not 1z RZ < (RZ) Compiled into corresponding
16-bit or 32-bit instructions
according to the range of register.
if (z<16), then
notl6 rz;
else
not32 rz, rz,
not 1z, rx RZ « I(RX) Compiled into corresponding
16-bit or 32-bit instructions
according to the range of register.
if (x==z) and (z<16), then
notl6 rz;
else
not32 rz, rx;
Description: Perform a bitwise NOT of RZ/RX value and save the result in RZ.

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

Attention: This instruction is the pseudo instruction of nor rz, rz and nor

1Z, X, IX.

No influence

None
RZ « I(RZ)
notl6 rz

Perform a bitwise NOT of RZ value and save the result in RZ.

Attention: This instruction is the pseudo instruction of norl6 rz, rz.

No influence

303

Exception: None
Instruction
format:
1514 10 9 6 5 10
011011 RZ RZ 10
32-bit
instruction
Operation: RZ « I(RX)
Grammar: not32 rz, rx
Description: Perform a bitwise NOT of RX value and save the result in RZ.
Attention: This instruction is the pseudo instruction of nor32 rz, rx, rx.
Influence on flag No influence
bit:
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
1{10001 RX 001001 (00100 RZ

304

OR - Bitwise OR

h’SKY

Unified
instruction
Grammar Operation Compiling result
or r1z,1X RZ « RZ|RX Compiled into corresponding 16-bit or
32-bit instructions according to the
range of register.
if (x<16) and (z<16), then
orl6 rz,1X;
else
or32 1z, 1z, X;
or 1z, rX, 1y RZ < RX|RY Compiled into corresponding 16-bit or

32-bit instructions according to the
range of register.

if (y==z) and (x<16) and (z<16), then

orl6 rz,rx
else
or32 1z, 1X, 1y

Description:

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:

Perform a bitwise OR of the values of RX and RY/RZ, and save the result

in RZ.

No influence

None

RZ « RZ |RX

orl6 rz, rx

Perform a bitwise OR of the values of RZ and RX, and save the result in

RZ.

No influence

The range of register is r0-r15.

305

1514

Exception:
Instruction

format:

10 9

None

10

11011

00

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

RZ < RX |RY

or 17, 1X, Ty

Perform a bitwise OR of the values of RX and RY, and save the result in

RZ.

No influence

bit:

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY 001001 00001

306

ORI - Bitwise OR immediate

Unified

instruction

Grammar Operation Compiling result

ori 1z, 1X,imml6 | RZ < RX | zero_extend(IMM16) Only 32-bit instructions
exist.
ori32 rz,rx, imml6

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

Zero-extend the 16-bit immediate operand to 32 bits, perform a bitwise
OR with RX value, and save the result in RZ.

No influence

The range of immediate operand is 0x0-OxFFFF.

None

RZ <« RX | zero_extend(IMM16)
ori32 rz,rx, imml6

Zero-extend the 16-bit immediate operand to 32 bits, perform a bitwise
OR with RX value, and save the result in RZ.

No influence

Restriction: The range of immediate operand is 0x0-0xFFFF.
Exception: None
Instruction
format:
3130 2625 2120 1615 0
1111011 RZ RX IMM16

307

PLDR — Prefetch read data

SKY

Unified
instruction
Grammar Operation Compiling result
pldr (rx, disp) Prefetch read data Only 32-bit instructions
MEMJ[RX + zero_extend(offset << 2)] exist.
pldr32 (rx, disp)

Description:

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

This instruction aims to accelerate the data loading behavior. Before data
loading, PLDR instruction is started to read the data line into Cache;
when Load instruction is executed, it is aimed at D-Cache, so the data
loading efficiency is increased.

The effective address of this instruction is gained by adding the base
register RX to the value of unsigned extending the 12-bit relative offset
shifting left by two bits to 32 bits. Attention: The offset DISP is gained
after the offset of binary operand shifts left by 2 bits.

No influence

None

Prefetch read data

pldr32 (rx, disp)

This instruction aims to accelerate the data loading behavior. Before data
loading, PLDR instruction is started to read the data line into Cache;
when Load instruction is executed, D-Cache will be targeted, so the data
loading efficiency is increased.

The effective address of this instruction is gained by adding the base
register RX to the value of unsigned extending the 12-bit relative offset
shifting left by two bits to 32 bits. Attention: The offset DISP is gained
after the offset of binary operand shifts left by 2 bits.

No influence

308

Exception: None
Instruction

format:

3130 2625 2120 16 15

12 11

1110110{00000 RX 0110

Offset

309

PLDW — Prefetch write data

Unified

instruction

Grammar Operation Compiling result

pldw (rx, disp) | Prefetch write data Only 32-bit instructions
MEMJ[RX + zero_extend(offset << 2)] exist.

pldw32 (rx, disp)

Description:

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

This instruction aims to accelerate the data storage behavior under write
allocation Cache strategy. Under write allocation Cache strategy, a
backfilling operation will be caused to Cache if the store instruction
Cache is not targeted. PLDW instruction will read data to be stored into
Cache before store instruction; when Store instruction is executed,
D-Cache will be targeted, so the data storage efficiency is increased. The
effective address of this instruction is gained by adding the base register
RX to the value of unsigned extending the 12-bit relative offset shifting
left by two bits to 32 bits. Attention: The offset DISP is gained after the
offset of binary operand shifts left by 2 bits.

No influence

None

Prefetch write data

pldw32 (rx, disp)

This instruction aims to accelerate the data storage behavior under write
allocation Cache strategy. Under write allocation Cache strategy, a
backfilling operation will be caused to Cache if the store instruction
Cache is not targeted. PLDW instruction will read data to be stored into
Cache before store instruction; when Store instruction is executed,
D-Cache will be targeted, so the data storage efficiency is increased. The
effective address of this instruction is gained by adding the base register

RX to the value of unsigned extending the 12-bit relative offset shifting

310

o SKY

left by two bits to 32 bits. Attention: The offset DISP is gained after the
offset of binary operand shifts left by 2 bits.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 12 11 0

111011100000 RX 0110 Offset

311

POP - Pop

Unified
instruction
Grammar Operation Compiling result
pop reglist Load multiple consecutive words | Compiled into corresponding
from stack storage to a group of | 16-bit or 32-bit instructions
consecutive register files, then | according to the range of
update the stack register to the top | register
of stack storage, and return from | if ({reglist}<16), then
the subprogram; popl6 reglist;
dst < {reglist}; addr < SP; else
foreach (reglist){ pop32 reglist;
Rdst « MEM]addr];
dst < next {reglist};
addr <« addr + 4;
H
sp < addr;
PC « R15 & Oxfffffffe;
Description: Load multiple consecutive words from stack storage to a group of

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

consecutive register files, update the stack pointer register, and realize
the function of returning from the subprogram. In another word, the
program jumps to the position appointed by link register R15 and the
lowest bit of link register is ignored. Adopt the direct addressing mode
of stack register.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Load multiple consecutive words from stack storage to a group of
consecutive register files, then update the stack register to the top of

stack storage, and return from the subprogram

312

Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

Instruction

format:

1514 10 9

dst < {reglist}; addr < SP;
foreach (reglist){

Rdst « MEM]addr];

dst < next {reglist};

addr <« addr + 4;
H
sp < addr;
PC « R15 & Oxfffffffe;
popl6 reglist
Load multiple consecutive words from stack storage to a group of
consecutive register files, update the stack pointer register, and realize
the function of returning from the subprogram. In another word, the
program jumps to the position appointed by link register R15 and the
lowest bit of link register is ignored. Adopt the direct addressing mode
of stack pointer register.

No influence

The range of register is 14 —r11, r15.
Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

8 76 5 4 3 0

0j]00101 1|0

0|1 0|0 |R15 LIST1

LIST1 field — Assign whether registers r4-rl11 are in the register list.

0000 —r4-r11 are not in the register list

0001 —r4 is in the register list

0010 — r4-15 are in the register list

0011 — r4-r6 are in the register list

1000 — r4-r11 are in the register list

R15 field — Assign whether register r15 is in the register list.

313

0 —rl5 is not in the register list

1 —rl5 is in the register list

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Load multiple consecutive words from stack storage to a group of
consecutive register files
dst < {reglist}; addr < SP;
foreach (reglist){

Rdst « MEM]addr];

dst < next {reglist};

addr <« addr + 4;
H
sp <« addr;
PC « R15 & Oxfffffffe;
pop32 reglist
Load multiple consecutive words from stack storage to a group of
consecutive register files, update the stack pointer register, and realize
the function of returning from the subprogram. In another word, the
program jumps to the position appointed by link register R15 and the
lowest bit of link register is ignored. Adopt the direct addressing mode
of stack pointer register.

No influence

Restriction: The range of register is r4 —r11, r15, r16 - r17, r28.
Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
3130 2625 2120 16 15 1211109 8 76 5 4 3 0
1/111010{11110|00000| 000O0 (0][0]|0]|R28 LIST2 |R15 LIST1

LIST1 field — Assign whether registers r4-rl11 are in the register list.

314

0000 —r4-r11 are not in the register list
0001 —r4 is in the register list

0010 — r4-15 are in the register list
0011 — r4-r6 are in the register list

1000 — r4-r11 are in the register list

R15 field — Assign whether register r15 is in the register list.
0 —rl5 is not in the register list

1 —rl5 is in the register list

LIST?2 field — Assign whether registers r16-r17 are in the register list.

000 —r16-r19 are not in the register list
001 —r16 is in the register list

010 —r16-r17 are in the register list

R28 field — Assign whether register 128 is in the register list.
0 — 128 is not in the register list

1 — 128 is in the register list

315

PSRCLR - Clear PSR bit

Unified instruction

Grammar

Operation

Compiling result

psrclr ee, ie, fe, af

Or the operand can be any | of status register

Clear a certain bit or several bits | Only 32-bit instructions

exist.

combination of ee, ie, fe and | PSR({EE, IE, FE, AF}) < 0 psrclr32 ee, ie, fe, af

af.

Attribute: Privileged instruction

Description: The selected PSR bit is cleared (1 means that it is selected). The 5-bit

Influence on
flag bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Attribute:

Description:

immediate operand IMMS is used to code the control bit to be cleared, and

the corresponding relation is as follows:

Various bits of immediate operand Corresponding PSR control bit
IMMS5
Imm5][0] AF
Imm5[1] FE
Imm5[2] IE
Imm5([3] EE
Imm([4] Retain

No influence

Privilege violation exception

Clear a certain bit or several bits of status register

PSR({EE, IE, FE, AF}) < 0

psrclr32 ee, ie, fe, af

Or the operand can be any combination of ee, ie, fe and af.

Privileged instruction

The selected PSR bit is cleared (1 means that it is selected). The 5-bit

immediate operand IMMS is used to code the control bit to be cleared, and

the corresponding relation is as follows:

Various bits of immediate operand

Corresponding PSR control bit

316

IMM5
[Jmm5[0] AF
Imm5[1] FE
Imm5[2] IE
Imm5[3] EE
Imm5[4] Retain
Influence on No influence
flag bit:
Exception: Privilege violation exception
Instruction
format:
3130 2625 2120 16 15 109 54
1110000 IMMS5 00000011100 (00001 00000

317

Unified instruction

PSRSET - Set PSR bit

SKY

Grammar

Operation

Compiling result

psrset ee, ie, fe, af
Or the operand can be any
combination of ee, ie, fe and

af.

Set several bits of status
register

PSR({EE, IE, FE, AF}) « 1

Only 32-bit instructions exist.

psrset32 ee, ie, fe, af

Attribute:

Description:

Privileged instruction

The selected PSR bit is set (1 means that it is selected). The 5-bit immediate

operand IMMS5 is used to code the control bit to be cleared, and the

corresponding relation is as follows:

Various bits of immediate operand Corresponding PSR control bit
IMM5
ImmS5[] AF
Imm5[1] UE
Imm5[20] IE
Imm5[3] EE
Imml[1[4] Retain

Influence on
flag bit:

Exception:

32-bit
instruction

Operation:

No influence

Privilege violation exception

Set several bits of status register

PSR({EE, IE, FE, AF}) « 1

Grammar:

psrset32 ee, ie, fe, af

Or the operand can be any combination of ee, ie, fe and af.

Attribute:

Description:

Privileged instruction

The selected PSR bit is set (1 means that it is selected). The 5-bit immediate

operand IMMS5 is used to code the control bit to be cleared, and the

corresponding relation is as follows:

Various bits of immediate operand

Corresponding PSR control bit

318

IMMS5
Imm5[0] AF
Imm5[1] FE
Im0O5[2] IE
Imm5[3] EE
Imm5[4] Retain
Influence on No influence
flag bit:
Exception: Privilege violation exception
Instruction
format:
3130 2625 2120 16 15 109 54 0
1110000 IMMS5 00000}(011101 [O0O001 |0000O0O0

319

PUSH — Push

Unified
instruction
Grammar Operation Compiling result
push reglist Store words in register list to stack | Compiled into corresponding
storage, and update stack register to | 16-bit or 32-bit instructions
the top of stack storage; according to the range of
src < {reglist}; addr < SP; register
foreach (reglist){ if ({reglist}<16), then
addr <« addr - 4; pushl6 reglist;
MEM][addr] < Rsrc; else
src <— next {reglist}; push32 reglist;
}
sp <« addr;
Description: Store words in register list to stack storage, and update stack register to

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Description:

the top of stack storage. Adopt the direct addressing mode of stack

register.

No influence

Unaligned access exception, unaligned access exception, access error

exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store words in register list to stack storage

src < {reglist}; addr < SP;
foreach (reglist){
MEMJaddr] < Rsrc;
src < next {reglist};

addr <« addr - 4;

b
sp < addr
pushl6 reglist

Store words in register list to stack storage, and update stack register to

320

o SKY

the top of stack storage. Adopt the direct addressing mode of stack
register.

Influence on flag No influence

bit:

Restriction: The range of register is 14 —r11, r15.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception

Instruction

format:

1514 109 8 76 5 43 0

0/0010T1 |0]0|1 1|0 |RIl5 LISTI

LIST1 field — Assign whether registers r4-rl11 are in the register list.
0000 —r4-r11 are not in the register list

0001 —r4 is in the register list

0010 — r4-15 are in the register list

0011 — r4-r6 are in the register list

1000 — r4-r11 are in the register list

R15 field — Assign whether register r15 is in the register list.
0 —rl5 is not in the register list

1 —rl5 is in the register list

32-bit instruction
Operation: Load multiple consecutive words from stack storage to a group of
consecutive register files
src < {reglist}; addr < SP;
foreach (reglist){
MEM][addr] < Rsrc;
src «— next {reglist};

addr <« addr - 4;

321

Grammar:

Description:

Influence on flag

bit:

}

sp < addr

push32 reglist

Store words in register list to stack storage, and update stack register to
the top of stack storage. Adopt the direct addressing mode of stack
register.

No influence

Restriction: The range of register is r4 —r11, r15,r16 - r17, r28.
Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
3130 2625 2120 16 15 1211109 8 76 5 4 3 0
1111010{11111]00000| 0000 (0][0]|0]|R28 LIST2 |R15 LIST1

LIST1 field — Assign whether registers r4-rl11 are in the register list.

0000 —r4-r11 are not in the register list

0001 —r4 is in the register list

0010 — r4-15 are in the register list

0011 — r4-r6 are in the register list

1000 — r4-r11 are in the register list

R15 field — Assign whether register r15 is in the register list.

0 —rl5 is not in the register list

1 —rl5 is in the register list

LIST?2 field — Assign whether registers r16-r17 are in the register list.

000 —r16-r19 are not in the register list

001 —r16 is in the register list

010 —r16-r17 are in the register list

R28 field — Assign whether register 128 is in the register list.

322

0 — 128 is not in the register list

1 — 128 is in the register list

323

REVB — Byte-reverse

Unified
instruction
Grammar Operation Compiling result
revb 1z, rx RZ[31:24] <« RX][7:0]; Compiled into corresponding 16-bit
RZ[23:16] <« RX][15:8]; or 32-bit instructions according to the
RZ[15:8] <« RX][23:16]; range of register.
RZ[7:0] <« RX]31:24]; if (x<16) and (z<16), then
revbl6 rz, rx;
else
revb32 rz, rx;
Description: Get the reverse order of RX value according to the byte, keep bit order

inside the byte unchanged, and save the result in RZ.

Influence on flag No influence

bit:
Exception: None
16-bit
instruction
Operation: RZ[31:24] <« RX][7:0];
RZ[23:16] <« RX[15:8];
RZ[15:8] <« RX[23:16];
RZ[7:0] <« RX[31:24];
Grammar: revbl6 rz, rx
Description: Get the reverse order of RX value according to the byte, keep bit order

inside the byte unchanged, and save the result in RZ.
Influence on flag No influence
bit:
Restriction: The range of register is r0-r15.
Exception: None
Instruction

format:

1514 10 9 6 5 210

324

0l 11110 RZ RX 10

32-bit

instruction

Operation: RZ[31:24] <« RX][7:0];
RZ[23:16] <« RX[15:8];
RZ[15:8] <« RX][23:16];
RZ[7:0] <« RX]31:24];

Grammar: revb32 rz, rx

Description:

Influence on flag

bit:
Exception:
Instruction

format:

3130

2625

Get the reverse order of RX value according to the byte, keep bit order

inside the byte unchanged, and save the result in RZ.

No influence

None

2120

16 15

109

54

1110001

00000

RX 011000

00100

325

REVH - Half-word byte-reverse

Unified
instruction
Grammar Operation Compiling result
revh 1z, rx RZ[31:24] <« RX][23:16]; Compiled into corresponding 16-bit
RZ[23:16] <« RX[31:24]; or 32-bit instructions according to the
RZ[15:8] <« RX][7:0]; range of register.
RZ[7:0] <« RX][15:8]; if (x<16) and (z<16), then
revhl6 rz, rx;
else
revh32 rz, rx;
Description: Get the reverse order of RX value within half-word according to the byte.

In another word, two bytes in the high half-word and two bytes in the low
half-word are exchanged. Keep the bit order between two half-words and
the bit order inside the byte unchanged, and save the result in RZ.

Influence on flag No influence

bit:
Exception: None
16-bit
instruction
Operation: RZ[31:24] <« RX][23:16];
RZ[23:16] <« RX[31:24];
RZ[15:8] <« RX[7:0];
RZ[7:0] <« RXJ15:8];
Grammar: revhl6 1z, rx
Description: Get the reverse order of RX value within half-word according to the byte.

In another word, two bytes in the high half-word and two bytes in the low
half-word are exchanged. Keep the bit order between two half-words and
the bit order inside the byte unchanged, and save the result in RZ.
Influence on flag No influence
bit:

Restriction: The range of register is r0-r15.

326

Exception: None

Instruction

format:

1514 10 9 6 5 210

Oj1r111o0 RZ RX 11

32-bit

instruction

Operation: RZ[31:24] <« RX][23:16];
RZ[23:16] <« RX][31:24];
RZ[15:8] <« RX][7:0];
RZ[7:0] < RXJ15:8];

Grammar: revh32 rz, rx

Description:

Influence on flag

bit:

Get the reverse order of RX value within half-word according to the byte.

In another word, two bytes in the high half-word and two bytes in the low

half-word are exchanged. Keep the bit order between two half-words and

the bit order inside the byte unchanged, and save the result in RZ.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 (00000 RX 011000 |010O0O0

327

RFI — Return from fast interrupt

Unified
instruction
Grammar Operation Compiling result
rfi Return from fast interrupt Only 32-bit instructions
PC < FPC, PSR «- FPSR exist.
rfi32
Attribute: Privileged instruction
Description: Restore PC value to value saved in control register FPC and restore PSR

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:
Attribute:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

value to value saved in FPSR; the instruction is executed from the new PC

address.

No influence

Privilege violation exception

Return from fast interrupt
PC « FPC, PSR « FPSR
rfi32

Privileged instruction

Restore PC value to value saved in control register FPC and restore PSR

value to value saved in FPSR; the instruction is executed from the new PC

address.

No influence

Privilege violation exception

2120 16 15

109 54 0

328

10000

00000

00000

010001

00001

329

ROTL — Rotate left

Unified

instruction

Grammar Operation Compiling result

rotl rz, rx RZ < RZ <<<<RX]5:0] Compiled into corresponding 16-bit

or 32-bit instructions according to the
range of register.
if (x<16) and (z<16), then
rotll6 rz, rx;
else

rotl32 rz, rz, rx;

rotl 1z, X, 1y

RZ < RX <<<<RY[5:0]

Compiled into corresponding 16-bit

or 32-bit instructions according to the

range of register.

if (x==z) and (y<16) and (z<16), then
rotll6 1z, ry

else

rotl32 rz, rx, ry

Description:

Influence on flag
bit:

Exception:

16-bit

For rotl rz, rx, perform a ring left shift on RZ value (the original value

shifts left and the bit shifting out from left side will shift to the right

side), and save the result in RZ; the range of left shift is decided by the
value of six low bits of RX (RX][5:0]). If the value of RX[5:0] is greater

than 31, RZ will be cleared;

For Isl rz, rx, ry, perform a ring left shift on RX value (the original

value shifts left and the bit shifting out from left side will shift to the right

side), and save the result in RZ; the range of left shift is decided by the
value of six low bits of RY (RY[5:0]). If the value of RY[5:0] is greater

than 31, RZ will be cleared.

No influence

None

330

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ « RZ <<<< RX[5:0]

rotll6 1z, rx

Perform a ring left shift on RZ value (the original value shifts left and the

bit shifting out from left side will shift to the right side), and save the

result in RZ; the range of left shift is decided by the value of six low bits
of RX (RX[5:0]). If the value of RX[5:0] is greater than 31, RZ will be

cleared.

No influence

Restriction: The range of register is r0-r15.
Exception: None
Instruction
format:
1514 10 9 6 5 10
0Of111o00 RZ RX 11
32-bit
instruction
Operation: RZ - RX <<<<RY[5:0]
Grammar: rotl32 1z, rx, ry
Description:

Influence on flag

bit:

Perform a ring left shift on RX value (the original value shifts left and the

bit shifting out from left side will shift to the right side), and save the

result in RZ; the range of left shift is decided by the value of six low bits
of RY (RY[5:0]). If the value of RY[5:0] is greater than 31, RZ will be

cleared.

No influence

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY 010000 |OT1O0O0O

331

ROTLI — Rotate left immediate

SKY

Unified

instruction

Grammar Operation Compiling result

rotli 1z, rx, RZ < RX <<<< IMMS5 rotli32 rz, rx, immb5;

imm5

Description: Perform a ring left shift on RX value (the original value shifts left and the

Influence on flag
bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

bit shifting out from left side will shift to the right side), and save the
result in RZ; the range of left shift is decided by the value of 5-bit
immediate operand (IMMS5). If the value of IMMS is equal to zero, RZ
value is the same with RX value.

No influence

The range of immediate operand is 0-31.

None
RZ < RX <<<< IMM5
rotli32 rz, rx, imm5

Perform a ring left shift on RX value (the original value shifts left and
the bit shifting out from left side will shift to the right side), and save the
result in RZ; the range of left shift is decided by the value of 5-bit
immediate operand (IMMS). If the value of IMMS is equal to zero, RZ
value is the same with RX value.

No influence

Restriction: The range of immediate operand is 0-31.
Exception: None
Instruction
format:
3130 2625 2120 16 15 109 54 0
10001 IMMS5 RX 01001001000 RZ

332

NNwrvr

SKY

RSUB — Reverse subtract#

Unified
instruction
Grammar Operation Compiling result
rsub 1z, X, 1y RZ <« RY -RX Only 32-bit instructions
exist.
rsub32 rz, rx, ry
Description: Subtract RX value from RY value and save the result in RZ.

Influence on flag

bit:

Attention: This instruction is the pseudo instruction of subu 1z, ry, rx.

No influence

Exception: None

32-bit

instruction

Operation: RZ <« RY -RX

Grammar: rsub32 rz, rx, ry

Description: Subtract RX value from RY value and save the result in RZ.

Attention: This instruction is the pseudo instruction of subu32 rz, ry, rx.

Influence on flag No influence

bit:

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1{10001 RX RY 000000 00100 RZ

334

RTS — Return from subprogram#

Unified
instruction
Grammar Operation Compiling result
rts The program jumps to the position | Always compiled into 16-bit
appointed by link register instruction.
PC < R15 & Oxffftffte rts16
Description: The program jumps to the position appointed by link register R15 and the

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

lowest bit of link register is ignored. The jump range of RTS16
instruction is the whole address space of 4GB.

This instruction is used to realize the function of returning from
subprogram.

Attention: This instruction is the pseudo instruction of jmp r15.

No influence

None

The program jumps to the position appointed by link register

PC < R15 & Oxfftfffte

rts16

The program jumps to the position appointed by link register R15 and the
lowest bit of link register is ignored. The jump range of RTS16
instruction is the whole address space of 4GB.

This instruction is used to realize the function of returning from
subprogram.

Attention: This instruction is the pseudo instruction of jmp16 r15.

No influence

None

335

1514 10 9 6 5 210

0)r11r10|j0000j1111|00

32-bit
instruction
Operation: The program jumps to the position appointed by link register
PC « R15 & Oxfffttfte
Grammar: rts32
Description: The program jumps to the position appointed by link register R15 and the

lowest bit of link register is ignored. The jump range of RTS instruction
is the whole address space of 4GB.
This instruction is used to realize the function of returning from
subprogram.
Attention: This instruction is the pseudo instruction of jmp32 r15.
Influence on flag No influence
bit:
Exception: None
Instruction

format:

3130 26 25 2120 16 15 0

l1411r17010}00110;01111(00000O0O0O0O0O0O0O00O00O0O0O

336

RTE — Return from abnormal and normal interrupt

Unified
instruction
Grammar Operation Compiling result
rte Return from abnormal and normal interrupt | Only 32-bit instructions
PC < EPC, PSR « EPSR exist.
rte32
Attribute: Privileged instruction
Description: Restore PC value to value saved in control register EPC and restore PSR

Influence on flag

bit:

Exception:

32-bit instruction

Operation:

Grammar:
Attribute:

Description:

Influence on flag

value to value saved in EPSR; the instruction is executed from the new
PC address.

No influence

Privilege violation exception

Return from abnormal and normal interrupt

PC « EPC, PSR « EPSR

rte32

Privileged instruction

Restore PC value to value saved in control register EPC and restore PSR
value to value saved in EPSR; the instruction is executed from the new
PC address.

No influence

bit:

Exception: Privilege violation exception

Instruction

format:
3130 2625 2120 16 15 109 54 0
111000000000 00000|010000 100001 |000O00O0

337

SKY

SCE — Set conditional execution

Unified
instruction
Grammar Operation Compiling result
sce cond Set the conditional execution bits of the | Only ~ 32-bit instructions
following 4 instructions exist.
sce32 cond
Description: SCE instruction is used to set the conditional execution bits of the

following 4 instructions. The operand COND is a 4-bit binary
immediate operand. The lowest bit refers to the condition bit of the first
instruction after sce instruction; the second lowest bit refers to the
condition bit of the second instruction after sce instruction, and the like.
If the condition bit is 1, it means that normal execution is realized when
C is 1; if the condition bit is 0, it means that normal execution is
realized when C is 0. If C bit does meet the condition bit, conditional
execution instruction will not generate any influence. The value used to
judge C bit is subject to the value when sce instruction is executed.

Influence on flag When exception or interrupt happens to the following 4 instructions,

bit: conditional execution bit will be saved in EPSR or FPSR.

Restriction: Instructions that can be set by sce instruction only include arithmetic
operation instruction, multiply-divide instructions, and byte, half-word
and word load/store instructions of immediate operand addressing
mode; besides, these instructions should not affect condition bit C.
Instructions that cannot be set by sce instruction include but are not
limited to: branch jump instruction, load/store instruction of register
addressing mode, load/store instruction of double word, load/store
instruction of multiword, co-processor instruction, privileged
instruction, special function instruction, floating point instruction, and
vector multimedia instruction.

The operand is a 4-bit binary immediate operand.

Exception: None

Remark: The instruction sequence is:
sce 0101
mov rl, r0

338

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Restriction:

mov 13, 12
mov 15, r4
mov 17, r6
The condition bit of sce instruction is 0101. If C bit is 0 when sce
instruction is executed, the second and fourth mov instructions meet the
execution condition, and the result is written into register 3 and register
7; the first and third mov instructions do not meet the execution

condition, and the result will not be written into destination register.

Set the conditional execution bits of the following 4 instructions
set_condition_execution(COND);

sce32 cond

SCE instruction is used to set the conditional execution bits of the
following 4 instructions. The operand COND is a 4-bit binary
immediate operand. The lowest bit refers to the condition bit of the first
instruction after sce instruction; the second lowest bit refers to the
condition bit of the second instruction after sce instruction, and the like.
If the condition bit is 1, it means that normal execution is realized when
C is 1; if the condition bit is 0, it means that normal execution is
realized when C is 0. If C bit does meet the condition bit, conditional
execution instruction will not generate any influence. The value used to
judge C bit is subject to the value when sce instruction is executed.
When exception or interrupt happens to the following 4 instructions,
conditional execution bit will be saved in EPSR or FPSR.

Instructions that can be set by sce instruction only include arithmetic
operation instruction, multiply-divide instructions, and byte, half-word
and word load/store instructions of immediate operand addressing
mode; besides, these instructions should not affect condition bit C.
Instructions that cannot be set by sce instruction include but are not
limited to: branch jump instruction, load/store instruction of register
addressing mode, load/store instruction of double word, load/store
instruction of multiword, co-processor instruction, privileged
instruction, special function instruction, floating point instruction, and
vector multimedia instruction.

The operand is a 4-bit binary immediate operand.

339

Exception: None

Instruction

format:

Remark: The instruction sequence is:
sce32 0101
mov32rl, r0
mov32 13, 12
mov32 r5, r4
mov32 r7, r6
The condition bit of sce instruction is 0101. If C bit is 0 when sce
instruction is executed, the second and fourth mov instructions meet the
execution condition, and the result is written into register 3 and register
7; the first and third mov instructions do not meet the execution
condition, and the result will not be written into destination register.

3130 262524 2120 16 15 109 54 0
11100000 COND [00000]000110(00001|0000O00O0

340

SE — Send event

Unified
instruction
Grammar Operation Compiling result
se Send events to the external part of | Only 32-bit instructions
processor exist.
se32
Description: As a communication mechanism between processor core and peripheral

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

equipment, it can be used for multi-core communication.

No influence

None

Send events to the external part of processor

se32

As a communication mechanism between processor core and peripheral
equipment, it can be used for multi-core communication.

No influence

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110000 000000000001 0110(00001]00000O0

341

SEXT — Extract bit and extend signed

Unified instruction

SKY

Grammar

Operation Compiling result

sext rz, rx, msb, Isb

RZ « sign_extend(RX[MSB:LSB]) Only 32-bit instructions

exist.

sext32 rz, rx, msb, Isb

Description:

Influence on flag
bit:

Restriction:

Exception:

32-bit instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:

Exception:

Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed
by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits,
and save the result in RZ. If MSB is equal to 31 and LSB is equal to
zero, RZ value is the same with RX value. If MSB is equal to LSB, RZ
value is the result after one-bit sign-extension of RX[MSB] (i.e.
RX[LSB]). If MSB is smaller than LSB, behavior of this instruction is
unpredictable.

No influence

The range of MSB is 0-31, the range of LSB is 0-31, and MSB should
be greater than or equal to LSB.

None

RZ « sign_extend(RX[MSB:LSB])

sext32 rz, rx, msb, Isb

Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed
by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits,
and save the result in RZ. If MSB is equal to 31 and LSB is equal to
zero, RZ value is the same with RX value. If MSB is equal to LSB, RZ
value is the result after one-bit sign-extension of RX[MSB] (i.e.
RX[LSB]). If MSB is smaller than LSB, behavior of this instruction is
unpredictable.

No influence

The range of MSB is 0-31, the range of LSB is 0-31, and MSB should
be greater than or equal to LSB.

None

342

Instruction

format:

3130 2625 2120 16 15 109 54 0

1110001 LSB RX 010110 MSB RZ
MSB field — Assign the starting bit of LSB field — Assign the end bit of

extraction. extraction.
00000 -0 00000 — 0 bit
00001 —1 00001 — 1 bit

11111 -31 11111 — 31 bits

343

SEXTB — Extract byte and extend signed#

Unified

instruction

Grammar Operation Compiling result

sextb 1z, 1x RZ « sign_extend(RX[7:0]); Compiled into corresponding 16-bit

or 32-bit instructions according to
the range of register.
if (z<16) and (x<16), then

sextbl6 1z, rx;

else sextb32 rz, rx;

Description:

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

1514 10

Sign-extend low bytes of RX (RX[7:0]) to 32 bits, and save the result in
RZ.

No influence

None

RZ « sign_extend(RX[7:0]);

sextbl6 1z, X

Sign-extend low bytes of RX (RX[7:0]) to 32 bits, and save the result in
RZ.

No influence

The range of register is r0-r15.

None

0

11101

32-bit
instruction

Operation:

RZ « sign_extend(RX[7:0]);

344

o SKY

Grammar: sextb32 1z, rx
Description: Sign-extend low bytes of RX (RX[7:0]) to 32 bits, and save the result in
RZ.

Attention: This instruction is the pseudo instruction of sext32 rz, rx,
0x7, 0x0.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 26 25 2120 16 15 10 9 54 0
1, 10001 |00000O0 RX 010110 |00T1T11 RZ

345

SEXTH - Extract half-word and extend signed#

Unified

instruction

Grammar

Operation

Compiling result

sexth rz, rx

RZ « sign_extend(RX[15:0]);

Compiled into corresponding 16-bit
or 32-bit instructions according to
the range of register.

if (z<16) and (x<16), then

sexthl6 1z, rx;

else sexth32 rz, rx;

Description:

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

Sign-extend low half-word of RX (RX[15:0]) to 32 bits, and save the

result in RZ.

No influence

None

RZ « sign_extend(RX[15:0]);

sexthl6 1z, rx

Sign-extend low half-word of RX (RX[15:0]) to 32 bits, and save the

result in RZ.

No influence

Restriction: The range of register is r0-r15.
Exception: None

Instruction

format

1514 10 6 5 10
011101 RZ 11

32-bit instruction

Operation:

Grammar:

Iz, 1X

RZ « sign_extend(RX[15:0]);
sexth32

346

o SKY

Description: Sign-extend low half-word of RX (RX[15:0]) to 32 bits, and save the
result in RZ.
Attention: This instruction is the pseudo instruction of sext32 rz, rx,
0x15, 0x0.

Influence on flag No influence

bit:

Exception: None

3130 2625 21 20 16 15 10 9 54 0
1110001 (00000 RX 010110 (01111 RZ

347

Unified

instruction

SRS.B — Store byte sign

Grammar

Operation Compiling result

srs.b 1z, [label]

Store the lowest byte sign in | Only 32-bit instructions exist.
register to storage srs32.b 1z, [label]
MEM[R28 +
zero_extend(offset)] «— RZ[7:0]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

Store the lowest byte sign in register RZ to the position of label. Adopt
the addressing mode of register and unsigned immediate operand offset.
The effective address of storage is gained by adding the base register RX
to the value of unsigned extending the 18-bit relative offset to 32 bits.
The address space of SRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Store the lowest byte sign in register to storage

MEMJ[R28 + zero_extend(offset)] «— RZ[7:0]

srs32.b rz, [label]

Store the lowest byte sign in register RZ to the position of label. Adopt
the addressing mode of register and unsigned immediate operand offset.
The effective address of storage is gained by adding the base register RX
to the value of unsigned extending the 18-bit relative offset to 32 bits.
The address space of SRS.B instruction is +256KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

348

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

3130 2625 21 20 18 17 0
1110011 RZ 1 00 Offset

349

Unified

instruction

SRS.H — Store half-word sign

SKY

Grammar

Operation Compiling result

srs.h 1z, [label]

Store the lowest half-word sign | Only 32-bit instructions exist.
in register to storage srs32.h 1z, [label]
MEMJ[R28 + zero_extend(offset
<<1)] « RZ[7:0]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Store the lowest half-word sign in register RZ to the position of label.
Adopt the addressing mode of register and unsigned immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 18-bit relative offset
shifting left by one bit to 32 bits. The address space of SRS.H instruction
is +512KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Store the lowest half-word sign in register to storage

MEMJ[R28 + zero_extend(offset << 1)] < RZ[7:0]

srs32.h rz, [label]

Store the lowest half-word sign in register RZ to the position of label.
Adopt the addressing mode of register and unsigned immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 18-bit relative offset
shifting left by one bit to 32 bits. The address space of SRS.H instruction
is +512KB.

Attention: The offset DISP is the offset of binary operand.

No influence

350

o SKY

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

3130 2625 21 20 18 17 0
1110011 RZ 1 01 Offset

351

Unified

instruction

SRS.W — Store word sign

SKY

Grammar

Operation Compiling result

srs.w 1z, [label]

Store the lowest word sign in | Only 32-bit instructions exist.
register to storage srs32.w 1z, [label]
MEMJ[R28 + zero_extend(offset
<<2)] « RZ[7:0]

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Store the lowest word sign in register RZ to the position of label. Adopt
the addressing mode of register and unsigned immediate operand offset.
The effective address of storage is gained by adding the base register RX
to the value of unsigned extending the 18-bit relative offset shifting left
by two bits to 32 bits. The address space of SRS.W instruction is
+1024KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Store the lowest word sign in register to storage

MEMJ[R28 + zero_extend(offset << 2)] «— RZ[7:0]

srs32.w 1z, [label]

Store the lowest word sign in register RZ to the position of label. Adopt
the addressing mode of register and unsigned immediate operand offset.
The effective address of storage is gained by adding the base register RX
to the value of unsigned extending the 18-bit relative offset shifting left
by two bits to 32 bits. The address space of SRS.W instruction is
+1024KB.

Attention: The offset DISP is the offset of binary operand.

No influence

352

o SKY

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

3130 2625 21 20 18 17 0
1110011 RZ 110 Offset

353

SRTE — Return from safe state

Unified
instruction
Grammar Operation Compiling result
srte Return from safe state Only 32-bit instructions exist.
PC < SPC, PSR «- SPSR srte32
Attribute: Privileged instruction
Description: Restore PC value to value saved in control register SPC and restore PSR

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:
Attribute:

Description:

Influence on flag

bit:

value to value saved in SPSR; the instruction is executed from the new PC
address.

No influence

Privilege violation exception

Return from safe state

PC « SPC, PSR « SPSR

srte32

Privileged instruction

Restore PC value to value saved in control register SPC and restore PSR
value to value saved in SPSR; the instruction is executed from the new PC
address.

No influence

Exception: Privilege violation exception

Instruction

format:
3130 2625 2120 16 15 109 54 0
111000000000 (00000|011111]00001]00000O0

354

ST.B — Store byte

Unified

instruction

Grammar Operation Compiling result

stb 1z, (rx, disp) | Store the lowest byte in register to | Compiled into 16-bit or 32-bit
storage instructions according to the
MEM[RX + zero_extend(offset)] range of offset and register.
« RZ[7:0] if (disp<32) and (x<7) and (z<7),
then

stl6.b rz, (rx, disp);
else

st32.b rz, (rx, disp);

Description: Store the lowest byte in register RZ to storage. Adopt the addressing
mode of register and unsigned immediate operand offset. The effective
address of storage is gained by adding the base register RX to the value
of unsigned extending the 12-bit relative offset to 32 bits. The address
space of ST.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

Influence on flag No influence

bit:

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB write invalid exception

16-bit instruction

Operation: Store the lowest byte in register to storage
MEMJ[RX + zero_extend(offset)] «<— RZ[7:0]

Grammar: stl6.b rz, (rx, disp)

Description: Store the lowest byte in register RZ to storage. Adopt the addressing
mode of register and unsigned immediate operand offset. The effective
address of storage is gained by adding the base register RX to the value
of unsigned extending the 5-bit relative offset to 32 bits. The address
space of ST16.B instruction is +32B.

Attention: The offset DISP is the offset of binary operand.

Influence on flag No influence

355

bit:
Restriction:

Exception:

Instruction

format:

1514 1110

8

The range of register is r0-r7.
Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

7 5 4 0

1101 00| RX

RZ IMMS5

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Store the lowest byte in register to storage

MEMJ[RX + zero_extend(offset)] «<— RZ[7:0]

st32.b rz, (rx, disp)

Store the lowest byte in register RZ to storage. Adopt the addressing
mode of register and unsigned immediate operand offset. The effective
address of storage is gained by adding the base register RX to the value
of unsigned extending the 12-bit relative offset to 32 bits. The address
space of ST32.B instruction is +4KB.

Attention: The offset DISP is the offset of binary operand.

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB write invalid exception
Instruction
format:
3130 2625 2120 1615 12 11 0
110111 RZ RX 0000 Offset

356

Unified

instruction

ST.D — Store double word

Grammar

Operation Compiling result

st.d rz, (rx, disp)

Store double word in register to storage
MEM[RX + zero_extend(offset<< 2)] «
RZ[31:0]

MEMJ[RX + zero_extend(offset<< 2) +
0x4] < RZ + 1[31:0]

Only 32-bit instructions
exist.

st32.d rz, (rx, disp);

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Store double word in register RZ and RZ + 1 to storage. Adopt the
addressing mode of register and unsigned immediate operand offset.
The effective address of storage is gained by adding the base register
RX to the value of unsigned extending the 12-bit relative offset shifting
left by two bits to 32 bits. The address space of ST.D instruction is
+16KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store double word in register to storage

MEMI[RX + zero_extend(offset << 2)] «— RZ[31:0]
MEMJ[RX + zero_extend(offset << 2) + 0x4] «— RZ + 1[31:0]
st32.d
Store double word in register RZ and RZ + 1 to storage. Adopt the

rz, (rx, disp)

addressing mode of register and unsigned immediate operand offset.
The effective address of storage is gained by adding the base register
RX to the value of unsigned extending the 12-bit relative offset shifting
left by two bits to 32 bits. The address space of ST32.D instruction is
+16KB.

357

Influence on flag

bit:

o SKY

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.
Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

No influence

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
3130 2625 2120 1615 12 11 0
{10111 RZ RX 0011 Offset

358

ST.H — Store half-word

Unified

instruction

Grammar Operation Compiling result

sth rz, (rx, disp) Store the lowest byte in | Compiled into 16-bit or 32-bit

register to storage instructions according to the range

MEMI[RX + of offset and register.

zero_extend(offset<< 1)] «— if (disp<64)and(x<7)and(z<7), then

RZ[15:0] stl6.h rz, (rx, disp);
else
st32.h rz, (rx, disp);

Description:

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Description:

Influence on flag

Store low half-word in register RZ to storage. Adopt the addressing
mode of register and unsigned immediate operand offset. The effective
address of storage is gained by adding the base register RX to the value
of unsigned extending the 12-bit relative offset shifting left by one bit to
32 bits. The address space of ST.H instruction is +8KB.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store low half-word in register to storage
MEMJ[RX + zero_extend(offset << 1)] «— RZ[15:0]
stl6.h 1z, (rx, disp)

Store low half-word in register RZ to storage. Adopt the addressing
mode of register and unsigned immediate operand offset. The effective
address of storage is gained by adding the base register RX to the value
of unsigned extending the 5-bit relative offset shifting left by one bit to
32 bits. The address space of ST16.H instruction is +64B.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 1 bit.

No influence

359

bit:

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

1514 1o 8 7 5 4 0

10101 RX RZ IMMS5

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Store low half-word in register to storage

MEMI[RX + zero_extend(offset << 1)] «— RZ[15:0]

st32.h 1z, (rx, disp)

Store low half-word in register RZ to storage. Adopt the addressing
mode of register and unsigned immediate operand offset. The effective
address of storage is gained by adding the base register RX to the value
of unsigned extending the 12-bit relative offset shifting left by one bit to
32 bits. The address space of ST32.H instruction is +8KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 1 bit.

No influence

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
3130 2625 2120 1615 12 11 0
{10111 RZ RX 0001 Offset

360

ST.W — Store word

Unified
instruction
Grammar Operation Compiling result
stw 1z, (rx, disp) | Store word in register to | Compiled into 16-bit or 32-bit
storage instructions according to the range of
MEMI[RX + offset and register.
zero_extend(offset<< 2)] «— | if (x=sp) and (z<7) and (disp < 1024),
RZ[31:0] stl6.w 1z, (sp, disp);
else if (disp<128) and (x<7) and (z<7),
stlo.w 1z, (rX, disp);
else
st32.w 1z, (rx, disp);
Description: Store word in register RZ to storage. Adopt the addressing mode of

Influence on flag
bit:

Exception:

16-bit instruction

Operation:

Grammar:

Description:

register and unsigned immediate operand offset. The effective address
of storage is gained by adding the base register RX to the value of
unsigned extending the 12-bit relative offset shifting left by two bits to
32 bits. The address space of ST.W instruction is +16KB.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store word in register to storage

MEMJ[RX + zero_extend(offset << 2)] «— RZ[31:0]
stlo.w 1z, (rx, disp)
stlo.w 1z, (sp, disp)

Store word in register RZ to storage. Adopt the addressing mode of
register and unsigned immediate operand offset. When rx=sp, the
effective address of storage is gained by adding the base register RX to
the value of unsigned extending the 8-bit relative offset shifting left by

two bits to 32 bits. When rx is other register, the effective address of

361

o SKY

storage is gained by adding the base register RX to the value of
unsigned extending the 5-bit relative offset shifting left by two bits to
32 bits. The address space of ST16.W instruction is +1KB.

Attention: The offset DISP is gained after the binary operand IMMS5
shifts left by two bits. When the base register RX is SP, the offset DISP
is gained after the binary operand {IMM3, IMMS5} shifts left by two
bits.

Influence on flag No influence

bit:

Restriction: The range of register is r0-r7.

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

stlo.w 1z, (rx, disp)

1514 1110 8 7 5 4 0

1101 10| RX RZ IMMS5

stlo.w 1z, (sp, disp)
1514 1110 8 7 5 4 0

1011 1] IMM3 RZ IMMS5

32-bit instruction

Operation: Store word in register to storage
MEMJ[RX + zero_extend(offset << 2)] «— RZ[31:0]

Grammar: st32.w 1z, (rx, disp)

Description: Store word in register RZ to storage. Adopt the addressing mode of
register and unsigned immediate operand offset. The effective address
of storage is gained by adding the base register RX to the value of
unsigned extending the 12-bit relative offset shifting left by two bits to
32 bits. The address space of ST32.W instruction is +16KB.

Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

Influence on flag ~ No influence

bit:

362

o SKY

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Instruction

format:

3130 2625 2120 1615 12 11 0
1110111 RZ RX 0010 Offset

363

STCPR - Store word in co-processor

Unified instruction

Grammar Operation Compiling result
stcpr <cpid, cprz>, | Store word in general-purpose register | Only 32-bit instructions
(rx, offset) of co-processor to storage exist.

MEMI[RX + sign _extend(offset << 2)]
< CPRZ

stcpr32 <cpid, cprz>, (rx,

offset)

Description:

Influence on flag
bit:

Exception:

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:

Instruction

format:

3130 2625

Store word in general-purpose register of co-processor CPRZ to
storage. Adopt the addressing mode of register and immediate operand
offset. Bits 24-21 are agreed as co-processor numbers and used to
assign co-processor of pre-operation. 12 low bits are user defined.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store word in general-purpose register of co-processor to storage
MEMJ[RX + sign_extend(offset << 2)] <~ CPRZ

stcpr32 <cpid, cprz>, (rx, offset)

Store word in general-purpose register of co-processor CPRZ to
storage. Adopt the addressing mode of register and immediate operand
offset. Bits 24-21 are agreed as co-processor numbers and used to
assign co-processor of pre-operation. 12 low bits are user defined.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

2120 1615 12 11 0

364

[u—

11010

0

CPID

0111

User-define

365

Unified instruction

STEX.W — Store word exclusive

Grammar

stex.w 1z, (rx, disp)

Operation Compiling result

If exclusive storage of word succeeds, then | Only 32-bit instructions
MEM[RX + exist.
sign_extend(offset << 2)] «~ RZ; stex32.w 1z, (rX, disp)
RZ «1;

else
RZ « 0;

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Store word in general-purpose register RZ to storage. If exclusive
storage succeeds, the source register RZ returns to 1; if the source
register returns to zero, it means failure of exclusive storage. STEX.W
adopts the addressing mode of register and immediate operand offset.
The effective address of storage is gained by adding the base register
RX to the value of unsigned extending the 12-bit relative offset shifting
left by two bits to 32 bits. The address space of STEX.W instruction is
+16KB.

This instruction matches LDEX.W and it is used for atom operation of
“read storage — modify — write storage” in multi-core communication.
Attention: The offset DISP is gained after the offset of binary operand
shifts left by 2 bits.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

If exclusive storage of word succeeds, then
MEMJ[RX + sign_extend(offset << 2)] «— RZ;
RZ «1;

else

RZ < 0;

366

o SKY

Grammar: stex32.w 1z, (rx, disp)

Description: Store word in general-purpose register RZ to storage. If exclusive
storage succeeds, the source register RZ returns to 1; if the source
register returns to zero, it means failure of exclusive storage.
STEX32.W adopts the addressing mode of register and immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 12-bit relative
offset shifting left by two bits to 32 bits. The address space of
STEX32.W instruction is +16KB.

This instruction matches LDEX32.W and it is used for atom operation
of “read storage — modify — write storage” in multi-core
communication.

Attention: The offset DISP is gained after the offset of binary operand

shifts left by 2 bits.

Influence on flag No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception

Instruction

format:

3130 2625 2120 1615 12 11 0
{10111 RZ RX 0111 Offset

367

Unified

instruction

STM — Store consecutive multiword

Grammar

Operation Compiling result

stm ry-rz, (rx)

Store contents in a group of | Only 32-bit instructions exist.
consecutive register files to a group | stm32 ry-rz, (rx)
of consecutive storage addresses
successively
src < Y; addr < RX;
for (n=0; n <=(Z-Y); n++){
MEM][addr] < Rsrc;
src < src + 1;

addr <« addr + 4;

}

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit
instruction

Operation:

Store contents in a group of consecutive register files starting from RY to
a group of consecutive storage addresses successively. In another word,
store contents in register RY to the address of the first word in the address
appointed by storage; store the contents in register RY+1 to the address of
the second word in the address appointed by storage, and the like; store
the contents in register RZ to the address of the last word in the address
appointed by storage. The effective address of storage is decided by the
contents of base register RX.

No influence

RZ should be greater than or equal to RY.
Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store contents in a group of consecutive register files to a group of

consecutive storage addresses successively

368

Grammar:

Description:

Influence on flag

bit:

src < Y; addr < RX;
for (n = 0; n <= IMMS5; nt++){

MEM][addr] < Rsrc;

src < src + 1;

addr <« addr + 4;
H
stm32 ry-rz, (rx)
Store contents in a group of consecutive register files starting from RY to
a group of consecutive storage addresses successively. In another word,
store contents in register RY to the address of the first word in the address
appointed by storage; store the contents in register RY+1 to the address of
the second word in the address appointed by storage, and the like; store
the contents in register RZ to the address of the last word in the address
appointed by storage. The effective address of storage is decided by the
contents of base register RX.

No influence

Restriction: RZ should be greater than or equal to RY.
Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
3130 2625 2120 16 15 109 54 0
1|1 0101 RY RX 00011100001 IMM5

IMMS field — Assign the number of destination registers, IMMS =Z - Y.

00000 — 1 destination register

00001 — 2 destination registers

11111 — 32 destination registers

369

STOP — Enter low power consumption stop mode

Unified

instruction

Grammar Operation Compiling result

stop Enter low power consumption stop mode Only 32-bit instructions
exist.
stop32

Description: This instruction makes the processor enter low power consumption

Influence on flag
bit:

Exception:

32-bit instruction
Operation:
Grammar:
Attribute:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

mode and wait for an interrupt to exit from this mode. At this time, CPU

clock is stopped and corresponding peripheral equipment is also

stopped.

No influence

Privilege violation exception

Enter low power consumption stop mode
stop32

Privileged instruction

This instruction makes the processor enter low power consumption

mode and wait for an interrupt to exit from this mode. At this time, CPU

clock is stopped and corresponding peripheral equipment is also

stopped.

No influence

Privilege violation exception

2120 16 15

109 54 0

111000000000 |00000|0100T10

00001 000O0O0

370

Unified

instruction

STQ — Store consecutive quad word#

Grammar

Operation Compiling result

stq r4-17, (1x)

Store words in registers R4-R7 to a | Only 32-bit instructions exist.

group of consecutive storage | stq32 rd-r7, (rx);

addresses successively

src < 4; addr < RX;

for (n=0; n <=3; nt+){
MEM][addr] < Rsrc;
src < src + 1;

addr « addr + 4; }

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Store words in register file [R4,R7] (including boundary) to a group of
consecutive storage addresses successively. In another word, store
contents in register R4 to the address of the first word in the address
appointed by storage; store contents in register RS to the address of the
second word in the address appointed by storage; store contents in
register R6 to the address of the third word in the address appointed by
storage; store contents in register R7 to the address of the fourth word
in the address appointed by storage. The effective address of storage is
decided by the contents of base register RX.

Attention: This instruction is the pseudo instruction of stm r4-r7, (rx).

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store words in registers R4-R7 to a group of consecutive storage
addresses successively
src < 4; addr < RX;

for (n=0; n <=3; nt+){

371

Grammar:

Description:

Influence on flag

bit:

MEM][addr] < Rsrc;

src «—src + 1;

addr « addr + 4; }
stq32 r4-17, (rx)
Store words in register file [R4,R7] (including boundary) to a group of
consecutive storage addresses successively. In another word, store
contents in register R4 to the address of the first word in the address
appointed by storage; store contents in register RS to the address of the
second word in the address appointed by storage; store contents in
register R6 to the address of the third word in the address appointed by
storage; store contents in register R7 to the address of the fourth word
in the address appointed by storage. The effective address of storage is
decided by the contents of base register RX.
Attention: This instruction is the pseudo instruction of stm r4-r7, (rx).

No influence

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
3130 2625 2120 16 15 109 54
1/10101 |00100 RX 000111 (00001 |000T11

372

STR.B —

Unified instruction

Store byte in register offset addressing

Grammar Operation Compiling result

sttb 1z, (rx, ry << | Store the lowest byte in register to | Only 32-bit instructions
0) storage exist.

sttb 1z, (1x, ry << | MEM[RX + RY << IMM2] «~ RZ[7:0] | str32.b 1z, (1X, ry << 0)

1) str32.b 1z, (rx, ry << 1)
sttbh 1z, (1%, ry << str32.b 1z, (rx, ry <<2)
2) str32.b 1z, (rx, ry << 3)
stth 1z, (rx, ry <<

3)

Description: Store the lowest byte in register RZ to storage. Adopt the addressing

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

mode of register and register offset. The effective address of storage is
gained by adding the base register RX to the value after offset register
RY shifts left by 2-bit immediate operand IMM2. The default value of
IMM2 is 0.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB write invalid exception

Store the lowest byte in register to storage

MEMI[RX + RY << IMM2] < RZ[7:0]

str32.b 1z, (rx, ry << 0)
str32.b 1z, (rx, ry << 1)
str32.b 1z, (rx, ry <<2)
str32.b 1z, (rx, ry << 3)

Store the lowest byte in register RZ to storage. Adopt the addressing
mode of register and register offset. The effective address of storage is
gained by adding the base register RX to the value after offset register
RY shifts left by 2-bit immediate operand IMM2. The default value of
IMM2 is 0.

373

SKY

Influence on flag

bit:

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB write invalid exception
Instruction
format:
str32.b 1z, (rx, ry << 0)
3130 2625 2120 16 15 109 54 0
1|1 0101 RY 000000 |0000O0T1
str32.b 1z, (rx, ry << 1)
3130 2625 2120 16 15 109 54 0
1|1 0101 RY 000000 |00010
str32.b 1z, (rx, ry <<2)
3130 2625 2120 16 15 109 54 0
1|1 0101 RY 000000 |00100
str32.b 1z, (rx, ry << 3)
3130 2625 2120 16 15 109 54 0
1|1 0101 RY 000000 |01000

374

STR.H — Store half-word in register offset addressing

Unified instruction

Grammar Operation Compiling result

stth 1z, (rx, ry << | Store low half-word in register to | Only 32-bit instructions
0) storage exist.

stth 1z, (1x, ry << | MEM[RX + RY << IMM2] « str32.h 1z, (X, ry << 0)

1) RZ[15:0] str32.h 1z, (rx, ry << 1)
stth 1z, (1x, ry << str32.h 1z, (rx, ry << 2)

2) str32.h 1z, (rx, ry << 3)
stth 1z, (rx, ry <<

3)

Description: Store low half-word in register RZ to storage. Adopt the addressing

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

mode of register and register offset. The effective address of storage is
gained by adding the base register RX to the value after offset register
RY shifts left by 2-bit immediate operand IMM2. The default value of
IMM2 is 0.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store low half-word in register to storage
MEMI[RX + RY << IMM2] «— RZ[15:0]
str32.h
str32.h
str32.h
str32.h

1Z, (X, 1y << 0)

1Z, (1X, 1y << 1)

1Z, (X, 1y << 2)

1Z, (1X, 1y << 3)

Store low half-word in register RZ to storage. Adopt the addressing
mode of register and register offset. The effective address of storage is
gained by adding the base register RX to the value after offset register
RY shifts left by 2-bit immediate operand IMM2. The default value of
IMM2 is 0.

375

SKY

Influence on flag

bit:

No influence

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
str32.h 1z, (rx, 1y << 0)
3130 2625 2120 16 15 109 54 0
1110101 RY RX 000001 [0O0O0O01
str32.h 1z, (rx, 1y << 1)
3130 2625 2120 16 15 109 54 0
1110101 RY RX 000001 [0O0O0T1O0
str32.h 1z, (1x, 1y << 2)
3130 2625 2120 16 15 109 54 0
1110101 RY RX 000001 {00100
str32.h 1z, (rx, 1y << 3)
3130 2625 2120 16 15 109 54 0
1110101 RY RX 000001 [0O1000O0

376

STR.W — Store word in register offset addressing

Unified instruction

Grammar Operation Compiling result

sttw 1z, (rx, ry << | Store word in register to storage Only 32-bit instructions
0) MEM[RX + RY << IMM2] « exist.

sttw 1z, (1x, ry << | RZ[31:0] str32.w 1z, (1X, ry << 0)

1)

sttw 1z, (1X, 1y <<
2)

strw 1z, (X, ry <<

3)

str32.w 1z, (1x, 1y << 1)
str32.w 1z, (1x, 1y << 2)

str32.w 1z, (1X, ry << 3)

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Store word in register RZ to storage. Adopt the addressing mode of
register and register offset. The effective address of storage is gained by
adding the base register RX to the value after offset register RY shifts
left by 2-bit immediate operand IMM2. The default value of IMM?2 is 0.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and

TLB write invalid exception

Store word in register to storage

MEMI[RX + RY << IMM2] «- RZ[31:0]

str32.w 1z, (1X, ry << 0)

str32.w 1z, (1x, ry << 1)

str32.w 1z, (1X, 1y << 2)

str32.w 1z, (1X, ry << 3)

Store word in register RZ to storage. Adopt the addressing mode of
register and register offset. The effective address of storage is gained by
adding the base register RX to the value after offset register RY shifts
left by 2-bit immediate operand IMM2. The default value of IMM?2 is 0.

No influence

377

SKY

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception, and
TLB write invalid exception
Instruction
format:
str32.w 1z, (1x, ry << 0)
3130 2625 2120 16 15 109 54 0
1110101 RY 000010 (00001
str32.w 1z, (1x, 1y << 1)
3130 2625 2120 16 15 109 54 0
1110101 RY 00001000010
str32.w 1z, (X, 1y << 2)
3130 2625 2120 16 15 109 54 0
1110101 RY 00001000100
str32.w 1z, (1X, ry << 3)
3130 2625 2120 16 15 109 54 0
1110101 RY 000010 (01000

378

STRAP — Enter safe state

Unified
instruction
Grammar Operation Compiling result
strap Enter safe state Only 32-bit instructions exist.
SPC « PC, SPSR <« PSR strap32
Attribute: Privileged instruction
Description: Save the current PC value in control register SPC and save the current

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:
Attribute:

Description:

Influence on flag

bit:

PSR in control register SPSR; the program enters safe state and is
executed from the safe entry address.

No influence

Privilege violation exception

Enter safe state

SPC « PC, SPSR « PSR

strap32

Privileged instruction

Save the current PC value in control register SPC and save the current
PSR in control register SPSR; the program enters safe state and is
executed from the safe entry address.

No influence

Exception: Privilege violation exception

Instruction

format:
3130 2625 2120 16 15 109 54 0
111000000000 (00000|011110]00001]00000O0

379

SUBC — Subtract with borrow unsigned

Unified

instruction

Grammar

Operation Compiling result

subc rz, rx

RZ <+ RZ - RX —(1C), Compiled into corresponding 16-bit or

C < borrow 32-bit instructions according to the range of
register.
if (x<16) and (z<16), then
subcl6 1z, rx;
else
subc32

1Z, 1Z, IX;

subc 1z, 1X, TY

RZ < RX -RY - (I1C), Compiled into corresponding 16-bit or

C < borrow 32-bit instructions according to the range of

register.

if (x==z) and (y<16) and (z<16), then
subcl6 1z, ry;

else

subc32

1Z, IX, TY;

Description:

Influence on flag
bit:

Exception:

16-bit instruction
Operation:
Grammar:

Description:

For subc 1z, rx, subtract the value of register RX and negative value of

C bit from the value of RZ; for subc rz, rx, ry, subtract the value of
register RY and negative value of C bit from the value of RX. Save the
result in RZ and save borrow in C bit. For this subtract instruction, if
borrow happens, C bit should be cleared; otherwise, C bit should be set.

C <« borrow

None

RZ < RZ - RX — (!1C), C < borrow
subcl6 1z, rx
Subtract the value of register RX and negative value of C bit from the
value of RZ, save the result in RZ, and save borrow in C bit. For this
subtract instruction, if borrow happens, C bit should be cleared;

otherwise, C bit should be set.

380

Influence on flag C <« borrow

bit:

Restriction: The range of register is r0-r15.
Exception: None

Instruction

format:

1514 10 9 6 5 210

0/]11000 RZ RX 11

32-bit instruction

Operation: RZ < RX -RY — (!C), C « borrow
Grammar: subc32 1z, X, 1y
Description: Subtract the value of register RY and negative value of C bit from the

value of RX, save the result in RZ, and save borrow in C bit. For this
subtract instruction, if borrow happens, C bit should be cleared,;
otherwise, C bit should be set.

Influence on flag C <« borrow

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110001 RY RX 000000 |O10O00O RZ

381

SUBI — Subtract immediate unsigned

Unified

instruction

Grammar Operation Compiling result

subi 1z, oimml2 | RZ « RZ - Compiled into corresponding 16-bit or 32-bit

zero_extend(OIMM12)

instructions according to the range of register.
if (oimm12<257) and (z<8), then

subil6 rz, oimmsS;
else

subi32 rz,rz, oimml2;

subi 1z, X,

RZ <« RX -

Compiled into corresponding 16-bit or 32-bit

oimm12 zero_extend(OIMM12) | instructions according to the range of register.
if (oimm12<8) and (z<8) and (x<8), then
subil6 rz, rx, oimm3;
elsif (x==z) and (z<8) and (oimm12<257),
then
subil6 rz, oimmsS;
else
subi32 rz, rx, oimml2;
Description: Zero-extend the 12-bit immediate operand with offset 1 (OIMM12) to 32

Influence on flag
bit:
Restriction:

Exception:

16-bit
instruction----1
Operation:
Grammar:

Description:

bits, subtract this 32-bit number from RZ/RX value, and save the result in

RZ.

No influence

The range of immediate operand is 0x1-0x1000.

None

RZ < RZ - zero_extend(OIMMS)

subil6 rz, oimm§

Zero-extend the 8-bit immediate operand with offset 1 (OIMMS) to 32

bits, subtract this 32-bit number from RZ value, and save the result in

RZ.

382

Influence on flag

bit:

Attention: The binary operand IMMS is equal to OIMMS — 1.

No influence

Restriction: The range of register is r0-r7; the range of immediate operand is 1-256.
Exception: None
Instruction
format:
1514 1110 8 7 0
0{0 101 RZ IMMS

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the value OIMMS subtracted from the

register requires offset 1.

00000000 — -1
00000001 —-2

11111111 —-256

16-bit
instruction----2
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

1514 10

RZ <« RX - zero_extend(OIMM3)

subil6 rz, rx, oimm3

Zero-extend the 3-bit immediate operand with offset 1 (OIMM3) to 32
bits, subtract this 32-bit number from RX value, and save the result in
RZ.

Attention: The binary operand IMM3 is equal to OIMM3 — 1.

No influence

The range of register is r0-r7; the range of immediate operand is 1-8.

None

383

1011 RX

RZ IMM3

1

1

IMM3 field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM3, the value OIMM3 subtracted from the

register requires offset 1.

000 —-1
001 —-2

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

RZ <« RX - zero_extend(OIMM12)

subi32 rz, rx, oimm1l2

Zero-extend the 12-bit immediate operand with offset 1 (OIMM12) to 32

bits, subtract this 32-bit number from RX value, and save the result in

RZ.

Attention: The binary operand IMM12 is equal to OIMM12 — 1.

No influence

Restriction: The range of immediate operand is 0x1-0x1000.

Exception: None

Instruction

format:
3130 26 25 2120 16 15 12 11 0
1111001 RZ RX 0001 IMM12

IMM12 field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMM12, the value OIMM12 subtracted from

the register requires offset 1.
000000000000 — -0x1
000000000001 — -0x2

384

111111111111 —-0x1000

385

SUBI(SP) — Subtract immediate unsigned (stack pointer)

Unified

instruction

Grammar Operation Compiling result

subi sp, sp, SP « SP- Only 16-bit instructions exist.

imm zero_extend(IMM) subi sp, sp, imm

Description: Zero-extend the immediate operand (IMM) to 32 bits, make it shift left

by 2 bits, subtract it from the value of stack pointer (SP), and save the
result in SP.

Influence on flag No influence

bit:

Restriction: The range of immediate operand is 0x0-0x1fc.

Exception: None

16-bit

instruction

Operation: SP «— SP - zero_extend(IMM)

Grammar: subi sp, sp, imm

Description: Zero-extend the immediate operand (IMM) to 32 bits, make it shift left by
2 bits, subtract it from the value of stack pointer (SP), and save the result
in stack pointer.
Attention: The immediate operand (IMM) is equal to the binary operand
{IMM2, IMM5} << 2.

Influence on No influence

flag bit:

Restriction: The source and destination registers are both stack instruction register
(R14); the range of immediate operand is (0x0-0x7f) << 2.

Exception: None

Instruction

format:

1514 11109 8 7 5 4 0

0/0 01 0|1IMM2[0 0 1 IMM5

386

IMM field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand {IMM2, IMMS5}, the value IMM added into
the register needs to shift left by 2 bits.

{00, 00000} — -0x0

{00, 00001} —-0x4

(11, 11111} — -0x1fc

387

Unified

instruction

SUBU — Subtract unsigned

SKY

Grammar

Operation Compiling result

subu 1z, rx

sub 1z, rx

RZ <« RZ-RX Compiled into corresponding 16-bit or
32-bit instructions according to the range
of register.
if (z<16) and (x<16), then
subul6 rz, rx;
else
subu32

1Z, 1Z, IX;

subu 1z, rx, 1y

RZ < RX -RY Compiled into corresponding 16-bit or
32-bit instructions according to the range
of register.
if (z<8) and (x<8) and (y<8), then

subul6
elsif (x==z) and (z<16) and (y<16), then

subul6

1Z, 1X, 1y;

1Z, 1y;

else

subu32

1Z, IX, 1y;

Description:

Influence on flag
bit:

Exception:

16-bit
instruction----1
Operation:

Grammar:

Description:

For subu rz, rx, subtract RX value from RZ value and save the result in
RZ.

For subu 1z, x, ry, subtract RY value from RX value and save the result
in RZ.

No influence

None

RZ < RZ -RX
subul6 rz, rx
subl6 rz, rx

Subtract RX value from RZ value and save the result in RZ.

388

Influence on flag

bit:

No influence

Restriction: The range of register is r0-r15.
Exception: None
Instruction
format:
1514 10 9 6 5 210
011000 RZ RX 10
16-bit
instruction----2
Operation: RZ <« RX-RY
Grammar: subul6 rz, rx, ry
subl6 1z, rx, ry
Description: Subtract RY value from RX value and save the result in RZ.

Influence on flag
bit:

Restriction:
Exception:
Instruction

format:

1514 11 10

No influence

The range of register is r0-r7.

None

8 7 5 4 210

0/1011] RX

32-bit
instruction
Operation:
Grammar:
Description:

Influence on flag

RZ < RX -RY
subu32 rz, rx, ry

Subtract RY value from RX value and save the result in RZ.

No influence

389

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110001 RY 000000 |OO0OT1O00O0

390

SYNC - Synchronize CPU

Unified
instruction
Grammar Operation Compiling result
sync imm5 Synchronize CPU Only 32-bit instructions
exist.
sync32 imm5
Description: When the processor meets sync instruction, the instruction will be

Influence on flag

bit:

Exception:

32-bit
instruction
Operation:

Grammar:

Description:

suspended according to the indication range of immediate operand till all
operations are completed. In another word, there is no instruction that is
not completed.

The lowest bit of immediate operand (IMMS5[0]) refers to the range of
waiting for operation. If this bit is 0, the instruction will be suspended till
all operations (including internal core, L2 Cache and bus) are completed.
If this bit is 1, the instruction will be suspended till all operations in the
core are completed.

No influence

None

Synchronize CPU

sync32 imm5

When the processor meets sync instruction, the instruction will be
suspended according to the indication range of immediate operand till all
operations are completed. In another word, there is no instruction that is
not completed.

The lowest bit of immediate operand (IMMS5[0]) refers to the range of
waiting for operation. If this bit is 0, the instruction will be suspended till
all operations (including internal core, L2 Cache and bus) are completed.
If this bit is 1, the instruction will be suspended till all operations in the

core are completed.

391

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110000 IMM5 00000 000001 00001 00000O0

392

TRAP — Operating system trap

Unified
instruction
Grammar Operation Description
trap 0, Trigger trap exception Only 32-bit instructions
trap 1 exist.
trap 2, trap32 0,
trap 3 trap32 1
trap32 2,
trap32 3
Description: When the processor meets trap instruction, trap exception operation
happens.
Influence on flag No influence
bit:
Exception: Trap exception
32-bit
instruction
Operation: Trigger trap exception
Grammar: trap32 0,
trap32 1,
trap32 2,
trap32 3
Description: When the processor meets trap instruction, trap exception operation
happens.
Influence on flag No influence
bit:
Exception: Trap exception
Instruction
format:
trap32 0
3130 2625 2120 16 15 109 54 0

393

O SKY

111000000000 |000O00CO0 | 001000 00001 [OO0O0O0DO0
trap32 1

3130 2625 2120 16 15 109 54 0
111000000000 |00O0OO0CO | 001001 |0O0O0C01 [OO0O0O00O0
trap32 2

3130 2625 2120 16 15 109 54 0
111000000000 |00OO0OO0CO | 001010 00001 {0O00O00O0
trap32 3

3130 2625 2120 16 15 109 54 0
111000000000 |000O0CO0 001011 |OO0O0O01 |OO0OO0CO0O0

394

TST — Null-test

Unified
instruction
Grammar Operation Compiling result
tst rx,ry If (RX & RY) !=0, then Compiled into corresponding 16-bit or
C«1; 32-bit instructions according to the range
else of register.
C«0; if (x<16) and (y<16), then
tstl6 rx, ry;
else
tst32 rx, ry;
Description: Test the bitwise AND result of RX and RY values.

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:

Instruction

If the result is not equal to zero, set the condition bit C; otherwise, clear
the condition bit C.

Set the condition bit C according to the bitwise AND result

None

If (RX & RY) =0, then
C«1;
else
C«0;
tstl6 rx, ry
Test the bitwise AND result of RX and RY values.
If the result is not equal to zero, set the condition bit C; otherwise, clear
the condition bit C.

Set the condition bit C according to the bitwise AND result

The range of register is r0-r15.

None

395

format:
1514 10 9 6 5 10
of11o01o0 RY RX 10
32-bit
instruction
Operation: If (RX & RY) =0, then
C«1;
else
C«0;
Grammar: tst32 rx,ry
Description:

Influence on flag

bit:

Test the bitwise AND result of RX and RY values.

If the result is not equal to zero, set the condition bit C; otherwise, clear

the condition bit C.

Set the condition bit C according to the bitwise AND result

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 001000 00100 00000

396

TSTNBZ — Register test without byte equal to zero

Unified
instruction
Grammar Operation Compiling result
tstnbz16 rx If ((RX[31:24]!=0) Compiled into corresponding 16-bit
&(RX[23:16] 1=0) or 32-bit instructions according to
&(RX[15:8]!=0) the range of register.
&RX[7:0]!=0)), then if (x<16), then
C«1; tstnbz16 rx;
else else
C«0; tstnbz32 rx;
Description: Test whether there is byte equal to zero in RX. If there is no byte equal to

Influence on flag
bit:

Exception:

16-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:
Restriction:

Exception:

zero in RX, set the condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the bitwise AND result

None

If ((RX[31:24]!=0)
&(RX[23:16] 1= 0)
&RX[15:8]!=0)
&RX[7:0]!=0)), then

C«1;
else

C«0;
tstnbz16 rx

Test whether there is byte equal to zero in RX. If there is no byte equal to

zero in RX, set the condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the bitwise AND result

The range of register is r0-r15.

None

397

Instruction
format:
1514 10 9 6 5 210
0/ 11010 (0000 RX 11
32-bit
instruction
Operation: If ((RX[31:24]!=0)
&(RX[23:16] I=0)
&RX[15:8]!=0)
&RX[7:0]!=0)), then
C«1;
else
C«0;
Grammar: tstnbz32 rx
Description: Test whether there is byte equal to zero in RX. If there is no byte equal to

Influence on flag

bit:

zero in RX, set the condition bit C; otherwise, clear the condition bit C.

Set the condition bit C according to the bitwise AND result

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110001 00000 RX 001000 01000 00000

398

VMULSH - 16-bit multiply signed in two branches

Unified
instruction
Grammar Operation Compiling result
vmulsh rx, ry Multiply the 16-bit signed numbers in two | Only 32-bit instructions
branches respectively and put the result in | exist.
accumulator vmulsh32 rx, ry
HI «~ RX[31:16] x RY[31:16]
LO « RX[15:0] x RY[15:0]
Description: Save the result of multiplying the 16 high bits of general-purpose register

RX and 16 high bits of RY in the high-bit accumulator register HI. Save
the result of multiplying the 16 low bits of general-purpose register RX
and 16 low bits of RY in the low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign
bits of source operands in register RX and RY are the 31% bit and the 15™
bit of the register respectively; the sign bit of results in high-bit register
HI and low-bit register LO is the 31% bit of the register.

Influence on flag Overflow bit is cleared

bit:

Exception: None

32-bit

instruction

Operation: Multiply the 16-bit signed numbers in two branches respectively and put
the result in accumulator
HI « RX[31:16] x RY[31:16]
LO < RX[15:0] x RY[15:0]

Grammar: vmulsh32 rx, ry

Description: Save the result of multiplying the 16 high bits of general-purpose register

RX and 16 high bits of RY in the high-bit accumulator register HI. Save
the result of multiplying the 16 low bits of general-purpose register RX
and 16 low bits of RY in the low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign

399

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

o SKY

bits of source operands in register RX and RY are the 31% bit and the 15™
bit of the register respectively; the sign bit of results in high-bit register
HI and low-bit register LO is the 31° bit of the register.

Overflow bit is cleared

None

2120 16 15 109 54 0

1

10001

RY RX 101100 (00001100000

400

VMULSHA - 16-bit multiply-accumulate signed in two

Unified

instruction

branches

Grammar

Operation Compiling result

vmulsha rx, ry

Multiply the 16-bit signed numbers in two | Only 32-bit instructions
branches respectively, add the results to the | exist.

high-bit and low-bit values of accumulator vmulsha32 rx, ry
respectively, and put the result in
accumulator

HI «— HI + RX[31:16] x RY[31:16]

LO « LO + RX[15:0] x RY[15:0]

Description:

Influence on flag
bit:

Exception:

32-bit

Add the 32-bit result of multiplying the 16 high bits of general-purpose
register RX and 16 high bits of RY to the value in 32-high-bit register HI
of 64-bit accumulator, and save the result in the high-bit accumulator
register HI. Add the 32-bit result of multiplying the 16 low bits of
general-purpose register RX and 16 low bits of RY to the value in
32-low-bit register LO of 64-bit accumulator, and save the result in the
low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator
register LO and high-bit register LO are considered as signed numbers.
The sign bits of source operands in register RX and RY are the 31 bit
and the 15" bit of the register respectively; the sign bit of operands and
results in high-bit register HI and low-bit register LO is the 31* bit of the
register.

Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Overflow of any branch will set the overflow bit as 1

None

401

instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Multiply the 16-bit signed numbers in two branches respectively, add the
results to the high-bit and low-bit values of accumulator respectively, and
put the result in accumulator

HI «— HI + RX[31:16] x RY[31:16]

LO « LO + RX[15:0] x RY[15:0]

vmulsha32 rx, ry

Add the 32-bit result of multiplying the 16 high bits of general-purpose
register RX and 16 high bits of RY to the value in 32-high-bit register HI
of 64-bit accumulator, and save the result in the high-bit accumulator
register HI. Add the 32-bit result of multiplying the 16 low bits of
general-purpose register RX and 16 low bits of RY to the value in
32-low-bit register LO of 64-bit accumulator, and save the result in the
low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator
register LO and high-bit register LO are considered as signed numbers.
The sign bits of source operands in register RX and RY are the 31 bit
and the 15" bit of the register respectively; the sign bit of operands and
results in high-bit register HI and low-bit register LO is the 31 bit of the
register.

Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Overflow of any branch will set the overflow bit as 1

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 101100 0001000000

402

o SKY

VMULSHS - 16-bit multiply-subtract signed in two branches

Unified
instruction
Grammar Operation Compiling result
vmulshs rx, ry Subtract the value of multiplying the 16-bit | Only 32-bit instructions
signed numbers in two branches from the | exist.
high-bit and low-bit values of accumulator vmulshs32 rx, ry
respectively, and put the result in
accumulator
HI «— HI - RX[31:16] x RY[31:16]
LO « LO - RX[15:0] x RY[15:0]
Description: Subtract the value of multiplying the 16 high bits of general-purpose

register RX and 16 high bits of RY from the value in 32-high-bit register
HI of 64-bit accumulator, and save the result in the high-bit accumulator
register HI. Subtract the value of multiplying the 16 low bits of
general-purpose register RX and 16 low bits of RY from the value in
32-low-bit register LO of 64-bit accumulator, and save the result in the
low-bit accumulator register LO.

All contents in register RX and RY as well as low-bit accumulator
register LO and high-bit register LO are considered as signed numbers.
The sign bits of source operands in register RX and RY are the 31 bit
and the 15" bit of the register respectively; the sign bit of operands and
results in high-bit register HI and low-bit register LO is the 31 bit of the
register.

Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Influence on flag Overflow of any branch will set the overflow bit as 1

bit:

Exception: None

32-bit

instruction

Operation: Subtract the value of multiplying the 16-bit signed numbers in two

403

o SKY

branches from the high-bit and low-bit values of accumulator
respectively, and put the result in accumulator
HI «— HI - RX[31:16] x RY[31:16]
LO « LO - RX[15:0] x RY[15:0]

Grammar: vmulshs32 rx, ry

Description: Subtract the value of multiplying the 16 high bits of general-purpose
register RX and 16 high bits of RY from the value in 32-high-bit register
HI of 64-bit accumulator, and save the result in the high-bit accumulator
register HI. Subtract the value of multiplying the 16 low bits of
general-purpose register RX and 16 low bits of RY from the value in
32-low-bit register LO of 64-bit accumulator, and save the result in the
low-bit accumulator register LO.
All contents in register RX and RY as well as low-bit accumulator
register LO and high-bit register LO are considered as signed numbers.
The sign bits of source operands in register RX and RY are the 31* bit
and the 15" bit of the register respectively; the sign bit of operands and
results in high-bit register HI and low-bit register LO is the 31* bit of the
register.
Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Influence on flag Overflow of any branch will set the overflow bit as 1

bit:

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 101100 0010000000

404

VMULSW - 16x32 multiply signed in two branches

Unified

instruction

Grammar

Operation Compiling result

vmulsw rx, ry

Multiply 16-bit signed numbers in two | Only 32-bit instructions
branches with a 32-bit signed number | exist.

respectively, and put the result in vmulsw32 rx, ry
accumulator

HI «— (RX[31:16] x RY[31:0])[47:16]

LO <« (RX[15:0] x RY[31:0])[47:16]

Description:

Influence on flag

bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Save the 32 high bits of the result after multiplying the 16 high bits of
general-purpose register RX and contents of RY in high-bit accumulator
register HI. Save the 32 high bits of the result after multiplying the 16
low bits of general-purpose register RX and contents of RY in low-bit
accumulator register LO.

All contents in the registers are considered as signed numbers. The sign
bits of source operands in register RX are the 31%' bit and the 15" bit of
the register respectively; the sign bit of operand in register RY and results
in high-bit register HI and low-bit register LO is the 31% bit of the
register.

Overflow bit is cleared

None

Multiply 16-bit signed numbers in two branches with a 32-bit signed
number respectively, and put the result in accumulator

HI <« (RX[31:16] x RY[31:0])[47:16]

LO « (RX[15:0] x RY[31:0])[47:16]

vmulsw32 rx, ry

Save the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY in high-bit accumulator

405

o SKY

register HI. Save the 32 high bits of the result after multiplying the 16
low bits of general-purpose register RX and contents of RY in low-bit
accumulator register LO.
All contents in the registers are considered as signed numbers. The sign
bits of source operands in register RX are the 31% bit and the 15" bit of
the register respectively; the sign bit of operand in register RY and results
in high-bit register HI and low-bit register LO is the 31% bit of the
register.

Influence on flag Overflow bit is cleared

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0

1110001 RY RX 101101 (00001 000O00O0

406

VMULSWA - 16x32 multiply-accumulate signed in two

Unified

instruction

branches

Grammar

Operation Compiling result

vmulswa rx, ry

Multiply 16-bit signed numbers in two | Only 32-bit instructions
branches with a 32-bit signed number | exist.

respectively, add the results to the high-bit vmulswa32 rx, ry
and low-bit values of accumulator
respectively, and put the result in
accumulator

HI «— HI + (RX[31:16] x RY[31:0])[47:16]
LO « LO + (RX[15:0] x RY[31:0])[47:16]

Description:

Influence on flag
bit:

Exception:

32-bit

Add the 32 high bits of the result after multiplying the 16 high bits of
general-purpose register RX and contents of RY to the value in
32-high-bit register HI of 64-bit accumulator, and save the result in
high-bit accumulator register HI. Add the 32 high bits of the result after
multiplying the 16 low bits of general-purpose register RX and contents
of RY to the value in 32-low-bit register LO of 64-bit accumulator, and
save the result in low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign
bits of source operands in register RX are the 31% bit and the 15" bit of
the register respectively; the sign bit of operand in register RY and results
in high-bit register HI and low-bit register LO is the 31* bit of the
register.

Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Overflow of any branch will set the overflow bit as 1

None

407

instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Multiply 16-bit signed numbers in two branches with a 32-bit signed
number respectively, add the results to the high-bit and low-bit values of
accumulator respectively, and put the result in accumulator

HI «— HI + (RX[31:16] x RY[31:0])[47:16]

LO « LO + (RX[15:0] x RY[31:0])[47:16]

vmulswa32 rx, ry

Add the 32 high bits of the result after multiplying the 16 high bits of
general-purpose register RX and contents of RY to the value in
32-high-bit register HI of 64-bit accumulator, and save the result in
high-bit accumulator register HI. Add the 32 high bits of the result after
multiplying the 16 low bits of general-purpose register RX and contents
of RY to the value in 32-low-bit register LO of 64-bit accumulator, and
save the result in low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign
bits of source operands in register RX are the 31% bit and the 15" bit of
the register respectively; the sign bit of operand in register RY and results
in high-bit register HI and low-bit register LO is the 31% bit of the
register.

Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Overflow of any branch will set the overflow bit as 1

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY RX 101101 00010100000

408

VMULSWS - 16x32 multiply-subtract signed in two branches

Unified

instruction

Grammar Operation Compiling result

vmulsws X, ry Subtract the 32 high bits of the result after | Only 32-bit instructions
multiplying the 16-bit signed numbers in two | exist.

branches with a 32-bit signed number from vmulsws32 rx, ry
the high-bit and low-bit values of
accumulator respectively, and put the result
in accumulator

HI <« HI - (RX[31:16] x RY[31:0])[47:16]
LO < LO - (RX[15:0] x RY[31:0])[47:16]
Description: Subtract the 32 high bits of the result after multiplying the 16 high bits of

general-purpose register RX and contents of RY from the value in
32-high-bit register HI of 64-bit accumulator, and save the result in
high-bit accumulator register HI. Subtract the 32 high bits of the result
after multiplying the 16 low bits of general-purpose register RX and
contents of RY from the value in 32-low-bit register LO of 64-bit
accumulator, and save the result in low-bit accumulator register LO.

All contents in the registers are considered as signed numbers. The sign
bits of source operands in register RX are the 31% bit and the 15" bit of
the register respectively; the sign bit of operand in register RY and results
in high-bit register HI and low-bit register LO is the 31* bit of the
register.

Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Influence on flag Overflow of any branch will set the overflow bit as 1

bit:

Exception: None

32-bit

instruction

Operation: Subtract the 32 high bits of the result after multiplying the 16-bit signed

409

o SKY

numbers in two branches with a 32-bit signed number from the high-bit
and low-bit values of accumulator respectively, and put the result in
accumulator
HI <« HI - (RX[31:16] x RY[31:0])[47:16]
LO « LO - (RX[15:0] x RY[31:0])[47:16]

Grammar: vmulsws32 rx, ry

Description: Subtract the 32 high bits of the result after multiplying the 16 high bits of
general-purpose register RX and contents of RY from the value in
32-high-bit register HI of 64-bit accumulator, and save the result in
high-bit accumulator register HI. Subtract the 32 high bits of the result
after multiplying the 16 low bits of general-purpose register RX and
contents of RY from the value in 32-low-bit register LO of 64-bit
accumulator, and save the result in low-bit accumulator register LO.
All contents in the registers are considered as signed numbers. The sign
bits of source operands in register RX are the 31% bit and the 15" bit of
the register respectively; the sign bit of operand in register RY and results
in high-bit register HI and low-bit register LO is the 31° bit of the
register.
Each branch of this instruction supports 8 guard bits. See the descriptions
about guard bit in the processor manual for more details.

Influence on flag Overflow of any branch will set the overflow bit as 1

bit:

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0

1110001 RY RX 101101 (00100 ,00000O0

410

WAIT — Enter low power consumption wait mode

Unified

instruction

Grammar Operation Compiling result

wait Enter low power consumption wait mode Only 32-bit instructions
exist.
wait32

Attribute: Privileged instruction

Description: This instruction will stop execution of the current instruction and waits

Influence on flag
bit:

Exception:

32-bit
instruction
Operation:
Grammar:
Attribute:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

3130 2625

for an interrupt. At this time, CPU clock is stopped. The peripheral
equipment is still in operation. Besides, interrupt might be caused, which
will make CPU exit from wait mode.

No influence

Privilege violation instruction

Enter low power consumption wait mode

wait32

Privileged instruction

This instruction will stop execution of the current instruction and waits
for an interrupt. At this time, CPU clock is stopped. The peripheral
equipment is still in operation. Besides, interrupt might be caused, which
will make CPU exit from wait mode.

No influence

Privilege violation instruction

2120 16 15 109 54 0

411

o SKY

10000

00000

00000

010011

00001

00000

412

WE — Wait event

Unified

instruction

Grammar Operation Compiling result

we Wait event Only 32-bit instructions
exist.
we32

Description: WE instruction is executed and CPU enters a low power consumption

Influence on flag
bit:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

bit:

mode of waiting event. It will be aroused when other processor cores

send event.

No influence

Privilege violation instruction

Wait event

we32

WE instruction is executed and CPU enters a low power consumption

mode of waiting event. It will be aroused
send event.

No influence

when other processor cores

Exception: Privilege violation instruction

Instruction

format:
3130 2625 2120 16 15 109 54 0
111000000000 00000010101 |O00O0O1 |[O0OO0O0O0

413

XOR - Bitwise XOR

Unified

instruction

Grammar Operation Compiling result

XOr 17, IX RZ <+ RZ"RX Compiled into corresponding 16-bit or
32-bit instructions according to the range
of register.
if (x<16) and (z<16), then

xorl6 rz, rx;
else

xor32 rz, 1z, rx;

XOr 1Z, IX, Iy RZ < RX"RY Compiled into corresponding 16-bit or

32-bit instructions according to the range

of register.

if (y==z) and (z<16) and (x<16), then
xorl6 rz, rx;

else

xor32 1z, rx,ry;

Description: Perform a bitwise XOR of RX and RZ/RY values and save the result in
RZ.

Influence on flag No influence

bit:

Exception: None

16-bit

instruction

Operation: RZ <« RZ"RX

Grammar: xorl6 rz, rx

Description: Perform a bitwise XOR of RZ and RX values and save the result in RZ.

Influence on flag No influence

bit:

Restriction: The range of register is r0-r15.
Exception: None

Instruction

414

format:

1514

10 9

10

011011

01

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag

RZ <« RX"RY

xor32 1z, 1X, 1y

Perform a bitwise XOR of RX and RY values and save the result in RZ.

No influence

bit:

Exception: None

Instruction

format:
3130 2625 2120 16 15 109 54 0
1110001 RY 001001 00010

415

XORI - Bitwise XOR immediate

3

Unified
instruction
Grammar Operation Compiling result
xori 1z, 1X, imml6 | RZ <~ RX ” zero_extend(IMM12) Only 32-bit instructions
exist.
xori32 rz, rx,imml2
Description: Zero-extend the 12-bit immediate operand to 32 bits, perform a bitwise

Influence on flag
bit:
Restriction:

Exception:

2-bit

instruction

Operation:

Grammar:

Description:

Influence on flag

bit:

Restriction:

Exception:

Instruction

format:

3130 2625

XOR with RX value, and save the result in RZ.

No influence

The range of immediate operand is 0x0-0xFFF.

None

RZ <~ RX " zero_extend(IMM12)

xori32 rz, rx,imml2

Zero-extend the 12-bit immediate operand to 32 bits, perform a bitwise
XOR with RX value, and save the result in RZ.

No influence

The range of immediate operand is 0x0-0xFFF.

None

2120 16 15 12 11 0

1

11001

RZ RX 0100 IMM12

416

XSR — Extended shift right

Unified
instruction
Grammar Operation Compiling result
xsr 1z, 1x, oimm5 | {RZ,C} «{RX,C} >>>> OIMM5 Only 32-bit instructions
exist.
xsr32 rz, rx, oimm5
Description: Perform a ring right shift on RX value with condition bit C ({RX,C}) (the

original value shifts right and the bit shifting out from right side will shift

to the left side), save the lowest bit ([0]) of the shifting result in C bit, and

save the highest bit ([32:1]) in RZ; the range of right shift is decided by

the value of 5-bit immediate operand with offset 1 (OIMMS). If the value

of OIMMS is equal to 32, condition bit C is the highest bit of RX.
Influence on flag C < RX[OIMMS - 1]

bit:

Restriction: The range of immediate operand is 1-32.

Exception: None

32-bit

instruction

Operation: {RZ,C} «{RX,C} >>>> OIMM5

Grammar: xsr32 rz, rx, oimm5

Description: Perform a ring right shift on RX value with condition bit C ({RX,C})

(the original value shifts right and the bit shifting out from right side will
shift to the left side), save the lowest bit ([0]) of the shifting result in C
bit, and save the highest bit ([32:1]) in RZ; the range of right shift is
decided by the value of 5-bit immediate operand with offset 1 (OIMMS).
If the value of OIMMS is equal to 32, condition bit C is the highest bit of
RX.
Attention: The binary operand IMMS is equal to OIMMS — 1.

Influence on flag C < RX[OIMMS - 1]

bit:

Restriction: The range of immediate operand is 1-32.

417

Exception: None

Instruction

format:

3130 2625 2120 16 15 109 54 0
1110001 IMM5 RX 010011 01000

IMMS field — Assign the value of immediate operand without offset.

Attention: Compared with the binary operand IMMS, the shifting value OIMMS requires
offset 1.
00000 — shift by 1 bit

00001 — shift by 2 bits

11111 — shift by 32 bits

418

XTRB0 — Extract byte 0 and extend unsigned

Unified
instruction
Grammar Operation Compiling result
xtrb0 1z, rx RZ « zero_extend(RX[31:24]); Only 32-bit instructions
if (RX[31:24] == 0), then exist.
C«0; xtrb0.32 1z, 1x
else
C«1;
Description: Extract byte 0 of RX (RX[31:24]) to the low bit of RZ (RZ[7:0]), and

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

RZ « zero_extend(RX[31:24]);
if (RX[31:24] == 0), then
C«0;
else
C«1;
xtrb0.32
Extract byte 0 of RX (RX[31:24]) to the low bit of RZ (RZ[7:0]), and

zZ, X
conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

419

3130

2625 2120

16 15

109

54

1

10001

00000

011100

00001

420

XTRBI1 — Extract byte 1 and extend unsigned

Unified
instruction
Grammar Operation Compiling result
xtrbl 1z, rx RZ « zero_extend(RX[23:16]); Only 32-bit instructions
if (RX[23:16] == 0), then exist.
C«0; xtrb1.32 1z, 1x
else
C«1;
Description: Extract byte 1 of RX (RX[23:16]) to the low bit of RZ (RZ[7:0]), and

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

RZ « zero_extend(RX[23:16]);
if (RX[23:16] == 0), then
C«0;
else
C«1;
xtrb1.32 1z, 1xX
Extract byte 1 of RX (RX[23:16]) to the low bit of RZ (RZ[7:0]), and
conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

421

3130

2625 2120

16 15

109

54

1

10001

00000

011100

00010

422

XTRB2 — Extract byte 2 and extend unsigned

Unified
instruction
Grammar Operation Compiling result
xtrb2 1z, rx RZ « zero_extend(RX[15:8]); Only 32-bit instructions
if (RX[15:8] == 0), then exist.
C«0; xtrb2.32 1z, 1x
else
C«1;
Description: Extract byte 2 of RX (RX[15:8]) to the low bit of RZ (RZ[7:0]), and

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

RZ « zero_extend(RX[15:8]);
if (RX[15:8] == 0), then
C«0;
else
C«1;
xtrb2.32 1z, 1x
Extract byte 2 of RX (RX[15:8]) to the low bit of RZ (RZ[7:0]), and
conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

423

3130

2625 2120

16 15

109

54

1

10001

00000

011100

00100

424

XTRB3 — Extract byte 3 and extend unsigned

Unified
instruction
Grammar Operation Compiling result
xtrb3 1z, rx RZ « zero_extend(RX][7:0]); Only 32-bit instructions
if (RX[7:0] == 0), then exist.
C«0; xtrb3.32 1z, rx
else
C«1;
Description: Extract byte 3 of RX (RX][7:0]) to the low bit of RZ (RZ[7:0]), and

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Influence on flag
bit:

Exception:
Instruction

format:

conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

RZ < zero_extend(RX][7:0]);
if (RX[7:0] ==0), then
C«0;
else
C«1;
xtrb3.32 1z, 1x
Extract byte 3 of RX (RX][7:0]) to the low bit of RZ (RZ[7:0]), and
conduct zero-extension. If the result is equal to zero, clear C bit;
otherwise, set C bit.

If the result is equal to zero, clear C bit; otherwise, set C bit.

None

425

3130

2625 2120

16 15

109

54

1

10001

00000

011100

01000

426

ZEXT - Extract bit and extend unsigned

Unified instruction

SKY

Grammar

Operation Compiling result

zext 1z, X, msb, Isb | RZ « zero_extend(RX[MSB:LSB]) Only 32-bit instructions

exist.

zext32 1z, rx, msb, Isb

Description:

Influence on flag
bit:

Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:

Exception:

Instruction

Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed
by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits, and
save the result in RZ. If MSB is equal to 31 and LSB is equal to zero, RZ
value is the same with RX value. If MSB is equal to LSB, RZ value is the
result after one-bit zero-extension of RX[MSB] (i.e. RX[LSB]). If MSB
is smaller than LSB, behavior of this instruction is unpredictable.

No influence

The range of MSB is 0-31, the range of LSB is 0-31, and MSB should be
greater than or equal to LSB.

None

RZ « zero_extend(RX[MSB:LSB])

zext32 1z, rx, msb, Isb

Extract a section of consecutive bits of RX (RX[MSB:LSB]) appointed
by 2 5-bit immediate operands (MSB,LSB), sign-extend it to 32 bits, and
save the result in RZ. If MSB is equal to 31 and LSB is equal to zero, RZ
value is the same with RX value. If MSB is equal to LSB, RZ value is the
result after one-bit zero-extension of RX[MSB] (i.e. RX[LSB]). If MSB
is smaller than LSB, behavior of this instruction is unpredictable.

No influence

The range of MSB is 0-31, the range of LSB is 0-31, and MSB should be
greater than or equal to LSB.

None

427

format:
3130 2625 2120 16 15 109 54 0
1110001 LSB RX 010101 MSB RZ

MSB field — Assign the starting bit of LSB field — Assign the end bit of

extraction. extraction.
00000 -0 00000 — 0 bit
00001 -1 00001 — 1 bit

11111 -31 11111 — 31 bits

428

ZEXTB — Extract byte and extend unsigned#

Unified
instruction
Grammar Operation Compiling result
zextb 1z, rx RZ « zero_extend(RX[7:0]); Compiled into corresponding 16-bit or
32-bit instructions according to the
range of register.
if (x<16) and (z<16), then
zextb16 rz, rx;
else
zextb32 rz, rx
Description: Zero-extend low byte of RX (RX[7:0]) to 32 bits and save the result in

RZ.

Influence on flag No influence

bit:

Exception: None

16-bit

instruction

Operation: RZ « zero_extend(RX[7:0]);

Grammar: zextbl6 1z, rx

Description: Zero-extend low byte of RX (RX[7:0]) to 32 bits and save the result in

RZ.

Influence on flag No influence

bit:

Restriction: The range of register is r0-r15.
Exception: None

Instruction

format:

1514 10 9 6 5 210

0 11101 RZ RX 00

32-bit instruction

Operation: RZ « zero_extend(RX[7:0]);

429

o SKY

Grammar: zextb32 rz, rx
Description: Zero-extend low byte of RX (RX[7:0]) to 32 bits and save the result in
RZ.

Attention: This instruction is the pseudo instruction of zext32 rz, rx,
0x7, 0x0.

Influence on flag No influence

bit:

Exception: None

Instruction

format:

3130 26 25 2120 16 15 10 9 54 0
1110001 (00000 RX 010101|]001T11 RZ

430

ZEXTH - Extract half-word and extend unsigned#

Unified

instruction

Grammar

Operation

Compiling result

zexth 1z, 1X

RZ « zero_extend(RX[15:0]);

Compiled into corresponding 16-bit or

32-bit instructions according to the

range of register.

if (x<16) and (z<16), then

zexthl6 rz, rx;
else

zexth32 rz, rx

Description:

Influence on flag
bit:

Exception:

16-bit

instruction
Operation:
Grammar:

Description:

Influence on flag
bit:

Restriction:
Exception:
Instruction

format

1514 10

Zero-extend low half-word of RX (RX[15:0]) to 32 bits and save the

result in RZ.

No influence

None

RZ <« zero_extend(RX[15:0]);

zexthl6 rz,rx

Zero-extend low half-word of RX (RX[15:0]) to 32 bits and save the

result in RZ.

No influence

The range of register is r0-r15.

None

0

11101

32-bit

instruction

431

Operation:
Grammar:

Description:

Influence on

RZ « zero_extend(RX[15:0]);

zexth32 rz,rx

Zero-extend low half-word of RX (RX[15:0]) to 32 bits and save the result in

RZ.

Attention: This instruction is the pseudo instruction of zext32

0x0.

No influence

rz, rx, 0x15,

flag bit:

Exception: None

Instruction

format:

3130 2625 21 20 16 15 109 54 0
1/ 10001 00000 01010101111

432

6. Term list of floating point instructions

Specific descriptions of each floating point instruction realized by CK810 are provided in
the following and each instruction is described in details according to the alphabetical order. The
floating point instructions of CK810 are 32-bit instructions and independent vector

general-purpose register (VR) is adopted.

433

FABSD — Double-precision floating point absolute value

Unified instruction

Grammar Operation Compiling result
fabsd vrz, vrx vrz= |vrx| Only 32-bit instructions
exist.

fabsd vrz, vrx

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

Take the absolute value of double-precision floating point in vrx and save

the result in vrz.

None

The range of register is vr0-vrl5.

None

vrz= |vrx|
fabsd vrz, vrx

Double-precision floating point

Take the absolute value of double-precision floating point in vrx and save

the result in vrz.

None

The range of register is vr0-vrl5.

None

434

Instruction code

31

26 25 24

21 20 19

16 15

110

0000

0

VRX

0000

1 00 01

1

0

VRZ

435

o SKY

FABSM - SIMD single-precision floating point absolute value

Unified instruction

Grammar Operation Compiling result
fabsm vrz, vrx vrz[31:0]= [vrx[31:0]|; vrz[63:32] = Only 32-bit instructions
[vrx[63:32] exist.
fabsm vrz, vrx

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

As single instruction multiple data (SIMD), this instruction takes the
absolute value of single-precision floating point in vrx[31:0] and saves the
result in vrz[31:0]; it takes the absolute value of single-precision floating
point in vrx[63:32] and saves the result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

vrz[31:0]= [vrx[31:0]|; vrz[63:32] = [vrx[63:32]

fabsm vrz, vrx

Single-precision floating point

As single instruction multiple data (SIMD), this instruction takes the
absolute value of single-precision floating point in vrx[31:0] and saves the
result in vrz[31:0]; it takes the absolute value of single-precision floating

point in vrx[63:32] and saves the result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

436

Instruction code

31

26 25 24

21 20 19

16 15

110

0000

0

VRX

0001

000O0°1

1

0

VRZ

437

FABSS - Single-precision floating point absolute value

Unified instruction

Grammar

Operation

Compiling result

fabss vrz, vrx

vrz= |vrx|

Only 32-bit instructions
exist.

fabss vrz, vrx

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Take the absolute value of single-precision floating point in vrx and save the

result in vrz.

None

The range of register is vr0-vrl5.

None

vrz= |vrx|
fabss vrz, vrx

Single-precision floating point

Take the absolute value of single-precision floating point in vrx and save the

result in vrz.

None

The range of register is vr0-vrl5.

None

438

Instruction code

31

26 25 24

21 20 19

16 15

110

0000

0

VRX

000O0O0OO0OO0OO0]I

1

0

VRZ

439

FADDD - Double-precision floating point add

Unified instruction

Grammar Operation Compiling result
faddd vrz, vrx,vry VIZ= vrxtvry Only 32-bit instructions
exist.
faddd vrz, vrx,vry
Data type Double-precision floating point
Add double-precision floating points in vrx and vry, and save the result in
Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

VIZ.

None

The range of register is vr0-vrl5.

None

VIZ= VIX+Vry
faddd vrz, vrx,vry

Double-precision floating point

Add double-precision floating points in vrx and vry, and save the result in

VIZ.

None

The range of register is vr0-vrl5.

None

440

Instruction code

31

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000

1 000O0O0O

VRZ

441

FADDM - SIMD single-precision floating point add

Unified instruction

Grammar

faddm vrz, vrx,vry

Operation Compiling result
vrz[31:0]= vrx[31:0]+vry[31:0]; Only 32-bit instructions
vrz[63:32]= vrx[63:32]+vry[63:32] exist.

faddm vrz, vrx,vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Add single-precision floating points in vrx[31:0] and vry[31:0], and save the
result in vrz[31:0]; add single-precision floating points in vrx[63:32] and

vry[63:32], and save the result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

vrz[31:0]= vrx[31:0]+vry[31:0]; vrz[63:32]= vrx[63:32]+vry[63:32]
faddm vrz, vrx,vry

Single-precision floating point

Add single-precision floating points in vrx[31:0] and vry[31:0], and save the
result in vrz[31:0]; add single-precision floating points in vrx[63:32] and

vry[63:32], and save the result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

442

Instruction code

31

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0001

000O0O0OO0OO0

VRZ

443

FADDS - Single-precision floating point add

Unified instruction

Grammar Operation Compiling result
fadds vrz, vrx,vry VIZ= vrxtvry Only 32-bit instructions
exist.

fadds vrz, vrx,vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Add single-precision floating points in vrx and vry, and save the result in

VIZ.

None

The range of register is vr0-vrl5.

None

VIZ= VIX+Vry
fadds vrz, vrx,vry

Single-precision floating point

Add single-precision floating points in vrx and vry, and save the result in

VIZ.

None

The range of register is vr0-vrl5.

None

444

Instruction code

31

26 25 24

21 20 19

16 15 5

110

VRY

0

VRX

000O0O0OO0OO0OO0OO0OO0O

VRZ

445

o

SKY

FCMPHSD - Double-precision floating point compare when

greater than or equal

Unified instruction

Grammar

femphsd vrx, vry

Operation Compiling result

If vrx>=vry Only 32-bit instructions
set C; exist.

elscelear . femphsd vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx>=vry
set C;

else
clear C.

femphsd vrx, vry

Double-precision floating point

Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Yes

The range of register is vr0-vrl5.

None

446

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

VRY

VRX

0000100T1T1QO00O0

0

0000

447

O SKY

FCMPHSS - Single-precision floating point compare when

greater than or equal

Unified instruction

Grammar

femphss vrx, vry

Operation Compiling result

If vrx>=vry Only 32-bit instructions
set C; exist.

els:lear C. femphss vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx>=vry
set C;

else
clear C.

femphss vrx, vry

Single-precision floating point

Compare vrx and vry. If vrx>=vry, set the condition bit C; otherwise, clear

the condition bit.

Yes

The range of register is vr0-vrl5.

None

448

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

VRY

VRX

0000O0O0OO0OT1T1O0O0

0

0000

449

O SKY

FCMPLTD - Double-precision floating point compare when

smaller

Unified instruction

Grammar Operation Compiling result
fempltd vrx, vry If vrx<vry Only 32-bit instructions
set C; exist.
els:lear c fempltd vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear
the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx<vry
set C;
else
clear C.

fempltd vrx, vry

Double-precision floating point

Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear

the condition bit.

Yes

The range of register is vr0-vrl5.

None

450

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

VRY

VRX

0000100T1T1QO0T1

0

0000

451

O SKY

FCMPLTS - Single-precision floating point compare when

smaller

Unified instruction
Grammar Operation Compiling result
femplts vrx, vry If vrx<vry Only 32-bit instructions

set C; exist.

else
femplts vrx, vry
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear
the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx<vry
set C;
else
clear C.

femplts vrx, vry

Single-precision floating point

Compare vrx and vry. If vrx<vry, set the condition bit C; otherwise, clear
the condition bit.

Yes

The range of register is vr0-vrl5.

None

452

Instruction code

31 26 25 24

21 20

16 15

111101

0

VRY

VRX

00000O0O1T1O0T1

0

0000

453

o

SKY

FCMPNED - Double-precision floating point compare when

not equal
Unified instruction
Grammar Operation Compiling result
fcmpned vrx, vry If vrx!=vry Only 32-bit instructions
set C; exist.
:Z;eir c fempned vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;

otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx!=vry
set C;

else
clear C.

fempned vrx, vry

Double-precision floating point

Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;

otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

454

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

VRY

VRX

00001001110

0

0000

455

FCMPNES -

O SKY
Single-precision floating point compare when not

equal

Unified instruction

Grammar Operation Compiling result
fcmpnes vrx, vry If vrx!=vry Only 32-bit instructions
set C; exist.
else
fempnes vrx, vry
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;
otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx!=vry
set C;

else
clear C.

fempnes vrx, vry

Single-precision floating point

Compare vrx and vry. If vrx is not equal to vry, set the condition bit C;
otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

456

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

VRY

VRX

0000O0O0OO0OTIT1T1OP0

0

0000

457

FCMPUOD - Judge whether the double operand of

double-precision floating point is NaN

Unified instruction

Grammar Operation Compiling result
fcmpuod vrx, vry If vrx==NaN || vry==NaN Only 32-bit instructions
set C; exist.
else
fempuod vrx, vry
clear C.
Data type Double-precision floating point
If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the
Description:

condition bit.

Influence on Yes

flag bit:
Restriction: The range of register is vr0-vrl5.
Exception: None
32-bit
instruction

If vrx==NaN || vry==NaN
Operation: set C;

else

clear C.

Grammar: fempuod vrx, vry
Data type Double-precision floating point

If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the
Description:

condition bit.

Influence on Yes

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

458

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

VRY

VRX

000010O01T1T171

0

0000

459

SKY

FCMPUOS — Judge whether the double operand of

single-precision floating point is NaN

Unified instruction

Grammar Operation Compiling result
fcmpuos vrx, vry If vrx==NaN||vry==NaN Only 32-bit instructions
set C; exist.
else
fempuos vrx, vry
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the

condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx==NaN|vry==NaN
set C;

else
clear C.

fempuos vrx, vry

Single-precision floating point

If vrx is NaN or vry is vry, set the condition bit C; otherwise, clear the
condition bit.

Yes

The range of register is vr0-vrl5.

None

460

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

VRY

VRX

0000O0O0OO0OTITI1T1T1

0

0000

461

O SKY

FCMPZHSD - Double-precision floating point compare when

greater than or equal to zero

Unified instruction

Grammar Operation Compiling result
fempzhsd vrx If vrx>=0 Only 32-bit instructions
set C; exist.
els:lear . fempzhsd vrx

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

If vrx is greater than or equal to zero, set the condition bit C; otherwise,
clear the condition bit.

Yes

The range of register is vr0-vr15.

None

If vrx>=0
set C;
else
clear C.

fempzhsd vrx

Double-precision floating point

If vrx is greater than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

462

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

0000

0

VRX

000010O0T1O0O0O0

0

0000

463

O SKY

FCMPZHSS - Single-precision floating point compare when

greater than or equal to zero

Unified instruction

Grammar Operation Compiling result
fempzhss vrx If vrx>=0 Only 32-bit instructions
set C; exist.
els:lear c fempzhss vrx

Data type Single-precision floating point

If vrx is greater than or equal to zero, set the condition bit C; otherwise,
Description:

clear the condition bit.
Influence on Yes
flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
32-bit
instruction

If vrx>=0
Operation: set C;

else

clear C.

Grammar: fempzhss vrx
Data type Single-precision floating point

If vrx is greater than or equal to zero, set the condition bit C; otherwise,
Description:

clear the condition bit.
Influence on Yes
flag bit:
Restriction: The range of register is vr0-vrl5.
Exception: None
Instruction
format:

Instruction code
31 26 25 24 21 20 16 15 5 4 3 0

464

o SKY

111101

0000

VRX

0000O0O0OO0OT1O0O0OO

0

0000

465

O SKY

FCMPZLSD — Double-precision floating point compare when

smaller than or equal to zero

Unified instruction

Grammar Operation Compiling result
fempzlsd vrx If vrx<0 Only 32-bit instructions
set C; exist.
els:lear C. fempzlsd vrx

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

If vrx is smaller than or equal to zero, set the condition bit C; otherwise,
clear the condition bit.

Yes

The range of register is vr0-vr15.

None

If vrx<0
set C;
else
clear C.

fempzlsd vrx

Double-precision floating point

If vrx is smaller than or equal to zero, set the condition bit C; otherwise,

clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

466

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

0000

0

VRX

000010O0T1O0O0T1

0

0000

467

O SKY

FCMPZLSS — Single-precision floating point compare when

smaller than or equal to zero

Unified instruction

Grammar Operation Compiling result
fempzlss vrx If vrx<0 Only 32-bit instructions
set C; exist.
else
fempzlss vrx
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Single-precision floating point

If vrx is smaller than or equal to zero, set the condition bit C; otherwise,
clear the condition bit.

Yes

The range of register is vr0-vr15.

None

If vrx<0
set C;
else
clear C.

fempzlss vrx

Single-precision floating point

If vrx is smaller than or equal to zero, set the condition bit C; otherwise,
clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

468

31 26 25 24

21 20

16 15 5

111101

0

0000

0

VRX

0000O0O0OO0OT1O0O0T1

0

469

O SKY

FCMPZNED - Double-precision floating point compare when

not equal to zero

Unified instruction

Grammar Operation Compiling result
fempzned vrx If vrx!=0 Only 32-bit instructions
set C; exist.
else fempzned vrx
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

If vrx is not equal to zero, set the condition bit C; otherwise, clear the
condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx!=0
set C;
else
clear C.

fempzned vrx

Double-precision floating point

If vrx is not equal to zero, set the condition bit C; otherwise, clear the
condition bit.

Yes

The range of register is vr0-vrl5.

None

470

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

0000

0

VRX

00001001010

0

0000

471

O SKY

FCMPZNES - Single-precision floating point compare when

not equal to zero

Unified instruction

Grammar Operation Compiling result
fempznes vrx If vrx!=0 Only 32-bit instructions
set C; exist.
else
fcmpznes vrx
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

If vrx is not equal to zero, set the condition bit C; otherwise, clear the
condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx!=0
set C;
else
clear C.

fcmpznes vrx

Single-precision floating point

If vrx is not equal to zero, set the condition bit C; otherwise, clear the
condition bit.

Yes

The range of register is vr0-vrl5.

None

472

Instruction code

31 26 25 24

21 20

16 15 5

111101

0

0000

0

VRX

0000O0O0OO0OT1O0OT1O0

0

0000

473

FCMPZUOD - Judge whether the single operand of

double-precision floating point is NaN

Unified instruction

Grammar Operation Compiling result
fempzuod vrx If vrx==NaN Only 32-bit instructions
set C; exist.
else
fempzuod vrx
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Double-precision floating point

If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx==NaN
set C;

else
clear C.

fempzuod vrx

Double-precision floating point
If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

474

31 26 25 24

21 20

16 15 5

111101

0

0000

0

VRX

0000100T1O0T1T1

0

475

FCMPZUOS - Judge whether the single operand of

single-precision floating point is NaN

Unified instruction

Grammar Operation Compiling result
fcmpzuos vrx If vrx==NaN Only 32-bit instructions
set C; exist.
else
fempzuos vrx
clear C.

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction

Operation:

Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Single-precision floating point

If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

If vrx==NaN
set C;

else
clear C.

fempzuos vrx

Single-precision floating point
If vrx is NaN, set the condition bit C; otherwise, clear the condition bit.

Yes

The range of register is vr0-vrl5.

None

476

31 26 25 24

21 20

16 15 5

111101

0

0000

0

VRX

0000O0O0OO0OT1O0T1T1

0

477

FDIVD — Double-precision floating point multiply

Unified instruction

Grammar Operation Compiling result
fdivd vrz, vrx,vry VIZ= VIX/vry Only 32-bit instructions
exist.
fdivd vrz, vrx,vry
Data type Double-precision floating point
Divide double-precision floating points in vrx and vry by each other, and
Description:

save the result in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIz= vrx/vry
fdivd vrz, vrx,vry

Double-precision floating point

Divide double-precision floating points in vrx and vry by each other, and

save the result in vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vr15.

None

26 25 24 21 20 19 16 15

5 4 3 0

110 VRY 0 VRX 0000

1

0

1 170 00]0 VRZ

478

FDIVS — Single-precision floating point multiply

Unified instruction

Grammar

Operation

Compiling result

fdivs vrz, vrx,vry

VIz= vrx/vry

Only 32-bit instructions
exist.

fdivs vrz, vrx,vry

Data type

Description:

Single-precision floating point

Divide single-precision floating points in vrx and vry by each other, and

save the result in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIz= vrx/vry
fdivs vrz, vrx,vry

Single-precision floating point

Divide single-precision floating points in vrx and vry by each other, and

save the result in vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vr15.

None

26 25 24 21 20 19 16 15

5

110 VRY 0 VRX 0000O0O0O01

1 000

VRZ

479

FDTOS — Transform double-precision floating point into

single-precision floating point

Unified instruction

Grammar

fdtos vrz, vrx

Operation Compiling result
vrz= (float)vrx Only 32-bit instructions
exist.

fdtos vrz, vrx

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type
Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Double-precision floating point

Transform double-precision floating point in vrx into single-precision
floating point, and save the result in vrz.

None

The range of register is vr0-vr15.

None

vrz= (float)vrx

fdtos vrz, vrx

Double-precision floating point

Transform double-precision floating point in vrx into single-precision
floating point, and save the result in vrz.

None

The range of register is vr0-vrl5.

None

480

26 25 24

21 20 19

16 15

110

0000

0

VRX

0001

1

0

1

0 1

1

0

VRZ

481

FDTOSI - Transform double-precision floating point into

signed integer

Unified instruction

Grammar Operation Compiling result
fdtosirm vrz, vrx vrz= (signed long)vrx Only 32-bit instructions
where rm is rn/rz/rpi/rni exist.

fdtosirm vrz, vrx

Data type Double-precision floating point

Transform double-precision floating point in vrx into signed integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn
Description: 2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.
Exception: None

32-bit

instruction

Operation: vrz= (signed long)vrx
Grammar: fdtosirm vrz, vrx

Data type Double-precision floating point

Transform double-precision floating point in vrx into signed integer, and
save the result in vrz. RM refers to the rounding mode.

Description: RM represents:
2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

482

o SKY

2’b10: Round to positive infinity; the corresponding assembly instruction is
fdtosi.rpi
2’b11: Round to negative infinity; the corresponding assembly instruction is
fdtosi.rni

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

11 1101(0(0 0 O0O0]0 VRX 000110010 RM|O VRZ

483

FDTOUI - Transform double-precision floating point into

unsigned integer

Unified instruction

Grammar Operation Compiling result
fdtoui.rm vrz, vrx vrz= (long)vrx Only 32-bit instructions
where rm is rn/rz/rpi/rni exist.

fdtouirm vrz, vrx

Double-precision floating point

Data type
Transform double-precision floating point in vrx into unsigned integer, and
save the result in vrz. RM refers to the rounding mode.
RM represents:
2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn
Description: 2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

2’b10: Round to positive infinity; the corresponding assembly instruction is
fdtosi.rpi
2’b11: Round to negative infinity; the corresponding assembly instruction is
fdtosi.rni

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz= (unsigned long)vrx

Grammar: fdtoui.rm vrz, vrx

Data type Double-precision floating point
Transform double-precision floating point in vrx into unsigned integer, and
save the result in vrz. RM refers to the rounding mode.

Description: RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

484

o SKY

2’b10: Round to positive infinity; the corresponding assembly instruction is
fdtosi.rpi
2’b11: Round to negative infinity; the corresponding assembly instruction is
fdtosi.rni

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

11 1101(0(0 0 O0O0]0 VRX 000110011 RM|O VRZ

485

FLDD - Load double-precision floating point

Unified

instruction

SKY

Grammar

Operation Compiling result

fldd vrz, (rx, disp)

VRZ[63:0] <« MEM|RX + Only 32-bit instructions exist.
zero_extend(offset << 2)]; fldd vrz, (rx, disp)
VRZ[127:64] < 64°b0;

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Load double-precision floating point from storage to vector register
VRZ. Adopt the addressing mode of register and immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 8-bit relative offset
shifting left by 2 bits to 32 bits. The address space of FLDD instruction
is +1KB.

Attention: The offset DISP is gained after the binary operand
{IMM4H,IMM4L} shifts left by two bits.

No influence

Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Load double-precision floating point from storage to vector register
VRZ[63:0] < MEM|RX + zero_extend(offset << 2)];

VRZ[127:64] < 64°b0;

fldd vrz, (rx, disp)

Load double-precision floating point from storage to vector register
VRZ. Adopt the addressing mode of register and immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 8-bit relative offset
shifting left by 2 bits to 32 bits. The address space of FLDD instruction
is +1KB.

486

Influence on flag

bit:

o SKY

Attention: The offset DISP is gained after the binary operand
{IMMA4H,IMM4L} shifts left by two bits.

No influence

Exception: Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read
invalid exception

Instruction

format:

3130 2625 24 2120 16 15 87 4 3 0

{11101 (0| IMM4H RX 00100001 | IMM4L VRZ

487

Unified

instruction

FLDM - Load vector floating point

SKY

Grammar

Operation Compiling result

fldm vrz, (rx,

VRZ[63:0] <« MEM|RX + Only 32-bit instructions exist.

disp) zero_extend(offset << 3)]; fldm vrz, (rx, disp)
VRZ[127:64] < 64°b0;
Description: Load two single-precision floating points from storage to vector

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

register VRZ. Adopt the addressing mode of register and immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 8-bit relative
offset shifting left by 3 bits to 32 bits. The address space of FLDM
instruction is +1KB.

Attention: The offset DISP is gained after the binary operand
{IMMA4H,IMM4L} shifts left by three bits.

No influence
Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Load vector floating point from storage to vector register

VRZ[63:0] < MEM|RX + zero_extend(offset << 3)];

VRZ[127:64] < 64°b0;

fldm vrz, (rx, disp)

Load two single-precision floating points from storage to vector
register VRZ. Adopt the addressing mode of register and immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 8-bit relative
offset shifting left by 3 bits to 32 bits. The address space of FLDM

instruction is +1KB.

488

Influence on flag

bit:

o SKY

Attention: The offset DISP is gained after the binary operand
{IMMA4H,IMM4L} shifts left by three bits.

No influence

Exception: Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read
invalid exception

Instruction

format:

3130 2625 24 2120 16 15 87 4 3 0

{11101 (0| IMM4H RX 00100010 | IMM4L VRZ

489

o

FLDMD - Load consecutive double-precision floating point

SKY

Unified
instruction
Grammar Operation Compiling result
fldmd vry-vrz, | Load multiple consecutive | Only 32-bit instructions exist.
(rx) double-precision floating points from | fldmd vry-vrz, (rx);
storage to a group of consecutive
vector register files
dst < Y; addr < RX;
for (n=0; n <= (Z-Y); n++){
VRdst[63:0] <+ MEM[addr];
VRdst[127:64] <— 64°b0;
dst < dst+ 1;
addr <« addr + §;
}
Description: Load multiple consecutive double-precision floating points from storage

Influence on flag
bit:
Restriction:

Exception:

32-bit
instruction

Operation:

to a group of consecutive vector register files starting from vector register
VRY successively. In another word, load the first double word of the
address appointed by storage to vector register VRY; load the second
double word to register VR(Y+1), and the like; load the last double word
to register VRZ. The effective address of storage is decided by the
contents of base register RX.

No influence

VRZ should be greater than or equal to VRY.
Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load multiple consecutive double-precision floating points from storage
to a group of consecutive vector register files

dst < Y; addr < RX;

for (n=0; n <= (Z-Y); nt++){

490

Grammar:

Description:

Influence on

VRdst[63:0] <+ MEM[addr];

VRdst[127:64] < 64°b0;

dst < dst + 1;

addr <« addr + §;
H
fldmd vry-vrz, (rx)
Load multiple consecutive double-precision floating points from storage
to a group of consecutive vector register files starting from vector register
VRY successively. In another word, load the first word of the address
appointed by storage to vector register VRY; load the second word to
register VR(Y+1), and the like; load the last word to register VRZ. The
effective address of storage is decided by the contents of base register RX.

No influence

flag bit:
Restriction: VRZ should be greater than or equal to VRY.
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
3130 2625 24 2120 16 15 87 4 3 0
l1fr1r101 |0 IMM4 RX 001 10001|00O00O0 VRY

IMM4 field — Assign the number of destination registers, IMM4 =Z — Y.

0000 — 1 destination register

0001 — 2 destination registers

1111 — 16 destination registers

491

FLDMM - Load consecutive vector floating point

Unified

instruction

SKY

Grammar Operation Compiling result

fldmd vry-vrz, | Load multiple consecutive vector | Only 32-bit instructions exist.
(rx) floating points from storage to a | fldmm vry-vrz, (rx);
group of consecutive vector register
files
dst < Y; addr < RX;
for (n=0; n <= (Z-Y); n++){
VRdst[63:0] <+ MEM[addr];
VRdst[127:64] <— 64°b0;
dst < dst+ 1;
addr <« addr + §;

}

Description: Load multiple consecutive vector floating points (each vector floating
point includes two single-precision floating points) from storage to a
group of consecutive vector register files starting from vector register
VRY successively. In another word, load the first double word of the
address appointed by storage to vector register VRY; load the second
double word to register VR(Y+1), and the like; load the last double word
to register VRZ. The effective address of storage is decided by the
contents of base register RX.

Influence on flag No influence

bit:

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Load multiple consecutive vector floating points from storage to a group

of consecutive vector register files

dst < Y; addr < RX;

492

Grammar:

Description:

Influence on

for (n=0; n <= (Z-Y); n++){

VRdst[63:0] <+ MEM[addr];

VRdst[127:64] <— 64°b0;

dst < dst + 1;

addr <« addr + §;
H
fldmd vry-vrz, (rx)
Load multiple consecutive vector floating points (each vector floating
point includes two single-precision floating points) from storage to a
group of consecutive vector register files starting from vector register
VRY successively. In another word, load the first word of the address
appointed by storage to vector register VRY; load the second word to
register VR(Y+1), and the like; load the last word to register VRZ. The
effective address of storage is decided by the contents of base register RX.

No influence

SKY

flag bit:
Restriction: VRZ SHOULD BE GREATER THAN OR EQUAL TO VRY.
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
3130 2625 24 2120 16 15 87 4 3 0
111101 (0| IMM4 RX 001 10010|00O00O0 VRY

IMM4 field — Assign the number of destination registers, IMM4 =Z — Y.

0000 — 1 destination register

0001 — 2 destination registers

1111 — 16 destination registers

493

o

FLDMS - Load consecutive single-precision floating point

SKY

Unified

instruction

Grammar Operation Compiling result

fldms vry-vrz, | Load multiple consecutive | Only 32-bit instructions exist.

(rx)

single-precision floating points from | fldms vry-vrz, (rx);
storage to a group of consecutive
vector register files
dst < Y; addr < RX;
for (n=0; n <= (Z-Y); n++){
VRdst[31:0] <~ MEM[addr];
VRdst[127:32] <— 96°b0;
dst < dst+ 1;
addr <« addr + 4;

}

Description:

Influence on flag
bit:
Restriction:

Exception:

32-bit
instruction

Operation:

Load multiple consecutive single-precision floating points from storage
to a group of consecutive vector register files starting from vector register
VRY successively. In another word, load the first word of the address
appointed by storage to vector register VRY; load the second word to
register VR(Y+1), and the like; load the last word to register VRZ. The
effective address of storage is decided by the contents of base register
RX.

No influence

VRZ should be greater than or equal to VRY.
Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load multiple consecutive single-precision floating points from storage to
a group of consecutive vector register files

dst < Y; addr < RX;

for (n=0; n <= (Z-Y); nt++){

494

Grammar:

Description:

Influence on

VRdst « MEM[addr];

dst < dst + 1;

addr <« addr + 4;
H
fldms vry-vrz, (rx)
Load multiple consecutive single-precision floating points from storage to
a group of consecutive vector register files starting from vector register
VRY successively. In another word, load the first word of the address
appointed by storage to vector register VRY; load the second word to
register VR(Y+1), and the like; load the last word to register VRZ. The
effective address of storage is decided by the contents of base register RX.

No influence

flag bit:
Restriction: VRZ should be greater than or equal to VRY.
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
3130 2625 24 2120 16 15 87 4 3 0
l1fr1r101 |0 IMM4 RX 00110000|000O00O0 VRY

IMM4 field — Assign the number of destination registers, IMM4 =Z — Y.

0000 — 1 destination register

0001 — 2 destination registers

1111 — 16 destination registers

495

o SKY

FLDRD - Load double-precision floating point in register offset

Unified instruction

addressing

Grammar

Operation

Compiling result

fldrd vrz, (rx, ry << 0)
fldrd vrz, (rx, ry << 1)
fldrd vrz, (rx, ry << 2)
fldrd vrz, (rx, ry << 3)

Load double-precision floating point
from storage to register

VRZ[63:0] < MEM[RX + RY <<
IMM2];

VRZ[127:64] = 64°b0;

Only 32-bit instructions
exist.

fldrd vrz, (rx, ry << 0)
fldrd vrz, (rx, ry << 1)
fldrd vrz, (rx, ry << 2)
fldrd vrz, (rx, ry << 3)

Description: Load double-precision floating point from storage to register VRZ. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.
The default value of IMM2 is 0.

Influence on flag No influence

bit:
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
32-bit
instruction
Operation: Load double-precision floating point from storage to register
VRZ[63:0] < MEM[RX + RY << IMM2];
VRZ[127:64] = 64°b0;
Grammar: fldrd vrz, (rx, ry << 0)
fldrd vrz, (rx, ry << 1)
fldrd vrz, (rx, ry << 2)
fldrd vrz, (rx, ry << 3)
Description: Load double-precision floating point from storage to register VRZ. Adopt

the addressing mode of register and register offset. The effective address

of storage is gained by adding the base register RX to the value gained by

making offset register RY shift left by 2-bit immediate operand IMM2.

496

Influence on flag

The default value of IMM?2 is 0.

No influence

bit:

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fldrd vrz, (rx, ry << 0)

3130 2625 2120 16 15 87 6 54 3 0

{11101 RY 00101001]|0[0 0|0 VRZ

fldrd vrz, (rx, ry << 1)

3130 2625 2120 16 15 87 6 54 3 0

{11101 RY 00101001](0|0 1]|0 VRZ

fldrd vrz, (rx, ry << 2)

3130 2625 2120 16 15 87 6 54 3 0

{11101 RY 00101001](0|1 0|0 VRZ

fldrd vrz, (rx, ry << 3)

3130 2625 2120 16 15 87 6 54 3 0

{11101 RY 00101001 |01 1]0 VRZ

497

FLDRM - Load vector floating point in register offset

Unified instruction

addressing

Grammar

Operation

Compiling result

fldrm vrz, (rx, ry <<

0)

fldrm vrz, (rx, ry <<

)]

fldrm vrz, (rx, ry <<

Load vector floating point from
storage to register

VRZ[63:0] < MEM[RX + RY <<
IMM2];

VRZ[127:64] = 64°b0;

Only 32-bit instructions
exist.

fldrm vrz, (rx, ry << 0)
fldrm vrz, (rx, ry << 1)

fldrm vrz, (rx, ry << 2)

2) fldrm vrz, (rx, ry << 3)
fldrm vrz, (rx, ry <<

3)

Description: Load two single-precision floating points from storage to register VRZ.

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Adopt the addressing mode of register and register offset. The effective

address of storage is gained by adding the base register RX to the value

gained by making offset register RY shift left by 2-bit immediate operand
IMM2. The default value of IMM2 is 0.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load double-precision floating point from storage to register
VRZ[63:0] <+ MEM[RX + RY << IMM2];
VRZ[127:64] = 64°b0;

fldrm
fldrm
fldrm
fldrm

vrz, (rx, ry << 0)
vrz, (rx, 1y << 1)
vrz, (X, 1y << 2)

vrz, (X, 1y << 3)

Load two single-precision floating points from storage to register VRZ.

Adopt the addressing mode of register and register offset. The effective

498

Influence on flag

bit:

O SKY

address of storage is gained by adding the base register RX to the value

gained by making offset register RY shift left by 2-bit immediate operand
IMM2. The default value of IMM2 is 0.

No influence

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fldrm vrz, (rx, ry << 0)

3130 2625 2120 16 15 87 6 54 3 0

1|1 1101 RY 00101010/(0[0 0|0 VRZ

fldrm vrz, (rx, ry << 1)

3130 2625 2120 16 15 87 6 54 3 0

{11101 RY 00101010(0[0 1/|0 VRZ

fldrm vrz, (rx, ry << 2)

3130 2625 2120 16 15 87 6 54 3 0

1|1 1101 RY 00101010/(0|1 0|0 VRZ

fldrm vrz, (rx, ry << 3)

3130 2625 2120 16 15 87 6 54 3 0

{11101 RY 00101010 (|01 1]0 VRZ

499

o SKY

FLDRS — Load single-precision floating point in register offset

Unified instruction

addressing

Grammar

Operation Compiling result

fldrs vrz, (rx, ry << 0) | Load single-precision floating point | Only 32-bit instructions
fldrs vrz, (rx, ry << 1) | from storage to register exist.

fldrs vrz, (rx, 1y <<2) | VRZ[31:0] < MEM[RX + RY << fldrs vrz, (rx, ry << 0)
fldrs vrz, (rx, ry <<3) | IMM2]; fldrs vrz, (1x, 1y << 1)

VRZ[127:32] = 96°b0; fldrs vrz, (rx, ry << 2)

fldrs vrz, (rx, ry << 3)

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Load single-precision floating point from storage to register VRZ. Adopt
the addressing mode of register and register offset. The effective address
of storage is gained by adding the base register RX to the value gained by
making offset register RY shift left by 2-bit immediate operand IMM2.
The default value of IMM2 is 0.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Load single-precision floating point from storage to register

VRZ[31:0] < MEM|RX + RY << IMM2];

VRZ[127:32] =96°b0;

fldrs vrz, (rx, ry << 0)

fldrs vrz, (rx, ry << 1)

fldrs vrz, (rx, ry << 2)

fldrs vrz, (rx, ry << 3)

Load double-precision floating point from storage to register VRZ. Adopt
the addressing mode of register and register offset. The effective address
of storage is gained by adding the base register RX to the value gained by
making offset register RY shift left by 2-bit immediate operand IMM2.

500

The default value of IMM?2 is 0.

Influence on flag No influence

bit:

Exception:

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fldrs vrz, (rx, ry << 0)

Unaligned access exception, access error exception, TLB unrecoverable

3130 2625 2120 16 15 87 6 54 3 0
{11101 RY 0010[10O0O 00 VRZ
fldrs vrz, (rx, ry << 1)

3130 2625 2120 16 15 87 6 54 3 0
{11101 RY 0010[10O0O 01 VRZ
fldrs vrz, (rx, ry << 2)

3130 2625 2120 16 15 87 6 54 3 0
{11101 RY 0010[10O0O 10 VRZ
fldrs vrz, (rx, ry << 3)

3130 2625 2120 16 15 87 6 54 3 0
{11101 RY 0010[10O0O 11 VRZ

501

FLDS — Load single-precision floating point

Unified

instruction

SKY

Grammar

Operation Compiling result

flds wvrz, (rx, disp)

VRZ[31:0] « MEM|RX + Only 32-bit instructions exist.
zero_extend(offset << 2)]; flds vrz, (rx, disp)

VRZ[127:32] < 96°b0;

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Load single-precision floating point from storage to register VRZ.
Adopt the addressing mode of register and immediate operand offset.
The effective address of storage is gained by adding the base register
RX to the value of unsigned extending the 8-bit relative offset shifting
left by 2 bits to 32 bits. The address space of FLDS instruction is
+1KB.

Attention: The offset DISP is gained after the binary operand
{IMM4H,IMM4L} shifts left by two bits.

No influence

Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Load single-precision floating point from storage to register

VRZ[31:0] <« MEM|[RX + zero_extend(offset << 2)];

VRZ[127:32] <~ 96’b0;

flds wvrz, (rx, disp)

Load single-precision floating point from storage to register VRZ.
Adopt the addressing mode of register and immediate operand offset.
The effective address of storage is gained by adding the base register
RX to the value of unsigned extending the 8-bit relative offset shifting
left by 2 bits to 32 bits. The address space of FLDS instruction is
+1KB.

Attention: The offset DISP is gained after the binary operand

502

{IMMA4H,IMM4L} shifts left by two bits.

Influence on flag ~ No influence

bit:

Exception: Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read
invalid exception

Instruction

format:

3130 2625 24 2120 16 15 87 4 3 0

{11101 (0| IMM4H RX 00100000 | IMM4L VRZ

503

FLRWD — Double-precision floating point storage read-in

Unified instruction

SKY

Grammar

Operation Compiling result

flrwd vrz, #m.n

VRZ[63:0] < MEM[(PC + | Only 32-bit instructions exist.
zero_extend(offset << flrwd vrz, +m.n
2))&O0xffttftfc];
VRZ[127:64] < 64°b0;

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Load the 64-bit single-precision floating point (+tm.n) from storage to
floating point register VRZ. The effective address of storage is gained
by adding PC to the value of unsigned extending the relative offset
shifting left by 2 bits to 32 bits. The address space of FLRWD
instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate
operand that exceeds the expression range, the compiler might give
errors.

No influence

Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Load single-precision floating point from storage to floating point
register

VRZ[63:0] < MEM[(PC + zero_extend(offset << 2))&O0xffffftfc];
VRZ[127:32] < 64’b0;

flrwd vrz, imm32

Load the 32-bit single-precision floating point (+m.n) from storage to
floating point register VRZ. The effective address of storage is gained
by adding PC to the value of unsigned extending the relative offset
shifting left by 2 bits to 32 bits. The address space of FLRWD
instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate

504

o SKY

operand that exceeds the expression range, the compiler might give
errors.

Influence on flag ~ No influence

bit:

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch
exception, and TLB read invalid exception

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 13 12 11 8 7 4 3 0

11110 1/0] IMM4H RX 00111001 IMM4L VRZ

505

FLRWS — Single-precision floating point storage read-in

Unified instruction

SKY

Grammar Operation Compiling result

flrws vrz, +m.n VRZ[31:0] < MEM[(PC + | Only 32-bit instructions exist.
zero_extend(offset << flrws vrz, +m.n
2))&O0xffttfttc];
VRZ[127:32] <~ 96°b0;

Description: Load the 32-bit single-precision floating point (+fm.n) from storage to

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

floating point register VRZ. The effective address of storage is gained
by adding PC to the value of unsigned extending the relative offset
shifting left by 2 bits to 32 bits. The address space of FLRWS
instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate
operand that exceeds the expression range, the compiler might give
errors.

No influence

Access error exception, TLB unrecoverable exception, TLB mismatch

exception, and TLB read invalid exception

Load single-precision floating point from storage to floating point
register

VRZ[31:0] < MEM][(PC + zero_extend(offset << 2))&O0xffffttfc];
VRZ[127:32] <~ 96°b0;

flrws vrz, imm32

Load the 32-bit single-precision floating point (+fm.n) from storage to
floating point register VRZ. The effective address of storage is gained
by adding PC to the value of unsigned extending the relative offset
shifting left by 2 bits to 32 bits. The address space of FLRWS

instruction is 4GB.

Attention: Due to insufficient precision or floating point immediate

5

06

o SKY

operand that exceeds the expression range, the compiler might give
errors.

Influence on flag ~ No influence

bit:

Exception: Access error exception, TLB unrecoverable exception, TLB mismatch
exception, and TLB read invalid exception

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 13 12 11 8 7 4 3 0

11110 1/0] IMM4H RX 00111000 IMM4L VRZ

507

O SKY

FMACD - Double-precision floating point multiply-accumulate

Unified instruction

Grammar

fmacd vrz, vrx, vry

Operation Compiling result
vrz+= vrx*vry Only 32-bit instructions
exist.

fmacd vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Double-precision floating point

Add the product of multiplying double-precision floating point in vrx and
double-precision floating point in vry to the value in vrz, and save the result
in vrz.

None

The range of register is vr0-vr15.

None

vrz+= vrx*vry

fmacd vrz, vrx, vry

Double-precision floating point

Add the product of multiplying double-precision floating point in vrx and
double-precision floating point in vry to the value in vrz, and save the result
in vrz.

None

The range of register is vr0-vrl5.

None

508

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000

1

0

1

0 1

00

VRZ

509

FMACM - SIMD single-precision floating point

multiply-accumulate
Unified instruction
Grammar Operation Compiling result
fmacm vrz, vrx, vry vrz[31:0]+= vrx[31:0]*vry[31:0], Only 32-bit instructions
vrz[63:32]+= vrx[63:32]*vry[63:32] exist.

fmacm vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
32-bit
instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:

Restriction:

Single-precision floating point

Add the product of multiplying single-precision floating point in vrx[31:0]
and single-precision floating point in vry[31:0] to the value in vrz[31:0], and
save the result in vrz[31:0].

Add the product of multiplying single-precision floating point in vrx[63:32]
and single-precision floating point in vry[63:32] to the value in vrz[63:32],

and save the result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

vrz[31:0]+= vrx[31:0]*vry[31:0], vrz[63:32]+= vrx[63:32]*vry[63:32]
fmacm vrz, vrx, vry

Single-precision floating point

Add the product of multiplying single-precision floating point in vrx[31:0]
and single-precision floating point in vry[31:0] to the value in vrz[31:0], and
save the result in vrz[31:0].

Add the product of multiplying single-precision floating point in vrx[63:32]
and single-precision floating point in vry[63:32] to the value in vrz[63:32],

and save the result in vrz[63:32].

None

The range of register is vr0-vrl5.

510

Exception: None

Instruction

format:
Instruction code

31 26 25 24 21 20 19 16 15 5 0
1 11101/0 VRY |[0| VRX 00010010100 VRZ

511

FMACS - Single-precision floating point multiply-accumulate

Unified instruction

Grammar

fmacs vrz, vrx, vry

Operation Compiling result
vrz+= vrx*vry Only 32-bit instructions
exist.

fmacs vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Single-precision floating point

Add the product of multiplying single-precision floating point in vrx and
single-precision floating point in vry to the value in vrz, and save the result
in vrz.

None

The range of register is vr0-vr15.

None

vrz+= vrx*vry

fmacs vrz, vrx, vry

Single-precision floating point

Add the product of multiplying single-precision floating point in vrx and
single-precision floating point in vry to the value in vrz, and save the result
in vrz.

None

The range of register is vr0-vrl5.

None

512

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000O0O0O01

0 1

00

VRZ

513

FMFVRH - Read transfer high word from floating point

register
Unified instruction
Grammar Operation Compiling result
fmfvrh rz, vrx 7= vrx[63:32] Only 32-bit instructions

exist.

fmfvrh rz, vrx

Data type Single-precision floating point

Description: Transfer the high word of floating point register to rz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.

Exception: None

32-bit

instruction

Operation: rz=vrx[63:32]

Grammar: fmfvrh rz, vrx

Data type Single-precision floating point

Description: Transfer the high word of floating point register to rz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

11 1101(0/000O0]|0 VRX 0001101T1O0°O0°O0]|0 VRZ

514

O SKY

FMFVRL — Read transfer low word from floating point register

Unified instruction

Grammar Operation Compiling result
fmfvrl rz, vrx rz=vrx[31:0] Only 32-bit instructions
exist.

fmfvrl 1z, vrx

Data type Single-precision floating point

Description: Transfer the low word of floating point register to rz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

32-bit

instruction

Operation: rz=vrx[31:0]

Grammar: fmfvrl 1z, vrx

Data type Single-precision floating point

Description: Transfer the low word of floating point register to rz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

1 11101(0/000O0]|0 VRX 0001101T1O0°O0T1|0 VRZ

515

FMOVD - Double-precision floating point move

Unified instruction

Grammar Operation Compiling result

fmovd vrz, vrx VIZ= VIX Only 32-bit instructions
exist.
fmovd vrz, vrx

Data type Double-precision floating point

Description: Transfer double-precision floating point in vrx to vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIZ= VIX
fmovd vrz, vrx

Double-precision floating point

Transfer double-precision floating point in vrx to vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vrl5.

None

26 25 24 21 20 19 16 15

5 4 3 0

1/0{0 0 0 00 VRX 0000

1 0001000 VRZ

516

FMOVM - SIMD single-precision floating point move

Unified instruction

Grammar Operation Compiling result

fmovm vrz, vrx VIZ= VIX Only 32-bit instructions
exist.
fmovm vrz, vrx

Data type Single-precision floating point

Description: Transfer single-precision floating point in vrx to vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIZ= VIX
fmovm vrz, vrx

Single-precision floating point

Transfer single-precision floating point in vrx to vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vrl5.

None

26 25 24 21 20 19 16 15

5 4 3 0

1/0{0 0 0 00 VRX 0001

000O0T1TO0TQO0]|O0 VRZ

517

FMOYVS - Single-precision floating point move

Unified instruction

Grammar

Operation

Compiling result

fmovs vrz, vrx

VIZ= VIX

Only 32-bit instructions
exist.

fmovs vrz, vrx

Data type

Description:

Influence on

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Single-precision floating point

Transfer single-precision floating point in vrx to vrz.

None

The range of register is vr0-vrl5.

None

VIZ= VIX

fmovs

VIZ, Vrx

Single-precision floating point

Transfer single-precision floating point in vrx to vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vrl5.

None

26 25 24

21 20 19

16 15 5 4 3 0

1/0{0 0 0 00

VRX

000O0OO0OO0OO0OOTIOGO0|0 VRZ

518

FMSCD — Double-precision floating point multiply-subtract

Unified instruction

Grammar Operation Compiling result

fmscd vrz, vrx, vry vrz=-vrz+ vrx*vry Only 32-bit instructions
exist.
fmscd vrz, vrx, vry

Data type Double-precision floating point

Subtract the value in vrz from the product of multiplying double-precision
Description: floating point in vrx and double-precision floating point in vry, and save the
result in vrz.

Influence on None

flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
32-bit
instruction
Operation: vIz=-vrz+ vrx*vry
Grammar: fmscd vrz, vrx, vry
Data type Double-precision floating point
Subtract the value in vrz from the product of multiplying double-precision
Description: floating point in vrx and double-precision floating point in vry, and save the

result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

519

VRY

VRX

0000

1

0

1

0 1

01

520

FMSCM - SIMD single-precision floating point

Unified

instruction

multiply-subtract

Grammar

Operation Compiling result

fmscm vrz, vrx,

vrz[31:0]=-vrz[31:0]+ vrx[31:0]*vry[31:0],
vrz[63:32]=-vrz[63:32]+vrx[63:32]*vry[63:32]

Only 32-bit

vry instructions exist.
fmscm vrz, vrx, vry

Data type Single-precision floating point
Subtract the value in vrz[31:0] from the product of multiplying
single-precision floating point in vrx[31:0] and single-precision floating

Description: point in vry[31:0], and save the result in vrz[31:0].
Subtract the value in vrz[63:32] from the product of multiplying
single-precision floating point in vrx[63:32] and single-precision floating
point in vry[63:32], and save the result in vrz[63:32].

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.

Exception: None

32-bit

instruction

Operation: vrz[31:0]=-vrz[31:0]+ vrx[31:0]*vry[31:0],
vrz[63:32]=-vrz[63:32]+vrx[63:32]*vry[63:32]

Grammar: fmsem vrz, vrx, vry

Data type Single-precision floating point
Subtract the value in vrz[31:0] from the product of multiplying
single-precision floating point in vrx[31:0] and single-precision floating

Description: point in vry[31:0], and save the result in vrz[31:0].

Subtract the value in vrz[63:32] from the product of multiplying
single-precision floating point in vrx[63:32] and single-precision floating

point in vry[63:32], and save the result in vrz[63:32].

521

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:
Instruction code

31 26 25 24 21 20 19 16 15 5 0
1 1T 1101|0 VRY |0]| VRX 0001001O0T1O01 VRZ

522

FMSCS -

Single-precision floating point multiply-subtract

Unified instruction

Grammar

fmscs vrz, vrx, vry

Operation Compiling result
VIz=-viz+ vix*vry Only 32-bit instructions
exist.

fmscs vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Single-precision floating point

Subtract the value in vrz from the product of multiplying single-precision
floating point in vrx and single-precision floating point in vry, and save the
result in vrz.

None

The range of register is vr0-vr15.

None

vIz=-vrz+ vrx*vry

fmscs vrz, vrx, vry

Single-precision floating point

Subtract the value in vrz from the product of multiplying single-precision
floating point in vrx and single-precision floating point in vry, and save the
result in vrz.

None

The range of register is vr0-vrl5.

None

523

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000O0O0O01

0 1

01

VRZ

524

FMTVRH - Write transfer to high word of floating point

register
Unified instruction
Grammar Operation Compiling result
fmtvrh vrz, rx vrz[63:32] =X Only 32-bit instructions
exist.
fmtvrh vrz, rx
Data type Single-precision floating point
Description: Transfer rx to the high word of floating point register.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

vrz[63:32] =X
fmtvrh vrz, rx

Single-precision floating point

Transfer rx to the high word of floating point register.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vrl5.

None

26 25 24 21 20 19 16 15

5 4 3 0

1/0{0 0 0 00 VRX 0001

1

0

1 1010(0 VRZ

525

FMTVRL — Write transfer to low word of floating point

register
Unified instruction
Grammar Operation Compiling result
fmtvrl vrz, rx vrz[31:0] =rx Only 32-bit instructions

exist.

fmtvrh vrz, rx

Data type Single-precision floating point

Description: Transfer rx to the low word of floating point register.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

32-bit

instruction

Operation: vrz[31:0] =rx

Grammar: Fmtvrl vrz, rx

Data type Single-precision floating point

Description: Transfer rx to the low word of floating point register.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

111 101(0{0 0000 VRX 00011011O01T1|0 VRZ

526

FMULD - Double-precision floating point multiply

Unified instruction

Grammar Operation Compiling result
fmuld vrz, vrx,vry vIZz= vrx*vry Only 32-bit instructions
exist.
fmuld vrz, vrx,vry
Data type Double-precision floating point
Multiply single-precision floating points in vrx and vry, and save the result
Description:

in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

vIz= vrx*vry
fmuld vrz, vrx,vry

Double-precision floating point

Multiply double-precision floating points in vrx and vry, and save the result

in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:
Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0
1 11101(0 VRY |0]| VRX 000O0OT1O0T1O0O0OSO0O®O0|O VRZ

527

FMULM - SIMD single-precision floating point multiply

Unified instruction

Grammar

fmulm vrz, vrx,vry

Operation Compiling result
vrz[31:0]= vrx[31:0]*vry[31:0]; Only 32-bit instructions
vrz[63:32]= vrx[63:32]*vry[63:32] exist.

fmulm vrz, vrx,vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Single-precision floating point

Multiply single-precision floating points in vrx[31:0] and vry[31:0], and
save the result in vrz[31:0]; multiply single-precision floating points in
vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

None

The range of register is vr0-vr15.

None

vrz[31:0]= vrx[31:0]*vry[31:0]; vrz[63:32]= vrx[63:32]*vry[63:32]

fmulm vrz, vrx,vry

Single-precision floating point

Multiply single-precision floating points in vrx[31:0] and vry[31:0], and
save the result in vrz[31:0]; multiply single-precision floating points in
vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

528

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0001

0 01

0000

VRZ

529

FMULS - Single-precision floating point multiply

Unified instruction

Grammar

Operation

Compiling result

fmuls vrz, vrx,vry

vIz= vrx*vry

Only 32-bit instructions
exist.

fmuls vrz, vrx,vry

Data type

Description:

Single-precision floating point

Multiply single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

vIz= vrx*vry
fmuls vrz, vrx,vry

Single-precision floating point

Multiply single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:
Instruction code

31 26 25 24 21 20 19 16 15 5 0
1 11101(0 VRY 0 VRX 000O0OO0OO0OT1TO0O0OO0OO VRZ

530

FNEGD - Double-precision floating point negate

Unified instruction

Grammar Operation Compiling result
fhegd vrz, vrx VIZ= -VIX Only 32-bit instructions
exist.

fnegd vrz, vrx

Data type

Description:

Double-precision floating point

Negate double-precision floating point in vrx and save the result in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIZ= -VIX
fnegd vrz, vrx

Double-precision floating point

Negate double-precision floating point in vrx and save the result in vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vrl5.

None

26 25 24 21 20 19 16 15 5 4 3

1/0{0 0 0 00 VRX 000010O0O0OT1T1TI|0

531

FNEGM - SIMD single-precision floating point negate

Unified instruction

Grammar Operation Compiling result
fnegm vrz, vrx vrz[31:0]= -vrx[31:0]; vrz[63:32]= Only 32-bit instructions
-vrx[63:32] exist

fnegm vrz, vrx

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

Single-precision floating point

Negate single-precision floating point in vrx[31:0] and save the result in
vrz[31:0]; negate single-precision floating point in vrx[63:32] and save the
result in vrz[63:32].

None

The range of register is vr0-vr15.

None

vrz[31:0]= -vrx[31:0]; vrz[63:32]= -vrx[63:32]

fnegm vrz, vrx

Single-precision floating point

Negate single-precision floating point in vrx[31:0] and save the result in
vrz[31:0]; negate single-precision floating point in vrx[63:32] and save the
result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

532

26 25 24

21 20 19

16 15

110

0000

0

VRX

0001

000O0°1

1

1

VRZ

533

FNEGS - Single-precision floating point negate

Unified instruction

Grammar

Operation

Compiling result

fnegs vrz, vrx

VIZ= -VIX

Only 32-bit instructions

exist.

fnegs vrz, vrx

Data type

Description:

Single-precision floating point

Negate single-precision floating point in vrx and save the result in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIZ= -VIX
fnegs vrz, vrx

Single-precision floating point

Negate single-precision floating point in vrx and save the result in vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vr15.

None

26 25 24 21 20 19 16 15

5 4

1/0{0 0 0 00 VRX 0000O0OO0OO0OO0OTIT1TI|O0

VRZ

534

FNMACD - Double-precision floating point

multiply-negate-accumulate

Unified instruction

Grammar

famacd vrz, vrx, vry

Operation Compiling result
VIz-= vrx*vry Only 32-bit instructions
exist.

famacd vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

Negate the product of multiplying double-precision floating point in vrx and
double-precision floating point in vry, add the result to the value in vrz, and
save the final result in vrz.

None

The range of register is vr0-vr15.

None

VIz-= vrx*vry

famacd vrz, vrx, vry

Double-precision floating point

Negate the product of multiplying double-precision floating point in vrx and
double-precision floating point in vry, add the result to the value in vrz, and
save the final result in vrz.

None

The range of register is vr0-vrl5.

None

535

Instruction code

31

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000

1

0

1

0 1

1

0

VRZ

536

FNMACM - SIMD single-precision floating point

multiply-negate-accumulate

Unified instruction

Grammar Operation Compiling result
famacm vrz, vrx, vry | vrz[31:0]-= vrx[31:0]*vry[31:0], Only 32-bit instructions
vrz[63:32]-= vrx[63:32]*vry[63:32] exist.
famacm vrz, vrx, vry

Data type Single-precision floating point
Negate the product of multiplying single-precision floating point in
vrx[31:0] and single-precision floating point in vry[31:0], add the result to
the value in vrz[31:0], and save the final result in vrz[31:0].

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on

flag bit:

Negate the product of multiplying single-precision floating point in
vrx[63:32] and single-precision floating point in vry[63:32], add the result
to the value in vrz[63:32], and save the final result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

vrz[31:0]-= vrx[31:0]*vry[31:0], vrz[63:32]-= vrx[63:32]*vry[63:32]
famacm vrz, vrx, vry

Single-precision floating point

Negate the product of multiplying single-precision floating point in
vrx[31:0] and single-precision floating point in vry[31:0], add the result to
the value in vrz[31:0], and save the final result in vrz[31:0].

Negate the product of multiplying single-precision floating point in
vrx[63:32] and single-precision floating point in vry[63:32], add the result
to the value in vrz[63:32], and save the final result in vrz[63:32].

None

537

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15

5

11 1101(0 VRY |0 VRX 0001

0 01

0 1

1

0

VRZ

538

FNMACS - Single-precision floating point

multiply-negate-accumulate

Unified instruction

Grammar

famacs vrz, vrx, vry

Operation Compiling result
VIz-= vrx*vry Only 32-bit instructions
exist.

famacs vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Negate the product of multiplying single-precision floating point in vrx and
single-precision floating point in vry, add the result to the value in vrz, and
save the final result in vrz.

None

The range of register is vr0-vr15.

None

VIz-= vrx*vry

famacs vrz, vrx, vry

Single-precision floating point

Negate the product of multiplying single-precision floating point in vrx and
single-precision floating point in vry, add the result to the value in vrz, and
save the final result in vrz.

None

The range of register is vr0-vrl5.

None

539

Instruction code

31

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000O0O0O01

0 1

1

0

VRZ

540

FNMSCD - Double-precision floating point

multiply-negate-subtract

Unified instruction

Grammar

famscd vrz, vrx, vry

Operation Compiling result
VIZ=- VIZ-VIX*Vry Only 32-bit instructions
exist.

famscd vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Double-precision floating point

Negate the product of multiplying double-precision floating point in vrx and
double-precision floating point in vry, subtract the value in vrz from the
result, and save the final result in vrz.

None

The range of register is vr0-vr15.

None

VIZ=- VIZ-VIX*Vry

famscd vrz, vrx, vry

Double-precision floating point

Negate the product of multiplying double-precision floating point in vrx and
double-precision floating point in vry, subtract the value in vrz from the
result, and save the final result in vrz.

None

The range of register is vr0-vrl5.

None

541

Instruction code

31

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000

1

0

1

0 1

VRZ

542

FNMSCM - SIMD single-precision floating point

multiply-negate-subtract

Unified instruction

Grammar Operation Compiling result
fomscm vrz, vrx, vry | vrz[31:0]=- Only 32-bit instructions
vrz[31:0]-vrx[31:0]*vry[31:0], exist
vrz[63:32]=-
famsem vrz, vrx, vry
vrz[63:32]-vrx[63:32]*vry[63:32]
Data type Single-precision floating point
Negate the product of multiplying single-precision floating point in
vrx[31:0] and single-precision floating point in vry[31:0], subtract the value
in vrz[31:0] from the result, and save the final result in vrz[31:0].
Description:

Influence on
flag bit:
Restriction:
Exception:
32-bit

instruction
Operation:

Grammar:

Data type

Description:

Influence on

flag bit:

Negate the product of multiplying single-precision floating point in
vrx[63:32] and single-precision floating point in vry[63:32], subtract the
value in vrz[63:32] from the result, and save the final result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

vrz[31:0]=- vrz[31:0]-vrx[31:0]*vry[31:0],

vrz[63:32]=- vrz[63:32]-vrx[63:32]*vry[63:32]

famsem vrz, vrx, vry

Single-precision floating point

Negate the product of multiplying single-precision floating point in
vrx[31:0] and single-precision floating point in vry[31:0], subtract the value
in vrz[31:0] from the result, and save the final result in vrz[31:0].

Negate the product of multiplying single-precision floating point in
vrx[63:32] and single-precision floating point in vry[63:32], subtract the
value in vrz[63:32] from the result, and save the final result in vrz[63:32].

None

543

Restriction: The range of register is vr0-vr15.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15

11 1101(0 VRY |0 VRX 0001

0 01

0 1

1

VRZ

544

FNMSCS - Single-precision floating point

multiply-negate-subtract

Unified instruction

Grammar

famscs vrz, vrx, vry

Operation Compiling result
VIZ=- VIZ-VIX*Vry Only 32-bit instructions
exist.

famscs vrz, vrx, vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Negate the product of multiplying single-precision floating point in vrx and
single-precision floating point in vry, subtract the value in vrz from the
result, and save the final result in vrz.

None

The range of register is vr0-vr15.

None

VIZ=- VIZ-VIX*Vry

famscs vrz, vrx, vry

Single-precision floating point

Negate the product of multiplying single-precision floating point in vrx and
single-precision floating point in vry, subtract the value in vrz from the
result, and save the final result in vrz.

None

The range of register is vr0-vrl5.

None

545

Instruction code

31

26 25 24

21 20 19

16 15

110

VRY

0

VRX

0000O0O0O01

0 1

1

1

VRZ

546

FNMULD - Double-precision floating point multiply-negate

Unified instruction

Grammar Operation Compiling result
famuld vrz, vrx,vry vrz= -(Vrx*vry) Only 32-bit instructions
exist.
fomuld vrz, vrx,vry
Data type Double-precision floating point
Multiply double-precision floating points in vrx and vry, negate the result,
Description:

and save the final result in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

vrz= -(Vrx*vry)
fomuld vrz, vrx,vry

Double-precision floating point

Multiply double-precision floating points in vrx and vry, negate the result,

and save the final result in vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vrl5.

None

26 25 24 21 20 19 16 15

5 4 3 0

110 VRY 0 VRX 0000

1

0

1 00010 VRZ

547

FNMULM - SIMD single-precision floating point

multiply-negate
Unified instruction
Grammar Operation Compiling result
faomulm vrz, vrx,vry vrz[31:0]= -(vrx[31:0]*vry[31:0]); Only 32-bit instructions
vrz[63:32]= -(vrx[63:32]*vry[63:32]) exist.

fomulm vrz, vrx,vry

Data type

Description:

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

Influence on
flag bit:
Restriction:
Exception:
Instruction

format:

Single-precision floating point

Multiply single-precision floating points in vrx[31:0] and vry[31:0], negate
the result, and save the final result in vrz[31:0]; multiply single-precision
floating points in vrx[63:32] and vry[63:32], negate the result, and save the
final result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

vrz[31:0]= -(vrx[31:0]*vry[31:0]); vrz[63:32]= -(vrx[63:32]*vry[63:32])
faomulm vrz, vrx,vry

Single-precision floating point

Multiply single-precision floating points in vrx[31:0] and vry[31:0], negate
the result, and save the final result in vrz[31:0]; multiply single-precision
floating points in vrx[63:32] and vry[63:32], negate the result, and save the
final result in vrz[63:32].

None

The range of register is vr0-vrl5.

None

548

Instruction code

31

26 25 24

21 20 19

16 15

5

110

VRY

0

VRX

0001

0 01

0001

VRZ

549

FNMULS - Single-precision floating point multiply-negate

Unified instruction

Grammar

Operation

Compiling result

fomuls vrz, vrx,vry

vrz= -(Vrx*vry)

Only 32-bit instructions
exist.

fomuls vrz, vrx,vry

Data type

Description:

Single-precision floating point

Multiply single-precision floating points in vrx and vry, negate the result,

and save the final result in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

vrz= -(Vrx*vry)

fomuls vrz, vrx,vry

Single-precision floating point

Multiply single-precision floating points in vrx and vry, negate the result,

and save the final result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:
Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0
1 11101(0 VRY |0]| VRX 000O0O0OO0OT1O0O0OO0OT1|O0 VRZ

550

FRECIPD — Double-precision floating point reciprocal

Unified instruction

Grammar

Operation

Compiling result

frecipd vrz, vrx

vrz= 1/vrx

Only 32-bit instructions
exist.

frecipd vrz, vrx

Data type

Description:

Influence on

Double-precision floating point

Take the reciprocal of double-precision floating point in vrx and save the

final result in vrz.

None

flag bit:

Restriction: The range of register is vr0-vrl5.

Exception: None

32-bit

instruction

Operation: vrz= 1/vrx

Grammar: frecipd vrz, vrx

Data type Double-precision floating point

Take the reciprocal of double-precision floating point in vrx and save the
Description:
final result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:

Instruction code
31 26 25 24 21 20 19 16 15 5 4 3 0

111 101(0{0 0 O0O0f0 VRX 0000T1O01T1O00O0T1]0 VRZ

551

FRECIPS - Single-precision floating point reciprocal

Unified instruction

Grammar Operation Compiling result
frecips vrz, vrx vrz= 1/vrx Only 32-bit instructions
exist.
frecips vrz, vrx
Data type Single-precision floating point
Take the reciprocal of single-precision floating point in vrx and save the
Description:

final result in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

vrz= 1/vrx
frecips vrz, vrx

Single-precision floating point

Take the reciprocal of single-precision floating point in vrx and save the

final result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:
Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0
111101(0{00O0O0f0 VRX 0000O0OO0OCTI1T10O0T1j0 VRZ

552

FSITOD — Transform signed integer into double-precision

floating point
Unified instruction
Grammar Operation Compiling result
fsitod vrz, vrx vrz= (double)vrx Only 32-bit instructions

exist.

fsitod vrz, vrx

Data type 32-bit signed integer

Transform signed integer in vrx into double-precision floating point, and
Description:)
save the result in vrz.

Influence on None

flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
32-bit
instruction
Operation: vrz= (double)vrx
Grammar: fsitod vrz, vrx
Data type 32-bit signed integer
Transform signed integer in vrx into double-precision floating point, and
Description:

save the result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

553

0000

VRX

0001

1

0

1

0 1

00

554

FSITOS — Transform signed integer into single-precision

floating point
Unified instruction
Grammar Operation Compiling result
fsitos vrz, vrx vrz= (float)vrx Only 32-bit instructions

exist.

fsitos vrz, vrx

Data type 32-bit signed integer

Transform signed integer in vrx into single-precision floating point, and
Description:)
save the result in vrz.

Influence on None

flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
32-bit
instruction
Operation: vrz= (float)vrx
Grammar: fsitos vrz, vrx
Data type 32-bit signed integer
Transform signed integer in vrx into single-precision floating point, and
Description:

save the result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

555

0000

VRX

0001

1

0

1

0000

VRZ

556

FSQRTD - Double-precision floating point square root

Unified instruction

Grammar

Operation

Compiling result

fsqrtd vrz, vrx

vrz= sqrt(vrx)

Only 32-bit instructions
exist.

fsqrtd vrz, vrx

Data type

Description:

Influence on

Double-precision floating point

Take the square root of double-precision floating point in vrx, and save the

result in vrz.

None

flag bit:
Restriction: The range of register is vr0-vrl5.
Exception: None
32-bit
instruction
Operation: VIZ= sqrt(vrx)
Grammar: fsqrtd vrz, vrx
Data type Double-precision floating point
Take the square root of double-precision floating point in vrx, and save the
Description:
result in vrz.
Influence on None
flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
Instruction
format:
Instruction code
31 26 25 24 21 20 19 16 15 5 4 3 0
1 1.1 10 1(0{0 0 O0O0f0 VRX 000O0T1O0T1T1O0T1OQO0O0 VRZ

557

FSQRTS - Single-precision floating point square root

Unified instruction

Grammar

Operation

Compiling result

fsqrts vrz, vrx

vrz= sqrt(vrx)

Only 32-bit instructions
exist.

fsqrts vrz, vrx

Data type

Description:

Influence on

Single-precision floating point

Take the square root of single-precision floating point in vrx, and save the

result in vrz.

None

flag bit:
Restriction: The range of register is vr0-vrl5.
Exception: None
32-bit
instruction
Operation: vrz= sqrt(vrx)
Grammar: fsqrts vrz, vrx
Data type Single-precision floating point
Take the square root of single-precision floating point in vrx, and save the
Description:
result in vrz.
Influence on None
flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
Instruction
format:
Instruction code
31 26 25 24 21 20 19 16 15 5 4 3 0
111 101{0{00O0O0|0 VRX 0000O0OO0OT1T1O0T1TQO0|O VRZ

558

FSTD — Store double-precision floating point

SKY

Unified

instruction

Grammar Operation Compiling result

fstd vrz, (rx, disp) | MEM[RX + Only 32-bit instructions exist.
zero_extend(offset << 2)] « fstd vrz, (rx, disp)
VRZ[63:0];

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Store double-precision floating point in register VRZ to storage. Adopt
the addressing mode of register and unsigned immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 8-bit relative offset
shifting left by two bits to 32 bits. The address space of FSTD
instruction is +1KB.

Attention: The offset DISP is gained after the binary operand
{IMMA4H,IMM4L} shifts left by two bits.

No influence

Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Store double-precision floating point in register VRZ to storage
MEMJ[RX + zero_extend(offset << 2)] «~ VRZ[63:0];

fstd wvrz, (rx, disp)

Store double-precision floating point in register VRZ to storage. Adopt
the addressing mode of register and unsigned immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 8-bit relative offset
shifting left by two bits to 32 bits. The address space of FSTD
instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

559

{IMMA4H,IMM4L} shifts left by two bits.

Influence on flag ~ No influence

bit:

Exception: Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read
invalid exception

Instruction

format:

3130 2625 24 2120 16 15 87 4 3 0

{11101 (0| IMM4H RX 00100101 IMM4L VRZ

560

FSTM - Store vector floating point

SKY

Unified
instruction
Grammar Operation Compiling result
fstm vrz, (rx, MEM[RX + Only 32-bit instructions exist.
disp) zero_extend(offset << 3)] « fstm vrz, (rx, disp)
VRZ[63:0];
Description: Store two single-precision floating points in register VRZ to storage.

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Adopt the addressing mode of register and unsigned immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 8-bit relative
offset shifting left by three bits to 32 bits. The address space of FSTM
instruction is +1KB.

Attention: The offset DISP is gained after the binary operand
{IMMA4H,IMM4L} shifts left by three bits.

No influence

Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read

invalid exception

Store two single-precision floating points in register VRZ to storage.
MEMJ[RX + zero_extend(offset << 3)] «~ VRZ[63:0];

fstm vrz, (rx, disp)

Store two single-precision floating points in register VRZ to storage.
Adopt the addressing mode of register and unsigned immediate
operand offset. The effective address of storage is gained by adding the
base register RX to the value of unsigned extending the 8-bit relative
offset shifting left by three bits to 32 bits. The address space of FSTM
instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

561

{IMMA4H,IMM4L} shifts left by three bits.

Influence on flag ~ No influence

bit:

Exception: Unaligned access exception, access error exception, TLB
unrecoverable exception, TLB mismatch exception, and TLB read
invalid exception

Instruction

format:

3130 2625 24 2120 16 15 87 4 3 0

{11101 (0| IMM4H RX 00100110 | IMM4L VRZ

562

FSTMD - Store consecutive double-precision floating point

Unified
instruction
Grammar Operation Compiling result
fstmd vry-vrz, Store double-precision floating points | Only 32-bit instructions exist.
(rx) in a group of consecutive register | fstmd vry-vrz, (rx);
files to a group of consecutive storage
addresses successively
src < Y; addr < RX;
for (n=0; n <=(Z-Y); nt+){
MEM[addr] < VRsrc[63:0];
src < src + 1;
addr <« addr + §;
}
Description: Store double-precision floating points in a group of consecutive register

files starting from VRY to a group of consecutive storage addresses
successively. In other word, store contents in register VRY to the address
of the first double word in the address appointed by storage; store the
contents in register VR(Y+1) to the address of the second double word in
the address appointed by storage, and the like; store the contents in
register VRZ to the address of the last double word in the address
appointed by storage. The effective address of storage is decided by the
contents of base register RX.

Influence on flag No influence

bit:

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store double-precision floating points in a group of consecutive register

files to a group of consecutive storage addresses successively

src < Y; addr < RX;

563

Grammar:

Description:

Influence on

for (n=0; n <=(Z-Y); nt+){

MEM[addr] < VRsrc[63:0];

src «—src + 1;

addr <« addr + §;
H
fstmd vry-vrz, (rx)
Store double-precision floating points in a group of consecutive register
files starting from VRY to a group of consecutive storage addresses
successively. In other word, store contents in register VRY to the address
of the first double word in the address appointed by storage; store the
contents in register VR(Y+1) to the address of the second double word in
the address appointed by storage, and the like; store the contents in
register VRZ to the address of the last double word in the address
appointed by storage. The effective address of storage is decided by the
contents of base register RX.

No influence

SKY

flag bit:
Restriction: VRZ should be greater than or equal to VRY.
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
Instruction
format:
3130 2625 24 2120 16 15 87 4 3 0
l1fr1r101 |0 IMM4 RX 001 10101]|00O00O0 VRY

IMM4 field — Assign the number of destination registers, IMM4 =Z — Y.

0000 — 1 destination register

0001 — 2 destination registers

1111 — 16 destination registers

564

FSTMM - Store consecutive vector floating point

Unified
instruction
Grammar Operation Compiling result
fstmm vry-vrz, | Store vector floating points in a group | Only 32-bit instructions exist.
(rx) of consecutive register files to a | fstmm vry-vrz, (rx);
group of consecutive storage
addresses successively
src < Y; addr < RX;
for (n=0; n <=(Z-Y); nt+){
MEM][addr] < VRsrc[63:0];
src < src + 1;
addr <« addr + §;
}
Description: Store vector floating point (including two single-precision floating

points) in a group of consecutive register files starting from VRY to a

group of consecutive storage addresses successively. In other word, store

contents in register VRY to the address of the first double word in the

address appointed by storage; store the contents in register VR(Y+1) to

the address of the second double word in the address appointed by

storage, and the like; store the contents in register VRZ to the address of

the last double word in the address appointed by storage. The effective

address of storage is decided by the contents of base register RX.

Influence on flag No influence

bit:

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store vector floating points in a group of consecutive register files to a

group of consecutive storage addresses successively

src < Y; addr < RX;

565

for (n = 0; n <=(Z-Y); n++){
MEM]Jaddr] <— VRsrc[63:0];

src < src + 1;

addr < addr + 8;
H
Grammar: fstmm vry-vrz, (rx)
Description: Store vector floating point (including two single-precision floating points)

in a group of consecutive register files starting from VRY to a group of
consecutive storage addresses successively. In other word, store contents
in register VRY to the address of the first double word in the address
appointed by storage; store the contents in register VR(Y+1) to the
address of the second double word in the address appointed by storage,
and the like; store the contents in register VRZ to the address of the last
word in the address appointed by storage. The effective address of storage

is decided by the contents of base register RX.

Influence on No influence

flag bit:

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

3130 2625 24 21 20 16 15 87 4 3 0
1111101 (0] IMM4 RX 00110110(00O00O0 VRY

IMM4 field — Assign the number of destination registers, IMM4 =Z — Y.
0000 — 1 destination register

0001 — 2 destination registers

1111 — 16 destination registers

566

FSTMS — Store consecutive single-precision floating point

Unified
instruction
Grammar Operation Compiling result
fstms vry-vrz, Store single-precision floating points | Only 32-bit instructions exist.
(rx) in a group of consecutive register | fstms vry-vrz, (rx);
files to a group of consecutive storage
addresses successively
src < Y; addr < RX;
for (n=0; n <=(Z-Y); n++){
MEM[addr] < VRsrc[31:0];
src < src + 1;
addr <« addr + 4;
}
Description: Store single-precision floating points in a group of consecutive register

files starting from VRY to a group of consecutive storage addresses
successively. In other word, store contents in register VRY to the address
of the first word in the address appointed by storage; store the contents in
register VR(Y+1) to the address of the second word in the address
appointed by storage, and the like; store the contents in register VRZ to
the address of the last word in the address appointed by storage. The
effective address of storage is decided by the contents of base register
RX.

Influence on flag No influence

bit:

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

32-bit

instruction

Operation: Store single-precision floating points in a group of consecutive register

files to a group of consecutive storage addresses successively

src < Y; addr < RX;

567

for (n = 0; n <=(Z-Y); n++){
MEM[addr] < VRsrc[31:0];

src < src + 1;

addr < addr + 4,
H
Grammar: fstms vry-vrz, (rx)
Description: Store single-precision floating points in a group of consecutive register

files starting from VRY to a group of consecutive storage addresses
successively. In other word, store contents in register VRY to the address
of the first word in the address appointed by storage; store the contents in
register VR(Y+1) to the address of the second word in the address
appointed by storage, and the like; store the contents in register VRZ to
the address of the last word in the address appointed by storage. The

effective address of storage is decided by the contents of base register RX.

Influence on No influence

flag bit:

Restriction: VRZ should be greater than or equal to VRY.

Exception: Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

3130 2625 24 21 20 16 15 87 4 3 0
1111101 (0] IMM4 RX 00110100(00O00O0 VRY

IMM4 field — Assign the number of destination registers, IMM4 =Z — Y.
0000 — 1 destination register

0001 — 2 destination registers

1111 — 16 destination registers

568

FSTOD - Transform single-precision floating point into

double-precision floating point

Unified instruction

Grammar Operation Compiling result
fstod vrz, vrx vrz= (double)vrx Only 32-bit instructions
exist.

fstod vrz, vrx

Data type

Description:

Influence on

Single-precision floating point

Transform single-precision floating point in vrx into double-precision
floating point, and save the result in vrz.

None

flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
32-bit
instruction
Operation: vrz= (double)vrx
Grammar: fstod vrz, vrx
Data type Single-precision floating point
Transform single-precision floating point in vrx into double-precision
Description:
floating point, and save the result in vrz.
Influence on None
flag bit:
Restriction: The range of register is vr0-vrl5.
Exception: None
Instruction
format:
Instruction code
31 26 25 24 21 20 19 16 15 5 4 3 0

569

0000

VRX

0001

1

0

1

0 1

570

o SKY

FSTOSI — Transform single-precision floating point into signed

integer
Unified instruction
Grammar Operation Compiling result
fstosirm vrz, vrx vrz= (signed long)vrx Only 32-bit instructions
where rm is rn/rz/rpi/rni exist.
fstosirm vrz, vrx

Data type Single-precision floating point

Transform single-precision floating point in vrx into signed integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn
Description: 2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

Influence on
flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

2’b10: Round to positive infinity; the corresponding assembly instruction is
fdtosi.rpi
2’b11: Round to negative infinity; the corresponding assembly instruction is
fdtosi.rni

None

The range of register is vr0-vr15.

None

vrz= (signed long)vrx

fstosi.rm vrz, vrx

Single-precision floating point

Transform single-precision floating point in vrx into signed integer, and
save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

571

o SKY

2’b10: Round to positive infinity; the corresponding assembly instruction is
fdtosi.rpi
2’b11: Round to negative infinity; the corresponding assembly instruction is
fdtosi.rni

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

11 1101(0(0 0 O0O0]0 VRX 000110000 RM|O VRZ

572

FSTOUI - Transform single-precision floating point into

unsigned integer

Unified instruction

Grammar Operation Compiling result
fstouirm vrz, vrx vrz= (unsigned long)vrx Only 32-bit instructions
where rm is rn/rz/rpi/rni exist.

fstouirm vrz, vrx

Data type Single-precision floating point

Transform single-precision floating point in vrx into unsigned integer, and

save the result in vrz. RM refers to the rounding mode.

RM represents:

2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn
Description: 2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

2’b10: Round to positive infinity; the corresponding assembly instruction is

fdtosi.rpi

2’b11: Round to negative infinity; the corresponding assembly instruction is

fdtosi.rni

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.
Exception: None

32-bit

instruction

Operation: vrz= (unsigned long)vrx
Grammar: fstouirm vrz, vrx

Data type Single-precision floating point

Transform single-precision floating point in vrx into unsigned integer, and
save the result in vrz. RM refers to the rounding mode.

Description: RM represents:
2’b00: Round to nearest; the corresponding assembly instruction is fdtosi.rn

2’b01: Round to 0; the corresponding assembly instruction is fdtosi.rz

573

o SKY

2’b10: Round to positive infinity; the corresponding assembly instruction is
fdtosi.rpi
2’b11: Round to negative infinity; the corresponding assembly instruction is
fdtosi.rni

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

11 1101(0(0 0 O0O0]0 VRX 000110001 RM|O VRZ

574

o SKY

FSTRD - Store double-precision floating point in register offset

Unified instruction

addressing

Grammar

Operation Compiling result

fstrd wvrz, (rx, ry << 0) | Store double-precision floating point | Only 32-bit instructions

fstrd vrz, (rx, ry <<1) | to storage exist.
fstrd vrz, (1x, 1y <<2) | MEM[RX + RY << IMM2] « fstrd vrz, (rx, ry << 0)
fstrd wvrz, (rx, ry <<3) | VRZ[63:0] fstrd wvrz, (1x, ry << 1)

fstrd wvrz, (rx, ry << 2)

fstrd wvrz, (rx, ry << 3)

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Store double-precision floating point in register VRZ to storage. Adopt
the addressing mode of register and register offset. The effective address
of storage is gained by adding the base register RX to the value gained by
making offset register RY shift left by 2-bit immediate operand IMM2.
The default value of IMM2 is 0.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Store double-precision floating point to storage

MEM[RX + RY << IMM2] «— VRZ[63:0]

fstrd wvrz, (1%, ry << 0)

fstrd vrz, (rx, ry << 1)

fstrd iz, (1x, ry << 2)

fstrd vrz, (rx, ry << 3)

Store double-precision floating point in register VRZ to storage. Adopt
the addressing mode of register and register offset. The effective address
of storage is gained by adding the base register RX to the value gained by
making offset register RY shift left by 2-bit immediate operand IMM2.
The default value of IMM2 is 0.

575

Influence on flag No influence

bit:

Exception:

exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fstrd vrz, (rx, ry << 0)

Unaligned access exception, access error exception, TLB unrecoverable

3130 2625 2120 16 15 87 6 5 4 0
1|1 1101 RY 00101101]0/0 0/0] VRZ
fstrd wvrz, (1x, ry << 1)

3130 2625 2120 16 15 87 6 5 4 0
1|1 1101 RY 00101101]0[0 1|0 VRZ
fstrd vrz, (rx, ry << 2)

3130 2625 2120 16 15 87 6 5 4 0
1|1 1101 RY 00101101]|0[1 0/0|] VRZ
fstrd vrz, (rx, ry << 3)

3130 2625 2120 16 15 87 6 5 4 0
1|1 1101 RY 00101101]|0[1 1|0 VRZ

576

FSTRM - Store vector floating point in register offset

Unified instruction

addressing

Grammar

Operation

Compiling result

fsttm vrz, (1x, ry <<

0)

fsttm vrz, (1x, ry <<

1)
fsttm vrz, (rx, ry

2)

fstrm vrz, (rx, ry <<

3)

<<

Store vector floating point to storage
MEM[RX + RY << IMM2] «
VRZ[63:0]

Only 32-bit instructions
exist.

fstrm vrz, (rx, ry << 0)
fstrm vrz, (x, ry << 1)
fstrm vrz, (rx, ry << 2)

fstrm vrz, (rx, ry << 3)

Description:

Influence on flag
bit:

Exception:

32-bit
instruction

Operation:

Grammar:

Description:

Store two single-precision floating points in register VRZ to storage.

Adopt the addressing mode of register and register offset. The effective

address of storage is gained by adding the base register RX to the value

gained by making offset register RY shift left by 2-bit immediate operand
IMM2. The default value of IMM2 is 0.

No influence

Unaligned access exception, access error exception, TLB unrecoverable

exception, TLB mismatch exception, and TLB read invalid exception

Store vector floating point to storage

MEM[RX + RY << IMM2] «— VRZ[63:0]

fstrm
fstrm
fstrm

fstrm

viz, (X, ry << 0)
vrz, (rx, ry << 1)
vrz, (X, 1y << 2)

vrz, (rX, 1y << 3)

Store two single-precision floating points in register VRZ to storage.

Adopt the addressing mode of register and register offset. The effective

address of storage is gained by adding the base register RX to the value

577

O SKY

gained by making offset register RY shift left by 2-bit immediate operand
IMM2. The default value of IMM2 is 0.

Influence on flag No influence

bit:

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fstrtm vrz, (rx, ry << 0)

3130 2625 2120 16 15 87 6 54 3 0

1111101 RY RX 00101110700 0|0 VRZ

fstrm vrz, (x, ry << 1)

3130 2625 2120 16 15 87 6 54 3 0

1111101 RY RX 00101101 /|00 1]|0 VRZ

fstrm vrz, (rx, ry << 2)

3130 2625 2120 16 15 87 6 54 3 0

1111101 RY RX 00101101 /|01 0|0 VRZ

fstrm vrz, (rx, ry << 3)

3130 2625 2120 16 15 87 6 54 3 0

1111101 RY RX 0010110101 1|0 VRZ

578

o SKY
FSTRS — Store single-precision floating point in register offset

addressing

Unified instruction

Grammar Operation Compiling result

fstrs vrz, (rx, ry <<0) | Store single-precision floating point | Only 32-bit instructions

fstrs vrz, (rx, ry << 1) | to storage exist.
fstrs vrz, (1x, ry <<2) | MEM[RX + RY << IMM2] « fstrs vrz, (rx, ry << 0)
fstrs vrz, (1x, ry <<3) | VRZ[31:0] fstrs vrz, (rx, ry << 1)

fstrs vrz, (rx, ry << 2)

fstrs vrz, (rx, ry << 3)

Description: Store single-precision floating point in register VRZ to storage. Adopt the
addressing mode of register and register offset. The effective address of
storage is gained by adding the base register RX to the value gained by
making offset register RY shift left by 2-bit immediate operand IMM2.
The default value of IMM2 is 0.

Influence on flag No influence

bit:
Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception
32-bit
instruction
Operation: Store single-precision floating point to storage
MEM[RX + RY << IMM2] «— VRZ[31:0]
Grammar: fstrs vrz, (rx, ry << 0)
fstrs vrz, (rx, ry << 1)
fstrs vrz, (rx, ry << 2)
fstrs vrz, (rx, ry << 3)
Description: Store single-precision floating point in register VRZ to storage. Adopt the

addressing mode of register and register offset. The effective address of
storage is gained by adding the base register RX to the value gained by
making offset register RY shift left by 2-bit immediate operand IMM2.
The default value of IMM2 is 0.

579

Influence on flag No influence

bit:

Exception: Unaligned access exception, access error exception, TLB unrecoverable
exception, TLB mismatch exception, and TLB read invalid exception

Instruction

format:

fstrs vrz, (rx, ry << 0)

3130 2625 2120 16 15 87 6 5 4 0

{11101 RY 00101100/)0/0 0/0] VRZ

fstrs vrz, (rx, ry << 1)

3130 2625 2120 16 15 87 6 5 4 0

{11101 RY 00101100/)00 1|0 VRZ

fstrs vrz, (rx, ry << 2)

3130 2625 2120 16 15 87 6 5 4 0

{11101 RY 00101100]|0(1l 0/0|] VRZ

fstrs vrz, (rx, ry << 3)

3130 2625 2120 16 15 87 6 5 4 0

{11101 RY 00101100101 1|0 VRZ

580

FSTS — Store single-precision floating point

SKY

Unified

instruction

Grammar Operation Compiling result

fsts vrz, (rx, disp) | MEM[RX + Only 32-bit instructions exist.
zero_extend(offset << 2)] « fsts vrz, (rx, disp)
VRZ[31:0];

Description:

Influence on flag
bit:

Exception:

32-bit instruction

Operation:

Grammar:

Description:

Store single-precision floating point in register VRZ to storage. Adopt
the addressing mode of register and unsigned immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 8-bit relative offset
shifting left by two bits to 32 bits. The address space of FSTS
instruction is +1KB.

Attention: The offset DISP is gained after the binary operand
{IMM4H,IMM4L} shifts left by two bits.

No influence

Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,

and TLB read invalid exception

Store single-precision floating point in register VRZ to storage
MEMJ[RX + zero_extend(offset << 2)] «~ VRZ[31:0];

fsts vrz, (rx, disp)

Store single-precision floating point in register VRZ to storage. Adopt
the addressing mode of register and unsigned immediate operand
offset. The effective address of storage is gained by adding the base
register RX to the value of unsigned extending the 8-bit relative offset
shifting left by two bits to 32 bits. The address space of FSTS
instruction is +1KB.

Attention: The offset DISP is gained after the binary operand

581

{IMMA4H,IMM4L} shifts left by two bits.

Influence on flag ~ No influence

bit:

Exception: Unaligned access exception, unaligned access exception, access error
exception, TLB unrecoverable exception, TLB mismatch exception,
and TLB read invalid exception

Instruction

format:

3130 2625 24 2120 16 15 87 4 3 0

{11101 (0| IMM4H RX 00100100 | IMM4L VRZ

582

FSUBD — Double-precision floating point subtract

Unified instruction

Grammar

Operation

Compiling result

fsubd vrz, vrx,

vry VIZ= VIX-VIy

Only 32-bit instructions
exist.

fsubd vrz, vrx,vry

Data type

Description:

Double-precision floating point

Subtract double-precision floating points in vrx and vry, and save the result

in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIZ= VIX-VIy
fsubd vrz, vrx,vry

Double-precision floating point

Subtract double-precision floating points in vrx and vry, and save the result

in vrz.

Influence on None

flag bit:
Restriction:
Exception:
Instruction

format:

Instruction code

31

The range of register is vr0-vr15.

None

26 25 24 21 20 19 16 15

5 4 3 0

110 VRY 0 VRX 0000

1 000O00O0T1]0 VRZ

583

FSUBM - SIMD single-precision floating point subtract

Unified instruction

Grammar

fsubm vrz, vrx,vry

Operation Compiling result
vrz[31:0]= vrx[31:0]-vry[31:0]; Only 32-bit instructions
vrz[63:32]= vrx[63:32]-vry[63:32] exist.

fsubm vrz, vrx,vry

Single-precision floating point

Data type
Subtract single-precision floating points in vrx[31:0] and vry[31:0], and

Description: save the result in vrz[31:0]; subtract single-precision floating points in
vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

32-bit

instruction

Operation: vrz[31:0]= vrx[31:0]-vry[31:0]; vrz[63:32]= vrx[63:32]-vry[63:32]

Grammar: fsubm vrz, vrx,vry

Data type Single-precision floating point
Subtract single-precision floating points in vrx[31:0] and vry[31:0], and

Description: save the result in vrz[31:0]; subtract single-precision floating points in
vrx[63:32] and vry[63:32], and save the result in vrz[63:32].

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.

Exception: None

Instruction

format:

Instruction code
31 26 25 24 21 20 19 16 15 5 4 3

584

VRY

VRX

0001

000O0O0OO0T1

585

FSUBS - Single-precision floating point subtract

Unified instruction

Grammar

Operation

Compiling result

fsubs vrz, vrx,vry

VIZ= VIX-Vry

Only 32-bit instructions
exist.

fsubs vrz, vrx,vry

Data type

Description:

Single-precision floating point

Subtract single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on None

flag bit:
Restriction:

Exception:

32-bit

instruction
Operation:
Grammar:

Data type

Description:

The range of register is vr0-vrl5.

None

VIZ= VIX-VIy
fsubs vrz, vrx,vry

Single-precision floating point

Subtract single-precision floating points in vrx and vry, and save the result

in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vr15.

Exception: None

Instruction

format:
Instruction code

31 26 25 24 21 20 19 16 15 5 0
1 11101(0 VRY 0 VRX 000O0O0OO0OO0OO0OO0OGO01 VRZ

586

O SKY

FUITOD - Transform unsigned integer into double-precision

floating point
Unified instruction
Grammar Operation Compiling result
fuitod vrz, vrx vrz= (double)((unsigned 32)vrx[31:0]) | Only 32-bit instructions

exist.

fuitod vrz, vrx

Data type 32-bit unsigned integer

Transform unsigned integer in vrx into double-precision floating point, and
Description:]
save the result in vrz.

Influence on None

flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
32-bit
instruction
Operation: vrz= (double)vrx
Grammar: fuitod vrz, vrx
Data type 32-bit unsigned integer
Transform unsigned integer in vrx into double-precision floating point, and
Description:

save the result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

587

0000

VRX

0001

1

0

1

0 1

01

588

FUITOS - Transform unsigned integer into single-precision

floating point
Unified instruction
Grammar Operation Compiling result
fuitos vrz, vrx vrz= (float)vrx Only 32-bit instructions

exist.

fuitos vrz, vrx

Data type 32-bit unsigned integer

Transform unsigned integer in vrx into single-precision floating point, and
Description:)
save the result in vrz.

Influence on None

flag bit:
Restriction: The range of register is vr0-vr15.
Exception: None
32-bit
instruction
Operation: vrz= (float)vrx
Grammar: fuitos vrz, vrx
Data type 32-bit unsigned integer
Transform unsigned integer in vrx into single-precision floating point, and
Description:

save the result in vrz.

Influence on None

flag bit:

Restriction: The range of register is vr0-vrl5.
Exception: None

Instruction

format:

Instruction code

31 26 25 24 21 20 19 16 15 5 4 3 0

589

0000

VRX

0001

1

0

1

0001

590

NNwrvr

