

WHAT EVERY
ENGINEER SHOULD
KNOW ABOUT

SOFTWARE
ENGINEERING

Phillip A. Laplante

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

7228_C000.fm Page v Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2007 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed in the United States of America on acid-free paper
10 9 8 7 6 5 4 3 2 1

International Standard Book Number-10: 0-8493-7228-3 (Softcover)
International Standard Book Number-13: 978-0-8493-7228-5 (Softcover)

This book contains information obtained from authentic and highly regarded sources. Reprinted
material is quoted with permission, and sources are indicated. A wide variety of references are
listed. Reasonable efforts have been made to publish reliable data and information, but the author
and the publisher cannot assume responsibility for the validity of all materials or for the conse-
quences of their use.

No part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any
electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written
permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.
copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)
222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that
provides licenses and registration for a variety of users. For organizations that have been granted a
photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and
are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Laplante, Phillip A.
What every engineer should know about software engineering / Phillip A.

Laplante.
p. cm. -- (What every engineer should know ; no. 1:40)

Includes bibliographical references and index.
ISBN-13: 978-0-8493-7228-5 (alk. paper)
ISBN-10: 0-8493-7228-3 (alk. paper)
1. Software engineering. I. Title. II. Series.

QA76.758.L327 2007
005.3--dc22 2006036497

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

7228_C000.fm Page vi Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

What Every Engineer Should Know: Series

Statement

What every engineer should know amounts to a bewildering array of knowl-
edge. Regardless of the areas of expertise, engineering intersects with all the
fields that constitute modern enterprises. The engineer discovers soon after
graduation that the range of subjects covered in the engineering curriculum
omits many of the most important problems encountered in the line of daily
practice—problems concerning new technology, business, law, and related
technical fields.

With this series of concise, easy-to-understand volumes, every engineer
now has within reach a compact set of primers on important subjects such
as patents, contracts, software, business communication, management sci-
ence, and risk analysis, as well as more specific topics such as embedded
systems design. These are books that require only a lay knowledge to under-
stand properly, and no engineer can afford to remain uniformed of the fields
involved.

7228_C000.fm Page vii Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

Introduction

What is the goal of this book?

This is a book about software engineering, but its purpose is not to enable
you to leap into the role of a fully trained software engineer. That goal would
be impossible to achieve solely with the reading of any book. Instead, the
goal of this book is to help you better understand the nature of software
engineering as a profession, as an engineering discipline, as a culture, and
as an art form. And it is because of its ever morphing, multidimensional
nature that non-software engineers have so much difficulty understanding
the challenges software engineers must face.

Many practicing software engineers have little or no formal education in
software engineering. While software engineering is a discipline in which
practice and experience are important, it is rare that someone who has not
studied software engineering will have the skills and knowledge needed to
efficiently build industrial strength, reliable software systems. While these
individuals may be perfectly capable of building working systems, unless a
deliberate software engineering approach is followed, the cost of develop-
ment will probably be higher than necessary, and the cost of maintaining
the system will certainly be higher than it ought to be.

How is this book different from other software engineering
books?

It is different from other software engineering books and from every other
book I have written in that it is in Socratic form; that is, in the form of
questions and answers. In some places I have shamelessly reused material
from my books, particularly

Software Engineering for Image Processing Systems

(with attributions)

,

 but even then, significant rewriting was needed to place
the material in the appropriate form of discourse. Indeed, in this present text
I have generalized the concepts from that of predecessors to address the
broader needs of all kinds of engineers.

7228_C000.fm Page ix Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

Can this book convert me into a software engineer?

I don’t promise that after reading this book you will become a master soft-
ware engineer — no book can deliver on that promise. What this book will
do, I hope, is help you better understand the limits of software engineering
and the advances that have been made over the years. If nothing else, it is
my hope that you will come away from reading this book with a deeper,
more sympathetic understanding of the software engineer as an engineer.

Are software engineers really engineers?

Yes, the software engineer should be regarded as an engineer, particularly
if he has the proper training, discipline, and mindset.

How should I use this book?

To get the most benefit from this book, I suggest you use it in one or more
of the following ways:

• Read it through in its entirety to provide a general framework for
and understanding of the profession of software engineering.

• Use it as a regular reference when questions about software, software
engineering, or software engineers arise. You will find most of your
questions directly addressed in this book.

• Skip around and read sections as needed to answer specific ques-
tions. There is no harm in reading this book out of order; after all,
it was written out of order.

Who is the intended audience?

The target reader is the practicing engineer who has found he must write
software, integrate off-the-shelf software into the systems he builds, or who
works with software engineers on a regular basis. Undergraduate and grad-
uate engineering students would be well served to have this book for refer-
ence, as it is likely that they will find themselves in the position of building
software, and it is good to establish a rigorous framework early in their
careers.

Did anyone help you with this book?

I have to acknowledge the help of several people along the way.
Some of this book is derived from lectures given by Drs. Colin Neill, Raghu

Sangwan, and myself in the course, “Advanced Software Engineering,” at
The Pennsylvania State University (Penn State) School of Graduate Profes-
sional Studies. Some of the other material comes from my graduate software
project management and software testing courses.

7228_C000.fm Page x Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

Drs. Sangwan and Neill and Professor Sally Richmond also reviewed various
portions of the text and provided constructive criticism and useful ideas.

Dr. Pamela Vercellone-Smith offered some of the information on software
evolution and reviewed various portions of the text.

My friend, Tom Costello, who is an expert in Open Source software, pro-
vided a great deal of information for and a review of Chapter 8.

Another friend, Will Gilreath, reviewed early drafts of the manuscript and
provided many insights and some of the sample code.

Gary Birkmaier, my brother-in-law and principal software engineer with
25+ year’s experience, reviewed and commented on the manuscript.

Chris Garrell, a former graduate student, provided the software require-
ments and design documents in Appendices A, B, and C. Chris is a registered
professional engineer (civil) and also a holds a Master’s degree in software
engineering (the perfect combination for someone designing a wet well control
system). He also reviewed and provided feedback on the finished manuscript.

Ken Sassa, another graduate student, provided the software archeology
examples.

Over the years, many students in my graduate software engineering
courses (many of them with degrees in various engineering disciplines) have
contributed ideas that have influenced this book. I wish to thank them
collectively.

I must also give thanks to my long-suffering wife and children for allowing
me to work on this book when they would have preferred my undivided
attention.

Finally, I would like to thank the wonderful folks at Taylor & Francis,
particularly my editor, Allison Taub; Publisher, Nora Konopka; and my friends
in the production department, particularly Helena Redshaw.

Are there copyrights and trademarks to be cited?

All companies are the holders of the respective trademarks for any products
mentioned in this text.

As noted previously, some of this book has been excerpted or adapted,
with permission from the author’s own text or others that are published by
the Taylor & Francis Publishing Group. These are:

•

Dictionary of Computer Science, Engineering, and Technology

, Phillip A.
Laplante (Editor), CRC Press, 2001.

•

Lightweight Enterprise Architectures

, Fenix Theuerkorn, Auerbach
Publications, 2005.

•

Real Process Improvement Using CMMI

, Michael West, Auerbach Pub-
lications, 2004.

•

Software Engineering for Image Processing Systems

, Phillip A. Laplante,
CRC Press, 2003.

•

Software Engineering Handbook

, Jessica Keyes, Auerbach Publications,
2003.

7228_C000.fm Page xi Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

•

Software Engineering Measurement

, John C. Munson, Auerbach Pub-
lications, 2003.

•

Software Engineering Processes: Principles and Applications

, Yingxu
Wang and Graham King, CRC Press, 2000.

•

Software Engineering Quality Practices

, Kurt Kandt, Auerbach Publi-
cations, 2005.

•

Software Testing and Continuous Quality Improvement,

2nd ed., William
E. Lewis, Auerbach Publications, 2005.

•

Software Testing: A Craftsman’s Approach,

2nd ed., Paul Jorgensen,
CRC Press, 2002.

•

The Computer Science and Engineering Handbook

, Allen B. Tucker, Jr.
(editor-in-chief), CRC Press, 1997.

Where more substantial portions of material have been used verbatim, or
figures reproduced, it is so noted. Otherwise, these texts may be considered
part of the general reference material for preparing this book.

Do you want to dedicate this book?

This book is dedicated to the many teachers, both academic and professional,
who have helped me better understand software engineering over the last 25
years.

Can you tell me about yourself?

I am a professor of software engineering and a member of the graduate
faculty at Penn State. I am also the Chief Technology Officer of the Eastern
Technology Council, a nonprofit business advocacy group serving the
Greater Philadelphia Metropolitan Area. Before joining Penn State, I was a
professor, and later senior academic administrator, at several other colleges
and universities.

Before my academic career, I spent almost eight years as a software engi-
neer and project manager working on avionics (including the space shuttle),
CAD, and software test systems. I have written or edited 22 books and more
than 140 papers, articles, and editorials.

Over the years I have worked with, and for, many kinds of engineers.
Non-software engineers have worked for me as well, and I have had the
pleasure of teaching many hundreds of practicing engineers of various types
about software engineering. This text, then, represents a compendium of
what engineers should know about software engineering.

As for my “scholarly” credentials, I earned a B.S. and Ph.D. in computer
science and an M.Eng. in electrical engineering from Stevens Institute of
Technology, and an M.B.A. from the University of Colorado. In addition to
my academic pursuits, I still consult regularly for the software industry,
including Fortune 1000 companies and smaller software development
houses.

7228_C000.fm Page xii Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

Table of Contents

1

The Profession of Software Engineering 1

1.1 Introduction ..1
1.2 Software Engineering as an Engineering Profession...............................1
1.3 Standards and Certifications..7
1.4 Misconceptions about Software Engineering..12
1.5 Further Reading ...14

2

Software Properties, Processes, and Standards......................... 15

2.1 Introduction ..15
2.2 Characteristics of Software...16
2.3 Software Processes and Methodologies...23
2.4 Software Standards..37
2.5 Further Reading ...40

3

Software Requirements Specification... 43

3.1 Introduction ..43
3.2 Requirements Engineering Concepts ...44
3.3 Requirements Specifications ..45
3.4 Requirements Elicitation...48
3.5 Requirements Modeling ...53
3.6 Requirements Documentation ...72
3.7 Recommendations on Requirements..76
3.8 Further Reading ...81

4

Designing Software .. 83

4.1 Introduction ..83
4.2 Software Design Concepts ...84

4.2.1 Basic Software Engineering Principles ..85
4.2.2 Software Architectures ...93

4.3 Software Design Modeling...94
4.4 Pattern-Based Design ..104
4.5 Design Documentation ...109
4.6 Further Reading ... 111

5

Building Software ... 113

5.1 Introduction .. 113

7228_C000.fm Page xiii Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

5.2 Programming Languages ... 114
5.2.1 Programming Language Landscape .. 115
5.2.2 Programming Features and Evaluation 116
5.2.3 Brief Survey of Languages ..122
5.2.4 Object-Oriented Languages — Fact and Fiction......................127

5.3 Software Construction Tools..128
5.4 Becoming a Better Code Developer..135

5.4.1 Code Smells..135
5.4.2 Coding Standards..142

5.5 Further Reading ...143

6

Software Quality Assurance .. 145

6.1 Introduction ..145
6.2 Quality Models and Standards ...146

6.2.1 Other Quality Standards and Models153
6.3 Software Testing...158
6.4 Metrics ...174
6.5 Fault Tolerance ...183
6.6 Maintenance and Reusability ..186
6.7 Further Reading ...191

7

Managing Software Projects and Software Engineers 193

7.1 Introduction ..193
7.2 Software Engineers Are People Too ...194

7.2.1 Management Styles ...195
7.2.2 Dealing with Problems...198
7.2.3 Hiring Software Engineering Personnel....................................199
7.2.4 Agile Development Teams...203

7.3 Project Management Basics..204
7.4 Tracking and Reporting Progress..207
7.5 Software Cost Estimation ...214
7.6 Project Cost Justification...220
7.7 Risk Management ..225
7.8 Further Reading ...228

8

The Future of Software Engineering .. 231

8.1 Introduction ..231
8.2 Open Source ...231

8.2.1 Software Archeology...236
8.3 Outsourcing and Offshoring..242
8.4 Global Software Development ..246
8.5 Further Reading ...248

7228_C000.fm Page xiv Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

Appendix A

Software Requirements for a Wastewater Pumping
Station Wet Well Control System
(rev. 01.01.00) ...251

A.1 Introduction ..251
A.1.1 Purpose ...251
A.1.2 Scope..251
A.1.3 Definitions, Acronyms, and Abbreviations...............................252

A.2 Overall Description ...254
A.2.1 Wet Well Overview ...254
A.2.2 Product Perspective ..256

A.2.2.1 System Interfaces ..256
A.2.2.2 User Interfaces...256
A.2.2.3 Hardware Interfaces ...256
A.2.2.4 Software Interfaces ...256
A.2.2.5 Operations..258

A.2.3 Product Functions ...258
A.2.4 User Characteristics ..259
A.2.5 Constraints ...259
A.2.6 Assumptions and Dependencies ..259

A.3 Specific Requirements ...259
A.3.1 External Interface Requirements...259
A.3.2 Classes/Objects ...260

A.3.2.1 Pump Control Unit...260
A.3.2.2 Control Display Panel ..261
A.3.2.3 Alarm Display Panel ..262
A.3.2.4 Float Switch ...262
A.3.2.5 Methane Sensor...262

A.4 References ...263

Appendix B

Software Design for a Wastewater Pumping Station
Wet Well Control System (rev. 01.01.00)....................265

B.1 Introduction ..265
B.1.1 Purpose ...265
B.1.2 Scope..265
B.1.3 Definitions, Acronyms, and Abbreviations...............................266

B.2 Overall Description ...266
B.2.1 Wet Well Overview ...266
B.2.2 Wet Well Software Architecture..268

B.3 Design Decomposition..268
B.3.1 Class Model..268
B.3.2 Class Details ...272

B.3.2.1 CWetWellSimulator...272
B.3.2.2 CLogger ..273
B.3.2.3 CXmlData...273
B.3.2.4 CWetWellSimulationData ..274

7228_C000.fm Page xv Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

B.3.2.5 CSensorState ..275
B.3.2.6 CSensor...275
B.3.2.7 CAbstractSensorRelay..275
B.3.2.8 CSensorRelay...275
B.3.2.9 CMethaneState ..275
B.3.2.10 CMethaneSensor ...278
B.3.2.11 CMethaneSensorRelay ...279
B.3.2.12 CWaterState..280
B.3.2.13 CWaterSensor ..280
B.3.2.14 CWaterSensorRelay ..280
B.3.2.15 CPumpState ...281
B.3.2.16 CPumpSensor ..281
B.3.2.17 CPumpSensorRelay ..282
B.3.2.18 CVentilationState...282
B.3.2.19 CVentilationSensor..283
B.3.2.20 CVentilationSensorRelay..283

B.3.3 Sequence Diagram ..283
B.4 References ...285

Appendix C

Object Models for a Wastewater Pumping
Station Wet Well Control System...............................287

7228_C000.fm Page xvi Tuesday, March 20, 2007 6:04 PM

© 2007 by Taylor & Francis Group, LLC

1

1

The Profession of Software Engineering

Outline

• Software engineering as an engineering profession
• Standards and certifications
• Misconceptions about software engineering

1.1 Introduction

If you want to start a debate among your engineering friends, ask the question,
“Is software engineering real engineering?” Unfortunately, I suspect that if your
friends are from one of the “hard” engineering disciplines such as mechanical,
civil, chemical, and electrical, then their answers will be “no.” This is unfortu-
nate because software engineers have been trying for many years to elevate
their profession to a level of respect granted to the hard engineering disciplines.

There are strong feelings around many aspects of the practice of software
engineering — licensure, standards, minimum education, and so forth.
Therefore, it is appropriate to start a book about software engineering by
focusing on these fundamental issues.

1.2 Software Engineering as an Engineering Profession

What is software engineering?

Software engineering is “a systematic approach to the analysis, design,
assessment, implementation, test, maintenance and reengineering of soft-
ware, that is, the application of engineering to software. In the software
engineering approach, several models for the software life cycle are defined,
and many methodologies for the definition and assessment of the different
phases of a life-cycle model” [Laplante 2001].

7228_C001.fm Page 1 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

2

What Every Engineer Should Know about Software Engineering

The profession of software engineering encompasses all aspects of conceiv-
ing, communicating, specifying, designing, building, testing, and maintain-
ing software systems. Software engineering activities also include everything
to do with the production of the artifacts related to software engineering
such as documentation and tools.

There are many other ancillary activities to software engineering, one of
which is the programming of the code or coding. But if you were stopped
on the street by a pedestrian and asked to give a one-word definition for
software engineering, your answer should be, “modeling.” If you had two
words to give, you might say, “modeling” and “optimization.”

Modeling is a translation activity. The software product concept is translated
into a requirements specification. The requirements are converted into a
design. The design is then converted into code, which is automatically trans-
lated by compilers and assemblers, which produce machine executable code.

In each of these translation steps, however, errors are likely to be intro-
duced either by the humans involved or by the tools they use. Thus, the
practice of software engineering involves reducing translation errors through
the application of correct principles.

The optimization part deals with finding the most economical translation
possible. “Economical” means in terms of efficiency, clarity, and other desirable
properties, which will be discussed later.

Is software engineering an engineering discipline?

The answer to this question depends on whom you ask. Many readers will
argue that software engineering is not a true engineering discipline because
there are no fundamental theorems grounded in the laws of physics (more on
this later). Even some software engineering experts would add that there is
still too much “art” in software engineering; that is,

ad hoc

 approaches instead
of rigorous ones. To further tarnish the image of software engineering, many
self-styled practitioners do not have the appropriate background to engage
in software engineering. These frauds help propagate the worst stereotypes
by exemplifying what software engineering is not and should not be.

Perhaps the greatest assault on the reputation of software engineering and
engineers occurs because of the eagerness to bring the software to the market.
Of all the symptoms of poor software engineering, this is the one that man-
agement is most likely to condone.

Nevertheless, software engineering is trying to become a true engineer-
ing discipline through the development of more rigorous approaches, the
evangelization of standards, the nurturing of an accepted body of knowledge
for the profession, and proper education of software engineers.

What is the difference between software engineering and systems
engineering?

There is a great deal of similarity in the activities conducted in software and
systems engineering. Table 1.1, adapted from an excellent introduction to

7228_C001.fm Page 2 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

The Profession of Software Engineering

3

software systems engineering by Richard Thayer, provides a summary of
these activities. Take care when interpreting Table 1.1, as it has the tendency
to suggest that the software engineering process is strictly a liner sequential
(Waterfall) one. Various models of software development will be discussed
shortly. Also note that there is no mention of “coding” in Table 1.1. This is
not an inadvertent omission. In fact, the writing of code can be the least
engineering-like activity that a software engineer can undertake.

What is the history of software engineering?

Although early work in software development and software engineering
began in the late 1950s, many believe that software engineering first became
a profession as a result of a NATO sponsored conference on software engi-
neering in 1968. It is certainly true that this conference fueled a great deal
of research in software engineering [Marciniak 1994].

Few people in the profession called themselves “software engineers” until
mid- to late-1989, and major university programs in software engineering
did not emerge until the late 1980s and early 1990s.

What is the role of the software engineer?

The production of software is a problem-solving activity that is accomplished
by modeling. As a problem-solving, modeling discipline, software engineer-
ing is a human activity that is biased by previous experience, and is subject
to human error. Therefore, the software engineer should recognize and try
to eliminate these errors.

TABLE 1.1

System Engineering Functions Correlated to Software System Engineering

System Engineering
Function

Software Engineering
Function

Software Engineering
Description

Problem definition Requirements
analysis

Determine needs and constraints by
analyzing system requirements
allocated to software

Solution analysis Software design Determine ways to satisfy
requirements and constraints,
analyze possible solutions, and select
the optimum one

Process planning Process planning Determine product development
tasks, precedence, and potential risks
to the project

Process control Process control Determine methods for controlling
project and process, measure
progress, and take corrective action
where necessary

Product evaluation Verification,
validation, and
testing

Evaluate final product and
documentation

Source:

Adapted from Thayer, R.H., Software system engineering: a tutorial,

Computer

,
35(4), 68–73, 2002.

7228_C001.fm Page 3 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

4

What Every Engineer Should Know about Software Engineering

Software engineers should also strive to develop code that is built to
be tested, that is designed for reuse, and that is ready for inevitable
change. Anticipation of problems can only come from experience and
from drawing upon a body of software practice experience that is more
than 50 years old.

How do software engineers spend their time on the job?

Software engineers probably spend less than 10% of their time writing code.
The other 90% of their time is involved with other activities that are more
important than writing code. These activities include:

1. Eliciting requirements
2. Analyzing requirements
3. Writing software requirements documents
4. Building and analyzing prototypes
5. Developing software designs
6. Writing software design documents
7. Researching software engineering techniques or obtaining informa-

tion about the application domain
8. Developing test strategies and test cases
9. Testing the software and recording the results

10. Isolating problems and solving them
11. Learning to use or installing and configuring new software and

hardware tools
12. Writing documentation such as users manuals
13. Attending meetings with colleagues, customers, and supervisors
14. Archiving software or readying it for distribution

This is only a partial list of software engineering activities. These activities
are not necessarily sequential and are not all encompassing. Finally, most of
these activities can recur throughout the software life cycle and in each new
minor or major software version. Many software engineers specialize in a
small subset of these activities, for example, software testing.

What kind of education do software engineers need?

Ideally, software engineers will have an undergraduate degree in software
engineering, computer science, or electrical engineering with a strong
emphasis on software systems development. While it is true that computer
science and software engineering programs are not the same, many com-
puter science curricula incorporate significant courses on important aspects
of software engineering. Unfortunately, there are not many undergraduate
programs in software engineering. Most software engineering courses are
taught under the auspicious of the computer science department.

7228_C001.fm Page 4 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

The Profession of Software Engineering

5

An alternative path to the proper education in software engineering would
be an undergraduate degree in a technical discipline and a Master’s degree in
software engineering (such as the degree that I am involved with at Penn State).
Yet another path would be any undergraduate degree, significant experiential
learning in software engineering on the job, and an appropriate Master’s degree.

Another aspect of education involves the proper background in the
domain area in which the software engineer is practicing. So, a software
engineer building medical software systems would do well to have signifi-
cant formal education in the health sciences, biology, medicine, and the like.
One of my favorite students works in the medical informatics field; he has
a Bachelor’s degree in nursing, a Master’s degree in software engineering,
and significant experience — the perfect combination.

What kind of education do software engineers typically have?

Here is where the problem occurs. In my experience, many practicing soft-
ware engineers have little or no formal education in software engineering.
While software engineering is a discipline in which practice and experience
are important, it is rare for someone who has not studied software engineer-
ing to have the skills and knowledge needed to efficiently and regularly
build industrial strength, reliable software systems.

I know someone who is an “XYZ* Certified Engineer”; is he
a software engineer?

He is definitely not a software engineer. There is an important distinction
between certification and licensing. Certification is a voluntary process admin-
istered by a non-government entity. Licensing is a mandatory process controlled
by a state licensing board. Some companies tend to avoid the use of the word
“engineer” in the designation because the courts generally rule in favor of
restricting the use of the term. One notable exception is Novell, which success-
fully defended its right to use “engineer” in its Certified Novell Engineer (CNE)
designation in court decisions in Illinois in 1998 and Nevada in 2000 [IIE 2000].

Why are there so many software engineers without the proper education?

Shortages of trained software engineers in the 1980s and 1990s led to aggres-
sive hiring of many without formal training in software engineering. This
situation is commonly found in companies building engineering products
where the “software engineers” were probably trained in some other technical
discipline (for example, electrical engineering, physics, or mechanical engi-
neering) but not in software engineering. In other cases, there is a tendency
to move technicians into programming jobs as instrument interfaces move
from hardware- to software-based. Finally, in some cases, long tenured
employees, often without any technical experiences but with familiarity of the
company’s products and processes, move into software development. While all

* Where “XYZ” stands for some major company.

7228_C001.fm Page 5 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

6

What Every Engineer Should Know about Software Engineering

these persons may be perfectly capable of building working systems, unless
a deliberate software engineering approach is followed, the cost of develop-
ment and maintenance will be higher than necessary.

Can software engineering programs be accredited?

Yes, a body known as CSAB can accredit undergraduate software engi-
neering programs. The acronym CSAB formerly stood for “Computing
Sciences Accrediting Board,” but is now used without elaboration. CSAB
is a participating body of ABET (formerly known as the “Accreditation
Board for Engineering and Technology” but also known only by its acro-
nym). ABET accredits other kinds of undergraduate engineering programs

.

Within ABET, the Computing Accreditation Commission accredits pro-
grams in computer science and information systems, while the Engineering
Accreditation Commission accredits programs in software engineering and
computer engineering.

The relevant member societies of ABET for software engineering are the
Association for Computing Machinery, the Institute of Electrical and Elec-
tronics Engineers (Computer Society), and the Association for Information
Systems.

Is professional licensure available for software engineers?

At this writing, Texas is the only state that requires licensing of engineers
who build systems involving “the application of mathematical, physical, or
computer sciences to activities such as real-time and embedded systems,
information or financial systems, user interfaces, and networks” [Statute
2006]. However, practitioners can sometimes avoid the rigorous licensing
examination via a waiver rule that allows for recognition of significant expe-
rience (as little as 12 years).

In some cases, software engineers can obtain professional licensing in
another engineering discipline (for example, I am licensed in the Common-
wealth of Pennsylvania as an electrical engineer). However, this kind of
licensure is only possible if the software engineer has the relevant qualifica-
tions for licensure in the alternative discipline. In addition, it is unclear what
value the designation of “PE” holds for a software engineer — friends are
impressed that I hold a PE license, but I have never seen a job advertisement
for a practicing software engineer that required a PE license.

There are many proprietary certifications for software engineering
practitioners. Are any of these valuable to a software engineer?

Not really. Certifications can be obtained in the technology

du jour

 from
such companies as Borland, Cisco, HP, IBM, Microsoft, and many others
by passing tests. But the knowledge needed to pass these test has little
to do with the discipline of software engineering. Instead, they often
involve the memorization of rote steps needed for software installation
and configuration.

7228_C001.fm Page 6 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

The Profession of Software Engineering

7

What is the IEEE Computer Society CSDP certification?

The Institute of Electrical and Electronics Engineers’ (IEEE) largest special
interest group is the Computer Society, with over 80,000 members worldwide.
The Computer Society, in conjunction with the Association for Computing
Machinery (ACM), which also has over 80,000 members, has been leading the
charge to professionalize software engineering. One of their initiatives is the
Certified Software Development Professional (CSDP) certification.

Aimed at midlevel software engineers, the objectives of the CSDP program
are to

“encourage self-assessment by offering guidelines for achievement
 identify persons with acceptable knowledge of the principles and prac-

tices of software engineering
recognize those who have demonstrated a high level of competence in

the profession
encourage continuing education
raise standards of the profession for the public at large”

“The CSDP is a comprehensive program that encourages individuals
to draw from a broad base of software knowledge. The program is
designed to measure the level of knowledge and competence that indi-
viduals have achieved in software engineering through experience, train-
ing, and education. CSDP is a professional certification program, but it
is not licensure. CSDP is a credential of interest to many in the profession,
particularly in safety, and mission-critical systems, but it is not for every-
one” [CSDP 2006].

1.3 Standards and Certifications

Are there standards for software engineering practices,
documentation, and so forth?

There are many, and I list them below for your reference. The title of the
standard is self-explanatory. If the titles are not recognizable now, they will
be after you have read this book.

IEEE Std 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology

IEEE Std 1062, 1998 Edition, IEEE Recommended Practice for Software
Acquisition

ISO/IEC 12207:1995 — Information Technology — Software Life-Cycle
Processes

7228_C001.fm Page 7 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

8

What Every Engineer Should Know about Software Engineering

IEEE/EIA 12207 — US standard implementation of ISO/IEC std
12207:1995:

IEEE/EIA Std 12207.0-1996, Software Life Cycle Processes
IEEE/EIA Std 12207.1-1997, Software Life Cycle Processes — Life Cycle

Data
IEEE/EIA Std 12207.2-1997, Software Life Cycle Processes — Implemen-

tation Considerations
IEEE Std 1228-1994, IEEE Standard for Software Safety Plans

Process Standards

IEEE Std 730-1998, IEEE Standard for Software Quality Assurance Plans
IEEE Std 730.1-1995, IEEE Guide for Software Quality Assurance Planning
IEEE Std 828-1998, IEEE Standard for Software Configuration Manage-

ment Plans
IEEE Std 1008-1987, IEEE Standard for Software Unit Testing*
IEEE Std 1012-1998, IEEE Standard for Software Verification and Validation
IEEE Std 1012a-1998, Supplement to IEEE Standard for Software

Verification and Validation: Content Map to IEEE/EIA 12207.1-
1997

IEEE Std 1028-1997, IEEE Standard for Software Reviews
IEEE Std 1042-1987, IEEE Guide to Software Configuration Management**
IEEE Std 1045-1992, IEEE Standard for Software Productivity Metrics
IEEE Std 1058-1998, IEEE Standard for Software Project Management

Plans
IEEE Std 1059-1993, IEEE Guide for Software Verification and Validation

Plans
IEEE Std 1074-1997, IEEE Standard for Developing Software Life Cycle

Processes
IEEE Std 1219-1998, IEEE Standard for Software Maintenance

Product Standards

IEEE Std 982.1-1988, IEEE Standard Dictionary of Measures to Produce
Reliable Software

IEEE Std 982.2-1988, IEEE Guide for the Use of Standard Dictionary of
Measures to Produce Reliable Software

IEEE Std 1061-1998, IEEE Standard for Software Quality Metrics
Methodology

* Reaffirmed in 1993.
** Reaffirmed in 1993.

7228_C001.fm Page 8 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

The Profession of Software Engineering

9

IEEE Std 1063-1987, IEEE Standard for Software User Documentation*
IEEE Std 1465-1998, IEEE Standard Adoption of International Standard

ISO/IEC 12199:1994 (E) — Information Technology — Software
packages — Quality requirements and testing

Resource and Technique Standards

IEEE Std 829-1998, IEEE Standard for Software Test Documentation
IEEE Std 830-1998, IEEE Recommended Practice for Software Require-

ments Documentation
IEEE Std 1016-1998, IEEE Recommended Practice for Software Design

Descriptions
IEEE Std 1044-1993, IEEE Standard Classification for Software

Anomalies
IEEE Std 1044.1-1995, IEEE Guide to Classification for Software Anomalies
IEEE Std 1348-1995, IEEE Recommended Practice for the Adoption of

Computer-Aided Software Engineering (CASE) Tools
IEEE Std 1420.1-1995, IEEE Standard for Information Technology —

Software Reuse — Data Model for Reuse Library Interoperability:
Basic Interoperability Data Model (BIDM)

IEEE Std 1420.1a-1996, Supplement to the IEEE Standard for Informa-
tion Technology — Software Reuse — Data Model for Reuse Library
Interoperability: Asset Certification Framework

IEEE Std 1430-1996, IEEE Guide for Information Technology — Software
Reuse — Concept of Operations for Interoperating Reuse Libraries

IEEE Std 1462-1998, IEEE Standard Adoption of ISO/IEC 14102:1995 —
Information Technology — Guidelines for the Evaluation and Selec-
tion of CASE Tools

Of course there are many other standards issued by various organizations
around the world covering various aspects of software engineering and
computing sciences. The above selection is provided both for referencing
purposes and to illustrate the depth and breadth of the software engineering
standards that exist.

What is the Software Engineering Body of Knowledge?

The Software Engineering Body of Knowledge (abbreviated as SWEBOK but
often pronounced as “sweebock”) describes the “sum of knowledge within
the profession of software engineering.” Since 1993, the IEEE Computer
Society and the ACM have been actively promoting software engineering as
a profession, notably through their involvement in accreditation activities

* Reaffirmed in 1993.

7228_C001.fm Page 9 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

10

What Every Engineer Should Know about Software Engineering

described before and in the development of a software engineering body of
knowledge [Bourque et al. 1999].

The objectives of the Guide to the SWEBOK project are to:

“characterize the contents of the Software Engineering Body of Knowledge;
provide a topical access to the Software Engineering Body of Knowledge;
promote a consistent view of software engineering worldwide;
clarify the place of, and set the boundary of, software engineering with

respect to other disciplines such as computer science, project man-
agement, computer engineering and mathematics;

provide a foundation for curriculum development and individual cer-
tification and licensing material.” [Bourque et al. 1999]

Knowledge areas include:

professionalism engineering economics
software requirements
software design
software construction and implementation
software testing
software maintenance
software configuration management
software engineering management
software engineering process
software engineering tools and methods
software quality

The “generally accepted knowledge” is described as follows:

Generally accepted — knowledge based on traditional practices that
have been adopted by various organizations

Advanced and research — innovative practices tested and used only
by some organizations and concepts still being developed and tested
in research organizations

Specialize — practices used only for certain types of software [Bourque
et al. 1999]

Software engineers must also be knowledgable in specifics of their partic-
ular application domain. For example, avionics software engineers need to
have a great deal of knowledge of aerodynamics; software engineers for
financial systems need to have knowledge in the banking domain, and so
forth.

7228_C001.fm Page 10 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

The Profession of Software Engineering

11

Are there any “fundamental theorems” of software engineering?

Software engineering has often been criticized for its lack of a rigorous, for-
malized approach. And in those cases where formalization is attempted, it is
often perceived artificial and hence ignored (or accused of being computer
science, not software engineering). Even a few of my most respected colleagues
seem to hold this view. But there are some results in computer science, math-
ematics, and other disciplines that, while rigorous, can be shown to be appli-
cable in a number of practical software engineering settings.

Rigor in software engineering requires the use of mathematical techniques.
Formality is a higher form of rigor in which precise engineering approaches
are used. In the case of the many kind of systems, such as real-time, formality
further requires that there be an underlying algorithmic approach to the spec-
ification, design, coding, and documentation of the software. In every course
I teach, I try to be rigorous. For example, I introduce finite state machines
because students can readily see that they are practical yet formal.

It has been stated over and over again (without convincing proof) that
high-tech jobs are leaving the U.S. partly because Americans are inade-
quately trained in mathematics as compared to other nationalities. Yet most
people decry the need for mathematics in software engineering.

The most laudable efforts to justify the need for mathematics education in
software engineering and computer science offer pedagogical arguments
centering on the need to demonstrate higher reasoning and logical skills.
While these arguments are valid, most students and critics will not be sat-
isfied by them. Software engineering students (and computer science stu-
dents) want to know why they must take calculus and discrete mathematics
in their undergraduate programs because they often do not see uses for it.

Demming [2003] makes a plea for “great principles of computing;” that is,
the design principles (simplicity, performance, reliability, evolvability, and
security) and the mechanics (computation, communication, coordination,
automation, and recollection). But perhaps there are no such grand theories,
but rather many simple rules. Here is a list of some of my favorites:

Bayes’ Theorem
Böhm-Jacopini Rule
Cantor’s Diagonal Argument
Chebyshev’s Inequality
Little’s Law
McCabe’s Cyclomatic Complexity Theorem
von Neumann’s Min Max Theorem

Baye’s Theorem provides the underpinning for a large body of artificial
intelligence using Bayesian Estimation.

Böhm-Jacopini’s Rule shows that all programs can be constructed using
only a

goto

 statement. This theory has important implications in comput-
ability and compiler theory, among other places.

7228_C001.fm Page 11 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

12

What Every Engineer Should Know about Software Engineering

Cantor’s Diagonal Argument was used by mathematician Georg Cantor
to show that that real numbers are uncountably infinite. But Cantor’s Argu-
ment can also be used to show that the Halting Problem is undecidable; that
is, there is no way to

a priori

 prove that a computer program will stop under
general conditions.

Chebyshev’s Inequality for a random variable

x

 with mean

s

 and standard
deviation, is stated as

That is, the probability that the random variable will differ from its mean
by

k

 standard deviations is 1

−

1 over

k

2

. Chebyshev’s Inequality can be used
to make all kinds of statements about confidence intervals. So, for example,
the probability that random variable

x

 falls within two standard deviations
of the mean is 75% and the probability that it falls within six deviations of
the mean (six-sigma) is about 99.99%. This result has important implications
in software quality engineering.

Little’s Law is widely used in queuing theory as a measure of the average
waiting time in a queue. Little’s Law also has important implications in
computer performance analysis.

McCabe’s Cyclomatic Complexity Theorem demonstrates the maximum
number of linearly independent code paths in a program, and is quite useful
in testing theory and in the analysis of code evolution. These features are
discussed later.

Finally, von Neumann’s Min Max Theorem is used widely in economics
and optimization theory. Min Max approaches can also be used in all kinds
of software engineering optimization problems from model optimization to
performance improvement.

Although there are other many mathematical concepts familiar to all engi-
neers that could be introduced in my software engineering classes, the afore-
mentioned ones can be easily shown to be connected to one or more very
practical notions in software engineering. Still, it is true that the discipline
of software engineering is lacking grand theory, such as Maxwell’s Equations
or the various Laws of Thermodynamics or even something as simple as the
Ideal Gas Law in chemistry.

1.4 Misconceptions about Software Engineering

Why is software so buggy and unreliable?

It is unclear if software is more unreliable than any other complex engineer-
ing endeavor. While there are sensational examples of failed software, there
are just as many examples of failed engineered structures, such as bridges
collapsing, space shuttles exploding, nuclear reactors melting down, and so on.

1
1
2− ≤ − ≥

k
P x k(| |).µ σ

7228_C001.fm Page 12 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

The Profession of Software Engineering

13

To me, it seems that software gets a bad rap. Oftentimes when a project fails,
software engineering is blamed, not the incompetence of the managers,
inadequacy of the people on the project, or the lack of a clear goal.

In any case, you have to prove that software is more unreliable than any
other kind of engineering system, and I have seen no compelling evidence
to support that contention; everything I have seen or heard is anecdotal.

I write software as part of my job; does that make me a software engineer?

No! Anyone can call himself a software engineer if he writes code, but he is
not necessarily practicing software engineering. To be a software engineer, you
need more than a passing familiarity with most of the concepts of this book.

But isn’t software system development primarily concerned
with programming?

As mentioned before, 10% or less of the software engineer’s time is spent
writing code. Someone who spends the majority of his or her time generating
code is more aptly called a “programmer.” Just as wiring a circuit designed
by an electrical engineer is not engineering, writing code designed by a
software engineer is not an engineering activity.

Can’t software tools and development methods solve most or all
of the problems pertaining to software engineering?

This is a dangerous misconception. Tools, software or otherwise, are only as
good as the wielder. Bad habits and flawed reasoning can just as easily be
amplified by tools as corrected by them. While software engineering tools
are essential and provide significant advantages, to rely on them to remedy
process or engineering deficiencies is naïve.

Isn’t software engineering productivity a function of system complexity?

While it is certainly the case that system complexity can degrade productiv-
ity, there are many other factors that affect productivity. Requirements sta-
bility, engineering skill, quality of management, and availability of resources
are just a few of the factors that affect productivity.

Once software is delivered, isn’t the job finished?

No. At the very least, some form of documentation of the end product as
well as the process used needs to be written. More likely, the software
product will now enter a maintenance mode after delivery in which it will
experience many recurring life cycles as errors are detected and corrected
and features are added.

Aren’t errors an unavoidable side effect of software development?

While it is unreasonable to expect that all errors can be avoided (as in every
discipline involving humans), good software engineering techniques can

7228_C001.fm Page 13 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

14

What Every Engineer Should Know about Software Engineering

minimize the number of errors delivered to a customer. The attitude that
errors are inevitable can be used to excuse sloppiness or complacency,
whereas an approach to software engineering that is intended to detect every
possible error, no matter how unrealistic this goal may be, will lead to a
culture that encourages engineering rigor and high quality software.

1.5 Further Reading

Certified Software Development Professional Program (CDSP), IEEE Computer
Society, http://www.computer.org/portal/site/ieeecs/menuitem. c5efb9b8ade90
96b8a9ca0108bcd45f3/index.jsp?&pName

=

ieeecs_ level1&path

=

ieeecs/educa-
tion/certification&file

=

index.xml&xsl

=

generic.xsl&, accessed September 14, 2006.
Institute of Industrial Engineers (IIE), State board pays Novell in “engineer” title suit.

IIE Solutions,

32(1), 10, 2000.
Demming, P., Great principles of computing,

Commun. ACM

, 46(11), 15–20, 2003.
Laplante, P.A. (Editor-in-Chief),

Comprehensive Dictionary of Computer Science, Engineering
and Technology

, CRC Press, Boca Raton, FL, 2001.
Laplante, P.A., Professional licensing and the social transformation of software engi-

neers,

Technol. Soc. Mag., IEEE

 , 24(2), 40-45, 2005.
Marciniak, J. (Ed.),

Encyclopedia of Software Engineering,

Vol. 2, John Wiley & Sons,
New York, 1994, 528–532.

Statute

, Texas Board of Professional Engineers, http://www.tbpe.state.tx.us/, access-
ed August 11, 2006.

Bourque, P., Dupuis, R., Abran, A., Moore, J.W., and Tripp, L.L., The Guide to the
Software Engineering Body of Knowledge,”

IEEE Software

, 16, 35–44, 1999.
Thayer, R.H., Software system engineering: a tutorial,

Computer

, 35(4), 68–73, 2002.
Tripp, L.L., Benefits of certification,

Computer

, 35(6), 31–33, 2002.

7228_C001.fm Page 14 Tuesday, February 27, 2007 4:26 PM

© 2007 by Taylor & Francis Group, LLC

http://www.computer.org/portal/site/ieeecs/menuitem.%20c5efb9b8ade9096b8a9ca0108bcd45f3/index.jsp?&pName%20=%20ieeecs_%20level1&path%20=%20%20ieeecs/education/certification&file%20=%20index.xml&xsl%20=%20generic.xsl&
http://www.tbpe.state.tx.us/

15

2

Software Properties, Processes,

and Standards

Outline

• Characteristics of software
• Software processes and methodologies
• Software standards

2.1 Introduction

To paraphrase Lord Kelvin, if you can’t measure that which you are talking
about, then you really don’t know anything about it. In fact, one of the major
problems with portraying software engineering as a true engineering disci-
pline is the difficulty with which we have in characterizing various
attributes, characteristics, or qualities of software in a measurable way. I
begin this chapter, then, with the quantification of various attributes of
software. Much of the information for this discussion has been adapted from
the excellent section on software properties found in Tucker [1996].

Every software process is an abstraction, but the activities of the process
need to be mapped to a life-cycle model. There is a variety of software
life-cycle models, which are discussed in this chapter. While significantly
more time is focused on the activities of the waterfall model, most of
these activities also occur in other life-cycle models. Indeed, it can be
argued that most other life-cycle models are refinements of the waterfall
model.

I conclude the chapter by discussing some of the previously mentioned
software standards that pertain to software qualities, life cycles, and processes.

7228_C002.fm Page 15 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

16

What Every Engineer Should Know about Software Engineering

The latter three sections of the chapter are largely derived and updated from
my other software engineering text [Laplante 2004].

At this point, it is also convenient to mention that I will be using two major
examples to illustrate many points throughout the text. One provides the
software control for an airline baggage inspection system. Anyone who has
flown recently will be sufficiently familiar with this application domain. In
particular, I am only interested in the aspect of the baggage handling system
that scans baggage as it moves down the conveyor system. The objective of
the scan is to use x-ray imaging and some appropriate imaging algorithm
to identify suspicious baggage and remove it from the conveyor using some
mechanical reject mechanism.

The second example is a software system to control the actions of a wet
well pumping system. The software requirements specification (SRS), soft-
ware design, and object models for this software system are contained in
Appendix A, Appendix B, and Appendix C, and will be explained through-
out the rest of the text.

2.2 Characteristics of Software

How do software engineers characterize software?

Software can be characterized by any number of qualities. External qualities,
such as usability and reliability, are visible to the user. Internal qualities are
those that may not be necessarily visible to the user, but help the developers
to achieve improvement in external qualities. For example, good require-
ments and design documentation might not be seen by the typical user, but
these are necessary to achieve improvement in most of the external qualities.
A specific distinction between whether a particular quality is external or
internal is not often made because they are so closely tied. Moreover, the
distinction is largely a function of the software itself and the kind of user
involved.

What is “software reliability”?

Software reliability can be defined informally in a number of ways. For
example, can the user “depend on” the software? Other loose characteriza-
tions of a reliable software system include:

• The system “stands the test of time.”
• There is an absence of known catastrophic errors (those that disable

or destroy the system).
• The system recovers “gracefully” from errors.
• The software is robust.

7228_C002.fm Page 16 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

17

For engineering-type systems, other informal views of reliability might
include the following:

• Downtime is below a certain threshold.
• The accuracy of the system is within a certain tolerance.
• Real-time performance requirements are met consistently.

How do you measure software reliability?

Software reliability can be defined in terms of statistical behavior; that is,
the probability that the software will operate as expected over a specified
time interval. These characterizations generally take the following
approach. Let

S

 be a software system and let

T

be the time of system failure.
Then the reliability of

S

 at time

t

, denoted

r(t),

 is the probability that

 T

 is
greater than

t

; that is,

r(t)

=

 P(T > t)

(2.1)

This is the probability that a software system will operate without failure
for a specified period.

Thus, a system with reliability function

r(t)

=

 1 will never fail. However,
it is unrealistic to have such expectations. Instead, some reasonable goal
should be set. For example, in the baggage inspection system, a reasonable
standard of reliability might be that the failure probability be no more than
10

−

9

 per hour. This represents a reliability function of

r

(

t

)

=

 (0.99999999)

t

 with

t

 in hours. Note that as

t

→

∞

,

r

(

t

)

→

0.

What is a failure function?

Another way to characterize software reliability is in terms of a real-valued
failure function. One failure function uses an exponential distribution where
the abscissa is time and the ordinate represents the expected failure intensity
at that time (Equation 2.2).

(2.2)

Here the failure intensity is initially high, as would be expected in new
software as faults are detected during testing. However, the number of
failures would be expected to decrease with time, presumably as failures are
uncovered and repaired (Figure 2.1). The factor is a system-dependent
parameter.

What is a “bathtub curve”?

The bathtub curve (see Figure 2.2) is often used to explain the failure function
for physical components that wear out, electronics, and even biological systems.

f t e tt() = ≥−λ λ 0

λ

7228_C002.fm Page 17 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

18

What Every Engineer Should Know about Software Engineering

Obviously, we expect a large number of failures early in the life of a product
(from manufacturing defects) and then a steady decline in failure incidents
until later in the life of that product when it has “worn out” or, in the case
of biological entities, died. But Brooks [1995] notes that the bathtub curve
might also be useful in describing the number of errors found in a certain
release of a software product.

FIGURE 2.1

An exponential model of failure represented by the failure function , . is a
system-dependent parameter.

FIGURE 2.2

A software failure function represented by the bathtub curve.

F
ai

lu
re

s
D

et
ec

te
d

Time

λ

f t e t() = −λ λ t ≥ 0 λ

F
ai

lu
re

s
D

et
ec

te
d

Time

λ

7228_C002.fm Page 18 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

19

But software doesn’t wear out, so why would it conform to the bathtub
curve?

It is clear that a large number of errors will be found in a particular software
product early, followed by a gradual decline as defects are discovered and
corrected, just as in the exponential model of failure. But we have to explain
the increase in failure intensity later in time. There are at least three possible
explanations. The first is that the errors are due to the effects of patching the
software for bug fixes or new features.

The second reason for a late surge in failures is that the underlying hard-
ware or operating system may have recently changed in a way that the
software engineers did not anticipate.

Finally, additional failures could appear because of the increased stress on
the software by expert users. That is, as users master the software and begin
to expose and strain advanced features, it is possible that certain poorly
tested functionality of the software is beginning to be used.

Can the traditional quality measures of MTFF or MTBF be used
to stipulate reliability in the software requirements specification?

Yes, mean time to first failure (MTFF) or mean time between failures (MTBF)
can be used. This approach to failure definition places great importance on
the effective elicitation (discovery) and specification of functional require-
ments because the requirements define the software failure.

What is meant by the “correctness” of software?

Software correctness is closely related to reliability and the terms are often
used interchangeably. The main difference is that minor deviation from the
requirements is strictly considered a failure and hence means the software
is incorrect. However, a system may still be deemed reliable if only minor
deviations from the requirements are experienced. Correctness can be mea-
sured in terms of the number of failures detected over time.

What is software “performance”?

Performance is a measure of some required behavior — often with respect
to some relative time constraint. For example, the baggage inspection system
may be required to process 100 pieces of luggage per minute. But a photo
reproduction system might be required to digitize, clean, and output color
copies at a rate of one every two seconds.

How is software performance measured?

One method of measuring performance is based on mathematical or algo-
rithmic complexity. Another approach involves directly timing the behavior
of the completed system with logic analyzers and similar tools.

How do we characterize software usability?

Usability is a measure of how easy the software is for humans to use.
Software usability is synonymous with ease-of-use, or user-friendliness.

7228_C002.fm Page 19 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

20

What Every Engineer Should Know about Software Engineering

Properties that make an application user-friendly to novice users are often
different from those desired by expert users or software designers. Use of
prototyping can increase the usability of a software system because, for
example, interfaces can be built and tested by the user.

How do you measure software usability?

This quality is an elusive one. Usually informal feedback from users is used,
as well as surveys, focus groups, and problem reports. Designer as appren-
tice, a requirements discovery and refinement technique that will be dis-
cussed in Chapter 3, can also be used to determine usability.

What is interoperability?

This quality refers to the ability of the software system to coexist and coop-
erate with other systems. For example, in embedded systems*

the software
must be able to communicate with various devices using standard bus struc-
tures and protocols.

In many systems, special software called middleware is written to enhance
interoperability. In other cases, standards are used to achieve better
interoperability.

How is interoperability measured?

Interoperability can be measured in terms of compliance with open system
standards. These standards are typically specific to the application domain.
For example, in the railway industry, the prevailing standard of interopera-
bility is IEEE 1473 – 1999 [IEEE 1999].

What is an open system?

An open system is an extensible collection of independently written appli-
cations that cooperate to function as an integrated system. This concept is
related to interoperability. Open systems differ from open source code, which
is source code that is made available to the user community for improvement
and correction. Open source code systems will be discussed in detail in
Chapter 7.

What are the advantages of an open system?

An open system allows the addition of new functionality by independent
organizations through the use of interfaces whose characteristics are pub-
lished. Any software engineer can then take advantage of these interfaces,
and thereby create software that can communicate using the interface. Open
systems also permit different applications written by different organizations
to interoperate.

* Embedded systems interact closely with specialized hardware in a unique environment. Both
the baggage inspection system and wet well control system are embedded.

7228_C002.fm Page 20 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

21

What is software “maintainability, evolvability, and repairability”?

Anticipation of change is a general principle that should guide the soft-
ware engineer. A software system in which changes are relatively easy
to make has a high level of maintainability. In the long run, design for
change will significantly lower software life-cycle costs and lead to an
enhanced reputation for the software engineer, the software product, and
the company.

Maintainability can be decomposed into two contributing properties —
evolvability and repairability. Evolvability is a measure of how easily the sys-
tem can be changed to accommodate new features or modification of existing
features. Repairability is the ability of a software defect to be easily repaired.

How do you measure maintainability, evolvability, and reparability?

Measuring these qualities is not always easy, and is often based on anecdotal
observation. This means that changes and the cost of making them are
tracked over time. Collecting this data has a twofold purpose. First, the costs
of maintenance can be compared to other similar systems for benchmarking
and project management purposes. Second, the information can provide
experiential learning that will help to improve the overall software produc-
tion process and the skills of the software engineers.

What is meant by “portability”?

Software is portable if it can run easily in different environments. The term
environment refers to the hardware on which the system resides, the oper-
ating system, or other software in which the system is expected to interact.

The Java programming language, for example, was invented to provide a
program execution environment that supported full portability across a wide
range of embedded systems platforms and applications (see Chapter 5).

How is portability measured?

Portability is difficult to measure, other than through anecdotal observation.
Person months required to perform the port is the standard measure of this
property.

How do you make software more portable?

Portability is achieved through a deliberate design strategy in which hard-
ware-dependent code is confined to the fewest code units as possible. This
strategy can be achieved using either object-oriented or procedural program-
ming languages and through object-oriented or structured approaches. All
of these will be discussed later.

What is “verifiability”?

A software system is verifiable if its properties, including all of those previ-
ously introduced, can be verified easily.

7228_C002.fm Page 21 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

22

What Every Engineer Should Know about Software Engineering

How can you increase software verifiability?

One common technique for increasing verifiability is through the insertion
of software code that is intended to monitor various qualities such as per-
formance or correctness. Modular design, rigorous software engineering
practices, and the effective use of an appropriate programming language can
also contribute to verifiability.

What is “traceability” in software systems?

Traceability is concerned with the relationships between requirements, their
sources, and the system design. Regardless of the process model, documen-
tation and code traceability is paramount. A high level of traceability ensures
that the software requirements flow down through the design and code and
then can be traced back up at every stage of the process. This would ensure,
for example, that a coding decision can be traced back to a design decision
to satisfy a corresponding requirement.

Traceability is particularly important in embedded systems because often
design and coding decisions are made to satisfy hardware constraints that
may not be easily associated with a requirement. Failure to provide a trace-
able path from such decisions through the requirements can lead to difficul-
ties in extending and maintaining the system.

Generally, traceability can be obtained by providing links between all
documentation and the software code. In particular, there should be links:

• from requirements to stakeholders who proposed these requirements
• between dependent requirements
• from the requirements to the design
• from the design to the relevant code segments
• from requirements to the test plan
• from the test plan to test cases.

Are there other software qualities?

Martin [2002] describes such a set of software code qualities in the negative.
That is, these are qualities of the code that need to be reduced or avoided
altogether. They include:

Fragility — When changes cause the system to break in places that have
no conceptual relationship to the part that was changed. This is a
sign of poor design.

Immobility — When the code is hard to reuse.
Needless complexity — When the design is more elaborate than it needs

to be. This is sometimes also called “gold plating.”
Needless repetition — This occurs when cut-and-paste (of code) is used

too frequently.

7228_C002.fm Page 22 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

23

Opacity — When the code is not clear.
Rigidity — When the design is hard to change because every time you

change something, there are many other changes needed to other
parts of the system.

Viscosity — When it is easier to do the wrong thing, such as a quick
and dirty fix, than the right thing.

The desirable opposites of these qualities are given in Table 2.1.
Achieving these qualities is a direct result of a good software architecture,

solid software design, and effective coding practices, which are discussed in
Chapters 3, 4, and 5, respectively.

Aren’t there other software qualities that you left out?

Of course, there are many software qualities that could be discussed, some
mainstream, others more esoteric or application-specific. For brevity, I have
confined the discourse to the most commonly discussed qualities of software.
In-depth discussion of these and other qualities to be considered can be
found throughout the literature, for example, [Tucker, 1996].

2.3 Software Processes and Methodologies

What is a software process?

A software process is a model that describes an approach to the production
and evolution of software. Software process models are frequently called
“life-cycle” models, and the terms are interchangeable.

Isn’t every software process model just an abstraction?

As with any model, a process model is an abstraction. But in this case, the
model depicts the process of translation — from system concept, to requirements

TABLE 2.1

Negative Code Qualities and Their Positives

Negative Code Quality Positive Code Quality

Fragility Robustness
Immobility Reusability
Needless complexity Simplicity
Needless repetition Parsimony
Opacity Clarity
Rigidity Flexibility
Viscosity Fluidity

Source:

Martin, R.C.,

Agile Software Development, Principles,
Patterns, and Practices,

 Prentice-Hall, Englewood Cliffs, NJ,
2002.

7228_C002.fm Page 23 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

24

What Every Engineer Should Know about Software Engineering

specification, to a design, then code, then finally via compilation and assem-
bly, to the stored program form.

What benefits are there to using a software process model?

A good process model will help minimize the problems associated with
each translation. A software process also provides for a common software
development framework both within a project and across projects. The
process allows for productivity improvements and it provides for a com-
mon culture, a common language, and common skills among organiza-
tional members. These benefits foster a high level of traceability and
efficient communication throughout the project. In fact, it is very difficult
to apply correct project management principles when an appropriate process
model is not in place.

What is a software methodology?

The methodology describes the “how.” It identifies how to perform activities
for each period, how to represent the activities and products,* and how to
generate products.

Aren’t software process models and methodologies the same?

A software methodology is not the same as a software process. A software
process is, in essence, the “what” of the software product life cycle. The
process identifies and determines the order of phases within the life cycle.
It establishes phase transition criteria, and indicates “what” is to be done in
each phase and when to stop. However, the terms for process model and
methodology are often used interchangeably (and, possibly, incorrectly). For
example, there is both an agile software process model and many different
agile methodologies, to be discussed shortly.

What is the waterfall life cycle model?

The terms waterfall, conventional, or linear sequential are used to
describe a sequential model of nonoverlapping and distinctive activities
related to software development. Collectively, the periods in which these
activities occur are often referred to as phases or stages. While simplistic
and dating back at least 30 years, the waterfall model is still popular.
One survey, for example, showed that 35% of companies still use a water-
fall model [Neill 2003].

How many phases should the waterfall model have?

The number of phases differs between variants of the model. As an example
of a waterfall model, consider a software development effort with activity

* The term

artifact

 is sometimes used to mean software or software-related products such as
documentation.

7228_C002.fm Page 24 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

25

periods that occur in the following sequence:

Concept definition
Requirements specification
Design specification
Code development
Testing
Maintenance

The waterfall representation of this sequence is shown in Figure 2.3. Table 2.2
summarizes the activities in each period and the main artifacts of these activities.

FIGURE 2.3

A waterfall life-cycle model. The forward arcs represent time sequential activities. The reverse
arcs represent backtracking.

TABLE 2.2

Phases of a Waterfall Software Life Cycle with Associated Activities

and Artifacts

Phase Activity Output

Concept Define project goals White paper
Requirements Decide what the software

must do
Software requirements specification

Design Show how the software
will meet the requirements

Software design description

Development Build the system Program code
Test Demonstrate requirements

satisfaction
Test reports

Maintenance Maintain system Change requests, reports

Requirements

Design

Code

Test

Maintain

Time

Concept

7228_C002.fm Page 25 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

26

What Every Engineer Should Know about Software Engineering

What happens during the software conception phase of the waterfall
process model?

The software conception activities include determination of the software
project’s needs and overall goals. These activities are driven by management
directives, customer input, technology changes, and marketing decisions.

At the onset of the phase, no formal requirements are written, generally
no decisions about hardware/software environments are made, and budgets
and schedules cannot be set. In other words, only the features of the software
product and possibly the feasibility of testing them are discussed. Usually,
no documentation other than internal feasibility studies, white papers, or
memos are generated.

Does the software conception phase really happen?

Some variants of the waterfall model do not explicitly include a conception
period because the activity was either incorporated into the requirements
definition or not thought to be part of the software project at all. Nonetheless,
the concept activity does occur in every software product, even if it is implicit.

What happens during the requirements specification phase
of the waterfall process model?

The main activity of this phase is creating the SRS. This activity is discussed
in detail in Chapter 3.

Do any test activities occur during the requirements specification phase?

During this phase test requirements are determined and committed to a
formal test plan. The test plan is used as the blueprint for the creation of test
cases used in the testing phase, which is discussed later in the text.

The requirements specification phase can and often does occur in parallel
with product conception and, as mentioned before, they are often not treated
as distinct. It can be argued that the two are separate, however, because the
requirements generated during conceptualization are not binding, whereas
those determined in the requirements specification phase are (or should be)
binding. This rather subtle difference is important from a testing perspective
because the SRS represents a binding contract and, hence, the criteria for
product acceptance. Conversely, ideas generated during system conceptual-
ization may change and, therefore, are not yet binding.

What happens during the software design phase of the waterfall
process model?

The main activity of software design is to develop a coherent, well-organized
representation of the software system suitable to guide software develop-
ment. In essence, the design maps the “what” from the SRS to the “how” of
the software design description. Techniques for software design are dis-
cussed in Chapter 3.

7228_C002.fm Page 26 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

27

Do any test activities occur during the software design phase?

Certain test activities occur concurrently with the preparation of the software
design description. These include the development of a set of test cases based
on the test plan. Techniques for developing test cases are discussed later.

Often during the software design phase problems in the SRS are identified.
These problems may include conflicts, redundancies, or requirements that
cannot be met with current technology. In real-time systems* the most typical
problems are related to deadline satisfaction.

Usually, problems such as these require changes to the SRS or the grant-
ing of exemptions from the requirements in question. In any case, the
problem resolution shows up as a specific directive in the software design
description.

What happens during the software development phase
of the waterfall process model?

This phase involves the production of the software code based on the
design using best practices. These best practices will be discussed in
Chapter 4.

What test activities occur during the software development phase?

During this phase the test team can build the test cases specified in the design
phase in some automated form. This approach guarantees the efficacy of the
tests and facilitates repeat testing.

When does the software development phase end?

The software development phase ends when all software units have been
coded, unit tested, and integrated, and have passed the integration testing
specified by the software designers.

What happens during the testing phase of the waterfall process model?

Although ongoing testing is an implicit part of the waterfall model, the
model also includes an explicit testing phase. These testing activities (often
called acceptance testing to differentiate them from code unit testing) begin
when the software development phase has ended. During the explicit testing
phase, the software is confronted with a set of test cases (module and system
level) developed in parallel with the software and documented in a software
test requirements specification (STRS). Acceptance or rejection of the soft-
ware is based on whether it meets the requirements defined in the SRS using
tests and criteria set forth in the STRS.

* Many software systems with which engineers deal are real-time systems; that is, performance
satisfaction is based on both the correctness of the outputs, as well as the timeliness of those out-
puts. Hard real-time systems are those in which missing even a single deadline will lead to total
system failure. Firm real-time systems can tolerate a few missed deadlines, while in soft real-
time systems, missed deadlines generally lead to performance degradation only.

7228_C002.fm Page 27 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

28

What Every Engineer Should Know about Software Engineering

When does the testing phase end?

The testing phase ends when either the criteria established in the STRS are
satisfied, or failure to meet the criteria forces requirements modification,
design alteration, or code repair. Regardless of the outcome, one or more
test reports are prepared which summarize the conduct and results of the
testing. More on testing, including test stoppage criteria, will be discussed
in Chapter 5.

What happens during the software maintenance phase
of the waterfall process model?

The software maintenance phase activities generally consist of a series of
reengineering processes to prolong the life of the system. Maintenance
activities can be adaptive, which result from external changes to which the
system must respond, corrective, which involves maintenance to correct
errors, or perfective, which is all other maintenance including user
enhancements, documentation changes, efficiency improvements, and so
on. The maintenance activity ends only when the product is no longer
supported.

In some cases, the maintenance phase is not incorporated into the life-cycle
model, but instead treated as a series of new software products, each with
its own waterfall life cycle.

How are maintenance corrections supposed to be handled?

Maintenance corrections are usually handled by making a software change
and then performing regression testing. Another approach is to collect a set
of changes and then regression test against the last set of changes.

The waterfall model looks artificial. Is there no backtracking?

Yes, as shown in Figure 2.3, backtracking transitions do occur. For example,
new features, lack of sufficient technology, or other factors force reconsid-
eration of the system purpose. Redesign may result in a return to the
requirements phase during design. Similarly, a transition from the pro-
gramming phase back to the design phase might occur due to a feature
that cannot be implemented or caused by an undesirable performance
result. This in turn may necessitate redesign, new requirements, or elimi-
nation of the feature. Finally, a transition from the testing phase to the
programming or design phases may occur due to an error detected during
testing. Depending on the severity of the error, the solution may require
reprogramming, redesign, modification of requirements, or reconsideration
of the system goals.

What is the V model for software?

The V model is a variant of the waterfall model. It represents a tacit recog-
nition that there are testing activities occuring throughout the waterfall

7228_C002.fm Page 28 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

29

software life cycle model and not just during the software testing period.
These concurrent activities, depicted in Figure 2.4, are described alongside
the activities occurring in the waterfall model.

For example, during requirements specification, the requirements are eval-
uated for testability and an STRS may be written. This document would
describe the strategy necessary for testing the requirements. Similarly during
the design phase, a corresponding design of test cases is performed. While
the software is coded and unit tested, the test cases are developed and
automated. The test life cycle converges with the software development life
cycle during acceptance testing.

The point, of course, is that testing is a full life-cycle activity and that it is
important to constantly consider the testability of any software requirement
and to design to allow for such testability.

What is the spiral model for software?

The spiral model, suggested by Boehm [1988], recognizes that the waterfall
model is not a realistic representation, nor is it necessarily a healthy one.
Instead, the spiral model augments the waterfall model with a series of
strategic prototyping and risk assessment activities throughout the life cycle.
The spiral model is depicted in Figure 2.5.

Starting at the center of the figure, the product life cycle continues in a
spiral path from the concept and requirements phases. Prototyping and risk
analysis are used along the way to evaluate the feasibility of potential fea-
tures. The added risk protection benefit from the extensive prototyping can
be costly, but is well worth it, particularly in embedded systems. More will
be mentioned about risk in Chapter 6.

More prototyping is used after a software development plan is written,
and again after the design and tests have been developed. After that, the
model behaves somewhat like a waterfall model.

FIGURE 2.4

A V model for the software project life cycle. The concept phase is combined with the require-
ments phase in this instance.

Requirements

Design

Code

Test

Maintain

Code Tests

Test
Requirements

Design Tests

7228_C002.fm Page 29 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

30

What Every Engineer Should Know about Software Engineering

Is the spiral model widely used?

Apparently not; the aforementioned survey indicated that about 9% of orga-
nizations used it [Neill 2003].

What are evolutionary models?

Evolutionary life-cycle models promote software development by continu-
ously defining requirements for new system increments based on experience
from the previous version. Evolutionary models go by various names such as
Evolutionary Prototyping, Rapid Delivery, Evolutionary Delivery Cycle, and
Rapid Application Delivery (RAD).

In the evolutionary model, each iteration follows the waterfall model in
that there are requirements, software design and testing phases. After the
final evolutionary step, the system enters the maintenance phase, although
it can evolve again through the conventional flow, if necessary.

The evolutionary model can be used in conjunction with embedded systems,
particularly in working with prototype or novel hardware that come from sim-
ulators during development. Indeed, there may be significant benefits to this

FIGURE 2.5

The spiral software model. Adapted from Boehm, B.W., A spiral model of software development
and enhancement,

Computer

, 21(5), 61–72, 1988.

Risk
analysis

Risk
analysis

Risk
analysis

Prototype

Prototype

Prototype
Development

plan
System
rqmts

concept

Test
planning Rqmts

validation

Software
rqmts

Detailed
design

Product
design

Code

Design
validation

Delivery
Integrate

Test

7228_C002.fm Page 30 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards

31

approach. First, early delivery of portions of the system can be generated, even
though some of the requirements are not finalized. Then these early releases are
used as tools for requirements elicitation, including timing requirements.

From the developers’ point of view, those requirements that are clear at
the beginning of the project drive the initial increment, but the requirements
become clearer with each increment.

Are evolutionary models widely used?

Evolutionary models are gaining in popularity. For example, in the previ-
ously mentioned survey, almost 20% of respondents indicated its adoption
[Neill 2003].

Are there any downsides to using evolutionary models?

Yes. For example, there may be difficulties in estimating costs and schedule
when the scope and requirements are ill-defined. In addition, the overall
project completion time may be greater than if the scope and requirements
are established completely before design. Unfortunately, time apparently
gained on the front end of a project because of early releases may be lost
later because of the need for rework resulting from evolving requirements.
Indeed, care must be taken to ensure that the evolving system architecture
is both efficient and maintainable so that the completed system does not
resemble a patchwork of afterthought add-ons. Finally, additional time must
also be planned for integration and regression testing as increments are
developed and added to the system. Some of the difficulties in using this
approach in engineering systems can be mitigated, however, if the high-level
requirements and overall architecture are established before entering an
evolutionary cycle.

What is the incremental software model?

The incremental model is characterized by a series of detailed system incre-
ments, each increment incorporating new or improved functionality to the
system. These increments may be built serially or in parallel depending on
the nature of the dependencies among releases and on availability of resources.

What is the difference between incremental and evolutionary models?

The difference is that the incremental model allows for parallel increments.
In addition, the serial releases of the incremental model are planned whereas
in the evolutionary model, each sequential release is a function of the expe-
rience from the previous iteration.

Why use the incremental model?

There are several advantages to using the incremental model. These include
ease of understanding each increment because of the decreased function-
ality, the use of successive increments in requirements elicitation, early devel-
opment of initial functionality (which may aid in developing the real-time

7228_C002.fm Page 31 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

32 What Every Engineer Should Know about Software Engineering

scheduling structure and for debugging prototype hardware), and succes-
sive building of operational functionality over time. The thinking is that
software released in increments over time is more likely to satisfy changing
user requirements than if the system were planned as a single overall
release at the end of the same period. Finally, because the sub-projects are
smaller, project management is more manageable for each increment.

Are there any downsides to the incremental model?

As with the evolutionary model, there may be increased system development
costs as well as difficulties in developing temporal behavior and meeting
timing constraints with a partially implemented system.

Is the incremental model used very much?

There is some evidence that the incremental model is fairly widespread. The
aforementioned survey suggests that slightly more than 20% of companies
are using it [Neill 2003].

What is the unified process model?

The unified process model (UPM) uses an object-oriented approach by mod-
eling a family of related software processes using the unified modeling
language (UML) as a notation. Like UML, UPM is a metamodel for defining
processes and their components.

The UPM consists of four phases, which undergo one or more iterations. In
each iteration some technical capability (software version or build) is produced
and demonstrated against a set of criteria. The four phases in the UPM model are:

1. Inception: Establish software scope, use cases, candidate architecture,
risk assessment.

2. Elaboration: Produce baseline vision, baseline architecture, select
components.

3. Construction: Conduct component development, resource management
and control.

4. Transition: Perform integration of components, deployment engineering,
and acceptance testing.

Several commercial and open source tools support the UPM and provide a
basis for process authoring and customization.

Where is the UPM used?

The UPM was developed to support the definition of software development
processes specifically including those processes that involve or mandate the
use of UML, such as the Rational Unified Process, and is closely associated
with the development of systems using object-oriented techniques.

7228_C002.fm Page 32 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards 33

What are agile methodologies?

Agile software development methodologies are a subset of iterative methods*
that focus on embracing change, and stress collaboration and early product
delivery while maintaining quality. Working code is considered the true artifact
of the development process. Models, plans, and documentation are important
and have their value, but exist only to support the development of working
software, in contrast with the other approaches already discussed. However,
this does not mean that an agile development approach is a free-for-all. There
are very clear practices and principles that agile methodologists must embrace.

Agile methods are adaptive rather than predictive. This approach differs
significantly from those models previously discussed that emphasize plan-
ning the software in great detail over a long period of time and for which
significant changes in the SRS can be problematic. Agile methods are a
response to the common problem of constantly changing requirements that
can bog down the more “ceremonial” upfront design approaches, which
focus heavily on documentation at the start.

Agile methods are also “people-oriented” rather than process-oriented.
This means they explicitly make a point of trying to make development
“fun.” Presumably, this is because writing SRSs and software design descrip-
tions is onerous and, hence, to be minimized.

What are some agile methodologies?

Agile methodologies sometimes go by funny names like Crystal, Extreme
Programming (XP), and Scrum. Other agile methods include dynamic sys-
tems development method (DSDM), feature-driven development, adaptive
programming, and many more. We will look more closely at two of these,
XP and Scrum.

What is Extreme Programming?

Extreme Programming** (XP) is one of the most widely used agile method-
ologies. XP is traditionally targeted toward smaller development teams and
requires relatively few detailed artifacts. XP takes an iterative approach to
its development cycles. However, whereas an evolutionary or iterative
method may still have distinct requirements analysis, design, implementa-
tion, and testing phases similar to the waterfall method, XP turns these
activities on their sides (Figure 2.6).

There is an initial analysis period to get things going, but after that, all activities
occur more or less continuously throughout the development life cycle.

* Most people define agile methodologies as being incremental. But incremental development
implies that the features and schedule of each delivered version are planned. In my experience,
agile methodologies tend to lead to versions with feature sets and delivery dates that are almost
always not as planned.
** Extreme programming is sometimes also written as “eXtreme Programming” to highlight the
“XP.”

7228_C002.fm Page 33 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

34 What Every Engineer Should Know about Software Engineering

Some of my students use XP in software development classes and at work,
and they widely report that it is effective, fun, and easy to use.

What are some of the practices of XP?

XP promotes a set of 12 core practices that help developers respond to and
embrace inevitable change. The practices, which occur throughout the life
of the software project, can be grouped according to four areas that cover
planning, coding, designing, and testing (see Figure 2.7).

FIGURE 2.6
Comparison of waterfall, iterative, and XP development cycles. (From Beck, K., Embracing
change with extreme programming, Computer, 32(10), 70–77, 1999.)

FIGURE 2.7
The rules and practices of XP. (From “The Rules and Practices of Extreme Programming,”
www.extremeprogramming.org/rules.html, accessed September 14, 2006.)

Waterfall Iterative XP

Time

Analysis

Design

Implementation

Test

Planning
User stories are written.
Release planning creates the schedule.
Make frequent small releases.
The Project Velocity is measured.
The project is divided into iterations.
Iteration planning starts each iteration.
Move people around.
A stand-up meeting starts each day.
Fix XP when it breaks.

Designing
Simplicity.
Choose a system metaphor.
Use Class, Responsibilities, and

Collaboration (CRC) cards for design
sessions.
Create spike solutions to reduce risk.
No functionality is added early.
Refactor whenever and wherever possible.

Coding
The customer is always available.
Code must be written to agreed standards.
Code the unit test first.
All production code is pair programmed.
Only one pair integrates code at a time.
Integrate often.
Use collective code ownership.
Leave optimization till last.
No overtime.

Testing
All code must have unit tests.
Al code must pass all unit tests before it can be

released.
When a bug is found tests are created.
Acceptance tests are run often and the score is

published.

7228_C002.fm Page 34 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

http://www.extremeprogramming.org/rules.html

Software Properties, Processes, and Standards 35

Some of the distinctive planning features of XP include holding daily stand-
up meetings, making frequent small releases, and moving people around.
Coding practices include having the customer constantly available, coding
the unit test cases first, and employing pair-programming (a unique coding
strategy where two developers work on the same code together). Removal
of the territorial ownership of any code unit is another feature of XP.

Design practices include looking for the simplest solutions first, avoiding
too much planning for future growth (speculative generality), and refactor-
ing the code (improving its structure) continuously.

Testing practices include creating new test cases whenever a bug is found
and unit testing for all code, possibly using frameworks such as XUnit, which
is discussed in Chapter 6.

Can you say more about Scrum?

Scrum, which is named after a particularly contentious point in a rugby match,
enables self-organizing teams by encouraging verbal communication across
all team members and across all stakeholders. The fundamental principle of
Scrum is that traditional problem definition solution approaches do not always
work, and that a formalized discovery process is sometimes needed.

Scrum features a dynamic list of prioritized work to be done. Completion
of a largely fixed set of backlogged items occurs in a series of short (approx-
imately 30 days) iterations or sprints.

Each day, a brief meeting or Scrum is held in which progress is explained,
upcoming work is described, and impediments are raised. A brief planning ses-
sion occurs at the start of each sprint to define the backlog items to be completed.
A brief postmortem or heartbeat retrospective occurs at the end of the sprint.

A “ScrumMaster” removes obstacles or impediments to each sprint. The
ScrumMaster is not the leader of the team (as they are self-organizing) but acts
as a productivity buffer between the team and any destabilizing influences.

Several major corporations have adopted Scrum with notable success. Some
of my students also use Scrum in courses and it has proven to be effective.

Is there a case to be made for not using agile methods?

Like all engineering solution approaches, there are situations when agile soft-
ware engineering should be used and there are situations when it should not
be used. But it is not always easy to make this distinction. Ongoing misuse or
misunderstanding can cloud the decision as to when to use agile approaches.

When should agile methodologies be used?

Boehm and Turner [2003] suggest that the way to assess whether agile
methodologies should be used is to look at the project along a continuum
of five dimensions:

1. size (in terms of number of personnel involved)
2. system criticality

7228_C002.fm Page 35 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

36 What Every Engineer Should Know about Software Engineering

3. personnel skill level
4. dynamism (anticipated number of system changes over some time

interval)
5. organizational culture (whether the organization thrives on chaos or

order)

In Figure 2.8, as project characteristics tend away from the center of the
diagram the likelihood of succeeding using agile methodologies decreases.
Therefore, projects assessed in the innermost circle are likely candidates for
agile approaches. Those in the second circle (but not in the inner circle) are
marginal, and those outside of the second circle are not good candidates for
agile approaches.

All of these process models look rather simplistic, artificial, or too
prescriptive. Should they really be used?

It has been suggested by Parnas and Clements [1986] that after the project
has been completed, tested, and delivered, users can “cover their tracks” by
modifying the documentation so that it appears that a deliberate methodol-
ogy was used. For example, when the sequence of the waterfall model cannot
be followed strictly, at least the documentation should suggest that it was
followed in that sequence.

While this kind of practice might appear disingenuous, the benefit is that a
traceable history is established between each program feature and the require-
ment driving that feature. This approach promotes a maintainable, robust, and

FIGURE 2.8
Balancing agility and discipline. (Adapted from Boehm, B.W. and Turner, R., Balancing Agility
and Discipline: A Guide to the Perplexed, Addison-Wesley, Boston, MA, 2004.)

dynamism

Personnel skill level

low

high

low

high
low

small

large

culture

chaos

order

high

Team size

criticality

7228_C002.fm Page 36 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards 37

reliable product and, in particular, one where decisions related to timing
requirements are well documented. It does indicate, however, that perhaps
the process used was a reactive one and not part of a planned strategy.

2.4 Software Standards*

Who publishes software standards?

Standardizing organizations such as ISO, ACM, IEEE, the U.S. Department
of Defense (DOD), and others actively promote the development, use, and
improvement of standards for software processes and inherent life-cycle
models. Even though many are interrelated and mutually influenced, the
array of standards available can be confusing and even contradictory to the
point of frustration.

What is the DOD-STD-2167A standard?

This extinct standard had a great deal of influence on the development of
military software systems in the 1980s and 1990s. Because the U.S. DOD is
the single largest procurer of software, the 2167A and waterfall “culture”
pervades suppliers of military systems software even today, and so it is
worth discussing briefly.

DOD-STD-2167A** was designed to produce documentation that achieves
a high-integrity description of the evolving software design for baseline
control and that serves as the foundation for life-cycle management. Formal
reviews were prescribed throughout, but were sometimes just staged pre-
sentations. These audits often proved to be of questionable value and ulti-
mately increased the cost of the system.

However, DOD-STD-2167A provided structure and discipline for the cha-
otic and complex development environment of large and mission-critical
embedded applications.

What is the DOD-STD-498 standard?

This is another extinct standard, though vestiges of it too can be found
widely throughout the defense and other industries. DOD-STD-498 was a
merger of DOD-STD-2167A, used for weapon systems, with DOD-STD-
7935A, used for automated information systems. Together, they formed a
single software development standard for all of the organizations in the
purview of the U.S. DOD. The purpose of developing this new standard,
which was approved in 1994, was to resolve issues raised in the use of the

* Some of the following discussion is adapted from the excellent text on software standards by
Wang and King [2000].
** DOD standards are sometimes referred to as “MIL-STD,” for “military standard.” So “DOD-
STD-498” is equivalent to “MIL-STD-498.”

7228_C002.fm Page 37 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

38 What Every Engineer Should Know about Software Engineering

old standards, particularly with their incompatibility with modern soft-
ware engineering practice.

The process model adopted in DOD-STD-498 was significantly different
from 2167A. The former standard explicitly imposed a waterfall model,
whereas 498 provided for a development model that is compatible with all
of the software life-cycle models discussed previously, except the light-
weight methodologies.

What is the ISO 9000 standard?

ISO (International Organization for Standardization) 9000 is a generic,
worldwide standard for quality improvement. The standard, which collec-
tively is described in five standards (ISO 9000 through ISO 9004), was
designed to be applied in a wide variety of manufacturing environments.
ISO 9001 through ISO 9004 apply to enterprises according to the scope of
their activities. ISO 9004 and ISO 9000-X family are documents that provide
guidelines for specific applications domains.

Which part of ISO 9000 applies to software?

For software development, ISO 9000-3 is the document of interest. ISO released
the 9000-3 quality guidelines in 1997 to help organizations apply the
ISO 9001(1994) requirements to computer software. ISO 9000-3 is essentially
an expanded version of ISO 9001 with added narrative to encompass software.

Who uses this standard?

ISO 9000-3 is widely adopted in Europe, and an increasing number of U.S.
and Asian companies have adopted it as well.

What is in the ISO 9000-3 standard?

The ISO standards are process-oriented, “common-sense” practices that help
companies create a quality environment. The principal areas of quality focus are:

Management responsibility
Quality system requirements
Contract review requirements
Product design requirements
Document and data control
Purchasing requirements
Customer supplied products
Product identification and tractability
Process control requirements
Inspection and testing
Control of inspection, measuring, and test equipment

7228_C002.fm Page 38 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

Software Properties, Processes, and Standards 39

Inspection and test status
Control of nonconforming products
Corrective and preventive actions
Handling, storage, and delivery
Control of quality records
Internal quality audit requirements
Training requirements
Servicing requirements
Statistical techniques

Paying particular attention to some of these areas, such as inspection and
testing, design control, and product traceability (through a “rational design
process”), can increase the quality of a software product.

How specific is ISO 9000-3 for software?

Unfortunately, the standard is very general and provides little specific pro-
cess guidance. For example, Figure 2.9 illustrates ISO 9000-3: 4.4 Software
development and design. While these recommendations are helpful as a
“checklist,” they provide very little in terms of a process that can be used.

While a number of metrics have been available to add some rigor to this
somewhat generic standard, in order to achieve certification under the ISO
standard, significant paper trails and overhead are required.

What is ISO/IEC standard 12207?

ISO 12207: Standard for Information Technology — Software Life Cycle
Processes, describes five “primary processes”— acquisition, supply, devel-

ISO 9000-3 4.4 Software development and design

4.4.1 General Develop and document procedures to control the product design
and development process. These procedures must ensure that all
requirements are being met.

Software
development

Control your software development project and make sure that it is
executed in a disciplined manner.

• Use one or more life cycle models to help organize your software
development project.

• Develop and document your software development procedures.
These procedures should ensure that:

• Software products meet all requirements.
• Software development follows your:

• Quality plan.
• Development plan.

FIGURE 2.9
Excerpt from ISO 9000-3: 4.4 Software development and design.

7228_C002.fm Page 39 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

40 What Every Engineer Should Know about Software Engineering

opment, maintenance, and operation. ISO 12207 divides the five processes
into “activities,” and the activities into “tasks,” while placing requirements
upon their execution. It also specifies eight “supporting processes” —
documentation, configuration management, quality assurance, verification,
validation, joint review, audit, and problem resolution — as well as four
“organizational processes” — management, infrastructure, improvement,
and training.

The ISO standard intends for organizations to tailor these processes to fit
the scope of their particular projects by deleting all inapplicable activities,
and it defines ISO 12207 compliance as the performance of those processes,
activities, and tasks selected by tailoring.

ISO 12207 provides a structure of processes using mutually accepted
terminology, rather than dictating a particular life-cycle model or software
development method. Because it is a relatively high-level document, ISO
12207 does not specify the details of how to perform the activities and
tasks comprising the processes. Nor does it prescribe the name, format,
or content of documentation. Therefore, organizations seeking to apply
ISO 12207 need to use additional standards or procedures that specify
those details.

The IEEE recognizes this standard with the equivalent numbering “IEEE/
EIA 12207.0-1996 IEEE/EIA Standard Industry Implementation of Interna-
tional Standard ISO/IEC12207:1995 and (ISO/IEC 12207) Standard for Infor-
mation Technology—Software Life Cycle Processes.”

2.5 Further Reading

Ambler, S., “Are you Agile or Fragile?” presentation, http://www.whysmalltalk.com/
Smalltalk_Solutions/ss2003/pdf/ambler.pdf last accessed April 10, 2006.

Beck, K., Embracing change with extreme programming, Computer, 32(10), 70–77,
1999.

Boehm, B.W., A spiral model of software development and enhancement, Computer,
21(5), 61–72, 1988.

Boehm, B.W. and Turner, R., Balancing Agility and Discipline: A Guide to the Perplexed,
Addison-Wesley, Boston, MA, 2004.

Brooks, F.P., The Mythical Man-Month, 20th Anniversary Edition, Addison-Wesley,
Boston, MA, 1995.

Institute of Electrical and Electronic Engineers (IEEE), IEEE 1473-1999, IEEE Standard
for Communications Protocol Aboard Trains, 1999.

Laplante, P.A., Software Engineering for Image Processing Systems, CRC Press, Boca
Raton, FL, 2004.

Martin, R.C., Agile Software Development: Principles, Patterns, and Practices, Prentice-
Hall, Englewood Cliffs, NJ, 2002.

Neill, C.J. and Laplante, P.A., Requirements engineering: the state of the practice,
Software, 20(6), 40–46, 2003.

7228_C002.fm Page 40 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

http://itc.conversationsnetwork.org/shows/detail355.html

Software Properties, Processes, and Standards 41

Nerur, S., Mahapatra, R., and Mangalaraj, G., Challenges of migrating to agile meth-
odologies, Commun. ACM, 48(5), 73–78, 2005.

Nord , R.L. and Tomayko, J.E., Software architecture-centric methods and agile de-
velopment, Software, 23(2), 47–53, 2006.

Parnas, D.L. and Clements, P. C., A rational design process: how and why to fake it,
IEEE Trans. Software Eng., 12(2), 251–257, 1986.

Reifer, D., How good are agile methods, Software, 19(4), 16–18, 2002.
Royce, W., Software Project Management: A Unified Framework, Addison-Wesley, Boston,

MA, 1998.
Theuerkorn, F., Lightweight Enterprise Architectures, Auerbach Publications, Boca Ra-

ton, FL, 2005.
Tucker, A.B., Jr. (Editor-in-Chief), The Computer Science and Engineering Handbook, CRC

Press, Boca Raton, FL, 1996.
Wang, Y.W., and King, G., Software Engineering Processes: Principles and Applications,

CRC Press, Boca Raton, FL, 2000.
“The Rules and Practices of Extreme Programming,” www.extremeprogramming.

org/rules.html, accessed September 14, 2006.

7228_C002.fm Page 41 Tuesday, March 20, 2007 6:16 PM

© 2007 by Taylor & Francis Group, LLC

http://www.extremeprogramming.org/rules.html

43

3

Software Requirements Specification

Outline

• Requirements engineering concepts
• Requirements specifications
• Requirements elicitation
• Requirements modeling
• Requirements documentation
• Recommendations on requirements

3.1 Introduction

Requirements engineering is the process of eliciting, documenting, analyz-
ing, validating, and managing requirements. Different approaches to require-
ments engineering exist, some more complete than others. Whatever the
approach taken, it is crucial that there is a well-defined methodology and
that documentation exists for each stage.

Requirements modeling involves the techniques needed to express
requirements in a way that can capture user needs. Requirements modeling
uses techniques that can range from high-level abstract statements through
psuedocode-like specifications, formal logics, and graphical representations.
Whatever representation technique is used, the requirements engineer must
always strive to gather complete, precise, and detailed specifications of sys-
tem requirements.

This chapter incorporates a discussion of these aspects of requirements
engineering. The chapter concludes with a discussion on requirements doc-
umentation and with some recommendations and best practices.

7228_C003.fm Page 43 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

44

What Every Engineer Should Know about Software Engineering

3.2 Requirements Engineering Concepts

What is software requirements engineering?

Requirements engineering is a subdiscipline of software engineering that is
concerned with determining the goals, functions, and constraints of software
systems. Requirements engineering also involves the relationship of these
factors to precise specifications of software behavior, and to their evolution
over time and across software families.

When does requirements engineering start?

Ideally, the requirements engineering process begins with a feasibility study
activity, which leads to a feasibility report. It is possible that the feasibility
study may lead to a decision not to continue with the development of the
software product. If the feasibility study suggests that the product should
be developed, then requirements analysis can begin.

What is software requirements specification?

This is the set of activities designed to capture behavioral and nonbehavioral
aspects of the system in the SRS document. The goal of the SRS activity, and
the resultant documentation, is to provide a complete description of the
system’s behavior without describing the internal structure. This aspect is
easily stated, but difficult to achieve, particularly in those systems where
temporal behavior must be described.

Why do we need SRSs?

Precise software specifications provide the basis for analyzing the require-
ments, validating that they are the stakeholder’s intentions, defining what
the designers have to build, and verifying that they have done so correctly.

How do software requirements help software engineers?

SRSs allow us to know the motivation for development of the software
system.

Software requirements also help software engineers manage the evolution
of the software over time and across families of related software products.
This approach reflects the reality of a changing world and the need to reuse
partial specifications.

What are the core requirements engineering activities?

First, we must elicit

the

requirements, which is a form of discovery. Some
people use the term “gathering” to describe the process of collecting

7228_C003.fm Page 44 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

45

software requirements, but “gathering” implies that requirements are like
vegetables in the garden to be harvested. Often, though, requirements are
deeply hidden, expressed incorrectly by stakeholders, contradictory, and
complex. Eliciting requirements is one of the hardest jobs for the require-
ments engineer.

Modeling requirements involves representing the requirements in some
form. Words, pictures, and mathematical formulas can all be used but it is
never easy to effectively model requirements.

Analyzing requirements involves determining if the requirements are cor-
rect or have certain other properties such as consistency, completeness, suf-
ficient detail, and so on. The requirements models and their properties must
also be communicated to stakeholders and the differences reconciled.

Finally, requirements change all the time and the requirements engineer
must be equipped to deal with this eventuality. We will focus our discussions
on these aforementioned areas.

Which disciplines does requirements engineering draw upon?

Requirements engineering is strongly influenced by computer science and
systems engineering. But because software engineering is a human endeavor,
particularly with respect to understanding people’s needs, requirements
engineering draws upon such diverse disciplines as philosophy, cognitive
psychology, anthropology, sociology, and linguistics.

What is a requirement?

A requirement can range from a high-level, abstract statement of a service
or constraint to a detailed, formal specification. There is so much variability
in requirements detail because of the many purposes that the requirements
must serve.

3.3 Requirements Specifications

What kinds of SRSs are there?

SRSs are usually classified in terms of their level of abstraction:

• user requirements
• system requirements
• software design specifications [Sommerville 2005].

What are user requirements specifications?

User requirements specifications are usually used to attract bidders, often in
the form of a request for proposal (RFP).

7228_C003.fm Page 45 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

46

What Every Engineer Should Know about Software Engineering

User requirements may contain abstract statements in natural language,
for example, English, with accompanying informal diagrams, even back-of-
the-napkin drawings*. User requirements specify functional and nonfunctional
requirements as they pertain to externally visible behavior in a form under-
standable by clients and system users. These kinds of representation tech-
niques, however, are fraught with danger, as will be discussed shortly.

What are system requirements specifications?

System level requirements, or SRSs mentioned previously, are detailed
descriptions of the services and constraints. Systems requirements are
derived from analysis of the user requirements. Systems requirements
should be structured and precise because they act as a contract between
client and contractor (and can literally be enforced in court). Appendix
A contains an SRS for a wet well control system. This specification is
nearly complete (it is lacking some elements, mostly formal specifications
and some narrative that are omitted for brevity). I will be referring to
this document occasionally, and now would be a good time for you to
browse the first few pages of Appendix A to become familiar with this
simple engineering application.

What are software design specifications?

Software design specifications are usually the most detailed level require-
ments specifications that are written and used by software engineers as a
basis for the system’s architecture and design. Appendix B contains the
corresponding software design specification for the wet well control system,
which was derived from Appendix A. The software design specification is
described in Chapter 4.

Within these three specification types are there different
requirements types?

Yes, there are. Within the family of user, system, and functional requirements
specifications, all kinds of things can be described. These include external
constraints to the software and user needs. The user needs are usually called
“functional requirements” and the external constraints are called “non-
functional requirements.”

What are functional requirements?

Functional requirements describe the services the system should provide.
Sometimes the functional requirements state what the system should not do.
Functional requirements can be high-level and general or detailed, express-
ing inputs, outputs, exceptions, and so on. See Appendix A, Section A.3 for
specific functional requirements for the wet well control system.

* The Compaq portable computer, one of the first of its kind, was conceptualized on a paper
restaurant placemat.

7228_C003.fm Page 46 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

47

What are nonfunctional requirements?

Nonfunctional requirements are imposed by the environment in which the
system is to exist. These requirements could include timing constraints,
quality properties, standard adherence, programming languages to be used,
compliance with laws, and so on.

What are domain requirements?

Domain requirements are a type of nonfunctional requirement from which the
application domain dictates or derives. Domain requirements might impose
new functional requirements or constraints on existing functional requirements.

For example, in the baggage inspection system, industry standards and restric-
tions on baggage size and shape will place certain constraints on the system.

What are interface specifications?

Interface specifications are functional software requirements specified in
terms of interfaces to operating units. Most systems must operate with other
systems and the operating interfaces must be specified as part of the require-
ments. There are three types of interface that may have to be defined:

1. procedural interfaces
2. data structures that are exchanged
3. data representations

Formal notations are an effective technique for interface specification

What are performance requirements?

Performance requirements are functional requirements that include the static
and dynamic numerical requirements placed on the software or on human
interaction with the software as a whole. For an imaging system, static require-
ments might include the number of simultaneous users to be supported. The
dynamic requirements might include the numbers of transactions and tasks
the amount of data to be processed within certain time periods for both normal
and peak workload conditions. For the wet well control system in Section A.3.2,
many of the requirements must be achieved within five seconds. These time
constraints represent performance requirements.

What are logical database requirements?

Logical database requirements are functional requirements that include the
types of information used by various functions such as frequency of use,
accessing capabilities, data entities and their relationships, integrity con-
straints, and data retention requirements.

What are design constraint requirements?

Design constraint requirements are nonfunctional requirements that are
related to standards compliance and hardware limitations.

7228_C003.fm Page 47 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

48

What Every Engineer Should Know about Software Engineering

What are system attribute requirements?

System attribute requirements are functional requirements that include reli-
ability, availability, security, maintainability, and portability. Many of these
requirements can be found in Appendix A.

What is a feasibility study and what is its role?

A feasibility study is a short focused study that checks if the system contrib-
utes to organizational objectives the system can be engineered using current
technology and within budgetthe system can be integrated with other sys-
tems that are used.

A feasibility study is used to decide if the proposed system is worthwhile.
Feasibility studies can also help answer some of the following questions.

• What if the system wasn’t implemented?
• What are current process problems?
• How will the proposed system help?
• What will be the integration problems?
• Is new technology needed? What skills?
• What facilities must be supported by the proposed system?

Therefore, it is important to conduct a feasibility study before a large invest-
ment is made in a system that is not needed or which does not solve some
inherent business process problem.

Are there social and organizational factors in requirements engineering?

You bet there are. Software engineering involves many human activities, and
none is more obviously so than requirements engineering. Software systems
are used in a social and organizational context; thus, political factors almost
always influence the software requirements.

Moreover, stakeholders often don’t know what they really want and they
express requirements in their own terms. Different stakeholders may have con-
flicting requirements, new stakeholders may emerge, and the business environ-
ment may change. Finally, the requirements change during the analysis process
for a host of reasons. Therefore, good requirements engineers must be sensitive
to these factors.

3.4 Requirements Elicitation

What is requirements elicitation?

Requirements elicitation involves working with customers to determine the
application domain, the services that the system should provide, and the
operational constraints of the system. Elicitation may involve end-users,

7228_C003.fm Page 48 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

49

managers, engineers involved in maintenance, domain experts, trade unions,
and so on. These people are collectively called stakeholders.

But stakeholders don’t always know what they want, right?

True. An important consideration in eliciting requirements from stakeholders
is that they often don’t know what they really want. The software engineer
has to be sensitive to the needs of the stakeholders and aware of the problems
that stakeholders can create including:

• expressing requirements in their own terms
• providing conflicting requirements
• introducing organizational and political factors, which may influ-

ence the system requirements
• changing requirements during the analysis process due to new stake-

holders who may emerge and changes to the business environment

The software engineer must monitor and control these factors throughout
the requirements engineering process.

Are there any practical approaches to requirements elicitation?

Yes, there are several. The following three approaches will be discussed in detail:

• Joint application design (JAD)
• Quality function deployment (QFD)
• Designer as apprentice

Each of these techniques has been used successfully for requirements elicitation.

What is JAD?

JAD involves highly structured group meetings or mini-retreats with system
users, system owners, and analysts in a single room for an extended period.
These meetings occur four to eight hours per day and over a period lasting
one day to a couple of weeks.

JAD and JAD-like techniques are becoming increasingly common in systems
planning and systems analysis to obtain group consensus on problems, objec-
tives, and requirements. Specifically, software engineers can use JAD for:

• eliciting requirements and for the SRS
• design and software design description
• code
• tests and test plans
• user manuals

There can be multiple reviews for each of these artifacts, if necessary.

7228_C003.fm Page 49 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

50

What Every Engineer Should Know about Software Engineering

How do you plan for a JAD session?

Planning for a review or audit session involves three steps:

selecting participants
preparing the agenda
selecting a location

Reviews and audits may include some or all of the following participants:

• sponsors (for example, senior management)
• a team leader (facilitator, independent)
• users and managers who have ownership of requirements and business

rules
• scribes
• engineering staff

The sponsor, analysts, and managers select a leader. The leader may be
inhouse or a consultant. One or more scribes (note-takers) are selected,
normally from the software development team. The analyst and managers
must select individuals from the user community. These individuals should
be knowledgeable and articulate in their business area.

Before planning a session, the analyst and sponsor determine the scope of
the project and set the high-level requirements and expectations of each
session. The session leader also ensures that the sponsor is willing to commit
people, time, and other resources to the effort. The agenda depends greatly
on the type of review to be constructed and should be created to allow for
sufficient time. The agenda, code, and documentation is then sent to all
participants well in advance of the meeting so that they have sufficient time
to review them, make comments, and prepare questions.

What are some of the ground rules for JAD sessions?

The following are some rules for conducting software requirements, design
audits, or code walkthrough. The session leader must make every effort to
ensure that these practices are implemented.

• Stick to the agenda.
• Stay on schedule (agenda topics are allotted specific time).
• Ensure that the scribe is able to take notes.
• Avoid technical jargon (if the review is a requirements review and

involves nontechnical personal).
• Resolve conflicts (try not to defer them).
• Encourage group consensus.

7228_C003.fm Page 50 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

51

• Encourage user and management participation without allowing
individuals to dominate the session.

• Keep the meeting impersonal.

The end product of any review session is typically a formal written document
providing a summary of the items (specifications, design changes, code
changes, and action items) agreed upon during the session. The content and
organization of the document obviously depends on the nature and objec-
tives of the session. In the case of requirements elicitation, however, the main
artifact could be a first draft of the SRS.

What is QFD?

QFD was introduced by Yoji Akao in 1966 for use in manufacturing, heavy
industry, and systems engineering. It is a technique for determining customer
requirements and defining major quality assurance points to be used through-
out the production phase. QFD provides a structure for ensuring that custom-
ers’ wants and needs are carefully heard, and then directly translated into a
company’s internal technical requirements — from analysis through implemen-
tation to deployment. The basic idea of QFD is to construct relationship matrices
between customer needs, technical requirements, priorities, and (if needed)
competitor assessment. Because these relationship matrices are often repre-
sented as the roof, ceiling, and sides of a house, QFD is sometimes referred to
as the “house of quality” (Figure 3.1) [Akao 1990]. It has been applied to
software systems by IBM, DEC, HP, AT&T, Texas Instruments and others.

FIGURE 3.1

QFD’s “house of quality.” (From

Akao, Y. (Ed.),

Quality Function Deployment

, Productivity Press,
Cambridge, MA, 1990.)

Relationship
matrix

Target values

Competitive evaluation

Importance weighting

How’s

Im
portance

w
eighting

C
om

petitive
w

eighting

W
hat’s

7228_C003.fm Page 51 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

52

What Every Engineer Should Know about Software Engineering

What is the “voice of the customer?”

This is what customers want and need from the product, stated in their
words as much as possible. The voice of the customer forms the basis for all
analysis, design, and development activities to ensure that products are not
developed from “the voice of the engineer” only. This approach embodies
the essence of requirements elicitation.

What are the advantages of using QFD?

 QFD improves the involvement of users and mangers. It shortens the devel-
opment life cycle and improves overall project development. QFD supports
team involvement by structuring communication processes. Finally, it pro-
vides a preventive tool to avoid the loss of information.

Are there drawbacks to using QFD for software requirements discovery?

Yes. For example, there may be difficulties in expressing temporal require-
ments. QFD is difficult to use with an entirely new project. For example,
how do you discover customer requirements for something that does not
exist and how do you build and analyze the competitive products?

Sometimes it is hard to find measurements for certain functions and to
keep the level of abstraction uniform. And, the less we know the less we
document. Finally, sometimes the house of quality can become a damn big
mansion; that is, the desirable features list can get out of control.

What is “designer as apprentice?”

Designer as apprentice is a requirements discovery technique in which the
requirements engineer “looks over the shoulder” of the customer to enable
the engineer to learn enough about the work of the customer to understand
his needs. The relationship between customer and designer is like that
between a master craftsman and apprentice. That is, the apprentice learns a
skill from the master just as we want the requirements engineer (the
designer) to learn about the work from the customer. The apprentice is there
to learn whatever the master knows (and, therefore, must guide the customer
in talking about and demonstrating those parts of the work).

But doesn’t the customer have to have teaching ability for this
technique to work?

No. Some customers cannot talk about their work effectively, but can talk
about it as it unfolds. Moreover, customers don’t have to work out the best
way to present it, or the motives; they just explain what they are doing.

Seeing the work reveals what matters. For example, people are not aware
of everything they do and sometimes why they do it. Some actions are the
result of years of experience and are too subtle to express. Other actions are
just habits with no valid justification. The presence of an apprentice provides
the opportunity for the master (customer) to think about the activities and
how they come about.

7228_C003.fm Page 52 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

53

Seeing the work reveals details; unless we are performing a task, it is
difficult to describe it in detail. Finally, seeing the work reveals structure.
Patterns of working are not always obvious to the worker. An apprentice
learns the strategies and techniques of work by observing multiple instances
of a task and forming an understanding of how to do it himself by incorpo-
rating the variations.

Who is responsible for seeing the work structure in this technique?

The designer must understand the structure and implication of the work,
including:

• the strategy to get work done
• constraints that get in the way
• the structure of the physical environment as it supports work
• the way work is divided
• recurring patterns of activity
• the implications the above has on any potential system

The designer must demonstrate to the customer his understanding of the
work so that any misunderstandings can be corrected.

Does design as apprentice have any other benefits?

Yes. In fact, using this technique can help improve the modeled process. Both
customer and designer learn during this process; the customer learns what
may be possible and the designer expands his understanding of the work.
If the designer has an idea for improving the process, however, this must be
fed back to the customer immediately.

3.5 Requirements Modeling

How are software requirements modeled?

There are a number of ways to model software requirements; these include
natural languages, informal and semiformal techniques, user stories, use
case diagrams, structured diagrams, object-oriented techniques, formal
methods, and more. We will discuss some of these in detail.

Why can’t requirements just be communicated in English?

English, or any other natural language, is fraught with problems for require-
ments communication. These problems include lack of clarity and precision,
mixing of functional and nonfunctional requirements, and requirements

7228_C003.fm Page 53 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

54

What Every Engineer Should Know about Software Engineering

amalgamation, where several different requirements may be expressed
together. Other problems with natural languages include ambiguity, over-
flexibility, and lack of modularization.

These shortcomings, however, do not mean that natural language is never
used in an SRS. Every clear SRS must have a great deal of narrative in clear
and concise natural language. But when it comes to expressing complex
behavior, it is best to use formal or semiformal methods, clear diagrams or
tables, and narrative as needed to tie these elements together.

What are some alternatives to using natural languages?

Alternatives to natural languages include:

• structured natural language
• design description languages
• graphical notations
• mathematical specifications

What is a structured language specification?

This is a limited form of natural language that can be used to express
requirements. In other words, the vocabulary and grammar rules available
to express requirements are strictly controlled and are capable of being
parsed.

Structured languages remove some of the problems resulting from ambi-
guity and flexibility and impose a degree of uniformity on a specification.
On the other hand, use of structured languages requires a level of training
that can frustrate stakeholders. To increase usability, structured languages
can be facilitated using a forms-based approach.

In a forms-based approach, templates or forms are created and given to
the customer and other stakeholders to be filled in. The template can include
the following information:

definition of the function or entity
description of inputs and where they come from
description of outputs and where they go to
indication of other entities required
pre- and postconditions (if appropriate)
side effects (if any)

The data in the template can then be converted to structured language using
an appropriate interpreter. Figure 3.2 depicts a simple example of a struc-
tured language template. Forms-based specification can still be used even
when structured languages are not being used.

7228_C003.fm Page 54 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

55

What are program design language-based requirements?

Program design languages (PDLs) involve requirements that are defined
operationally using a language like a programming language but with more
flexibility of expression. PDLs are most appropriate in two situations:

1. where an operation is specified as a sequence of actions and the
order is important

2. when hardware and software interfaces have to be specified

Are there any disadvantages to using PDLs?

There are a few. For example, the PDL may not be sufficiently expressive to
define domain concepts. Moreover, the specification may be taken as a design
rather than a specification. Finally, the notation may be understandable only
to people with knowledge of programming languages.

What are use cases?

Use cases are an essential artifact in object-oriented requirements elicitation and
analysis and are described graphically using any of several techniques. One
representation for the use case is the use case diagram, which depicts the

FIGURE 3.2

A forms-based specification template.

Function

Description

Inputs

Outputs

Destination

Requires

Precondition

Postcondition

Side-effects

7228_C003.fm Page 55 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

56

What Every Engineer Should Know about Software Engineering

interactions of the software system with its external environment. In a use case
diagram, the box represents the system itself. The stick figures represent “actors”
that designate external entities that interact with the system. The actors can be
humans, other systems, or device inputs. Internal ellipses represent each activity
of use for each of the actors (use cases). The solid lines associate actors with each
use. Figure 3.3 shows a use case diagram for the baggage inspection system.

Figure A.4 in Appendix A shows a use case diagram for the wet well
control system.

Each use case is, however, a document that describes scenarios of operation
of the system under consideration as well as pre- and postconditions and
exceptions. In an iterative development life cycle, these use cases will become
increasingly refined and detailed as the analysis and design workflows
progress. Interaction diagrams are then created to describe the behaviors
defined by each use case. In the first iteration these diagrams depict the
system as a “black box,” but once domain modeling has been completed the
black box is transformed into a collaboration of objects as will be seen later.

What are user stories?

User stories are short conversational texts that are used for initial require-
ments discovery and project planning. User stories are widely used in con-
junction with agile methodologies.

FIGURE 3.3

Use case diagram of the baggage inspection system.

Baggage handler

Camera

Product Classification

Defective Product

Reject Mechanism

Product Sensor

Configure

Engineer

7228_C003.fm Page 56 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

57

User stories are written by the customers in their own “voice,” in terms
of what the system needs to do for them. User stories usually consist of
two to four sentences written by the customer in his own terminology,
usually on a three-by-five inch card. The appropriate amount of user
stories for one system increment or evolution is about 80, but the appro-
priate number will vary widely depending upon the application size and
scope.

An example of a user story for the wet well system described in Appendix
A through Appendix C is as follows:

There are two pumps in the wet well control system. The control system
should start the pumps to prevent the well from overflowing. The control
system should stop the pumps before the well runs dry.

User stories should provide only enough detail to make a reasonably low-
risk estimate of how long the story will take to implement. When the time
comes to implement the story, developers will meet with the customer to
flesh out the details.

User stories also form the basis of acceptance testing. For example, one or
more automated acceptance tests can be created to verify the user story has
been correctly implemented.

What are formal methods in software specification?

Formal methods attempt to improve requirements formulation and expres-
sion by applying mathematics and logic. Formal methods employ some
combination of predicate calculus (first order logic), recursive function the-
ory, Lambda calculus, programming language semantics, discrete mathemat-
ics, number theory, and abstract algebra. This approach is attractive because
it offers a more scientific method for requirements specification.

By their nature, specifications for most embedded systems usually contain
some formality in the mathematical expression of the underlying imaging
operations.

What are the motivations for using formal methods?

One of the primary attractions of formal methods is that they offer a highly
scientific approach to development. Formal requirements offer the possibility of
discovering errors at the earliest phase of development, while the errors can be
corrected quickly and at a low cost. Informal specifications might not achieve
this goal because they are not precise enough to be refuted by finding counter
examples.

What are informal and semiformal methods?

Approaches to requirements specification that are not formal are either infor-
mal (such as flow-charting) or semiformal. The UML is a semiformal spec-
ification approach, meaning that while it does not appear to be mathematically

7228_C003.fm Page 57 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

58

What Every Engineer Should Know about Software Engineering

based, it is in fact nearly formal in that every one of its modeling tools can
be converted either completely or partially to an underlying mathematical
representation (a work group is focused on remedying these deficiencies).
In any case, UML largely enjoys the benefits of both informal and formal
techniques.

How are formal methods used?

Formal methods are typically not intended to take on an all-encompassing
role in system or software development. Instead, individual techniques are
designed to optimize one or two parts of the development life cycle.

There are three general uses for formal methods:

1. Consistency checking — system behavioral requirements are
described using a mathematically based notation.

2. Model checking — state machines are used to verify if a given
property is satisfied under all conditions.

3. Theorem proving — axioms of system behavior are used to derive
a proof that a system will behave in a given way.

Formal methods offer important opportunities for reusing requirements.
Embedded systems are often developed as families of similar products, or
as incremental redesigns of existing products. For the first situation, formal
methods can help identify a consistent set of core requirements and abstrac-
tions to reduce duplicate engineering effort. For redesigns, having formal
specifications for the existing system provides a precise reference for baseline
behavior, and provides a way to analyze proposed changes.

Are formal methods hard to use?

Formal methods can be difficult to use and are sometimes error-prone. For
these reasons and because they are sometimes perceived to increase early
life-cycle costs and delay projects, formal methods are frequently and unfor-
tunately avoided.

What are some of the formal methods techniques?

Formal methods include Z, Vienna design method (VDM), and communi-
cating sequential processes (CSP). All of these methods are highly specialized
and require a great deal of formal mathematical training that most traditional
engineers do not receive.

I will briefly introduce one of the most celebrated formal methods, Z. But
I am really going to focus on some more familiar mathematical models that,
while not usually considered as high-flying as these other formal methods,
are formal methods just the same in that they are mathematically based.
These methods also have the advantages of being known to most engineers
and can be used in both software specification and design.

7228_C003.fm Page 58 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

59

What is Z?

Z (pronounced “zed”), introduced in 1982, is a formal specification lan-
guage that is based on set theory and predicate calculus. As in other
algebraic approaches, the final specification in Z is reached by a refinement
process starting from the most abstract aspects of the systems. There is a
mechanism for system decomposition known as the Schema Calculus.
Using this calculus, the system specification is decomposed in smaller
pieces called schemes where both static and dynamic aspects of system
behavior are described.

The Z language does not have any support for defining timing constraints.
Therefore, in recent years, several extensions for time management have
been proposed. For example, Z has been integrated with real-time interval
logic (RTIL), which provides for an algebraic representation of temporal
behavior.

There are other extensions of Z to accommodate the object-oriented
approaches, which adds formalism for modularity and specification reuse.
These extensions define the system state space as a composition of the state
spaces of the individual system objects.

Most of these extensions also provide for information hiding, inheritance,
polymorphism, and instantiation into the Z Schema Calculus.

For example, one extension, Object-Z, includes all the aforementioned
extensions and further integrates the concepts of temporal logic, making it
suitable for real-time specification. In this language the object status is an
event history of object behavior making the language more operational than
the early version of Z.

A Z-like formal description of the wet well control system can be found
in Section 3.2.5 of Appendix A. Note that this is not a Z specification, as it
is lacking much of the front-end preamble and declarations. However, the
mathematical notation is very Z-like.

What are finite state machines?

The finite state automaton (FSA), finite state machine (FSM), or state transition
diagram (STD) are types of mathematical models used in the specification
and design of a wide range of systems. Intuitively, FSMs rely on the fact that
a fixed number of unique states can represent many systems. The system
may change state depending upon time or the occurrence of specific events —
a fact that is reflected in the automaton.

How are FSAs represented?

An FSM can be specified in diagrammatic, set-theoretic, and matrix repre-
sentations. To illustrate them, consider the baggage inspection system. Sup-
pose it can be in one of three modes of operation: calibration, diagnostic, or
operational. The calibration mode is entered when the operator sets a signal
(op_cal). Similarly, the system returns to operational mode upon issuance of
the op_op signal. The diagnostic mode is entered if an exceptional condition

7228_C003.fm Page 59 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

60

What Every Engineer Should Know about Software Engineering

or error occurs in either of the other modes. The diagnostic mode can only
be exited by operator intervention by setting the appropriate signal. This
behavior can be described by the FSM shown in Figure 3.4.

The behavior shown in Figure 3.4 can also be represented mathematically
by the five-tuple

(3.1)

where

S

 is a finite, nonempty set of states,

i

is the initial state (

i

 is a member
of

S

),

T

is the set of terminal states (

T

 is a subset of

S

), is an alphabet of
symbols or events used to mark transitions, is a transition function that
describes the next state of the machine given the current state and a symbol
from the alphabet (an event). That is,

Can you give an example of an FSM?

In the baggage inspection system example,

S

=

 {calibration, diagnostic, oper-
ational},

i

=

 calibration,

T

=

S,

and

=

 {op_op, op_cal, error}. The transition
function can be described by a set of triples of the form (state, signal,
next_state).

It is usually more convenient to represent the transition function with a
transition table, as shown in Table 3.1.

FIGURE 3.4

Partial FSM showing behavior of the baggage inspection system.

op_cal

calibration

op_op

operational

error

diagnostic

error

op_cal

op_op

op_op

error

M S i T= { }, , , ,Σ δ

Σ
δ

δ : S S× →Λ

∑

7228_C003.fm Page 60 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification

61

What is a Mealy FSM?

An FSM that does not depict outputs during transition is called a Moore
machine. Outputs during transition can be depicted, however, by a variation
of the Moore machine called a Mealy machine. The Mealy machine can be
described mathematically by a six-tuple,

(3.2)

where the first five elements of the six-tuple are the same as for the Moore
machine and a sixth parameter, , which represents the set of outputs. The
transition function is slightly different than previously in that it describes
the next state of the machine given the current state, and a symbol from the
alphabet. The transition function is then .

Can you give an example of a Mealy machine?

A general Mealy machine for a system with three states, three inputs, and
three outputs such as the baggage inspection system is shown in Figure 3.5.

TABLE 3.1

Transition Table for the FSM of the Baggage Inspection

System Shown in Figure 3.4

Event

Current state op_op op_cal error
Calibration

Operational Calibration Diagnostic
Diagnostic Operational Calibration Diagnostic
Operational Operational Calibration Diagnostic

Note: The internal entries represent the functional mode to be performed.

FIGURE 3.5
A generic Mealy machine for a three-state system with events e1, e2, e3 and outputs o1, o2, o3.

M S i T= { }, , , , ,Σ Γ δ

Γ

δ : S S× → ×Λ Γ

e1/o1

e1/o1

e1/o1

e3/o3

e3/o3

e3/o3

e2/o2 e2/o2

e2/o2

S1 S2

S3

7228_C003.fm Page 61 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

62 What Every Engineer Should Know about Software Engineering

The transition matrix for the FSM shown in Figure 3.5 is shown in Table 3.2.

What are the advantages of using FSMs in requirements
specification or design?

FSMs are easy to visualize and to convert to a design and code. They are
also unambiguous because they can be represented with a formal mathe-
matical description. In addition, concurrency can be depicted by using mul-
tiple machines.

Finally, because mathematical techniques for reducing the number of states
exist, programs based on FSMs can be formally optimized. A rich theory
surrounds FSMs, and this can be exploited in the development of system
specifications.

Are there any disadvantages to using FSMs?

The major disadvantage of FSMs is that the internal aspects, or “insideness”
of modules cannot be depicted. That is, there is no way to indicate how
functions can be broken down into subfunctions. In addition, intertask com-
munication for multiple FSMs is difficult to depict. Finally, depending upon
the system and alphabet used, the number of states can grow very large.
However, these problems can be overcome using statecharts.

What are statecharts?

Statecharts, which are one of the base modeling languages in the UML family,
combine FSMs with dataflow diagrams and a feature called broadcast com-
munication in a way that can depict synchronous and asynchronous opera-
tions. Statecharts can be described succinctly as statecharts = FSM + depth
+ orthogonality + broadcast communication (Figure 3.6).

TABLE 3.2

Transition Matrix for the FSM
in Figure 3.5

S1 S2 S3

e1 S1/S1 S1/S1 S1/S1

e2 S2/O2 S2/O2 S2/O2

e3 S3/O3 S3/O3 S3/O3

FIGURE 3.6
Statechart format where A and B are states, x is an event that causes the transition marked by
the arrow, y is an optional event triggered by x, and e1,…en are conditions qualifying the event.

A B

X | x/y |x(e1,…en) | x(e1,…en)/y

7228_C003.fm Page 62 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 63

Here, the FSM is a finite state machine, depth represents levels of detail,
orthogonality represents separate tasks, and broadcast communication is a
method for allowing different orthogonal processes to react to the same
event. The statechart resembles an FSM where each state may contain its
own FSM that describes its behavior. The various components of the state-
chart are depicted as follows:

The FSM is represented in the usual way, with capital letters or descrip-
tive phrases used to label the states.

Depth is represented by the insideness of states.
Broadcast communications are represented by labeled arrows, in the

same way as FSMs.
Orthogonality is represented by dashed lines separating states.
Symbols a, b, …, z represent events that trigger transitions, in the same

way that transitions are represented in FSMs.
Small letters within parentheses represent conditions that must be true

for the transitions to occur.

What is the advantage of using statecharts over FSMs?

A significant feature of statecharts is the encouragement of top-down design
of a module. For example, for any module (represented like a state in an
FSM), increasing detail is depicted as states internal to it. In Figure 3.7, the
system is composed of states A and B. Each of these, in turn, can be decom-
posed into states A1, A2 and B1, B2, respectively, which might represent
program modules.

FIGURE 3.7
A statechart depicting insideness.

B 1

B 2

B

b2b1

A1

A2

A

a2a1

7228_C003.fm Page 63 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

64 What Every Engineer Should Know about Software Engineering

Those states can also be decomposed, and so forth. To the software designer,
each nested substate within a state represents a procedure within a procedure.

What is orthogonality?

Orthogonality depicts concurrency in the system for processes that run in
isolation, called AND states. Orthogonality is represented by dividing the
orthogonal components by dashed lines. For example, if state Y consists of
AND components A and D, Y is called the orthogonal product of A and D.
If Y is entered from the outside (without any additional information), then
the states A and D are entered simultaneously. Communication between the
AND states can be achieved through global memory, whereas synchroniza-
tion can be achieved through a unique feature of statecharts called broadcast
communication.

What is broadcast communication?

Broadcast communication is depicted by the transition of orthogonal states
based on the same event. For example, if an imaging system switches from
standby to ready mode, an event indicated by an interrupt can cause a state
change in several processes.

What is a chain reaction?

A unique aspect of broadcast communication is that it can signal a chain
reaction; that is, events can trigger other events. The implementation
follows from the fact that statecharts can be viewed as an extension of
Mealy machines, and output events can be attached to the triggering
event. In contrast with Mealy machines, however, the output is not seen
by the outside world; instead, it affects the behavior of an orthogonal
component.

For example, in Figure 3.8 suppose there exists a transition labeled e/f and
if event e occurs, then event f is immediately activated. Event f could, in turn,
trigger a transaction such as f/g. The length of a chain reaction is the number
of transitions triggered by the first event. Chain reactions are assumed to
occur instantaneously.

FIGURE 3.8
Statechart depicting a chain reaction.

A

B

e / f

C

D

f

7228_C003.fm Page 64 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 65

In this system, a chain reaction of length two will occur when the e/f
transition occurs.

When are statecharts useful in capturing requirements?

Statecharts are excellent for representing embedded systems because they
can easily depict concurrency while preserving modularity. In addition, the
concept of broadcast communication allows for easy intertasking.

In short, the statechart combines the best of dataflow diagrams and FSMs.
Commercial products allow an engineer to graphically design a real-time
system using statecharts, perform detailed simulation analysis, and generate
Ada or C code. Furthermore, statecharts can be used in conjunction with both
structured analysis (SA) and object-oriented analysis (OOA).

What are petri nets?

Petri nets are another formal method used to specify the operations to be
performed in a multiprocessing or multitasking environment. While they
have a rigorous foundation, they can also be described graphically. A series
of circular bubbles called “places” are used to represent data stores or pro-
cesses. Rectangular boxes are used to represent transitions or operations.
The processes and transitions are labeled with a data count and transition
function, respectively, and are connected by unidirectional arcs.

The initial graph is labeled with markings given by mo, which represent the
initial data count in the process. Net markings are the result of the firing of
transitions. A transition, t, fires if it has as many inputs as required for output.

In petri nets, the graph topology does not change over time; only the “mark-
ings” or contents of the places do. The system advances as transitions “fire.”

Can you give an example?

To illustrate the notion of “firing,” consider the petri nets given in Figure 3.9
with the associated firing table given in Table 3.3.

As a somewhat more significant example, consider the petri net in Figure 3.10.
Reading from left to right and top to bottom indicates the stages of firings
in the net.

Table 3.4 depicts the firing table for the petri net in Figure 3.10.
Petri nets can be used to model systems and to analyze timing constraints

and race conditions. Certain petri net subnetworks can model familiar flow-
chart constructs. Figure 3.11 illustrates these analogies.

How do I relate a petri net to software program behavior?

One way is to look at the low-level analogies of petri net configurations to
familiar flowchart behavior as shown in Figure 3.11.

When are petri nets used in requirements analysis and specification?

Petri nets are excellent for representing multiprocessing and multiprogram-
ming systems, especially where the functions are simple. Because they are

7228_C003.fm Page 65 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

66 What Every Engineer Should Know about Software Engineering

mathematical in nature, techniques for optimization and formal program prov-
ing can be employed. But petri nets can be overkill if the system is too simple.
Similarly, if the system is highly complex, timing can become obscured.

The petri net is also a powerful tool that can be used for deadlock and
race condition identification.

Are there other kinds of petri nets?

The model described herein is just one of a variety of available models. For
example, there are timed petri nets, which enable synchronization of firings;
colored petri nets, which allow labeled data to propagate through the net;
and even timed-colored petri nets, which embody both features.

Are their drawbacks to the use of formal methods?

Formal methods have two limitations that are of special interest to embedded
system developers. First, although formalism is often used in pursuit of
absolute correctness and safety, it can guarantee neither. Second, formal
techniques do not yet offer good ways to reason about alternative designs
or architectures.

Correctness and safety are two of the original motivating factors driving
adoption of formal methods. Nuclear, defense, and aerospace regulators in

FIGURE 3.9
Petri nets firing rule.

TABLE 3.3

Transition Table for Petri Net
Shown in Figure 3.9

P1 P2

Before firing 1 0
After firing 0 1

Before firing

P1 P2
T1

After firing

P1 P2
T1

7228_C003.fm Page 66 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 67

several countries now mandate or strongly suggest use of formal methods
for safety-critical systems. This environment has driven an emphasis on
safety-oriented applications of formal methods in the literature. Some
researchers emphasize the “correctness” properties of particular mathemat-
ical approaches, without clarifying that mathematical correctness in the
development process might not translate into real-world correctness in the
finished system. After all, it is only the specification that must be produced
and proven at this point, not the software product itself.

Formal software specifications must be converted to a design, and later,
to a conventional implementation language. This translation process is sub-
ject to all of the potential pitfalls of any programming effort. For this reason,
testing is just as important when using formal requirement methods as when
using traditional ones. Formal verification is also subject to many of the same
limitations as traditional testing, namely, testing cannot prove the absence
of bugs, only their presence.

FIGURE 3.10
A slightly more complex petri net.

TABLE 3.4

Transition Table for Petri
Net Shown in Figure 3.9

P1 P2 P3 P4

m0 1 1 2 0
m1 0 0 3 1
m2 0 0 2 2
m3 0 0 1 3
m4 0 0 0 4

m2

m3

m0

m1

m4

P1

P2

T1 T3

T2

P3 P4

7228_C003.fm Page 67 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

68 What Every Engineer Should Know about Software Engineering

FIGURE 3.11
Flowchart equivalence to petri net configurations: (a) sequence, (b) conditional branch, and
(c) while loop.

(a)

(b)

(c)

F2

F1

F1

F2

P1

P2

T1

T2

True
True

?

F1 F2

F1 F2

T1 T2

T3 (stop looping)

Keep
looping?

True

F1

F1T1 T3

7228_C003.fm Page 68 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 69

What is structured analysis and structured design?

Structured analysis and structured design (SASD) have evolved over almost
30 years and are widely used in many embedded applications — probably
because the techniques are closely associated with the programming lan-
guages with which they co-evolved (Fortran and C) and in which many
image processing applications are written. Structured methods appear in
many forms but the de facto standard is Coad and Yourdon’s Modern Struc-
tured Analysis [Coad and Yourdon 1991].

Coad and Yourdon’s Modern Structured Analysis uses three viewpoints
to describe a system: (1) an environmental model, (2) a behavioral model,
and (3) an implementation model. The elements of each model are shown
in Figure 3.12.

The environmental model embodies the analysis aspect of SASD and con-
sists of a context diagram and an event list. The purpose of the environmental
model is to model the system at a high level of abstraction.

The behavioral model embodies the design aspect of SASD as a series of
dataflow diagrams (DFDs), entity relationship diagrams (ERDs), process
specifications, state transition diagrams, and a data dictionary. Using various
combinations of these tools, the designer models the processes, functions,
and flows of the system in detail.

Finally, in the implementation model the developer uses a selection of
structure charts, natural language, and pseudo-code to describe the system
to a level that can be readily translated to code.

FIGURE 3.12
Elements of structured analysis and design.

Context Diagram

Event List

Natural Language

DFD/CFD

ER Diagram

Data Dictionary

P-SPEC, C-SPEC

STD/FSM

Natural Language

Structure Charts

P-SPEC

Temporal Logic

Natural Language

Environmental
Model

Behavioral
Model

Implementation
Model

7228_C003.fm Page 69 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

70 What Every Engineer Should Know about Software Engineering

What is SA?

SA is a requirements capture technique that tries to overcome the problems of
classical analysis using graphical tools and a top-down, functional decomposi-
tion method to define system requirements. SA deals only with aspects of anal-
ysis that can be structured — the functional specifications and the user interface.

SA is used to model a system’s context (where inputs come from and where
outputs go), processes (what functions the system performs, how the func-
tions interact, how inputs are transformed to outputs), and content (the data
the system needs to perform its functions).

SAs seeks to overcome the problems inherent in analysis through:

• maintainability of the target document
• use of an effective method of partitioning
• use of graphics
• building a logical model of the system for the user before implemen-

tation
• reduction of ambiguity and redundancy

What are the main artifacts of SA?

The target document for SA is called the structured specification. It consists
of a system context diagram, an integrated set of DFDs showing the decom-
position and interconnectivity of components, and an event list to represent
the set of events that drive the system.

Can you give an example of SA?

Consider the baggage inspection system previously introduced in its oper-
ational mode (calibration and diagnostic modes are ignored for simplicity).
Figure 3.13 depicts the context diagram.

The diagram depicts the system’s major parts — camera, product detector,
conveyor controller system, and reject mechanism. Solid arcs indicate the
flow of data between system components. The dashed lines represent the flow
of control information. In the example, the only data flow involves the
transmission of the captured image to the baggage inspection system.

In the example, the event list consists of the new_bag_event, which indi-
cates the detection of the next suitcase on the line; accept, which indicates
that the suitcase has passed inspection and causes a signal to be sent to the
conveyor controller; and reject, which causes a signal to be sent that directs
the conveyor to move the bag into a separate bin. A piece of luggage may
be rejected for one reason or another such as a security threat or if the bag
is too large. The rejection mechanism automatically causes the next bag to
be moved along by the conveyor system.

It should be reiterated that this context diagram is not complete owing to
the omission of the calibration and diagnostic modes. While the intent here
is not to provide a complete system design, missing functionality is more

7228_C003.fm Page 70 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 71

easily identified during the requirements elicitation process if some form of
graphical aid, such as the context diagram, is available. In the case of OOA,
a use case diagram will be helpful.

What does “object-oriented” mean?

“Object-oriented” defines a paradigm for describing system behavior in
which entities are attributed characteristics (called attributes), have opera-
tions that can be associated with them (called methods), and can interact
with each other through messaging or shared data structures. Object-ori-
ented programming is believed by many to lead to more maintainable,
understandable, and extendable systems. Some believe that object-oriented
software engineering is easier to learn and master than its counterpart,
procedural-oriented (or imperative) engineering. Languages written to sup-
port the object-oriented paradigm are called object-oriented languages.

What is object-oriented requirements analysis?

As an alternative to the SA approach to developing software requirements for
the baggage inspection system, consider using an object-oriented approach.
There are various “flavors” of object-oriented approaches, each using their
own toolsets. In the approach developed here, the system specification begins
with the representation of externally accessible functionality as use cases.

When is it appropriate to use OOA vs. SA?

Both SA and OOA can use the tools and techniques for modeling as previously
described. However, there are major differences between the two techniques.
SA describes the system from a functional perspective and separates dataflow
from the functions that transform them, while OOA describes the system from
the perspective of encapsulated entities that possess both function and form.

FIGURE 3.13
Context diagram for the baggage inspection system.

Baggage Inspection
System

image

new_bag_event

reject

accept

camera

detector conveyor
controller

reject
mechanism

7228_C003.fm Page 71 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

72 What Every Engineer Should Know about Software Engineering

Additionally, object-oriented models include inheritance while SA does
not. While SA has a definite hierarchical structure, this is a hierarchy of
composition rather than heredity. This shortcoming leads to difficulties in
maintaining and extending both the specification and design such as in the
case of changes in the baggage inspection system example.

The purpose of this discussion is not to dismiss SA, or even to conclude
that it is better than OOA in all cases. An overriding indicator of suitability
of OOA vs. SA is the nature of the application. To understand this, consider
the vertices of the triangle in Figure 3.14 as representing three distinct view-
points of a system: data, actions, and events.

Events represent stimuli and responses such as measurements in process
control systems, as in the case study. Actions are rules that are followed in
complex algorithms, such as “binarize,” “threshold,” and “classify.” The
majority of early computer systems were focused on one, or at most two, of
these vertices. For example, early, non-real-time systems were data and action
intensive but did not encounter much in the way of stimuli and response.

3.6 Requirements Documentation

What is the role of the SRS?

The SRS document is the official statement of what is required of the system
developers. The SRS should include both a definition and a specification of
requirements. However, the SRS is not a design document. As much as
possible, it should be a set of what the system should do rather than how it
should do it. Unfortunately, the SRS usually contains some design specifi-
cations, which has the tendency to hamstring the designers.

Who uses the requirements documents?

A variety of stakeholders uses the software requirements throughout the
software life cycle. Stakeholders include customers (these might be external
customers or internal customers such as the marketing department), man-
agers, developers, testers, and those who maintain the system. Each stakeholder

FIGURE 3.14
A project’s applicability to either OOA or SA according to system focus.

OO

Actions Events

Data

7228_C003.fm Page 72 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 73

has a different perspective on and use for the SRS. Various stakeholders and
their uses for the SRS are summarized in Table 3.5.

How do I organize the requirements document?

There are many ways to organize the SRS; however, IEEE Standard 830-1998
Recommended Practice for Software Requirements Specifications (SRS) pro-
vides a template of what an SRS should look like.

The SRS starts with “boilerplate” frontmatter, which usually acts as a preamble
to the product. For example, in Appendix A, most of Sections 1 and 2 introduce
the wet well control system terminology and operating environment.

Following the boilerplate material, the functionality of the system is
described in one or more styles (or “views”). IEEE 830 recommends that the
views include some combination of decomposition, dependency, interface,
and detail descriptions. Together with the boilerplate frontmatter, these form
a standard template for SRSs, which is depicted in Figure 3.15.

Sections 1 and 2 of Appendix A are self-evident; they provide frontmatter
and introductory material for the SRS. The remainder of the SRS is devoted
to the four description sections.

An outline of some specific requirements, or work breakdown structure (WBS),
for the baggage inspection system, in IEEE 830 format, is given in Figure 3.16.

The section headings can be decomposed further using a technique such
as SA or OOA. A more complete example using the wet well control system
can be found in Appendix A.

How do you represent specific requirements in the SRS?

The IEEE 830 standard provides for several alternative means to represent
the requirements specifications, aside from a function perspective. In partic-
ular, the software requirements can be organized by

• functional mode (“operational,” “diagnostic,” “calibration”)
• user class (“operator,” “diagnostic”)
• object
• feature (what the system provides to the user)

TABLE 3.5

Software Stakeholders and Their Uses of the SRS

Stakeholder Use

Customers Express how their needs can be met. They continue to do this
throughout the process as their perceptions of their own needs
change.

Managers Bid on the system and then control the software production
process.

Developers Create a software design that will meet the requirements.
Test engineers A basis for verifying that the system performs as required.
Maintenance engineers Understand what the system was intended to do as it evolves

over time.

7228_C003.fm Page 73 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

74 What Every Engineer Should Know about Software Engineering

FIGURE 3.15
Recommended Table of Contents for an SRS from IEEE Standard 830–1998.

FIGURE 3.16
Some specific requirements for the baggage inspection system.

1.1. Introduction

1.1 Purpose

1.2 Scope

1.3 Definitions and Acronyms

1.4 References

1.5 Overview

2. Overall description

2.1 Product perspective

2.2 Product functions

2.3 User characteristics

2.4 Constraints

2.5 Assumptions and dependencies

3. Specific Requirements

Appendices

Index

3. Functional Requirements

3.1 Calibration mode

3.2 Operational mode

3.2.1 Initialization

3.2.2 Normal operation

3.2.2.1 Image capture

3.2.2.2 Image error correction

3.2.2.2.1 Position error reduction

3.2.2.2.2 Noise error reduction

3.2.2.3 Captured image analysis

3.2.2.4 Conveyor system control

3.2.2.5 Reject mechanism control

3.2.2.6 Error handling

3.3 Diagnostic Mode

4. Nonfunctional Requirements

7228_C003.fm Page 74 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 75

• stimulus (sensor 1, 2, etc.)
• functional hierarchy
• mixed (a combination of two or more of the above; e.g., in Appendix

A, the requirements include feature- and stimulus-based descriptions)

What is requirements traceability?

Requirements traceability is concerned with the relationships between
requirements, their sources, and the system design. Requirements can be
linked to the source, to other requirements, and to design elements.

Source traceability links requirements to the stakeholders who proposed
these requirements. Requirements traceability links between dependent
requirements. Design traceability links from the requirements to the design.

What role does traceability help in requirements documentation?

During the requirements engineering process, the requirements must be iden-
tified to assist in planning for the many changes that will occur throughout
the software life cycle. Traceability is also an important factor in conducting
an impact analysis to determine the effort needed to make such changes.

What are traceability policies?

Traceability policies determine the amount of information about require-
ments relationships that need to be maintained. There are a number of open
source and proprietary CASE tools that can help improve requirements
traceability.

What does a traceability matrix look like?

One type of traceability matrix is shown in Table 3.6. Requirements identi-
fication numbers label both the rows and columns. An “R” is placed in a
corresponding cell if the requirement in that row references the requirement
in that column. A “U” corresponds to an actual use dependency between
the two requirements.

TABLE 3.6

A Sample Traceability Matrix

Requirement
Identification 1.1 1.2 1.3 2.1 2.2 2.3 3.1 3.2

1.1 U R
1.2 U R U
1.3 R R
2.1 R U U
2.2 U
2.3 R U
3.1 R
3.2 R

7228_C003.fm Page 75 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

76 What Every Engineer Should Know about Software Engineering

3.7 Recommendations on Requirements

Is there a preferred modeling technique for an SRS?

It is risky to prescribe a preferred technique because it is well known that
there is no “silver bullet” when it comes to software specification and design
and each system should be considered on its own merits.

Nevertheless, regardless of approach, any SRS should incorporate the fol-
lowing best practices:

• Use consistent modeling approaches and techniques throughout the
specification; for example, top-down decomposition, SA or OOA.

• Separate operational specification from descriptive behavior.
• Use consistent levels of abstraction within models and conformance

between levels of refinement across models.
• Model nonfunctional requirements as a part of the specification

models, in particular timing properties.
• Omit hardware and software assignment in the specification

(another aspect of design rather than specification).

Are there special challenges when engineers specify software systems?

The preceding discussions illustrate some of the challenges (in fact, one
might consider them “habits”) encountered by engineers specifying software
systems. The challenges include:

• Mixing of operational and descriptive specifications.
• Combining low-level hardware functionality and high-level systems

and software functionality in the same functional level.
• Omission of timing information.

Whatever approach is used in organizing the SRS, the IEEE 830 standard
describes the characteristics of good requirements. They are as follows:

Correct — The SRS should correctly describe the system behavior. Ob-
viously, it is unhelpful if the SRS incorrectly defines the system or
somehow involves unreasonable expectations such as defying the
laws of physics.

Unambiguous — An unambiguous SRS is one that is clear and not
subject to different interpretations. Using appropriate language can
help avoid ambiguity.

Complete — An SRS is complete if it completely describes the desired
behavior. Ordinarily, the note “TBD,” that is “to be defined (later)”
is unacceptable in a requirements document. IEEE 830 sets out some
exceptions to this rule.

7228_C003.fm Page 76 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 77

Consistent — One requirement must not contradict another. Consistency
checking is discussed in Chapter 6.

Ranked — An SRS must be ranked for importance and/or stability. Not
every requirement is as critical as another. By ranking the require-
ments, designers will find guidance in making tradeoff decisions.

Verifiable — Any requirement that cannot be verified is a requirement
that cannot be shown to have been met.

Modifiable — The requirements need to be written in such a way so as
to be easy to change. In many ways, this approach is similar to the
information hiding principle.

Traceable — The SRS must be traceable because the requirements pro-
vide the starting point for the traceability chain. Approaches to trace-
ability and its benefits have been mentioned at length.

How can I rank requirements?

For example, NASA uses four levels of requirements. Level 1 requirements
are mission level requirements. These requirements are very high level, and
rarely change. Level 2 requirements are high level, and will change mini-
mally. Level 3 requirements are mid-level requirements derived from Level 2.
Each Level 2 requirement traces to one or more Level 3 requirement. Most
contracts bid at this level of detail. Finally, Level 4 requirements are very
detailed and are used to design and code the system.

I sometimes advocate a three-level taxonomy of requirements — manda-
tory, desirable, and optional. Mandatory requirements cannot be sacrificed.
Desirable requirements are important but could be sacrificed if necessary to
meet schedule or budget. Optional requirements would be nice to have, but
are readily sacrificed.

Why does ranking requirements do for me?

Ranking requirements is quite helpful when tradeoffs need to be made. For
example, if time or work force is limited, then place the focus on the higher
ranked requirements. The same principle holds for testing; if testing time is
limited, then it can be focused on the requirements pertaining to the higher-
level requirements.

What wording is appropriate in requirements specifications?

To meet these criteria and to write clear requirements documentation, there
are several best practices that the requirements engineer can follow. They
are as follows:

• Invent and use a standard format for all requirements.
• Use language in a consistent way.
• Use “shall” for mandatory requirements.

7228_C003.fm Page 77 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

78 What Every Engineer Should Know about Software Engineering

• Use “should” for desirable requirements.
• Use text highlighting to identify key parts of the requirement.
• Avoid the use of technical language unless it is warranted.

How do I recognize bad requirements?

To illustrate, consider the following bad requirements.

“The systems shall be completely reliable.”
“The system shall be modular.”
“The system shall be maintainable.”
“The system will be fast.”
“Errors shall be less than 99%.”

These requirements are bad for a number of reasons. None is verifiable; for
example, how is “reliability” supposed to be measured? Even the last
requirement is vague. What does less than 99% mean?

What do some good requirements look like?

Consider the following requirements:

“Response times for all Level 1 actions will be less than 100 ms.”
“The cyclomatic complexity of each module shall be in the range of 10

to 40.”
“95% of the transactions shall be processed in less than 1 s.”
“An operator shall not have to wait for the transaction to complete.”
“MTBF shall be 100 hours of continuous operation.”

These requirements are “better” versions of the preceding ones. Each is
measurable because each makes some attempt to quantify the qualities that
are desired. For example, cyclomatic complexity is a measure of modularity,
MTBF is a measure of failures, and processing time is a measure of speed.
Nevertheless, these improved requirements could stand some refinement
based on the context of requirements specification as a whole.

Also notice that most of the requirements in Appendix A read as “the system
shall…”. This requirements specification closely follows the 830 guidelines.
The requirements are not ranked in this case, however, because it is a very
small system with virtually all mandatory functionality. We could always add
various desirable and optional features and rank the SRS accordingly.

What is requirements triage?

The following is good summary advice from requirements engineering special-
ist Al Davis. When dealing with the swirl of issues involved with requirements

7228_C003.fm Page 78 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 79

engineering, he suggests that you:

Maintain a list of requirements.
Record necessary interdependencies.
Annotate requirements by effort.
Annotate requirements by relative importance.
Perform triage overtly (involve stakeholders)

• Customers
• Developers
• Financial representatives.

Base decisions on more than mechanics.
Establish a teamwork mentality.
Manage by probabilities of completion not absolutes.
Understand the optimistic, pessimistic, and realistic approaches.
Plan more than one release at a time.
Replan before every new release.
Don’t be intimidated into a solution.
Find a solution before you proceed.
Remember that prediction is impossible [Davis 2003].

This is good advice to keep in mind.

What is requirements validation?

Requirements validation is tantamount to asking the question “Am I build-
ing the right software?” Too often, software engineers deliver a system that
conforms to the SRS only to discover that it is not what the customer really
wanted.

Requirements error costs are high, and therefore validation is very impor-
tant. Fixing a requirements error after delivery may cost up to 100 times the
cost of fixing an implementation error.

How are requirements validated?

There are number of ways of checking SRSs for conformance to the IEEE
830 best practices and for validity. These approaches include:

requirements reviews
systematic manual analysis of the requirements
prototyping
using an executable model of the system to check requirements

7228_C003.fm Page 79 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

80 What Every Engineer Should Know about Software Engineering

test-case generation
developing tests for requirements to check testability
automated consistency analysis
checking the consistency of a structured requirements description

Can requirements specifications be automatically checked for quality?

Automated checking is the most desirable and the least likely because of the
context sensitivity of natural languages, and the impossibility of verifying
such things as requirements completeness. However, simple tools can been
developed to perform spelling and grammar checking, flagging of key words
that may be ambiguous (e.g., “fast,” “reliable”), identification of missing
requirements (e.g., search for the phrase “to be determined”), and overly
complex sentences (like this one, which can indicate unclear requirements).

Are there tools out there already?

There is a free downloadable tool from NASA, the Automated Requirement
Measurement (ARM) tool [NASA 2006]. This tool measures the “goodness”
of a requirements specification on two levels, macro and micro. The macro
level indicators include:

• Size of requirements
• Text structure
• Specification depth
• Readability

Micro level indicators deal with specific language utilization, such as the
number of instances of “shall” vs. “should.”

How does the tool measure the size of requirements?

Size of requirements can be measured in terms of lines of text, number of
paragraphs, and certain ratios of key words, which can indicate level of
detail or conciseness.

How does the tool measure text structure?

Text structure is a kind of topological feature of the document that indicates
the number of statement identifiers at each hierarchical level. High-level require-
ments rarely have numbered statements below a depth of 4 (e.g., 3.2.1.5). Well-
organized documents have a pyramidal structure to the requirements. An
hourglass structure means too many administrative details. A diamond
structure indicate subjects introduced at higher levels were addressed at
different levels of detail (see Figure 3.17).

How does the tool measure specification depth?

Specification depth measures the number of imperatives found at each docu-
ment level.

7228_C003.fm Page 80 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements Specification 81

The number of lower level items that are introduced at a higher level by
an imperative followed by a continuance are also counted. The ratio of
specification depth/total lines of text indicates conciseness of the SRS.

How are reading statistics useful in assessing an SRS?

The readability statistics rely on traditional measures of human writing level
such as:

• Flesch Reading Ease Index — the number of syllables per word and
words per sentence.

• Flesch-Kincaid Grade Level Index — Flesch score converted to a
grade level (standard writing is about 7th or 8th grade).

• Coleman-Liau Grade Level Index — uses word length in characters
and sentence length in words to determine grade level.

• Bormuth Grade Level Index — also uses word length in characters
and sentence length in words to determine grade level.

Many of these indicators are calculated by conventional word processors.
Organizations can choose an appropriate level for any of these metrics as a
standard for software documentation.

3.8 Further Reading

Akao, Y. (Ed.). Quality Function Deployment, Productivity Press, Cambridge, MA, 1990.
Beyer, H. and Holtzblatt, K., Apprenticing with the customer: a collaborative approach

to requirements definition, Commun. ACM, 38(5), 45–52, 1995.
Coad, P. and E. Yourdon, Object-Oriented Analysis, 2nd ed., Yourdon Press, Upper

Saddle River, NJ, 1990.

FIGURE 3.17
Text structure: (a) desirable, (b) missing some mid-level details, (c) not enough low-level detail.

1, 2, 3

1.1, 1.2, 2.1, 2.2

1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1.1

1.1.1.1, 1.1.1.2, 1.1.2.1, 1.1.2.2, 1.2.1.1, ...

1, 2, 3, 4, 5, 6, 7, 8, 9, 10

1.1, 1.2, 2.1, 2.2

1.1.1, 2.1.1

1.1.1.1, 1.2.1.1

1.1.1.1.1, 1.1.1.1.2, 1.2.1.1.2

1, 2, 3

1.1, 1.2, 2.1, 2.2

1.1.1, 1.1.2, 1.2.1, 1.2.2, 2.1.1

1.1.1.1, 1.1.1.2, 1.1.2.1, 1.1.2.2, 1.2.1.1,...

1.1.1.1.1, 1.1.1.2.1, 1.1.2.2.1, 1.1.2.2.2

1.1.1.1.1.1, 1.1.2.2.1.1

7228_C003.fm Page 81 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

82 What Every Engineer Should Know about Software Engineering

Davis, A., Software Requirements: Objects, Functions and States, 2nd ed., Prentice-Hall,
Upper Saddle River, NJ, 1993.

Davis, A.M., The art of requirements triage, IEEE Computer, 36(3), 42–49, 2003.
Haag, S., Raja, M.K., and Schkade, L.L., Quality function deployment usage in soft-

ware development, Commun. ACM, 39(1), 41–49, 1996.
Karlsson, J., Managing software requirements using quality function deployment,

Software Q. J., 6(4), 311–326, 1997.
Laplante, P. A., Software Engineering for Image Processing Systems, CRC Press, Boca

Raton, FL, 2004.
NASA Goddard Spaceflight Center, Automated Requirement Measurement (ARM)

Tool, satc.gsfc.nasa.gov/tools/arm/, accessed September 29, 2006.
Nuseibeh, B. and Easterbrook, S., Requirements engineering: a roadmap, Proc. Intl.

Conf. Software Eng., Limerick, Ireland, June 2000, 35–46.
Sommerville, I., Software Engineering, 7th ed., Addison-Wesley, Boston, MA, 2005.
Wilson, W.M., “Writing Effective Requirements Specifications,” presented at the Soft-

ware Technology Conference, Salt Lake City, Utah, April 1997.
Zave, P., Classification of research efforts in requirements engineering, ACM Comp.

Surveys, 29(4), 315–321, 1997.

7228_C003.fm Page 82 Tuesday, February 27, 2007 4:29 PM

© 2007 by Taylor & Francis Group, LLC

http://www.satc.gsfc.nasa.gov/tools/arm/

83

4

Designing Software

Outline

• Software design concepts
• Software design modeling
• Pattern-based design
• Design documentation

4.1 Introduction

Mature engineering disciplines have handbooks that describe successful
solutions to known problems. For example, automobile designers don’t
design cars using the laws of physics; they adapt adequate solutions from
the handbook known to work well enough.

The extra few percent of performance available by starting from scratch
typically is not worth the cost.

Software engineering has been criticized for not having the same kind of
underlying rigor as other engineering disciplines. But while it may be true
that there are few formulaic principles, there are fundamental rules that form
the basis of sound software engineering practice. These rules can form the
basis of the handbook for software engineering.

If software is to become an engineering discipline, successful practices
must be systematically documented and widely disseminated. The following
sections describe the most general and prevalent of these concepts and
practices for software design.

7228_C004.fm Page 83 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

84

What Every Engineer Should Know about Software Engineering

4.2 Software Design Concepts

What is software design?

Software design involves identifying the components of the software design,
their inner workings, and their interfaces from the SRS. The principle artifact
of this activity is the software design specification (SDS), which is also referred
to as a software design description (SDD).

What are the principal activities of software design?

During the design activity, the engineer must design the software architec-
ture, which involves any set of the following tasks.

• Performing hardware/software tradeoff analysis.
• Designing interfaces to external components (hardware, software,

and user interfaces).
• Designing interfaces between components.
• Making the determination between centralized or distributed pro-

cessing schemes.
• Determining concurrency of execution.
• Designing control strategies.
• Determining data storage, maintenance, and allocation strategy.
• Designing databases, structures, and handling routines.
• Designing the startup and shutdown processing.
• Designing algorithms and functional processing.
• Designing error processing and error message handling.
• Conducting performance analyses.
• Specifying physical location of components and data.
• Creating documentation for the system
• Conducting internal reviews.
• Developing the detailed design for the components identified in the

software architecture.
• Documenting the software architecture in the form of the SDS.
• Presenting the detail design information at a formal design

review.

This is an intimidating set of tasks that is further complicated as many of
these must occur in parallel or be iterated several times. Moreover, because
clearly more than one individual must be involved in these activities, prob-
lems of working on a project team come into play.

7228_C004.fm Page 84 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

85

There are no rules of thumb

per se for conducting these tasks. Instead, it
takes many years of practice, experience, learning from the experience of others,
and good judgment to guide the software engineer through this maze of tasks.

4.2.1 Basic Software Engineering Principles

How do rigor and formality enter into software engineering?

Because software development is a creative activity, there is an inherent tendency
toward informal

ad hoc

 techniques in software specification, design, and coding.
But the informal approach is contrary to good software engineering practices.

Rigor in software engineering requires the use of mathematical techniques.
Formality is a higher form of rigor in which precise engineering approaches
are used. For example, imaging systems require the use of rigorous mathe-
matical specification in the description of image acquisition, filtering,
enhancement, etc. But the existence of mathematical equations in the require-
ments or design does not imply an overall formal software engineering
approach. In the case of the baggage inspection system, formality further
requires that there be an underlying algorithmic approach to the specifica-
tion, design, coding, and documentation of the software.

What is separation of concerns?

Separation of concerns is a kind of divide and conquer strategy that software
engineers use. There are various ways in which separation of concerns can
be achieved. In terms of software design and coding, it is found in modu-
larization of code and in object-oriented design. There may be separation in
time; for example, developing a schedule for a collection of periodic com-
puting tasks with different periods.

Yet another way of separating concerns is in dealing with qualities. For
example, it may be helpful to address the fault-tolerance of a system while
ignoring other qualities. However, it must be remembered that many of the
qualities of software are interrelated, and it is generally impossible to affect
one without affecting the other, possible adversely.

Can modular design lead to separation of concerns?

Some separation of concerns can be achieved in software through modular
design. Modular design, first proposed by Parnas [1972], involves the decom-
position of software behavior in encapsulated software units. Separation of
concerns can be achieved in either object-oriented or procedurally oriented
programming languages.

Modularity is achieved by grouping together logically related elements,
such as statements, procedures, variable declarations, object attributes, and
so on in increasingly greater levels of detail (Figure 4.1).

The main objectives in seeking modularity are to foster high cohesion and
low coupling. With respect to the code units, cohesion represents intra-module

7228_C004.fm Page 85 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

86

What Every Engineer Should Know about Software Engineering

connectivity and coupling represents inter-module connectivity. Coupling
and cohesion can be illustrated informally as in Figure 4.2, which shows
software structures with high cohesion and low coupling (Figure 4.2a) and
low cohesion and high coupling (Figure 4.2b). The inside squares represent
statements or data, and the arcs indicate functional dependency.

What is cohesion?

Cohesion relates to the relationship of the elements of a module. Constan-
tine and Yourdon identified seven levels of cohesion in order of strength
[Pressman 2005]:

Coincidental — parts of the module are not related but are simply
bundled into a single module.

Logical — parts that perform similar tasks are put together in a module.

FIGURE 4.1

Modular decomposition of code units. The arrows represent inputs and outputs in the proce-
dural paradigm. In the object-oriented paradigm, they represent method invocations or messages.
The boxes represent encapsulated data and procedures in the procedural paradigm. In the
object-oriented paradigm they represent classes.

7228_C004.fm Page 86 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

87

(a)

(b)

FIGURE 4.2

Software structures with high cohesion and low coupling (a) and low cohesion and high coupling
(b). The inside squares represent statements or data, and the arcs indicate functional dependency.

7228_C004.fm Page 87 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

88

What Every Engineer Should Know about Software Engineering

Temporal — tasks that execute within the same time span are brought
together.

Procedural — the elements of a module make up a single control sequence.
Communicational — all elements of a module act on the same area of

a data structure.
Sequential — the output of one part of a module serves as input for

another part.
Functional — each part of the module is necessary for the execution of

a single function.

High cohesion implies that each module represents a single part of the
problem solution. Therefore, if the system ever needs modification, then the
part that needs to be modified exists in a single place, making it easier to
change.

What is coupling?

Coupling relates to the relationships between the modules themselves. There
is great benefit in reducing coupling so that changes made to one code unit
do not propagate to others; that is, they are hidden. This principle of “infor-
mation hiding,” also known as Parnas partitioning, is the cornerstone of all
software design. Low coupling limits the effects of errors in a module (lower
“ripple effect”) and reduces the likelihood of data integrity problems. In
some cases, however, high coupling due to control structures may be neces-
sary. For example, in most graphical user interfaces control coupling is
unavoidable, and indeed desirable.

Coupling has also been characterized in increasing levels as follows:

No direct coupling — all modules are completely unrelated.
Data — when all arguments are homogeneous data items; that is, every

argument is either a simple argument or data structure in which all
elements are used by the called module.

Stamp — when a data structure is passed from one module to another,
but that module operates on only some of the data elements of the
structure.

Control — one module passes an element of control to another; that is,
one module explicitly controls the logic of the other.

Common — if two modules both have access to the same global data.
Content — one module directly references the contents of another [Parnas

1972].

To further illustrate both coupling and cohesion, consider the class struc-
ture for a widely used commercial imaging application program interface
(API) package, depicted in Figure 4.3.

7228_C004.fm Page 88 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

D
esigning Softw

are

89

FIGURE 4.3

The class structure for the API of a widely deployed imaging package.

0..*

interface

WritablePropertySource

ColorSpace

ColorSpaceJAI

IHSColorSpace

ContextualRenderedImageFactory

CRIFImpl

UnpackedImageData

NullCRIF

interface

PropertyChangeEmitter

Serializable

ParameterListImpl

Serializable

LookupTableJAI

ColorCube

interface

ParameterListDescriptor

Serializable

interface

PropertyGenerator

WarpQuadratic

WarpPolynomialWarpGridWarpPerspective

Serializable

Warp

PixelAccessor

PackedImageData

Serializable

ROI

interface

RegistryElementDescriptor

interface
OperationDescriptor

Serializable
OperationDescriptorImpl

ParameterBlock

ParameterBlockJAI

Serializable

ParameterListDescriptorImpl

Serializable

EnumeratedParameter

interface

ParameterList

WritablePropertySourceImpl

java.util.List

RenderedImage

Serializable

RenderedImageList

RemoteImage

GeometricOpImage

InterpolationTable

+InterpolationBicubic

+SourcelessOpImage

CollectionChangeEvent

BorderExtenderZero

PropertyChangeListener

CollectionOp

RenderableImage

Serializable

RenderableOp

PropertyChangeSupport

PropertyChangeSupportJAI

RenderableImage

RenderableImageAdapter

Serializable

Interpolation

ScaleOpImage

ImageMIPMapRenderableImage

Serializable
MultiResolutionRenderableImage

IntegerSequence

interface

TileRequest

NullOpImage

interface

ImageJAI

Externalizable

OperationRegistry

Serializable

Histogram

interface

OperationRegistrySpi

interface

PropertySource

Cloneable

Serializable

PerspectiveTransform

Serializable

PropertySourceImpl

Serializable

OperationNodeSupport

JAI

Observable

Serializable

DeferredData

ROIShape

RenderedImage

PlanarImage

Serializable

BorderExtender

OpImage

BorderExtenderCopy

RenderedImageAdapter

WritableRenderedImage

WritableRenderedImageAdapter

Collection

CollectionImage

interface

RenderableCollectionImageFactory

TileObserver

SnapshotImage

interface

CollectionImageFactory

1.1, jai

1.1, jai

7228_C
004.fm

 Page 89 T
uesday, M

arch 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

90

What Every Engineer Should Know about Software Engineering

The class diagram was obtained through design recovery. The class names
are not readable in the figure, but it is not the intention to identify the
software. Rather, the point is to illustrate the fact that there is a high level
of coupling and low cohesion in the structure. This design would benefit
from refactoring; that is, performing a behavior preserving code transforma-
tion, which would achieve higher cohesion and lower coupling.

What is Parnas partitioning?

Software partitioning into software units with low coupling and high cohe-
sion can be achieved through the principle of information hiding. In this
technique, a list of difficult design decisions or things that are likely to change
is prepared. Code units are then designated to “hide” the eventual imple-
mentation of each design decision or feature from the rest of the system.
Thus, only the function of the code units is visible to other modules, not the
method of implementation. Changes in these code units are therefore not
likely to affect the rest of the system.

This form of functional decomposition is based on the notion that some
aspects of a system are fundamental, whereas others are arbitrary and
likely to change. Moreover, those arbitrary things, which are likely to
change, contain “information.” Arbitrary facts are hard to remember and
usually require lengthier descriptions; therefore, they are the sources of
complexity.

Parnas partitioning “hides” the implementation details of software fea-
tures, design decisions, low-level drivers, etc., in order to limit the scope of
impact of future changes or corrections. By partitioning things likely to
change, only that module need be touched when a change is required with-
out the need to modify unaffected code.

This technique is particularly applicable and useful in embedded systems.
Because they are so directly tied to hardware, it is important to partition and
localize each implementation detail with a particular hardware interface.
This allows easier future modification due to hardware interface changes
and reduces the amount of code affected.

How do I do Parnas partitioning?

The following steps can be used to implement a design that embodies infor-
mation hiding.

Begin by characterizing the likely changes.
Estimate the probabilities of each type of change.
Organize the software to confine likely changes to a small amount of code.
Provide an “abstract interface” that abstracts from the differences.
Implement “objects;” that is, abstract data types and modules that hide

changeable data structures.

7228_C004.fm Page 90 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

91

These steps reduce coupling and increase module cohesion. Parnas also
indicated that although module design is easy to describe in textbooks, it is
difficult to achieve. He suggested that extensive practice and examples are
needed to illustrate the point correctly [Parnas 1972].

Can you give an example of Parnas partitioning?

Consider a portion of the display function of the baggage inspection system
shown in hierarchical form in Figure 4.4. It consists of graphics that must be
displayed (for example, a representation of the conveyor system, units mov-
ing along it, sensor data, etc.), which are essentially composed of circles and
boxes. Different objects can also reside in different display windows. The
implementation of circles and boxes is based on the composition of line
drawing calls. Thus, line drawing is the most basic hardware-dependent
function. Whether the hardware is based on pixel, vector, turtle, or other
type of graphics does not matter; only the line drawing routine needs to be
changed. Hence, the hardware dependencies have been isolated to a single
code unit.

If when designing the software modules, increasing levels of detail are
deferred until later, then the software approach is top-down. If, instead, the
design detail is dealt with first and then increasing levels of abstraction are
used to encapsulate those details, then the approach is bottom-up.

For example, in Figure 4.4, it would be possible to design the software by
first describing the characteristics of the various components of the system
and the functions that are to be performed on them, such as opening, closing,
and sizing windows. Then the window functionality could be decomposed
into its constituent parts such as boxes and text. These could be decomposed
still further; for example, all boxes consist of lines and so on. The top-down

FIGURE 4.4

Parnas partitioning of graphics rendering software.

Imageswindow

box

line

circle

line

pixel, vector,
turtle, etc.

7228_C004.fm Page 91 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

92

What Every Engineer Should Know about Software Engineering

refinement continues until the lowest level of detail needed for code devel-
opment has been reached.

Alternatively, it is possible to begin by encapsulating the details of the
most volatile part of the system, the hardware implementation of a single
line or pixel, into a single code unit. Then working upward, increasing levels
of abstraction are created until the system requirements are satisfied. This is
a bottom-up approach to design.

Can you do Parnas partitioning in object-oriented design?

Yes. In the object-oriented paradigm, Parnas partitioning is a form of a design
technique called protected variation, which is one of the “GRASP” principles
(to be discussed in Section 4.4).

How can changes be anticipated in software designs?

It has been mentioned that software products are subject to frequent change
either to support new hardware or software requirements or to repair defects.
A high maintainability level of the software product is one of the hallmarks
of outstanding commercial software.

Engineers know that their systems are frequently subject to changes in
hardware, algorithms, and even application. Therefore, these systems must
be designed in such a way to facilitate changes without degrading the other
desirable properties of the software.

Anticipation of change can be achieved in the software design through
appropriate techniques, through the adoption of an appropriate software
life-cycle model and associated methodologies, and through appropriate
management practices.

How does generality apply to software design?

In solving a problem, the Principle of Generality can be stated as the intent to
look for the more general problem that may be hidden behind a specialization
of that problem. In an obvious example, designing the baggage inspection
system is less general than designing it to be adaptable to a wide range of
inspection applications. Although generalized solutions may be more costly
in terms of the problem at hand, in the long run the costs of a generalized
solution may be worthwhile.

Generality can be achieved through a number of approaches associated
with procedural and object-oriented paradigms. For example, in procedural
languages, Parnas’ information hiding can be used. In object-oriented lan-
guages, the Liskov Substitution Principle can be used. Both approaches will
be discussed shortly.

How does incrementality manifest in software design?

Incrementality involves a software approach in which progressively larger
increments of the desired product are developed. Each increment provides
additional functionality, which brings the product closer to the final one.

7228_C004.fm Page 92 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

93

Each increment also offers an opportunity for demonstration of the product
to the customer for the purposes of gathering requirements and refining the
look and feel of the product.

4.2.2 Software Architectures

What is a software architecture?

This is a relatively new concept in software engineering. A software archi-
tecture is the structure and organization by which modern system compo-
nents and subsystems interact to form systems. The software architecture is
the embodiment of the properties of systems that can best be designed and
analyzed at the system level [Kruchten et al. 2006].

The work of Parnas [1972], particularly his notions of information hiding
and the object-oriented equivalent of separation of concerns, provides the
theoretical foundations of software architecture.

What are some typical software architectures?

Garlan and Shaw [1994] identify the following common architectural styles:

• pipes and filters
• objects
• implicit invocation
• layering
• repositories
• interpreters

It is beyond the scope of this text to describe these architectures, although
Chapter 6 describes interpreters in some detail.

Other architectures include the more “mundane”:

• distributed architectures such as client/server
• main program/subroutine organizations
• state-based architectures using FSMs
• interrupt driven reactive systems, such as those used in process-

control (for example, the baggage inspection system)
• domain specific architectures, sometimes called “reference” architec-

tures because they are typical of a certain application domain

Off-the-shelf or “precooked” architectures that have been or will be
mentioned in this text include the Java-based J2EE architecture, Microsoft’s.
NET architecture, and the open source Struts (Model-View-Controller)
architectures.

7228_C004.fm Page 93 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

94

What Every Engineer Should Know about Software Engineering

4.3 Software Design Modeling

What standard methodologies can be used for software design?

Two methodologies, process- or procedural-oriented and object-oriented
design (OOD), are related to SA and OOA, respectively, and can be used to
begin to perform the design activities from the SRS produced by either SA
or structured design (SD). Each methodology seeks to arrive at a model
containing small, detailed components.

What is procedural-oriented design?

Procedural-oriented design methodologies, such as SD, involve top-down
or bottom-up approaches centered on procedural languages such as C and
Fortran. The most common of these approaches utilizes design decomposi-
tion via Parnas partitioning.

Object-oriented languages provide a natural environment for information
hiding, through encapsulation. The state, or data, and behavior, or methods,
of objects are encapsulated and accessed only via a published interface or
private methods. For example, in image processing systems, one may wish
to define a class of type pixel, with characteristics (attributes) describing
its position, color, brightness, and so on, and operations that can be applied
to a pixel such as add, activate, and deactivate. The engineer may then
wish to define objects of type image as a collection of pixels with other
attributes. In some cases, expression of system functionality is easier to do
in an object-oriented manner. We will discuss object-oriented design
shortly.

What is SD?

SD is the companion methodology to SA. SD is a systematic approach con-
cerned with the specification of the software architecture and involves a
number of techniques, strategies, and tools. SD provides a step-by-step
design process that is intended to improve software quality, reduce risk
of failure, and increase reliability, flexibility, maintainability, and effectiveness.

What is the difference between SA and SD?

SA is related to SD in the same way that a requirements representation is
related to the software design; that is, the former is functional and flat and
the latter is modular and hierarchical. Data structure diagrams are then used
to give information about logical relationships in complex data structures.

How do I go from SA to SD?

The transition mechanisms from SA to SD are manual and involve signif-
icant analysis and trade-offs of alternative approaches. Normally, SD proceeds

7228_C004.fm Page 94 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

95

from SA in the following manner. Once the context diagram is drawn, a
set of DFDs is developed. The first DFD, the Level 0 diagram, shows the
highest level of system abstraction. Decomposing processes to lower and
lower levels until they are ready for detailed design renders new DFDs
with successive levels of increasing detail. This decomposition process is
called

leveling

.
In a typical DFD, boxes represent terminators that are labeled with a noun

phrase that describes the system, agent, or device from which data enters or
exits. Each process, depicted by a circle, is labeled as a verb phrase describing
the operation to be performed on the data although it may be labeled with
the name of a system or operation that manipulates the data. Solid arcs are used
to connect terminators to processes and between processes to indicate the
flow of data through the system. Each arc is labeled with a noun phrase that
describes the data. Dashed arcs are discussed later. Parallel lines indicate
data stores, which are labeled by a noun phrase naming the file, database,
or repository where the system stores the data.

Each DFD should have between 3 and 9 processes only. The descriptions
for the lowest level, or primitive, processes are called process specifications

,

or P-Specs, and are expressed in either structured English, pseudo-code, deci-
sion tables, or decision trees and are used to describe the logic and policy of
the program (Figure 4.5).

FIGURE 4.5

Context diagram evolution from context diagram to Level 0 DFD to Level 1 DFD and, finally,
to a P-Spec, which is suitable for coding.

Context Diagram

B

C
Y

X Z
A

System

DFD Level 0 DFD Level 1

Part1

Part3

Part2

X

Y

d
f

e Z Part3.1

Part3.2
Result

e

f

Z

P_Spec 3.2

Result:
Z:

data_in;
data_out;

Body
....

7228_C004.fm Page 95 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

96

What Every Engineer Should Know about Software Engineering

Can you give an example?

Returning to the baggage inspection system example, Figure 4.6 shows
the Level 0 DFD. Here the details of the system are given at a high level.
First, the system reacts to the arrival of a new product by confirming that
the image data is available. Next, the system captures the image by buff-
ering the raw data from the capture device to a file. Preprocessing of the
raw data is performed to produce an image frame to be used for classifi-
cation and generation of the appropriate control signals to the conveyor
system.

Proceeding to the next level provides more detail for Processes 1, 2, 3, and
4. Process 1 is essentially an interrupt service routine assigned to a photo-
diode detector that senses when a new product for inspection reaches the
designated point on the conveyer. Process 2 is a buffering routine whose
characteristics depend on the specifications of the camera. Hence, without
knowing these details, it is not possible to delve deeper into the design.

Figure 4.7 depicts the Level 1 DFD for Process 3. Notice how the internal
Processes 3.1 and 3.2 are labeled to denote that they are a finer degree of
detail of Process 3 shown in the Level 0 diagram. Successive levels of detail
will follow a similar numbering system (e.g., 3.1.1, 3.1.2). This convention
provides simple traceability from specification through design and on to the
code. Continuing with the design example, Figure 4.8 shows the Level 1
DFD for Process 4.

FIGURE 4.6

The Level 0 DFD for the baggage inspection system. The dashed arcs represent control flows,
which are described later.

Capture

Level 0

Detect

Classify

Pre-
process

2

1

3

4

raw_binary_ image

frame
image

reject

accept

new_product_event

confirm_event

raw_binary_ image

7228_C004.fm Page 96 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

97

What is a data dictionary?

A data dictionary is a repository of data about data that describes every data
entity in the system. The data dictionary is an essential component of the SD.
The data dictionary includes entries for data flows, control flows, data stores,
data elements, and control elements. Each entry is identified by name, range,
rate, and units. The dictionary is organized alphabetically for ease of use.

FIGURE 4.7

The Level 1 DFD for Process 3, pre-processing, of the baggage inspection system.

FIGURE 4.8

The Level 1 DFD for Process 4, classification, of the baggage inspections system.

raw_binary_image

Threshold

3.1

binarize

3.2

thresholded image

frame

Edge
Detection

4.1

frame

Syntactic Pattern
Recognition

4.2

Rejection
Control

4.3

edge
grammar
model

data log

accept_reject

reject

accept

7228_C004.fm Page 97 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

98

What Every Engineer Should Know about Software Engineering

What does a data dictionary look like?

There is no standard format, but every design element should have an entry in
the data dictionary. Most CASE tools provide the data dictionary feature. For
example, each entry could be organized to contain the following information:

Type
Name
Alias
Description
Found in

In particular, for the baggage inspection system, one entry might look like this:

Type:

 Data flow

Name:

Binarized image

Alias:

 Image

Description:

The raw binary image after it has been subjected to
thresholding …

Found in

:

The missing information for modules “Found in” will be added as the code
is developed. In this way, data dictionaries help to provide substantial trace-
ability between code elements.

Are there any problems with SDs?

There are several apparent problems in using SD to model the baggage
inspection system, including difficulty in modeling time and events. For
example, what if the baggage inspection system captures a new image in
parallel with preprocessing of the last image capture?* Concurrency is not
easily depicted in this form of SASD.

Another problem arises in the context diagram. Control flows are not easily
translated directly into code, such as “reject” and “accept,” because they are
hardware dependent. In addition, the control flow does not really make sense
because there is no connectivity between portions of it, a condition known
as “floating.”

Details of the detector and camera hardware also need to be known for
further modeling of Process 1. What happens if the hardware changes? What
if a different strategy for classification in Process 2 is needed? In the case of
Process 3 (preprocessing), what if the algorithm or even the sensitivity levels
change because of the installation of new hardware? In each case the changes

* This scenario would be desirable if the reject mechanism were further down the inspection line
and the conveyor system were running at a high rate.

7228_C004.fm Page 98 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

99

would need to propagate into the Level 1 DFD for each process, any subse-
quent levels, and, ultimately, the code.

Clearly making and tracking any of these changes is fraught with danger.
Moreover, any change means that significant amounts of code would need
to be rewritten, recompiled, and properly linked with the unchanged code
to make the system work. None of these problems arise using the object-
oriented paradigm.

How does SASD deal with timing?

In SASD, arcs made of dashed lines indicate the flow of control information
and solid bars indicate “stored” control commands (control stores), which
are left unlabeled.

Additional tools, such as Mealy FSMs, are used to represent the encapsu-
lated behavior and process activations. The addition of the new control flows
and control stores allows for the creation of a diagram containing only these
elements. This is called a control flow diagram (CFD). These CFDs can be
decomposed into control specifications (C-Specs), which can then be
described by an FSM. The relationship between the control and process
models is shown in Figure 4.9.

Can I use FSMs to derive a design?

Yes. One of the advantages of using FSMs in the SRS and later in the software
design is that they are easily converted to code and test cases.

FIGURE 4.9

The relationship between the control and process model.

Process Model

DFDs

P-SPECs

Control Model

CSPECs

CFDs

Data outputsData inputs

Control inputsControl outputs

Process
activations

Data
conditions

7228_C004.fm Page 99 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

100

What Every Engineer Should Know about Software Engineering

Can you give me an example?

Again consider the baggage inspection system. The tabular representation
of the state transition function (Table 3.2), which describes the system’s high-
level behavior, can be easily transformed into a design using the pseudo-
code shown in Figure 4.10.

Each procedure associated with the three operational modes (operational,
diagnostic, and calibration) will be structured code that can be viewed as
executing in one of any number of process states at an instant in time. This
functionality can be described by the pseudo-code shown in Figure 4.11.

The pseudo-code shown in Figure 4.10 and Figure 4.11 can be coded easily
in any procedural language.

What is OOD?

OOD is an approach to systems design that views the system components
as objects and data processes, control processes, and data stores that are
encapsulated within objects. Early forays into OOD were led by attempts to
reuse some of the better features of conventional methodologies, such as the
DFDs and entity relationship models by reinterpreting them in the context
of object-oriented languages. This approach can be seen in the UML. Over the

FIGURE 4.10

Pseudo-code that can implement the system behavior of the baggage inspection system depicted
in Table 3.2.

7228_C004.fm Page 100 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

101

last several years, the object-oriented framework has gained significant
acceptance in the software engineering community.

What are the benefits of object-orientation?

Previous discussions highlighted some considerations concerning the appro-
priateness of the object-oriented paradigm to various application areas. The
real advantages of applying object-oriented paradigms are the future exten-
sibility and reuse that can be attained, and the relative ease of future changes.

Software systems are subject to near-continuous change: requirements
change, merge, emerge, and mutate; target languages, platforms, and archi

-

tectures change; and, most significantly, employment of the software in
practice changes. This flexibility places considerable burden on the software
design: how can systems that must support such widespread change be built
without compromising quality? There are several basic rules of OOD that
help us achieve these benefits.

What are the basic rules of OOD?

The following list of rules is widely accepted. All of these rules, except where
noted, are from Martin [2002].

The Open/Closed Principle

: Software entities (classes, modules, etc)
should be open for extension, but closed for modification [Meyer 2000].

The Liskov Substitution Principle

: Derived classes must be usable
through the base class interface without the need for the user to
know the difference [Liskov and Wing 1994].

FIGURE 4.11

FSM code for executing a single operational process of the baggage inspection system. Each
process can exist in multiple states, allowing for partitioning of the code into appropriate modules.

7228_C004.fm Page 101 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

102

What Every Engineer Should Know about Software Engineering

The Dependency Inversion Principle

: Details should depend upon
abstractions. Abstractions should not depend upon details.

The Interface Segregation Principle

: Many client specific interfaces are
better than one general purpose interface.

The Reuse/Release Equivalency Principle

: The granule of reuse is the
same as the granule of release. Only components that are released
through a tracking system can be effectively reused.

The Common Closure Principle

: Classes that change together, belong
together.

The Common Reuse Principle

: Classes that aren't reused together
should not be grouped together.

The Acyclic Dependencies Principle

: The dependency structure for
released components must be a directed acyclic graph. There can be
no cycles.

The Stable Dependencies Principle

: Dependencies between released
categories must run in the direction of stability. The dependee must
be more stable than the depender.

The Stable Abstractions Principle

: The more stable a class category is,
the more it must consist of abstract classes. A completely stable
category should consist of nothing but abstract classes.

Once and only once (OAOO):

 Any aspect of a software system — be
it an algorithm, a set of constants, documentation, or logic — should
exist in only one place [Beck 1999].

A detailed discussion of these can be found in the aforementioned references.

What is the UML?

The UML is widely accepted as the

de facto

 standard language for the spec-
ification and design of software-intensive systems using an object-oriented
approach. By bringing together the “best-of-breed” in specification tech-
niques, the UML has become a family of languages (diagram types). Users
can choose which members of the family are suitable for their domain.

How does the UML help us with software design?

The UML is a graphical language based upon the premise that any system
can be composed of communities of interacting entities and that various
aspects of those entities, and their communication, can be described using
the set of nine diagrams: use case, sequence, collaboration, statechart, activ-
ity, class, object, component, and deployment. Of these, five render behav-
ioral views (use case, sequence, collaboration, statechart, and activity) while
the remaining are concerned with architectural or static aspects.

With respect to embedded systems, these behavioral models are of interest.
The use case diagrams document the dialog between external actors and the

7228_C004.fm Page 102 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

103

system under development. Sequence and collaboration diagrams describe
interactions between objects. Activity diagrams illustrate the flow of control
between objects. Statecharts represent the internal dynamics of active objects.
The principle artifacts generated when using the UML and their relationships
are shown in Figure 4.12.

While not aimed specifically at embedded system design, some notion
of time has been included in the UML through the use of sequence
diagrams.

What is the UML 2.0?

UML 2.0 is a revision to the UML that incorporates several improvements.
At this writing, UML 2.0 is only beginning to replace UML as the

de facto

standard. These improvements include:

• New base classes that provide the foundation for UML modeling
constructs.

• Object constraint language, a formal method that can be used to
better describe object interactions.

• An improved diagram meta-model that allows users to model sys-
tems from four viewpoints:
• Static models (e.g., class diagrams)
• Interaction (e.g., using sequence diagrams)

FIGURE 4.12

The UML and its role in specification and design. (Adapted from Larman, C.,

Applying UML
and Patterns,

 Prentice-Hall, Englewood Cliffs, NJ, 2002.)

Application
Modeling

Requirements

Design

Use-Case Model

Domain Model

Design Model

Concepts, attributes
and associations

Software classes in domain
layer of design from
concepts in domain model

State changes in domain objects,
attributes and associations

Cl

Cl

Cl

Class1

Class2

Class3

Class4

:System

bar()

System

use
cases

use
case

diagrams

system
sequence
diagrams

system
operation
contracts

:System

foo()

7228_C004.fm Page 103 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

104

What Every Engineer Should Know about Software Engineering

• Activity (i.e., to describe the flow of activities within a system)
• State (i.e., to create FSMs using statecharts)

These viewpoints are intended to be complementary [France et al. 2006].

Can you give an example of an OOD?

Appendix B contains an SDS for the wet well control system. Appendix C
contains the object models for the wet well control system.

4.4 Pattern-Based Design

What is a pattern?

Informally, a pattern is a named problem-solution pair that can be applied
in new contexts, with advice on how to apply it in those situations. The
formal definition of a pattern is not consistent in the literature.

Patterns can be distinguished as three types: architectural, design, and
idioms. An architectural pattern occurs across subsystems, a design pattern
occurs within a subsystem but is independent of the language, and an idiom
is a low-level pattern that is language specific.

What is the history of patterns?

Christopher Alexander first introduced the concept of design patterns for
architecture and town planning. He realized that the same problems were
encountered in the design of buildings and once an elegant solution was
found it could be applied repeatedly. “Each pattern describes a problem
which occurs over and over again in our environment, and then describes
the core of the solution to that problem, in such a way that you can use this
solution a million times over, without ever doing it the same way twice”
[Alexander et al. 1977].

Patterns were first applied to software in the 1980s by Ward Cunningham,
Kent Beck, and Jim Coplien. Then the famous “Gang of Four” book,

Design
Patterns: Elements of Reusable Object-Oriented Software

 [Gamma et al. 1995]
popularized the use of patterns.

Why do we need patterns?

Developing software is hard and developing reusable software is even harder.
Designs should be specific to the current problem, but general enough to
address future problems and requirements. Experienced designers know not
to solve every problem from first principles, but to reuse solutions encountered
previously. They find recurring patterns and then use them as a basis for new
designs. This is simply an embodiment of the Principle of Generality.

What are the benefits of patterns?

First, design patterns help in finding appropriate objects, in determining object
granularity, and in designing in anticipation of change. At the design level,

7228_C004.fm Page 104 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software

105

design patterns enable large-scale reuse of software architectures by capturing
expert knowledge and making this expertise more widely available. Finally,
patterns help improve developer vocabulary (I am always amazed to listen to
a group of software engineers with substantial pattern knowledge discuss
designs in what seems like a different language). While the terminology might
be unfamiliar to those not knowing the particular pattern language, the effi-
ciency of information exchange is very high. Some people also contend that
learning patterns can help in learning object-oriented technology.

What do patterns look like?

In general, a pattern has four essential elements:

a name
a problem description
a solution to the problem
the consequences of the solution

The “name” is simply a convenient handle for the pattern itself. Some of
the names can be rather humorous (such as “flyweight” and “singleton”),
but are intended to evoke an image to help remind the user of the intent of
the pattern.

The “problem” part of the pattern template states when to apply the
pattern; that is, it explains the problem and its context. The problem state-
ment may also describe specific design problems such as how to represent
algorithms as objects. The problem statement may also describe class struc-
tures that are symptomatic of an inflexible design and possibly include
conditions that must be met before it makes sense to apply the pattern.

The “solution” describes the elements that make up the design, although
it does not describe a particular concrete design or implementation. Rather,
the solution provides how a general arrangement of objects and classes
solves the problem.

Finally, “consequences” show the results and trade-offs of applying pat-
tern. It might include the impact of the pattern on space and time, language
and implementation issues, and flexibility, extensibility, and portability. The
consequences are critical for evaluating alternatives.

What are the “GRASP” patterns?

The GRASP (general principles in assigning responsibilities) patterns are a
fairly high-level set of patterns for design set forth by Craig Larman [2002].
The GRASP patterns are:

• Creator
• Controller
• Expert

7228_C004.fm Page 105 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

106

What Every Engineer Should Know about Software Engineering

• Low coupling
• High cohesion
• Polymorphism
• Pure fabrication
• Indirected
• Protected variations

Let us look at each of these patterns briefly, giving only name, problem, and
solution in an abbreviated pattern template. The consequence of using each
of these, generally, is a vast improvement in the OOD.

Name:

Creator

Problem:

Who should be responsible for creating a new instance of
some class?

Solution:

 Assign Class B the responsibility to create an instance of class
A if one or more of the following is true:
• B aggregates A objects.
• B contains A objects.
• B records instances of A objects.
• B closely uses A objects.

B has the initializing data that will be passed to A when it is created.
For example, in the baggage inspection system, the class “camera” would

create objects from the class baggage_image.

Name: Controller
Problem: Who should be responsible for handling an input system event?
Solution: Assign the responsibility for receiving or handling a system

event message to a class that represents the overall system or a single
use case scenario for that system.

In the baggage inspection system, the “baggage_inspection_system” class
would be responsible for new_baggage events.

Name: Expert
Problem: What is a general principle of assigning responsibilities to objects?
Solution: Assign a responsibility to the information expert — the class

that has the information necessary to fulfill the responsibility.

For example, in the baggage inspection system the class threat_detector
would be responsible for identifying objects of the class baggage as being a
possible threat.

7228_C004.fm Page 106 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software 107

Name: Low Coupling
Problem: How do we support low dependency, low change impact, and

increased reuse?
Solution: Assign the responsibility so the coupling remains low.

Applying separation of concerns or Parnas partitioning principles would be
helpful here.

Name: Polymorphism
Problem: How can we design for varying, similar cases?
Solution: Assign a polymorphic operation to the family of classes for

which the cases vary.

For example, in the baggage inspection system we probably have different
baggage object types (for example, suitcase, golf club case, baby seat, etc.) and
the algorithm for inspecting the images derived from each of these should be
different. But the method that scans each image should be determined at
run-time depending upon the object, not through the use of a case statement.

Name: Pure fabrication
Problem: Where can we assign responsibility when the usual options

based on Expert lead to high coupling and low cohesion?
Solution: Create a “behavior” class whose name is not necessarily in-

spired by the domain vocabulary in order to reduce coupling and
increase cohesion.

For example, in the baggage inspection system we might contrive a hobo
class to describe a particular type of luggage that is nonconventional (for
example, a cardboard box, a laundry bag, or other unusual container).

Name: Indirection
Problem: How do we reduce coupling?
Solution: Assign a responsibility to an intermediate object to decouple

two components.

Here we might create a second_look class to deal with baggage that
might need re-imaging.

Name: Protected Variations
Problem: How can we design components so that the variability in these

elements does not have an undesirable impact on other elements?
Solution: Identify points of likely variation or instability; assign respon-

sibilities to create a stable interface around them.

7228_C004.fm Page 107 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

108 What Every Engineer Should Know about Software Engineering

This principle is essentially the same as information hiding and the open-
closed principle.

What are the Gang of Four patterns?

This set of design patterns was first introduced by Gamma, Helm, Johnson,
and Vlissides (the “Gang of Four” or “GoF”) and popularized in a well-
known text [Gamma et al. 1995]. They describe 23 patterns organized by
creational, behavioral, or structural intentions (Table 4.1).

Many of the GoF patterns perfectly illustrate the convenience of the name
in suggesting the application for the pattern. For example, the flyweight pat-
tern provides a design strategy when a large number of small-grained objects
will be needed, such as baggage objects in the baggage inspection system. The
singleton pattern is used when there will be a single instance of an object, such
as the single instance of a baggage inspection system object. In fact, the sin-
gleton pattern can be used as the base class for any system object.

 Explication of each pattern is beyond the scope of this text. Table 4.1 is
provided for illustration only. Interested readers are encouraged to consult
Gamma et al [1995]. However, the three Gang of Four pattern types will be
discussed in general terms.

What are creational patterns?

Creational patterns are connected with object creation and they allow for the
creation of objects without actually knowing what you are creating beyond
the interfaces. Programming in terms of interfaces embodies information
hiding. Therefore, we try to write as much as possible in terms of interfaces.

What are structural patterns?

Structural patterns are concerned with organization classes so that they can
be changed without changing the other code. Structural patterns are “static
model” patterns; that is, they represent structure that should not change.

TABLE 4.1

The Set of Design Patterns Popularized by the“Gang of Four”

Creational Behavioral Structural

Abstract factory
Builder
Factory method
Prototype
Singleton

Chain of responsibility
Command
Interpreter
Iterator
Mediator
Memento
Observer
State
Strategy
Template method
Visitor

Adapter
Bridge
Composite
Decorator
Facade
Flyweight
Proxy

Source: Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Pat-
terns: Elements of Reusable Object-Oriented Software, Addison-Wesley,
Boston, MA, 1995.

7228_C004.fm Page 108 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software 109

What are behavioral patterns?

Behavioral patterns are concerned with runtime (dynamic) behavior of the
program. They help define the roles of objects and their interactions, but
being dynamic they do not contain much, if any, structure

Are there any other pattern sets?

There are many other pattern sets. For example, there is a well-known set
of architecture and design patterns [Buschmann et al. 1996], analysis patterns
[Fowler 1996], and literally dozens of others.

What are the drawbacks of patterns?

Patterns do not lead to direct code reuse. Direct code reuse is the subject of
software libraries. Rather, patterns lead to reusable design and architectures,
which can be converted to code.

Patterns are deceptively simple. While it might be easy enough to master
the names of the patterns and memorize their structure visually, it is not so
easy to see how they can lead to design solutions. This benefit takes a great
deal of education and experience.

Teams may suffer from pattern overload, meaning that the quest to use
pattern-based techniques can be an obsession and an end itself rather than
the means to an end. Patterns are not a silver bullet. Rather, they provide
another approach to solving design problems.

Finally, integrating patterns into a software development process is a labor-
intensive activity; therefore, immediate benefits from a patterns program
may not be realized.

4.5 Design Documentation

Is there a standard format for SDS?

No. There are many different variations on the SDS (also called SDD). IEEE
Standard 1016-1998, IEEE Recommended Practice for Software Design Descrip-
tions, is one possible resource that you can consult. But, every company uses
a different template for this documentation.

How do I achieve traceability from requirements through design and testing?

One way to achieve these links is through the use of an appropriate num-
bering system throughout the documentation. For example, a requirement
numbered 3.2.2.1 would be linked to a design element with a similar number
(the numbers don’t have to be the same so long as the annotation in the
document provides traceability). These linkages are depicted in Figure 4.13.
Although the documents shown in the figure have not been introduced yet,
the point to be made is that the documents are all connected through appro-
priate referencing and notation.

7228_C004.fm Page 109 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

110
W

hat E
very E

ngineer Should K
now

 about Softw
are E

ngineering

FIGURE 4.13
Linkages between software documentation and code. In this case, the links are achieved through similarities
in numbering and specific reference to the related item in the appropriate document.

3. Functional Requirements

3.1 Calibration mode

3.2 Operational mode

3.2.1 Initialization

3.2.2 Normal operation

3.2.2.1 Image capture

3.2.2.2 Image error correction

3.2.2.2.1Position error reduction

3.2.2.2.2Noise error reduction

3.2.2.3 Captured image analysis

3.2.2.4 Conveyor system control

3.2.2.5 Reject mechanism control

3.2.2.6 Error handling

3.3 Diagnostic Mode

4. Non-functional Requirements

Software Requirements Specification Software Design Description

Code

/* Refer to 3.2.2 of design document

while a < x_coord && b < y_coord {
image[a++][b++]=grab_screen();
}

…

Test Plan

3. 2.2.1 The software shall capture the image …

…in a manner…blah, blah, blah…

Ref. req. # 3.2.2.1

3.2.2.1 Refers to requirement 3.2.2.1

An exhaustive testing over the entire input
range is necessary…

3.2.2.1 Refers to requirement 3.2.2.1

Corner case testing …

Test Case

Test case 3.2.2.1.A

Inputs: …

Expected Outputs….

Reference Requirement
3.2.2.1

7228_C
004.fm

 Page 110 T
uesday, M

arch 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

Designing Software 111

Figure 4.13 is simply a graphical representation of the traceable links. In
practice, a traceability matrix is constructed to help cross reference docu-
mentation and code elements (Table 4.2). The matrix is constructed by listing
the relevant software documents and the code unit as columns, and then
each software requirement as rows.

Constructing the matrix in a spreadsheet software package allows for
providing multiple matrices sorted and cross-referenced by each column as
needed. For example, a traceability matrix sorted by test case number would
be an appropriate appendix to the text plan.

The traceability matrices are updated at each step in the software life cycle.
For example, the column for the code unit names (e.g., procedure names,
object class) would not be added until after the code is developed.

Finally, a way to foster traceability between code units is through the use
of data dictionaries.

Can you give an example of a design document?

Appendix B contains an SDS for the wet well control system. Appendix C
contains the object models for the wet well control system. The latter docu-
ment is sometimes used as a supplement to an SDS.

4.6 Further Reading

Alexander, C., Ishikawa, S., and Silverstein, M, A Pattern Language, Oxford University
Press, New York, 1977.

Beck, K., Extreme Programming: Embracing Change, Addison-Wesley, Boston, MA, 1999.
Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and Stal, M., Pattern-Oriented

Software Architecture, Volume 1: A System of Patterns, John Wiley & Sons, New York,
1996.

TABLE 4.2

A Traceability Matrix Corresponding to Figure 4.13 Sorted
by Requirement Number

Requirement
Number

SDD
Reference
Number

Test Plan
Reference
Number

Code
Unit Name

Test
Case

Number

3.1.1.1 3.1.1.1
3.2.4

3.1.1.1
3.2.4.1
3.2.4.3

Simple_fun 3.1.1.A
3.1.1.B

3.1.1.2 3.1.1.2 3.1.1.2 Kalman_filter 3.1.1.A
3.1.1.B

3.1.1.3 3.1.1.3 3.1.1.3 Under_bar 3.1.1.A
3.1.1.B
3.1.1.C

7228_C004.fm Page 111 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

112 What Every Engineer Should Know about Software Engineering

Fowler, M., Analysis Patterns: Reusable Object Models, Addison-Wesley, Boston, MA,
1996.

France, R.B., Ghosh, S., Dinh-Trong, T., and Solberg, A., Model-driven development
using UML 2.0: promises and pitfalls, Computer, 39(2), 59–66, 2006.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of
Reusable Object-Oriented Software, Addison-Wesley, Boston, MA, 1995.

Garlan, D. and Shaw, M., An Introduction to Software Architecture, Technical Report
CMU/SEI-94-TR-21, January 1994, pp. 1–42.

Kruchten, P., Obbink, H., and Stafford, J., The past, present, and future of software
architecture, IEEE Software, 23(2), 22–30, 2006.

Laplante, P.A., Software Engineering for Image Processing Systems, CRC Press, Boca
Raton, FL, 2004.

Larman, C., Applying UML and Patterns, Prentice-Hall, Englewood Cliffs, NJ, 2002.
Levine, D. and Schmidt, D., Introduction to Patterns and Frameworks, Washington

University, St Louis, 2000.
Liskov, B. and Wing, J., A behavioral notion of subtyping, ACM Trans. Program. Lang.

Syst., 16(6), 1811–1841, 1994.
Martin, R.C., Agile Software Development: Principles, Patterns, and Practices, Prentice-

Hall, Englewood Cliffs, NJ, 2002.
Meyer, B., Object-Oriented Software Construction, 2nd ed., Prentice Hall, Englewood

Cliffs, NJ, 2000.
Parnas, D. L. On the criteria to be used in decomposing systems into modules,

Commun. ACM, 15(12) , 1053–1058, 1972.
Pressman, R.S. Software Engineering: A Practitioner's Approach, 6th ed., McGraw-Hill,

New York, 2005.
Sommerville, I., Software Engineering, 7th ed., Addison-Wesley, Boston, MA, 2005.

7228_C004.fm Page 112 Tuesday, March 20, 2007 6:18 PM

© 2007 by Taylor & Francis Group, LLC

113

5

Building Software

Outline

• Programming languages
• Software construction tools
• Becoming a better code developer

5.1 Introduction

When I talk of “building software,” I mean using tools to translate the
designed model of the software system into runnable behavior using a pro-
gramming language. The tools involved include the means for writing the
code (a text editor), the means for compiling that code (the programming
language compiler or interpreter), debuggers, and tools for managing the
build of software on local machines and between cooperating computers
across networks, including the Web.

Other tools for building software include version control and configuration
management software and the integrated environments that put them
together with the language compiler to provide for seamless code produc-
tion. With these tools, the build process can be simple, especially when the
specification, design, testing, and integration of the software are well
planned and executed.

In this chapter I will discuss the software engineering aspects of program-
ming languages and the software tools used with them. Much of this dis-
cussion has been adapted from my book

Software Engineering for Image
Processing Systems

 [Laplante 2004a].

7228_C005.fm Page 113 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

114

What Every Engineer Should Know about Software Engineering

5.2 Programming Languages

Is the study of programming languages really of interest
to the software engineer?

Yes. A programming language represents the nexus of design and structure.
But a programming language is really just a tool and the best software
developers are known for the quality of their tools and their skill with
them. This skill can only be obtained through a deep understanding of the
language itself and the peculiarities of a particular implementation of a
language as seen in the compiler.

What happens when software behaves correctly, but is poorly written?

Misuse of the programming language is very often the cause in the reduc-
tion of the desirable properties of software (such as maintainability and
readability) and the increase in undesirable properties (such as fragility
and viscosity).

But I have been writing code since my first programming course in college.
Surely, I don’t need any lessons in programming languages, do I?

For many engineers, Fortran, BASIC, assembly language, C, or Pascal were
the first programming languages they learned. This is an important obser-
vation because many engineers learned how to program, but not how to
program well. Bad habits are hard to break. Moreover, these languages are
not object-oriented, and many new systems are now being implemented
using the object-oriented paradigm. So, when today’s engineer is asked to
implement a new system in C++ or Java, he may not be using proper
methodology and, therefore, losing the benefits of modern programming
practices even though he can get the system to work.

What about working with legacy code?

A great deal of legacy code is written in Fortran, COBOL, assembly language,
Ada, Jovial, C, or any number of other exotic and antiquated languages. It
is always hard to perform maintenance work on an old system implemented
in one of these languages.

So how many programming languages are there?

There are literally hundreds of them, many of which are arcane or so highly
specialized that there is no real benefit to discussing them. In the following,
I discuss a few of the more frequently encountered ones. First I provide a
framework for that discussion by describing the landscape of programming
languages.

7228_C005.fm Page 114 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

115

5.2.1 Programming Language Landscape

What does the programming landscape look like?

There are two different ways to partition the world of programming
languages:

imperative, functional, logic, and other
procedural or declarative

Imperative and procedural languages, which refer to the same set of lan-
guages, are the most commonly found in the industry.

What are imperative, functional, and logic languages?

One way to partition programming languages is by considering whether
they are imperative, functional, logic, or other. Imperative languages involve
assignment of variables (the most widely used languages are imperative, for
example, C, Java, Ada95, Fortran, and Visual Basic). Functional (applicative)
languages employ repeated application of some function (for example, LISP,
Scheme, and Haskell). Logic programming involves a formal statement of
the problem without any specification of how it is solved (for instance,
PROLOG). “Other” encompasses every other language that does not neatly
fit into one of the other categorizations.

What are procedural and declarative languages?

The other way to partition programming languages is by considering
whether they are procedural or declarative. Procedural languages are
defined by a series of operations and include all of the languages named as
imperative. “Procedural” also describes a style of programming that is not
object-oriented. Declarative (nonprocedural) languages involve specification
of rules defining the solution to a problem (for example, PROLOG, Spread-
sheets).

Then what are object-oriented languages?

Object-oriented programming languages are those characterized by data
abstraction, inheritance, and polymorphism. Data abstraction has been pre-
viously defined. Inheritance allows the software engineer to define new
objects in terms of previously defined objects so that the new objects “inherit”
properties. Function polymorphism allows the programmer to define oper-
ations that behave differently depending on the type of object involved. For
example, a filter operation would act differently depending on the type of
image and filtering needed. How the filter operation is applied is imple-
mented at run time.

7228_C005.fm Page 115 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

116

What Every Engineer Should Know about Software Engineering

5.2.2 Programming Features and Evaluation

Which programming language is better?

Unfortunately, the answer is, “it depends.” It is like the question “which is better,
Italian food or Chinese food?” You can’t make objective comparisons because
it depends upon whom you ask. So to it is with programming languages.

Now, some programming languages are better for certain applications or
situations; for example, C is better for certain embedded systems, scripting
languages are better for rapid prototyping, and so forth. Indeed, each pro-
gramming language offers its own strengths and weaknesses with respect
to specific applications domains.

So what is the best way to evaluate a programming language?

I like Cardelli’s [1996] evaluation criteria. He classifies languages along the
following dimensions.

•

Economy of execution

 — How fast does the program run?
•

Economy of compilation

 — How long does it take to go from
sources to executables?

•

Economy of small-scale development

 — How hard must an indi-
vidual programmer work?

•

Economy of large-scale development

 — How hard must a team of
programmers work?

•

Economy of language features

 —– How hard is it to learn or use a
programming language?

But as discussions around these dimensions can get somewhat theoretical,
I will use more tangible “visible” features to discuss the more commonly
encountered programming languages.

What do you mean by visible features of programming languages?

There are several programming language features that stand out, particularly
in procedural languages, which are desirable for use in the kind of software
systems with which engineers deal. These are as follows:

• versatile parameter-passing mechanisms
• dynamic memory allocation facilities
• strong typing
• abstract data typing
• exception handling
• modularity

These language features help promote the desirable properties of software
and best engineering practices.

7228_C005.fm Page 116 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

117

Why should I care about parameter-passing techniques?

Use of parameter lists is likely to promote modular design because the
interfaces between the modules are clearly defined. There are several meth-
ods of parameter passing, but the three most commonly encountered are
call-by-value, call-by-reference, and global variables.*

Clearly defined interfaces can reduce the potential of untraceable corrup-
tion of data by procedures using global access. However, both call-by-value
and call-by-reference parameter-passing techniques can impact performance
when the lists are long because interrupts are frequently disabled during
parameter passing to preserve the time correlation of the data passed. More-
over, call-by-reference can introduce subtle function side effects that depend
on the compiler.

What is call-by-reference?

In call-by-reference or call-by-address, the address of the parameter is passed
by the calling routine to the called procedure so that it can be altered there.
Execution of a procedure using call-by-reference can take longer than one
using call-by-value because indirect mode instructions are needed for any
calculations involving the variables passed in call-by-reference. However, in
the case of passing large data structures between procedures, it is more
desirable to use call-by-reference because passing a pointer to a large data
structure is more efficient than passing the structure field by field.

What is call-by-value?

In call-by-value parameter passing, the value of the actual parameter in the
subroutine or function call is copied into the formal parameter of the pro-
cedure. Because the procedure manipulates the formal parameter, the actual
parameter is not altered. This technique is useful when either a test is being
performed or the output is a function of the input parameters. For example,
in an edge detection algorithm, an image is passed to the procedure and
some description of the location of the edges is returned, but the image itself
need not be changed.

When parameters are passed using call-by-value, they are copied onto a
run-time stack at considerable execution time cost. For example, large data
structures must be passed field by field.

What about global variables?

Global variables are variables that are within the scope of all modules of the
software system. This usually means that references to these variables can
be made in direct mode and thus are faster than references to variables passed
via parameter lists. For example, in many image-processing applications,

* There are three other historical parameter-passing mechanisms: call-by-constant, which was
removed almost immediately from the Pascal language; call-by-value-result, which is used in
Ada; and call-by-name, which was a mechanism peculiar to Algol-60.

7228_C005.fm Page 117 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

118

What Every Engineer Should Know about Software Engineering

global arrays are defined to represent images. Hence, costly parameter pass-
ing can be avoided.

Global variables can be dangerous because reference to them may be made
by unauthorized code, thus introducing subtle bugs. For this and other
reasons, unwarranted use of global variables is to be avoided. Global param-
eter passing is recommended only when timing warrants and its use must
be clearly documented.

How do I choose which parameter-passing technique to use?

The decision to use one method of parameter passing or the other represents
a trade-off between good software engineering practice and performance
needs. For example, often timing constraints force the use of global param-
eter passing in instances when parameter lists would have been preferred
for clarity and maintainability.

What is recursion?

Most programming languages provide for recursion in that a procedure can
call itself. For example, in pseudo-code:

foobar(int x, int y)

{

if

(x < y) foobar(y-x, x);

else

return (x);

}

Here, foobar is a recursive procedure involving two integers. Invoking
foobar(1,2) will return the value 1.

Recursion is widely used in many mathematical algorithms that underlie
engineering applications. Recursion can simplify programming of non-
engineering applications as well.

Are there any drawbacks to recursive algorithm formulations?

Yes. While recursion is elegant and often necessary, its adverse impact on
performance must be considered. Procedure calls require the allocation of
storage on one or more stacks for the passing of parameters and for storage
of local variables.

The execution time needed for the allocation and deallocation, and for the
storage of those parameters and local variables can be costly. In addition,
recursion necessitates the use of a large number of expensive memory and
register indirect instructions.

Finally, the use of recursion often makes it impossible to determine the
size of run-time memory requirements. Thus, iterative techniques such as

7228_C005.fm Page 118 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

119

while

 and

for

 loops must be used if performance prediction is crucial or in
those languages that do not support recursion.

What does “dynamic memory allocation” mean?

This means that memory storage requirements need to be known before the
program is written so that memory can be allocated and deallocated as
needed. The capability to dynamically allocate memory is important in the
construction and maintenance of many data structures needed in a complex
engineering system. While dynamic allocation can be time consuming, it is
usually necessary, especially when creating intermediate data structures
needed in many engineering algorithms.

What are some examples of dynamic allocation use?

Linked lists, trees, heaps, and other dynamic data structures can benefit from
the clarity and economy introduced by dynamic allocation. Furthermore, in
cases where just a pointer is used to pass a data structure, then the overhead
for dynamic allocation can be quite reasonable. When writing such code,
however, care should be taken to ensure that the compiler will pass pointers
to large data structures and not the data structure itself.

What is meant by “strong typing” in a programming language?

Strongly typed languages require that each variable and constant be of a
specific type (e.g., “float,” “Boolean,” or “integer”) and that each be declared
as such before use. Generally, high-level languages provide integer and
floating point types, along with Boolean, character, and string types. In some
cases, abstract data types are supported. These allow programmers to define
their own type along with the associated operations.

Strongly typed languages prohibit the mixing of different variable types
in operations and assignments, and thus force the programmer to be precise
about the way data are to be handled. Precise typing can prevent corruption
of data through unwanted or unnecessary type conversion.

Weakly typed languages either do not require explicit variable type dec-
laration before use (those of you familiar with old versions of Fortran or
BASIC are recognize this concept) or do not prohibit mixing of types in
arithmetic operations. Because these languages generally perform mixed
calculations using the type that has the highest storage complexity, they must
promote all variables to that type. For example, in C, the following code
fragment illustrates automatic promotion and demotion of variable types:

 int x,y;

float k,l,m;

 .

 .

j = x*k+m;

7228_C005.fm Page 119 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

120

What Every Engineer Should Know about Software Engineering

Here the variable x will be promoted to a float (real) type and then mul-
tiplication and addition will take place in floating point. Afterward, the result
will be truncated and stored in j. The performance impact is that hidden
promotion and more time-consuming arithmetic instructions can be gener-
ated with no additional accuracy. In addition, accuracy can be lost due to
the truncation or, worse, an integer overflow can occur if the floating-point
value is larger than the allowable integer value.

Programs written in languages that are weakly typed need to be scruti-
nized for such effects. Some C compilers will catch type mismatches in
function parameters. This can prevent unwanted type conversions.

What is exception handling?

Certain languages provide facilities for dealing with errors or other anom-
alous conditions that arise during program execution. These conditions
include the obvious, such as floating-point overflow, square root of a nega-
tive, divide-by-zero, and image-related conditions such as boundary viola-
tion, wraparound, and pixel overflow.

The capability to define and handle exceptional conditions in high-level
languages aids in the construction of interrupt handlers and other code used
for real-time event processing. Moreover, poor handling of exceptions can
degrade performance. For example, floating-point overflow errors can prop-
agate bad data through an algorithm and instigate time-consuming error
recovery routines.

Which languages have the best exception handling facilities?

Java has excellent exception handling through its “try, catch, finally”
approach, which is used in many mainstream object-oriented languages. In
Java, the structure looks something like this:

try

{

// do something

}

catch (Exception1)

{

// what to do if something goes wrong

}

catch (Exception2)

{

// what to do if something else goes wrong

}

…

7228_C005.fm Page 120 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

121

finally

{

// what to do if all else fails

}

In this way, foreseeable “risky” computation can be handled appropriately,
rather than relying on the operating system to use its standard error han-
dling, which may be inadequate.

Ada95, C++, and C# also have excellent exception handling capabilities.
ANSI-C provides some exception handling capability through the use of
signals.

What is meant by modularity?

Procedural languages that are amenable to the principle of information hid-
ing and separation of concerns tend to make it easy to construct subpro-
grams. While C and Fortran both have mechanisms for this (procedures and
subroutines), other languages such as Ada95 (which can be considered either
procedural or object-oriented) tend to foster more modular design because
of the requirement to have clearly defined input and outputs in the module
parameter lists.

In Ada, the notion of a package exquisitely embodies the concept of Parnas
information hiding. The Ada package consists of a specification and decla-
rations that include its public or visible interface and its invisible or private
parts. In addition the package body, which has further externally invisible
components, contains the working code of the package. Packages are sepa-
rately compliable entities, which further enhances their application as black
boxes.

In Fortran, there is the notion of a subroutine and separate compilation of
source files. These language features can be used to achieve modularity and
design abstract data types.

The C language also provides for separately compiled modules and other
features that promote a rigorous top-down design approach, which should
lead to a good modular design.

While modular software is desirable, there is a price to pay in the overhead
associated with procedure calls and parameter passing. This adverse effect
should be considered when sizing modules.

Do object-oriented languages support a form of modularity?

Object-oriented languages provide a natural environment for information
hiding. For example, in image processing systems, it might be useful to
define a class of type pixel, with attributes describing its position, color, and
brightness; and operations that can be applied to a pixel such as add, activate,
deactivate, and so on. It might also be desirable to define objects of type
image as a collection of pixels with other attributes of width, height, and so on.

7228_C005.fm Page 121 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

122

What Every Engineer Should Know about Software Engineering

In some cases, expression of system functionality is easier to do in an object-
oriented manner.

What is the benefit of object-orientation from a programming perspective?

Object-oriented techniques can increase programmer efficiency, reliability,
and the potential for reuse. More can be said on this subject, but the
reader is referred to the references at the end of the chapter [Gamma 1995,
Meyer 2000].

5.2.3 Brief Survey of Languages

Can you apply the micro properties just discussed to some of the
more commonly used programming languages?

For purposes of illustrating the aforementioned language properties, let us
review some of the more widely used languages in engineering systems. The
languages are presented in alphabetical order:

• Ada95
• assembly language
• C
• C++
• Fortran
• Java

Functional languages, such as LISP and ML, have been omitted from the
discussions. This is simply because their use in this setting is rare.

Can you tell me about Ada95?

First introduced in 1983, Ada83 was originally intended to be the mandatory
language for all U.S. DoD projects, which included many embedded real-
time systems. Ada83, had significant problems, though, and Ada95 was
introduced to deal with these problems. Throughout the text when the term
“Ada” is used, “Ada95” is meant.

Ada95 was the first internationally standardized object-oriented program-
ming language, athough it is both procedural and object-oriented depending
upon how the programmer uses it.

Ada95 includes extensions to help deal with scheduling, resource conten-
tion, and synchronization. Features such as tagged types, packages, and
protected units helped make Ada95 an object-oriented language.

Is Ada still used?

Ada95 is used in some university curricula to teach programming. But Ada95
never lived up to its promise of universality because users found the language

7228_C005.fm Page 122 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

123

to be too bulky and inefficient. Nevertheless, the language is staging some-
what of a comeback, particularly because of the availability of open source
compilers for Linux (Linux is an open source derivative of the Unix operating
system). Ada95 can compile to Java byte code, giving it broader applicability.
I have had several students in recent years maintaining legacy defense sys-
tems written in Ada. It is important to mention as well that several million
lines of code for the International Space Station (embedded flight and ground
support) are written in Ada95.

What about assembly language?

Though lacking most of the features discussed for the high-level languages,
assembly language does have certain advantages in some embedded control
systems in that it provides more direct control of the computer hardware.
Assembly language is sometimes used in tandem with a high-order lan-
guage, especially C. This approach can be used to optimize for a particular
platform, particularly the Intel 80 x 86 family, which has grown considerably
in terms of instructions and capability.

Unfortunately, because of its unstructured and limited abstraction prop-
erties, and because it varies widely from machine to machine, coding in
assembly language is usually difficult to learn, tedious, and error-prone. The
resulting code is also nonportable.

How do programmers use assembly language today?

Assembly code is used in rare cases where the compiler does not support
certain macro-instructions, or when the timing constraints are so tight that
hand tuning is needed to produce optimal code. Even the most time-critical
system will likely have 90% of the code written in a high-order language,
while the rest is written in assembly language.

When should assembly language be used?

If ever, assembly language programming should be limited to use in very tight
timing situations or in controlling hardware features that are not supported
by the compiler. The use of assembly language needs to be well-documented.

C is my favorite programming language. When can it be used?

The C programming language, invented around 1971, is a good language
for “low-level” programming. This is because C is descended from the
language BCPL (whose successor, C’s parent, was “B”), which supported
only one type — machine word. Consequently, C supported machine-
related objects like characters, bytes, bits, and addresses, which could be
handled directly in high-level language. These entities can be manipulated
to control interrupt controllers, CPU registers, and other hardware needed
in embedded systems. C is sometimes used as a high-level cross-platform
assembly language.

7228_C005.fm Page 123 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

124

What Every Engineer Should Know about Software Engineering

What other useful features does C have?

C provides special variable types such as register, volatile, static, and con-
stant, which allow for control of code generation at the high-order language
level. For example, declaring a variable as a register type indicates that it
will be used frequently. This encourages the compiler to place such a declared
variable in a register, which often results in smaller and faster programs.
C supports call-by-value only, but call-by-reference can be implemented by
passing the pointer to anything as a value.

Variables declared as type volatile are not optimized by the compiler. This
is useful in handling memory-mapped Input/Output (I/O) and other
instances where the code should not be optimized.

How does C handle exceptions?

The C language provides for exception handling through the use of signals,
and two other mechanisms,

setjmp

 and

longjmp,

 are provided to allow
a procedure to return quickly from a deep level of nesting. This is a useful
feature in procedures requiring an abort. The

setjmp

 procedures call,
which is really a macro (but often implemented as a function), saves envi-
ronment information that can be used by a subsequent

longjmp

 library
function call. The

longjmp

 call restores the program to the state at the
time of the last

setjmp

 call. Procedure process is called to perform some
processing and error checking. If an error is detected, a

longjmp

 is per-
formed, which changes the flow of execution directly to the first statement
after the

setjmp

.

When should C be used?

The C language is good for embedded programming because it provides
structure and flexibility without complex language restrictions.

What is the relationship between C and C++?

C++ is a hybrid object-oriented programming language that was originally
implemented as macro-extension of C. Today, C++ stands by itself as a
separately compiled language, although strictly speaking, C++ compilers
should accept standard C code.

C++ exhibits all three characteristics of an object-oriented language. It
promotes better software engineering practice through encapsulation and
better abstraction mechanisms, such as inheritance, composition, and poly-
morphism, than does C.

When should C++ be used?

Significantly, more embedded systems are being constructed in C++ and
many practitioners are asking this question. My answer to them is always
“it depends.” Choosing C in lieu of C++ in embedded applications is,
roughly speaking, a tradeoff between a “lean and mean” C program that
will be faster and easier to predict but harder to maintain and a C++

7228_C005.fm Page 124 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

125

program that will be slower and unpredictable but potentially easier to
maintain.

C++ still allows for low-level control (and not falling back to C features).
For example, it can use inline methods rather than a runtime call. This kind
of implementation is not completely abstract, nor completely low-level, but
is acceptable in embedded environments.

What is the danger in converting my C code to C++?

There is some tendency to take existing C code and “objectify” it by wrapping
the procedural code into objects with little regard for the best practices of
object-orientation. This kind of approach should be avoided because it has
the potential to incorporate all of the disadvantages of C++ and none of the
benefits.

Can you tell me about Fortran?

Fortran* is the oldest high-order language (developed circa 1955) still in
regular use today. Because in its earlier versions it lacked recursion and
dynamic allocation facilities, more complex systems written in this language
typically included a large portion of assembly language code to handle
interrupts and scheduling. Communication with external devices was by
memory-mapped I/O, Direct Memory Access (DMA), and I/O instructions.
Later versions of the language included features such as re-entrant code, but
even today a complex Fortran control system requires some assembly lan-
guage code to accompany it.

To its detriment, Fortran is weakly typed, but because of the subroutine
construct and the

if-then-else

 construct, it can be used to design highly
structured code. Fortran has no built-in exception handling or abstract data
types.

Today, Fortran is still used to write some engineering applications because
of its excellent handling of mathematical processing and because “old-time”
engineers learned this language first. There is even a “new” language called
F, which is a derivative of Fortran, less some esoteric and dangerous features.
Many legacy systems, particularly in engineering applications, still can be
found to have been written in “plain old” Fortran.

What about Java?

Java is an interpreted language; that is, the code compiles into machine-
independent code which runs in a managed execution environment. This
environment is a virtual machine (Figure 5.1), which executes “object” code
instructions as a series of program directives.

* Although Fortran is an acronym for Formula Translator, it is often written as “Fortran” because
the word has entered the mainstream in the same way that the acronyms “laser” and “sonar”
have.

7228_C005.fm Page 125 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

126

What Every Engineer Should Know about Software Engineering

The advantage of this arrangement is that the Java code can run on any
device that implements the virtual machine. This “write once, run anywhere”
philosophy has important applications in embedded and portable comput-
ing as well as in Web-based computing.

If Java is interpreted does that mean it cannot be compiled?

There are native-code Java compilers that allow Java to run directly “on the
bare metal;” that is, the compilers convert Java directly to assembly code or
object code.

What are some of the main features of Java?

Java is an object-oriented language that looks very much like C++. Like C,
Java supports call-by-value, but the value is the reference to an object, which
is in essence call-by-reference for all objects. Primitives are passed-by-value.

What are the differences between Java and C++?

The following are some features of Java that are different from C++ and that
are of interest in engineering applications:

• There are no global functions or constants — everything belongs to
a class.

• Arrays and strings have built-in bounds checking.
• All values are initialized and use special defaults if none are given.
• All classes ultimately inherit from the object class.
• Java does not support the goto statement. However, it supports

labeled breaks, which can be used in the same way.
• Java does not support automatic type conversions (except where

guaranteed safe).
• Types are all references to objects, except the primitive types (for

example, integer, floating point, and Boolean).

FIGURE 5.1

The Java interpreter as a model of a virtual machine.

model of a
machine

Computer

program is instructions
to interpreter

interpreter

7228_C005.fm Page 126 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

127

Are there any well-known problems with using Java?

One of the best-known problems with Java involves its garbage collection
utility. Garbage is memory that has been allocated but is unusable because
of the loss of a pointer to it; for example, through the destruction of an object.
The allocated memory must be reclaimed through garbage collection.

Garbage collection algorithms generally have unpredictable performance
(although average performance may be known). The loss of determinism
results from the unknown amount of garbage, the tagging time of the non-
deterministic data structures, and the fact that many incremental garbage
collectors require that every memory allocation or deallocation from the heap
be willing to service a page-fault trap handler.

What about legacy code written in arcane languages such as BASIC,
COBOL, and Scheme?

Code in many arcane languages still abounds. It is hard to explain how to
deal with these situations except on a case-by-case basis.

What about Visual Basic?

There are different versions of Visual Basic, the oldest being derived from
and resembling in many ways the ancient BASIC language. The newer
versions exhibit strong object-oriented features. A great deal of production
code has been written in Visual Basic, but as this is a proprietary language,
it is beyond the scope of this text. Of course, there are many good texts
available on this language.

What about scripting languages like Perl and Python?

Object-oriented scripting languages, such as Perl, Python, and Ruby, have
become quite popular. Most scripting languages make it easier to write
programs because of weak typing and their interpreted nature. The inter-
preted code leads to a shorter build cycle (high economy of compilation),
which, in turn, allows for rapid prototyping and exploratory changes, a
feature that is useful in agile development methodologies. However,
generally speaking, it is more difficult to maintain production code that
has been written in a scripting language [Chen et al. 2006].

5.2.4 Object-Oriented Languages — Fact and Fiction

It’s pretty easy to learn an object-oriented language, isn’t it?

It is a lot harder than you think. Mastering the syntax of the language is no
harder than any other. However, experience has it that if you learned how
to program in a procedural style language like Fortran, BASIC, or C, you
will have a hard time understanding object-oriented principles. Conversely,
software engineers who learn a pure object-oriented language like Java first
usually have a difficult time using procedural languages. These engineers
have an even harder time with primitive assembly language.

7228_C005.fm Page 127 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

128

What Every Engineer Should Know about Software Engineering

Can I learn how to program well in an object-oriented language
like C++ or Java by taking a course?

Many self-styled pundits are out there teaching object-oriented program-
ming who do not know the difference between a class and an object, or an
interface and a parameter list. It takes many months and a great deal of
practice to learn Java adequately. It can take years to become an expert.

I will be the first to admit that object technology is not my specialty. But
I know just enough to know that it is relatively easy to write code in Java,
C++, or C#,* but much harder to write good code that conforms to the best
practices of object-oriented development.

A typical case in point is Joe, an experienced electrical engineer who took
some Fortran and C programming classes 15 years ago when he was in
college. He became pretty good at C programming because he was respon-
sible for maintaining his company’s library of digital signal processing code.
About five years ago, his boss asked him to learn C++ and to convert his
code to “object-oriented.” Joe then essentially created a bunch of “God
classes,” huge classes that are not properly assigned responsibilities. Sure
enough, the code compiled under the C++ compiler and ran. But the result
was not object-oriented, just a poorly organized C program that happened
to compile via a C++ compiler.

5.3 Software Construction Tools

What is the value proposition for using software construction tools?

Management of the software development phase can be greatly improved
with version control or configuration management software, which regulates
access to the various components of the system from the software library.
Version control prevents multiple accesses to the same source code, provides
mechanisms for tracking changes, and preserves version integrity. In the end,
version control increases overall system reliability. There are number of freely
available version control tools, such as CVS or SubVersion. CASE tools can
also assist with software construction and in supporting many other software
engineering activities.

What is a compiler?

A compiler translates a program from high-level source code language into
relocatable object code or machine instructions or into an intermediate form
such as an assembly language (a symbolic form of machine instructions).
This process is broken into a series of phases, which will be described shortly.

* Pronounced “C sharp”, C# is a close relative of C++ and runs only on Microsoft’s .NET plat-
form.

7228_C005.fm Page 128 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software

129

After compilation, the relocatable code output from the compiler is made
absolute, and a program called a linker or linking loader resolves all external
references. Once the program has been processed by the linker, it is ready
for execution. The overall process is illustrated in Figure 5.2.

This process is usually hidden by any integrated development environ-
ment that acts as a front end to the compiler.

Can you describe further the compilation process?

Consider the widely used Unix-based C compiler. The Unix C compiler

cc

provides a utility that controls the compilation and linking processes. This
compiler is also found in many Linux implementations. In particular, in Unix
System V version 3 (SVR3), the

cc

 program provides for the following phases
of compilation:

• preprocessing
• compilation
• optimization
• assembly
• linking and loading

These phases are illustrated in Figure 5.3 and summarized in Table 5.1.
The preprocessing phase of the compiler, performed by the program

cpp

,
takes care of things such as converting symbolic values into actual values
and evaluating and expanding code macros. The compilation of the program,
that is, the translation of the program from C language to assembly language,
is performed by the program

ccom

.
Optimization of the code is performed by the program

c2, and assembly
or translation of the assembly language code into machine codes is taken

FIGURE 5.2
The compilation and linking process.

FIGURE 5.3
Phases of compilation provided by a typical compiler, such as C.

source code

object code, or
intermediate form
such as assembly
language

Linker/LoaderCompiler
executable
code

Preprocessor Tokenizer Parser Code
Generator Optimizer

source
code

object
code

7228_C005.fm Page 129 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

130 What Every Engineer Should Know about Software Engineering

care of by as. Finally, the object modules are linked together, all external
references (for example, library routines) are resolved, and the program (or
an image of it) is loaded into memory by the program ld. The executable
program is now ready to run.

The fact that many of these phases can be bypassed or run alone is an
important feature that can help in program debugging and optimization.

How do I deal with compiler warnings and errors?

One technique that can help is to redirect errors to a file. When a program
with syntax errors is compiled, errors may be displayed to the screen too
fast to read. These errors can be redirected to a file that can be looked at
leisurely. This technique is called “redirecting standard error.”

A difficulty that arises is that errors and warnings can be misleading; for
example, an error reported in one place is indicative of a problem somewhere
else. With experience, an error message can be associated with a particular
problem, even when the error message appears far away from the error itself.

Another difficulty with errors and warnings is the cascade effect — the
compiler finds one error and because no recovery is possible, many other
errors follow. Again, experience with a particular compiler will enable the
software engineer to more easily weed through the cascade of errors and
find the root cause.

It is beyond the scope of this text to discuss the many kinds of program
warnings and errors that the user can encounter in the course of compiling
and linking programs. A complete discussion of this issue is best left to the
reference book of the language in question.

Do you have any debugging tips?

Programs can be affected by syntactic or logic errors. Syntactic or syntax
errors arise from the failure to satisfy the rules of the language. A good
compiler will always detect syntax errors, although the way that it reports
the error can often be misleading.

For example, in a C program a missing curly brace (}) may not be detected
until many lines after it should have appeared, but in deeply nested arrays
of curly braces it may be hard to see where the missing brace belongs.

TABLE 5.1

Phases of Compilation and Their Associated
Program for a C Compiler

Phase Program

Preprocessing cpp
Compilation ccom
Optimization c2
Assembly as
Linking and loading ld

7228_C005.fm Page 130 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software 131

In logic errors, the code adheres to the rules of the language but the
algorithm that is specified is somehow wrong. Logic errors are more difficult
to diagnose because the compiler cannot detect them. A few basic rules may
help you find and eliminate logic errors.

• Document the program carefully. Ideally, each nontrivial line of code
should include a comment. In the course of commenting, this may
detect or prevent logical errors.

• Where a symbolic debugging is available, use steps, traces, break-
points, skips, and so on to isolate the logic error (discussed later).

• In the case of a command line environment (such as Unix/Linux),
output intermediate results at checkpoints in the code. This may
help detect logic errors.

• In the case of an error, comment out portions of the code until the
program compiles and runs. Add in the commented out code, one
feature at a time, checking to see that the program still compiles and
runs. When the program either does not compile or runs incorrectly,
the last code you added is involved in the logic error.

Finding and eliminating logic errors is more art than science, and the
software engineer develops these skills only with time and practice. In many
cases, code audits or walkthroughs can be quite helpful in finding logic
errors.

Is there any way to automatically debug code?

It is impossible to provide automatic logic validation and the compiler can
check only for syntactical correctness. Many programming environments
provide tools that are helpful in eliminating logical errors. For example, two
tools (lint and cb) are associated with Unix and Linux. As its name implies,
lint is a nit-picker that does checking beyond that of an ordinary compiler.
For example, C compilers are often not particular about certain inconsisten-
cies such as parameter mismatches, declared variables that are not used, and
type checking. lint is, however. Often, very difficult bugs can be prevented
or diagnosed by using lint.

The C beautifier, or cb, is used to transform a sloppy-looking program into
a readable one. cb does not change the program code. Instead, it just adds
tabs, line feeds, and spaces where needed to make things look nice. This is
very helpful in finding badly matched or missing curly braces, erroneous if-
then-else and case statements, and incorrectly terminated functions. As with
lint, cb is run by typing cb and a file name at the command prompt.

Many open source integrated development environments (IDEs) have
plug-ins that are the equivalent of or better than lint and cb and there are
many other tools available, such as automatic refactoring engines, that can
help improve code. Open source software is discussed in Chapter 8.

7228_C005.fm Page 131 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

132 What Every Engineer Should Know about Software Engineering

What are symbolic debuggers and how are they used?

Symbolic, or source-level, debuggers are software programs that provide the
ability to step through code at either a macro-assembly or high-order lan-
guage level. They are extremely useful in module-level testing. They are less
useful in system-level debugging because the real-time aspect of the system
is necessarily disabled or affected.

Debuggers can be obtained as part of compiler support packages or in
conjunction with sophisticated logic analyzers. For example, sdb is a generic
name for a symbolic debugger associated with Unix and Linux. sdb is a
debugger that allows the engineer to single-step through source code language
and view the results of each step. GNU has the GNU debugger, gdb, which
can be used with GNU C and other languages such as GNU Java and Fortran.

In order to use the symbolic debugger, the source code must be compiled
with a particular option set. This has the effect of including special run-time
code that interacts with the debugger. Once the code has been compiled for
debugging, then it can be executed “normally.”

Can you give me an example of a debugging session?

In the Unix/Linux environment, the program can be started normally from
the sdb debugger at any point by typing certain commands at the command
prompt. However, it is more useful to single step through the source code.
Lines of code are displayed and executed one at a time by using the “s” (for
step) command. If the statement is an output statement, it will output to the
screen accordingly. If the statement is an input statement, it will await user
input. All other statements execute normally. At any point in the single-
stepping process, individual variables can be set or examined.

There are many other features of sdb, such as breakpoint setting. In more
integrated development environments, a graphical user interface (GUI) is
also provided, but these tools essentially provide the same functionality.

What is a source code control system?

A source code control system places strict control over access to a software
project’s files to prevent conflicts such as multiple users editing a file simul-
taneously. In addition, source code control keeps an audit trail of changes
and sets file access permissions. This kind of control is crucial when devel-
oping large programs for which many people will have access. Strict version
control is quite important when handling programs consisting of a large
number of files or when more than one individual is working on the same
project.

For example, it would be disastrous if two programmers decided to modify
the same source code file simultaneously — one set of changes would be
lost. Similarly, suppose that a project consists of dozens of source files along
with header and include files. If a header file is changed, every single source
file using that header file must be recompiled or else very difficult-to-find
bugs will be introduced.

7228_C005.fm Page 132 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software 133

Open source version control systems are available for free. These include
SubVersion and CVS.

What is test driven design?

Test driven design (TDD) or test first coding is a code development
approach in which the test cases for the code are written before the code
is written. The advantage of this approach is that it forces the software
engineer to think about the code in a very different way that involves
focusing on “breaking down” the software. Many software engineers who
use this technique report that while it is sometimes difficult to change their
way of thinking, once the test cases have been written, it is actually easier
to write the code. Furthermore, debugging becomes much easier because
the unit level test cases have already been written.

Are there other tools that I can use, particularly when debugging
embedded systems?

A number of hardware and software tools are available to assist in the
validation of embedded systems. Test tools make the difference between
success and failure, especially in deeply embedded systems.

For example, a multimeter can be used in the debugging of real-time
systems to validate the analog input to or output from the system.

Oscilloscopes can be used for validating interrupt integrity, discrete signal
issuance, and receipt, and for monitoring clocks. The more sophisticated
storage oscilloscopes with multiple inputs can often be used in lieu of logic
analyzers by using the inputs to track the data and address buses and
synchronization with an appropriate clock.

Logic analyzers can be used to capture data or events, to measure
individual instruction times, or to time sections of code. Programmable logic
analyzers with integrated debugging environments further enhance the capa-
bilities of the system integrator. Using the logic analyzer, the software engineer
can capture specific memory locations and data for the purposes of timing
or for verifying execution of a specific segment of code.

More sophisticated logic analyzers include built-in dissemblers and com-
pilers for source-level debugging and performance analysis. These inte-
grated environments typically are found on more expensive models, but they
make the identification of performance bottlenecks particularly easy.

What are in-circuit emulators?

During module-level debugging and system integration of embedded sys-
tems, the ability to single-step the computer, set the program counter, and
insert into and read from memory is extremely important. This capability,
in conjunction with the symbolic debugger, is the key to the proper integra-
tion of embedded systems. In an embedded environment, however, an in-
circuit emulator (ICE) provides this capability.

7228_C005.fm Page 133 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

134 What Every Engineer Should Know about Software Engineering

An ICE uses special hardware in conjunction with software to emulate the
target CPU while providing the aforementioned features. Typically, the ICE
plugs into the chip carrier or card slot normally occupied by the CPU.
External wires connect to an emulation system. Access to the emulator is
provided directly or via a secondary computer.

How are ICEs used?

ICEs are useful in software patching and for single-stepping through critical
portions of code. ICEs are not typically useful in timing tests, however,
because the emulator can introduce subtle timing changes.

What are software simulators and when are they used?

When integrating and debugging embedded systems, software simulators
are often needed to stand in for hardware or inputs that do not exist or that
are not readily available; for example, to generate simulated accelerometer
or gyro readings where real ones are unavailable at the time.

The author of the simulator code has a task that is by no means easy. The
software must be written to mimic exactly the hardware specification, espe-
cially in timing characteristics. The simulator must be rigorously tested;
unfortunately, this is sometimes not the case. Many systems have been suc-
cessfully validated and integrated with software simulators, only to fail
when connected to the actual hardware.

When is hardware prototyping useful?

In the absence of the actual hardware system under control, simulation
hardware may be preferable to software simulators. These devices might be
required when the software is ready before the prototype hardware, or when
it would be impossible to test the software on the actual hardware, such as
in the control of a large nuclear plant.

Hardware simulators simulate real-life system inputs and can be useful
for integration and testing but are not always reliable when testing the
underlying algorithms; real data from live devices are needed.

What are integrated development environments?

Integrated development environments (IDEs) tie together various tools of the
software production process through an easy to use GUI. IDEs can incorporate
text editors, compilers, debuggers, coding standard enforcement, and much
more. The most popular IDE includes the open source Eclipse.

What about other tools?

There are many other commercial and open source tools providing capabil-
ities such as integrated document and software configuration control, testing
management, stakeholder notification, distributed software build between
cooperating PCs, and more.

7228_C005.fm Page 134 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software 135

5.4 Becoming a Better Code Developer

How can I become a better developer of code?

Coding software is not software engineering. The best code starts out with
a good design. That being said, it is always important to improve your
mastery of the programming language, just as you can improve your ability
to write in English by better understanding the rules of the language,
improving your vocabulary, and reading great works in the language. The
best way to improve coding skills is to practice and read the appropriate
literature. That raises one other point: one of the best ways to learn a program-
ming language is to start by reading great code that someone else has written.

5.4.1 Code Smells

What is a code smell?

A code smell refers to an indicator of poor design or coding [Fowler 2000].
More specifically, the term relates to visible signs that suggest the need for
refactoring. Code smells are found in every kind of system.

What is refactoring?

Refactoring refers to a behavior-preserving code transformation enacted to
improve some feature of the software, which is evidenced by the code smell.

What are some code smells?

Table 5.2 summarizes a set of code smells originally described for object-
oriented languages by Fowler [2000]. But many of these code smells are also
found in procedural languages.

A few of these and several others not identified by Fowler that are found
in procedural systems and described by Stewart [1999] will be discussed in
terms of C, which has many constructs in common with C++, Java, and C#,
so most readers should be able to follow the code fragments.

What is the conditional logic code smell?

These are excessive switch,if-then, and case statements and they are
an indicator of bad design for several reasons. First, they breed code dupli-
cation. Moreover, the code generated for a case statement can be quite con-
voluted — for example, a jump through a register, offset by a table value.
This mechanism can be time-consuming. Furthermore, nested conditional
logic can be difficult to test, especially if it is nested due to the large number
of logic paths through the code. Finally, the differences between best and
worst case execution times can be significant, leading to highly pessimistic
utilization figures.

7228_C005.fm Page 135 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

136 What Every Engineer Should Know about Software Engineering

Conditional logic needs to be refactored, but there is no silver bullet here.
In object-oriented languages, the mechanisms of polymorphism or compo-
sition can be used. In procedural languages, sometimes mathematical iden-
tities can be used to improve the efficiency of the code.

What are data clumps?

Several data items found together in lots of places are known as data clumps.
For example, in the procedural sense, data clumps can arise in C from too
much configuration information in #include files. Stewart [1999] notes

TABLE 5.2

Some Code Smells and Their Indicators

Code Smell Description

Alternative classes
with different
interfaces

Methods that do the same thing but have different signatures.

Conditional logic Switch and case statements that breed duplication.
Data class Classes with just fields, getters, setters, and nothing else.
Data clumps Several data items found together in lots of places; should be an

object.
Divergent change When a class is changed in different ways for different reasons.

Should be that each object is changed only for one type of change.
Duplicated code The same code in more than one place.
Feature envy Objects exit to package data with the processes used on that data.
Inappropriate
intimacy

When classes spend too much time interacting with each others’
private parts.

Incomplete library
class

Poorly constructed library classes that are not reused.

Large class A class that is doing too much.
Lazy class A class that isn’t doing enough to “pay” for itself.
Long method Short methods provide indirection, explanation, sharing, and

choosing.
Long parameter
list

Remnant of practice of using parameter lists vs. global variables.

Message chains The client is coupled to the structure of the navigation:
getA().getB().getC().getD().getE().doIt().

Middle man When a class delegates too many methods to another class.
Parallel inheritance
hierarchies

Special case of shotgun surgery. Need to ensure that instances of
one hierarchy refer to instances of the other.

Primitive
obsession

Aversion to using small objects for small tasks.

Refused bequest When a child only wants part of what is coming from the parent.
Shotgun surgery Every time you make a change you have to make a lot of little

changes. Opposite of divergent change.
Speculative
generality

Hooks and special cases to handle things that are not required
(might be needed someday).

Tell-tale comments Comments that exist to hide/explicate bad code.
Temporary field Instance variables that are only set sometimes; you expect an object

to use all of its variables.

Source: Fowler, M., Refactoring, Addison-Wesley, Boston, MA, 2000.

7228_C005.fm Page 136 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software 137

that this situation is unhealthy because it leads to increased development
and maintenance time and introduces circular dependencies that make reuse
difficult. He suggests that to refactor, each module be defined by two files,
.h and .c, with the former containing only the information that is to be
exported by the module and the latter containing everything that is not
exported.

A second manifestation of the data clump smell has to do with excessive
use of the #define statement that propagates throughout the code. Suppose
these #defines are expanded in 20 places in the code. If, during debugging,
it is desired to place a patch over one of the #defines, it must be done in
20 places. To refactor, place the quantity in a global variable that can be
changed in one place only during debugging.

Why are delays as loops bad?

Stewart [1999] suggests another code smell involving timing delays imple-
mented as while loops with zero or more instructions. These delays rely
on the overhead cost of the loop construct plus the execution time of the
body to achieve a delay. The problem is that if the underlying architecture
or characteristics of instruction execution (e.g., memory access time change)
changes, then the delay time is inadvertently altered.

To refactor, use a mechanism based on a timer facility provided by the
operating system that is not based on individual instruction execution times.

What are dubious constraints?

This code smell is particularly insidious in embedded systems where
response time constraints have a questionable or no attributable source. In
some cases, systems have deadlines that are imposed on them that are based
on nothing more than guessing or on some forgotten and since eliminated
requirement. The problem in these cases is that the undue constraints may
be placed on the systems.

For example, suppose the response time for an event is 30 ms but no one
knows why. Similarly, more than one reason given for the constraints in
comments or documentation indicates a traceability conflict, which hints at
other problems. This is a primary lesson in embedded systems design to
understand the basis and nature of the timing constraints, so that they can
be relaxed if necessary.

It is typical, in studying embedded systems, to consider the nature of
time because deadlines are instants in time. But the question arises, “where
do the deadlines come from?” Generally speaking, deadlines are based on
the underlying physical phenomena of the system under control. For exam-
ple, in animated displays, real-time images must be updated at approxi-
mately 30 frames per second to provide a continuous image because the
human eye can resolve updating at a slower rate. In navigation systems,
accelerations must be read at a rate that is based on the top speed of the
vehicle, and so on.

7228_C005.fm Page 137 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

138 What Every Engineer Should Know about Software Engineering

In any case, to remove the code smell, some detective work is needed to
discover the true reason for the constraint. If it cannot be determined, then
the constraint could be relaxed and the system redesigned accordingly.

What is the duplicated code smell?

Obviously, duplicated code refers to the same or similar code found in more
than one place. It has an unhealthy impact on maintainability (the same
change has to be propagated to each copy), and it also adversely affects
memory utilization.

To refactor, assign the code to a single common code unit via better appli-
cation of information hiding.

While it is too easy to mock the designers of systems that contain dupli-
cated code, it is possible that the situation arose out of a real need at the
time. For example, duplicated code may have been due to legacy concerns
for performance where the cost of the procedure call added too much over-
head in a critical instance. Alternatively, in older version of languages such
as Fortran that were not reentrant, duplicated code was a common means
for providing utilities to each cycle in the embedded system.

What are generalizations based on a single architecture?

Stewart [1999] suggests that writing software for a specific architecture,
but with the intent to support easy porting to other architectures later,
can lead to over-generalizing items that are similar across architectures,
while not generalizing some items that are different. He suggests develop-
ing the code simultaneously on multiple architectures and then general-
izing only those parts that are different. He also suggests choosing three
or four architectures that are very different in order to obtain the best
generalization. Presumably, such an approach suggests the appropriate
refactoring.

What are the large method, large class, and large procedure code smells?

Fowler [2000] describes two code smells, long method and large class, which
are self-evident. In the procedural sense, the analogy is a large procedure.
Large procedures are anathema to the divide-and-conquer principle of soft-
ware engineering and need to be refactored by re-partitioning the code
appropriately.

What are lazy methods and lazy procedure?

A lazy method is one that does not do enough to justify its existence.
The procedural analogy to the lazy class/method code smells is the lazy
procedure. In a real-time sense, a procedure that does too little to pay
for the overhead of calling the procedure needs to be eliminated by
removing its code to the calling procedure or redefining the procedure
to do more.

7228_C005.fm Page 138 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software 139

What is the long parameter list code smell and how can it be refactored?

Long parameter lists are an unwanted remnant of the practice of using
parameter lists to avoid the use of global variables. While clearly well-
defined interfaces are desirable, long parameter lists can cause problems in
embedded systems if interrupts are disabled during parameter passing. In
this case, overly long interrupt latencies and missed deadlines are possible.

The long parameter list code smell can be refactored by passing a pointer
to one or more data structures that contain aggregated parameters, or by
using global variables.

What are message chains?

Fowler [2000] describes message chains as a bad smell in OOD. For example,
a message chain occurs if the client is coupled to the structure of the navi-
gation: getA().getB().getC().getD().getE().doIt();.

The procedural analogy to message chains might be an overly long
sequence of procedure calls that could be short circuited or replaced by a
more “reasonable” sequence of calls. The problem in the case of long
chains is that the overhead of calling procedures becomes significant,
interrupts may be disabled during parts of the procedure calls (e.g., for
parameter passing), and the long sequence of calls may indicate inefficient
design.

What is message passing overload?

Stewart [1999] describes the excessive use of message passing for synchro-
nization as another unwanted practice. He notes that this practice can lead
to unpredictability (because of the necessary synchronization), the potential
for deadlock, and the overhead involved.

He suggests that the refactoring is to use state-based communication via
shared memory with structured communication.

What is the one big loop code smell and how is it refactored?

Cyclic executives are non-interrupt driven systems that can provide the
illusion of simultaneity by taking advantage of relatively short processes on
a fast processor in a continuous loop. For example, consider the set of self-
contained processes Process1 through Processn in a continuous loop as
depicted in the following:

for(;;) { /* do forever */

 Process1();

 Process2();

 …

 Processn()

}

}

7228_C005.fm Page 139 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

140 What Every Engineer Should Know about Software Engineering

Stewart [1999], who calls the cyclic executive “one big loop,” notes that
there is little flexibility in the cyclic executive and that only one cycle rate is
created. However, different rate structures can be achieved by repeating a
task in the list. For example, in the following code

for(;;) { /* do forever */

 Process1();

 Process2();

 Process3();

 Process3();

}

}

Process3 runs twice as frequently as Process1 or Process2.
Moreover, the task list can be made flexible by keeping a list of pointers

to processes, which can be managed by the “operating system” as tasks are
created and completed. Intertask synchronization and communication can
be achieved through global variables or a parameter list.

Generally, however, the “big loop” structure really is a bad smell unless
each process is relatively short and uniform in size. The refactoring involves
rebuilding the executive using an interrupt scheme such as rate-monotonic
or round-robin.

What is shotgun surgery?

Shotgun surgery is a very common code smell related to the phenomenon
that every time you make a change you have to make many little changes.
This is another example of poor application of information hiding, which
suggests the refactoring.

What is speculative generality?

Speculative generality relates to hooks and special cases that are built into the
code to handle things that are not required (but might be needed someday).

Embedded systems are no place to build in hooks for “what-if” code.
Hooks lead to testing anomalies and possible unreachable code. Therefore,
the refactoring is to remove hooks and special cases that are not immediately
needed.

What are tell-tale comments?

The tell-tale comment problem appears in all kinds of systems. Comments
that are excessive, or which tend to explicate the code beyond a reasonable
level, are often indicators of some serious problem. Comments such as “do
not remove this code,” or “if you remove this statement the code doesn’t
work, I don’t know why” are not uncommon. Humor in comment statements
can sometimes be a glib way to mask the fact that the writer doesn’t know

7228_C005.fm Page 140 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software 141

what he is doing. Oftentimes these kinds of statements indicate that there
are underlying timing errors.

In either case, the refactoring involves rewriting the code so that an overly
long explicating comment is not necessary.

What are temporary fields and how are they refactored?

Temporary fields are instance variables that are only set sometimes; you
expect an object to use all of its variables. In the procedural sense, this could
be seen in the case of a struct with fields that are unused in certain
instances. The refactoring is to use an alternative data structure. For example,
in C you could use a union to replace the struct .

What is the unnecessary use of interrupts code smell?

Stewart [1999] also suggests that indiscriminate use of interrupts is a bad
code smell. Interrupts can lead to deadlock, priority inversion, and inability
to make performance guarantees [Laplante 2004b].

Interrupt-based systems should be avoided, although it has been noted that
avoidance is possible only in the simplest of systems where real-time multi-
tasking can be achieved with coroutines and cyclic executives implemented
without interrupts. When interrupts are required to meet performance con-
straints, rate-monotonic or earliest deadline first scheduling should be used.

How can I improve the run-time performance of the code I write?

Many of these improvements can be had by refactoring the code smells just
discussed. However, the main thing you can do to improve code execution
performance, particularly in embedded systems, is to understand the map-
ping between high-order language input and assembly language output for
a particular compiler. This understanding is essential in generating code that
is optimal in either execution time or memory requirements. The easiest and
most reliable way to learn about any compiler is to run a series of tests on
specific language constructs.

For example, in many C compilers the case statement is efficient only if
more than three cases are to be compared; otherwise, nested if statements
should be used. Sometimes the code generated for a case statement can be
quite convoluted; for example, a jump through a register offset by the table
value. This sequence can be time-consuming.

It has already been mentioned that procedure calls are costly in terms of
passing of parameters via the stack. The software engineer should determine
whether the compiler passes the parameters by byte or by word.

Other language constructs that may need to be considered include:

• Use of while loops vs. for loops or do-while loops.
• When to “unroll” loops; that is, to replace the looping construct with

repetitive code (thus saving the loop overhead as well as providing
the compiler the opportunity to use faster machine instructions).

7228_C005.fm Page 141 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

142 What Every Engineer Should Know about Software Engineering

• Comparison of variable types and their uses (e.g., when to use short
integer in C vs. Boolean, when to use single precision vs. double
precision floating point, and so forth).

• Use of in-line expansion of code via macros vs. procedure calls.

This is by no means an exhaustive list of tips.

5.4.2 Coding Standards

What are coding standards?

Coding standards are different from language standards. A language stan-
dard (e.g., ANSI C*) embodies the syntactic rules of the language. A program
violating those rules will be rejected by the compiler. Conversely, a coding
standard is a set of stylistic conventions. Violating the conventions will not
lead to compiler rejection. In another sense, compliance with language stan-
dards is mandatory while compliance with coding standards is voluntary.

How can coding standards help improve my code?

Adhering to language standards fosters portability across different compilers
and, hence, hardware environments. Complying with coding standards will
not likely increase portability, but rather in many cases will increase readability
and maintainability. Some even contend that the use of coding standards can
enhance reliability. Coding standards may also be used to promote improved
performance by encouraging or mandating the use of language constructs that
are known to generate code that is more efficient. Many agile methodologies,
for example, eXtreme Programming, embrace coding standards.

What do coding standards look like?

Coding standards involve standardizing some or all of the following ele-
ments of programming language use:

• Standard or boilerplate header format.
• Frequency, length, and style of comments.
• Naming of classes, methods, procedures, variable names, data, file

names, and so forth.
• Formatting of program source code including use of white space

and indentation.
• Size limitations on code units including maximum and minimum

lines of code, number of methods, and so forth.
• Rules about the choice of language construct to be used; for example,

when to use case statements instead of nested if-then-else
statements.

This is just a partial list.

* The American National Standards Institute Standard for the C language.

7228_C005.fm Page 142 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

Building Software 143

What is the benefit of coding standards?

Close adherence to a coding standard can make programs easier to read and
understand and likely more reusable and maintainable.

Which coding standard should I use?

Many different standards for coding are language-independent or language-
specific. Coding standards can be team-wide, company-wide, or user-group
specific. For example, the Gnu software group has standards for C and C++,
or customers can also require conformance to a specific standard that they
own. Still other standards have become public domain.

One example is the Hungarian notation standard, named in honor of
Charles Simonyi, who is credited with first promulgating its use. Hungarian
notation is a public domain standard intended to be used with object-oriented
languages, particularly C++. The standard uses a complex naming scheme
to embed type information about the objects, methods, attributes, and vari-
ables in the name. Because the standard essentially provides a set of rules
about naming variables, it can be used with other languages such as C++,
Ada, Java, and even C.

Are there any drawbacks to using coding standards?

First, let me say that I believe that you should always follow a coding
standard, despite any difficulties they might introduce or shortcomings they
might have. One problem with standards, however, is that they can promote
very mangled variable names. In other words, the desire to conform to the
standard is greater than creating a particularly meaningful variable name.

Another problem is that the very strength of coding standards can be their
undoing. For example, in Hungarian notation what if the type information
embedded in the object name is wrong? There is no way for a compiler to check
this. There are commercial rule wizards that can be tuned to enforce the coding
standards, but they must be tuned to work in conjunction with the compiler.

When should the coding standard be adopted?

Adoption of coding standards is not recommended mid-project. It is much
easier to conform at the start of the project than to be required to change
existing code.

5.5 Further Reading

Cardelli, L. Bad engineering properties of object-oriented languages, ACM Comp.
Surveys, 28A(4), 150–158, 1996.

Chen, Y., Dios, R., Mili, A., Wu, L., and Wang, K., An empirical study of program-
ming language trends, IEEE Software, 22(3), 72–78, 2006.

7228_C005.fm Page 143 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

144 What Every Engineer Should Know about Software Engineering

Fowler, M., Refactoring, Addison-Wesley, Boston, MA, 2000.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley, Boston, MA, 1995.
Kernighan, B.W. and Ritchie, D.M., The C Programming Language, 2nd ed., Prentice

Hall, Englewood Cliffs, NJ, 1988.
Laplante, P.A., Software Engineering for Image Processing Systems, CRC Press, Boca

Raton, FL, 2004a.
Laplante, P.A., Real-Time Systems Design and Analysis: An Engineer’s Handbook, 3rd ed.,

IEEE Press/John Wiley & Sons, New York , 2004.
Louden, K.C., Programming Languages: Principles and Practice, 2nd ed., Thomson

Course Technology, Boston, MA, 2002.
McConnell, S., Code Complete, 2nd ed., Microsoft Press, Redmond, WA, 2004.
Meyer, B., Object-Oriented Software Construction, 2nd ed., Prentice Hall, Englewood

Cliffs, NJ, 2000.
Sebesta, R.W., Concepts of Programming Languages, 7th ed., Addison-Wesley, Boston,

MA, 2006.
Stewart, D.B. Twenty-five most common mistakes with real-time software develop-

ment, Class #270, Proc. 1999 Embedded Syst. Conf., San Jose, CA, 1999.

7228_C005.fm Page 144 Tuesday, February 27, 2007 4:33 PM

© 2007 by Taylor & Francis Group, LLC

145

6

Software Quality Assurance

Outline

• Quality models and standards
• Software Testing
• Metrics
• Fault tolerance
• Maintenance and reusability

6.1 Introduction

“In the beginning of a malady it is easy to cure but difficult to detect, but
in the course of time, not having been either detected or treated in the
beginning, it becomes easy to detect but difficult to cure [Machiavelli,
1513].” Machiavelli’s sentiments are precisely those that must abound in
a software enterprise seeking to produce a quality product. Apparently,
though, this sentiment is not prevalent. A 2002 study by the National
Institute of Standards Technology (NIST) estimated that software errors
cost the U.S. economy $59.5 billion each year. The report noted that soft-
ware testing could have reduced those costs to about $22.5 billion. Of the
$59.5 billion, users paid for 64% and developers paid for 36% of the cost
[NIST 2002].

In order to achieve the highest levels of software quality, there are several
things you have to do. First, you need to have in place a system that will
foster the development of quality software. This is what the CMM-I (to be
discussed later) is all about. Incorporated in that quality software system is
rigorous, life cycle testing.

7228_C006.fm Page 145 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

146

What Every Engineer Should Know about Software Engineering

In order to attain any of the desirable software qualities, you have to have a
way to measure them through metrics. Finally, you can improve the reliability
of the software through fault-tolerant design. This chapter discusses all of
these aspects of software quality.

6.2 Quality Models and Standards

What is software quality?

There are many ways that stakeholders might perceive software quality, all
based on the presence or absence to a certain degree of one attribute or
another. Some formal definitions are appropriate, however, as defined in the

ISO

8402:2000 Quality Management and Quality Assurance — Vocabulary
standard

.
Quality is the totality of features and characteristics of a product or service

that bear on its ability to satisfy stated or implied needs. A quality policy
describes the overall intentions and direction of an organization with respect
to quality, as formally expressed by top management.

 Quality management

 is
that aspect of overall management function that determines and implements
quality policy. Finally, a quality system is the organizational structure,
responsibilities, procedures, processes, and resources for implementing qual-
ity management.

As it turns out, one can undermine any of these definitions with
rhetorical arguments, but for our purposes, they are useful working
definitions. These are broad definitions of quality for every kind of
product, not just software. There are other ways to look at software
quality.

For example, Voas and Agresti [2004] propose that quality is comprised of
a set of key behavioral attributes such as:

• reliability (R)
• performance (P)
• fault tolerance (F)
• safety (Sa)
• security (Se)
• availability (A)
• testability (T)
• maintainability (M)

along with a dash of uncertainty. They further suggest that quality has a
slightly different meaning for each organization, and perhaps each application,

7228_C006.fm Page 146 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

147

which can be represented by a weighted linear combination of these behav-
ioral attributes, namely,

Q

=

w

1

R

+

 w

2

P

+

 w

3

F

+

 w

4

Sa

+

 w

5

Se

+

 w

6

A

+

 w

7

T

+

 w

8

M

+

 uncertainty

Munson [2003] discusses quality as a set of objectives:

• Learn to measure accurately people, processes, products, and
environments.

• Learn to do the necessary science to reveal how these domains
interact.

• Institutionalize the process of learning from past mistakes.
• Institutionalize the process of learning from past successes.
• Institutionalize the measurement and improvement process.

All of these different takes on quality are compatible and largely consistent
with the prevailing quality models.

What is a quality model?

A quality model is a system for describing the principles and practices
underlying software process maturity. A quality model is different from a
life-cycle model in that the latter is used to describe the evolution of code
from conception through delivery and maintenance. A quality model is
intended to help software organizations improve the maturity of their soft-
ware processes as an evolutionary path from

ad hoc

, chaotic processes to
mature, disciplined software processes. The most famous and widely
employed quality model in the software industry is the capability maturity
model (CMM).

What is the capability maturity model?

The CMM is a software quality model consisting of five levels. Predictability,
effectiveness, and control of an organization’s software processes are
believed to improve as the organization moves up these five levels. While
not truly rigorous, there is some empirical evidence that supports this
position.

The CMM for software is not a life-cycle model, but rather a system for
describing the principles and practices underlying software process maturity.
CMM is intended to help software organizations improve the maturity of
their software processes in terms of an evolutionary path from ad hoc, chaotic
processes to mature, disciplined software processes.

What is the history of the CMM?

CMM had its foundations in work begun in 1986 at the U.S. DoD to help
improve the quality of the deliverables produced by government software

7228_C006.fm Page 147 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

148

What Every Engineer Should Know about Software Engineering

contractors. The work was commissioned through the MITRE Corporation,
but later moved to the Software Engineering Institute (SEI) at Carnegie
Mellon University. Watts Humphrey was the initial author, and then Mark
Paulk, Bill Curtis, and others took the lead in CMM’s development [Paulk
et al. 2005]. CMM borrows heavily from general Total Quality Management
(TQM) and the work of Philip Crosby.

What is the capability maturity model integration?

The capability maturity model integration (CMM-I) is a more generic version
of the CMM that is suitable for other endeavors beside software. CMM-I
consists of three parts: one for software (SW-CMM), one for systems engi-
neering that includes integrated product and process development (SE-
CMM), and one that includes some acquisition aspects (IPD-CMM). The
CMM-I product suite comprises multiple integrated models, courses, and
an assessment method.

For convenience, I will refer to CMM and CMM-I interchangeably.

What is the CMM “maturity suite?”

This consists of a set of maturity models for different aspects of the software
enterprise. It includes

• Software CMM (SW)
• Personal Software Process (PSP)
• Team Software Process (TSP)
• People CMM (P)
• Software Acquisition CMM (SA)
• System Engineering CMM (SE)
• Integrated Product Development CMM (IPD)
• CMM Integration (CMM-I)

The CMM-I is comprised of the SW, SE, and IPD CMM suites taken together.

What are the levels of CMM?

The levels are:

Initial
Repeatable
Defined
Managed
Optimizing

I will discuss each of these in turn.

7228_C006.fm Page 148 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

149

What are the components of each CMM level?

The CMM consists of the five maturity levels just mentioned. Each maturity
level is a well-defined evolutionary stage of a mature software process
(except for Level 1 where the processes are

ad hoc

). The maturity levels
indicate process capabilities, which describe the range of expected results
that can be achieved by following a software process. Maturity levels also
contain key process areas, which identify related activities that help achieve
a set of important goals for that level. Key process areas are organized by
common features. The common features are an attribute that indicate
whether the implementation and institutionalization of a key process area
is effective, repeatable, and lasting. Finally, the common features contain
key practices that describe the infrastructure and activities that contribute
most to the effective implementation and institutionalization of the key
process area.

Should there be a Level 0 in the CMM?

Level 0 is not officially recognized, but it is sometimes characterized as
“chaos.”

What is CMM Level 1?

Level 1 is called the “initial” level. In Level 1, the organization is character-
ized by software processes that are

ad hoc

 and chaotic. Level 1 is not well
defined and organizations may have some aspects at Level 1 while others
are further evolved. Most organizations probably exhibit some “pockets” of
Level 1 behavior.

What are some of the characteristics of Level 1 organizations?

Level 1 organizations are not as chaotic as you might think. There may
be evolved business processes, which are possibly holdovers from TQM
or Malcolm Baldridge quality initiatives, but they are working against
each other. These organizations can still have strong successes but success
might not be repeatable because each team tackles projects in different
ways each time.

In Level 1 organizations, there is little or no measurement and while some
time/cost estimates are accurate, many are far off. In fact, success in these
settings comes not from a well-managed software operation but from smart
people doing the right things. When this is the case, there are frequent crises
and firefighting and it is very hard for the organization to recover when
good people leave.

What is CMM Level 2?

Level 2 is the “repeatable” level. Here, basic project management processes
are established to track cost, schedule, and functionality. The necessary process

7228_C006.fm Page 149 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

150

What Every Engineer Should Know about Software Engineering

discipline is in place to repeat earlier successes on projects with similar
applications. Key process focus on:

• requirements management
• software project planning
• software project tracking
• oversight
• software subcontract management
• software quality assurance
• software configuration management

Conventional wisdom is that it takes a committed organization approxi-
mately 18 months to advance from Level 1 to Level 2.

What is CMM Level 3?

CMM Level 3 is the “defined” level. Here the organization has achieved
Level 2 maturity plus the software process for both management and engi-
neering activities is documented, standardized, and integrated into a stan-
dard software process for the organization. All projects use an approved,
customized version of the organization’s standard software process for
developing and maintaining software.

The key process areas at this level address both project and organizational
issues, as the organization establishes an infrastructure that institutionalizes
effective software engineering and management processes across all projects.
Key process areas are:

• organization process focus
• organization process definition
• training program
• integrated software management
• software product engineering
• inter-group coordination
• peer reviews

Characteristically, all projects use an approved, customized version of the
organization’s standard software process for developing and maintaining
software.

What is CMM Level 4?

Level 4 is the “managed” level and it consists of all of the Level 3 charac-
teristics. Here, detailed measures of the software process and product quality
are collected. Both the software process and products are quantitatively
understood and controlled.

7228_C006.fm Page 150 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

151

The key process areas here focus on establishing a quantitative under-
standing of both the software process and the software work products
being built. They are quantitative process management and software qual-
ity management.

What is CMM Level 5?

Level 5 is the “optimizing” level. It consists of Level 4 characteristics plus
evidence of continuous process improvement enabled by quantitative feed-
back from the process and from piloting innovative ideas and technologies.
The key process areas at this level cover the issues that both the organization
and the projects must address to implement continual, measurable software
process improvement. They are defect prevention, technology change man-
agement, and process change management.

How many organizations are currently CMM-I certified?

Level 1 organizations are surely the most common. Only a small percentage
of software organizations attempt a CMM assessment, so there is no way
of knowing how many are at a given level. But a hint is given by some
proportionate statistics from a 2003 survey of 70 organizations shown in
Figure 6.1 [Zubrow 2003].

Zubrow’s estimates, based on his sample, show that about 40% of the
organizations achieve Level 3 upon first appraisal.

How can my organization use the CMM?

There are several ways that the CMM-I certification can be used to improve
your organization’s overall software practice. For example, it can hire an offi-
cially certified CMM assessor to conduct an initial evaluation, then work to help
the organization achieve a certain level of maturity (Level 3 is often the target).

FIGURE 6.1

Maturity profile of 70 CMM certified organizations surveyed. (From Zubrow, D., Current Trends
in the Adoption of the CMMI

®

 Product Suite,

compsac

,

27th Annu. Intl. Comp. Software Appl.
Conf.,

 2003, pp. 126–129.)

Level 1
15%

Level 2
27%

Level 3
35%

Level 4
5%

Level 5
18%

7228_C006.fm Page 151 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

152

What Every Engineer Should Know about Software Engineering

Reaching a certain level is usually a prerequisite to bid on certain government
software contracts or to work with other customers and partners that value
such certification.

Likewise, your company may judge that a certain level of maturity is a
prerequisite for its partners. Some development house, particularly those
oversees, use CMM certification as a “Good Housekeeping Seal of Approval”
to impress potential clients.

If your company prefers, it can send its own staff to official CMM training
(for example, through the SEI) to evangelize CMM throughout your organi-
zation. This is especially cost effective for a large organization where soft-
ware process improvements will have a big payoff.

Finally, and I think most commonly, your organization can use CMM as
a set of suggestions and apply them as appropriate.

Why customize CMM this way?

For some, especially smaller organizations, the cost of certification and main-
taining the practices can be expensive. To others, the CMM might just seem
like a word game. However, if you get beyond the verbiage, CMM provides
important guidance on how to build software.

Are there “conventional” objections to using the CMM?

There a variety of arguments proffered against seeking CMM certification
for a software organization. The most obvious objection is cost —– it will
take significant time and money to prepare for certification and to move up
the various levels. The counter-argument to this objection, of course, is that
the cost is worth it. In my opinion, it is very hard to use cost justification for
either side of this argument because of the many variables that govern
success at one organization and failure at another. It is just impossible to
impute the experiences in one case to another.

Some argue that CMM is an ends to a means but not a means (for devel-
oping quality software) itself. Indeed, some cynics believe that a CMM
environment gives a somewhat artificial stamp of approval. They justify this
argument because the CMM documentation, though lengthy, does not pro-
vide any particular recipes for any of the key practices. It just says which
key practices should exist, not how to perform them.

Consider Jane, who works at a company that recently achieved CMM
Level 3. She was tired and disillusioned. Why? She wanted her company
to say, “Let’s work together to improve our software processes.” Instead,
they said, “Now that we achieved Level 3, let’s get back to what we were
doing.”

Another objection to CMM is that it is not helpful in a crisis. Indeed, that
is true, but that is not the purpose of achieving any CMM level. West
[2004] uses the analogy of someone pledging to diet and exercise as he is
having a heat attack. Of course, by then it is too late; the person should

7228_C006.fm Page 152 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

153

have dieted and exercised long before as a preventative measure. So, too, it is
with CMM.

Many of the conventional objections are borne from myths that have been
propagated by naysayers.

What are some of the CMM-I and process implementation myths?

West [2004] lists quite a few of these myths:

• Myth: CMM or CMM-I gives organizations requirements for devel-
oping successful programs.

• Fact: It helps describe the conditions under which successful soft-
ware development programs are likely to exist.

• Myth: Having higher maturity levels ensures a software or systems
organization will be successful.

• Fact: Not necessarily. You can get bad food at a clean restaurant.
However, you are not likely to get sick from that food.

• Myth: Before implementing CMM or CMM-I, organizations are usu-
ally in total chaos.

• Fact: Not so. There are plenty of good software development orga-
nizations that have chosen not to seek CMM certification. Moreover,
even those at Level 1 can have success.

• Myth: The primary and best reason for process improvement is to
achieve maturity levels.

• Fact: We’ve debunked this notion already.
• Myth: CMM will fix all your software development problems.
• Fact: Obviously untrue; there is no “silver bullet.”
• Myth: Model-based process improvement does not affect what I do.
• Fact: Again, this is obviously not correct.
• Myth: Implementing process improvement based on CMM is rocket

science and only a few geniuses understand it.
• Fact: The CMM concepts are relatively straightforward. Eat right,

get plenty of sleep, brush your teeth three times a day. But these
practices can be hard to live by in reality.

6.2.1 Other Quality Standards and Models

What is ISO 9000?

ISO 9000 is a generic, worldwide standard for quality improvement. The
International Standards Organization owns the standard.

Collectively described in five standards, ISO 9000 through ISO 9004, ISO 9000
was designed to be applied in a wide variety of manufacturing environments.

7228_C006.fm Page 153 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

154

What Every Engineer Should Know about Software Engineering

ISO 9001 through ISO 9004 apply to enterprise according to the scope of
their activities. ISO 9004 and ISO 9000-X family are documents that provide
guidelines for specific applications domains.

ISO 9000-3 (1997) is essentially an expanded version of ISO 9001 with
added narrative to encompass software. The standard is widely adopted in
Europe and increasingly in the U.S. and Asia.

What are ISO 9000-3 principal areas of quality focus?

They are:

• management responsibility
• quality system requirements
• contract review requirements
• product design requirements
• document and data control
• purchasing requirements
• customer supplied products
• product identification and traceability
• process control requirements
• inspection and testing
• control of inspection, measuring, and test equipment
• inspection and test status
• control of nonconforming products
• corrective and preventive actions
• handling, storage, and delivery
• control of quality records
• internal quality audit requirements
• training requirements
• servicing requirements
• statistical techniques

What does ISO 9000-3 look like?

It is very short (approximately 30 pages) and very high level (see Figure 6.2
for an excerpt).

Are there any similarities between ISO 9000-3 and CMM?

CMM-I is a model for operational excellence, while ISO 9000-3 is a standard
for quality software systems. While both are abstractions, the level of detail
is much different; ISO 9000-3 is approximately 30 pages long while CMM-I
is approximately 700 pages long.

7228_C006.fm Page 154 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

155

Are ISO 9000-3 and CMM compatible?

They are clearly not the same, but they are compatible. Both identify best
practices but neither is explicit about how to do things. ISO 9000-3 defines
minimum standards for organizations, while CMM-I defines different levels
of operational excellence.

How does ISO/IEC 12207 help promote software quality?

This standard, which was briefly introduced in Chapter 2, is contained in a
relatively high-level document used to help organizations refine their pro-
cesses, by defining compliance as the performance of those processes, activ-
ities, and tasks. Hence, it allows an organization to define and meet its own
quality standards. Because it is so general, organizations seeking to apply
12207 need to use additional standards or procedures that specify those
details.

What is Six Sigma?

Developed by Motorola, Six Sigma is a management philosophy based on
removing process variation. Six Sigma focuses on the control of a process to
ensure that outputs are within six standard deviations (six sigma) from the
mean of the specified goals. Six Sigma is implemented using define, measure,
improve, analyze, and control (DMIAC).

Define

 means to describe the process to be improved, usually through some
sort of business process model.

Measure

 means to identify and capture

FIGURE 6.2

Excerpt from ISO 9000-3: 4.4 Software development and design.

ISO 9000-3 4.4 Software development and design

4.4.1
General

Develop and document procedures to control the product design
and development process. These procedures must ensure that all
requirements are being met.

Software
development

Control your software development project and make
sure that it is executed in a disciplined manner.

Use one or more life cycle models to help
organize your software development project.

Develop and document your software development
procedures. These procedures should ensure that:

Software products meet all requirements.

Software development follows your:

Quality plan.

Development plan.

7228_C006.fm Page 155 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

156

What Every Engineer Should Know about Software Engineering

relevant metrics for each aspect of the process model. The goal-question-
metric paradigm is helpful in this regard.

Improve

 obviously means to change
some aspect of the process so that beneficial changes are seen in the associ-
ated metrics, usually by attacking the aspect that will have the highest
payback.

Analyze

 and

control

 mean to use ongoing monitoring of the metrics
to continuously revisit the model, observe the metrics, and refine the process
as needed.

Some organizations use Six Sigma as part of their software quality prac-
tices. The issue here, however, is in finding an appropriate business process
model for the software production process that does not devolve into a
simple, and highly artificial, waterfall process.

What is the relationship between Six Sigma and the CMM?

The two can be used in a complementary fashion; Six Sigma is weak on
improvement infrastructure while CMM-I is strong in this regard.

Six Sigma is more process-yield-based than CMM-I, so CMM-I process
areas can be used to support DMIAC (e.g., by encouraging measurement).
While CMM-I identifies activities, Six Sigma helps optimize those activities.
Six Sigma can also provide specific tools for implementing CMM-I practices
(e.g., estimation and risk management).

What is the IT infrastructure library?

The IT infrastructure library (ITIL) is a worldwide standard for IT service
management. Originated in the U.K. (and “owned” by its Office of Govern-
ment Commerce), ITIL has standards for

• service support
• service delivery
• infrastructure management
• application management
• planning to implement
• business perspective

“Dashboard” tools are available for each of these standards.

Can ITIL help with software quality programs?

Some companies find ITIL to be a useful framework for software quality
management because it is non-proprietary, platform-independent, and adapt-
able. At this writing, ITIL is used as the basis for the Microsoft Operations
Framework (MOF) and the Hewlett Packard (HP) IT service management
reference model.

How does ITIL help with software quality management?

ITIL helps create comprehensive, consistent, and coherent codes of best
practice for quality IT service management, promoting business effectiveness

7228_C006.fm Page 156 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

157

in the use of IT. ITIL also encourages the private sector to develop ITIL-
related services and products, training, consultancy, and tools.

Can anything bad come of a software quality initiative?

Yes. According to West [2004], “slash-and-burn improvement” can occur.
This approach means throwing away the good practices (and perhaps
people) along with the bad; for example, when it is determined (or
assumed) that an organization is at CMM Level 1, and the decision is made
to tear down the existing software culture and start from scratch. The
negative effects of slash-and-burn process improvement are not always
easy to detect [West 2004].

What are the symptoms of slash-and-burn approaches?

There are many possible signs. West [2004] gives the following:

• A process improvement specialist (consultant) cannot tell you who
his client is.

• No one can name a single goal for the process improvement effort
other than the achievement of a maturity level.

• There is a belief that no processes existed prior to the CMM initiative.
• Everyone feels like their only job is maturity level achievement.
• You are not allowed to use

any

 of the old procedures, even ones that
worked.

• Whenever you ask someone “why are you doing that?”, they tell
you that “the process requires it.”

• People with software delivery responsibilities can recite CMM prac-
tices or the identification and titles of their organization’s policies
and procedures.

• Estimates for process overhead in development projects exceed 15%
of the projects’ total effort.

• The volume of standards and procedures increases, while the quan-
tity and quality of delivered products decreases.

• People use words such as “audit,” “inspection,” and “compliance.”
• People refer to “CMM” or “SEI” requirements.
• People make jokes about the “process police” or “process Gestapo.”

What is the best way to promote software quality improvement
without triggering a slash-and-burn frenzy?

Stelzer and Mellis [1998] provide an excellent set of suggestions of success
factors learned from quality improvement initiatives in a large number of
organizations that they study. Table 6.1 summarizes these findings.

7228_C006.fm Page 157 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

158

What Every Engineer Should Know about Software Engineering

6.3 Software Testing

What is the role of testing with respect to software quality?

Effective software testing will improve software quality. In fact, even poorly
planned and executed testing will improve software quality if it finds defects.
Testing is a life-cycle activity; testing activities begin from product inception
and continue through delivery of the software and into maintenance. Col-
lecting bug reports and assigning them for repair is also a testing activity.
But as a life-cycle activity, the most valuable testing activities occur at the
beginning of the project. Boehm and Basili [2005] report that finding and
fixing a software problem after delivery is often 100 times more expensive

TABLE 6.1

Organizational Change in Software Process Improvement

Successful factor of
organizational change Explanation

Change agents and opinion leaders Change agents initiate and support the
improvement projects at the corporate
level, opinion leaders at a the local level.

Encouraging communication and
collaboration

Communication efforts precede and
accompany the improvement program
(communication) and degree to which staff
members from different teams and
departments cooperate (collaboration).

Management commitment and support Management at all organizational levels
sponsor the change.

Managing the improvement project Every process improvement initiative is
effectively planned and controlled.

Providing enhanced understanding Knowledge of current software processes
and interrelated business activities is
acquired and transferred throughout the
organization.

Setting relevant and realistic objectives Software processes are continually
supported, maintained, and improved at a
local level.

Stabilizing changed processes Software processes are continually
supported, maintained, and improved at a
local level.

Staff involvement Staff members participate in the
improvement activities.

Tailoring improvement initiatives Improvement efforts are adapted to the
specific strengths and weaknesses of
different teams and departments.

Unfreezing the organization The “inner resistance” of an organizational
system to change is overcome

Source:

 Stelzer

, D. and Mellis, W., Success factors of organizational change in software process
improvement,

Software Process — Improvement and Practice

, 4, 227–250, 1998.

7228_C006.fm Page 158 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

159

than finding and fixing it during the requirements testing phase. And about
40 to 50% of the effort on current software projects is spent on avoidable
rework.

Is there a difference between an error, a bug, a fault, and a failure?

There is more than a subtle difference between the terms error, bug, fault,
and failure. Use of “bug” is, in fact, discouraged because it somehow implies
that an error crept into the program through no one’s action. The preferred
term for an error in requirement, design, or code is “error” or “defect.” The
manifestation of a defect during the operation of the software system is called
a fault. A fault that causes the software system to fail to meet one of its
requirements is called a failure.*

Is there a difference between verification and validation?

Verification, or testing, determines whether the products of a given phase of
the software development cycle fulfill the requirements established during
the previous phase. Verification answers the question “Am I building the
product right?”

Validation determines the correctness of the final program or software with
respect to the user’s needs and requirements. Validation answers the ques-
tion “Am I building the right product?”

What is the purpose of testing?

Testing is the execution of a program or partial program with known
inputs and outputs that are both predicted and observed for the purpose
of finding faults or deviations from the requirements. Although testing
will flush out errors, this is just one of its purposes. The other is to increase
trust in the system. Perhaps once, software testing was thought of as
intended to remove all errors. However, testing can only detect the pres-
ence of errors, not the absence of them; therefore, it can never be known
when all errors have been detected. Instead, testing must increase faith in
the system, even though it may still contain undetected faults, by ensuring
that the software meets its requirements. This objective places emphasis
on solid design techniques and a well-developed requirements document.
Moreover, a formal test plan that provides criteria used in deciding
whether the system has satisfied the requirements documents must be
developed.

What is a good test?

A good test is one that has a high probability of finding an error. A successful
test is one that uncovers an error.

* Some define a fault as an error found prior to system delivery and a defect as an error found
after delivery.

7228_C006.fm Page 159 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

160

What Every Engineer Should Know about Software Engineering

What are the basic principles of software testing?

The following principles should always be followed [Pressman 2005]:

• All tests should be traceable to customer requirements.
• Tests should be planned long before testing begins.
• Remember that the Pareto principle applies to software testing.
• Testing should begin “in the small” and progress toward testing “in

the large.”
• Exhaustive testing is not practical.
• To be most effective, testing should be conducted by an independent

party.

These are the most helpful and practical rules for the tester.

How do I start testing activities during the requirements
engineering process?

Testing is a well-planned activity and should not be conducted willy nilly,
nor undertaken at the last minute, just as the code is being integrated. The
most important activity that the test engineer can conduct during require-
ments engineering is to ensure that each requirement is testable. A require-
ment that cannot be tested cannot be guaranteed and, therefore, must be
reworked or eliminated. For example, a requirement that says “the system
shall be reliable” is untestable. On the other hand, “the MTBF for the system
shall be not less than 100 hours of operating time” may be a desirable level
of reliability and can be tested; that is, demonstrated to have been satisfied.

There are other testing activities that are then conducted during design
and coding.

What test activities occur during software design and code development?

During the design process, test engineers begin to design the corresponding
test cases based on an appropriate methodology. The test engineers and
design engineers work together to ensure that features have sufficient test-
ability. Often, the test engineer can point out problems during the design
phase, rather than uncover them during testing.

There are a wide range of testing techniques for unit testing, integration
testing, and system level testing. Any one of these test techniques can be
either insufficient or computationally unfeasible. Therefore, some combina-
tion of testing techniques is almost always employed.

What is unit level testing?

Several methods can be used to test individual modules or units. These
techniques can be used by the unit author (sometimes called desk checking)
and by the independent test team to exercise each unit in the system. These

7228_C006.fm Page 160 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance

161

techniques can also be applied to subsystems (collections of modules related
to the same function). The techniques to be discussed include black box and
white box testing.

What is black box testing?

In black box testing, only inputs and outputs of the unit are considered; how
the outputs are generated based on a particular set of inputs is ignored. Such
a technique, being independent of the implementation of the module, can
be applied to any number of modules with the same functionality.

Some widely used black box testing techniques include:

• exhaustive testing
• boundary value testing
• random test generation
• worst case testing

An important aspect of using black box testing techniques is that clearly
defined interfaces to the modules are required. This places additional empha-
sis on the application of Parnas partitioning and interface segregation prin-
ciples to module design.

What is exhaustive testing?

Brute force or exhaustive testing involves presenting each code unit with
every possible input combination. Brute force testing can work well in the
case of a small number of inputs each with a limited input range; for
example, a code unit that evaluates a small number of Boolean inputs.
However, a major problem with brute force testing is the combinatorial
explosion in the number of test cases. For example, suppose a program
takes as input five 32-bit numbers and outputs one 32-bit number. Taking
a purely black box testing perspective, to exhaustively test we need to test
all possible combinations of five 32-bit inputs. That is we have
2

32

·2

32

·2

32

·2

32

·2

32

=

 2

160

 test cases. Even if we could randomly generate and
run these test cases, say, one every 1

µ

sec, the entire test set would take
more than 4.6

×

 10

34

 years to complete!

What is boundary value testing?

Boundary value or corner case testing solves the problem of combinatorial
explosion by testing some very tiny subset of the input combinations iden-
tified as meaningful “boundaries” of input.

For example, consider the code previously discussed with five 32-bit
inputs. If the test inputs are restricted to every combination of the min, max,
and nominal values for each input, then the test set would consist of
test cases. A test set of this size can be handled easily with automatic test
case generation.

3 2435 =

7228_C006.fm Page 161 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

162 What Every Engineer Should Know about Software Engineering

A stronger version of this testing could be found if we test values just less
than and just greater than each of the boundaries, or we could select more
than one nominal value for each input.

What is random test case generation?

Random test case generation, or statistically based testing, can be used for
both unit and system level testing. This kind of testing involves subjecting
the code unit to many randomly generated test cases over some period of
time. The purpose of this approach is to simulate execution of the software
under realistic conditions.

The randomly generated test cases are based on determining the under-
lying statistics of the expected inputs. The statistics are usually collected by
expert users of similar systems or, if none exist, by informed guessing. The
intent of this kind of testing is to simulate typical usage of the system.

The major drawback of such a technique is that the underlying probability
distribution functions for the input variables may be unavailable or incorrect.
Therefore, randomly generated test cases are likely to miss conditions with
low probability of occurrence. These are precisely the kind of situations that
may be overlooked in the design of the module. Failing to test these scenarios
is an invitation to disaster.

What is equivalence class testing?

Equivalence class testing involves partitioning the space of possible test
inputs to a code unit or group of code units into a set of representative inputs.
I like the analogy of the crash test dummies that auto manufacturers use to
ensure the safety of automobiles. Auto manufacturers don’t have a crash test
dummy representing every possible human being. Instead, they use a hand-
ful of representative dummies — small, average, and large adult males;
small, average, and large adult females; pregnant female; toddler, etc. These
categories represent the equivalence classes.

In the same way, we can partition input sets. For example, suppose we are
testing a module with an input from a sensor that has an expected range of
[-1000, 1000]. We can partition this interval in a number of ways. One way
might be to consider all the values <1000 to be in one equivalence class,
those in the range [-1000, 1000] in another equivalence class, and those values
>10,000 to be a third equivalence class. Then we select a representative input
from each of those classes, say -5000, 0, and 5000 and test these cases. We
could also combine equivalence class testing with boundary value testing
and test the following inputs: -5000, -1000, 0, 1000, and 5000. We can
strengthen the testing further by testing around both sides of the boundary
values.

Are there any disadvantages to black box testing?

One disadvantage is that it can bypass unreachable or dead code. In addition,
it may not test all of the control paths in the module. In other words, black box

7228_C006.fm Page 162 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 163

testing only tests what is expected to happen, not what wasn’t intended. White
box or clear box testing techniques can be used to deal with this problem.

What is white box testing?

White box testing (sometimes called clear or glass box testing) seeks to test
the structure of the underlying code. For this reason it is also called structural
testing.

Whereas black box tests are data driven, white box tests are logic driven;
that is, they are designed to exercise all paths in the code unit. For example,
in the reject mechanism functionality of the baggage inspection system, all
error paths would need to be tested including those pathological situations
that deal with simultaneous and multiple failures.

White box testing also has the advantage that it can discover those code
paths that cannot be executed. This unreachable code is undesirable because
it is likely a sign that the logic is incorrect, it wastes code space memory,
and it might inadvertently be executed in the case of corruption of the
computer’s program counter.

The following white box testing strategies will be discussed (this is not an
exhaustive list of white box testing techniques, however):

• DD path testing
• DU path testing
• McCabe’s basis path method
• Code inspections
• Formal program proving

What is DD path testing?

DD path testing, or decision-to-decision path testing is a form of white box
testing based on the control structure of the program. In DD testing, a graph
representation of the control structure of the program is used to generate
test cases that traverse the graph, essentially from one decision branch (for
example, if-then statement) to another in well-defined ways. Depending
on the strength of the testing, different combinations of paths are tested. A
detailed explanation of DD path testing can be found in Jorgensen [2002].

What is DU path testing?

DU (define-use) path testing is a data-driven white box testing technique
that involves the construction of test cases that exercise all possible definition,
change, or use of a variable through the software system. Suppose, for
example, a variable “acceleration” is defined as a floating-point variable
somewhere in the software system but is accessed or changed throughout.
Test cases would then be constructed that involve the setting and changing
of that variable, and then observing how those changes propagate through-
out the system.

7228_C006.fm Page 163 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

164 What Every Engineer Should Know about Software Engineering

DU path testing is actually rather sophisticated because there is a hierarchy
of paths involving whether the variable is observed (and, for example, some
decision made upon its value) or changed. Interested readers are referred to
Jorgensen [2002].

What is McCabe’s basis path method?

We will discuss McCabe’s metric to determine the complexity of code. How-
ever, McCabe’s metric can also be used to determine a lower bound on the
number of test cases needed to traverse all linearly independent paths in a
unit of code. McCabe also provides a procedure for determining the linearly
independent paths by traversing the program graph. This technique is called
the basis path method [McCabe 1976].

The basis path method begins with the selection of a baseline path, which
should correspond to some “ordinary” case of program execution along one
of the programs. McCabe advises choosing a path with as many decision
nodes as possible.

Next, the baseline path is retraced and, in turn, each decision is reversed;
that is, when a node of outdegree of greater than two is reached, a different
path must be taken. Continuing in this way until all possibilities are
exhausted generates a set of paths representing the set of basis vectors. Then
a clever construction is followed to force the program graph to look like a
vector space by defining the notions of scalar multiplication and addition
along code paths.

The technique is relatively simple, but it is best to consult an excellent
reference on testing, such as Jorgensen [2002], for further details.

What are code inspections?

In code inspections, the author of some collection of software presents
each line of code to a review group of peer software engineers. Code
inspections can detect errors as well as discover ways for improving the
implementation. This audit also provides an opportunity to enforce coding
standards.

Inspections have been shown to be a very effective form of testing. Accord-
ing to Boehm and Basili [2005], peer code reviews catch 60% of the defects.
But when the reviews are directed (meaning, the reviewers are asked to focus
on specific issues), then 35% more defects are caught than in non-directed
reviews.

What is formal program proving?

Formal program proving is a kind of white box testing using mathematical
techniques in which the code is treated as a theorem and some form of
calculus is used to prove that the program is correct. This form of verification
requires a high level of training and is useful, generally, for only limited
purposes because of the intensity of activity required.

7228_C006.fm Page 164 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 165

What is system integration testing?

Integration testing involves testing of groups of components integrated to
create a system or sub-system. The tests are derived from the system spec-
ification. The principle challenge in integration testing is locating the source
of the error when a test fails. Incremental integration testing reduces this
problem.

Once individual modules have been tested, then subsystems or the entire
system need to be tested. In larger systems, the process can be broken down
into a series of subsystem tests and then a test of the overall system.

If an error occurs during system-level testing, the error must be repaired.
Ideally, every test case involving the changed module must be rerun and all
previous system level tests must be passed in succession. The collection of
system test cases is often called a system test suite.

What is incremental integration testing?

This is a strategy that partitions the system in some way to reduce the code
tested. Incremental testing strategy includes:

• top-down testing
• bottom-up testing
• other kinds of system partitioning

In practice, most integration involves a combination of these strategies.

What is top-down testing?

This kind of testing starts with a high-level system and integrates from the top-
down, replacing individual components by stubs (dummy programs) where
appropriate. For example, in Figure 6.3 the nodes represent code units and the
arcs represent some calling or invocation (if they are methods) sequence
between those code units. The shaded areas represent the collection of code
units to be tested in the appropriate test cases, organized as test sessions.

The testers work their way down from the “top” of the system, which is
the main program if it is written in a procedural manner. If it is an object-
oriented program, then it is trickier to identify the sequence of method
invocation. Sequence diagrams or use cases might be helpful in drawing this
diagram. We will discuss this situation shortly.

In any case, where code units are not tested, or not yet written, appropriate
stubs need to be written. The stubs would have the appropriate parameter
interface but do nothing except perhaps indicate somehow that they were
successfully called or invoked.

What is bottom-up testing?

Bottom up testing is the reverse of top-down testing in which we integrate
individual components in levels, from the bottom up, until the complete

7228_C006.fm Page 165 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

166 What Every Engineer Should Know about Software Engineering

system is created. For example, in Figure 6.4, the testing sequence starts at
the bottom level subtree and works its way to the top subtree. In bottom-
up testing, test harnesses must be constructed; that is, skeleton code that
represents the upper level functionality of the code must be created.

One of the disadvantages of bottom-up testing, however, is that integration
errors are found later rather than earlier in the development of the system
and, hence, systems-level design flaws that could require major reconstruction

FIGURE 6.3
Top-down integration testing. (From Jorgensen, P.C., Software Testing: A Craftsman’s Approach,
2nd ed., CRC Press, Boca Raton, FL, 2002. With permission.)

FIGURE 6.4
Bottom-up integration testing. (From Jorgensen, P.C., Software Testing: A Craftsman’s Approach,
2nd ed., CRC Press, Boca Raton, FL, 2002. With permission.)

Top Subtree
(Sessions 1-4)

Second Level Subtree
(Sessions 12-15)

Botom Level Subtree
(Sessions 38-42)

Top Subtree
(Sessions 29-32)

Second Level Subtree
(Sessions 25-28)

Botom Level Subtree
(Sessions 13-17)

7228_C006.fm Page 166 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 167

are found last. Finally, in this situation there is no visible working system until
the last stage; therefore, it is harder to demonstrate progress to the clients.

What other kinds of system partitioning testing are there?

Other approaches attack related portions of the program in some fashion.
These include pair-wise integration, sandwich integration, neighborhood
integration testing, and interface testing. Interface testing describes a family
of tests that deal with the specific integration issue of resolving problems
that occur at the code unit interfaces. Object-oriented testing is also consid-
ered a systems integration testing strategy because other than testing the
efficacy of class methods using unit-testing strategies, the behavior of objects
as a whole requires the consideration of how they interact with other objects.

What is pair-wise integration testing?

This is a form of integration testing in which pairs of modules or functionality
are tested together. Pair-wise integration testing is designed to reduce the
effort needed to develop the stubs and drivers (the dummy code that plays
the role of callees and callers in the program call graph) that are needed.
Instead of waiting to write numerous stubs and drivers, the calling and called
programs can be tested at the same time. Figure 6.5 illustrates the principle.

What is sandwich integration testing?

Sandwich integration is a combination of top-down and bottom up testing,
which falls somewhere in between big-bang testing (one big test case) and
testing of individual modules (see Figure 6.6). The technique tends to reduce
stub and driver development costs, but is less effective in isolating errors.

What is neighborhood integration testing?

In this integration testing strategy, portions of program functionality that are
logically connected somehow are tested in groups. As before, appropriate
stubs and drivers are needed to deal with the interfaces to the code that is
not being tested. (See Figure 6.7.)

What is interface testing?

This testing takes place when modules or subsystems are integrated to create
larger systems. Therefore, it can take place during integration testing. The
objective is to detect faults due to interface errors or invalid assumptions
about interfaces. This kind of testing is particularly important for object-
oriented development as objects are defined by their interfaces.

What kinds of interfaces can be tested?

Parameter interfaces can be tested to ensure that the correct data passed from
one procedure to another. Shared memory interfaces can be tested by reading

7228_C006.fm Page 167 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

168 What Every Engineer Should Know about Software Engineering

FIGURE 6.5
Some pair-wise integration sessions. The shaded pairs are tested together. (From Jorgensen, P.C.,
Software Testing: A Craftsman’s Approach, 2nd ed., CRC Press, Boca Raton, FL, 2002. With permission.)

FIGURE 6.6
Some sandwich integration sessions. (From Jorgensen, P.C., Software Testing: A Craftsman’s
Approach, 2nd ed., CRC Press, Boca Raton, FL, 2002. With permission.)

1

5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

Session 1

Session 2

Session 3

7228_C006.fm Page 168 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 169

and writing global variables from all code units that can access those vari-
ables. Procedural interfaces can be tested to verify that each subsystem
encapsulates a set of procedures to be called by other subsystems. Finally,
message-passing interfaces can be tested to verify that subsystems correctly
request services from other subsystems.

What kinds of errors can occur at the interfaces?

One error is interface misuse, where a calling component calls another
component and makes an error in its use of its interface; for example,
when parameters are in the wrong order. Another type of error is interface
misunderstanding, which occurs when a calling component embeds incor-
rect assumptions about the behavior of the called component. Finally,
timing errors can occur at the interfaces in that the called and the calling
component operate at different speeds and out-of-date information is
accessed.

FIGURE 6.7
Two neighborhood integration sessions (shaded areas). (From Jorgensen, P.C., Software Testing:
A Craftsman’s Approach, 2nd ed., CRC Press, Boca Raton, FL, 2002. With permission.)

1

5

7

20

21

9

10

12

11

16

17 18 19

22

23
24

25
26

14 2 36 8

4

13

15

27

7228_C006.fm Page 169 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

170 What Every Engineer Should Know about Software Engineering

What are some guidelines for testing interfaces?

First, design tests so that parameters to a called procedure are at the extreme
ends of their ranges. Then, always test pointer parameters with null pointers.
Use stress testing (to be discussed shortly) in message-passing systems and
in shared-memory systems, and vary the order in which components are
activated. Finally, design tests that cause the component to fail.

Why is testing object-oriented code different from testing other types
of code?

First, the components to be tested are object classes that are instantiated as
objects. Because the interactions among objects have a larger grain than do
individual functions, systems integration testing approaches have to be used.
But the problem is further complicated because there is no obvious “top” to
the system for top-down integration and testing.

What are the levels of testing in object-oriented testing?

The three testing levels are:

object classes
clusters of cooperating objects
the complete object-oriented system

How are object classes tested?

Inheritance makes it more difficult to design object class tests, as the infor-
mation to be tested is not localized. Object class testing can be achieved by

• testing all methods associated with an object
• setting and interrogating all object attributes
• exercising the object in all possible states

Note that methods can be tested using any of the black or white box testing
techniques discussed for unit testing.

How can clusters of cooperating objects be tested?

Various techniques are used to identify clusters of objects using knowledge
of the operation of objects and the system features that are implemented by
these clusters. Cluster identification approaches include:

• use-case or scenario testing
• thread testing
• object interaction testing
• uses-based testing

Use-case or scenario testing is based on a user interaction with the system.
This kind of cluster testing has the advantage that it tests system features as
experienced by users.

7228_C006.fm Page 170 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 171

Thread testing focuses on each thread. A thread is all of the classes needed
to respond to a single external input. Each class is unit tested, and then the
thread set is exercised.

Object interaction testing tests sequences of object interactions that stop
when an object operation does not call on services from another object.

Uses-based testing begins by testing classes that use few or no server
classes. It continues by testing classes that use the first group of classes,
followed by classes that use the second group, and so on.

What is scenario testing?

This type of system testing for object-oriented systems involves identifying
scenarios from use-cases and supplementing them with interaction diagrams
that show the objects involved in the scenario.

What is worst case testing?

Worst case, or exception, testing involves those test scenarios that might be
considered highly unusual and unlikely. Often these exceptional cases are exactly
those for which the code is likely to be poorly designed and, therefore, to fail.

For example, in the baggage inspection system, while it might be highly
unlikely that the system is to function at the maximum conveyor speed, this
worst case still needs to be tested.

What is stress testing?

In this testing, the system is subjected to a large disturbance in the inputs;
for example, baggage arriving at the maximum rate for an extended period.
One objective of this kind of testing is to see how the system fails (gracefully
or catastrophically).

Stress testing can also be useful in dealing with cases and conditions where
the system is under heavy load; for example, when testing for memory or
processor utilization in conjunction with other applications and operating
system resources to determine if performance is acceptable.

Stress testing is particularly useful in distributed systems, which can
exhibit severe degradation as a network becomes overloaded.

What is burn-in testing?

Burn-in testing is a type of system-level testing done in the factory, which
seeks to flush out those failures appearing early in the life of the system,
and thus to improve the reliability of the delivered product.

What is alpha testing?

This is system validation consisting of internal distribution and exercise of
the software. This kind of testing is usually followed by beta testing.

What is beta testing?

This testing, which follows alpha testing, involves preliminary versions of
validated software distributed to friendly customers who test the software

7228_C006.fm Page 171 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

172 What Every Engineer Should Know about Software Engineering

under actual use. Based on feedback from the beta test sites, corrections or
enhancements are added and then regression testing is performed.

What is regression testing?

Regression testing (which can also be performed at the unit level) is used to
validate the updated software against the old set of test cases that have
already been passed. Any new test case needed for the enhancements is then
added to the test suite, and the software is validated as if it were a new
product. Regression testing is also an integral part of integration testing as
new modules are added to the tested subsystem.

What is cleanroom testing?

Cleanroom testing is more than a kind of system testing. It is really a testing
philosophy. The principal tenant of cleanroom software development is that
given sufficient time and care, error-free software can be written. Cleanroom
software development relies heavily on code inspections and formal pro-
gram validation. It is taken for granted that software specifications exist that
are sufficient to completely describe the system.

The program code is developed by slowly “growing” features into the
code, starting with some baseline of functionality. At each milestone an
independent test team checks the code against a set of randomly generated
test cases based on a set of statistics describing the frequency of use for each
feature specified in the requirements.

Once a functional milestone has been reached, the development team adds
to the “clean” code, using the same techniques as before. Thus, like an onion
skin, new layers of functionality are added to the software system unit it has
completely satisfied the requirements.

Successful projects have been developed in this way, in both academic
and industrial environments. In any case, many of the tenants of clean-
room testing can be incorporated without completely embracing the
methodology.

What is software fault injection?

Fault injection is a form of dynamic software testing that acts like “crash-
testing” the software by demonstrating the consequences of incorrect code
or data. Anyone who has ever tried to type a letter when the input called
for a number is familiar with fault injection.

The main benefit of fault injection testing is that it can demonstrate that
the software is unlikely to do what it shouldn’t. Fault injection can also
help to reveal new output states that before have never been observed or
contemplated.

Fault injection can also be used as a test stoppage criterion; for example,
test until fault injection no longer causes failure. Finally, it can be used as a

7228_C006.fm Page 172 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 173

safety case proposition — “Hey, we tested this system and injected all kinds
of crazy faults and it didn’t break” [Voas 1998].

When should you stop testing?

There are several criteria that can be used to determine when testing should
cease. These include:

• When you run out of time.
• When continued testing causes no new failures.
• When continued testing reveals no new faults.
• When you can’t think of any new test cases.
• When you reach a point of “diminishing returns.”
• When mandated coverage has been attained.
• When all faults have been removed [Jorgensen 2002].

But the best way to know when testing is complete is when the test coverage
metric requirements have been satisfied.

What are test coverage metrics?

Test coverage metrics are used to characterize the test plan and identify
insufficient or excessive testing. Two simple metrics are requirements per
test and tests per requirement. Obviously, every requirement should have
one or more test associated with it. But every test, to be efficient, should test
more than one requirement. However, one would not want an average of
one test per requirement because this is essentially “big-bang” testing, and
is ineffective in uncovering errors. Similarly, if a test covers too many require-
ments and it fails, it might be hard to localize the error.

Research is still ongoing to determine appropriate values for these statis-
tics. But in any case, you can look for inconsistencies to determine if some
requirements are not being tested thoroughly enough, if some requirements
need more testing, and if some tests are too complex. Remember, if a test
covers too many requirements and fails, it could be difficult to localize the
error. There is always a trade-off between time and cost of testing vs. the
comprehensiveness of testing.

How do I write a test plan?

The test plan should follow the requirements document item by item, pro-
viding criteria that are used to judge whether the required item has been
met. A set of test cases is then written which is used to measure the criteria
set out in the test plan. Writing such test cases can be extremely difficult
when a user interface is part of the requirements.

The test plan includes criteria for testing the software on a module-by-
module or unit level, and on a system or subsystem level; both should be

7228_C006.fm Page 173 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

174 What Every Engineer Should Know about Software Engineering

incorporated in a good testing scheme. The system-level testing provides cri-
teria for the hardware/software integration process. IEEE Standard 829–1998
(IEEE Standard for Software Test Documentation) can be helpful for those
unfamiliar with software documents.

Are there automated tools for testing that can make the job easier?

Software testing can be an expensive proposition to conduct, but well worth
the cost if done correctly. Testing workbenches provide a range of tools to
reduce the time required and total testing costs. Most testing workbenches are
open systems because testing needs are organization-specific.

What are some testing tools that I can use?

The xUnit frameworks developed by Kent Beck make object-oriented unit
testing more accessible. xUnit (which stands for a family of testing frame-
works, CUnit for C code, JUnit for Java code, PyUnit for Python, and so on.

The xUnit frameworks are particularly helpful in automating tests for
regression testing.

6.4 Metrics

What are some motivations for measurement?

The key to controlling anything is measurement. Software is no different in
this regard, but the question arises “what aspects of software can be mea-
sured?” Chapter 2 introduced several important software properties and
alluded to their measurement. It is now appropriate to examine the mea-
surement of these properties and show how this data can be used to monitor
and manage the development of software.

Metrics can be used in software engineering in several ways. First, certain
metrics can be used during software requirements development to assist in
cost estimation. Another useful application for metrics is benchmarking. For
example, if a company has a set of successful systems, then computing
metrics for those systems yields a set of desirable and measurable charac-
teristics with which to seek or compare in future systems.

Most metrics can also be used for testing in the sense of measuring the
desirable properties of the software and setting limits on the bounds of those
criteria. Or they can be used during the testing phase and for debugging
purposes to help focus on likely sources of errors.

Of course, metrics can be used to track project progress. In fact, some
companies reward employees based on the amount of software developed
per day as measured by some of the metrics to be discussed (e.g., delivered
source instructions, function points, or lines of code).

Finally, as Kelvin’s quote at the start of the chapter suggests, a quality
culture depends upon measurement. Such an approach is similar in other
kinds of engineering.

7228_C006.fm Page 174 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 175

So what kinds of things can we measure in software?

We can measure many things. Typical candidates include:

• lines of code
• code paths
• defect rates
• change rates
• elapsed project time
• budget expended

Is the lines of code metric useful?

The easiest characteristic of software that can be measured is the number of
lines of finished source code. Measured as thousands of lines of code (KLOC),
the “clock” metric is also referred to as delivered source instructions (DSI)
or noncommented source code statements (NCSS). That is, we count execut-
able program instructions (excluding comment statements, header files, for-
matting statements, macros, and anything that does not show up as
executable code after compilation or cause allocation of memory).

Another related metric is source lines of code (SLOC), the major difference
being that a single source line of code may span several lines. For example,
an if-then-else statement would be a single SLOC, but many delivered
source instructions.

While the “clock” metric essentially measures the weight of a printout of
the source code, thinking in these terms makes it likely that the usefulness
of KLOC will be unjustifiably dismissed as supercilious. But isn’t it likely
that 1000 lines of code is going to have more defects than 100 lines of code?
Wouldn’t it take longer to develop the latter than the former? Of course, the
answer is dependent upon the complexity of the code.

What are the disadvantages of the LOC metric?

One of the main disadvantages of the using lines of source code as a metric
is that it can only be measured after the code has been written. While lines
of code can be estimated, this approach is far less accurate than measuring
the code after it has been written.

Another criticism of the KLOC metric is that it does not take into account the
complexity of the software involved. For example, 1000 lines of print statements
probably does have less errors than 100 lines of a complex imaging algorithm.

Nevertheless, KLOC is a useful metric, and in many cases is better than mea-
suring nothing. Many other metrics are fundamentally based on lines of code.

What is the delta lines of code metric?

Delta KLOC measures how many lines of code change over some period of
time. Such a measure is useful, perhaps, in the sense that as a project nears

7228_C006.fm Page 175 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

176 What Every Engineer Should Know about Software Engineering

the end of code development, Delta KLOC would be expected to be small.
Other, more substantial, metrics are also derived from KLOC.

What is McCabe’s metric?

To attempt to measure software complexity, McCabe [1976] introduced a
metric, cyclomatic complexity, to measure program flow-of-control. This
concept fits well with procedural programming but not necessarily with
object-oriented programming, though there are adaptations for use with the
latter. In any case, this metric has two primary uses:

to indicate escalating complexity in a module as it is coded and therefore
assisting the coders in determining the “size” of their modules

to determine the upper bound on the number of tests that must be
designed and executed

Use of the McCabe metric in calculating the minimum number of test cases
needed to traverse all linearly independent code paths was already dis-
cussed.

How does McCabe’s metric measure software complexity?

The cyclomatic complexity is based on determining the number of linearly
independent paths in a program module; suggesting that the complexity
increases with this number and reliability decreases.

To compute the metric, the following procedure is followed. Consider the
flow graph of a program. Let e be the number of edges and n be the number
of nodes. Form the cyclomatic complexity, C, as follows:

C = e − n + 2 (6.1)

This is the most generally accepted form.*

Can you help me visualize the cyclomatic complexity?

To get a sense of the relationship between program flow and cyclomatic
complexity, refer to Figure 6.8. Here, for example, a sequence of instructions
has two nodes, one edge, and one region and, hence, would contribute a
complexity of C = 1 – 2 + 2 = 1. This is intuitively pleasing as nothing could
be less complex than a simple sequence.

On the other hand, the case statement, which has six edges, five nodes,
and two regions, would contribute to the overall complexity.

* There are other, equivalent, formulations; C = e – n + p and C = e – n + 2p. The different forms
arise from the transformation of an arbitrary directed graph to a strongly connected, directed
graph obtained by adding one edge from the sink to the source node [Jorgensen 2002].

C = − + =6 5 2 3

7228_C006.fm Page 176 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 177

As a more substantial example, consider a segment of code extracted from
the noise reduction portion of the baggage inspection system. The procedure
calls between modules a, b, c, d, e, and f are depicted in Figure 6.9.

Here, then, e = 9 and n = 6 yielding a cyclomatic complexity of C = 9 – 6
+ 2 = 5.

Can the computation of McCabe’s metric be automated?

Computation of McCabe’s metric can be done easily during compilation by
analyzing the internal tree structure generated during the parsing phase (see
Chapter 4). However, commercial tools are available to perform this analysis.

What are Halstead’s metrics?

Halstead’s metrics measure information content, or how intensively the
programming language is used. Halstead’s metrics are based on the number
of distinct, syntactic elements and begin-end pairs (or their equivalent, such
as open and closed curly braces in Java or C). From these a statistic for
program length is determined. I will omit the equations because they are
rarely computed by hand. From these statistics, a “program vocabulary,” V,

FIGURE 6.8
Correspondence of language statements and flow graph.

FIGURE 6.9
Flow graph for noise reduction code for the baggage inspection system.

sequence if while until case

a

b dc

e

f

7228_C006.fm Page 177 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

178 What Every Engineer Should Know about Software Engineering

and program level, L, are derived. L is supposed to be a measure of the level
of abstraction of the program. It is believed that increasing this number will
increase system reliability.

In any case, from V and L the effort, E, is defined as

E = V/L (6.2)

Decreasing the effort level is believed to increase reliability as well as ease
of implementation.

In principle, the program length can be estimated and, therefore, is useful
in cost and schedule estimation. The length is also a measure of the “com-
plexity” of the program in terms of language usage and, therefore, can be
used to estimate defect rates.

Are Halstead’s metrics still used?

Halstead’s metrics, though dating back 30 years, are still widely used and
tools are available to automate calculations.

What are function points?

Function points (FPs) were introduced in the late 1970s as an alternative to
metrics based on simple source line count. The basis of FPs is that as more
powerful programming languages are developed, the number of source lines
necessary to perform a given function decreases. Paradoxically, however, the
cost per LOC measure indicated a reduction in productivity, as the fixed
costs of software production were largely unchanged.

The solution to this effort estimation paradox is to measure the function-
ality of software via the number of interfaces between modules and sub-
systems in programs or systems. A big advantage of the FP metric is that it
can be calculated before any coding occurs.

What are the primary drivers for FPs?

The following five software characteristics for each module, subsystem, or
system represent its FPs:

Number of inputs to the application (I)
Number of outputs (O)
Number of user inquiries (Q)
Number of files used (F)
Number of external interfaces (X)

In addition, the FP calculation takes into account weighting factors for each
aspect that reflects their relative difficulty in implementation. These coeffi-
cients vary depending on the type of application system. Then complexity
factor adjustments can be applied for different types of application domains.
The full set of coefficients and corresponding questions can be found by
consulting an appropriate text on software metrics.

7228_C006.fm Page 178 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 179

How do I interpret the FP value?

Intuitively, the higher FP, the more difficult the system is to implement. For
the purposes of comparison, and as a management tool, FPs have been
mapped to the relative lines of source code in particular programming lan-
guages. These are shown in Table 6.2.

For example, it seems intuitively pleasing that it would take many more
lines of assembly language code to express functionality than it would in a
high-level language like C. In the case of the baggage inspection system,
with FP = 241, it might be expected that about 31,000 LOC would be needed
to implement the functionality. In turn, it should take many less LOC to
express that same functionality in a more abstract language such as C++.
The same observations that apply to software production might also apply
to maintenance as well as to the potential reliability of software.

How widely is the FP metric used?

The FP metric is widely used in business applications, but not nearly as
much in embedded systems. However, there is increasing interest in the use
of FPs in real-time embedded systems, especially in large-scale real-time
databases, multimedia, and Internet support. These systems are data-driven
and often behave like the large-scale transaction-based systems for which
FPs were developed.

The International Function Point Users Group maintains a Web database
of weighting factors and FP values for a variety of application domains.
These can be used for comparison.

What are feature points?

Feature points are an extension of FPs developed by Software Productivity
Research, Inc. in 1986. Feature points address the fact that the classical FP
metric was developed for management information systems and, therefore,
are not particularly applicable to many other systems, such as real-time,
embedded, communications, and process control software. The motivation

TABLE 6.2

Programming Language and Lines
of Code per FP

Language LOC per FP

Assembly 320
C 128
Fortran 106
C++ 64
Visual Basic 32
Smalltalk 22
SQL 12

Source: Adapted from [Jones 1998].

7228_C006.fm Page 179 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

180 What Every Engineer Should Know about Software Engineering

is that these systems exhibit high levels of algorithmic complexity, but sparse
inputs and outputs.

The feature point metric is computed in a manner similar to the FP except
that a new factor for the number of algorithms, A, is added.

Are there special metrics for object-oriented software?

While any of the previously discussed metrics can been used in object-
oriented code, other metrics are better suited for this setting. Object-oriented
metrics are computed on three levels:

methods
classes
packages

What are some method level metrics?

Often the lines of code, McCabe cyclomatic complexity, or even Halstead’s
metrics are used.

What are commonly used class level metrics?

The most widely used set of metrics for the object-oriented software, the
Chidamber and Kemerer (C&K) metrics, contain metrics that are at the class
level. These are primarily applied to the concepts of classes, coupling, and
inheritance.

Some of the C&K metrics are

• Weighted Methods per Class (WMC) — the sum of the complexities
of the methods (method complexity is measured by cyclomatic com-
plexity, CC).

• Response for a Class (RFC) — the number of methods that can be
invoked in response to a message to an object of the class or by some
method in the class. Includes all methods accessible within the class
hierarchy.

• Lack of Cohesion in Methods (LCOM) — the dissimilarity of meth-
ods in a class by instance variable or attributes.

• Coupling between Object Classes (CBO) — the number of other
classes to which a class is coupled. Measured by counting the num-
ber of distinct non-inheritance related class hierarchies on which a
class depends.

• Depth of Inheritance Tree (DIT) — the maximum number of steps
from the class node to the root of the tree. Measured by the number
of ancestor classes.

• Number of Children (NOC) — the number of immediate subclasses
subordinate to a class in the hierarchy.

7228_C006.fm Page 180 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 181

What are some package level metrics?

Martin’s package cohesion metrics are based on the principles of good OOD
discussed in Chapter 3.

• Afferent Coupling (A) — the number of other packages that depend
upon classes within this package. This metric is an indicator of the
package’s responsibility.

• Efferent Coupling — the number of other packages that the classes
in this package depend upon. This metric is an indicator of the
package’s independence.

• Abstractness — the ratio of the number of abstract classes (and
interfaces) in this package to the total number of classes in the
analyzed package.

• Instability (I) — the ratio of efferent coupling to total coupling.
• Distance from the Main Sequence — the perpendicular distance of

a package from the idealized line, A + I = 1.
• Law of Demeter — this can be informally stated as “only talk to your

friends,” that is, limit the intellectual distance from any object and any-
thing it uses. This metric is measured by the number of methods called
subsequently by the external objects participating in the method chain.

Are there other kinds of object-oriented metrics?

Yes, there seem to be more metrics for object-oriented code than for proce-
dural code. Other object-oriented metrics track things like component depen-
dencies or rely on various features (for example, depth, cycles, or fullness)
of graphs depicting packages or classes relationships.

What are object points?

This is a function point-like metric and is not specifically intended for use
with object-oriented code, despite its name. Like FPs, it is a weighted esti-
mate of the following visible program features:

• number of separate screens
• number of reports
• number of third generation language modules needed to support

fourth generation language code

Object points are an alternative to FPs when fourth generation languages
are used.

What are use case points?

Use case points (UCPs) allow the estimation of an application’s size and
effort from its use cases. UCPs are based on the number of actors, scenarios,

7228_C006.fm Page 181 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

182 What Every Engineer Should Know about Software Engineering

and various technical and environmental factors in the use case diagram.
The UCP equation is based on four variables:

technical complexity factor (TCF)
environment complexity factor (ECF)
unadjusted use case points (UUCP)
productivity factor (PF)

which yield the equation:

UCP = TCP * ECF * UUCP * PF (6.3)

UCPs are a relatively new estimation technique.

This is all so confusing; which metrics should I use?

The goal question metric (GQM) paradigm is a helpful framework for select-
ing the appropriate metrics.

What is the GQM technique?

GQM is an analysis technique that helps in the selection of an appropriate
metric. To use the technique, you follow three simple rules. First, state the
goals of the measurement; that is, what is the organization trying to achieve?
Next, derive from each goal the questions that must be answered to deter-
mine if the goals are being met. Finally, decide what must be measured in
order to be able to answer the questions.

Can you give a simple example?

Suppose one of your organization’s goals is to evaluate the effectiveness of
the coding standard. Some of the associated questions you might ask to
assess if this goal has been achieved are:

Who is using the standard?
What is coder productivity?
What is the code quality?

For these questions, the corresponding metrics might be:

What proportion of coders are using the standard?
How have the number of LOC or FPs generated per day per coder

changed?
How have appropriate measures of quality for the code changed? (Ap-

propriate measures might be errors found per LOC or cyclomatic
complexity.)

7228_C006.fm Page 182 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 183

Now that this framework has been established, appropriate steps can be
taken to collect, analyze, and disseminate data for the study.

What are some objections to using metrics?

Some widely used objections are that metrics can be misused or that they
are a costly and unnecessary distraction. For example, metrics related to the
number of LOC imply that the more powerful the language, the less pro-
ductive the programmer. Hence, obsessing with code production based on
LOC is a meaningless endeavor.

Another objection is that the measuring of the correlation effects of a metric
without clearly understanding the causality is unscientific and dangerous.
For example, while there are numerous studies suggesting that lowering the
cyclomatic complexity leads to more reliable software, there just isn’t any
real way to know why. Obviously, the arguments about the complexity of
well-written code vs. “spaghetti code” apply, but there is no way to show
the causal relationship. So, the opponents of metrics might argue that if a
study of several companies shows that software written by software engi-
neers who always wore yellow shirts had statistically significant less defects
in their code, then companies would start requiring a dress code of yellow
shirts! This illustration is, of course, hyperbole, but the point of correlation
versus causality is made.

While in many cases these objections might be valid, like most things
metrics can be either useful or harmful depending on how they are used (or
abused).

6.5 Fault Tolerance

What are checkpoints?

Checkpoints are a way to increase fault tolerance. In this scheme, interme-
diate results are written to memory at fixed locations in code, called check-
points, for diagnostic purposes (Figure 6.10). The data in these locations can
be used for debugging purposes, during system verification, and during
system operation verification.

If the checkpoints are used only during testing, then this code is known
as a test probe. Test probes can introduce subtle timing errors, which are
discussed later.

What are recovery blocks?

Fault tolerance can be further increased by using checkpoints in conjunction
with predetermined reset points in software. These reset points mark recov-
ery blocks in the software.

7228_C006.fm Page 183 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

184 What Every Engineer Should Know about Software Engineering

At the end of each recovery block, the checkpoints are tested for “reasonable-
ness.” If the results are not reasonable, then processing resumes at the beginning
of that recovery block or at some point in the previous one (see Figure 6.11).

The point, of course, is that some hardware device (or another process that
is independent of the one in question) has provided faulty inputs to the
block. By repeating the processing in the block, with presumably valid data,
the error will not be repeated.

Each recovery block represents a redundant parallel process to the block
being tested. Unfortunately, although this strategy increases system reli-
ability, it can have a severe impact on performance because of the overhead
added by the checkpoint and repetition of the processing in a block

What are software black boxes?

The software black box is used in certain mission critical systems. The objec-
tive of a software black box is to recreate the sequence of events that led to
the software failure for the purpose of identifying the faulty code. The software

FIGURE 6.10
Checkpoint implementation.

FIGURE 6.11
Recovery block implementation.

data needed
by code
unit n+1

debug
information
for code
unit n

Code
Unit n

Code
Unit n+1

data needed
by code
unit n

data needed
by code
unit n+2

debug
information
for code
unit n+1

data needed
by code
unit n+1

data needed
by code
unit n

test data
from code
unit n

data needed
by code
unit n+2

Code
Unit n+1

Code
Unit n

proceed

restart

7228_C006.fm Page 184 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 185

black box recorder is essentially a checkpoint that stores behavioral data
during program execution.

As procedural code is executed, control of execution passes from one code
module to the next. This occurrence is called a transition. These transitions
can be represented by an N × N matrix, where N represents the number of
modules in the system.

When each module i calls module j, the corresponding entry in the tran-
sition frequency matrix is incremented. From this process, a transition prob-
ability matrix is derived that records the likelihood that a transition will
occur. This matrix is stored in nonvolatile memory.

Recovery begins after the system has failed and the software black box
information is recovered. The software black box decoder generates possible
functional scenarios from the transition probability matrix, allowing soft-
ware engineers to reconstruct the most likely sequence of module execution
that led to the failure.

What is N-version programming?

Sometimes a system can enter a state whereby it is rendered ineffective or
deadlocked. This situation can be due to an untested flow-of-control in the
software for which there is no escape or resource contention. For life-support
systems, avionics systems, power plant control systems, and other types of
systems, the results can be catastrophic.

In order to reduce the likelihood of this sort of catastrophic error, redun-
dant processors are added to the system. These processors are coded to the
same specifications but by different programming teams. It is, therefore,
highly unlikely that more than one of the systems can lock up under the
same circumstances. This technique is called N-version programming.

What is built-in-test software?

Built-in-test software is any hardware diagnostic software that is executed
in real-time by the operating system. Built-in-test software can enhance fault
tolerance by providing ongoing diagnostics of the underlying hardware.

Built-in-test software is especially important in embedded systems. For
example, if the built-in-test software determines that a sensor is malfunc-
tioning, then the software may be able to shut off the sensor and continue
operation using backup hardware.

How should built-in-test software include CPU testing?

It is probably more important that the health of the CPU be checked than
any other component of the system. A set of carefully constructed tests can
be performed to test the health of the CPU circuitry.

Should built-in-test software test memory?

All types of memory, including nonvolatile memory, can be corrupted via
electrostatic discharge, power surging, vibration, or other means. This

7228_C006.fm Page 185 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

186 What Every Engineer Should Know about Software Engineering

damage can manifest itself either as a permutation of data stored in
memory cells or as permanent damage to the cell itself. Damage to the
contents of memory is called soft error, whereas damage to the cell itself
is called hard error. All memory should be tested both at initialization and
during normal processing, if possible. There are various algorithms for
efficiently testing memory, which are described in embedded software
design books such as Software Engineering for Image Processing Systems
[Laplante 2004].

What about testing other devices?

Devices such as sensors, motors, cameras, and the like need to be tested
continually or their own self-testing needs to be monitored by the software
and appropriate action taken if the device falls.

6.6 Maintenance and Reusability

What is meant by software maintenance?

Software maintenance is the “…correction of errors, and implementation of
modifications needed to allow an existing system to perform new tasks, and
to perform old ones under new conditions…” [Dvorak 1994].

What is reverse engineering?

Generically, reverse engineering is the process of analyzing a subject system to
identify its components. Reverse engineering is sometimes called renovation or
reclamation. While there are negative connotations to reverse engineering as in
theft of a design, reverse engineering, in some form, is essential for the improve-
ment of the design or implementation or for recovery of documentation in the
case of a system that may have been acquired legitimately from a third party.

What is an appropriate model for software reengineering?

Many embedded and engineering software systems are legacy systems; that
is, they constitute the next generation of an existing system. Others borrow
code from related systems. In any case, most systems need to have a long
shelf life so that development costs can be recouped. Maintaining a system
over a long period usually requires some form of reengineering; that is, a
reverse flow through the software life cycle.

Figure 6.12 is a graphical representation of a reengineering process. The
forward engineering flow represents a simple, three-phase waterfall model
— requirements, design, and implementation.

Documentation recovery or redocumentation is the creation or revision of
documentation from a given system, including requirements and design

7228_C006.fm Page 186 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 187

documentation discovery. The need for redocumentation arises when there
is poor or missing documentation for any of a number of reasons.

Design recovery is a subset of reverse engineering that recreates the design
from code, existing documentation, personal insight, interviews with devel-
opers, and general knowledge. Again, the need for this arises in the case of
poorly documented design, missing documentation, acquisition of a product
from a company with inferior software engineering practices, and so on.

Restructuring is the transformation of one representation to another. In the
case of code refactoring, the code is transformed so that the behavior is
preserved. In design refactoring, the design is reengineered.

Since you like models so much, can you give me a maintenance
process model?

Of the all of the phases, perhaps the maintenance model is the least under-
stood. The maintenance phase generally consists of a series of reengineering
processes to prolong the life of the system. There are three types of mainte-
nance:

Adaptive —- changes that result from external changes to which the
system must respond.

Corrective — changes that involve maintenance to correct errors.
Perfective — all other maintenance including enhancements, documen-

tation changes, efficiency improvements, and so on.

A widely adopted maintenance model illustrates the relationship between
these various forms of maintenance (Figure 6.13).

FIGURE 6.12
A reverse engineering process model.

Requirements Design Implementation

Forward
engineering

Forward
engineering

Reverse
engineering

Reverse
engineering

Restructuring Restructuring/
refactoring

Restructuring/
Refactoring

7228_C006.fm Page 187 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

188 What Every Engineer Should Know about Software Engineering

The model starts with the generation of change requests by the customer,
management, or the engineering team. An impact analysis is performed. This
analysis involves studying the affect of the change on related components
and systems and includes the development of a budget.

What is system release planning?

System release planning involves determination of whether the change is
perfective, adaptive, or corrective. The nature of the change is crucial in
determining whether the release needs to be made to all customers or specific
customers, whether the release is going to be immediate or included in the
next version, and so on. Finally, the change is implemented (invoking a mini-
software life-cycle process from concept to acceptance testing), followed by
the official release of the new version.

What is software reuse?

Pure software reuse is a highly sought prize in software engineering. It is
clearly desirable to have a collection of mix-and-match, validated software
components that could easily be pulled off the shelf for customized software
applications. However, software reuse is virtually an exploitation of hard-
learned experience. Even if software modules are not being explicitly reused,
the lessons learned from previous but similar software projects should be
carried forward.

Most of the cost savings can then be expected by reusing domain-specific
models. To reuse domain-specific logic, however, developers must clearly
separate domain logic from that of the application. They must also clearly
distinguish domain-independent logic.

Therefore, the best way to begin a program of software reuse is to start
small and learn by doing. Try to identify several small software modules

FIGURE 6.13
A maintenance process model. (Adapted from Sommerville, I., Software Engineering, 6th ed.,
Addison-Wesley, Boston, MA, 2000.)

change
requests

impact
analysis

change
implementation

system
release

system
release

planning

perfective
maintenance

adaptive
maintenance

corrective
maintenance

7228_C006.fm Page 188 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 189

that are good candidates for reuse and focus on preparing these modules
for that reuse.

Are there special techniques for achieving reuse in procedural languages?

One technique that has been used in building program libraries involves
domain analysis. Domain analysis views software code as functions with an
input domain and output range based on the range of their inputs.

The approach is as follows. In a set-theoretic way, define the input and
output domains for each module to be added to the program library. Then,
determine the input/output dependencies between each module in the
library and any candidate module to be added to the library. The existence
of such dependencies determines the compatibility of the candidate mod-
ule with the existing library modules. Of course, it is assumed that each
candidate module has been validated, and is fully tested, at the module
level.

For example, consider a program library that consists of trusted code unit A.
Code unit A has an input domain of AI and an output range of Ao. Now consider
a new candidate code unit B, which has already been unit tested. Code unit B
has an input domain of BI and an output range of Bo. “Domains” and “ranges”
mean the set of input and output variables of these modules and their ranges.

Now, if the output range of A (the variables that A could change) does not
intersect with the input range of B and vice versa, then module B may be
added to the program library without further interdependence or compati-
bility testing. If the input range of B and the output range of A overlap, then
interdependencies and compatibility need to be tested before adding A to
the library. Formally,

If and then add A to the library

Else test further before adding (6.4)

As additional modules or code are added to the library, interdependence
testing must be completed for all modules in the library. For example, if A
and B are trusted software in the library and module C is a candidate for
the library, it must now be tested against A and B before adding it. Formally,

If and and

and then add A to the library

Else test further before adding (6.5)

It is easy to see that the level of effort grows rapidly as new code is added
to the trusted program library.

A BO I∩ = φ B AO I∩ = φ

A CO I∩ = φ B CO I∩ = φ

C BO I∩ = φ B CO I∩ = φ

7228_C006.fm Page 189 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

190 What Every Engineer Should Know about Software Engineering

Are there special techniques for achieving reuse
in object-oriented languages?

In object-oriented systems, use of design patterns following the OOD principles
previously described promotes reusability. For example, one way is to employ
the protected variation (Parnas partitioning) principle by identifying those
design aspects that are likely to change and build a stable interface around them.

Design patterns can loosen the binding between program components
enabling certain types of program evolution to occur with minimal changes
to the program itself. However, to make good use of design patterns, the
application’s design process must undergo at least two iterations over the
project life cycle.

When is it appropriate not to reuse software?

It is sometime desirable to plan not to reuse certain code. For example, throw-
away prototypes are intentionally not to be reused. In other cases, it may
not be desirable to try to reuse code that is of limited value. For example, a
set of utilities intended for very specific hardware or that serves a very
specialized function is probably not worth engineering for reuse when the
hardware changes or becomes obsolete.

In any event, reuse of code that was not designed and coded for reuse can
create many problems. For example, when a “quick-and-dirty” program
becomes a widely used tool, it can present a maintenance nightmare.

What is Pareto’s principle?

Pareto was a late 19th and early 20th century Italian mathematician and
economist who was interested in the laws of chance. His observations can
be applied in several ways to software reuse and engineering. For example,
Pareto’s principle might suggest that

• 20% of the code contributes to 80% of the cost of software development.
• 20% of the code contributes 80% of the errors.
• 20% of the errors account for 80% of the cost to fix.
• 20% of the modules consume 80% of the execution time.

The percentages are, of course, arbitrary. But these observations provide
insight into how to approach software reuse, testing, and effort planning.
For example, it would be helpful to identify the 20% of software that is the
most expensive to develop and plan to reuse that software. The other 80%
that is relatively easy to develop might not be a prime candidate for reuse.
Checkpoints and software black boxes can help to collect code unit execution
frequency to identify the high-use code.

What is the “Second System Effect?”

The Second System Effect first characterized by Brooks [1995] explains
why software maintenance for legacy systems presents such challenges.
This phenomenon is discussed in The Mythical Man Month, a series of

7228_C006.fm Page 190 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

Software Quality Assurance 191

essays on software project management by Brooks published in the early
1980s. The essays are relevant even today. Brooks notes that “second
systems” or the next generation of a delivered system tend to be over-
engineered. That is, there is a tendency to carry over and refine techniques
whose existence has been made obsolete by changes in basic system
assumptions. Doing so tends to make these systems hard to maintain,
unwieldy, and unreliable.

Consider, for example, a baggage handling system that was developed in
the 1970s for hardware that is no longer available. In a second system, the
underlying hardware may have been modernized. Hence, carrying over old
design decisions can be disastrous. Embedded systems tend to be based on
carry-over software, often originally written in Fortran, C, or assembly lan-
guage and even BASIC. In some cases, C code is simply “objectified” by
wrapping the C code in such a way that it can be compiled as C++ code.

Brooks suggests that the way to avoid this effect is to insist on a project
leader who has had experience with at least two systems. In this recommen-
dation, Brooks recognizes that software houses tend to assign new software
engineers to maintain old legacy systems, while the more senior engineers
are assigned to new software development. While new projects may be more
glamorous, younger engineers may not have the confidence or experience
to challenge bad design decisions on a legacy system. Hence, it is probably
better to have a combination of experience and youth assigned to both new
and legacy system software development.

6.7 Further Reading

Basili, V.R., Caldiera, G., and Rombach, H.D., The goal question metric approach, in
Boehm, B., Software risk management: principles and practice, IEEE Software,
8(1), 32–41, 1991.

Boehm, B. and Basili, V., Software defect reduction top-10 list, in Foundations of
Empirical Software Engineering, Boehm, B., Rombach, H.D., and Zelkowitz, M.,
Eds., Springer, Secaucus, NJ, 2005, 427–431.

Brooks, F.W., The Mythical Man Month, 20th Anniversary Edition, Addison-Wesley,
Boston, MA, 1995.

Chidamber, S.R. and Kemerer, C.F., A metrics suite for object oriented design, IEEE
Trans. Software Eng., 20(6), 476–493, 1994.

Darcy, D. and Kemerer, C., OO metrics in practice, IEEE Software, 22(6), 17–19, 2005.
Dvorak, J., Conceptual entropy and its effect on class hierarchies, Computer, 27(6),

59–63, 1994.
Eickelmann, N., Measuring maturity goes beyond process, IEEE Software, 12–13, 2004.
Godfrey, M. and Tu, Q. Growth, evolution and structural change in open source

software, Proc. 2001 Intl. Workshop on Principles of Software Evolution (IWPSE-
01), Vienna, September 2001.

Grady, R., Practical Software Metrics for Project Management & Process Improvement,
Prentice Hall, Englewood Cliffs, NJ, 1992.

7228_C006.fm Page 191 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

192 What Every Engineer Should Know about Software Engineering

Hardgrave, W. and Armstrong, N.Y, Software process improvement: it’s a journey
not a destination, Commun. ACM, 49(11), 93–96, 2005.

Jones, C., Estimating Software Costs, McGraw-Hill, New York, 1998.
Jorgensen, P.C., Software Testing: A Craftsman’s Approach, 2nd ed., CRC Press, Boca

Raton, FL, 2002.
Kandt, K., Software Engineering Quality Practices, Auerbach Publications, Boca Raton,

FL, 2005.
Koch, S., Evolution of open source software systems — A large-scale investigation,

in Proc. 1st Intl. Conf. OSS, Scotto, M. and Succi, G., Eds., July 11–15, 2005,
Genova, 148–153.

Lakos, J., Large-Scale C++ Ssoftware Design, Addison-Wesley, Boston, MA, 1996.
Lange, C.F.J., Chaudron, M.R.V., and Muskens, J., UML software architecture and

design description, IEEE Software, 23(2) 40–46, 2006.
Laplante, P.A., Software Engineering for Image Processing Systems, CRC Press, Boca

Raton, FL, 2004.
Machiavelli, N., The Prince, 1513.
McCabe, T., A software complexity measure, IEEE Trans. Software Eng., SE-2, 308–320, 1976.
Martin, R.C., Agile Software Development: Principles, Patterns, and Practices, Prentice-

Hall, Englewood Cliffs, NJ, 2002.
Munson, J., Software Engineering Measurement, Auerbach Publications, Boca Raton,

FL, 2003.
Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and Ye, Y., Evolution patterns

of open-source software systems and communities, Proc. Intl. Workshop on
Principles of Software Evolution, ACM Press, Orlando, FL, May 2002.

NIST, Planning Report 02-3, The Economic Impact of Inadequate Infrastructure for
Software Testing, www.nist.gov/director/prog-ofc/report02-3.pdf.

Paulk, M.C. et al., The Capability Maturity Model, Guidelines for Improving the Software
Process, Addison-Wesley, Boston, MA, 1995.

Pfleeger, S. L. Measuring software reliability, IEEE Spectrum, 55–60, 1992.
Pressman, R.S., Software Engineering: A Practitioner's Approach, 6th ed., McGraw-Hill,

New York, 2005.
Raymond, E.S. The cathedral and the bazaar. musings on linux and open source by

an accidental revolutionary, 2001, O’Reilly Media, Cambridge, MA.
Scacchi, W., Understanding open source software evolution, in Software Evolution,

Madhavji, N.H., Lehman, M.M., Ramil, J.F., and Perry, D., Eds., John Wiley &
Sons, New York, 2004.

Sharp, J. et al., Tensions around the adoption and evolution of software quality
management systems: a discourse analytic approach, J. Human-Computer Stud-
ies, 61, 219–236, 2005.

Sommerville, I., Software Engineering, 6th ed., Addison-Wesley, Boston, MA, 2000.
Stelzer , D. and Mellis, W., Success factors of organizational change in software process

improvement, Software Process — Improvement and Practice, 4, 227–250, 1998.
Voas, J.M. and McGraw, G., Software Fault Injection: Inoculating Programs Against

Errors, John Wiley & Sons, New York, 1998.
Voas, J. and Agresti, W.W., Software quality from a behavioral perspective, IT Pro,

6(4), 46–50, 2004.
West, M., Real Process Improvement Using CMMI, Auerbach Publications, Boca Raton,

FL, 2004.
Zubrow, D., Current trends in the adoption of the CMMI® product suite, compsac,

27th Annu. Intl. Comp. Software Appl. Conf., 2003, 126–129.

7228_C006.fm Page 192 Tuesday, February 27, 2007 4:35 PM

© 2007 by Taylor & Francis Group, LLC

http://www.nist.gov/director/prog-ofc/report02-3.pdf

193

7

Managing Software Projects

and Software Engineers

Outline

• Software engineers are people too
• Project management basics
• Tracking and reporting progress
• Software cost estimation
• Project cost justification
• Risk management

7.1 Introduction

For some reason a stereotype exists that engineers lack people skills. In my
experience, this unfair perception of engineers is prevalent in those who
have little or no education in the sciences or mathematics. These folks appar-
ently think that engineers, mathematicians, and scientists lack soft skills
because they have mastered the more analytical disciplines.

Of course, there are engineers or scientists who have unpleasant personalities.
But there are nonengineers with rotten demeanors, too. I have never seen a
study by any behavioral scientists demonstrating that lousy personalities are
found at a higher frequency in engineers than in any other profession. The
point here is that it doesn’t matter who you are or where you came from — if
you are a manager of any type, even a software project manager, you need the
right attitude, education, and experience to be a good software project manager.

In this chapter, we will examine the people aspects of software project
management as well as the more technical issues of cost determination,
cost justification, progress tracking and reporting, and risk management.

7228_C007.fm Page 193 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

194

What Every Engineer Should Know about Software Engineering

While some of the topics are unique to software projects, most of the ideas
presented in this chapter can be applied across a wide spectrum of technical
and nontechnical projects. Many of the discussions are adapted from my
own book on antipatterns [Laplante and Neill 2006], my text on software
engineering for imaging engineers [Laplante 2003], and various lectures that
I have given on the subject to a variety of project engineers at many com-
panies. The works of Raffo and colleagues [1999] and Morgan [2005] influ-
ence the discussion on cost justification.

7.2 Software Engineers Are People Too

What personnel management skills does the software project
manager need?

A project manager needs to have an appropriate set of people skills and
relevant technical skills. The people skills include team building, negotiation
techniques, understanding of psychology and group dynamics, good moti-
vational skills, and excellent communication skills (especially listening).
Most of the people skills involve self-improvement, and it is beyond the
scope of this book to delve too deeply into that. There are many good books
on the self-improvement aspects of people management, some of which can
be found in the Further Reading section of this chapter. I will discuss some
of the team building aspects of people management, however.

But what’s the big deal with “people issues”?

It is well known that the success of a project is directly related to the quality
of talent employed and, more importantly, the manner in which the talent
is deployed on the project. But too frequently project managers* view them-
selves as technical managers only, forgetting that human nature enters into
technical situations.

Moreover, the special challenges of developing software are imposed on
top of the already daunting challenge of managing human teams. Some
people might consider the aspect of human resource management insignifi-
cant if the project team has enough technical skill. This is generally not true.

How does team chemistry involve software projects?

The key problem in most cases is that the chemistry of the team makes it
impossible for the manager to overcome other constraints, such as techni-
cal, time, and budget, even with good people. Table 7.1 illustrates the four
possible cases of good/bad management and good/bad team chemistry.

* The term manager as a general term for anyone who is the responsible charge for one or more
other persons developing, managing, installing, supporting, or maintaining systems and software.
Other typical titles include “Software Project Manager,” “Technical Lead,” and “Senior Developer.”

7228_C007.fm Page 194 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

195

In the case where both management and chemistry are good, the likelihood
of project success (which itself, must be carefully defined) is high. In the case
of bad management, success is unlikely even with good team chemistry
because bad management will eventually erode morale. But when team
chemistry is bad, good management can possibly lead to success.

Why is team chemistry so hard to manage?

One reason is that the number of working relationships grows as a polyno-
mial function of

n,

 the number of people on the team. This might be whim-
sically referred to as the “n-body problem.” In fact, it can easily be shown
that for

n

 people on a team, there are possible working relationships,
any of which can sour. Furthermore, a working relationship is not transitive.
So, for example, Roger may work well with Mary and Mary with Sue, but
Roger and Sue may not work well together. Finally, complicating these
interactions is intercultural differences and outsourcing of project compo-
nents. All of these aspects must be considered when building and managing
teams, planning projects, and dealing with difficult personnel situations. Too
many cooks spoil the broth, or to paraphrase Brooks [1995], “adding man-
power to a late software project makes it later.”

7.2.1 Management Styles

What are some styles for leading teams?

There are almost as many management styles as there are people. But,
traditionally, a small collection of paradigms can be used to more or less
describe the management style of an individual or organization. Understand-
ing these basic approaches can be helpful in understanding the motivations
of customers, supervisors, and subordinates.

What is Theory X?

Theory X, perhaps the oldest management style, is closely related to the hier-
archical, command-and-control model used by military organizations. Accord-
ingly, this approach is necessary because most people inherently dislike work
and will avoid it if they can. Hence, managers should coerce, control, direct,

TABLE 7.1

Four Possible Combinations of Good/Bad Management

and Good/Bad Team Chemistry

Good Team chemistry Bad Team Chemistry

Good management

Likely success Possible success

Bad management

Unlikely Success Unlikely Success

n n()− 1
2

7228_C007.fm Page 195 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

196

What Every Engineer Should Know about Software Engineering

and threaten their workers in order to get the most out of them. A typical
statement by a “Theory X manager” is “people only do what you audit.”

What is Theory Y?

As opposed to Theory X, Theory Y holds that work is a natural and
desirable activity. Hence, external control and threats are not needed to
guide the organization. In fact, the level of commitment is based on the
clarity and desirability of the goals set for the group. Theory Y posits that
most individuals actually seek responsibility and do not shirk it, as Theory
X proposes.

A Theory Y manager simply needs to provide the resources, articulate the
goals, and leave the team alone. This approach doesn’t always work, of
course, because some individuals do need more supervision than others.

What is Theory Z?

Theory Z is based on the philosophy that employees will stay for life with
a single employer when there is strong bonding to the corporation and
subordination of individual identity to that of the company. Theory Z orga-
nizations have implicit, not explicit, control mechanisms such as peer and
group pressure. The norms of the particular corporate culture also provide
additional implicit controls. Japanese companies are wellknown for their
collective decision-making and responsibility at all levels.

Theory Z management emphasizes a high degree of cross-functionality for
all of its workers. Specialization is discouraged. Most top Japanese managers
have worked in all aspects of their business from the production floor to
sales and marketing. This is also true within functional groups. For example,
assemblers will be cross-trained to operate any machine on the assembly
floor. Theory Z employers are notoriously slow in giving promotions, and
most Japanese CEOs are over age 50.

The purpose of this litany of alphabetic management styles is not to pro-
mote one over another; in fact, I don’t recommend adopting any of these
naively. But many individual team members and managers will exhibit some
behaviors from one of the above styles, and it is helpful to know what makes
them tick. Finally, certain individuals may prefer to be managed as a Theory
X or Theory Y type (Theory Z is less likely in this case), and it is good to be
able to recognize the signs. Moreover, some companies might be implicitly
based on one style or another.

What is Theory W?

Theory W is a software project management paradigm developed by
Boehm [1989], which focuses on the following for each project:

• establishing a set of win-win preconditions
• structuring a win-win software process
• structuring a win-win software product

7228_C007.fm Page 196 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

197

What does it mean to establish a set of win-win preconditions?

This means recognizing that the best working relationships are those in
which everyone “wins.” Zero-sum, win-lose, or lose-win situations can leave
one or both parties bitter.

Win-win solutions can be sought as follows. First, recognize that every-
one wants to win. Then, understand what constitutes a winning situation
for each individual. Money, power, and recognition contribute to winning
conditions for most people, but there are other, more subtle, conditions
such as job satisfaction, a feeling of belonging, and moral fulfillment.

Next, establish reasonable expectations. The importance of setting reasonable
and mutually fulfilling expectations in every aspect of human relations can’t be
overemphasized. Then, ensure that task assignments match the win conditions.

Finally, provide an environment that supports the fulfillment of the win
conditions. This can take a variety of forms but might include such things
as financial incentives, group activities, and communication sessions to head
off problems.

What does it mean to structure a win-win software process?

It means setting up a software process that will lead to success. This includes
establishing a realistic process plan based on some standard methodology.
This methodology may be internal and company-wide, or off-the-shelf.

It is also important to use the project/management plan to control the
project. Too often, managers develop a project plan to sell the job to senior
management or the customer, and then throw the plan away once it is
approved. Therefore, be sure to use and maintain the project plan throughout
the life of the project.

Project managers also need to monitor the risks that have been described
as they can lead to win-lose or lose-lose situations. Thus, risks should be
identified and eliminated at the earliest opportunity.

Keeping people involved is essential. It helps team members feel a part of
the project and improves communications. Besides, listening to team mem-
bers can reveal great ideas.

What does structuring a win-win software product mean?

This refers to the process of specification writing by matching the users’ and
maintainers’ win conditions. This process also requires careful and honest
expectation setting.

What is Principle Centered Leadership?

All of the management approaches discussed thus far focus on organiza-
tional frameworks for management. Principle Centered Leadership focuses
on the behavior of the manager as an agent for change [Covey 1991]. Some
management theorists hold that motivating team members by example and
leadership, and not through hierarchical application of authority, is much
more effective (manage things, but lead people). A key concept in Principle

7228_C007.fm Page 197 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

198

What Every Engineer Should Know about Software Engineering

Centered Leadership is that the best managers are leaders and that the only
way to affect change is by the managers changing themselves first.

Principle Centered Leadership recognizes that principles are more important
than values. Values are society-based and can change over time and differ from
culture to culture. Principles are more universal, more lasting. Think of some
of the old principles like the “Golden Rule.” That is, treat others as you would
like to be treated. These kinds of principles are timeless and transcend cultures.

In fact, there is a great deal of similarity in Principle Centered Leadership
and Theory W, with Principle Centered Leadership being much more generic.

What is management by sight?

Also known as management by walking around, this is not really a full-
bodied management approach, but rather a sub-strategy for the approaches
already discussed. This approach is people-oriented because it requires the
manager to be very visible and to interact with staff. Interacting with staff
at all levels is a good way for managers to collect important information
about the project and people in their care.

Management by sight is obvious. The manager uses observation and vis-
ibility to provide leadership, to monitor the situation, and even to control
when necessary. In general, it is advisable to incorporate this strategy into
any management approach.

What is management by objectives?

Management by objectives (MBO) is another sub-strategy that can be used
in conjunction with any other management approach. MBO involves man-
agers and subordinates jointly setting carefully structured objectives with
measurable outcomes and rewards.

Coupled with periodic reviews to measure progress, MBO has the effect
of positive reinforcement of desired performance.

For example, a manager may agree with the team member responsible for
writing a section of the SDD to complete the task by a certain date (provisos
can be made for various inevitable distractions that will appear). In return,
time off might be granted for meeting the goal; more time off for early
completion. The scenario becomes somewhat more complex when the other
10 things for which the team member is responsible are factored in (for
example, producing other reports, attending meetings, working on another
project simultaneously). Process tracking tools are very helpful in this case.
But the real keys to MBO are setting reasonably aggressive goals and having
a clear means of measuring success.

7.2.2 Dealing with Problems

How do I deal with difficult people?

Whether they are subordinates, peers, or superiors, dealing with difficult
people is always a challenge. The first thing to do is to avoid forming an

7228_C007.fm Page 198 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

199

opinion too soon. Never attribute some behavior to malice when a misun-
derstanding could be the reason. Almost without exception, taking the time
to investigate an issue and to think about it calmly is superior to reacting
spontaneously or emotionally.

Whatever management style is employed, the manager should make
sure that the focus is on issues and not people. Managers should avoid
the use of accusatory language such as telling someone that he is incom-
petent. The manager should focus, instead, on his feelings about the
situation.

Make sure that all sides of the story are listened to when arbitrating a
dispute before forming a plan of resolution. It is often said that there are
three sides to an issue, the sides of the two opponents and the truth, which
is somewhere inbetween. While this is a cliché, there is much truth to it.

The manager should always work to set or clarify expectations. Manage-
ment failures, parental failures, marital failures, and the like are generally
caused by a lack of clear expectations. The manager should set expectations
early in the process, making sure that everyone understands them. He should
continue to monitor the expectations and refine them if necessary.

Good team chemistry can be fostered through mentoring and most of the
best managers fit the description of a mentor. The behaviors already
described are generally those of someone who has a mentoring personality.

Finally, the manager should be an optimist. No one chooses to fail The
manager should always give people the benefit of the doubt and work with
them.

Is that it? Can’t you give me a playbook for handling difficult situations?

Team management is a complex issue and there are many books on the
subject and a great deal of variation in how to deal with challenging situa-
tions. Table 7.2 is a summary of various sources of conflict and a list of things
to try to deal with those conflicts.

7.2.3 Hiring Software Engineering Personnel

We need to hire more software people. How should I approach this task?

First, really consider whether you need another person on the team. Remem-
ber Brooks’ admonition that adding more people to an already late project
will make it later. If you need to hire more staff, say, because the scope of
work has expanded or you have more work than the current staff can handle,
remember Boehm’s [1989] five staffing principles:

The principle of top talent:

Use better and fewer people.

The principle of job matching:

 Fit the tasks to the skills and motivation of
the people available (remember this when we talk about outsourcing/
offshoring).

7228_C007.fm Page 199 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

200

What Every Engineer Should Know about Software Engineering

The principle of career progression:

An organization does best in the
long run by helping its people to self-actualize.

The principle of team balance:

 Select people who will complement and
harmonize with one another.

The principle of phaseout:

 Keeping a misfit on a team doesn’t benefit
anyone.

I want to select the right people, but how is it done in the software industry?

Companies use a variety of testing instruments to evaluate job applicants
for skills, knowledge, and even personality. Candidate exams range widely
from programming tests, general knowledge tests, situation analysis, and
“trivia” tests that purport to test critical thinking skills. Many times domain-
specific tests are given. Some companies don’t test at all.

In some companies, the test is written, administered, and graded by the
Human Resources department. Elsewhere, the technical line managers
administer the test. In still other places, the tests are organized and delivered
by “peer” staff — those who would potentially work with the candidate and
who seem to be in the best position to determine which technical skills are
relevant. Finally, some companies outsource this kind of testing.

During the dot.com era, a number of Web-based companies emerged which
provided online testing. These companies wrote and managed a test databank

TABLE 7.2

Various Sources of Conflict and Suggestions on How to Manage Them Based

on Analysis of Experience Reports from 56 Companies

Sources of Conflict Managing Conflict

Processes Scarce resource of time Employ time management
Plan for schedule overruns
Manage effect of schedule changes
Learn from project experience

User vs. technical
requirements

Identify common goals
Align individual goals with process metrics
Value team more than individual success

People Disagreement Apply team building principles
Train in conflict resolution
Sponsor group activities
Support informal social contact

Personalization of code Understanding of one another’s point of view

Organization Power and politics Structure for success
Co-locate teams
Integrate development/testing functions
Instill ownership

Management behavior Get leadership involved
Create a collaborative atmosphere
Model effective conflict management

Source:

Adapted from [Stelzer 1998].

7228_C007.fm Page 200 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

201

and provided incentives for candidates to visit a Web site and take the test.
For a fee, subscribing companies could access the database and interview
those candidates who had achieved a certain score or answered certain
questions correctly on the test.

Do these tests really measure the potential success of the software engineer?

There seems to be no consensus, even among those who study human perfor-
mance testing, that these tests strongly correlate with new employee success.

One thing a company could do to test the efficacy of a knowledge/skills
exam is to give it to a group of current employees who are known to be
successful, and to another group who are less successful. Correlating the
results could lead to a set of questions that “good” employees are more likely
to get right (or wrong). Alternatively, a company could survey those employ-
ees who were fired for their poor skills to identify any common trends.
Clearly though, while such studies might be interesting, they would be
nearly impossible to conduct and, in any case, it is unclear if these tests
measure what a hiring manager really wants to know.

Perhaps skill or knowledge testing are not what is needed. In many cases,
a failure in attitude leads to performance shortfalls. Perhaps then some sort
of assessment of potential to get along with others might be needed. Some
organizations will measure a candidate’s compatibility with the rest of the
team by testing “emotional intelligence,” or personality. The idea is to estab-
lish the “style” of existing team members based on their personalities, then
look to add someone whose style is compatible.

In any case, it is questionable as to whether these kinds of tests really do
lead to better hires. Unfortunately, it is also hard to gauge a person’s fit with
the team based on a series of interviews with team members and the obligatory
group lunch interview. Anyone can role-play for a few hours in order to get
hired, and most interviewers are not that well-trained to see through an act.

You don’t seem to like these tests. How do I assess the potential
of a candidate besides checking references?

If you must use an assessment of “intelligence,” college grades or graduate
record examination scores may be used. If the real goal is determine pro-
gramming prowess, checking grades in programming courses might be help-
ful. Better still, the manager can ask the candidate to bring in a sample of
some code she developed and discuss it. If the code sample is too trivial or
the candidate struggles to explain it, it is likely she didn’t write it or under-
stand it that well.

Other skills can be tested in this manner as well. For example, if the job
entails writing software specifications, design, or test plans, ask the candidate
to provide a writing sample. It is possible the candidate does not have samples
from his current or past job for proprietary or security reasons, but he should
still be able to talk about what he did without notes. If he can recount the
project in detail, then he probably knows what he is talking about.

7228_C007.fm Page 201 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

202

What Every Engineer Should Know about Software Engineering

How do you measure the candidate’s compatibility with existing
team members?

Many companies use personality tests, and in some cases this might work.
But there is no magic test here. The manager has to do her homework. She
must spend time with the candidate in a variety of settings including having
lunch (you can learn a lot about a person from his manners, for example).
Make sure that whomever will be working closely with this person is on the
hiring/interview team and gets to meet the candidate. Also make sure that
everyone has been trained on what to look for during an interview. Then
get together and compare notes right after the candidate leaves.

How should I reference-check a potential hire?

Most people don’t do a good job of checking references. Here are some simple
guidelines for reference checking:

Ask legal questions. There are many questions that cannot be asked and
a human resources or legal advisor should be consulted before writ-
ing the interview questions.

Evaluate the references the candidate has given you. If they have diffi-
culty providing references, if none is a direct supervisor (or subor-
dinate), then this may indicate a problem. If the reference barely
knows the candidate or simply worked in the same building, then
regardless of his opinions, they cannot be weighed heavily.

Be sure you check at least three references. It is harder to hide any
problems this way. Be sure to talk to supervisors, peers, and subor-
dinates. A team member has to be able to lead and be led.

Ask a “hidden” reference. I always try to track down someone who
would know the candidate, but who is not on his reference list. To
avoid potential problems with his current employer, I go back to one
of his previous employers and track down someone who knew him
well there. This strategy is very effective to find out if the candidate
has any hidden issues.

Take good notes and ask follow-up questions. Many references are
reluctant to say bad things about people even if they do not believe
the person is a strong candidate. By listening carefully to what
references do and do not say, the real message will come through.

Be sure to ask a broad range of questions, and questions that encourage
elaboration (as opposed to “yes” or “no” questions). For example,
some of the following might be helpful:

Describe the candidate’s technical skills.
Describe a difficult situation the candidate encountered and how he

dealt with it.
Describe the candidate’s interpersonal skills.

7228_C007.fm Page 202 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

203

Why do you think the candidate is leaving the company?
Describe the kind of work environment in which the candidate

would thrive.
Describe the current work environment in which the candidate works.
Describe the contributions of the candidate in the capacities with

which you are familiar.
Describe the kind of manager you think would be best for the candidate.

In summary, it is crucial that the hiring manager and hiring/interview
team learn the art of interviewing and background checking. This is more
likely to lead to the right fit than a series of tests. Relying on “trivia tests”
is risky at best and you might lose a good employee in the process.

7.2.4 Agile Development Teams

How do I manage agile development teams?

To answer this question, I will tell you about the Agile Manifesto. The Agile
Manifesto is a document that lays the groundwork for all agile development
methodologies. Its authors include many notable pioneers of object technol-
ogy including: Kent Beck (JUnit with Eric Gamma), Alistair Cockburn (Crys-
tal), Ward Cunningham (Wiki, CRC cards), Martin Fowler (many books on
XP, patterns, UML), Robert C. Martin (Agile, UML, patterns), and Ken
Schwaber (Scrum).

The Agile Manifesto

• Our highest priority is to satisfy the customer through early and
continuous delivery of valuable software.

•

Welcome changing requirements, even late in development.

Agile pro-
cesses harness change for the customer’s competitive advantage.

• Deliver working software frequently, from a couple of weeks to a
couple of months, with a preference to the shorter timescale.

• Business people and developers must work together daily through-
out the project.

• Build projects around motivated individuals. Give them the envi-
ronment and support they need, and trust them to get the job done.

• The most efficient and effective method of conveying information
to and within a development team is face-to-face conversation.

• Working software is the primary measure of progress.
• Agile processes promote sustainable development.

The sponsors, devel-
opers, and users should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design
enhances agility.

7228_C007.fm Page 203 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

204

What Every Engineer Should Know about Software Engineering

• Simplicity — the art of maximizing the amount of work not done —
is essential.

• The best architectures, requirements, and designs emerge from self-
organizing teams.

•

At regular intervals, the team reflects on how to become more effective

,
then tunes and adjusts its behavior accordingly [Beck et al. 2006].

Notice the portions in italics (my emphasis), which provide specific man-
agement advice.

OK, so what does the Agile Manifesto have to do with managing agile teams?

The Agile Manifesto is ready-made advice for managers. It implies that
managing agile teams is fun (Theory Y), and that the best outcomes arise
from giving project teams what they need and leaving them alone.

Does this approach always work?

No. Agile methods require much more autonomy than many managers are
willing to give. More importantly, however, not everyone fits the agile meth-
odology — a Theory X type worker will not thrive well with it. Finally, as
we discussed in Chapter 2, agile methodologies do not work in every envi-
ronment or with every project.

Do you have some more specific advice for managing agile teams?

Don Reifer [2002b] gives some excellent advice. He recommends that you
clearly define what “agile methods” means upfront because, as we saw,
there are many misconceptions. Then build a business case for agile meth-
ods using “hard” data. Reifer also notes that when adopting agile meth-
ods, recognize that you are changing the way your organization does
business.

So, in order to be successful you need to provide staff with support for
making the transition. That support should include startup guidelines, “how
to” checklists, and measurement wizards; a knowledge base of past experi-
ence accessible by all; and education and training, including distance edu-
cation and self-study courses [Reifer 2002b].

7.3 Project Management Basics

What is a project?

A project is a set of tasks with a defined beginning and end. Without a
defined beginning, there is no way to begin measuring progress. Without a
defined end, there is no way to determine if the project has been completed,

7228_C007.fm Page 204 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

205

and thus progress towards completion cannot be measured. The simple project
definition is recursive in that any project probably consists of more than one
sub-project.

What makes a software project different from any other kind of project?

Throughout the text, various properties of software have been discussed.
What has been infrequently noted, however, is that the things that make
software different from other types of endeavors also make it harder to
manage the software process. For example, unlike hardware to a large extent,
software designers build software knowing that it will have to change.
Hence, the designer has to think about both the design and redesign. That
adds a level of complication.

Of course, software development involves novelty, which introduces
uncertainty. It can be argued that there is a higher degree of novelty in
software than in other forms of engineering.

The uniqueness of software project management is intensified by a number
of specialized activities. These include:

• the process of software development
• the complex software maintenance process
• the unique, and not-well-evolved, process of verification and validation
• the interplay of hardware and software
• the uniqueness of the software

Is software project management similar to systems project management?

Many software engineering project management activities are different from
those needed for software project management. These are summarized in
Table 7.3. This framework provides a model of discussion for the rest of this
chapter.

What does the software project manager control?

Software project managers may have one or more of the following elements
under their control:

• resources
• schedule
• functionality

Note that I say “may have” control over. It could be that the project
manager controls none or only one of these. Obviously, the extent to which
the manager has control indicates the relative freedom to maneuver.

Note that there is one aspect here that every manager can control —
himself. That is, you have control over your reactions to situations and your
attitude. These must be positive if you expect positive responses from others.

7228_C007.fm Page 205 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

206

What Every Engineer Should Know about Software Engineering

What do you mean by resources?

Resources can include software, equipment, and staffing, and money to
acquire more of them. There are always financial limitations, and generally
these are fixed prior to the start of the project. Many times the financing
constraints change during the project.

What about the schedule?

The manager should have some control over the schedule. Even if the deliv-
ery date of the product is hard, there should be some flexibility in the
schedule that does not change the delivery date.

What about product functionality?

The product functionality may or may not be controllable. Often when
negotiating a project, the project manager cannot increase costs or reduce
delivery time, but he can decrease product functionality in order to meet a
customer’s budget or schedule.

How does the project manager put all of these control factors together?

Generally, in terms of controlling the project, the manager must understand
the project goals and objectives. Next, the manager needs to understand the
constraints imposed on the resources. These include cost and time limita-
tions, performance constraints, and available staff resources. Finally, the
manager develops a plan that enables her to meet the objectives within the
given constraints.

TABLE 7.3

Software Process Planning vs. Project Planning

Software Engineering Planning
Activities

Software Project Management
Planning Activities

Determine tasks to be done Determine skills needed for the task
Establish task precedence Establish project schedule
Determine level of effort in person
months

Determine cost of effort

Determine technical approach to
solving problem

Determine managerial approach to monitoring
project status

Select analysis and design tools Select planning tools
Determine technical risks Determine management risks
Determine process model Determine process model
Update plans when the
requirements or development
environment change

Update plans when the managerial conditions
and environment change

Source:

Adapted from Thayer, R.H., Software system engineering: a tutorial,

Computer

,
35(4), 68–73, 2002.

7228_C007.fm Page 206 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

207

Of course, monitoring and control mechanisms must be in place including
metrics. The manager should be prepared to modify the plan as it progresses.
These modifications need to be made to the plan, and then team members
can make adjustments as necessary and appropriate. Finally, a calm, produc-
tive, and positive environment is desirable to maximize the performance of
the team and to keep the customer happy and confident that the job is being
done right.

7.4 Tracking and Reporting Progress

What is a work breakdown structure and why is it important
to project tracking?

The work breakdown structure (WBS) is used to decompose the functionality
of the software in a hierarchical fashion. The WBS can be used for costing
and project management and it forms the basis for process tracking and cost
determination. The WBS consists of an outline listing of project deliverables
(or phases of the project) organized hierarchically.

Figure 7.1 illustrates a simple example for the software engineering effort
for the baggage inspection system. A portion of the SRS is shown.

Each organization uses its own terminology for classifying WBS compo-
nents according to their level in the corporate hierarchy. The WBS may also
be organized around deliverables or phases of the project life cycle. In this
case, higher levels generally are performed by groups while the lowest levels
are performed by individuals. A WBS that emphasizes deliverables does not
necessarily specify activities.

1.1 Software Systems Engineering
1.1.1 Support to Systems Engineering
1.1.2 Software Engineering Trade Studies
1.1.3 Requirement Analysis (System)
1.1.4 Requirement Analysis (Software)
1.1.5 Equations Analysis
1.1.6 Interface Analysis
1.1.7 Support to System Test

1.2 Software Development
1.2.1 Deliverable Software

1.2.1.1 Requirement Analysis
1.2.1.2 Architectural Design

FIGURE 7.1

High-level work breakdown structure for the baggage inspection system.

7228_C007.fm Page 207 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

208

What Every Engineer Should Know about Software Engineering

What is the level of detail of the tasks in the WBS?

Breaking down a project into its component parts facilitates resource allocation
and the assignment of individual responsibilities. But care should be taken to
use a proper level of detail when creating the WBS. A very high level of detail
is likely to result in micromanagement. Too low a level of detail and the tasks
may become too large to manage effectively. Generally, I like to define tasks
so that their duration is between several days and a few months.

What is the WBS’s role in project planning?

The work breakdown structure is the foundation of project planning. It is
developed before dependencies are identified and activity durations are
estimated. The WBS can also be used to identify the tasks to be used in other
project management tools.

Are there any drawbacks to the traditional WBS?

Yes, the WBS is closely associated with the waterfall model, although it can
be used with other life-cycle models. The WBS can have the tendency to
drive the software architecture; for instance, the modular decomposition
looks exactly like the WBS.

Are there any alternatives to using the WBS?

No. Some project managers try to go directly to scheduling without using a
WBS. In other cases, project managers try to utilize use cases as the basis of
project management, but I do not recommend this approach.

How is work and progress tracked in software projects?

Tracking progress is important for identifying problems early, for reporting
purposes, and to perform appropriate resource allocation and reallocation
as required. Three tools that can help the software project manager to mea-
sure progress of a project are:

the Gantt chart
the critical path method (CPM)
the program evaluation and review technique (PERT)

There are numerous commercial implementations of these tools, which
typically can convert from one to the other and integrate with many popular
word processing, spreadsheet, and presentation software.

What is a Gantt chart?

Henry Gantt developed the Gantt chart during World War I for use as a
planning tool. This widely used tool is simple in that it lists project tasks in
a sequential and parallel fashion.

7228_C007.fm Page 208 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

209

What does the Gantt chart look like?

Consider the Gantt chart shown in Figure 7.2 for the baggage inspection
system. Project tasks are listed along the left-hand side of the chart in a
hierarchical fashion. If a work breakdown structure was used in the SDD,
then it can be transferred to the chart.

A timeline is drawn along the bottom edge of the chart. Here the time units
are omitted, but would usually be represented by tick marks in units of days,
weeks, or months. Each project subtask activity is represented by a directed
arrow. The starting point of the arc is placed at the point in the timeline where
the task would commence. Project durations are represented by the length of
the arcs. Personnel are listed next to the project activity on the left-hand side.
Milestones can be marked and task slippage can be denoted by dashed lines
in the activity arcs. The chart is updated as the project unfolds.

It can be seen from Figure 7.2 that parallel tasks can be identified and
sequencing can be easily depicted. Task assignments can be made by writing
the name of the responsible person next to each task. PAL, CJN, and KAG
are the initials of the persons assigned to the tasks, “All” represents that all
team members are involved in the task.

Can the Gantt chart be used for large projects?

For larger projects, the tasks can be broken down into subtasks having their
own Gantt charts to maintain readability.

How can the Gantt chart be used for ongoing project management?

The strength of the Gantt chart is its capability to display the status of each
activity at a glance. So long as the chart is a realistic reflection of the situation,
the manager can use it to track progress, adjust the schedule, and perhaps
most importantly, communicate the status of the project.

FIGURE 7.2

Partial Gantt chart for the baggage inspection system.

3.2 Code operational software (PAL)
3.2.1 Initialization (PAL)
3.2.2 Normal operation (PAL)
3.2.2.1 Image capture (KAG)
3.2.2.2 Error correction (KAG)
3.2.2.3 Image analysis code (CJN)
3.2.2.4 Conveyor system control (CJN)
3.2.2.5 Reject mechanism control (CJN)
3.2.2.6 Error handling (CJN)
3.3 Diagnostic software (CJN)
4 Software integration (All)
4.1 Integration Test (All)
4.2 Acceptance Test(All)

Time

7228_C007.fm Page 209 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

210

What Every Engineer Should Know about Software Engineering

What is the CPM?

The CPM is an improvement on the Gantt chart in that task dependencies
can be more easily depicted and task times can be represented numerically
rather than visually. The method was developed in the 1950s by researchers
at DuPont and Remington Rand.

The CPM chart is essentially a precedence graph connecting tasks and
illustrating their dependencies along with the budgeted completion time and
maximum cumulative completion time along the path from the origin to the
current task (see Figure 7.3).

For example, in Figure 7.3 the tasks are A, B, C, …, K. Task A is the initial
task followed by tasks B and C, which cannot start until A is completed. The
time to complete task A is 1 week and for B and C 2 weeks.

What are the steps in CPM planning?

First, specify the individual activities, which can be obtained from the work
breakdown structure. This listing can be used as the basis for adding
sequence and duration information in later steps.

Next, determine the sequence of those activities, including any dependen-
cies. Note that some activities are dependent upon the completion of others.
A listing of the immediate predecessors of each activity is useful for con-
structing the CPM network diagram.

Now draw a network diagram. CPM was originally developed as an
activity on node network, but some project planners prefer to specify the
activities on the arcs.

Next, estimate the completion time for each activity. The time required to
complete each activity can be estimated using past experience or the esti-
mates of knowledgeable persons. CPM is a deterministic model that does
not take into account variation in the completion time, so only one number
is used for an activity’s time estimate.

FIGURE 7.3

A generic CPM chart with the critical path highlighted.

A

B

C

D

E

F

G

H

I

J

K

1.5wk

1wk

2wk

2wk

1wk

1wk

2w

1wk

4wk

1wk

1wk

1wk

1wk

7228_C007.fm Page 210 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

211

Then identify the critical path, which is the path through the project net-
work that has the greatest aggregate completion time.

Finally, update the CPM diagram as the project progresses because the
actual task completion times will then be determined and the network dia-
gram can be updated to include this information. A new critical path may
emerge, and structural changes may be made in the network if project
requirements change.

Can you illustrate the technique using the baggage inspection system?

Returning to the baggage inspection system example, consider the tasks in
the work breakdown structure by their numerical coding shown in the Gantt
chart. These tasks are depicted in Figure 7.4.

Here tasks 3.2.1, 3.2.2.3, and 3.2.2.4 can begin simultaneously. Assume that
task 3.2.1 is expected to take four time units (days). Notice that, for example,
the arc from task 3.2.1 is labeled with “4/4” because the estimated time for
that task is four days, and the cumulative time along that path up to that
node is four days. Looking at task 3.2.2.1, which succeeds task 3.2.1, we see
that the edge is labeled with “4/8”. This is because a completion time for
task 3.2.2.1 is estimated at four days, but the cumulative time for that path
(from tasks 3.2.1 through 3.2.2.1) is estimated to be a total of eight days.

Moving along the same path, task 3.2.2.1 is also expected to take four days,
so the cumulative time along the path is eight days. Finally, task 3.2.2.2 is
expected to take three days, and hence the cumulative completion time is

FIGURE 7.4

Partial CPM corresponding to the baggage inspection system Gantt chart shown in Figure 7.2.

3.2.1 3.2.2.1 3.2.2.2

4/4 4/8
3/11

3.2.2.3

3.2.2.4 3.2.2.5 3.2.2.6 3.3
6/6 5/11 3/14

3/17

4
17/17

7228_C007.fm Page 211 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

212

What Every Engineer Should Know about Software Engineering

11 days. On the other hand, task 3.2.2.3 is expected to take 17 days. The task
durations are based on either estimation or using a tool such as COCOMO,
which will be discussed later. If the Gantt chart accompanies the CPM dia-
gram, the task durations represented by the length of the arrows on the Gantt
chart should correspond to those labeled on the CPM chart.

Moving along the last path at the bottom of Figure 7.4, it can be seen that
the cumulative completion time is 17. Therefore, in this case, the two lower
task paths represent critical paths. Hence, only by reducing the completion
time of both lower task paths can the project completion be accelerated.

Are there downsides to using CPM?

CPM was developed for complex but fairly routine projects with minimal
uncertainty in the project completion times. For less routine projects, there is
more uncertainty in the completion times and this uncertainty limits the
usefulness of the deterministic CPM model. An alternative to CPM is the PERT
project planning model, which allows a range of durations to be specified
for each activity.

What is PERT?

PERT was developed by the Navy and Lockheed (now Lockheed Martin) in
the 1950s, around the same time as CPM. PERT is identical to CPM topolog-
ically, except that PERT depicts optimistic, likely, and pessimistic completion
times along each arc.

How do you build the PERT diagram?

The steps are the same as for CPM except that when you determine the estimated
time for each activity, optimistic, likely, and pessimistic times are determined.

Can you show me an example?

In Figure 7.5, it can be seen that the topology is the same as that for CPM.
Here the triples indicate the best, likely, and worst-case completion times
for each task. These times are estimated, as in CPM, either through best
engineering judgment or using a tool like COCOMO. Adding these triples
vectorially yields the PERT chart in Figure 7.6. The aggregated times can
now be seen along the arcs, providing cumulative best, likely, and worst-
case scenarios. This provides even more control information than the Gantt
or CPM project representations.

Are there any downsides to using PERT?

Yes. For example, the activity time estimates are somewhat subjective and
depend on judgment (that is, guessing). Further, PERT assumes that the task
completion time is given by a beta distribution of the form

f(t)

=

kta – 1(1 – t)b – 1

7228_C007.fm Page 212 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers

213

FIGURE 7.5

Partial PERT chart for the baggage inspection system showing best/likely/worst case comple-
tion times for each task.

FIGURE 7.6

Partial PERT chart for the baggage handling system showing cumulative best/likely/worst
case completion times for each task.

3.2.1 3.2.2.1 3.2.2.2

4/4/4 3/4/5
3/3/4

3.2.2.3

3.2.2.4 3.2.2.5 3.2.2.6 3.3
5/6/8 4/5/7 3/3/4

3/3/4

4
14/17/20

3.2.1 3.2.2.1 3.2.2.2

4/4/4 7/8/9
10/11/13

3.2.2.3

3.2.2.4 3.2.2.5 3.2.2.6 3.3
5/6/8

9/10/15 12/13/19

14/16/23

4
14/17/20

7228_C007.fm Page 213 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

214 What Every Engineer Should Know about Software Engineering

for the time estimates (k, a, and b are arbitrary constants). The actual
completion time distribution, however, may be different. Finally, because
other paths can become the critical path if their associated activities are
delayed, PERT consistently underestimates the expected project comple-
tion time.

Are commercial products available for building these charts?

Several commercial and open source tools are available to develop work
breakdown structures and create Gantt, CPM, and PERT diagrams. Some
tools also provide to-do lists, linking tasks and dependencies, role- or skill-
based tracking, and resource leveling. Still other tools provide collaboration
features such as project status reports accessible via a Web page and inte-
grated e-mail or threaded discussion boards.

Can you recommend the best tool to use?

It is not my place to recommend one implementation over another — any
one will probably do. Moreover, there is no “managerial advantage” in using
one tool or another. The “managerial advantage” is in the skill and knowl-
edge of the person using the tool.

Is becoming an expert in using the project planning tools the key
to being a good software project manager?

Absolutely not. Frankly it is naïve to imply that mastery of a tool is a
foundation for excellence in some profession. Does mastery of a word pro-
cessor make you a great writer? Does learning how to use a spreadsheet
program make you a financial whiz? Of course not. You need the tools to
do your job, of course, but you need to have the knowledge and wisdom to
use those tools appropriately.

7.5 Software Cost Estimation

Are there well-known and respected tools for doing software project
cost estimation?

One of the most widely used software modeling tools is Boehm’s [1981]
constructive cost model (COCOMO), first introduced in 1981. There are three
versions of COCOMO: basic, intermediate, and detailed.

What is basic COCOMO?

Basic COCOMO is based on thousands of lines of deliverable source instruc-
tions. In short, for a given piece of software, the time to complete is a function
of L, the number of lines of delivered source instructions (KDSI), and two

7228_C007.fm Page 214 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers 215

additional parameters, a and b, which will be explained shortly. This is the
effort equation for the basic COCOMO model:

(7.1)

Dividing T by a known productivity factor, in KDSI per person month, yields
the number of person months estimated to complete the project.

The parameters a and b are a function of the type of software system to
be constructed.

For example, if the system is organic (i.e., one that is not deeply embedded
in specialized hardware), then the following parameters are used: a = 3.2,
b = 1.05. If the system is semidetached (i.e., partially embedded), then the
following parameters are used: a = 3.0, b = 1.12.

Finally, if the system is embedded like the baggage inspection system, then
the following parameters are used: a = 2.8, b = 1.20. Note that the exponent
for the embedded system is the highest, leading to the longest time to
complete for an equivalent number of delivered source instructions.

Can you give me an example using COCOMO?

Suppose it is estimated somehow that the baggage inspection system will
require 40 KDSI of new C code to complete. Hence, an effort level estimate of:

is obtained using COCOMO.
Suppose, then, it is known that an efficient programmer can generate 2000

LOC per month. Then, superficially at least, it might be estimated that the
project would take approximately 117 person months to complete. Not
counting dependencies in the task graph, this implies that a five-person team
would take approximately 20 months to complete the project. It would be
expected, however, that more time would be needed because of task depen-
dencies (identified, for example, using PERT).

Where do the source code estimates come from?

These can come from function, feature, or use case point calculations, be
based on an analysis of similar types of recently completed projects, or be
provided by expert opinions.

Should I use more than one estimate?

Yes. You should use at least two methods to estimate KDSI. You can take a
weighted average of the two with the weights based on your certainty of
the estimate.

What about the intermediate and detailed COCOMO models?

The intermediate or detailed COCOMO models dictate the kinds of adjust-
ments used. Consider the intermediate model, for example. Once the effort

T aLb=

T K K= ⋅ =2 8 40 2341 2. () .

7228_C007.fm Page 215 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

216 What Every Engineer Should Know about Software Engineering

level for the basic model is computed based on the appropriate parameters
and number of source instructions, other adjustments can be made based on
additional factors.

In this case, for example, if the source code estimate consists of design-
modified code, code-modified and integration-modified rather than straight
code, a linear combination of these relative percentages is used to create an
adaptation adjustment factor as follows.

Adjustments are then made to T based on two sets of factors, the adapta-
tion adjustment factor, A, and the effort adjustment factor, E.

What is the adaptation adjustment factor?

The adaptation adjustment factor is a measure of the kind and proportion
of code that is to be used in the system, namely, design-modified, code-
modified, and integration-modified. The adaptation factor, A, is given by
Equation 7.2.

A = 0.4 (% design-modified) + .03 (% code-modified)
+ 0.3 (% integration-modified) (7.2)

For new components A = 100. On the other hand, if all of the code is design-
modified, then A = 40 and so on. Then the new estimation for delivered
source instructions, E, is given as

(7.3)

What is the effort adjustment factor?

An additional adjustment, the effort adjustment factor, can be made to the
number of delivered source instructions based on a variety of factors including:

• product attributes
• computer attributes
• personnel attributes
• project attributes

Each of these attributes is assigned a number based on an assessment that
rates them on a relative scale. Then, a simple linear combination of the
attribute numbers is formed based on project type. This gives a new adjust-
ment factor, .

The second adjustment, effort adjustment factor, , is then made based
on the formula

(7.4)

E L A= ⋅ /100

′E
′′E

′′ ′ ⋅E = E E

7228_C007.fm Page 216 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers 217

Then the delivered source instructions are adjusted, yielding the new effort
equation:

(7.5)

The detailed model differs from the intermediate model in that different
effort multipliers are used for each phase of the software life cycle.

What do these adjustment factors look like?

Table 7.4 lists the adjustment factors corresponding to various product
attributes.

How widely used is COCOMO?

COCOMO is widely recognized and respected as a software project man-
agement tool. It is useful even if the underlying model is not really under-
stood. COCOMO software is commercially available and can be found on
the Web free.

What are the downsides to using COCOMO?

One drawback is that the model does not take into account the leveraging
effect of productivity tools. The model also bases its estimation almost
entirely on LOC, not on program attributes, which is something that FPs do.
FPs, however, can be converted to source code estimates using standard
conversion formulas, as was shown in Chapter 6.

What is COCOMO II?

COCOMO II is a major revision of COCOMO that is evolving to deal with
some of the previously described shortcomings. For example, the original
COCOMO 81 model was defined in terms of delivered source instructions.
COCOMO II uses the metric SLOC instead of delivered source instructions.
The new model helps better accommodate more expressive modern lan-
guages as well as software generation tools that tend to produce more code
with essentially the same effort.

In addition, some of the more important factors that contribute to a
project’s expected duration and cost are included in COCOMO II as new
scale drivers. These five scale drivers are used to modify the exponent in the
effort equation:

precedentedness (novelty of the project)
development flexibility
architectural/risk resolution
team cohesion
process maturity

T aE b= ′′

7228_C007.fm Page 217 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

218
W

hat E
very E

ngineer Should K
now

 about Softw
are E

ngineering

TABLE 7.4

Attribute Adjustment Factors for Intermediate COCOMO

Very Low Low Nominal High Very High Extra High

Product attributes
Required software reliability 0.75 0.88 1.00 1.15 1.40
Size of application database 0.94 1.00 1.08 1.16
Complexity of the product 0.70 0.85 1.00 1.15 1.30 1.65

Hardware attributes
Run-time performance constraints 1.00 1.11 1.30 1.66
Memory constraints 1.00 1.06 1.21 1.56
Volatility of the virtual machine environment 0.87 1.00 1.15 1.30
Required turnabout time 0.87 1.00 1.07 1.15

Personnel attributes
Analyst capability 1.46 1.19 1.00 0.86 0.71
Software engineer capability 1.29 1.13 1.00 0.91 0.82
Applications experience 1.42 1.17 1.00 0.86 0.70
Virtual machine experience 1.21 1.10 1.00 0.90
Programming language experience 1.14 1.07 1.00 0.95

Project attributes
Use of software tools 1.24 1.10 1.00 0.91 0.82
Application of software engineering methods 1.24 1.10 1.00 0.91 0.83
Required development schedule 1.23 1.08 1.00 1.04 1.10

Note: Entries are empty if they are not applicable to the model.

Source: Adapted from Wikipedia.org.

7228_C
007.fm

 Page 218 T
uesday, M

arch 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

http://www.wikipedia.org/

Managing Software Projects and Software Engineers 219

The first two drivers, precedentedness and development flexibility, describe
many of the same influences found in the adjustment factors of COCOMO 81.

What is WEBMO?

WEBMO is a derivative of COCOMO II that is geared specifically to project
estimation of Web-based projects (it has been reported that COCOMO is not
a good predictor in some cases). WEBMO is based on a different set of
predictors, namely,

• number of function points
• number of xml, html, and query language links
• number of multimedia files
• number of scripts
• number of Web building blocks

For WEBMO, the effort and duration equations are:

Effort = (7.6)

Duration = (7.7)

where A and B are constants, P1 and P2 depend on the application domain,
and cdi are cost drivers based on:

• product reliability and complexity
• platform difficulty
• personal capabilities
• personal experience
• facilities
• schedule constraints
• degree of planned reuse
• teamwork
• process efficiency

with qualitative ratings ranging from very low to very high and numerical
equivalents shown in Table 7.5 [Reifer 2002a].

A cd size
i

i
P∏

=1

9
1()

B Effort P() 2

7228_C007.fm Page 219 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

220 What Every Engineer Should Know about Software Engineering

7.6 Project Cost Justification

Is software an investment or an expense?

It depends on whom you ask. Many software project managers see the invest-
ment in new tools or upgrade of old ones as an investment. But the CFO might
see the purchase as a pure expense. There is an accounting answer to this
question, too, but I don’t want to get into the technical details of how accoun-
tants determine whether a purchase is an expense item or a capital acquisition.

The point is that many software project managers are being asked to justify
their activities and purchases of software and equipment. Therefore, it is in
the project manager’s best interest to know how to make a business case for
the activity.

What is software return on investment (ROI) and how is it defined?

Return on investment (ROI) is a rather overloaded term that means different
things to different people. To some it means the value of the software activity
at the time it is undertaken. To some it is the value of the activity at a later
date. To some it is just a catchword for the difference between the cost of
software and the savings anticipated from the utility of that software. Finally,
to some there is a more complex meaning.

What is an example of a project ROI justification?

Consider the following situation. A project manager has the option of either
purchasing a new testing tool for $250,000 or using the same resources to
hire and train additional testers. Currently $1 million is budgeted for soft-
ware testing. It has been projected that the new testing tool would provide

TABLE 7.5

WEBMO Cost Drivers and Their Values

Ratings
Very Low Low Nominal High Very High

Cost driver
Product reliability 0.63 0.85 1.0 1.30 1.67
Platform difficulty 0.75 0.87 1.00 1.21 1.41
Personnel capabilities 1.55 1.35 1.00 0.75 0.58
Personnel experience 1.35 1.19 1.00 0.87 0.71
Facilities 1.35 1.13 1.00 0.85 0.68
Schedule constraints 1.35 1.15 1.00 1.05 1.10
Degree of planned reuse — — 1.00 1.25 1.48
Teamwork 1.45 1.31 1.00 0.75 0.62
Process efficiency 1.35 1.20 1.00 0.85 0.65

Source: Reifer, D.J., Estimating web development costs: there are differences, http://
www.reifer.com/documents/webcosts.pdf, June 2002.

7228_C007.fm Page 220 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

http://209.85.207.104/search?q=cache:uZug-aam0KYJ:www.reifer.com/docs/Crosstalk_Numbers.pdf+Reifer,+D.J.,+Estimating+web+development+costs&hl=en&ct=clnk&cd=9&gl=us

Managing Software Projects and Software Engineers 221

$500,000 in immediate cost savings by automating several aspects of the
testing effort. The effort savings would allow fewer testers to be assigned to
the project. Should the manager decide to hire new testers, they would have
to be hired and trained (these costs are included in the $250,000 outlay)
before they can contribute to the project.* At the end of two years, it is
expected that the new testers will be responsible for $750,000 in rework cost
savings by finding defects prior to release that would not otherwise be found.
The value justification question is “should the project be undertaken or not?”
We can answer this question after discussing net present value.

Yes, but how do you measure ROI?

One traditional measure of ROI for any activity, whether software related or
not, is given as

ROI = Average Net Benefits/Initial Costs

The problem with this model for ROI is the accurate representation of aver-
age net benefits and initial costs.

OK, so how can you represent net benefit and initial cost?

Commonly used models for valuation of some activity or investment include
net present value (NPV), internal rate of return (IRR), profitability index (PI),
and payback. We will look at each of these shortly.

Other methods include Six Sigma and proprietary balanced scorecard
models. These kinds of approaches seek to recognize that financial measures
are not necessarily the most important component of performance. Further
considerations for valuing software solutions might include customer satis-
faction, employee satisfaction, and so on, which are not usually modeled
with traditional financial valuation instruments.

There are other, more complex, accounting-oriented methods for valuing
software. Discussion of these techniques is beyond the scope of this text. The
references at the end of the chapter can be consulted for additional informa-
tion; see, for example, [Raffo et al. 1999] and [Morgan 2005].

What is NPV and how can I use it?

NPV is a commonly used approach to determine the cost of software projects
or activities. Here is how to compute NPV. Suppose that FV is some future
anticipated payoff either in cash or anticipated savings. Suppose r is the
discount rate** and Y is the number of years that the cash or savings is
expected to be realized. Then the NPV of that payoff is:

NPV = FV/(1 + r)Y

* Such a cost is called a “sunken cost” because the money is gone whether one decides to pro-
ceed with the project or not.
** The interest rate charged by the U.S. Federal Reserve. The cost of borrowing any capital will
be higher than this base rate.

7228_C007.fm Page 221 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

222 What Every Engineer Should Know about Software Engineering

NPV is an indirect measure because you are required to specify the market
opportunity cost (discount rate) of the capital involved.

Can you give an example of an NPV calculation for a software situation?

To see how you can use this notion as a project manager, suppose that you
expect a programming staff training initiative to cost your company $60,000.
You believe that benefits of this improvement initiative are expected to total
$100,000 of reduced code rework two years in the future. If the discount rate
is 3%, should the initiative be undertaken?

To answer this question, we calculate the NPV of the strategy, taking into
account its cost:

NPV = 100,000/1.032 – 60,000 = 34,259

Because the NPV is positive, the project should be undertaken.
For a sequence of cash flows, CFn, where n = 0, …, k represents the number

of years from initial investment, the NPV of that sequence is

CFn could represent, for example, a sequence of related expenditures over a
period of time, such as the ongoing maintenance costs or support fees for
some software package.

What is the answer to the question of acquiring the testing tool?

To figure out if we need to undertake this project, we assume an annual
discount rate of 10% for ease of calculation. Now we calculate the NPV of
both alternatives. The testing tool is worth $500,000 today, so its NPV is

PVtool = $500,000/(1.10)0 = $500,000

To hire testers is worth $750,000 in two years, so its NPV is

PVhire = $750,000/(1.10)2 = $619,835

Therefore, under these assumptions, the personnel hire option would be the
preferred course of action. However, as the projected return goes farther
into the future, it becomes more difficult to forecast the amount of the return.
All sorts of things could happen — the project could be cancelled, new
technology could be discovered, the original estimate of rework could
change. Thus, the risk of the project may differ accordingly.

What is an IRR?

IRR is defined as the discount rate in the NPV equation that causes the
calculated NPV to be zero. NPV is not the ROI. But the IRR is useful for
computing the “return” because it does not require knowledge of the cost
of capital.

NPV
CF

r
n

n
n

k

=
+

=
∑ ()1

0

7228_C007.fm Page 222 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers 223

To decide if we should undertake an initiative, we compare the computed
IRR to the return of another investment alternative. If the IRR is very low,
then we might simply want to take this money and find an equivalent
investment with lower risk (for example, to undertake a different corporate
initiative or even to simply buy bonds). But if the IRR is sufficiently high,
then the decision might be worth whatever risk is involved.

Can you give an example of an ROI calculation?

Suppose the programming staff training initiative previously discussed is
expected to cost $50,000. The returns of this improvement are expected to
be $100,000 of reduced rework two years in the future. We would like to
know the IRR on this activity.

Here, NPV = 100,000/(1 + r)2 – 50,000. We now wish to find the r that
makes the NPV = 0; that is, the “break even” value. Using our IRR equation,

r = [100,000/50,000)]1/2 – 1

This means r = 0.414 = 41.4%. This rate of return is very high, and we would
likely choose to undertake this programming staff training initiative.

What is a PI?

The PI is the NPV divided by the cost of the investment, I:

PI = NPV/I.

PI is a “bang-for-the-buck” measure and it is appealing to managers who
must decide between many competing investments with positive NPV finan-
cial constraints. The idea is to take the investment options with the highest
PI first until the investment budget runs out. This approach is not bad but
can suboptimize the investment portfolio.

How can using PI suboptimize the decision?

Consider the set of software investment decisions shown in Table 7.6. Sup-
pose the capital budget is $500,000. The PI ranking technique will pick A
and B first, leaving inadequate resources for C. Therefore, D will be chosen

TABLE 7.6

A Portfolio of Software Project Investment Decisions

Project
Investment (in hundreds
of thousands of dollars)

NPV (in hundreds of
thousands of dollars) PI

A 200 260 1.3
B 100 130 1.3
C 300 360 1.20
D 200 220 1.1

7228_C007.fm Page 223 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

224 What Every Engineer Should Know about Software Engineering

leaving the overall NPV at $610,000. However, using an integer program-
ming approach will recommend taking projects A and C for a total NPV of
$660,000.

Should I use PI at all?

Yes, PI is useful in conjunction with NPV to help optimize the allocation of
investment dollars across a portfolio of projects.

What is payback?

A funny answer is warranted here, but I will pass on the opportunity. To
the project manager, payback is the time it takes to get the initial invest-
ment back out of the project. Projects with short paybacks are preferred,
although the term “short” is completely arbitrary. The intuitive appeal is
reasonably clear: the payback period is easy to calculate, communicate,
and understand.

How can payback be applied in a software project setting?

Suppose changing vendors for a particular application software package is
expected to have a switching cost of $100,000 and result in a maintenance
cost savings of $50,000 per year. Then the payback period for the decision
to switch vendors would be two years.

This seems simplistic. Is payback really used?

Yes. Because of its simplicity, payback is the least likely ROI calculation to
confuse managers. However, if the payback period is the only criterion used,
then there is no recognition of any cash flow, small or large, to arrive after
the cutoff period. Furthermore, there is no recognition of the opportunity
cost of tying up funds. Because discussions of payback tend to coincide with
discussions of risk, a short payback period usually means a lower risk.
However, all criteria used in the determination of payback are arbitrary.
From an accounting and practical standpoint, the discounted payback is the
metric that is preferred.

What is discounted payback?

The discounted payback is the payback period determined on discounted
cash flows rather than undiscounted cash flows. This method takes into
account the time (and risk) value of money invested. Effectively, it answers
the questions “How long does it take to recover the investment?” and “what
is the minimum required return?”

If the discounted payback period is finite in length, it means that the
investment plus its capital costs are recovered eventually, which means that
the NPV is at least as great as zero. Consequently, a criterion that says to go
ahead with the project if it has any finite discounted payback period is
consistent with the NPV rule.

7228_C007.fm Page 224 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers 225

Can you give an example?

In the previous PI example, there is a switching cost of $100,000 and an annual
maintenance savings of $50,000. Assuming a discount rate of 3%, the dis-
counted payback period would be longer than two years because the savings
in year two would have an NPV of less than $50,000 (figure out the exact
payback period for fun). But because we know that the there is a finite dis-
counted payback period, we know that we should go ahead with the initiative.

7.7 Risk Management

What are software risks?

Software risks are “anything that can lead to results that deviate negatively
from the stakeholders’ real requirements for a project” [Gilb 2006].

How do risks manifest in software?

There are two kinds of software risks: external and internal. Internal risks
include requirements changes, unrealistic requirements, incorrect require-
ments; shortfalls in externally furnished components; problems with legacy
code; and lack of appropriate resources. These kinds of risks appear to be
controlled most likely by the software project manager or her organization.

External risks are related to the business environment and include changes
in the situation of customers, competitors, or suppliers; economic situations
that change the cost structure; governmental regulations; weather, terrorism,
and so on. Of course, the project manager can control none of these risks.
Instead, she needs to plan for them so they can be mitigated when they arise.

How does the project manager identify, mitigate, and manage risks?

Many of the risks can be managed through close attention to the require-
ments specification and design processes. Prototyping (especially throw-
away) is also an important tool in mitigating risk. Judicious and vigorous
testing can reduce or eliminate many of these risks.

What are some other ways that the software project manager
can mitigate risk?

Table 7.7, which is a variation of a set of recommendations from Boehm
[1989], summarizes the risk factors and possible approaches to risk manage-
ment and mitigation.

Is there a predictive model for the likelihood of any of these risks?

Yes. Once again, Boehm [1989] offers us some advice on the likelihood of
various kinds of risks driving up cost, shown in Table 7.8.

7228_C007.fm Page 225 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

226 What Every Engineer Should Know about Software Engineering

Do you have any other advice about management risk
in software projects?

Tom Gilb, a software risk management specialist, suggests that the project
manager ask the following questions throughout the life of the software project.

Why isn’t the improvement quantified?
What is the degree of risk or uncertainty and why?

TABLE 7.7

Various Project Risk Sources and Possible Management, Measurement,
Elimination, and Mitigation Techniques

Risk Factor
Possible Management/Mitigation

Approach

Incomplete and imprecise specifications Prototyping
Requirements reviews
Formal methods

Difficulties in modeling highly complex systems Prototyping
Testing

Uncertainties in allocating functionality to software
or hardware and subsequent turf battles

Prototyping
Requirements reviews

Uncertainties in cost and resource estimation Project management
Metrics

Difficulties with progress monitoring Project management
Monitoring tools
Metrics

Rapid changes in software technology and
underlying hardware technology

Prototyping
Testing

Measuring and predicting reliability of the software Metrics
Testing

Problems with interface definition Prototyping
Problems encountered during software-software
or hardware-software integration

Prototyping
Testing

Unrealistic schedules and budgets Project management
Monitoring tools
Metrics

Gold plating Code audits and walkthroughs

Shortfalls in externally furnished components Testing

Real-time performance shortfalls Prototyping
Testing

Trying to strain the limits of computer science
capabilities

Code audits and walkthroughs
Testing

Source: Adapted from Boehm, B.W., Software Risk Management, IEEE Computer Society Press,
Los Alamitos, CA, 1989.

7228_C007.fm Page 226 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

Managing Software Projects and Software Engineers 227

Are you sure? If not, why not?
Where did you get that from? How can I check it out?
How does your idea measurably affect my goals and budgets?
Did we forget anything critical to survival?
How do you know it works that way? Did it before?
Do we have a complete solution? Are all requirements satisfied?

TABLE 7.8

Probabilistic Assessment of Risk

Cost Driver
 Improbable

(0.0–0.3)
 Probable

(0.4–0.6)
 Frequent

(0.7–1.0)

Application Nonreal-time,
little system
interdependency

Embedded, some
system interdependencies

Real-time embedded,
strong interdependency

Availability In place, meets
need dates

Some compatibility
with need dates

Nonexistent, does not
meet need dates

Configuration
management

Fully controlled Some controls No controls

Experience High experience
ratio

Average experience
ratio

Low experience ratio

Facilities Little or no
modification

Some modifications,
existent

Major modifications,
nonexistent

Management
environment

Strong personnel
management
approach

Good personnel
management approach

Weak personnel
management approach

Mix Good mix of
software
disciplines

Some disciplines
inappropriately
represented

Some disciplines not
represented

Requirements
stability

Little or no change
to established
baseline

Some change
in baseline expected

Rapidly changing or
no baseline

Resource
constraints

Little or no
hardware-imposed
constraints

Some hardware-imposed
constraints

Significant hardware-
imposed constraints

Rights Compatible with
maintenance and
development
plans

Partial compatibility
with maintenance
and development
plans

Incompatible with
maintenance and
development plans

Size Small, noncomplex,
or easily
decomposed

Medium to moderate
complexity,
decomposable

Significant hardware-
imposed constraints

Technology Mature, existent,
in-house
experience

Existent, some in-house
experience

New or new application,
little experience

Source: Boehm 1991.

7228_C007.fm Page 227 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

228 What Every Engineer Should Know about Software Engineering

Are we planning to do the “profitable things” first?
Who is responsible for failure or success?
How can we be sure the plan is working during the project or earlier?
Is it “no cure, no pay” in a contract? Why not?

He offers other advice that reflects the healthy skepticism that the project
manager needs to have:

• Re-think the deadline given — is it for real?
• Re-think the solution — is it incompatible with the deadline?
• What is the requestor’s real need/point of view?
• Don’t blindly accept “expert” opinions.
• Determine which components really must be delivered at the dead-

line [Gilb 2006].

How does prototyping mitigate risk?

Prototyping gives users a feel for how well the design approach works and
increases communication between those who write requirements and the
developers throughout the requirements specification and design process.
Prototyping can be used to exercise novel hardware that may accompany
an embedded system. Prototyping can also detect problems and identify
deficiencies early in the life cycle, where changes are more easily and inex-
pensively made.

Are there risks to software prototyping?

Indeed, there are. For example, a prototype may not provide good information
about timing characteristics and real-time performance, which lulls the design-
ers into a false sense of security. Often the pressures of bringing a product to
market lead to a temptation to carry over portions of the prototype into the
final system. Therefore, use throwaway prototypes as much as possible.

Are there other ways to discover risks so that they can mitigated?

Yes. The best way is to ask experts who have worked on similar projects.
There really is no substitute for experience.

7.8 Further Reading

Beck, K. et al., The Agile Manifesto, http://agilemanifesto.org/principles.html, accessed
October 1, 2006.

Boehm, B., Software Engineering Economics, Prentice-Hall, Englewood Cliffs, NJ, 1981.

7228_C007.fm Page 228 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

http://agilemanifesto.org/principles.html

Managing Software Projects and Software Engineers 229

Boehm, B.W., Software Risk Management, IEEE Computer Society Press, Los Alamitos,
CA, 1989.

Boehm, B. and Turner, R., Balancing Agility and Discipline: A Guide to the Perplexed,
Addison-Wesley, Boston, MA, 2003.

Bramson, R., Coping with Difficult People, Dell Paperbacks, New York, 1988.
Brooks, F.P., The Mythical Man Month, 20th Anniversary Edition, Addison-Wesley, Boston,

MA, 1995.
Cohen, C., Birkin, S., Garfield, M., and Webb, H., Managing conflict in software

testing, Commun. ACM, 47(1), 76–81, 2004.
Covey, S.R., Principle-Centered Leadership, Simon & Schuster, New York, 1991.
Gilb, T., Principles of risk management,http://www.gilb.com/Download/Risk.pdf,

accessed August 30, 2006.
IEEE 1490-1998 IEEE Guide — Adoption of PMI Standard — A Guide to the Project

Management Body of Knowledge IEEE Standards, Piscataway, NJ, 1998.
Jones, C., Patterns of Software Systems Failure and Success, International Thomson

Computer Press, Boston MA, 1996.
Laplante, P.A., Software Engineering for Image Processing Systems, CRC Press, Boca

Raton, FL, 2003.
Laplante, P.A. and Neill, C.J., Antipatterns: Identification, Refactoring, and Management,

Auerbach Publications, Boca Raton, FL, 2006.
Morgan, J.N., A roadmap of financial measures for IT project ROI, IT Prof., Jan./Feb.,

52–57, 2005.
Raffo, D., Settle, J., and Harrison, W., Investigating Financial Measures for Planning

of Software IV&V, Portland State University Research Report #TR-99-05, Portland,
OR, 1999.

Reifer, D.J., Web development: estimating quick-to-market software, IEEE Software,
Nov./Dec., 57–64, 2000.

Reifer, D.J., Estimating Web development costs: there are differences, June 2002, available
at www.stsc.hill.af.mil/crosstalk/2002/06/reifer.html, accessed 1/3/07.

Reifer, D., How good are agile methods?, Software, July/Aug., 16–18, 2002b.
Stelzer, D. and Mellis, W., Success factors of organizational change in software process

improvement, Software Process — Improvement and Practice, 4, 227–250, 1998.
Thayer, R.H., Software system engineering: a tutorial, Computer, 35(4)68–73, 2002.

7228_C007.fm Page 229 Tuesday, March 20, 2007 6:21 PM

© 2007 by Taylor & Francis Group, LLC

http://www.gilb.com/community/tiki-view_blog.php?blogId=2
http://www.stsc.hill.af.mil/crosstalk/2002/06/reifer.html

231

8

The Future of Software Engineering

Outline

• Open source
• Outsourcing and offshoring
• Globally distributed software development

8.1 Introduction

I would like to close this text with a discussion of recent changes in the software
industry with a particular view of how these changes affect software engineer-
ing. First, we look at the important commercial issue of open source software
(OSS) systems. Then we take up the often emotional issue of outsourcing* a
software project, particularly to other countries (offshoring). Finally, we look
at the very important issue of developing large software systems in multiple
locations with distributed software teams. The issues raised in this new
approach to software development are fascinating and complex.

8.2 Open Source

What is OSS?

OSS is software that is free use or free redistribution if the terms of the license
agreement are followed. Usually this means that any work derived from the
OSS can be redistributed only along with the source code and any derived
works must comply with the same license.

* Much of Section 8.3 is excerpted from “The Who, What, Where, Why, and When of IT Outsourc-
ing,” by Phillip A. Laplante, Pawan Singh, Sudi Bindiganavile, Tom Costello, and Mark Landon,
which appeared in

IT Professional,

January/February 2004, pp. 37–41. © 2004 IEEE, with permission.

7228_C008.fm Page 231 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

232

What Every Engineer Should Know about Software Engineering

OSS is the “opposite” of closed source software; that is, proprietary soft-
ware for which the source cannot be had without paying a fee or had at all.

Where did OSS come from?

In 1983, Richard Stallman started the GNU project (which is a recursive
acronym standing for GNU’s Not Unix) to create a Unix-like operating
system from free software. In 1991, Linus Torvalds created an operating
system called Linux while a graduate student at the University of Hels-
inki.* Along the way, the process and culture created by Stallman and
others, and carried on by Torvalds, formed the basis for the OSS movement
today.

What kinds of code can be found as open source?

There are many thousands of open source projects ranging from games to
programming languages, tools, and enterprise-level applications. Clones of
many well-known desktop and enterprise applications are also available in
open source. The different types of OSS projects are summarized in Table 8.1.

TABLE 8.1

Various Kinds of OSS Projects

Type Objective
Control

Style
Community

Structure
Major

Problems Examples

Exploration-
oriented

Sharing
innovation
and
knowledge

Cathedral-like
Central

control

Project leader
Many readers

Subject to split GNU systems
JUN
Perl

Utility-
oriented

Satisfying an
individual
need

Bazaar-like
Decentralized

control

Many peripheral
developers

Peer support to
passive users

Difficult to
choose the
right program

Linux system
(excluding the
kernel =
exploration-
oriented)

Service-
oriented

Providing
stable
services

Council-like
Central

control

Core members
instead of a
project leader

Many passive
users that
develop systems
for end users

Less innovation Apache
PostgreSQL

Source:

Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and Ye, Y., Evolution patterns
of open-source software systems and communities,

Proc. Intl. Workshop on Principles of Software
Evolution

, ACM Press, New York, May 2002.

* Linux continues to be an important operating system found on many desktops today and Tor-
valds continues to direct the development of Linux. Other individuals, groups, and companies
combine other components with Linux and redistribute it.

7228_C008.fm Page 232 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

233

Some of the best-known projects are:

• Linux operating system
• Firefox Web browser
• Apache Web server
• GCC, Gnu C compiler

For the software engineer, there are many scripting languages like Perl,
Python, PHP, and Ruby available in open source. Other useful developer tools
include Ant and Maven for building applications; Hibernate, which acts as an
object-oriented persistence layer for databases; XUnit for testing; CVS and
SubVersion for source code control; and Eclipse or NetBeans as integrated
development environments. I have discussed many of these tools in Chapter 5.

The software engineer may also want to use the open source Struts, which
provides a framework in which an application can be built quickly using
the model-view-controller architecture, and Swing, which provides a layered
structure for managing business objects.

What is the value proposition for OSS?

The benefits of using OSS are clear — access to a large amount of sophisti-
cated and useful code for free or nearly free, and for those applications with
the most robust communities, it can be expected that the code will be main-
tained for many years.

OSS advocates also claim that OSS has fewer defects than closed source
code. They quote Eric Raymond [1999] in this regard: “given enough eye-
balls, all bugs are shallow.” Of course, it is not true that OSS is error-free;
some is quite buggy. But the research is still wide open on whether open
source code is uniformly better, or worse, than closed source code. The truth
is, it probably depends on the project.

What is the current state of OSS adoption?

OSS is being adopted more readily in Europe and South America than it is
in the U.S. However, OSS adoption is picking up speed in the U.S.

OSS is probably already in your environment. But there is a great deal of
misinformation causing delays in adoption and mistrust in some organiza-
tions. Therefore, in many situations, the opportunities and benefits may be
under-realized or unrealized.

Who contributes to OSS systems?

Many people contribute code to open source repositories (or act as testers
and beta users) for many different reasons. Individuals get involved to do
something “important” or to be part of a community. Companies allow their
employees to contribute code because the code has some benefit to the
company. Others participate simply for fun or self-interest.

7228_C008.fm Page 233 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

234

What Every Engineer Should Know about Software Engineering

What different kinds of licenses are there?

The OSS licenses, and the community of OSS engineers, seek to preserve the
integrity of all authors’ work, not to discriminate against any persons,
groups, or fields of endeavor.

There are roughly 100 types of licenses currently in use claiming to be
open source variants. The Open Source Initiative (OSI) has approved 58
license types as being compliant with their stated criteria/goals.

But there are four “baseline” licenses originating from the late 1990s:

• General Public License (GNU GPL)
• GNU Lesser General Public License (LGPL)
• BSD License
• MIT License

I won’t go into the differences between these licenses, however, as some of the
differences are quite subtle and have important legal implications. Much more
information on OSS licenses can be found at www.opensource.org/licenses/.

Where can I find OSSe projects?

OSS projects can be found in any number of open source repositories, the
most popular of which is SourceForge (www.sourceforge.com). At this writ-
ing, there are more than 140,000 OSS projects in SourceForge.

Do companies really use OSS?

Most companies have some OSS in play, even if they decry its use. Many
“open source forbidden” enterprises run Apache, use some of the open
languages, or take advantage of open source Java libraries.

What are the characteristics of the OSS development model?

Characterization of the OSS development model is based on a model pro-
posed by Eric Raymond [1999]. Raymond contrasts the traditional software
development of a few people planning a cathedral in splendid isolation with
the new collaborative “bazaar”* form of OSS development. OSS systems co-
evolve with their developer communities, though the usual team critical
mass of 5 to 15 core developers is needed to sustain a viable system.

What is software evolution?

Seminal work by Belady and Lehman [1976] in the 1970s involved studying
20 releases of the OS/360 operating system software. This was perhaps the
first empirical study to focus on the dynamic behavior of a relatively large
and mature 12-year-old system.

* Bazaar is a large number of developers coming together without monetary compensation to
cooperate under a model of rigorous peer review and take advantage of parallel debugging that
leads to innovation and rapid advancement in developing and evolving SW products.

7228_C008.fm Page 234 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

http://www.opensource.org/licenses
http://web.sourceforge.com/

The Future of Software Engineering

235

Belady and Lehman made a number of observations about the size and
complexity of growth, which led them to postulate eight laws of software
evolution dynamics (Table 8.2). Lehman’s laws have important implica-
tions in both open and closed source development. For example, they might
help explain why long-lived projects tend to follow the bathtub curve over
time.

For example, a great deal of open source systems development takes the
form of burst evolutions with periods of intensive rewrite. According to
Lehman’s Laws, the mean growth rate should be expected to decrease over
time. However, larger OSS projects, such as the Linux kernel, have been
shown to sustain super-linear growth [Godfrey and Tu 2000].

How does software requirements engineering occur in OSS?

Software requirements for OSS usually take the form of threaded messages
and Web site discussions. Requirements engineering is closely tied to the
interests of the OSS developer community [Scacchi 2004].

TABLE 8.2

Lehman’s Laws

No. Brief Name Lehman’s Law

I
1974

Continuing Change Software must be continually adapted or else
progressively less satisfactory in use.

II
1974

Increasing
Complexity

As software evolves, its complexity increases unless
work is done to maintain or reduce it.

III
1974

Self-Regulation Global software evolution processes are self-
regulating.

IV
1978

Conservation of
Organizational
Stability

Unless feedback mechanisms are appropriately
adjusted, the average effective global activity rate in
an evolving software system tends to remain
constant over product lifetime.

V
1978

Conservation of
Familiarity

Generally, the incremental growth and long-term
growth rate of software systems tend to decline.

VI
1991

Continuing Growth The functional capability of software must continually
increase to maintain user satisfaction over the system
lifetime.

VII
1996

Declining Quality The quality of software will decline unless it is
rigorously adapted to accommodate changes in the
operational environment.

VIII
1996

Feedback System
(recognized 1971,
formulated 1996)

Software evolution processes are multilevel,
multiloop, multiagent feedback systems.

Source

: Lehman, M.M., Perry, D.E., Ramil, J.F., Turski, W.M., and Wernick, P.D.,

Metrics and laws

of software evolution

—

the nineties view,

Proc. Metrics ’97

, IEEE–CS, Albuquerque, NM,
November 5–7, 1997, pp. 20–32.

7228_C008.fm Page 235 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

236

What Every Engineer Should Know about Software Engineering

How do the software design and build processes take place in open
source systems?

OSS code contributors (called committers) are often end users of the software.
These committers usually employ versions of open source development tools
such as CVS to empower a process of system build and incremental release
review. Other members of the community use open source bug reporting
tools (for example, Bugzilla) to dynamically debug the code and propose
new features. Concurrent versions of systems play an essential role for coor-
dination of decentralized code.

Software features are added evolutionary redevelopment, reinvention, and
revitalization. The community of developers for each open source project
generally experiences a high degree of code sharing, review, and modification,
and redistributing concepts and techniques through minor improvements and
mutations across many releases with short life cycles

[Scacchi 2004].

How are OSS projects managed?

OSS project management consists of an organized interlinked layered mer-
itocracy. This configuration is a hierarchical organizational form that central-
izes and concentrates certain kinds of authority, trust, and respect for
experience and accomplishment within the team. Such an organization is a
highly adaptive but loosely coupled virtual enterprise [Scacchi 2004].

Are there downsides to using OSS?

Because of the dynamic nature of OSS, code versions and patches need to
be carefully managed for any software that is adopted in the enterprise.
There are companies, however, that manage these artifacts and provide
“certified solution stacks” (collections of interoperable OSS) for a fee. Unless
you contract such a company, however, the maintenance and security issues
associated with using OSS applications could become a nightmare.

As far as using OSS in an end product, the licensing issues need to be well
understood and managed. If they are not well understood, then the company
may be at risk for legal troubles.

There is one other downside. Aside from the major OSS applications,
which are highly sophisticated and developed, many of the software projects
in open source repositories contain many bugs or lack important features
because they are in various stages of maturity with developers of varying
skill and motivation levels.

Despite the downsides, OSS or a blend of open source and new should be
considered as part of any new software development initiative.

8.2.1 Software Archeology

What is software archeology?

Software archeology is a method of reconstructing the evolution of soft-
ware using software trails. A software trail refers to any information

7228_C008.fm Page 236 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

237

created by developers of software, either explicitly or implicitly. Explicit
trails include messages, code comments, and release notes. Implicit trails
include information that can be extracted from the activity of software
development itself such as release frequency, file size, file types, and
number of LOC. This activity can be likened to an archeologist studying
the remains of an ancient civilization in order to understand its history
[German 2004].

The study of software evolution has been enabled by the advent of OSS.
With OSS, researchers are able to access the software trails of thousands of
projects. In contrast, proprietary, closed source projects are unlikely candi-
dates for study because organizations have a clear business case for investing
in such activity and are not likely to release their trails, even if divorced from
the source code.

What is software archeology used for?

Aside from purely academic reasons for studying OSS, software archeology
is important to those software engineering groups that are considering
adopting or becoming involved in an open source project. Potential adopters
can use software archeology to study the quality of the candidate application
(for example, how closely it follows Lehman’s Laws). Potential participants
in the project can use archeological techniques to study the history and
context of the software and community.

Software archeological techniques can also be used to study closed source
software if access to the relevant artifacts is available.

Can you give an example of an archeological study?

An example is a nice way to summarize much of what I have discussed
throughout this text.* The subject of this study is jEdit, which was designed
to be a text editor to aid in software development. As such, it provides
features that help in writing, analyzing, and debugging code.

One of the easiest software trails to uncover is the development over time
of versions of jEdit. This software trail was found at the SourceForge Web site
(http://sourceforge.net/projects/jedit) where jEdit development is cur-
rently being hosted. This Web site provides a list of major releases of jEdit
available for download along with the dates they occurred. The history of
the major releases of jEdit is shown in Figure 8.1.

Another software trail that provided information about the development
of jEdit is the developer e-mail archives found at SourceForge. These e-mails
contained developer discussions that chronicled the developer activity dur-
ing the evolution of jEdit. A chart depicting the email activity that occurred in
the developer mailing list from December 1999 to April 2006 is in Figure 8.2.
This e-mail traffic tells a story about occurrences within the developer

* Thanks to Ken Sassa for conducting and writing this archeological study.

7228_C008.fm Page 237 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

http://sourceforge.net/projects/jedit

238

What Every Engineer Should Know about Software Engineering

FIGURE 8.1

Major releases of jEdit.

FIGURE 8.2

Developer mailing list activity (December 1999 to December 2000) for jEdit.

2.3

2.6

3.2

2.4 2.5

3.0
3.1

4.2

4.0
4.1

2

2.5

3

3.5

4

4.5
M

ar
-0

0

M
ay

-0
0

Ju
l-0

0

S
ep

-0
0

N
ov

-0
0

Ja
n-

01

M
ar

-0
1

M
ay

-0
1

Ju
l-0

1

S
ep

-0
1

N
ov

-0
1

Ja
n-

02

M
ar

-0
2

M
ay

-0
2

Ju
l-0

2

S
ep

-0
2

N
ov

-0
2

Ja
n-

03

M
ar

-0
3

M
ay

-0
3

Ju
l-0

3

S
ep

-0
3

N
ov

-0
3

Ja
n-

04

M
ar

-0
4

M
ay

-0
4

Ju
l-0

4

V
er

si
o

n
 N

u
m

b
er

0

50

100

150

200

250

300

350

400

450

500

N
u

m
b

er
 o

f
E

-m
ai

ls

D
ec

-9
9

Ja
n-

00

F
eb

-0
0

M
ar

-0
0

A
pr

-0
0

M
ay

-0
0

Ju
n-

00

Ju
l-0

0

A
ug

-0
0

S
ep

-0
0

O
ct

-0
0

N
ov

-0
0

D
ec

-0
0

7228_C008.fm Page 238 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

239

community, a story that is beyond the scope of this text but may be of interest
to jEdit users.

A further software trail that gave insight into the evolution of jEdit was the
number of opened and closed bugs that were reported. Tracking the number
of bugs opened over time proved quite easy to do because the open date was
given as a column heading in the bug tracking system for jEdit at SourceForge.
Tracking the number of closed bugs proved a bit more difficult because the
closed date was not easily accessible. Rather, the closed date was buried in
each individual bug report. Thus, getting the closed date required opening
each bug report, getting the closed date for the bug, and putting a mark in
the month and year for that closed bug. Then the number of marks was
counted for each individual month and this number represented the bugs
closed for that month. This was done for all the bugs from July 2000 through
December 2002. In this manner, the bugs closed vs. bugs opened could be
tracked. The result of this process is shown in Figure 8.3.

Finally, we can look at the evolution of jEdit by focusing on the develop-
ment of four versions of jEdit. The versions chosen for this examination are
four major jEdit releases: 3.0, 3.2, 4.0, and 4.2. The development of these four
versions can be tracked from five different perspectives, which include devel-
opment in terms of LOC, graph cycles, cyclomatic complexity, cohesion and
coupling, and code smells. The software trails that are used to analyze the
development of these four jEdit versions are the source code that is available
at SourceForge for these jEdit releases.

In order to analyze the source code and study its development from the
varied perspectives, a source code visualization and analysis tool called

FIGURE 8.3

Number of bugs reported over time in SourceForge for jEdit from June 2000 through
December 2002.

0

20

40

60

80

100

120

140

160

Ju
n-

00

Ju
l-0

0

A
ug

-0
0

S
ep

-0
0

O
ct

-0
0

N
ov

-0
0

D
ec

-0
0

Ja
n-

01

F
eb

-0
1

M
ar

-0
1

A
pr

-0
1

M
ay

-0
1

Ju
n-

01

Ju
l-0

1
A

ug
-0

1

S
ep

-0
1

O
ct

-0
1

N
ov

-0
1

D
ec

-0
1

Ja
n-

02

F
eb

-0
2

M
ar

-0
2

A
pr

-0
2

M
ay

-0
2

Ju
n-

02

Ju
l-0

2
A

ug
-0

2

S
ep

-0
2

O
ct

-0
2

N
ov

-0
2

D
ec

-0
2

N
u

m
b

er
 o

f
B

u
g

s

7228_C008.fm Page 239 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

240

What Every Engineer Should Know about Software Engineering

FIGURE 8.4

jEdit 3.0 higraph.

FIGURE 8.5

jEdit 3.2 higraph.

org

30
18 42

2,511

bsh com gnu installer

java javax

1,748

399
266

5,595

72
417

9 162

org

43
59 42

3,029

bsh com gnu installer

java javax

2,095

398
7,043

72
392

130336

7228_C008.fm Page 240 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

241

Headway reView was employed. This tool has the capability to count lines
of code; find graph cycles; measure cyclomatic complexity, cohesion, and
coupling; and search the code for code smells. Analysis begins with ver-
sion 3.0 because no source code was available for versions earlier than
3.0. Such source code is needed in order for Headway re View to analyze
the code. SourceForge does have installation JAR files for versions prior
to 3.0, but no source code for them that can be compiled and fed to
Headway reView.

Before looking at the development of the four versions in detail, it is
helpful to look at an overview of them first. Such an overview is found in
the higraphs (a visualization of the software package diagrams) that Head-
way reView generated for jEdit which are presented in Figure 8.4 through
Figure 8.7.

In the figures, the names of the packages are labeled on the folder icon.
The five folders that make up the structure of jEdit are

 bsh

,

com

,

gnu

,

org

,

FIGURE 8.6

jEdit 4.0 higraph.

com

org

bsh installergnu

java javax

1
66

44
63

398

8,524

2,130
391

342

72
133

3,280

7228_C008.fm Page 241 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

242

What Every Engineer Should Know about Software Engineering

and

installer

. The number on the edges represents the number of times
the subordinate package is referenced. More importantly, notice that in some
cases cycles developed in the structures; for example, between

com

 and

org

in Figure 8.6. Cycles are a violation of the Acyclic Dependency Principle and
indicate potential difficulties in program maintenance and understanding.

8.3 Outsourcing and Offshoring

What is outsourcing?

Outsourcing is the use of outside firms to perform activities that were pre-
viously performed internally. Classic examples include electrical component
manufacturing and perhaps the earliest form of information processing out-
sourcing — payroll processing.

FIGURE 8.7

jEdit 4.2 higraph.

com

org

bsh

installergnu

java javax

85
62

72

109

99

3,060

11,601

825
344

1

114

3,776

[I

1

398

7228_C008.fm Page 242 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

243

For the software engineering industry, outsourcing means subcontracting
some or all of the software development life-cycle processes. Companies can
outsource software requirements engineering, design, development, testing,
documentation, and even project management. Outsourcing can be done
domestically or to another country, as is increasingly common today. In the
latter case, it is called offshoring. Hiring a few consultants to serve as internal
members of a software engineering team, however, is not considered out-
sourcing.

Why do companies outsource?

Outsourcing is generally done for cost savings, to achieve a better focus on
the core business, or because certain software engineering functions are
considered to be inefficiently or ineffectively handled internally. From an
economic standpoint, if any software engineering activity can be considered
a commodity, then there is little justification for performing that activity
internally. In these cases, a focused vendor should be able to provide the
service at a higher level of quality, lower cost, or both. In other words,
outsourcing takes advantage of the economies of scale of another business
that specializes in that domain.

Which organizations should outsource?

Perhaps it is easier to answer the question, “Which organizations should not
outsource?” There is a myth that outsourcing is cheap. It is not. Even in
India, where the perceived difference in relative economy would suggest a
lower labor cost, the cost of a skilled developer is approximately $40 per
hour at this writing. In most cases, vendors will only take on large projects —
making outsourcing less desirable for small software projects.

But in all cases, a strong communication infrastructure is needed to make
outsourcing work. The infrastructure costs could include significant domes-
tic and international travel, telecommunications costs, providing specialized
equipment to the vendor, and so on. Therefore, it is easy to conclude that
outsourcing is generally not for very small organizations.

To whom should you outsource?

In answering this question, consider that you are transferring knowledge
when you outsource. This knowledge can be valuable. It is possible that a
vendor can cut-and-run after the outsourcing project is completed, and non-
disclosure or noncompete agreements are more difficult to prosecute if the
outsourced vendor is not based in the U.S. Therefore, the vendor must be a
trusted one.

In choosing a vendor, you must also be very careful about protecting your
brand through accountability for the actions of the vendor and by transfer-
ence of the reputation of the vendor. Remember that the vendors to whom
you outsource should view your company as a partner, not as a client to be
milked.

7228_C008.fm Page 243 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

244

What Every Engineer Should Know about Software Engineering

What are some issues involved in offshoring?

Offshoring is becoming increasingly popular. Australia, India, Ireland, New
Zealand, the former Soviet Bloc countries (such as Bulgaria and Russia),
Brazil, Argentina, and Venezuela, to name just a few, have become favorite
destinations for American projects.

When dealing with vendors overseas, investigate a number of issues such
as competence, reliability, and quality. It could be disastrous to discover that
an outsourced vendor has provided inferior software components. For this
reason, many companies insist on indications of quality — for example, that
the vendor is at CMM Level 4 and higher — before even considering a
relationship.

Pay attention to the legal organization of the potential vendor. For exam-
ple, a vendor that is organized as a subsidiary of another company can be
disconnected in the event of a lawsuit, making it difficult to obtain remedies
in the case of malpractice. Similarly, disputes with an overseas vendor might
be more difficult to resolve because of cultural differences and because legal
remedies are more complicated and costly to obtain.

Whether the outsourcing is domestic or foreign, the chemistry and culture
of the vendor and client have to mix.

Where in the enterprise should outsourcing be used?

A commonly held view on where to use outsourcing is one that is similar
to the economic notion that the market does not pay a company for diver-
sifying risk. Analogously, the market does not pay a company for doing
things outside its core business. A straightforward interpretation of this
statement is that any function of a business that is not part of its core is a
candidate for outsourcing.

Any software engineering function could be considered for outsourc-
ing; for example, requirements engineering, software architecture, soft-
ware design, code development, testing, documentation, and project
management

When should a company not outsource?

In cases where the benefit is low, there is no need to outsource. In cases
where the benefit is high and the function is not within the core business,
there is a strong incentive to outsource. However, when the function is
outside of core business but the potential outsourcing benefit is low or when
the potential outsourcing benefit is high but the function is within the core
business, it is probably not work the risk to outsource.

When should outsourcing be done and at what stage of the process?

You usually recognize the need to outsource when it is too late. Therefore,
the decision to outsource must be made early, and you must analyze the
cost–benefit ratio of waiting too long to decide.

7228_C008.fm Page 244 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

245

How do companies outsource?

There are several standard methodologies for outsourced software develop-
ment. For example, consider the three-tier model (Figure 8.8). Figure 8.8
depicts a recommended distribution of outsourced work in which 10% of
the work is held closely and performed onsite by the vendor’s staff under
close supervision. Another 20% of the effort is also done onsite by a combi-
nation of vendor and in-house staff under normal supervision. The remain-
ing 70% of the project is done entirely offsite by the vendor.

When outsourced work is performed offsite, it is critical that your own agent
is at the site of the outsourcing. A good rule of thumb is to have one of your
staff present for every 20 staff working offsite. The rule of 20 is based largely
on the incremental cost of housing an agent offshore to supervise the work.

Outsourcing can be a learning endeavor. It might seem rather mercenary
to bring in a vendor to learn from and then jettison, but this is a risk vendors
understand and factor into their margins.

Do you have any rules of thumb for outsourcing and offshoring?

The following best practices come to mind:

Whether the project is outsourced domestically or overseas, have your
own agent at the vendor’s site: 1 agent for every 20 persons out-
sourced.

Make sure that you understand the true cost structure of outsourcing
and offshoring. There may be many unaccounted for hidden costs.

When negotiating the contract and throughout the project life cycle,
carefully set expectations.

Have a quality management infrastructure in place.
In the case of overseas outsourcing, take into account language, culture,

and time differences.
Make sure up front that there is a detailed process of project definition

and specification development. This ensures that the project meth-
odology, scope, schedule, and deliverables are unambiguously de-
fined and understood by both parties.

FIGURE 8.8

A three-tier strategy for outsourcing.

10%

70%

20% Closely onsite

Loosely onsite

Offsite

7228_C008.fm Page 245 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

246

What Every Engineer Should Know about Software Engineering

Does outsourcing ever fail?

Many companies fail in the execution of strategic outsourcing. There are a
number of ways in which they can fail: organization culture mismatches,
morale damage due to layoffs, or outsourcing for the wrong reasons.

Outsourcing cannot absolve you of your responsibility. You can’t outsource
your problems.

8.4 Global Software Development

What is global software development?

Global software development (GSD) is software development in a multisite,
multicultural, and distributed context. In GSD, software development is
viewed as a geographically distributed network of workflows. A central team
at a single location typically designs requirements and high-level design.
But subsystems designed by the central team are developed by remote teams
at multiple different locations

What is the business case for GSD?

First, GSD can take advantage of lower development costs in other countries.
Moreover, if a limited trained workforce is available in a single location in
certain technologies, it may be found elsewhere. The offshoring aspect is
perhaps the most controversial because of the political risks of sending jobs
to other countries. However, this consideration is beyond the scope of this
book.

The time zone differences between teams, which could be considered as
a negative when it comes to trying to conduct teleconferences, can be an
advantage if a shift-based system facilitated by time-zone differences is
used. For example, if three teams are distributed in time zones that differ
by 8 hours, then one team can write code, the second team can debug,
integrate, and build an executable, and the third team can test the build.
This allows for single increments to be completed in 24 hours. Advances
in telecommunications infrastructure and special collaborative software
tools have made this kind of distributed development possible.

What software process can be used for GSD?

The answer to this question presents somewhat of a paradox. One would
think that whatever process is used that it should be lightweight to minimize
communication overhead and allow for easy measurement of progress based
on a working product rather than completed documents. It is probably
necessary that the process model itself be adaptable. Such criteria suggest
that an agile process model should be used.

7228_C008.fm Page 246 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

247

But agility seems counterintuitive in a distributed development envi-
ronment because agility requires close collaboration. Therefore, collocated
teams would be ideal. Similarly, more, not less, documentation would
seem to be needed to unambiguously communicate information to remote
teams.

Therefore, we likely need a process model that enjoys some features of the
traditional models and some features of agile methodologies.

It turns out that the standard UPM is a good place to start. Recall that the
UPM is iterative and incremental, use case driven, architecture centric, and
actively manages risks. We can map the traditional four phases of the UPM
into activities that have significant milestones for the GSD, namely:

Inception

: software vision is communicated

Elaboration

: software architecture is developed

Construction

: software is built

Transition

: product is released and tested

As with the UPM, these phases can be iterated.
Certain agile practices can be followed throughout the product develop-

ment life cycle. For example, short time iterations test first development,
continuous refactoring, pair programming and stand up meetings can all be
facilitated using Web casting, instant messaging, or even e-mail and tele-
phone. Other aspects such as collective code ownership and onsite customers
can be challenging. Most aspects of any agile development methodology
(e.g., XP or SCRUM), however, can be easily supported during the construc-
tion phase.

Due to the limitation of certain agile practices, to scale up to large distrib-
uted projects it becomes important to maintain comprehensive requirements
and design models. User stories and back-of-the-napkin design will not do.
Some of this burden can be alleviated by automating generation of some
documents such as an SRS and SDS using the UML model and acceptance
tests.

What are the challenges for GSD?

For any project to be successful, whether collocated or distributed, a
process framework needs to orchestrate communication, coordination, and
control effectively. For example, teams working on a given project need to
communicate with each other and their activities need to be synchronized
and controlled to enforce common goals, policies, standards, and quality
levels.

But when the teams working on a project are geographically distributed,
communication, coordination, and control become challenging. Distance
exacerbates the problem of clearly and unambiguously communicating infor-
mation between collaborating teams. This aspect becomes more complex if

7228_C008.fm Page 247 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

248

What Every Engineer Should Know about Software Engineering

teams are separated by several time zones. Distance also makes it difficult
to coordinate tasks within a distributed development environment. The dis-
tributed development environment makes it difficult to enforce common
goals, policies, standards, and quality levels among collaborating teams.

Another key aspect of successful projects is maintaining good team dynam-
ics. Team building can be challenging in distributed projects because members
may not know each other, language and culture may be different, and the
daily processes to be followed by members at different sites may vary.

How can these challenges be overcome?

One way to overcome the challenges of communication is by optimizing the
collaboration among the distributed teams. Collaboration can be optimized
by breaking a system into loosely coupled subsystems or components and
having each team work on a given subsystem or component independent
of each other.

Team management problems can be overcome by assigning project mem-
bers who straddle multiple teams. These individuals act as ambassadors or
liaisons between teams and help bridge the communication gap. These peo-
ple must be engaged early in the inception and elaboration phase as this
helps them to acquire the knowledge of the domain and gain an understand-
ing of the architecture. With the acquired knowledge, they can share the
architectural vision and help answer a majority of the architecture- and
domain-related questions from the development teams.

8.5 Further Reading

Belady, L.A. and Lehman, M.M., A model of large program development,

IBM Syst.
J.

, 15(1), 225–252, 1976.
Damian, D. and Moitra, D., Global software development: How far have we come?

IEEE Software

, 23(5), 17–19, 2006.
German, D., Using software trails to reconstruct the evolution of software,

J. Software
Mainten. Evol.: Res. Practice,

16(6), 367–384, 2004.
Godfrey, M. and Tu, Q., Evolution in open source software: A case study,

Proc. 2000
Intl. Conf. Software

Mainten. (ICSM 2000)

, San Jose, CA, October 2000.
Johnson, R.E. Reverse engineering and software archaeology,

 The DoD SoftwareTech
News

, 8(3), 4–8, October 2005.
Koru, A. and Tian, J., Comparing high-change modules and modules with the highest

measurement values in two large-scale open-source products,

IEEE Trans. Software
Eng.,

31(8), 625–642, 2005.
Laplante, P.A., Singh, P., Bindiganavile, S., Costello, T., and Landon, M., The who,

what, where, why, and when of IT outsourcing,

IT Prof., 6

(1) 37–41, 2004.

7228_C008.fm Page 248 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

The Future of Software Engineering

249

Lehman, M.M., Perry, D.E., Ramil, J.F., Turski, W.M., and Wernick, P.D.,

Metrics and
laws of software evolution — the nineties view,

Proc. Metrics ’97

,

IEEE–CS,
Albuquerque

,

NM

,

November 5–7, 1997,

pp. 20–32.
Nakakoji, K., Yamamoto, Y., Nishinaka, Y., Kishida, K., and Ye, Y., Evolution patterns

of open-source software systems and communities,

Proc. Intl. Workshop on
Principles of Software Evolution

, ACM Press, Los Alamitos, CA, May 2002.
Paulson, J.W., Succi, G., and Eberlein, A., An empirical study of open-source and

closed source software products,

IEEE Trans. Software Eng.,

30(4), 246–256, 2004.
Raymond, E. S.,

The Cathedral and the Bazaar

, O’Reilly, Cambridge, MA, 1999.
Sangwan, R., Neill, C., Laplante, P., Paulish, D., and Kuhn, W., A framework for agile

development in outsourced environments,

WSEAS Trans. Comput.

, 3(5),
1530–1537, 2004.

Sangwan, R., Bass, M., Mullick, N., and Paulish, D.,

Managing Global Software Devel-
opment

, Auerbach Publications, Boca Raton, FL, 2006.
Scacchi, W., Free and open source development practices in the game community,

IEEE Software

, 21(1), 59–66, 2004.
Schneider, A. and Windle, P., Software archaeology

, The DoD SoftwareTech News

, 8(3),
9–13, October 2005.

7228_C008.fm Page 249 Tuesday, March 20, 2007 6:24 PM

© 2007 by Taylor & Francis Group, LLC

251

Appendix A

Software Requirements for a Wastewater
Pumping Station Wet Well Control System

(rev. 01.01.00)

Christopher M. Garrell

A.1 Introduction

A wastewater pumping station is a component of the sanitary sewage col-
lection system that transfers domestic sewage to a wastewater treatment
facility for processing. A typical pumping station includes three components:
(1) a sewage grinder, (2) a wet well, and (3) a valve vault (Figure A.1).
Unprocessed sewage enters the sewage grinder unit so that solids suspended
in the liquid can be reduced in size by a central cutting stack. The processed
liquid then proceeds to the wet well, which serves as a reservoir for sub-
mersible pumps. These pumps then add the required energy/head to the
liquid so that it can be conveyed to a wastewater treatment facility for
primary and secondary treatment. The control system specification that fol-
lows describes the operation of the wet well.

A.1.1 Purpose

This specification describes the software design requirements for the wet
well control system of a wastewater pumping station. It is intended that this
specification provide the basis of the software development process and be
used as preliminary documentation for end users.

A.1.2 Scope

The software system described in this specification is part of a control
system for the wet well of a wastewater pumping station. The control

7228_A001.fm Page 251 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

252

What Every Engineer Should Know about Software Engineering

system supports an array of sensors and switches that monitor and control
the operation of the wet well. The design of the wet well control system shall
provide for the safety and protection of pumping station operators, mainte-
nance personnel, and the public from hazards that may result from its oper-
ation. The control system shall be responsible for the following operations:

a. Monitoring and reporting the level of liquid in the wet well.
b. Monitoring and reporting the level of hazardous methane gas.
c. Monitoring and reporting the state of each pump and noting whether

it is currently running or not.
d. Activating a visual and audible alarm when a hazardous condition

exists.
e. Switching each submersible pump on or off in a timely fashion de-

pending on the level of liquid within the wet well.
f. Switching ventilation fans on or off in a timely fashion depending on

the concentration of hazardous gas within the wet well.

Any requirements that are incomplete are annotated with “TBD” and will
be completed in a later revision of this specification.

A.1.3 Definitions, Acronyms, and Abbreviations

The following is a list of definitions for terms used in this document.

Audible alarm —

The horn that sounds when an alarm condition occurs.

Controller —

Equipment or a program within a control system that re-
sponds to changes in a measured value by initiating an action to
affect that value

DEP —

Department of Environmental Protection.

Detention basin —

A storage site, such as a small, unregulated reservoir,
which delays the conveyance of wastewater.

FIGURE A.1

Typical wastewater pumping station process.

Sewage
Grinder Unit Wet Well Valve Vault

7228_A001.fm Page 252 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements for a Wastewater Pumping Station

253

Effluent —

Any material that flows outward from something; an example
is wastewater from treatment plants.

EPA —

Environmental Protection Agency.

Influent —

Any material that flows inward from something; an example
is wastewater into treatment plants.

Imminent threat —

A situation with the potential to immediately and
adversely affect or treaten public health or safety.

Manhole —

Hole, with removable cover, through which a person can
enter into a sewer, conduit, or tunnel to repair or inspect.

Methane —

A gas formed naturally by the decomposition of organic
matter.

Overflow —

An occurrence by which a surplus of liquid exceeds the limit
or capacity of the well.

Pre-cast —

A concrete unit that is cast and cured in an area other than its
final position or place.

Pump —

A mechanical device that transports fluid by pressure or
suction.

Remote override —

A software interface that allows remote administra-
tive control of the pumping control system.

Seal —

A device mounted in the pump housing and/or on the pump
haft, to prevent leakage of liquid from the pump.

Security —

Means used to protect against unauthorized access or dan-
gerous conditions. A resultant visual and/or audible alarm is then
triggered.

Sensor —

The part of a measuring instrument that responds directly to
changes in the environment.

Sewage grinder —

A mechanism that captures, grinds, and removes solids,
ensuring a uniform particle size to protect pumps from clogging.

Submersible pump —

A pump having a sealed motor that is submerged
in the fluid to be pumped.

Thermal overload —

A state in which measured temperatures have ex-
ceeded a maximum allowable design value.

Valve —

A mechanical device for controlling the flow of a fluid.

Ventilation —

The process of supplying or removing air by natural or
mechanical means to or from a space.

Voltage —

Electrical potential or electromotive force expressed in volts.

Visible alarm —

The strobe light that is enabled when an alarm condition
occurs.

Wet well —

A tank or separate compartment following the sewage grinder
that serves as a reservoir for the submersible pump.

7228_A001.fm Page 253 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

254

What Every Engineer Should Know about Software Engineering

A.2 Overall Description

A.2.1 Wet Well Overview

The wet well for which this specification is intended is shown in Figure A.2.
The characteristics of the wet well described in this specification are as
follows.

a. The wet well reservoir contains two submersible pumps sized to
provide a fixed capacity.

b. Hazardous concentrations of flammable gases and vapors can exist
in the wet well.

c. It has a ventilation fan that is oriented to direct fresh air into the wet
well rather than just remove exhaust from the well.

d. An alarm and indicator light are located outside so that operators
can determine if a hazardous condition exists. Hazardous conditions
include, but are not necessarily limited to, a high gas level, a high
water level, and pump malfunction.

e. A float switch is used to determine the depth of liquid currently in
the wet well.

(a)

FIGURE A.2

Typical wet well. (a) Three-dimensional view. (b) Top view schematic. (c) Side sectional view.

7228_A001.fm Page 254 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements for a Wastewater Pumping Station

255

(b)

(c)

FIGURE A.2

(Continued).

Influent Pipe

Pre-cast Wet Well

Exhaust Fan

Exhaust Vent Pipe

Effluent Pipe (TYP)

Submersible Pump (TYP)

Access Door

Float Switch

High Water Alarm

Lag Pump On

Influent Pipe

Lead Pump On

Pump Off

Pre-cast Wet Well

Submersible Pump (TYP)

Effluent Pipe

Exhaust Fan

Exhaust Vent Pipe

7228_A001.fm Page 255 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

256

What Every Engineer Should Know about Software Engineering

A.2.2 Product Perspective

A.2.2.1 System Interfaces

The system interfaces are described below.

A.2.2.2 User Interfaces

Pumping Station Operator

The pumping station operator uses the control display panel and alarm
display panel to control and observe the operation of the submersible pumps
and wet well environmental conditions. Manipulation of parameters and the
state of the submersible pumps is available when the system is running in
manual mode.

Maintenance Personnel

The maintenance personnel use the control display panel and alarm display
panel to observe the current parameters and state of the submersible pumps
and wet well and perform maintenance.

A.2.2.3 Hardware Interfaces

The wet well control system hardware interfaces are summarized in Figure A.3.
The major hardware components are summarized in Table A.1.

Moisture Sensor

Each submersible pump shall be equipped with a moisture sensor that
detects the occurrence of an external pump seal failure. Should a seal failure
be detected, the pump shall be turned off and alarm state set.

Float Switch

The float switch is a mercury switch used to determine the depth of liquid
within the wet well and set the on or off state for each pump. Three switch
states have been identified as lead pump on/off, lag pump on/off, and high
water alarm.

Access Door Sensor

The access door sensor is used to determine the state, either opened or closed,
of the wet well access door.

A.2.2.4 Software Interfaces

Pump Control Unit

The wet well control system interfaces with the pump control system, pro-
viding a pump station operator and maintenance personnel with the ability
to observe the operation of the submersible pumps and wet well environ-
mental conditions. The pump control unit provides the additional capability

7228_A001.fm Page 256 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements for a Wastewater Pumping Station

257

of manipulation of parameters and states of the submersible pumps when
the system is running in manual mode.

Control Display Panel

The control display panel interfaces with the pump control unit, providing
visual information relating to the operation of the submersible pumps and
environmental conditions within the wet well.

FIGURE A.3

Wet

well control system

 hardware.

Alarm Display Panel Control Display Panel

Pump Control Unit
Ventilation Fan Switch

Methane Sensor
Float Switch

P
um

p
2

S
w

itc
h

P
um

p
1

S
w

itc
h M

oisture S
ensor

Tem
perature S

ensor

Pump 1

Pump 2

Influent
Pipe

Effluent
Pipe

Wet Well Pump Off

Lead Pump On

Lag Pump On

High Water Alarm

Liquid Level

7228_A001.fm Page 257 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

258

What Every Engineer Should Know about Software Engineering

Alarm Display Panel

The alarm display panel interfaces with the pump control unit, providing
visual and audible information relating to the operation of the submersible
pumps and the environmental conditions within the wet well.

A.2.2.5 Operations

The wet well control system shall provide the following operations:

a. Automated operation
b. Local manual override operation
c. Local observational operation

A.2.3 Product Functions

The wet well control system shall provide the following functionality.

a. Start the pump motors to prevent the wet well from running over
and stop the pump motors before the wet well runs dry.

b. Keep track of whether or not each motor is running.
c. Monitor the pumping site for unauthorized entry or trespass.
d. Monitor the environmental conditions within the wet well.
e. Monitor the physical condition of each pump for the existence of

moisture and excessive temperatures.
f. Display real-time and historical operational parameters.
g. Provide an alarm feature.

TABLE A.1

Major Wet Well Control System Hardware Components

Item Description Quantity

1 Pre-cast concrete wet well 1
2 Access door 1
3 Ventilation pipe 2
4 Axial flow fan 2
4.1 Fan switch 2
5 Submersible pump 2
6 Pump control unit 1
6.1 Temperature sensor 2
6.2 Moisture sensor 2
6.3 Float switch 1
6.4 Access door sensor 1
7 Alarm panel 1
7.1 Alarm lamp 1
7.2 Alarm buzzer 1
8 Control panel 1
8.1 Panel lamps 6 (3 per pump)

7228_A001.fm Page 258 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements for a Wastewater Pumping Station

259

h. Provide a manual override of the site.
i. Provide automated operation of the site.
j. Equalize the run time between the pumps.

A.2.4 User Characteristics

Pumping Station Operator —

Authorized personnel trained with the
usage of the wet well control system when it is in manual mode.

Maintenance Personnel —

Authorized personnel trained with the usage
of the wet well control system.

A.2.5 Constraints

System constraints include the following items:

a. Regulatory agencies including but not limited to the EPA and DEP.
b. Hardware limitations.
c. Interfaces to other applications.
d. Security considerations.
e. Safety considerations.

A.2.6 Assumptions and Dependencies

Assumptions and dependencies for the wet well control system include the
following items:

a. The operation of the sewage grinder unit is within expected tolerances
and constraints at all times.

b. A power backup system has been proved as a separate system exter-
nal to the wet well control system.

c. The operation of the controls within the valve vault is within expected
tolerances at all times.

A.3 Specific Requirements

The following section defines the basic functionality of the wet well control
system.

A.3.1 External Interface Requirements

See Figure A.4 for the use case diagram.

7228_A001.fm Page 259 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

260

What Every Engineer Should Know about Software Engineering

A.3.2 Classes/Objects

A.3.2.1 Pump Control Unit

The pump control unit shall start the submersible pump motors to pre-
vent the wet well from running over and stop the pump motors before
the wet well runs dry within 5 seconds. LeadDepth represents the
depth of liquid when the first pump should be turned on. LagDepth
represents the depth of liquid when the second pump should be
turned on. HighDepth represents the depth of liquid that the wet well
should be kept below. Should the depth of liquid be equal to or exceed
HighDepth, the alarm state is set. AlarmState represents a Boolean
quantity such that at any time t, the audible and visual alarms are
enabled. Depth represents the amount of liquid in the wet well at any
time t in units of length. Pumping represents a Boolean quantity such
that at any time t, the pumps are either running or not.

FIGURE A.4

Use case diagram.

Wet Well Control System

Pumping Station Operator

Maintenance Personnel

<<uses>>

<<uses>>

<<uses>>

<<uses>> Manual Override
Control

Manipulate
Parameters

Observe Parameters

Depth Time Length

Pumping Time Bool

HighDepth

:

:

→

→

>> >

≥ ⇒

LagDepth LeadDepth

Depth LagDepth Pumping

Deepth HighDepth AlarmState≥ ⇒

7228_A001.fm Page 260 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements for a Wastewater Pumping Station

261

a. The pump control unit shall start the ventilation fans in the wet well
to prevent the introduction of methane into the wet well within 5
seconds of detecting a high methane level.

b. The pump control unit shall keep track of whether or not each motor
is running.

c. The pump control unit shall keep track of whether or not each motor
is available to run.

d. If a pump motor is not available to run and a request has been made
for the pump motor to start, an alternative motor should be started
in its place.

e. An alarm state shall be set when the high water level is reached.
f. An alarm state shall be set when the high methane level is reached.
g. The starting and stopping of the pump motors shall be done in

manner that equalizes the run times on the motors.
h. Level switches shall be used to indicate when pump motors should

be started.
i. The pump control unit shall be notified if excess moisture is detected

in a pump motor.
j. The pump control unit shall be notified if a pump motor overheats

and shall shut down the overheated motor.
k. The pump control unit shall be responsible for monitoring the pump-

ing site.
l. The pump control unit shall be responsible for recording real-time

and historical operational parameters.
m. The pump control unit shall be responsible for providing an alarm

feature.
n. There shall be an automatic and manual mode for the pump control

unit. Each pumping station shall be in either automatic mode or
manual mode.

o. Monitor and detect prohibited entry to the wet well through the access
door by way of a broken electrical circuit. Both audible and visible
alarms are activated.

p. Monitor and detect occurrence of a pump motor seal leak. If a leak
has been detected, both an audible and visible alarm should be
activated within 5 seconds.

A.3.2.2 Control Display Panel

a. The control display panel shall have a digital depth of influent mea-
sured in feet.

b. Monitor and detect prohibited entry by way of a broken electrical
circuit. Both audible and visible alarms are activated.

7228_A001.fm Page 261 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

262

What Every Engineer Should Know about Software Engineering

c. The pump control unit shall be responsible for displaying real-time
and historical operational parameters.

d. Indicator lights shall be provided for pump running state.
e. Indicator lights shall be provided for pump seal failure state.
f. Indicator lights shall be provided for pump high temperature failure

state.
g. Indicator lights shall be provided for high wet well level alarm state.

A.3.2.3 Alarm Display Panel

a. Indicator lights shall be enabled when an alarm state is activated.
b. A buzzer shall sound when an alarm state is activated.

A.3.2.4 Float Switch

a. When the depth of liquid is equal to or greater than the lead pump
depth, the float switch shall set a state which causes the first pump
to turn on.

b. When the depth of liquid is equal to or greater than the lag pump
depth, the float switch shall set a state which causes the second pump
to turn on.

c. When the depth of liquid is equal to or greater than the allowable
high liquid depth, the float switch shall set an alarm state.

A.3.2.5 Methane Sensor

a. When the volume of methane is equal to or greater than the high
methane volume, the methane sensor shall set a state that causes the
ventilation fans to turn on within 5 seconds.

b. When the volume of methane is equal to or greater than the allowable
maximum methane volume, the methane sensor shall set an alarm
state.

c. HighMethane represents the volume of methane that should cause
the exhaust fans to turn on.

d. MaxMethane represents the volume of methane below which the wet
well should be kept. Should the volume of methane be equal to or
exceed MaxMethane, an alarm state is set.

e. ExhaustFan represents a Boolean quantity such that at any time

t

, the
exhaust fan is either running or not running.

7228_A001.fm Page 262 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

Software Requirements for a Wastewater Pumping Station

263

f. AlarmState represents a Boolean quantity such that at any time

t

, the
audible and visual alarms are enabled.

A.4 References

IEEE Recommended Practice for Software Requirements Specifications (IEEE Std.
830-1998).

Town of Cary North Carolina, Wet Well and Valve Vault http://www.townofcary.
org/depts/dsdept/engineering/detaildrawings/ACAD-0750002-1of2.dwg,
October 18, 2005.

Town of Cary North Carolina, Wet Well and Valve Vault http://www.townofcary.
org/depts/dsdept/engineering/detaildrawings/ACAD-0750002-2of2.dwg,
October 18, 2005.

MaxMethane HighMethane

ExhaustFan Time Bool

A

>

→:

llarmState Time Bool

Methane MaxMethane Exha

: →

≥ ⇒ uustFan

Methane MaxMethane ExhaustFan

Methan

< ⇒ ¬

ee MaxMethane AlarmState≥ ⇒

7228_A001.fm Page 263 Tuesday, February 27, 2007 4:39 PM

© 2007 by Taylor & Francis Group, LLC

http://www.townofcary.org/depts/dsdept/engineering/detaildrawings/ACAD-0750002-1of2.htm
http://www.townofcary.org/depts/dsdept/engineering/detaildrawings/ACAD-0750002-1of2.htm

265

Appendix B

Software Design for a Wastewater Pumping
Station Wet Well Control System

(rev. 01.01.00)

Christopher M. Garrell

B.1 Introduction

A wastewater pumping station is a component of the sanitary sewage collection
system that transfers domestic sewage to a wastewater treatment facility for
processing. A typical pumping station includes three components: (1) a sewage
grinder, (2) a wet well, and (3) a valve vault (Figure B.1). Unprocessed sewage
enters the sewage grinder unit so that solids suspended in the liquid can be
reduced in size by a central cutting stack. The processed liquid then proceeds
to the wet well, which serves as a reservoir for submersible pumps. These pumps
then add the required energy/head to the liquid so that it can be conveyed to
a wastewater treatment facility for primary and secondary treatment. The con-
trol system specification that follows describes the operation of the wet well.

B.1.1 Purpose

This specification describes the software design guidelines for the wet well
control system of a wastewater pumping station. It is intended that this
specification provide the basis of the software development process and is
intended for use by software developers.

B.1.2 Scope

The software system described in this specification is part of a control system
for the wet well of a wastewater pumping station. The control system supports
an array of sensors and switches that monitor and control the operation of
the wet well. The design of the wet well control system shall provide for the
safety and protection of pumping station operators, maintenance personnel,

7228_A002.fm Page 265 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

266

What Every Engineer Should Know about Software Engineering

and the public from hazards that may result from its operation. The control
system shall be responsible for the following operations:

a. Monitoring and reporting the level of liquid in the wet well.
b. Monitoring and reporting the level of hazardous methane gas.
c. Monitoring and reporting the state of each pump and whether it is

currently running or not.
d. Activating a visual and audible alarm when a hazardous condition exists.
e. Switching each submersible pump on or off in a timely fashion de-

pending on the level of liquid within the wet well.
f. Switching ventilation fans on or off in a timely fashion depending on

the concentration of hazardous gas within the wet well.

Any requirements that are incomplete are annotated with “TBD” and will
be completed in a later revision of this specification.

B.1.3 Definitions, Acronyms, and Abbreviations

The following is a list of definitions for terms used in this document.

Attribute —

Property of a class.

Class —

A category from which object instances are created.

Message —

A means of passing control from one software code unit to
another software code unit because of an event.

Method —

A section of software code that is associated with a class
providing a mechanism for accessing the data stored in the class.

B.2 Overall Description

B.2.1 Wet Well Overview

The wet well for which this specification is intended is shown in Figure B.2.
This figure has been repeated from Appendix A. A more detailed description
of the wet well can be found in Appendix A.

FIGURE B.1

Typical wastewater pumping station process.

Sewage
Grinder Unit Wet Well Valve Vault

7228_A002.fm Page 266 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

267

(a)

(b)

FIGURE B.2

Typical wet well. (a) Top view schematic, and (b) side sectional view.

Influent Pipe

Pre-cast Wet Well

Exhaust Fan

Exhaust Vent Pipe

Effluent Pipe (TYP)

Submersible Pump (TYP)

Access Door

Float Switch

High Water Alarm

Lag Pump On

Influent Pipe

Lead Pump On

Pump Off

Pre-cast Wet Well

Submersible Pump (TYP)

Effluent Pipe

Exhaust Fan

Exhaust Vent Pipe

7228_A002.fm Page 267 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

268

What Every Engineer Should Know about Software Engineering

B.2.2 Wet Well Software Architecture

The wet well software architecture is shown in Figure B.3.

B.3 Design Decomposition

The following section details the design decomposition of the wet well
controller software design. This is based on the use cases presented in
Appendix A.

B.3.1 Class Model

Figure B.4 describes the classes that make up the wet well control system
software application. Figure B.5 describes the classes that make up the sensor
state management of the wet well control system software application.
Figure B.6 describes the classes that make up the process control of the wet
well control system software application. Figure B.7 describes the classes
that make up the resource logging control of the wet well control system
software application.

FIGURE B.3

Wet well controller software architecture.

Wet Well Controller

RTOS Application Software

Sensor Resource Manager

Switch Resource Manager

Pump Resource Manager

Sensor

Switch

Pump

7228_A002.fm Page 268 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Softw
are D

esign for a W
astew

ater P
um

ping Station

269

FIGURE B.4

Wet well controller class diagram.

+__init__()
+__del__()
+__str__()
+Execute()

-m_loggerResource : CLogger
-m_waterSensorRelay : CWaterSensorRelay
-m_methaneSensorRelay : CMethaneSensorRelay
-m_leadPumpSensorRelay : CPumpSensorRelay
-m_lagPumpSensorRelay : CPumpSensorRelay
-m_ventilationSensorRel ay : CVentilationSensorRelay

CWetWellSimulator::CWetWellSimulator
+__init__(in name)

SimulationRT::Process

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CMethaneState

-m_measurePeriod : PERIOD

CMethane::CMethaneSensorRelay

+__init__()

SimulationRT::Resource

+__init__(in logName : <unspecified> = DEFAULT_LOGFILENAME)
+__del__()
+LogSimulation(in time, in date)
+LogFault(in sensor : CSensor)
+LogSensorReading(in sensor : CSensor)

-m_wetWellSimulationData : CWetWellSimulationData

CLogger::CLogger

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in waterRelay : CWaterSensorRelay, in onTriggerState : WATERSENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_waterRelay : CWaterSensorRelay
-m_offTriggerState
-m_onTriggerState

CPump::CPumpSensorRelay

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in methaneRelay : CMethaneSensorRelay, in onTriggerState : METHANESENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_methaneRelay : CMethaneSensorRelay
-m_offTriggerState
-m_onTriggerState

CVentilation::CVentilation SensorRelay

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CWaterState

-m_measurePeriod : PERIOD

CWater::CWaterSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+Execute()
+MaxSenorState() : CSensorState

CSensor::CSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, i n rscPriority : RSCPRIORITY)
+__del__()
+__str__()
+InitializeSensors()
+GetSensorCount()
+AddSensor(in newSensor : CSensor)
+RemoveSensor(in oldSensor : CSensor)
+Execute()

-m_sensorArray : CSensor = []
-m_resourcePriority : RSCPRIORITY = 0
-m_measurePeriod : <unspecified> = measurePeriod
-m_lastSensorState : CSensorState = None

CSensor::CAbstractSensorRelay

7228_A
002.fm

 Page 269 T
uesday, M

arch 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

 270

W
hat E

very E
ngineer Should K

now
 about Softw

are E
ngineering

FIGURE B.5

Sensor state class diagram.

+__init__(inname: <unspecified>=None, insensorStateMap: <unspecified>=defaultSensorStateMap, instate: <unspecified>=DEFAULTSENSORSTATE_UNKNOWN)
+__str__()
+__eq__(inother: CSensorState)
+__ne__(inother: CSensorState)
+GetState()
+SetState(instate)
+GetName()
+SetName(inname: <unspecified>=None)
+GetStateString()
+GetFaultState()
+SetFaultState(infaultState: <unspecified>=False)
+ResetFaultState()

-m_state: DEFAULTSENSORSTATE=state
-m_sensorName: <unspecified>=name
-m_sensorStateMap: <unspecified>=sensorStateMap
-m_faultState: <unspecified>=False

CSensorState:: CSensorState

+__init__(inname:<unspecified>=SENSORSTATENAME_METHANE)

-m_state:METHANESENSORSTATE

CMethane:: CMethaneState

+__init__(inname:<unspecified>=SENSORSTATENAME_PUMP)

CPump:: CPumpState

+__init__(inname:<unspecified>=SENSORSTATENAME_VENTILATION)

CVentilation:: CVentilationState

+__init__(inname:<unspecified>=SENSORSTATENAME_WATER)

-m_state:WATERSENSORSTATE

CWater:: CWaterState

+DEFAULTSENSORSTATE_UNKNOWN=0
+DEFAULTSENSORSTATE_IDLE=1
+DEFAULTSENSORSTATE_RUNNING=2

«enumeration»
CSensorState:: DEFAULTSENSORSTATE

-m_state

1

*

+METHANESENSORSTATE_UNKNOWN=0
+METHANESENSORSTATE_ACCEPTABLE=1
+METHANESENSORSTATE_CRITICAL=2

«enumeration»

CMethane: : METHANESENSORSTATE

+WATERSENSORSTATE_UNKNOWN=0
+WATERSENSORSTATE_LOW=1
+WATERSENSORSTATE_LEADON=2
+WATERSENSORSTATE_LAGON=3
+WATERSENSORSTATE_ALARM=4

«enumeration»

CWater:: WATERSENSORSTATE

-m_state

1

*

-m_state

1

*

7228_A
002.fm

 Page 270 T
uesday, M

arch 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Softw
are D

esign for a W
astew

ater P
um

ping Station

271

FIGURE B.6

Process control class diagram.

+__init__(in name)

SimulationRT::Process

+__init__(in name)
+Idle()
+Read()
+Test()
+GenerateReading()

-m_currentState : CMethaneState

CMethane::CMethaneSensor

+__init__(in name, in queryTime, in reliability : <unspecified> = 1.0)
+__del__()
+__str__()
+Signal(in signal)
+Execute()
+GenerateFaultState()
+Idle()
+Read()
+Test()

-m_currentState : CSensorState = None
-m_signal : SENSORSIGNAL = SENSORSIGNAL_IDLE
-m_queryTime : <unspecified> = queryTime
-m_reliability : <unspecified> = reliability

CSensor::CSensor

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CMethaneState

-m_measurePeriod : PERIOD

CMethane::CMethaneSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+Execute()
+MaxSenorState() : CSensorState

CSensor::CSensorRelay

+__init__(in name)
+Idle()
+Read()
+Test()
+GenerateReading()

-m_currentState : CWaterState

CWater::CWaterSensor

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CWaterState

-m_measurePeriod : PERIOD

CWater::CWaterSensorRelay

+__init__()
+__del__()
+__str__()
+Execute()

-m_loggerResource : CLogger
-m_waterSensorRelay : CWaterSensorRelay
-m_methaneSensorRelay : CMethaneSensorRelay
-m_leadPumpSensorRelay : CPumpSensorRelay
-m_lagPumpSensorRelay : CPumpSensorRelay
-m_ventilationSensorRelay : CVentilationSensorRelay

CWetWellSimulator::CWetWellSimulator

+__init__(in name)
+Idle()
+Read()
+Test()

-m_currentState

CPump::CPumpSensor

+__init__(in name)
+Idle()
+Read()
+Test()

-m_currentState

CVentilation::CVentilationSensor

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in methaneRelay : CMethaneSensorRelay, in onTriggerState : METHANESENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_methaneRelay : CMethaneSensorRelay
-m_offTriggerState
-m_onTriggerState

CVentilation::CVentilationSensorRelay

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in waterRelay : CWaterSensorRelay, in onTriggerState : WATERSENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_waterRelay : CWaterSensorRelay
-m_offTriggerState
-m_onTriggerState

CPump::CPumpSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+__del__()
+__str__()
+InitializeSensors()
+GetSensorCount()
+AddSensor(in newSensor : CSensor)
+RemoveSensor(in oldSensor : CSensor)
+Execute()

-m_sensorArray : CSensor = []
-m_resourcePriority : RSCPRIORITY = 0
-m_measurePeriod : <unspecified> = measurePeriod
-m_lastSensorState : CSensorState = None

CSensor::CAbstractSensorRelay

7228_A
002.fm

 Page 271 T
uesday, M

arch 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

272

What Every Engineer Should Know about Software Engineering

B.3.2 Class Details

B.3.2.1 CWetWellSimulator

The CWetWellSimulator is responsible for the following functions (Figure B.8):

a. Initialization.
b. Instantiation of its contained objects.

FIGURE B.7

Resource control class diagram.

FIGURE B.8

CWetWellSimulator Class.

+__init__(inlogName: <unspecified> = DEFAULT_LOGFILENAME)
+__del__()
+LogSimulation(intime,indate)
+LogFault(insensor: CSensor)
+LogSensorReading(insensor: CSensor)

-m_wetWellSimulationData: CWetWellSimulationData

CLogger:: CLogger

+__init__()

SimulationRT:: Resource

+__init__(inxmlSourceFile: <unspecified> = None)
+__del__()
+FreeMembers()
+Initialize()
+EvaluateXPath(inpattern)
+WriteFile()
+ReadFile()
+Dump()
+DeleteXmlFile()
+GetPrettyXmlRepresentation()
+GetXmlRepresentation()
+FileIsWriteable()
+FileMakeUnWriteable()
+FileExists()
+FileRemove()

-m_xmlSourceFile: <unspecified> = xmlSourceFile
-m_reader: <unspecified> = None
-m_dom: <unspecified> = None

CXmlData:: CXmlData

+__init__(inxmlSourceFile: <unspecified> = None)
+__del__()
+FreeMembers()
+AddFaultNode()
+AddReadingNode()
+AddSimulationNode()
+AddStartNode()

-m_currentSimulationNode

CWetWellSimulationData:: CWetWellSimulationData

+__init__()
+__del__()
+__str__()
+Execute()

-m_loggerResource : CLogger
-m_waterSensorRelay : CWaterSensorRelay
-m_methaneSensorRelay : CMethaneSensorRelay
-m_leadPumpSensorRelay : CPumpSensorRelay
-m_lagPumpSensorRelay : CPumpSensorRelay
-m_ventilationSensorRelay : CVentilationSensorRelay

CWetWellSimulator:: CWetWellSimulator

7228_A002.fm Page 272 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

273

c. Monitoring and reporting the level of liquid in the wet well.
d. Monitoring and reporting the level of hazardous methane gas.
e. Monitoring and reporting the state of each pump and whether it is

currently running.
f. Switching each submersible pump on or off in a timely fashion de-

pending on the level of liquid within the wet well.
g. Switching ventilation fans on or off in a timely fashion depending

on the concentration of hazardous gas within the wet well.

B.3.2.2 CLogger

The CLogger is responsible for the following functions (Figure B.9):

a. Initializing the simulation data logging XML file.
b. Managing the logging resource mechanism for the wet well and its

sensors.
c. Logging each time the wet well control system is instantiated.
d. Logging sensor faults.
e. Logging sensor readings.

B.3.2.3 CXmlData

The CXmlData is responsible for the following functions (Figure B.10):

a. Managing generic XML content.
b. Controling XML file read and write access.
c. Adding XML elements to an XML file.
d. Adding XML attributes to an XML file.
e. Traversing XML nodes.

FIGURE B.9

CLogger class.

+__init__(in logName : <unspecified> = DEFAULT_LOGFILENAME)
+__del__()
+LogSimulation(in time, in date)
+LogFault(in sensor : CSensor)
+LogSensorReading(in sensor : CSensor)

-m_wetWellSimulationData : CWetWellSimulationData

CLogger::CLogger

7228_A002.fm Page 273 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

274

What Every Engineer Should Know about Software Engineering

B.3.2.4 CWetWellSimulationData

The CWetWellSimulationData is responsible for the following functions
(Figure B.11):

a. Representing wet well control system operation in an XML format.
b. Adding sensor fault information to XML DOM.
c. Adding sensor reading information to XML DOM.
d. Managing wet-well control system data.

FIGURE B.10

CXmlData class.

FIGURE B.11

CWetWellSimulationData class.

+__init__(in xmlSourceFile : <unspecified> = None)
+__del__()
+FreeMembers()
+Initialize()
+EvaluateXPath(in pattern)
+WriteFile()
+ReadFile()
+Dump()
+DeleteXmlFile()
+GetPrettyXmlRepresentation()
+GetXmlRepresentation()
+FileIsWriteable()
+FileMakeUnWriteable()
+FileExists()
+FileRemove()

-m_xmlSourceFile : <unspecified> = xmlSourceFile
-m_reader : <unspecified> = None
-m_dom : <unspecified> = None

CXmlData::CXmlData

+__init__(inxmlSourceFile : <unspecified> = None)
+__del__()
+FreeMembers()
+AddFaultNode()
+AddReadingNode()
+AddSimulationNode()
+AddStartNode()

-m_currentSimulationNode

CWetWellSimulationData::CWetWellSimulationData

7228_A002.fm Page 274 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

275

B.3.2.5 CSensorState

The CSensorState is responsible for the following functions (Figure B.12):

a. Maintaining the operational state of a sensor.
b. Maintaining the fault state of a sensor.

B.3.2.6 CSensor

The CSensor is responsible for the following functions (Figure B.13):

a. A process representation of a control system sensor.
b. Managing process execution.
c. Reading sensor state.
d. Storing sensor state.

B.3.2.7 CAbstractSensorRelay

The CAbstractSensorRelay is responsible for the following functions
(Figure B.14):

a. Processing representations of a sensor relay control.
b. Managing process execution.
c. Managing operation of array of sensors (CSensor).
d. Providing abstract sensor array control and behavior.

B.3.2.8 CSensorRelay

The CSensorRelay is responsible for the following functions (Figure B.15):

a. Extending CAbstractSensorRelay.
b. Providing process control for sensors that take periodic reading.

B.3.2.9 CMethaneState

The CMethaneState is responsible for the following functions (Figure B.16):

a. Extending CSensorState.
b. Maintaining the operational state of a methane level sensor.
c. Maintaining the fault state of a methane level sensor.

7228_A002.fm Page 275 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

276

W
hat E

very E
ngineer Should K

now
 about Softw

are E
ngineering

FIGURE B.12

CSensorState class.

+__init__(in name : <unspecified> = None, in sensorStateMap : <unspecified> = defaultSensorStateMap, in state : <unspecified> = DEFAULTSENSORSTATE_UNKNOWN)
+__str__()
+__eq__(inother : CSensorState)
+__ne__(inother : CSensorState)
+GetState()
+SetState(instate)
+GetName()
+SetName(inname : <unspecified> = None)
+GetStateString()
+GetFaultState()
+SetFaultState(infaultState : <unspecified> = False)
+ResetFaultState()

-m_state :DEFAULTSENSORSTATE = state
-m_sensorName : <unspecified > = name
-m_sensorStateMap : <unspecified> = sensorStateMap
-m_faultState : <unspecified> = False

CSensorState:: CSensorState

7228_A
002.fm

 Page 276 T
uesday, M

arch 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

277

FIGURE B.13

CSensor class.

FIGURE B.14

CAbstractSensorRelay class.

FIGURE B.15

CSensorRelay class.

FIGURE B.16

CMethaneState class.

+__init__(in name, in queryTime, in reliability : <unspecified> = 1.0)
+__del__()
+__str__()
+Signal(in signal)
+Execute()
+GenerateFaultState()
+Idle()
+Read()
+Test()

-m_currentState : CSensorState = None
-m_signal : SENSORSIGNAL = SENSORSIGNAL_IDLE
-m_queryTime : <unspecified> = queryTime
-m_reliability : <unspecified> = reliability

CSensor::CSensor

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+__del__()
+__str__()
+InitializeSensors()
+GetSensorCount()
+AddSensor(in newSensor : CSensor)
+RemoveSensor(in oldSensor : CSensor)
+Execute()

-m_sensorArray : CSensor = []
-m_resourcePriority : RSCPRIORITY = 0
-m_measurePeriod : <unspecified> = measurePeriod
-m_lastSensorState : CSensorState = None

CSensor::CAbstractSensorRelay

+__init__(inname, inmeasurePeriod, inloggerResource : CLogger, inrscPriority : RSCPRIORITY)
+Execute()
+MaxSenorState():CSensorState

CSensor::CSensorRelay

+__init__(in name : <unspecified> = SENSORSTATENAME_METHANE)

-m_state : METHANESENSORSTATE

CMethane::CMethaneState

7228_A002.fm Page 277 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

278

What Every Engineer Should Know about Software Engineering

B.3.2.10 CMethaneSensor

The CMethaneSensor is responsible for the following functions (Figure B.17):

a. Extending CSensor.
b. Reading methane level.
c. Storing methane level.

Methane Elevation

Set allowable levels of methane based on a percentage (Figure B.18). Any
reading above the critical level will trigger ventilation to go into an “on” state.

Methane Sensor State

This represents the sensor state based on the sensor reading (Figure B.19).

Methane Sensors Query Time

This represents the time required to make a sensor reading in seconds
(Figure B.20).

Methane Sensors Reliability

This represents the reliability of the sensor in percentage of time correctly
operating (Figure B.21).

FIGURE B.17

CMethaneSensor class.

FIGURE B.18

Methane level enumerations.

+__init__(in name)
+Idle()
+Read()
+Test()
+GenerateReading()

-m_currentState : CMethaneState

CMethane::CMethaneSensor

+METHANEELEVATION_CRITICAL = 70
+METHANEELEVATION_SATURATED = 100

«enumeration»
CMethane::METHANEELEVATION

7228_A002.fm Page 278 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

279

B.3.2.11 CMethaneSensorRelay

The CMethaneSensorRelay is responsible for the following functions
(Figure B.22):

a. Extending CSensorRelay.
b. Providing process control for managing methane level sensors.

Number of Methane Sensors

This represents the number of sensors managed by the CMethaneSensorRe-
lay (Figure B.23).

Methane Sensor Reading Period

This represents the time between successive sensor readings in seconds
(Figure B.24).

FIGURE B.19

Methane sensor state enumerations.

FIGURE B.20

Methane Sensor Reading Time.

FIGURE B.21

Methane sensor reliability.

+METHANESENSORSTATE_UNKNOWN = 0
+METHANESENSORSTATE_ACCEPTABLE = 1
+METHANESENSORSTATE_CRITICAL = 2

«enumeration»
CMethane::METHANESENSORSTATE

+QUERYTIME_METHANEMEASURMENT = 0.10

«enumeration»
CMethane::QUERYTIME

7228_A002.fm Page 279 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

280

What Every Engineer Should Know about Software Engineering

B.3.2.12 CWaterState

The CWaterState is responsible for the following functions (Figure B.25):

a. Extending CSensorState.
b. Maintaining the operational state of a water level sensor.
c. Maintaining the fault state of a water level sensor.

B.3.2.13 CWaterSensor

The CWaterSensor is responsible for the following functions (Figure B.26):

a. Extending CSensor.
b. Reading water level.
c. Storing water level.

B.3.2.14 CWaterSensorRelay

The CWaterSensorRelay is responsible for the following functions (Figure B.27):

a. Extending CSensorRelay.
b. Providing process control for managing water level sensors.

FIGURE B.22

CMethaneSensorRelay class.

FIGURE B.23

Number of methane sensors enumeration.

FIGURE B.24

Methane level reading period enumeration.

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CMethaneState

-m_measurePeriod : PERIOD

CMethane::CMethaneSensorRelay

7228_A002.fm Page 280 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

281

B.3.2.15 CPumpState

The CPumpState is responsible for the following functions (Figure B.28):

a. Extending CAbstractSensorState.
b. Maintaining the operational state of a pump on/off sensor.
c. Maintaining the fault state of a pump on/off sensor.

B.3.2.16 CPumpSensor

The CPumpSensor is responsible for the following functions (Figure B.29):

a. Extending CSensor.
b. Reading the pump on/off state.
c. Storing the pump on/off state.

FIGURE B.25

CWaterState class.

FIGURE B.26

CWaterSensor class.

FIGURE B.27

CWaterSensorRelay class.

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CWaterState

-m_measurePeriod : PERIOD

CWater::CWaterSensorRelay

7228_A002.fm Page 281 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

282

What Every Engineer Should Know about Software Engineering

B.3.2.17 CPumpSensorRelay

The CPumpSensorRelay is responsible for the following functions (Figure B.30):

a. Extending CAbstractSensorRelay.
b. Providing process control for managing pump on/off operation de-

pending on current water level sensor readings.

B.3.2.18 CVentilationState

The CVentilationState is responsible for the following functions (Figure B.31):

a. Extending CAbstractSensorState.
b. Maintaining the operational state of a ventilation fan sensor.
c. Maintaining the fault state of a ventilation fan sensor.

FIGURE B.28

CPumpState class.

FIGURE B.29

CPumpSensor class.

FIGURE B.30

CPumpSensorRelay class.

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in waterRelay : CWaterSensorRelay, in onTriggerState : WATERSENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_waterRelay : CWaterSensorRelay
-m_offTriggerState
-m_onTriggerState

CPump:: CPumpSensorRelay

7228_A002.fm Page 282 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

283

B.3.2.19 CVentilationSensor

The CVentilationSensor is responsible for the following functions (Figure B.32):

a. Extending CSensor.
b. Reading ventilation on/off state.
c. Storing ventilation on/off state.

B.3.2.20 CVentilationSensorRelay

The CVentilationSensorRelay is responsible for the following functions:

a. Extending CAbstractSensorRelay.
b. Providing process control for managing pump on/off operation depend-

ing on current methane level sensor readings.

B.3.3 Sequence Diagram

The sequence diagram is shown in Figure B.34.

FIGURE B.31

CVentilationState class.

FIGURE B.32

CVentilationSensor class.

FIGURE B.33

CVentilationSensorRelay class.

+__init__(in name : <unspecified> = SENSORSTATENAME_VENTILATION)

CVentilation::CVentilationState

+__init__(in name)
+Idle()
+Read()
+Test()

-m_currentState

CVentilation::CVentilationSensor

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in methaneRelay : CMethaneSensorRelay, in onTriggerState : METHANESENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_methaneRelay : CMethaneSensorRelay
-m_offTriggerState
-m_onTriggerState

CVentilation:: CVentilationSensorRelay

7228_A002.fm Page 283 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

284

W
hat E

very E
ngineer Should K

now
 about Softw

are E
ngineering

FIGURE B.34

Wet well controller sequence diagram.

wetWellSimulator m_leadPumpSensorRelay m_lagPumpSensorRelay m_ventilationSensorRelaym_waterSensorRelay m_methaneSensorRelaym_loggerResource

__init__(logName)

loggerResource

waterRelay

__init__(name, measurePeriod, loggerResource, rscPriority)

__init__(loggerResource, rscPriority, methaneRelay, onTriggerState)

ventilationSensorRelay

lagPumpSensorRelay

__init__(loggerResource, rscPriority, waterRelay, onTriggerState)

leadPumpSensorRelay

__init__(loggerResource, rscPriority, waterRelay, onTriggerState)

__init__(name, measurePeriod, loggerResource, rscPriority)

methaneRelay

Process
Execution

Process

7228_A
002.fm

 Page 284 T
uesday, M

arch 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

Software Design for a Wastewater Pumping Station

285

B.4 References

IEEE Recommended Practice for Software Requirements Specifications (IEEE Std.
830–1998).

IEEE Recommended Practice for Software Design Descriptions (IEEE Std. 1016-1998).
Town of Cary North Carolina, Wet Well and Valve Vault http://www.townofcary.org/

depts/dsdept/engineering/detaildrawings/ACAD-0750002-1of2.dwg, October 18,
2005.

Town of Cary North Carolina, Wet Well and Valve Vault http://www.townofcary.org/
depts/dsdept/engineering/detaildrawings/ACAD-0750002-2 of2.dwg, October 18,
2005.

7228_A002.fm Page 285 Tuesday, March 20, 2007 12:59 PM

© 2007 by Taylor & Francis Group, LLC

287

Appendix C

Object Models for a Wastewater Pumping

Station Wet Well Control System

Christopher M. Garrell

7228_A003.fm Page 287 Tuesday, March 20, 2007 1:01 PM

© 2007 by Taylor & Francis Group, LLC

288

W
hat E

very E
ngineer Should K

now
 about Softw

are E
ngineering

FIGURE C.1

Process control object model.

+__init__(in name)

SimulationRT::Process

+__init__(in name)
+Idle()
+Read()
+Test()
+GenerateReading()

-m_currentState : CMethaneState

CMethane:: CMethaneSensor

+__init__(in name, inqueryTime, inreliability : <unspecified> =1.0)
+__del__()
+__str__()
+Signal(insignal)
+Execute()
+GenerateFaultState()
+Idle()
+Read()
+Test()

-m_currentState : CSensorState =None
-m_signal : SENSORSIGNAL = SENSORSIGNAL_IDLE
-m_queryTime : <unspecified> = queryTime
-m_reliability : <unspecified> = reliability

CSensor:: CSensor

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CMethaneState

-m_measurePeriod : PERIOD

CMethane:: CMethaneSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+Execute()
+MaxSenorState() : CSensorState

CSensor:: ensorRelayCS

+__init__(in name)
+Idle()
+Read()
+Test()
+GenerateReading()

-m_currentState : CWaterState

CWater:: CWaterSensor

+__init__(in loggerResource: CLogger, in rscPriority : RSCPRIORITY)
+InitializeSensors()
+MaxSenorState() : CWaterState

-m_measurePeriod : PERIOD

CWater:: CWaterSensorRelay

+__init__()
+__del__()
+__str__()
+Execute()

-m_loggerResource : CLogger
-m_waterSensorRelay : CWaterSensorRelay
-m_methaneSensorRelay : CMethaneSensorRelay
-m_leadPumpSensorRelay : CPumpSensorRelay
-m_lagPumpSensorRelay :CPumpSensorRelay
-m_ventilationSensorRelay : CVentilationSensorRelay

CWetWellSimulator:: CWetWellSimulator

+__init__(in name)
+Idle()
+Read()
+Test()

-m_currentState

CPump:: CPumpSensor

+__init__(in name)
+Idle()
+Read()
+Test()

-m_currentState

CVentilation:: CVentilationSensor

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in methaneRelay : CMethaneSensorRelay, in onTriggerState :METHANESENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_methaneRelay : CMethaneSensorRelay
-m_offTriggerState
-m_onTriggerState

CVentilation:: CVentilationSensorRelay

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in waterRelay : CWaterSensorRelay, in onTriggerState : WATERSENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_waterRelay : CWaterSensorRelay
-m_offTriggerState
-m_onTriggerState

CPump::CPumpSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)
+__del__()
+__str__()
+InitializeSensors()
+GetSensorCount()
+AddSensor(in newSensor : CSensor)
+RemoveSensor(in oldSensor : CSensor)
+Execute()

-m_sensorArray : CSensor=[]
-m_resourcePriority : RSCPRIORITY = 0
-m_measurePeriod : <unspecified> = measurePeriod
-m_lastSensorState : CSensorState=None

CSensor::CAbstractSensorRelay

7228_A
003.fm

 Page 288 T
uesday, M

arch 20, 2007 1:01 PM

© 2007 by Taylor & Francis Group, LLC

Object Models for a Wastewater Pumping Station

289

FIGURE C.2

Resource control object model.

+__init__(in logName : <unspecified> = DEFAULT_LOGFILENAME)
+__del__()
+LogSimulation(in time,in date)
+LogFault(in sensor : CSensor)
+LogSensorReading(in sensor : CSensor)

-m_wetWellSimulationData : CWetWellSimulationData

CLogger:: CLogger

+__init__()

SimulationRT:: Resource

+__init__(in xmlSourceFile : <unspecified> = None)
+__del__()
+FreeMembers()
+Initialize()
+EvaluateXPath(inpattern)
+WriteFile()
+ReadFile()
+Dump()
+DeleteXmlFile()
+GetPrettyXmlRepresentation()
+GetXmlRepresentation()
+FileIsWriteable()
+FileMakeUnWriteable()
+FileExists()
+FileRemove()

-m_xmlSourceFile : <unspecified> = xmlSourceFile
-m_reader : <unspecified> = None
-m_dom : <unspecified> = None

CXmlData::CXmlData

+__init__(in xmlSourceFile : <unspecified> = None)
+__del__()
+FreeMembers()
+AddFaultNode()
+AddReadingNode()
+AddSimulationNode()
+AddStartNode()

-m_currentSimulationNode

CWetWellSimulationData:: CWetWellSimulationData

7228_A003.fm Page 289 Tuesday, March 20, 2007 1:01 PM

© 2007 by Taylor & Francis Group, LLC

290

W
hat E

very E
ngineer Should K

now
 about Softw

are E
ngineering

FIGURE C.3

Sensor state object model.

+__in it__(in nam e : <uns pec ified> = None, in s ens orStateM ap : <uns pec ified> = defaultSens orStateM ap, in s tate : <uns pec ified> = DEFAULTSENSO RSTATE_UNKNO WN)
+__s tr__()

+__eq__(in other : CSens orState)
+__ne__(in other : CSens orState)

+G etState()
+SetState(in s tate)
+G etNam e()

+SetNam e(in nam e : <uns pec ified> = None)
+G etStateString()

+G etFaultState()
+SetFaultState(in fau ltState : <uns pec ified> = Fals e)

+Res etFaultState()

-m _s tate : DEFAULTSENSO RSTATE = s tate

-m _s ens orNam e : <uns pec ified> = nam e
-m _s ens orStateM ap : <uns pec ified> = s ens orStateM ap

-m _faultState : <uns pec ified> = Fals e

CSens orState:: CSensorState

+__in it__(in nam e : <uns pec ified> = SENSO RSTATENAM E_M ETHANE)

-m _s tate : M ETHANESENSO RSTATE

CM ethane:: CM ethaneState

+__in it__(in nam e : <uns pec ified> = SENSO RSTATENAM E_PUM P)

CPum p::CPum pState

+__in it__(in nam e : <uns pec ified> = SENSORSTATENAM E _VENTILATIO N)

CVent i la t ion::CVent i la t ionState

+__in it__(in nam e : <uns pec ified> = SENSO RSTATENAM E_WATER)

-m _s tate : WATERSENSO RSTATE

CWater:: CWaterState

+DEFAULTSENSO RSTATE_UNKNO WN = 0

+DEFAULTSENSO RSTATE_IDLE = 1
+DEFAULTSENSO RSTATE_RUNNING = 2

«enum eration»
CSens orState:: DEFAULTSENSO RSTATE

-m _s tate

1

*

+M ETHANESENSO RSTATE_UNKNO WN = 0

+M ETHANESENSO RSTATE_ACCEPTABLE = 1
+M ETHANESENSO RSTATE_CRITICAL = 2

«enum eration»

CM ethane:: M ETHANESENSO RSTATE

+WATERSENSO RSTATE_UNKNO WN = 0
+WATERSENSO RSTATE_LO W = 1

+WATERSENSO RSTATE_LEADO N = 2
+WATERSENSO RSTATE_LAG O N = 3

+WATERSENSO RSTATE_ALARM = 4

«enum eration»

CWater:: WATERSENSO RSTATE

-m _s tate

1

*

-m _s tate

1

*

7228_A
003.fm

 Page 290 T
uesday, M

arch 20, 2007 1:01 PM

© 2007 by Taylor & Francis Group, LLC

O
bject M

odels for a W
astew

ater P
um

ping Station

291

FIGURE C.4

General wet well control system object model.

+__init__()
+__del__()
+__str__()
+Execute()

-m_loggerResource : CLogger

-m_waterSensorRelay : CWaterSensorRelay

-m_methaneSensorRelay :CMethaneSensorRelay

-m_leadPumpSensorRelay : CPumpSensorRelay

-m_lagPumpSensorRelay : CPumpSensorRelay

-m_ventilationSensorRelay : CVentilationSensorRelay

CWetWellSimulator:: CWetWellSimulator
+__init__(inname)

SimulationRT:: Process

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)

+InitializeSensors()

+MaxSenorState() : CMethaneState

-m_measurePeriod:PERIOD

CMethane:: CMethaneSensorRelay

+__init__()

SimulationRT:: Resource

+__init__(in logName : <unspecified> = DEFAULT_LOGFILENAME)
+__del__()
+LogSimulation(in time, in date)
+LogFault(in sensor : CSensor)
+LogSensorReading(in sensor : CSensor)

-m_wetWellSimulationData:CWetWellSimulationData

CLogger:: CLogger

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in waterRelay : CWaterSensorRelay, in onTriggerState : WATERSENSORSTATE)
+InitializeSensors()
+Execute()

-m_measurePeriod : PERIOD
-m_waterRelay : CWaterSensorRelay
-m_offTriggerState
-m_onTriggerState

CPump:: CPumpSensorRelay

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY, in methaneRelay : CMethaneSensorRelay, in onTriggerState : METHANESENSORSTATE)

+InitializeSensors()

+Execute()

-m_measurePeriod : PERIOD
-m_methaneRelay : CMethaneSensorRelay
-m_offTriggerState
-m_onTriggerState

CVentilation:: CVentilationSensorRelay

+__init__(in loggerResource : CLogger, in rscPriority : RSCPRIORITY)

+InitializeSensors()

+MaxSenorState() : CWaterState

-m_measurePeriod : PERIOD

CWater:: CWaterSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)

+Execute()

+MaxSenorState() : CSensorState

CSensor:: CSensorRelay

+__init__(in name, in measurePeriod, in loggerResource : CLogger, in rscPriority : RSCPRIORITY)

+__del__()

+__str__()

+InitializeSensors()

+GetSensorCount()

+AddSensor(in newSensor : CSensor)

+RemoveSensor(in oldSensor : CSensor)

+Execute()

-m_sensorArray :CSensor = []
-m_resourcePriority : RSCPRIORITY = 0
-m_measurePeriod : <unspecified> = measurePeriod
-m_lastSensorState : CSensorState = None

CSensor:: CAbstractSensorRelay

7228_A
003.fm

 Page 291 T
uesday, M

arch 20, 2007 1:01 PM

© 2007 by Taylor & Francis Group, LLC

292

W
hat E

very E
ngineer Should K

now
 about Softw

are E
ngineering

FIGURE C.5

General wet well control system object model.

+__init__(in name, in queryTime, in reliability : <unspecified> = 1.0)
+__del__()
+__str__()
+Signal(in signal)
+Execute()
+GenerateFaultState()
+Idle()
+Read()
+Test()

-m_currentState : CSensorState = None
-m_signal : SENSORSIGNAL = SENSORSIGNAL_IDLE
-m_queryTime : <unspecified> = queryTime
-m_reliability : <unspecified> = reliability

CSensor:: CSensor

+__init__(in name)
+Idle()
+Read()
+Test()
+GenerateReading()

-m_currentState : CMethaneState

CMethane:: CMethaneSensor

+__init__(in name)
+Idle()
+Read()
+Test()

-m_currentState

CPump:: CPumpSensor

+__init__(in name)
+Idle()
+Read()
+Test()

-m_currentState

CVentilation:: CVentilationSensor

+__init__(in name)
+Idle()
+Read()
+Test()
+GenerateReading()

-m_currentState : CWaterState

CWater:: CWaterSensor

+__init__(in name)

SimulationRT:: Process

7228_A
003.fm

 Page 292 T
uesday, M

arch 20, 2007 1:01 PM

© 2007 by Taylor & Francis Group, LLC

	0849372283
	7228_fm
	What Every Engineer Should Know about Software Engineering
	What Every Engineer Should Know: Series Statement
	Introduction
	What is the goal of this book?
	How is this book different from other software engineering books?
	Can this book convert me into a software engineer?
	Are software engineers really engineers?
	How should I use this book?
	Who is the intended audience?
	Did anyone help you with this book?
	Are there copyrights and trademarks to be cited?
	Do you want to dedicate this book?
	Can you tell me about yourself?

	Table of Contents
	Appendix A
	Appendix B
	Appendix C

	7228_C001
	Table of Contents
	Chapter 1: The Profession of Software Engineering
	Outline
	1.1 Introduction
	1.2 Software Engineering as an Engineering Profession
	What is software engineering?
	Is software engineering an engineering discipline?
	What is the difference between software engineering and systems engineering?
	What is the history of software engineering?
	What is the role of the software engineer?
	How do software engineers spend their time on the job?
	What kind of education do software engineers need?
	What kind of education do software engineers typically have?
	I know someone who is an “XYZ* Certified Engineer”; is he a software engineer?
	Why are there so many software engineers without the proper education?
	Can software engineering programs be accredited?
	Is professional licensure available for software engineers?
	There are many proprietary certifications for software engineering practitioners. Are any of these valuable to a software engineer?
	What is the IEEE Computer Society CSDP certification?

	1.3 Standards and Certifications
	Are there standards for software engineering practices, documentation, and so forth?
	Process Standards
	Product Standards
	Resource and Technique Standards

	What is the Software Engineering Body of Knowledge?
	Are there any “fundamental theorems” of software engineering?

	1.4 Misconceptions about Software Engineering
	Why is software so buggy and unreliable?
	I write software as part of my job; does that make me a software engineer?
	But isn’t software system development primarily concerned with programming?
	Can’t software tools and development methods solve most or all of the problems pertaining to software engineering?
	Isn’t software engineering productivity a function of system complexity?
	Once software is delivered, isn’t the job finished?
	Aren’t errors an unavoidable side effect of software development?

	1.5 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_C002
	Table of Contents
	Chapter 2: Software Properties, Processes, and Standards
	Outline
	2.1 Introduction
	2.2 Characteristics of Software
	How do software engineers characterize software?
	What is “software reliability”?
	How do you measure software reliability?
	What is a failure function?
	What is a “bathtub curve”?
	But software doesn’t wear out, so why would it conform to the bathtub curve?
	Can the traditional quality measures of MTFF or MTBF be used to stipulate reliability in the software requirements specification?
	What is meant by the “correctness” of software?
	What is software “performance”?
	How is software performance measured?
	How do we characterize software usability?
	How do you measure software usability?
	What is interoperability?
	How is interoperability measured?
	What is an open system?
	What are the advantages of an open system?
	What is software “maintainability, evolvability, and repairability”?
	How do you measure maintainability, evolvability, and reparability?
	What is meant by “portability”?
	How is portability measured?
	How do you make software more portable?
	What is “verifiability”?
	How can you increase software verifiability?
	What is “traceability” in software systems?
	Are there other software qualities?
	Aren’t there other software qualities that you left out?

	2.3 Software Processes and Methodologies
	What is a software process?
	Isn’t every software process model just an abstraction?
	What benefits are there to using a software process model?
	What is a software methodology?
	Aren’t software process models and methodologies the same?
	What is the waterfall life cycle model?
	How many phases should the waterfall model have?
	What happens during the software conception phase of the waterfall process model?
	Does the software conception phase really happen?
	What happens during the requirements specification phase of the waterfall process model?
	Do any test activities occur during the requirements specification phase?
	What happens during the software design phase of the waterfall process model?
	Do any test activities occur during the software design phase?
	What happens during the software development phase of the waterfall process model?
	What test activities occur during the software development phase?
	When does the software development phase end?
	What happens during the testing phase of the waterfall process model?
	When does the testing phase end?
	What happens during the software maintenance phase of the waterfall process model?
	How are maintenance corrections supposed to be handled?
	The waterfall model looks artificial. Is there no backtracking?
	What is the V model for software?
	What is the spiral model for software?
	Is the spiral model widely used?
	What are evolutionary models?
	Are evolutionary models widely used?
	Are there any downsides to using evolutionary models?
	What is the incremental software model?
	What is the difference between incremental and evolutionary models?
	Why use the incremental model?
	Are there any downsides to the incremental model?
	Is the incremental model used very much?
	What is the unified process model?
	Where is the UPM used?
	What are agile methodologies?
	What are some agile methodologies?
	What is Extreme Programming?
	What are some of the practices of XP?
	Can you say more about Scrum?
	Is there a case to be made for not using agile methods?
	When should agile methodologies be used?
	All of these process models look rather simplistic, artificial, or too prescriptive. Should they really be used?

	2.4 Software Standards
	Who publishes software standards?
	What is the DOD-STD-2167A standard?
	What is the DOD-STD-498 standard?
	What is the ISO 9000 standard?
	Which part of ISO 9000 applies to software?
	Who uses this standard?
	What is in the ISO 9000-3 standard?
	How specific is ISO 9000-3 for software?
	What is ISO/IEC standard 12207?

	2.5 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_C003
	Table of Contents
	Chapter 3: Software Requirements Specification
	Outline
	3.1 Introduction
	3.2 Requirements Engineering Concepts
	What is software requirements engineering?
	When does requirements engineering start?
	What is software requirements specification?
	Why do we need SRSs?
	How do software requirements help software engineers?
	What are the core requirements engineering activities?
	Which disciplines does requirements engineering draw upon?
	What is a requirement?

	3.3 Requirements Specifications
	What kinds of SRSs are there?
	What are user requirements specifications?
	What are system requirements specifications?
	What are software design specifications?
	Within these three specification types are there different requirements types?
	What are functional requirements?
	What are nonfunctional requirements?
	What are domain requirements?
	What are interface specifications?
	What are performance requirements?
	What are logical database requirements?
	What are design constraint requirements?
	What are system attribute requirements?
	What is a feasibility study and what is its role?
	Are there social and organizational factors in requirements engineering?

	3.4 Requirements Elicitation
	What is requirements elicitation?
	But stakeholders don’t always know what they want, right?
	Are there any practical approaches to requirements elicitation?
	What is JAD?
	How do you plan for a JAD session?
	What are some of the ground rules for JAD sessions?
	What is QFD?
	What is the “voice of the customer?”
	What are the advantages of using QFD?
	Are there drawbacks to using QFD for software requirements discovery?
	What is “designer as apprentice?”
	But doesn’t the customer have to have teaching ability for this technique to work?
	Who is responsible for seeing the work structure in this technique?
	Does design as apprentice have any other benefits?

	3.5 Requirements Modeling
	How are software requirements modeled?
	Why can’t requirements just be communicated in English?
	What are some alternatives to using natural languages?
	What is a structured language specification?
	What are program design language-based requirements?
	Are there any disadvantages to using PDLs?
	What are use cases?
	What are user stories?
	What are formal methods in software specification?
	What are the motivations for using formal methods?
	What are informal and semiformal methods?
	How are formal methods used?
	Are formal methods hard to use?
	What are some of the formal methods techniques?
	What is Z?
	What are finite state machines?
	How are FSAs represented?
	Can you give an example of an FSM?
	What is a Mealy FSM?
	Can you give an example of a Mealy machine?
	What are the advantages of using FSMs in requirements specification or design?
	Are there any disadvantages to using FSMs?
	What are statecharts?
	What is the advantage of using statecharts over FSMs?
	What is orthogonality?
	What is broadcast communication?
	What is a chain reaction?
	When are statecharts useful in capturing requirements?
	What are petri nets?
	Can you give an example?
	How do I relate a petri net to software program behavior?
	When are petri nets used in requirements analysis and specification?
	Are there other kinds of petri nets?
	Are their drawbacks to the use of formal methods?
	What is structured analysis and structured design?
	What is SA?
	What are the main artifacts of SA?
	Can you give an example of SA?
	What does “object-oriented” mean?
	What is object-oriented requirements analysis?
	When is it appropriate to use OOA vs. SA?

	3.6 Requirements Documentation
	What is the role of the SRS?
	Who uses the requirements documents?
	How do I organize the requirements document?
	How do you represent specific requirements in the SRS?
	What is requirements traceability?
	What role does traceability help in requirements documentation?
	What are traceability policies?
	What does a traceability matrix look like?

	3.7 Recommendations on Requirements
	Is there a preferred modeling technique for an SRS?
	Are there special challenges when engineers specify software systems?
	How can I rank requirements?
	Why does ranking requirements do for me?
	What wording is appropriate in requirements specifications?
	How do I recognize bad requirements?
	What do some good requirements look like?
	What is requirements triage?
	What is requirements validation?
	How are requirements validated?
	Can requirements specifications be automatically checked for quality?
	Are there tools out there already?
	How does the tool measure the size of requirements?
	How does the tool measure text structure?
	How does the tool measure specification depth?
	How are reading statistics useful in assessing an SRS?

	3.8 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_C004
	Table of Contents
	Chapter 4: Designing Software
	Outline
	4.1 Introduction
	4.2 Software Design Concepts
	What is software design?
	What are the principal activities of software design?
	4.2.1 Basic Software Engineering Principles
	How do rigor and formality enter into software engineering?
	What is separation of concerns?
	Can modular design lead to separation of concerns?
	What is cohesion?
	What is coupling?
	What is Parnas partitioning?
	How do I do Parnas partitioning?
	Can you give an example of Parnas partitioning?
	Can you do Parnas partitioning in object-oriented design?
	How can changes be anticipated in software designs?
	How does generality apply to software design?
	How does incrementality manifest in software design?

	4.2.2 Software Architectures
	What is a software architecture?
	What are some typical software architectures?

	4.3 Software Design Modeling
	What standard methodologies can be used for software design?
	What is procedural-oriented design?
	What is SD?
	What is the difference between SA and SD?
	How do I go from SA to SD?
	Can you give an example?
	What is a data dictionary?
	What does a data dictionary look like?
	Are there any problems with SDs?
	How does SASD deal with timing?
	Can I use FSMs to derive a design?
	Can you give me an example?
	What is OOD?
	What are the benefits of object-orientation?
	What are the basic rules of OOD?
	The Open/Closed Principle
	The Liskov Substitution Principle
	The Dependency Inversion Principle
	The Interface Segregation Principle
	The Reuse/Release Equivalency Principle
	The Common Closure Principle
	The Common Reuse Principle
	The Acyclic Dependencies Principle
	The Stable Dependencies Principle
	The Stable Abstractions Principle
	Once and only once (OAOO):

	What is the UML?
	How does the UML help us with software design?
	What is the UML 2.0?
	Can you give an example of an OOD?

	4.4 Pattern-Based Design
	What is a pattern?
	What is the history of patterns?
	Why do we need patterns?
	What are the benefits of patterns?
	What do patterns look like?
	What are the “GRASP” patterns?
	What are the Gang of Four patterns?
	What are creational patterns?
	What are structural patterns?
	What are behavioral patterns?
	Are there any other pattern sets?
	What are the drawbacks of patterns?

	4.5 Design Documentation
	Is there a standard format for SDS?
	How do I achieve traceability from requirements through design and testing?
	Can you give an example of a design document?

	4.6 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_C005
	Table of Contents
	Chapter 5: Building Software
	Outline
	5.1 Introduction
	5.2 Programming Languages
	Is the study of programming languages really of interest to the software engineer?
	What happens when software behaves correctly, but is poorly written?
	But I have been writing code since my first programming course in college. Surely, I don’t need any lessons in programming languages, do I?
	What about working with legacy code?
	So how many programming languages are there?
	5.2.1 Programming Language Landscape
	What does the programming landscape look like?
	What are imperative, functional, and logic languages?
	What are procedural and declarative languages?
	Then what are object-oriented languages?

	5.2.2 Programming Features and Evaluation
	Which programming language is better?
	So what is the best way to evaluate a programming language?
	What do you mean by visible features of programming languages?
	Why should I care about parameter-passing techniques?
	What is call-by-reference?
	What is call-by-value?
	What about global variables?
	How do I choose which parameter-passing technique to use?
	What is recursion?
	Are there any drawbacks to recursive algorithm formulations?
	What does “dynamic memory allocation” mean?
	What are some examples of dynamic allocation use?
	What is meant by “strong typing” in a programming language?
	What is exception handling?
	Which languages have the best exception handling facilities?
	What is meant by modularity?
	Do object-oriented languages support a form of modularity?
	What is the benefit of object-orientation from a programming perspective?

	5.2.3 Brief Survey of Languages
	Can you apply the micro properties just discussed to some of the more commonly used programming languages?
	Can you tell me about Ada95?
	Is Ada still used?
	What about assembly language?
	How do programmers use assembly language today?
	When should assembly language be used?
	C is my favorite programming language. When can it be used?
	What other useful features does C have?
	How does C handle exceptions?
	When should C be used?
	What is the relationship between C and C++?
	When should C++ be used?
	What is the danger in converting my C code to C++?
	Can you tell me about Fortran?
	What about Java?
	If Java is interpreted does that mean it cannot be compiled?
	What are some of the main features of Java?
	What are the differences between Java and C++?
	Are there any well-known problems with using Java?
	What about legacy code written in arcane languages such as BASIC, COBOL, and Scheme?
	What about Visual Basic?
	What about scripting languages like Perl and Python?

	5.2.4 Object-Oriented Languages — Fact and Fiction
	It’s pretty easy to learn an object-oriented language, isn’t it?
	Can I learn how to program well in an object- oriented language like C++ or Java by taking a course?

	5.3 Software Construction Tools
	What is the value proposition for using software construction tools?
	What is a compiler?
	Can you describe further the compilation process?
	How do I deal with compiler warnings and errors?
	Do you have any debugging tips?
	Is there any way to automatically debug code?
	What are symbolic debuggers and how are they used?
	Can you give me an example of a debugging session?
	What is a source code control system?
	What is test driven design?
	Are there other tools that I can use, particularly when debugging embedded systems?
	What are in-circuit emulators?
	How are ICEs used?
	What are software simulators and when are they used?
	When is hardware prototyping useful?
	What are integrated development environments?
	What about other tools?

	5.4 Becoming a Better Code Developer
	How can I become a better developer of code?
	5.4.1 Code Smells
	What is a code smell?
	What is refactoring?
	What are some code smells?
	What is the conditional logic code smell?
	What are data clumps?
	Why are delays as loops bad?
	What are dubious constraints?
	What is the duplicated code smell?
	What are generalizations based on a single architecture?
	What are the large method, large class, and large procedure code smells?
	What are lazy methods and lazy procedure?
	What is the long parameter list code smell and how can it be refactored?
	What are message chains?
	What is message passing overload?
	What is the one big loop code smell and how is it refactored?
	What is shotgun surgery?
	What is speculative generality?
	What are tell-tale comments?
	What are temporary fields and how are they refactored?
	What is the unnecessary use of interrupts code smell?
	How can I improve the run-time performance of the code I write?

	5.4.2 Coding Standards
	What are coding standards?
	How can coding standards help improve my code?
	What do coding standards look like?
	What is the benefit of coding standards?
	Which coding standard should I use?
	Are there any drawbacks to using coding standards?
	When should the coding standard be adopted?

	5.5 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_C006
	Table of Contents
	Chapter 6: Software Quality Assurance
	Outline
	6.1 Introduction
	6.2 Quality Models and Standards
	What is software quality?
	What is a quality model?
	What is the capability maturity model?
	What is the history of the CMM?
	What is the capability maturity model integration?
	What is the CMM “maturity suite?”
	What are the levels of CMM?
	What are the components of each CMM level?
	Should there be a Level 0 in the CMM?
	What is CMM Level 1?
	What are some of the characteristics of Level 1 organizations?
	What is CMM Level 2?
	What is CMM Level 3?
	What is CMM Level 4?
	What is CMM Level 5?
	How many organizations are currently CMM-I certified?
	How can my organization use the CMM?
	Why customize CMM this way?
	Are there “conventional” objections to using the CMM?
	What are some of the CMM-I and process implementation myths?
	6.2.1 Other Quality Standards and Models
	What is ISO 9000?
	What are ISO 9000-3 principal areas of quality focus?
	What does ISO 9000-3 look like?
	Are there any similarities between ISO 9000-3 and CMM?
	Are ISO 9000-3 and CMM compatible?
	How does ISO/IEC 12207 help promote software quality?
	What is Six Sigma?
	What is the relationship between Six Sigma and the CMM?
	What is the IT infrastructure library?
	Can ITIL help with software quality programs?
	How does ITIL help with software quality management?
	Can anything bad come of a software quality initiative?
	What are the symptoms of slash-and-burn approaches?
	What is the best way to promote software quality improvement
	without triggering a slash-and-burn frenzy?

	6.3 Software Testing
	What is the role of testing with respect to software quality?
	Is there a difference between an error, a bug, a fault, and a failure?
	Is there a difference between verification and validation?
	What is the purpose of testing?
	What is a good test?
	What are the basic principles of software testing?
	How do I start testing activities during the requirements engineering process?
	What test activities occur during software design and code development?
	What is unit level testing?
	What is black box testing?
	What is exhaustive testing?
	What is boundary value testing?
	What is random test case generation?
	What is equivalence class testing?
	Are there any disadvantages to black box testing?
	What is white box testing?
	What is DD path testing?
	What is DU path testing?
	What is McCabe’s basis path method?
	What are code inspections?
	What is formal program proving?
	What is system integration testing?
	What is incremental integration testing?
	What is top-down testing?
	What is bottom-up testing?
	What other kinds of system partitioning testing are there?
	What is pair-wise integration testing?
	What is sandwich integration testing?
	What is neighborhood integration testing?
	What is interface testing?
	What kinds of interfaces can be tested?
	What kinds of errors can occur at the interfaces?
	What are some guidelines for testing interfaces?
	Why is testing object-oriented code different from testing other types of code?
	What are the levels of testing in object-oriented testing?
	How are object classes tested?
	How can clusters of cooperating objects be tested?
	What is scenario testing?
	What is worst case testing?
	What is stress testing?
	What is burn-in testing?
	What is alpha testing?
	What is beta testing?
	What is regression testing?
	What is cleanroom testing?
	What is software fault injection?
	When should you stop testing?
	What are test coverage metrics?
	How do I write a test plan?
	Are there automated tools for testing that can make the job easier?
	What are some testing tools that I can use?

	6.4 Metrics
	What are some motivations for measurement?
	So what kinds of things can we measure in software?
	Is the lines of code metric useful?
	What are the disadvantages of the LOC metric?
	What is the delta lines of code metric?
	What is McCabe’s metric?
	How does McCabe’s metric measure software complexity?
	Can you help me visualize the cyclomatic complexity?
	Can the computation of McCabe’s metric be automated?
	What are Halstead’s metrics?
	Are Halstead’s metrics still used?
	What are function points?
	What are the primary drivers for FPs?
	How do I interpret the FP value?
	How widely is the FP metric used?
	What are feature points?
	Are there special metrics for object-oriented software?
	What are some method level metrics?
	What are commonly used class level metrics?
	What are some package level metrics?
	Are there other kinds of object-oriented metrics?
	What are object points?
	What are use case points?
	This is all so confusing; which metrics should I use?
	What is the GQM technique?
	Can you give a simple example?
	What are some objections to using metrics?

	6.5 Fault Tolerance
	What are checkpoints?
	What are recovery blocks?
	What are software black boxes?
	What is N-version programming?
	What is built-in-test software?
	How should built-in-test software include CPU testing?
	Should built-in-test software test memory?
	What about testing other devices?

	6.6 Maintenance and Reusability
	What is meant by software maintenance?
	What is reverse engineering?
	What is an appropriate model for software reengineering?
	Since you like models so much, can you give me a maintenance process model?
	What is system release planning?
	What is software reuse?
	Are there special techniques for achieving reuse in procedural languages?
	Are there special techniques for achieving reuse in object-oriented languages?
	When is it appropriate not to reuse software?
	What is Pareto’s principle?
	What is the “Second System Effect?”

	6.7 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_C007
	Table of Contents
	Chapter 7: Managing Software Projects and Software Engineers
	Outline
	7.1 Introduction
	7.2 Software Engineers Are People Too
	What personnel management skills does the software project manager need?
	But what’s the big deal with “people issues”?
	How does team chemistry involve software projects?
	Why is team chemistry so hard to manage?
	7.2.1 Management Styles
	What are some styles for leading teams?
	What is Theory X?
	What is Theory Y?
	What is Theory Z?
	What is Theory W?
	What does it mean to establish a set of win-win preconditions?
	What does it mean to structure a win-win software process?
	What does structuring a win-win software product mean?
	What is Principle Centered Leadership?
	What is management by sight?
	What is management by objectives?

	7.2.2 Dealing with Problems
	How do I deal with difficult people?
	Is that it? Can’t you give me a playbook for handling difficult situations?

	7.2.3 Hiring Software Engineering Personnel
	We need to hire more software people. How should I approach this task?
	The principle of top talent:
	The principle of job matching:
	The principle of career progression:
	The principle of team balance:
	The principle of phaseout:

	I want to select the right people, but how is it done in the software industry?
	Do these tests really measure the potential success of the software engineer?
	You don’t seem to like these tests. How do I assess the potential of a candidate besides checking references?
	How do you measure the candidate’s compatibility with existing team members?
	How should I reference-check a potential hire?

	7.2.4 Agile Development Teams
	How do I manage agile development teams?
	OK, so what does the Agile Manifesto have to do with managing agile teams?
	Does this approach always work?
	Do you have some more specific advice for managing agile teams?

	7.3 Project Management Basics
	What is a project?
	What makes a software project different from any other kind of project?
	Is software project management similar to systems project management?
	What does the software project manager control?
	What do you mean by resources?
	What about the schedule?
	What about product functionality?
	How does the project manager put all of these control factors together?

	7.4 Tracking and Reporting Progress
	What is a work breakdown structure and why is it important to project tracking?
	What is the level of detail of the tasks in the WBS?
	What is the WBS’s role in project planning?
	Are there any drawbacks to the traditional WBS?
	Are there any alternatives to using the WBS?
	How is work and progress tracked in software projects?
	What is a Gantt chart?
	What does the Gantt chart look like?
	Can the Gantt chart be used for large projects?
	How can the Gantt chart be used for ongoing project management?
	What is the CPM?
	What are the steps in CPM planning?
	Can you illustrate the technique using the baggage inspection system?
	Are there downsides to using CPM?
	What is PERT?
	How do you build the PERT diagram?
	Can you show me an example?
	Are there any downsides to using PERT?
	Are commercial products available for building these charts?
	Can you recommend the best tool to use?
	Is becoming an expert in using the project planning tools the key to being a good software project manager?

	7.5 Software Cost Estimation
	Are there well-known and respected tools for doing software project cost estimation?
	What is basic COCOMO?
	Can you give me an example using COCOMO?
	Where do the source code estimates come from?
	Should I use more than one estimate?
	What about the intermediate and detailed COCOMO models?
	What is the adaptation adjustment factor?
	What is the effort adjustment factor?
	What do these adjustment factors look like?
	How widely used is COCOMO?
	What are the downsides to using COCOMO?
	What is COCOMO II?
	What is WEBMO?

	7.6 Project Cost Justification
	Is software an investment or an expense?
	What is software return on investment (ROI) and how is it defined?
	What is an example of a project ROI justification?
	Yes, but how do you measure ROI?
	OK, so how can you represent net benefit and initial cost?
	What is NPV and how can I use it?
	Can you give an example of an NPV calculation for a software situation?
	What is the answer to the question of acquiring the testing tool?
	What is an IRR?
	Can you give an example of an ROI calculation?
	What is a PI?
	How can using PI suboptimize the decision?
	Should I use PI at all?
	What is payback?
	How can payback be applied in a software project setting?
	This seems simplistic. Is payback really used?
	What is discounted payback?
	Can you give an example?

	7.7 Risk Management
	What are software risks?
	How do risks manifest in software?
	How does the project manager identify, mitigate, and manage risks?
	What are some other ways that the software project manager can mitigate risk?
	Is there a predictive model for the likelihood of any of these risks?
	Do you have any other advice about management risk in software projects?
	How does prototyping mitigate risk?
	Are there risks to software prototyping?
	Are there other ways to discover risks so that they can mitigated?

	7.8 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_C008
	Table of Contents
	Chapter 8: The Future of Software Engineering
	Outline
	8.1 Introduction
	8.2 Open Source
	What is OSS?
	Where did OSS come from?
	What kinds of code can be found as open source?
	What is the value proposition for OSS?
	What is the current state of OSS adoption?
	Who contributes to OSS systems?
	What different kinds of licenses are there?
	Where can I find OSSe projects?
	Do companies really use OSS?
	What are the characteristics of the OSS development model?
	What is software evolution?
	How does software requirements engineering occur in OSS?
	How do the software design and build processes take place in open source systems?
	How are OSS projects managed?
	Are there downsides to using OSS?
	8.2.1 Software Archeology
	What is software archeology?
	What is software archeology used for?
	Can you give an example of an archeological study?

	8.3 Outsourcing and Offshoring
	What is outsourcing?
	Why do companies outsource?
	Which organizations should outsource?
	To whom should you outsource?
	What are some issues involved in offshoring?
	Where in the enterprise should outsourcing be used?
	When should a company not outsource?
	When should outsourcing be done and at what stage of the process?
	How do companies outsource?
	Do you have any rules of thumb for outsourcing and offshoring?
	Does outsourcing ever fail?

	8.4 Global Software Development
	What is global software development?
	What is the business case for GSD?
	What software process can be used for GSD?
	What are the challenges for GSD?
	How can these challenges be overcome?

	8.5 Further Reading
	Appendix A
	Appendix B
	Appendix C

	7228_A01
	Table of Contents
	Appendix A: Software Requirements for a Wastewater Pumping Station Wet Well Control System (rev. 01.01.00)
	A.1 Introduction
	A.1.1 Purpose
	A.1.2 Scope
	A.1.3 Definitions, Acronyms, and Abbreviations
	Audible alarm
	Controller
	DEP
	Detention basin
	Effluent
	EPA
	Influent
	Imminent threat
	Manhole
	Methane
	Overflow
	Pre-cast
	Pump
	Remote override
	Seal
	Security
	Sensor
	Sewage grinder
	Submersible pump
	Thermal overload
	Valve
	Ventilation
	Voltage
	Visible alarm
	Wet well

	A.2 Overall Description
	A.2.1 Wet Well Overview
	A.2.2 Product Perspective
	A.2.2.1 System Interfaces
	A.2.2.2 User Interfaces
	Pumping Station Operator
	Maintenance Personnel

	A.2.2.3 Hardware Interfaces
	Moisture Sensor
	Float Switch
	Access Door Sensor

	A.2.2.4 Software Interfaces
	Pump Control Unit
	Control Display Panel
	Alarm Display Panel

	A.2.2.5 Operations

	A.2.3 Product Functions
	A.2.4 User Characteristics
	Pumping Station Operator
	Maintenance Personnel

	A.2.5 Constraints
	A.2.6 Assumptions and Dependencies

	A.3 Specific Requirements
	A.3.1 External Interface Requirements
	A.3.2 Classes/Objects
	A.3.2.1 Pump Control Unit
	A.3.2.2 Control Display Panel
	A.3.2.3 Alarm Display Panel
	A.3.2.4 Float Switch
	A.3.2.5 Methane Sensor

	A.4 References

	Appendix B
	Appendix C

	7228_A02
	Table of Contents
	Appendix B: Software Design for a Wastewater Pumping Station Wet Well Control System (rev. 01.01.00)
	B.1 Introduction
	B.1.1 Purpose
	B.1.2 Scope
	B.1.3 Definitions, Acronyms, and Abbreviations
	Attribute
	Class
	Message
	Method

	B.2 Overall Description
	B.2.1 Wet Well Overview
	B.2.2 Wet Well Software Architecture

	B.3 Design Decomposition
	B.3.1 Class Model
	B.3.2 Class Details
	B.3.2.1 CWetWellSimulator
	B.3.2.2 CLogger
	B.3.2.3 CXmlData
	B.3.2.4 CWetWellSimulationData
	B.3.2.5 CSensorState
	B.3.2.6 CSensor
	B.3.2.7 CAbstractSensorRelay
	B.3.2.8 CSensorRelay
	B.3.2.9 CMethaneState
	B.3.2.10 CMethaneSensor
	Methane Elevation
	Methane Sensor State
	Methane Sensors Query Time
	Methane Sensors Reliability

	B.3.2.11 CMethaneSensorRelay
	Number of Methane Sensors
	Methane Sensor Reading Period

	B.3.2.12 CWaterState
	B.3.2.13 CWaterSensor
	B.3.2.14 CWaterSensorRelay
	B.3.2.15 CPumpState
	B.3.2.16 CPumpSensor
	B.3.2.17 CPumpSensorRelay
	B.3.2.18 CVentilationState
	B.3.2.19 CVentilationSensor
	B.3.2.20 CVentilationSensorRelay

	B.3.3 Sequence Diagram

	B.4 References

	Appendix A
	Appendix C

	7228_A03
	Table of Contents
	Appendix C: Object Models for a Wastewater Pumping Station Wet Well Control System
	Appendix A
	Appendix B

