Microsoft SQL
Server 2008

FOR

DUMMIES

by Mike Chapple

WILEY
Wiley Publishing, Inc.

Microsoft SQL
Server 2008

FOR

DUMMIES

Microsoft SQL
Server 2008

FOR

DUMMIES

by Mike Chapple

WILEY
Wiley Publishing, Inc.

Microsoft® SQL Server® 2008 For Dummies®
Published by

Wiley Publishing, Inc.

111 River Street

Hoboken, NJ 07030-5774

www.wiley.com

Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana
Published by Wiley Publishing, Inc., Indianapolis, Indiana
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permit-
ted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written
permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600.
Requests to the Publisher for permission should be addressed to the Legal Department, Wiley Publishing,
Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at
http://www.wiley.com/go/permissions.

Trademarks: Wiley, the Wiley Publishing logo, For Dummies, the Dummies Man logo, A Reference for the
Rest of Us!, The Dummies Way, Dummies Daily, The Fun and Easy Way, Dummies.com, Making Everything
Easier, and related trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc., and/
or its affiliates in the United States and other countries, and may not be used without written permission.
SQL Server is a registered trademark of Microsoft Corporation in the United States and/or other countries.
All other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated
with any product or vendor mentioned in this book.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND THE AUTHOR MAKE NO
REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF
THE CONTENTS OF THIS WORK AND SPECIFICALLY DISCLAIM ALL WARRANTIES, INCLUDING WITH-
OUT LIMITATION WARRANTIES OF FITNESS FOR A PARTICULAR PURPOSE. NO WARRANTY MAY BE
CREATED OR EXTENDED BY SALES OR PROMOTIONAL MATERIALS. THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY SITUATION. THIS WORK IS SOLD WITH THE
UNDERSTANDING THAT THE PUBLISHER IS NOT ENGAGED IN RENDERING LEGAL, ACCOUNTING, OR
OTHER PROFESSIONAL SERVICES. IF PROFESSIONAL ASSISTANCE IS REQUIRED, THE SERVICES OF
A COMPETENT PROFESSIONAL PERSON SHOULD BE SOUGHT. NEITHER THE PUBLISHER NOR THE
AUTHOR SHALL BE LIABLE FOR DAMAGES ARISING HEREFROM. THE FACT THAT AN ORGANIZA-
TION OR WEBSITE IS REFERRED TO IN THIS WORK AS A CITATION AND/OR A POTENTIAL SOURCE
OF FURTHER INFORMATION DOES NOT MEAN THAT THE AUTHOR OR THE PUBLISHER ENDORSES
THE INFORMATION THE ORGANIZATION OR WEBSITE MAY PROVIDE OR RECOMMENDATIONS IT
MAY MAKE. FURTHER, READERS SHOULD BE AWARE THAT INTERNET WEBSITES LISTED IN THIS
WORK MAY HAVE CHANGED OR DISAPPEARED BETWEEN WHEN THIS WORK WAS WRITTEN AND
WHEN IT IS READ.

For general information on our other products and services, please contact our Customer Care
Department within the U.S. at 800-762-2974, outside the U.S. at 317-572-3993, or fax 317-572-4002.

For technical support, please visit www.wiley.com/techsupport.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may
not be available in electronic books.

Library of Congress Control Number: 2008933745
ISBN: 978-0-470-22465-6

Manufactured in the United States of America
109 87654321

WILEY

www.wiley.com

About the Author

Mike Chapple, MCDBA, CISA, CISSP is an IT professional with over ten
years’ experience with SQL Server. He currently serves as an IT profes-
sional with the University of Notre Dame, where he also teaches an
undergraduate computer applications course. Mike actively participates
as a subject matter expert in the SQL Server community and writes
extensively on SQL Server at the About.com Guide to Databases. He also
serves on the Center for Internet Security SQL Server security standard
development team.

Mike is a technical editor for Information Security Magazine and is author
of several books, including Information Security llluminated and the CISSP
Prep Guide. Mike holds a BS in computer science from the University of
Notre Dame, an MS in computer science from the University of Idaho,
and an MBA from Auburn University.

Dedication

To my family: Renee, Richard, Matthew, and Christopher who
lovingly put up with me during the hours I spent buried in my
laptop writing this book.

Author’s Acknowledgments

[would like to thank Kyle Looper and Susan Christophersen,

my editors at Wiley, who provided me with invaluable assis-
tance throughout the book development process. I also owe a
debt of gratitude to my literary agent, Carole Jelen of Waterside
Productions. Doug Couch served as technical editor for this title
and was a great source of advice as we worked through some of
the more difficult portions of the book. I'd also like to thank the
many people who participated in the production of this book but
I never had the chance to meet: the graphics team, production
staff, and all those involved in bringing this book to press.

Publisher’s Acknowledgments

We're proud of this book; please send us your comments through our online registration form
located at www.dummies.com/register/.

Some of the people who helped bring this book to market include the following:

Acquisitions, Editorial, and Composition Services

Media Development Project Coordinator: Katherine Key

Project Editor: Susan Christophersen Layout and Graphics: Carl Byers

Acquisitions Editor: Kyle Looper Reuben W. Davis
Copy Editor: Susan Christophersen Proofreader: Toni Settle
Technical Editor: Doug Couch Indexer: Broccoli Information Management

Editorial Manager: Jodi Jensen
Editorial Assistant: Amanda Foxworth
Sr. Editorial Assistant: Cherie Case

Cartoons: Rich Tennant
(www . the5thwave . com)

Publishing and Editorial for Technology Dummies
Richard Swadley, Vice President and Executive Group Publisher
Andy Cummings, Vice President and Publisher
Mary Bednarek, Executive Acquisitions Director
Mary C. Corder, Editorial Director
Publishing for Consumer Dummies
Diane Graves Steele, Vice President and Publisher
Joyce Pepple, Acquisitions Director
Composition Services
Gerry Fahey, Vice President of Production Services

Debbie Stailey, Director of Composition Services

Contents at a Glance

JOCEOAUCEION «eeeeeaaeeaeeeeeeeeeennnnaaaeeeeeeessnnnnnsssseeeeesnnnnsass]

Part I: Welcome to SOL Server 2008.............uuueeeeeeeeeeee T

Chapter 1: Introducing SQL Server 2008...........cccoeceeierrieriierienieneeseeseesieeseeesaeesaesnenns 9
Chapter 2: Building Your SQL SEIVETcccoceriiirieieieieeeeeeeeetee et 19
Chapter 3: Working with SQL Server TOOISccocueviiviiiiiniiiiecieeieseeeeeeeeen 35
Part 1I: Building SOL Server 2008 Databases.............. 49
Chapter 4: Planning Your Database..........cccceeciiriiriinienienieieciecrieeiesie e sveseeseee e 51
Chapter 5: Creating Databases and Tables............cccceeeviiieieeeienenieeeeeeeeeee e 73
Chapter 6: Imposing Constraints and Relationships...........cccccoeeeiiiinininniniinenn, 91
Part I1I: Retrieving Data from Databases................... 107
Chapter 7: Constructing Simple Database Queriesccceviivervienvenieniieniieneenne 109
Chapter 8: Joins and Other Advanced QUETIES..........ccoceeveerieeniinencienrieeieeieseeneene 127
Chapter 9: Turning Data into Information with SQL Server

RePOItiNgG SEIVICEScouiiiiiieiiieeet ettt 143

Part 1U: Inserting and Manipulating Your Data.......... 159

Chapter 10: Inserting, Updating, and Deleting Data..........cccceevveveecieeciincencienieneenne 161
Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers.......... 175
Part U: SOL Server Administrationccccccceeeeene. 191
Chapter 12: Keeping Your SQL Server Running Smoothlycccceevirienviiniennnnns 193
Chapter 13: Automating SQL Server 2008 Administration...........ccecceeeervverrienivennenne 213
Chapter 14: Troubleshooting SQL Server 2008 Problemsc.ccccecvevieevienvennene 233
Chapter 15: Replicating Data across Multiple Servers...........cccoceeverervierienenenennenne. 249
Part Ul: Protecting Your Data................cccceeeeeeecneeee. 269
Chapter 16: Protecting Your Data from Prying Eyes.........ccccoovivviriiniiniiniiniineenne 271
Chapter 17: Preserving the Integrity of Your Transactions.........ccccecceveverriencvennenne 293
Chapter 18: Preparing for DiSAStercccoervieeiiiriinienieseeieesieeieere e sne e 305
Chapter 19: Staying Alive: High Availability in SQL Server 2008ccccceevennenne. 323

Chapter 20: Implementing Policy-Based Management with the Declarative
Management FrameworK..........c.coocveeiiiiiiiiiiiececeee et 339

Part Ull: The Part of Tents..........ccueeeeceecaeecceeseesneeens 351

Chapter 21: Ten Ways to Keep Your SQL Server 2008 Databases Humming......... 353
Chapter 22: Ten Database Design Tips

JRACK «....eeaaaeeaaaaaaaaeeeeeaaaaeaaaceeneeeeaaeeaaanneeeeeeeeaceeaee 303

Table of Contents

JOEEOAUCTTON «eaeeeeeeeaeeeeeeennaaeeeeennnaseeeennnaseeeennnsseeeennns |

ADOUL THiS BOOKeeviiiiiiiiiieeeeeeeeeee ettt ettt e st e e senaneeeea 1
Conventions Used in This BOOK.......c.ccccoovviiiiiiiiiiicieiccceeee e 2
What You Are NOt tO REAdooovvviiiiiiiiiceeeeeeeee e 2
FoOolish ASSUMPIONS.......cooiiiiiiiiiiieiecieeeset et 3
How This Book Is Organized..........ccccecueviiniiniiniinieeieeieeieeiesie st 3
Icons Used in ThisS BOOKccc.oooviieiiiiiiieeeceeeeeeeeeee et 5
Where to GO from HETE........oouviiiiiiiiiiieeeeeeeeee et 5

Part I: Welcome to SOL Server 2008cuuuueeeeeeeeeee 7

Chapter 1: Introducing SQL Server2008. 9
Starting Off on the Right FOOtcccociviiniiniiiieen 10
Examining SQL Server editions..........cccceeveeeiirieeieciesieceeceeeenee 10
Checking system requirements..............ccocererienienieneneneneeeeeeeenns 11
Understanding the Basic Components of SQL Servetr...........cccccceeveeneeneen. 13
SQL and Transact-SQL......ccccuveiieuiiiieiirieeeieeecceiree et esaeeeeenne 13

SQL Server COMPONENTS.......ccceeirriirrieenieeienienieneenreesteesseessessessennns 13
Implementing Databases with SQL Server 2008ccccocevviivvieriieneennen. 16
Setting UP YOUT SEIVETcciiviiiiiiiiieeieeteete sttt et 16
Stocking it with databases.........cccecvecierieviriniieee e 16
Accessing and updating your datac.cceeceevieevienienienieneeeeeienn, 16
Managing and protecting what you’ve built..........cccccoeevveevieniennnnnne. 17
What’s New in SQL Server 2008cooviiiiiieeiieiieeeeeeee e cesveee e 17
Declarative Management Framework...........ccoccoecveviiniiniinenniennnnnne. 17
Encryption and Auditing.........cocceeververnieniieniinieniccceceeeee e 18
Resource conservationc..c..coceceveeieninincnneniecicneneneee e 18
Date/Time Data TYPES......cccveeeereeiiieieeieeieeieeeeeeesre e esreesaeeaeeee e 18
Chapter 2: Building Your SQL Servercconetnt. 19
Installing SQL Server 2008ccoeiierienieneerieerieesieeie e eie e resaeseeseees 19
Choosing between default and named instancescccceeueunen.e. 19
Selecting an authentication mode............cccoccevvvervieninninneenenciennene 20
Choo0sing ServiCe aCCOUNLS........cecverierieniieriieneeeeieeie e 21
Selecting the collation............ccceeviieeviiiccieeeeeee e 21

Performing the installation.........c.cccocevviiiiiniininninieeeeeeee 22

X[‘i Microsoft SQL Server 2008 For Dummies

Upgrading an Existing SQL Server Installationccceceevevevecvecienennenen. 25
Preparing for an upgrade with Upgrade Advisor............ccccecueeueenne. 26
Upgrading Your Installationcccceeeveeeciieciieiieeie e 27

Configuring Database Mailcccovirinieiniiinieeeeceeeee e 28

Using SQL Server’s Built-In Databases.........cccccceevvevieneenenciincieecieeieeeeen. 33
Master database.........cccecueveriniriiieieeetee e 33
The msdb databasec.ccceveriiirinieneniieceeeeeeeeens 33
The model database..........coccoveeviriiirnenieiieeeeee e 34
The tempdb databaseccceeviiieciiieieeeee e 34

Chapter 3: Working with SQL Server Tools....................... 35

Using SQL Server Configuration Managercccceeeeeveecieecieeceeevenneenen. 35
Launching SQL Server Configuration Managercccceceeceeeenee. 36
Starting and stOpPINgG SEIrVICES.......cccvevveeieriieieeeeeeeieee e 36
Changing Service aCCOUNtS.........cccevverierienieneeneee et eae e 38
Changing service start MOdes...........cceceerverieneeneeniernieeeeieneeeeeenns 39
Modifying networking settings..........ccoccevieniinennenienneneneeieeeee 40

Managing Your Server with SQL Server Management Studio.................. 43
Starting SSMS and connecting to an instance...........ccoceceeveeeeneennne 43
Exploring the SSMS Interfaceccoceceeeieeciieienieneeseeeeeeie e 44
I[ssuing Transact-SQL qUETIES.........ccceeeerierieneenieieeieeeeee e 45

Working from the Command Linecccoccevvieveiiniiiniiiniienieneceeneeseesieenne 46

Part 1I: Building SQL Server 2008 Databases............... 49

Chapter 4: Planning Your Database 51
Introducing Database Design Concepts........cccveveevieecieecieeciencieeieeeeseenen 51
Understanding the Elementsof a Databasecccccoevveveeciinciinciencieneennen. 52

Database SEIVETS........cceuirieiiuirieieeriesteteietetete ettt 52
Organizing a Databasecccecveveierierenieieereeee et 55
Defining your database objectivesccccccvvvveeveceeniieniesieeeeene, 55
Grouping data into tablesccccocevierienininieeeeeeee e 56
Selecting Primary KEYScociveeueeievierieieceeeeeeeeeeste e ne s 59
Linking related tables..........coccovciirieeieniiiniieeeeeceeeee e 60
Diagramming Your Databaseccccceceveiirienieniienieenieieeieeie et 61
Staying Fit and Trim with Normalization..........cccccoecevvirviniinninneniieneenen. 62
First normal fOrm.........coceeviiriiniiiniie e 62
Second and third normal fOrmscccceceeeeircienenenenereeeeens 63
Choosing Data Types for Your Tables..........cccceceeviievieecieeciieieeieeeeseeneen 64
NUmMeric data tYPEScovecvevviriiiieeieeieeeereee et 65
Date and time data tyPeSccceevervierrierrierieeieeieseeeeie e 66
Character string data types.......ccoceeiereenienieneeeeeeieeeeeeee e 68
Binary data typPes.......cccveeiiieeiieeiie et 69
Other data tYPES ..ccveevieieeieciecteetee ettt 69

Working with NULL Values........ccccoociiviiiininiiniiieieeeeeeeeereeeeeee e 70

Table of Contents

Chapter 5: Creating Databasesand Tables 3
Creating a Databasecccoevveeieiiiiiiiecieeceee ettt 73
Altering database properties............cocceceverererierneneneneseeeeeeenes 77

Deleting or renaming a database..........ccccecveeeiiriienniiincieenieeeieeee, 78

Specifying Files and Filegroups.........ccceccovviirciiniienienieneeeccieeieeieeveseeees 80

SQL SEIVET fIl€S ...uvvviiieiiiieieieieeeeteee ettt 80

UsIng fileBroupsoovvevieeiiiriiiieiietetct et 83

Creating @ TabIe........ccioieieieeeeeeeee ettt 85
Getting Startedc.occveevieeieciececeeee e 85

Adding COIUMIScccvieiieiieeieeieceereese e ere et eteetese e s e e s e esaeesaeenseens 87

Selecting a primary K€yccccoeveviiiiiienieeiienieeieeeeeeeeeeee e 87

Modifying tables.......cccoivvieriiiiiiiieieeeseceeeee e e 89

Deleting tables.......cociviiriiniiieecieceeeeteee e e 90

Chapter 6: Imposing Constraints and Relationships 91
Introducing Constraints...........coceeveriieniiniienieteeceeeeeee e 91
Controlling Database Contents Using Constraints............ccccceevveevenneennen. 92
Filling in empty values with DEFAULT constraintsc.ccc........ 92

Enforcing Database INtegrity.........cccocuerieniecienieiieeeeee e 102
Enforcing Uniqueness..........cccovcveeieeienienienieneeseeceeieeve e eae e 102

Enforcing referential integrity with FOREIGN KEY constraints ... 103

Part l11: Retrieving Data from Databases 107

Chapter 7: Constructing Simple Database Queries 109
Retrieving Data with SELECT Statements...........cccocceeveecieevieniieccieeieneenns 109

The SELECT. . FROM clause..........ccccocererirnienieneninenieienienesenene 110

The WHERE clause..........cccocoviriiiiniinininineccnieeceecteeneeneeene 112
Organizing Query ReSUILS........cccovieriiriiniiiiieciecee et 118
SOrting OULPUL ...ouveiieiiiiieteeeeeee ettt 118
Summarizing data with aggregate functionsccccccveeveenenneen. 120

Grouping resuULLScocereririeieeereeee et 123

Renaming columns in your outputccecceeveeveeviencieeseesieesiennnen. 124

Chapter 8: Joins and Other Advanced Queries................... 127
Joining Data from Multiple Tablescccccecevviinieniiineeeceeeeeeeeeee 127
Matching records with INNER JOINS.........ccccoovtrviiveniinniinienienene 128

Including nonmatching records with OUTER JOINs 131

Joining a table with itselfcoccoiiiiiiniine 133

Taking SELECT to the Next Levelccoocovirieinieniiniicceeeeeceene 135
ComPULing VAIUESccoeecvieiieiicieciecteceet et 135

Managing complexity with subqueriescccceeeveevvineenieeciennnn. 137

Dealing with different casesc.ccceevuervierciiniieniienieereeneeeeeeeene 138

aaa

Xi

xi(/ Microsoft SQL Server 2008 For Dummies

Using Database VIEWSccccoviiiiirieeiieiiiiienieneeitese ettt sne e 139
Creating @ VIEWcocueviirierienieniestetestet ettt sttt 139
MOdIfYiNG @ VIEW ..c..eviiiiieiieeeeeieee ettt e seee e seaeessne e 140
DeletiNg @ VIEWcocveeiiiieeieeeeieee ettt e veesae e ve s eaeeaae s 141

Chapter 9: Turning Data into Information

with SQL Server Reporting Services........................... 143
Setting up SQL Server Reporting Services..........cccoovveveeveecieecieeceeeieneenns 143
Creating an SSRS Report with Report Builderccoceeiiiiinininennenne. 146

Installing and starting Report Builder 2.0.........ccccccoveeievieerieeiennnn. 147
Choosing a data source and data setc.ccoeceeveevercirneesiencnennnen. 147
Laying out the reportcccceecvevieviiiiciceceeese s 150
Publishing the reportcccocvecveierierieeeeeeeee s 154
Working with Deployed (Published) Reports........cccccoevevveeienienieneenenen. 154
VIEWING FEPOTES ..cuvieeiieiiieieeteeeettee ettt et eesee e s e sa e aeereeneas 155
Configuring report SECUTItYccccceeveerierierienieceeceeeee e 156

Part IU: Inserting and Manipulating Your Data 159

Chapter 10: Inserting, Updating, and Deleting Data 161

Inserting Small Quantities of Data............ccoccveeievienieieececcececeeeeeeee 161

Understanding simple data entryc.ccocceevereenceninninnennenneneen. 162

Writing INSERT statementsccccceeieeieecieecieeieeieceeseeseeseesieenes 163

Modifying and Deleting Data..........ccccevierieniiniiniiieiecsieeiecie e 164

Modifying data with UPDATEcccccociviiiniiiiieeceeeeieeieeene 164

Removing data from a databaseccocevieveineininninninienienen, 165

Importing Large Quantities of Data..........cccccceeveeviienieneeceecieiecieeeeeeee 166

Inserting query results........ccoccoceeviiiennenneneneeeeeeeeeen 166

Copying bulk data with BULK INSERT..........ccccecerernineinireeennne. 167

Performing blk operations from the command line with bcp...... 168

Working with SQL Server Integration Services..........cccceevvvvvevrirennnennnen. 169
Chapter 11: Saving Time with Functions,

Stored Procedures, and Triggersc.oovvinivnnnnn 175

Reusing Logic with FUnctionsccccocvevieieieveninececceeee e 175

Understanding types of functionscccceccevvieviienieininnennienniennen. 176

Leveraging SQL Server’s built-in functionsccccceeceevinviniieniiencennenns 177

Calling built-in funCtioNSccceevieeieciereeceee e 178

Obtaining a list of built-in functions...........ccccoocevvenniiieniniene 179

Creating Your Own FUNCHIONS.........cccveiieiieiieieciecieceeie et 181

Reusing SQL Code with Stored Procedures..........ccceeeecverciiriencienceenennns 183

Saving time with system stored procedures...........ccccceevrrveruenenn. 184

Writing your own stored procedures...........cccocuevevercieneeneeneennennnes 185

Table of Contents

Updating Data Automatically with Triggers.........ccoccovveevervirviinieniiencinnns 187
Creating @ triggercocivierierieiieeieteeeteee et 188
Disabling @ trigger........ccocieeiiieiiieieeeieeee e 189

Modifying and Deleting Functions, Stored Procedures,

ANA TTIGGETS ..eiiieiieiieeee ettt re e ste e e e aeetessaessaessnesseenes 189
Modifying ODJECES ...evvvieiieieeiecieeeeeteeee et 189
Deleting ODJECEScccveviiiiiieeeeetcectee ettt 190

Part U: SOL Server Administrationccccceceeeeeeecs 191

Chapter 12: Keeping Your SQL Server Running Smoothly 193
Indexing Data to Improve Query Performance..........ccccccoeevvevenciencvennnnns 193
Using clustered iNdeXes...........occeeciirvieerieeienienieneeseeseeeeieesaeenen 194
Creating nonclustered iNAeXEScccceeverienieneeninnierneeieeieennn 194
Optimizing index performanceccccoceeveeneeneeniennennensenieneens 197
Improving Performance with Partitionsc.ccccoceeivineiincinnieee. 198
Creating a partition function..........cccoeceeveevieiinineneeeeeee 199
Creating a partition sCheme..........c.cccceeveeeienienienieceeeeeeeeee e 200
Creating a partitioned table..........c.ccccoeveeviiniininnieceeeeeeceeeee 201
Updating Database StatistiCsccceeerviiriiriiiniiinieieececeeeeeeeeeeee 202
Automatically updating statistiCs........cccocevviirviencienienieniineeene, 202
Manually updating statistiCscccccevevieecieeiieecieeeee e 202
Managing File SiZes.........cccooiririiieieieeceeeeee e 203
Automatically shrinking database files...........ccccceevviniinieneennenne. 203
Manually shrinking a single database file...........ccccccecvrvierieenennnn. 204
Manually shrinking all files associated with a database............... 204
Checking Database INtegrityccceceviererincieieeeeeeeeeeeee e 205
Running DBCC CHECKDB..........ccccoririnniniinineeeneseeeneseeeeeeneen 205
Correcting integrity €rrorsccceeveeeeereeneeneeceece e ee e 206
Governing Resource Consumptioncocceceeveerienieninenenieneneneeeeene 207
Creating resource POOIS.........ccccevveeierienienieneeseecie e ere e 208
Creating workload Sroupscccecueeverienienieneeneeneeieeieeieeae e 210
Creating classifier functions...........cocceeceevieniinenncnninsinececeeeene 211
Activating and deactivating Resource Governor.............ccccceuuen.... 212
Chapter 13: Automating SQL Server 2008 Administration. 213
Scheduling Tasks with SQL Server Agent...........cccccoveveeeeecieecieecieeieneenns 213
Starting SQL Server Agent...........cccocvevevieiriieneneneeeeeeee e 214
Creating a SQL Server Agent joD.......cccovvevienieneeseecieeieeieeieeene 215
Adding job steps to a SQL Server Agent job........cccccevvverieneennennne. 217
Scheduling a SQL Server Agent jobccccoovevviirieniinninnenieeienen. 220
Notifying someone when the job completes...........ccccevvrvieruenenn. 222
Implementing Database Maintenance Plansc.ccccoceveviiinieeenennnen. 222
Identifying the tasks to include in a maintenance plan 223

Creating a maintenance plan..........ccccoeceevverieneeneenieeceeeeeeieeeene 223

xv

X(/i Microsoft SQL Server 2008 For Dummies

Alerting Administrators about Database Events..........cccccoccvevvvnieeniennnn. 228
Configuring database Operatorsc..ccoceeveeneeveersensiensiensienseeneens 228
Creating SQL Server alerts........c.coceevveeeeneeneeneeeeecieeeecveeveeve e 229

Chapter 14: Troubleshooting SQL Server 2008 Problems 233

Understanding the Inner Workings of SQL Server Queries.................... 233
Creating a trace with SQL Server Profiler.............ccocecenenennnnenne. 234
Reviewing trace reSults.........cccoceeveeiereenieneeneeseeceee e eee e 237

Reviewing Log RECOIdS........ccceviiriiiiiiieiceciecieceeieeie et 238
SQL Server €rror 1og........ccecueveeveriiiinieriienieniesteseeseeieene e eae e 239
Windows Application LOg.......cccccvevirriiineniiiniiinienienieneeneeeeeeeen 239
SQL Server Management Studio Log File Viewer.........c..cccoeuennen. 240

Monitoring Your Server with Performance Studio........c...cceevvevveevennens 241
Configuring Performance Studio..........ccccceevveveeneesieeciinsieeiecieeen. 242
Reviewing performance data..........ccccevverierieneeneenienceenieeieeieennn 244

Tuning Your Database with Database Engine Tuning Advisor.............. 246

Chapter 15: Replicating Data across Multiple Servers. 249

Understanding Replication...........coceecueeviiriiniiiniienienieneeeeiesieeeeseeneene 250
SEIVET TOLES.....ooiiiieeieieieieee ettt e s sessesneeseens 250
Articles and publications...........cccocveeieciieciicciieiececeeee e 252
RepliCation tYPEScccvieiieieeiieieeeetetee et 254

Publishing Data with Snapshot Replication..........cccccceeeveeciiivienciencienennns 258
Creating a distributor..........ccceeveieiiiiiiceeeceee e 258
Creating a publication.........cccceevvivienieniinieeeeecceeee e 261

Subscribing to a PUblicationccoccevveireeieieieieeeceeeeeee e 265

Monitoring Replicationccceeiieeeiiiiciieeece e 267

Part Ul: Protecting Your Data..............ccceeeceeeeeeaceneees 269

Chapter 16: Protecting Your Data from Prying Eyes 2n
Creating and Managing LOZinsS........c..ccecuevieviinienniinnennienieeieseeeeeseeneene 271
Creating Server 10Ginscoccoeverierienieenieneeneeeeeeeee e 272
Removing database 10gins..........ccccccveviiercieeiieccecece e 273
Adding Database USETS.........cccceveruiririinieneneeeeteteeese et 273
Managing Rights with ROIEScccccviiiiiiecieeeeeccece e 275
Understanding fixed Server rolescccevevvieneenienseeneenieesuennns 275
Understanding fixed database roles..........ccccocvevievennennennenneennnen. 277
Creating database rolesccoccevierienienienieneecceeeeeee e 279
Assigning users to database roles..........ccccocovevieieciecieeeciieeeee, 282
Preserving Confidentiality with Encryption.........cccccocvviiiiiininincnenne. 282
Encrypting database connectionsccceceeeveeeeneeneeneesieenieennen. 283

Encrypting stored dataccooceeieeienienienieneeeceeeeee e 284

Table of Contents X(/ii

Auditing SQL Server ACtiVity.......ccooceeververneniienienierieneeeeeeieee e 287
Enabling and configuring auditing.........ccccceccevvveniiinienninninnenniennen. 287
Reviewing audit recordscooevivininnneninininceceeceneeeee 291

Chapter 17: Preserving the Integrity of Your Transactions 293

Preserving Transaction Integrity with the ACID Model.......................... 294
PN 7o) 1) ot 128U SRS 294
CONSISLEIICY ..eovvieniieiieieeieete ettt esaeesae e be e beebeeaeeneeas 295
[SOIALION.cuviiiiieieetieteete ettt a et ens 295
DUFADIIIEY ..eovvieiieiieieeeeecec e 296

Creating SQL Server Transactionsccocceeceeverriernensensiensienienieneeneenne 296
COMMIT or ROLLBACKYctiirieiriretneneeteienieteesieneeesee e 297
Testing Transact-SQL statements with transactions..................... 298

Changing the Transaction Isolation Level............cccccooveeviinviiiiiniencieneens 300
READ UNCOMMITTED.......coetiiieieerienteeeietee et 300
READ COMMITTEDc.coiiiiiiiiiiieieeieteteeetei et 301
REPEATABLE READooiitiiieieeteeeeeeeee et 301
SERIALIZABLE.oouiiiiiiieiieneteeeteteeeetee et 302
SNAPSHOT ..ottt ettt st et ne s s 302

Handling EXTOTS......ccociiiiieiieieeecteseestee ettt veeaeste e s v s aesan e 303

Chapter 18: Preparing for Disaster 305

Backing Up YOUY Data......cccceecueeieriiiiinienieecieeieesieesieesieeteetesteeaesneseeanns 305
Backing up databases.........cccceeciieienienienienieeeceeeeee e 306
Saving time with differential backups..........cccccovvievieiiiininnennenen. 309
Saving space with backup compression..........ccecceeceeveeninnienneennnen. 310
Backing up the transaction 10gcccceevieeeviieciieiiiee e 312

Specifying Disaster Recovery Requirements with Recovery Models 315
Choosing a recovery model..........ccccceeverienieneeneeneenieeseesieeieennn 315
Changing recovery models...........ccoecuevierienienieeneeneeieeseenieeie e 316

Restoring Your Data after a Disastercccooceevieneeneeciniiniiinienieneee 317

Using Database Snapshotsccocoviiniiniiniiniieneeeceeesee e 320
Creating a database snapshot.........cccceceevvevieciivinincieeeeeeee 320
Accessing a database Snapshotccoceveveveniniiecenereeeeee 321
Reverting to a database snapshotccccceevvevieiieiiececciecieee, 321

Chapter 19: Staying Alive: High Availability in SQL Server 2008 . . .323

Creating Redundancy with Database Mirroringccccceceevvervvencveneenns 324
Choosing an operating modecocceevvenienieneeneecieeneeieeeeennn 325
Configuring Mirroring..........cccceevevvererieieveerieiesese et eeenes 325
Monitoring Database Mirroringc..ccocceeveeveeverniensiennensenseennn. 330
Failing over a mirrored database..............ccceeeuerecieeiiiesciiecieeeieene 331

Synchronizing Databases with Log Shipping..........ccccecvvriiiiinenincnene 333
Configuring log Shipping.......cccccceevieeiierieriesieeeeeeeee e 333

Failing over to a log shipping secondary instance........................ 337

X(/ii[‘ Microsoft SQL Server 2008 For Dummies

Chapter 20: Implementing Policy-Based Management

with the Declarative Management Framework 339
Coming to Terms with DMF..........cccccoiiiiiniiiieeceeeeeeeee 340
Creating DMF POLICIEScceeieiieeiiecieciee ettt 340

Creating a CONAItioNcoevieiiiieniieeeeeeeee e 341
Creating @ POLICY ..cccvieviieieeieeiecieeteeeeceet ettt ve e ae e 344
Using On Demand Execution Mode............cccceevevienieneeniennienieeieeeeneenns 346
Verifying policy compliance............coovevervierviennieniienieneenceneeseeenees 347
Enforcing a policy manuallyc.coccevveriieniiniieniiiniiieiceeieeene 348
Automated Policy Enforcement...........coccoovevvieniiiniiniiniiniiieieceeienene 349
Viewing Policies Affecting a Target.........cccevvvveeeieveneneneeeeeeeeeeeene 350

Part Vll: The Part of Tensccccccceeeceeeseeaseecseeenees 351

Chapter 21: Ten Ways to Keep Your SQL

Server 2008 Databases Humming 353
Monitor Query Performance..........ccoccoeveveeniinienniieneenenieeieseeseeseeseene 353
Back Up Your Data Routinely.........ccoccoeieviiniininniiniiieeienienieeeeseeneene 354
Verify Database Integrity Oftencccoeciviiiiecciicieeeeeeee e 354
Tune the Physical Structure of Your Databases...........ccccccceecveevvenvennenns 354
Conserve Transaction Log DisSK Space..........cccceevuievieecieecieecieeieeieeeeeeenne 355
Monitor Database LOgS........cccveeiuieieieieecieeeceeeee e 355
Automate Administrative Alerts..........coovveevencienvieniienieeneeneeeeeeieenn 356
Manage MUltiple SEIVELSc.cocieviirieniirieeteieeieeee ettt 356
Simplify User Rights Administration with Roles...........cccccocevreninncnnne 356
Perform Security REVIEWSccoceeiiiiiiiiieeeeeee e 357

Chapter 22: Ten Database Design Tips.................covutnn. 359
Plan ANEad.......cc.oouieiieieieieeeee ettt s 359
Draw Before YOou CHCKcoooririniiiiieeeeeeteteeee e 360
Choose Primary Keys Carefullycccceeeeveeniieniieneeneeieeieeieeeeseeseenns 360
Select Data Types with Space Efficiency in Mind..........cccccceevvvvvienienninnns 360
Make Sure Your Fields Are Single Purpose.........ccoceevevviiriiniieniienieenceens 361
Remember the Meaning of NULL...........cccccovviiiiniinninenierieneeeeeeeeee 361
Normalize when Possiblecccooiiiiiiiiiieeeeeeeeeeee 361
Manage Your Relationshipscccocveiieeieiieniieiecececieee e 362
Use Descriptive NAIMEScocveiieiieeiiieiecieeieeeeseeesieeseesveesaesveesaesnesenens 362
Document YOUr DeSigGN........cocviviiiiieriiiniiniieieneereeseeseeie et saee e 362

JOACK ceaaeeeeeeeeeeeeeeeeeeaaeaeaaaaaaaanannnnnnnsnseseeseeeeeeeeeeeeeees 303

Introduction

've been using SQL Server for longer than I care to admit. Let’s just say

that remember the days when Microsoft first released its own version of
SQL Server after obtaining the rights to it from Sybase Corporation. That was
a long time ago!

Why have I been using SQL Server for such a long time? Quite simply, I
believe in its power as a user- and business-friendly database platform that’s
readily accessible to users in most modern enterprises. It’'s much more pow-
erful than desktop databases such as Microsoft Access, and it’s rapidly gain-
ing market share over the industry leader, Oracle.

SQL Server is unique in that it easily accommodates users with a wide range
of experience. If you're upgrading from Microsoft Access, you’ll find many
of SQL Server’s graphical user interfaces friendly and familiar. On the other
hand, if you're a database professional moving from another platform, you’ll
find that the ability to directly issue commands to the database accelerates
your learning curve.

About This Book

This book provides you with an introduction to many of the commonly used
features of SQL Server 2008. You'll find that it’s an excellent starting point for
anyone beginning to use SQL Server and offers a great foundation for your
database career. Some of the important issues I cover in this book include:

v Choosing the appropriate edition of SQL Server for your needs

v Orienting yourself to the SQL Server database management tools

v Installing and configuring your first SQL Server 2008 database server

v Designing your first database

v Creating databases and tables in SQL Server 2008

v Imposing constraints on database tables and creating inter-table
relationships

v Retrieving data from your database with simple and advanced Transact-
SQL queries

2

Microsoft SQL Server 2008 For Dummies

v Creating basic reports with SQL Server Reporting Services
v Inserting data into your database via manual or bulk insertion

v Using stored procedures, functions and triggers to automate database
tasks

1 Keeping your database server running smoothly with indexes and partitions

v Limiting resource consumption with SQL Server 2008’s new Resource
Governor

v Automating database administration with SQL Server Agent and
Maintenance Plans

v Troubleshooting and tuning SQL Server databases

v Protecting your database with security controls, backups, and transactions
v Creating high-availability database solutions for critical IT environments
v Using the Declarative Management Framework to create policies cover-

ing multiple SQL Server installations

SQL Server 2008 is the most powerful database product ever released by
Microsoft. In this book, I scratch the surface of this product’s powerful capa-
bilities by providing you with the information you need to get up and running
quickly.

Conventions Used in This Book

Throughout the book, I apply the following typography conventions to help
guide you through some of the information I present:

v Text that appears in this special font is certain to be a URL (Web
address), e-mail address, filename, folder name, or code.

» When [use a term that I think you might not be familiar with, I apply ital-
ics to that term to let you know that I go on to define it next.

+ When I tell you to choose menu commands, I do it like this: Choose
Filer>Save, which means choose the File command and then choose the
Save command.

+»* When [want you to type a specific item, I put it in bold text.

What You Are Not to Read

There’s quite a bit of material in this book. Some of it will be more important
to you than others, depending on the way you use SQL Server and your role

Introduction 3

within your organization. If you're looking for a broad-based introduction to
SQL Server, feel free to start reading at Chapter 1 and continue through the
end of the book. Otherwise, I wrote each chapter with the intention that it
stands on its own merit. Feel free to flip through the Table of Contents and
skip directly to the chapters of most interest to you.

If you're not involved in designing or modifying database structures, you can
skip Chapters 4, 5, and 6.

If you're not responsible for day-to-day administration of SQL Server, bypass
Chapters 12, 13, 14, and 15.

Foolish Assumptions

I've made a few assumptions about you when writing this book. Here’s what I
guessed:

v You're already comfortable using a computer and with basic use of the
Windows operating system. You should feel comfortable starting pro-
grams and opening files.

v You're familiar with the Internet and know how to locate specific infor-
mation using a search engine.

v You're familiar with the use of a simple spreadsheet, such as Microsoft
Excel, to organize information. You may not know all the advanced features
of such software, but you're able to create a simple Excel spreadsheet.

If these assumptions don’t describe you, you might be starting with the
wrong book. I suggest going out and picking up a copy of PCs For Dummies or
Windows Vista For Dummies to help you get started.

How This Book Is Organized

This book is made up of seven parts that introduce you to Microsoft SQL
Server 2008:

v Part I: Welcome to SQL Server 2008 provides you with an overview
of SQL Server 2008. You find out about the differences between SQL
Server’s Express, Workgroup, Standard, and Enterprise editions so that
you can select the one most appropriate for your needs. You also dis-
cover the decisions you need to make and actions you need to take to
get your first SQL Server installation up and running.

4 Microsoft SQL Server 2008 For Dummies

v~ Part II: Building Databases walks you through the process of creating
your first database in a SQL Server environment. I explain the planning
process you should follow to build your database according to accepted
design principles and walk you through the process of diagramming
your database on paper before implementing it for real. I then describe
the process to create your database, design tables, and enforce relation-
ships between tables.

v Part III: Retrieving Data from Databases describes how to retrieve
information from a SQL Server database. [introduce the Structured
Query Language (SQL) and explain how you can use it to pull the
exact information you need out of your database. [also describe some
advanced database queries that allow you to combine information from
multiple tables and take different actions based on the results of data-
base queries.

v~ Part 1V: Inserting and Manipulating Your Data takes you beyond simple
retrieval of data and describes how you get new data into a database
and modify information that exists within a database table. I describe
the use of SQL statements and bulk import tools to add information to
database tables. You also discover how stored procedures, functions,
and triggers can help you automate tedious database tasks.

v+ Part V: SQL Server Administration is for those of you who have respon-
sibility for administering SQL Server databases. You discover tips and
tricks to help you keep your database operating in an optimal fashion
by tuning performance parameters and governing resource utilization. I
also provide you with advice on using SQL Server’s administration tools
to make the server do the routine work for you. I conclude this section
with chapters dedicated to troubleshooting SQL Server problems and
administering multiple servers in the same environment.

v~ Part VI: Protecting Your Data covers the basics you need to know to
protect your SQL Server data from unwanted intruders and natural or
technical disasters. You see how to implement access controls to limit
the rights of database users and how to use encryption to protect your
information from unauthorized access. I spend an entire chapter intro-
ducing the concept of transactions and explaining how they can protect
the integrity of data stored within your database. Finally, you find out
about techniques for backing up your database so that you can restore
your data in the event of a disaster.

v~ Part VI: The Part of Tens is in every regular For Dummies book that you
will ever pick up. In the first chapter in this part, I describe ten ways you
can keep your database operating efficiently. In the second chapter, I pro-
vide you with ten tips for properly designing new SQL Server databases.

Introduction 5

Icons Used in This Book

Icons are little pictures in the margins of the book that emphasize a point to
remember, a warning to be aware of, or a tip that [think you might find help-
<P ful. Here are the ones I use in this book:

These are bits of information that [want to draw your attention to.

QMING/
V.
S This icon means that I'm alerting you to something critical or I want you to

think long and carefully about any action you might be about to take.

The information that shows up next to this icon might be more than you need
(or want) to know, so you can skip it if you want, or come back to it when you
have more time.

WMBER
‘x&
&

Here’s a nugget of information that’s worth storing in your memory because
you’ll need it from time to time.

Where to Go from Here

If you're looking for a broad introduction to SQL Server, just start reading at
Chapter 1 and don’t put the book down until you fall asleep or can’t bear to
read my writing any longer!

On the other hand, if you're looking for specific information about one aspect
of SQL Server, feel free to pick and choose. Flip through the Table of Contents
and select the chapters that interest you most. As [mentioned earlier, [wrote
each chapter with the intention of making it a stand-alone chunk of informa-
tion. Good luck in your SQL Server 2008 adventures!

6 Microsoft SOL Server 2008 For Dummies

Part |

Welcome to SOL
Server 2008

By Rich Tennant

The Sth Wave

| SNOW GLOBE DATA STORAGE |

@F.‘c\-ﬂE“ N4

= Okay, te’s shake | =
| this thing and %

see what we |

In this part . . .

n this first part, I give you an overview of SQL Server

2008. I point out the differences between SQL Server’s
various editions to help you figure out which one best
suits your purposes. Here is where you also find out how
to get your first SQL Server installation up and running.

Chapter 1

Introducing SQL Server 2008

In This Chapter
Understanding database basics
Choosing a SQL Server 2008 edition
Using SQL Server components
Implementing SQL Server databases

Finding additional information in SQL Server references

SQL Server 2008 is Microsoft’s enterprise-class database server, designed
to compete with products such as Oracle and IBM’s DB2. According to

a Gartner study, SQL Server is rapidly gaining momentum, possessing more
than 17 percent of the worldwide database market in 2006.

SQL Server allows you to store, retrieve, and manipulate data to meet your
organization’s business objectives. The platform provides a number of tools
and technologies to assist you in managing and manipulating your data on
your own terms. For example, using SQL Server 2008, you can

v Import and export data from a variety of file formats

v Link to other databases (both SQL Server and those of other
manufacturers)

v Manipulate data from within Microsoft Excel and Microsoft Access

v Produce professional-quality dynamic reports based on SQL Server data

v Create automated tasks that trigger when data satisfies specified conditions
That’s only scratching the surface of the functionality offered by SQL Server

2008! In this chapter, I focus on the basic knowledge you need to get started
with SQL Server.

’ 0 Part I: Welcome to SQL Server 2008

Starting Off on the Right Foot

There are a couple of decisions you need to make if you're building a new
SQL Server installation. Before making an investment of time or money, take a
few moments to think about the following questions:

» What SQL Server edition effectively balances your business needs
against cost?

1 What hardware and software platform are best suited for your SQL
Server installation?

I help you answer these questions in this section.

Examining SOL Server editions

SQL Server is a complex product with a wide variety of services. Most orga-
nizations need only a subset of that functionality. Rather than charge a single
high price for a one-size-fits-all software package, Microsoft offers SQL Server
2008 in a variety of editions, ranging from the low-end (but free!) Express
Edition to the expensive, fully functional Enterprise Edition.

The right edition for your organization will depend upon your data process-
ing needs. In fact, many organizations host a combination of several different
SQL Server editions, used for different purposes.

Table 1-1 summarizes the differences between the various SQL Server 2008

editions.
Table 1-1 Comparing SOL Server Editions
Feature Express Workgroup Standard Enterprise
Maximum 1 2 4 Unlimited
Processors
Maximum RAM 1GB 3GB Unlimited Unlimited
Maximum Database 4GB Unlimited Unlimited Unlimited
Size
Database Mirroring No No Yes Yes
Log Shipping No Yes Yes Yes
Merge Subscriber Yes Yes Yes Yes

Merge Publisher No No Yes Yes

Chapter 1: Introducing SQL Server 2008

SMBER

3

\\3

Feature Express Workgroup Standard Enterprise
Oracle Replication No No No Yes
SQAL Agent No Yes Yes Yes
SQL Profiler No No Yes Yes
Analysis Services No No Yes Yes
Advanced Analytics No No No Yes
Partitioning No No No Yes
Data Compression No No No Yes
Resource Governor No No No Yes
Cost (per Free $3,899 $6,000 $25,000
processor)

The prices listed in Table 1-1 are current as of the initial release date for SQL
Server 2008 and are subject to change.

Table 1-1 presents only a high-level view of some common differences
between the two platforms. For a complete feature comparison, see http: //
msdn.microsoft.com/en-us/library/cc645993 (SQL.100) .aspx.

One more SQL Server edition is available: Developer Edition. This edition is
designed for application developers and offers functionality exactly the same
as Enterprise Edition at an incredibly low price point of $50 per developer.
What'’s the catch? You can use it only for development purposes. You may not
use it in a production environment (even for disaster recovery purposes).

Microsoft plans to release two more editions of SQL Server 2008: Express
Edition with Tools and Express Edition with Advanced Services. These two
editions will include additional functionality.

Checking system requirements

Before you install SQL Server 2008, you need to verify that the hardware
you intend to use meets Microsoft’s minimum requirements for running SQL
Server. In this section, I outline the requirements for each SQL Server edition.

11

’ 2 Part I: Welcome to SQL Server 2008

A\

Operating system
All editions of SQL Server 2008 will run on the following operating systems
with at least the service pack (SP) level indicated:

v Windows Server 2003 Standard, Enterprise, or Data Center edition with
SP2

v Windows Vista Ultimate, Home Premium, Home Basic, Enterprise, or
Business

v+ Windows XP with SP2 (or later)
+* Windows Small Business Server 2003 with SP2

Processor

SQL Server requires a minimum of a 1 GHz processor, but Microsoft recom-
mends the use of 200 GHz or faster processors.

Microsoft charges per physical processor for SQL Server licenses. Current pro-
cessor technology allows manufacturers to build multiple cores on the same
physical processor. Each core is effectively an individual processor. So-called
“dual core” processors include two discrete processors on the same chip, and
“quad core” processors include four computing cores. Microsoft adopted a
very generous licensing policy (unlike that of Oracle and IBM) that allows you
to purchase licensing on a physical processor basis, regardless of the number
of cores on those processors. Therefore, take this into account when choosing
your hardware platform. You’'ll be much better off financially if you choose a
single quad-core processor instead of four single-core processors!

Memory

The bare minimum amount of memory needed to run SQL Server 2008 is
512MB. Microsoft recommends a minimum of 2GB, but I suggest adding as
much memory as your budget allows.

Hard drive

You need about 350MB of free hard drive space for SQL Server’s software
components. If you intend to install optional (but useful!) components such
as SQL Server Books Online (described later in this chapter) or sample data-
bases, plan on having about 1GB free. Don’t forget that this is the require-
ment for SQL Server itself; you'll still need to save space to store your data!

Display
SQL Server 2008 requires at least a VGA (1024 x 768 pixels) video adapter and
monitor.

Software
Before installing SQL Server, be sure you've installed the .NET Framework 3.5.

Chapter 1: Introducing SQL Server 2008

Understanding the Basic Components
of SOL Server

You should begin your SQL Server 2008 adventure with a basic understand-
ing of the components of SQL Server and their purposes. In this section, I
explain how each of the major SQL Server components interact to help you
manage your installation and manipulate data.

SOL and Transact-SOL

The Structured Query Language (SQL) is the language of databases. Any
interaction between a user, program, or server and a database takes place
through the use of SQL, even if the actual SQL code is buried deep within a
graphical environment.

All major relational databases today (SQL Server, Oracle, Microsoft Access,
IBM DB2, and so on) implement the same basic SQL commands. This common
language allows database developers to easily migrate between platforms
and create links between disparate database environments.

That said, every manufacturer of database software adds its own customiza-
tions to support functionality unique to its platform. Microsoft uses the name
Transact-SQL (sometimes abbreviated as T-SQL) to refer to its extended ver-
sion of SQL. Similarly, Oracle calls its enhanced version PL/SQL.

[provide an in-depth exploration of both SQL and Transact-SQL in Parts III
and IV of this book.

SOL Server components

SQL Server provides a number of tools that facilitate your interactions with
SQL Server. Each is designed for a specific set of tasks, although they do have
some degree of overlap.

SOL Server Configuration Manager

SQL Server Configuration Manager (shown in Figure 1-1) allows you to per-
form basic administrative tasks that affect the configuration of your SQL
Server installation. For example, this tool allows you to do the following:

’ 4 Part I: Welcome to SQL Server 2008

|
Figure 1-1:
SQL Server
Configu-
ration
Manager.
|

v Start, stop, pause, and restart SQL Server services
v Configure the use of network protocols to access SQL Server

v Configure SQL Server Native Client connectivity

& 59! Server Configuration Manager

File Action View Help
x| Bc=H

48 5QL Server Configuration Manager (Locl) || protocol Name Status
" 5QL Server Services
4 [5QL Server Network Configuration
7| Protocols for SQLEXPRESS
| Protocals for MSSQLSERVER ElTCPp Enabled
| Protocols for GAMMA E|via Disabled
 5QL Native Client Configuration

=] Shared Memory Enabled
=| Named Pipes Disabled

[discuss the use of SQL Server Configuration Manager in Chapter 3.

SOL Server Management Studio

SQL Server Management Studio (SSMS), shown in Figure 1-2, is the database
administrator’s primary interface to SQL Server 2008. It offers a fully func-
tional management interface, allowing you to configure and interact with
your databases from a single console.

[describe the use SSMS throughout this book, both to directly issue
Transact-SQL commands to SQL Server databases and to build databases
using SSMS’s graphic user interface.

[provide an overview of SSMS in Chapter 3.

SOL Server Books Online

My intention in this book is to provide you with a practical, hands-on intro-
duction to SQL Server’s functionality in an easy-to-read fashion. [don’t intend
it to be a “deep dive” into the technology and syntax of SQL Server. Rather, it
should provide you with a working knowledge of this powerful database plat-
form’s functionality.

Microsoft includes detailed online documentation with SQL Server 2008 in
the form of SQL Server Books Online. This documentation contains the latest
information on SQL Server functionality for administrators and developers
alike. It’s a great place to turn when you're seeking specific information about
command syntax or advanced SQL Server features.

Chapter 1: Introducing SQL Server 2008

|
Figure 1-2:
SQL Server
Manage-
ment Studio.
|

|
Figure 1-3:
Sample

SQL Server
Reporting
Services
report.
|

Az Microsoft SQL Server Management Studio @E‘Q
File Edit View Tools Window Community Help

Bl Newquery | [y | ff fh ifa| [Gl @ BB B F
Object Explorer -1 x Object Explorer Details %

Connect~ &Y 3] =&
= [VOSTRO (SQL Server10.0.1075 - sa)
Datab |
p 1 VOSTRO (SQL Server 10.0.1075 - sa)
3 Server Objects VOSTRO 6 Item(s)
[Replication
3 Management
L% SQL Server Agent (Agent XPs disabled) Name Policy Health State

nEEE
3 Security

3 Server Objects

1 Replication

[Management

&SQL Server Agent (Agent XPs disabled)

Ready

Reporting Services

SQL Server Reporting Services underwent a significant overhaul before the
release of SQL Server 2008. This platform allows you to design and publish
dynamic reports based on SQL Server data. I show an example of a report
created with SQL Server Reporting Services in Figure 1-3.

=N Unlitled - Microsoft Report Designer o= ox
Home Insett | View |
Design | Preview
Report Views
1 of 1 @S EmE- | w00% - Find | Next
Sales Report
Product Sales Product Name Quantity Sold Revenue
s LLWountain Frame- LL Mountain 625 93584.422996
Elack,... Frame - Black, 44
Valouning Frame- LL Touring Frame - 36 7201 872000
mm Mountain Bike Socks, L- Yellow, 58
Quantity
All-Purpose Bike Stand- Mountain Bike a0 513.000000
o antity Socks, L
- Froad Frame- Red AllPurpose Bike 249 39591.000000
N Men's Bib-Shorts, M- Stand
ML Road Frame - 90 32120.820000
Red, 52
Mer's Bib-Shorts, 1616 86166.045931
M
[EA=Y (= 0 (s

15

10

Partl: Welcome to SQL Server 2008

Analysis Services

SQL Server Analysis Services offers advanced analytical techniques, such as
the use of online analytical processing (OLAP), data warehouses, and data
mining. The use of this tool is beyond the scope of this book.

There are many other features of SQL Server — too many to list in this chap-
ter. [discuss many of them later in this book. For example, I discuss SQL
Profiler and the Database Engine Tuning Advisor in Chapter 14, and SQL
Server Agent in Chapter 13.

Implementing Databases
with SOL Server 2008

So how do you get started? SQL Server 2008 makes it simple to jump in feet
first and begin working with databases.

Setting up your server

The first step is to create a SQL Server instance on an appropriate computing
platform. Earlier in this chapter, I give you some advice for selecting the hard-
ware, software, and SQL Server edition appropriate for your needs. In Chapters
2 and 3, I provide you with the information you need to set up a SQL Server
instance.

Stocking it with databases

After you have SQL Server up and running, you need to create individual
databases to house your data. In Chapter 4, I provide you with advice for
planning and designing efficient databases. Chapters 5 and 6 describe the
process for creating databases and tables and defining the relationships
between different tables within the same database.

Accessing and updating your data

[dedicate a substantial portion of this book (Parts Il and IV) to helping you
put data in your database, update it, and retrieve it when necessary. My
focus in this book is on the use of Transact-SQL and SQL Server Management
Studio to manipulate your data.

Database developers use different techniques to manipulate databases. It
still all boils down to Transact-SQL statements, but they use tools such as

Chapter 1: Introducing SQL Server 2008

Microsoft Visual Studio and the Microsoft Data Access Components (MDAC)
to work with SQL Server 2008. Application development is beyond the scope
of this book, but you can find more information in Beginning Microsoft SQL
Server 2008 Programming.

Managing and protecting
what you've built

Database administrators spend a large portion of their time keeping data-
bases up and running daily. In Part V, I describe the tools and techniques
you can use for ongoing administration of your SQL Server 2008 databases,
including automation and troubleshooting tools. Part VI of this book dis-
cusses ways you can protect your data by applying SQL Server 2008’s secu-
rity and disaster recovery features.

What's New in SOL Server 2008

3

If you've used earlier versions of SQL Server, the first question in your mind
is probably “What’s new in SQL Server 2008?” The answer? Plenty! Microsoft
promotes SQL Server 2008 as a major advance in its data platform vision and,
as such, SQL Server 2008 offers a great deal of new functionality.

Rest easy, however, if you're already familiar with SQL Server 2005. Although
SQL Server 2008 has a ton of new features, SSMS still has the same familiar
look and feel. You should be able to get up and running quickly.

Declarative Management Framework

The Declarative Management Framework (DMF) is one of the most revolu-
tionary features in SQL Server 2008. DMF allows database administrators to
set high-level policies describing the allowed configuration status of DMF-
managed SQL Server instances. DMF allows administrators to

v Create policies governing SQL Server configurations

v Evaluate an instance’s current configuration against a policy and deter-
mine what deficiencies, if any, exist

v Apply a policy to a SQL Server instance
v Log or prevent any changes to a SQL Server instance that would bring it
out of compliance with policy

I discuss the Declarative Management Framework in Chapter 20 of this book.

17

’ 8 Part I: Welcome to SQL Server 2008

Encryption and Auditing

There are quite a few new security features in SQL Server 2008. Most notably:

v Transparent Data Encryption (TDE) allows the encryption of databases
and backups with no user impact. I discuss TDE in Chapter 16.

v Enhanced auditing features allow the tracking of data access, in addition
to data modification. I discuss SQL Server 2008’s auditing features in
Chapter 16.

Resource conservation

SQL Server 2008 includes two features designed to provide you with the abil-
ity to optimize server performance:

1 Resource Governor allows you to set limits and priorities for different
SQL Server workloads. This functionality offers you the ability to control
the user experience by providing different users with a guaranteed level
of performance. [discuss Resource Governor in Chapter 12.

v Backup compression shrinks the size of backup data before it is written
to disk, reducing both the amount of time necessary to create a backup
and the disk space used to store the backup. I discuss backup compres-
sion in Chapter 18.

Date/Time Data Types

I've been waiting for years for SQL Server to include date and time data types

that match the way normal people think about dates and times! SQL Server

2008 provides four new data types that answer this formerly unmet demand:
v The DATE data type is a calendar date only, with no time information.

v The TIME data type is a time only, with no date information.

v The DATETIMEOFFSET data type is a date/time that allows for the inclu-
sion of time zone information.

v The DATETIME?2 data type allows the specification of a date anywhere
within the range of the year 1 A.D. to the year 9999 A.D.

Chapter 2

Building Your SQL Server

In This Chapter
Installing and configuring SQL Server 2008
Selecting an authentication mode
Upgrading an existing SQL Server instance

Configuring Database Mail

u nless you're walking into an environment in which SQL Server 2008
is already in use, your first task will be installing a new SQL Server
instance or upgrading an existing SQL Server 2005 (or earlier) instance to
SQL Server 2008. In this chapter, I explore the process of installing SQL
Server and performing the initial configuration tasks to get your database
server up and running quickly.

Installing SOL Server 2008

Before you begin the installation of SQL Server 2008, you should ensure that
the server you intend to use meets the minimum hardware and software
requirements I discuss in Chapter 1. You also need a copy of the SQL Server
2008 installation package for the edition you want to install.

Before beginning the installation process, you should make several important
configuration decisions. In the remainder of this section, [walk you through
those decisions and then explain how to install SQL Server 2008 on your server.

Choosing between default
and named instances

SQL Server allows you to install multiple instances on the same server. You
can think of each instance as an individual “copy” of SQL Server running
on the same server. Why might you want to run more than one copy of SQL
Server on the same server?

20 Part I: Welcome to SQL Server 2008

v You may install different versions of SQL Server side by side on the same
server using multiple instances. For example, if your organization is plan-
ning to upgrade to SQL Server 2008 but you want to approach the upgrade
in a piecemeal fashion, you can run SQL Server 2005 and SQL Server 2008
instances on the same server and make the migration database by database.

¥ You can run separate instances for development and testing purposes.
Doing so allows you to follow the best practice of separating production
systems from development and test code, protecting your real data from
the high likelihood of programming errors in a test environment.

v You can grant different users full administrative rights on different SQL
Server instances running on the same server. This feature is most useful
in a database hosting environment in which different customers might
need to have databases on the same server.

SQL Server 2008 Setup provides you with two options for the instance name:

v~ Default instance: Takes the same name as the Windows name of your
server. You can have only one default instance on each server.

+» Named instance: Has a user-provided name and may coexist on a server
with a default instance and other named instances.

Q\g,\‘l\BEl? R
& If you want to run multiple instances of SQL Server on the same server, you
must use named instances for all of the instances (although you may use the
default instance for one of the instances, if you want).

In the remainder of this chapter, I assume that you're installing a server as
the default instance because this is the most common SQL Server installation
scenario.

Selecting an authentication mode

Authentication is the process that allows users to prove their identity to a
server before gaining access to resources. In most cases, this is established
through the use of a username and password. SQL Server supports two differ-
ent authentication modes:

v Windows authentication mode: In this mode, SQL Server uses Windows
account credentials to authenticate access to the database server. Users
must have an operating system account in order to gain access to
SQL Server.

v Mixed authentication mode: In this mode, SQL Server uses a mixture of
Windows accounts and accounts created within SQL Server to manage
user authentication.

Chapter 2: Building Your SQL Server

\\3

3

3

Microsoft strongly recommends the use of Windows authentication mode

as a security best practice. Using this approach, you maintain a single set

of accounts for both server and database access, and errors are much less
likely to occur. You should use mixed authentication mode only if you have
a specific requirement for it in your organization, such as an application that
doesn’t support Windows authentication.

Choosing service accounts

During the installation process, you’ll be asked to choose service accounts
for several SQL Server services. Every program in Windows must run using
the permissions of an account; when you make this decision, you’re choosing
the account(s) that will be used to run SQL Server and its components.

For security reasons, I strongly recommend that you ask your domain admin-
istrator to create dedicated domain accounts for the SQL Server Agent and
SQL Server service accounts. These accounts should be configured with the
minimum permissions necessary to run their respective services and should
not be used for any other purpose.

Selecting the collation

Collations define how SQL Server stores and sorts data. They differ based
upon the character set used in different parts of the world. Some common
collations include:

v Latinl_General: collation for English and German
v Arabic collation for Arabic languages
v French: collation for French

v Modern_Spanish collation for Spanish

SQL Server Setup will choose a default collation for you based upon the set-
tings of the underlying Windows operating system. In general, you should not
change this default unless one of the following situations exists:

v The database collation must support a different language than that of
the underlying operating system. For example, you might have a server
hosted in one country supporting a database server used by individuals
in another country.

v The database server participates in a replication relationship with
another server that uses a different collation. A replication relationship is
when two servers are kept synchronized. (I discuss replication in more
in Chapter 15.). In replication relationships, all servers must use the
same collation.

21

22

Partl: Welcome to SQL Server 2008

Performing the installation

After making decisions about the instance, authentication mode, service
accounts, and collation (covered in the preceding sections), you're ready to
begin the SQL Server installation process. Here’s how to install SQL Server:

1.
2.

Insert the SQL Server DVD into your computer’s DVD drive.
Click OK to install prerequisites, if necessary.

If your system doesn’t have updated versions of the Microsoft .NET
Framework and Windows Installer, the SQL Server installation program
will pop up a warning message asking you to install them before begin-
ning the SQL Server setup process. You may need to answer some addi-
tional questions regarding those installations before proceeding, and the
system may require a reboot.

. When the SQL Server Installation Center appears, click the Installation

link.

. Click the New SQL Server Stand-Alone Installation or Add Features to

an Existing Installation link.

SQL Server Setup performs a system configuration check to determine
whether your system is ready for SQL Server 2008.

5. Click the OK button to close the Setup Support Rules screen.

6. Select the appropriate licensing mode on the Product Key screen and

10.

click the Next button to continue.

If you have a license for SQL Server, you may enter your product key on
this screen. If you don’t have a license, you may select a 180-day trial of
Enterprise Edition or the free installation of Express Edition.

. Select the I Accept the License Terms check box in the License Terms

window and then click the Next button to continue.

SQL Server Setup displays a list of installation prerequisites, if any are
necessary.

. If all checks pass, click the Next button to continue.

If some prerequisites are missing, you must click the Install button to
install them before you can continue.

. In the Feature Selection window, select the check boxes next to the

features you want to install.

At a minimum, you probably want to install the Database Engine
Services, Client Tools, and Books Online, as shown in Figure 2-1.

Click the Next button to continue.

The Instance Configuration window appears, as shown in Figure 2-2.

Chapter 2: Building Your SQL Server 23

Install SQL Server 2008

Feature Selection

Select the features to install.

Features: Drescription:

Database Engine Services
[1 50L Server Replication
[Full test saarch
[Analysis Servicas
[Reparting Services
Shared Features
Client Tools
S0L Server Books online
[] Business Inteligence Development 5tudio
[1 Intearation Services

I
Figure 2-1:
Selecting
your SQL
Se rver Shared component directary: | C:\Program FileshMiciosoft SOL Server', | E
features to
lnSta”' < Back [Mext >] [Cancel J [Help J
I
Install SQL Server 2008
Instance Configuration
Specify the name and 10 for the SEL Server instance.
(%) Default instance
() Named instance ‘ |
Instance Id [MSSOLSERVER |
Instance oot directory ‘C:\F’rogram Files\Microzoft SOL Servert | E]
SOL Server directory: C:\Program Files'Microsoft SOL Server\MSSEL10.MSSQLSERVER
Detected instances and features:
Instance Features Edition Wergion Irestance D
I
Figure 2-2:
The
Instance
Configur-
ation
WlndOW. h < Back i [Hext > } [Cancel J [Help]
I

24

Partl: Welcome to SQL Server 2008

WING/
&

|
Figure 2-3:
Setting

SQL Server
service
accounts.
|

11. If you're installing a named instance, select the Named Instance radio
button and provide a name for the instance in the adjacent text box.

If you are installing the server’s default instance, you do not need to
change any settings on this screen.

12. Click the Next button to continue.
13. Review the Disk Usage Summary and click Next to continue.

SQL Server shows you the disk space requirements for the features you
selected.

14. In the appropriate text boxes, provide the username and password for
the domain accounts that will be used to run each of the SQL Server

services.

When providing account credentials, you must use an account that
already exists on the system. SQL Server won’t create an account for
you. You may need to contact the system administrator for assistance.

As noted earlier in the chapter, it is a best practice to use separate
domain accounts for these services, as shown in Figure 2-3.

Also, if you need to change the default collation, you may do so on this
screen by clicking the Collation tab.

15. Click the Next button to continue.

% SOL Server 2008 Setup BE®

Server Configuration

Specify the configuration,

Setup Support Rules Service Accounts | Collation
Product Key

R TS Microsoft recommends that you use a separate account for each SQL Server service.

Feature Selection Service Account Name Password Startup Type
Instance Configuration 2 NT AUTHORITYISYSTEM Marual 2
Disk Space Requirements SQL Server Database Engine WT AUTHORITVYSYSTEM Automatic v
EEeles ket S QL Server Analysis Services T AUTHORITVSVSTEM automatic
Database Engine Configurat

ELEIEER g e LA Sal Server Reporting Services T AUTHORITVSVSTEM automatic v
Analysis Services Configuration

5L Server Inteqration Services 10.0 | NT AUTHORITV{SVSTEM futomatic v

Reporting Services Configuration
Error and Usage Reporting
Installation Rules Lise the same account for all SGL Server services

Ready to Instal

Installation Progress
These services will be configured automatically where possile o use a low priviege accourt. On some

Complete dlder Windows versions the user wil need ta Specify a low priviiege account., For more information, click
Help.
Service Account Hame Password Startup Type
SQL Full-text Filler Daemon Launcher Marual
SOL Server Browser NT AUTHORITY\LOCAL 5.,

< Back][[,][Cancel][Help

16. Click the Next button in the Database Engine Configuration window to
accept the default Windows authentication mode.

Chapter 2: Building Your SQL Server

You may also specify accounts that will serve as SQL Server administra-
tors on this screen, as shown in Figure 2-4.

At this point in the process, you may need to provide additional configu-
ration details for any optional components that you chose to install.

5 SOL Server 2008 Setup OExR

Database Engine Configuration

Specify Database Engine authentication security mode, administrators and data drectories.

Setup Support Rules Account Provisioning | Data Directories | FILESTREAM

Product Key
Lcense Terms Specify the authentication made and administrators for the Database Engine.
Feature Selection Authentication Mods

DRy eiEn (&) Windows authentication mode

Disk Space Requirements
SR O Pixed Mode (SGL Server authentication and Windows authenticatior)

Server Configuration
Database Engine Configuration Buitin 5L Server system administrator accourk
Analysis Services Configuration Enter password:

Reporting Services Canfiguration Carfim password:
Error and Lisage Reporting

Spedify SQL Server administrators

Installation Rules

SGL Server administrators
have unrestricted access o
the Dat:sbase Enaine.

Ready to Instal

Installation Progress

I Complete

Figure 2-4:

Configuring
SQL server
authenti-
cation. (<o [][o J[e
I

17. Click the Next button to advance past the Error and Usage Reporting
window.

18. Click the Next button to advance past the Installation Rules window.
19. Click the Install button to begin SQL Server installation.

20. Review the status screen to determine whether installation completed
successfully.

21. Click the Next button to review the release notes.
22. Click the Close button.

Upgrading an Existing
SOL Server Installation

If you're already running SQL Server 2000 or SQL Server 2005 on your system
and want to upgrade to SQL Server 2008, you have several options. In this
section, | explain the preliminary steps you should perform to ensure that
you're ready for the upgrade. Then I discuss your upgrade options.

25

26

Partl: Welcome to SQL Server 2008

Preparing for an upgrade
with Upgrade Advisor

SQL Server Upgrade Advisor is included on the SQL Server 2008 installation
DVD. It provides you with an automated means to determine whether your SQL
Server 2000 and SQL Server 2005 databases are ready for an upgrade to

SQL Server 2008. Here’s how to install Upgrade Advisor:

1.
2.

Insert the SQL Server 2008 DVD into the computer.

Select Install SQL Server Upgrade Advisor from the SQL Server
Installation Center screen.

3. Click the Next button when the Installation Wizard appears.

4. Select the I Accept the Terms in the License Agreement radio button

and then click Next.

. Click Next to accept the default name and company; then click Next

again to accept the default features.

6. Click the Install button to install SQL Server Upgrade Advisor.

7. Click the Finish button when the installation completes.

When you’ve completed the installation process, run Upgrade Advisor as
follows:

1.

From the Start menu, choose All Programs=>Microsoft SQL Server
2008=>SQL Server 2008 Upgrade Advisor.

. When you see the Upgrade Advisor welcome screen, click the Launch

Upgrade Advisor Analysis Wizard link.

3. Click the Next button to bypass the welcome screen.

4. Specify the server name in the appropriate text box and click the

Detect button to automatically identify the service(s) for Upgrade
Advisor to analyze (see Figure 2-5).

You may manually override the automatically detected services by using
the check boxes.

5. Click the Next button to continue.

6. On the Connection Parameters screen, select the instance you want

Upgrade Advisor to analyze from the drop-down list.

If the server you want to analyze does not use Windows authentication,
you also need to select SQL Server authentication from the authentica-
tion drop-down list and provide appropriate SQL Server credentials.

. Click the Next button to continue.

Chapter 2: Building Your SQL Server 2 7

| Micrasoft SQL Server 2008 Upgrade Advisor Analysis Wizard @Eld_hj

SQL Server Components
‘which SQL Server components do you want to analyze?

Server name: |VOSTRO\ Detect

Components:

[+ SQL Server

[Analysis Services

[Motification Services

[Reporting Services

[Data Transformation Services
[Integration Services

|
Figure 2-5:
Selecting
the services

to ana|yZB Help < Back ‘ HNext = Cancel

8. Click the Next button to accept the default setting of analyzing all
databases on the instance.

9. Review the Upgrade Advisor Settings and click the Run button to
begin the analysis.

This analysis may take several minutes or longer, depending upon the
complexity of the database(s) analyzed.

10. When the analysis completes, click the Launch Report button to view
the results.

Review the report (a sample appears in Figure 2-6) and correct any
issues before attempting an upgrade to SQL Server 2008.

Upgrading Your Installation

When you upgrade a SQL Server installation, you have two basic choices for
a migration path: a side-by-side migration or a direct upgrade.

Side-by-side migration

In this approach, you build a SQL Server 2008 server and then transfer your
databases to it one at a time. This approach is costly because it requires you
to provision a second server, but it is the safest because it provides a fall-
back plan. If your migration fails for any reason, you can simply revert to the
older database and try again later. I strongly recommend that you use this
approach whenever possible.

28 Part I: Welcome to SQL Server 2008

Microsoft SQL Server 2008 Upgrade Advisor Report Viewer Elﬁlg

A Windows Server System

Microsoft SQL Server 2008 Upgrade Advisor

J)

View Report

Upgrade Advisor Report Location: C:\Users'mehapple'Documents\SAL Server 2008 Upgrade Advisor Reports\WOSTROVSQLEXPRESSD... ﬂ] Open Report

Server: [vosTRO =l Fiterby:
Instance or component: [S0L Server: VOSTRO\SQLEXPRESS =] [Arissues ~|
Database Server B ® &
Importance » When to fix Description

COMPUNEHL AYEILAFS DECAUSE LI COTPUICIL I3 LUTHCU VI a3 part ol uie
security configuration for this server. A system administrator can enable the use
of 'Agent XPs' by using sp_configure. For more information about enabling

'Agent XPs', see "Surface Area Configuration” in SQL Server Books Online. |

MSXTSXPREC

[This issue has beenresolved.

=] 6 Anytime Other Database Engine upgrade issues

Several upgrade issues cannot be detected by Upgrade Advisor. To view undetectable issues, click "Tellme more about this issue and E
how to resolve it."

@ Tell me more about this issue and howto resolveit.

™ This issue has beenresolved.

I =] @ Anytime Changes to behavior of trace flags
. In SQL Server 2008, global trace flags setby a session take effect in other sessions immediately. Also, sometrace flags from SQL Server 7
F|gure 2-6: 2000 and SQL Server 2005 do not exist in SQL Server 2008.
=| show affected objects. (1 objects) =
SQL Server
Generated on: VOSTRO, 12/23/2007 7:48:44 PM
Upgrade =
Advisor (© Export Report
report.
@2007 Micresoft Corporation. All rights reserved.
I
.
Direct upgrade

If you do not have the resources available to perform a side-by-side migra-
tion, you can directly upgrade a SQL Server 2000 or SQL Server 2005 database
NG/ instance to SQL Server 2008.

R
Performing a direct upgrade is dangerous and involves a significant risk of data
loss. Be certain to back up your databases before attempting a direct upgrade.

The process of performing a direct upgrade is very similar to installing a
new SQL Server 2008 instance. For more information on performing a direct
upgrade, consult SQL Server Books Online (the reference material included
with SQL Server.

Configuring Database Mail

SQL Server’s Database Mail technology allows your applications to send
e-mail messages. Most SQL Server instances require the use of Database Mail

Chapter 2: Building Your SQL Server

functionality. SQL Server does not enable Database Mail by default, so you
must configure it using the Database Mail Configuration Wizard. Do so by fol-
lowing these steps:

1.

From the Start menu, choose All Programs=>Microsoft SQL Server
2008=>SQL Server Management Studio.

. If you are connecting to a SQL Server instance other than the default
instance, select it from the Server Name drop-down list.

. If you are not using Windows Authentication, select SQL Server
Authentication from the Authentication drop-down list and provide
the login name and password in the appropriate text boxes.

4. Click the Connect button.
5. Click the plus sign (+)to the left of the Management folder.

6. Right-click Database Mail and select Configure Database Mail from the

pop-up menu.
. Click the Next button to advance past the welcome screen.

SQL Server displays the Select Configuration Task window, shown in
Figure 2-7.

j Database Mail Configuration Wizard - VOSTRO o[

|
Figure 2-7:
Selecting
the
Database
Mail con-
figuration
task. || |

Select Configuration Task

If you are installing Database Mail for the first time, select the setup option.

Help < Back I Nexd > Cancel

Select setup or maintenance tasks.

@ Set up Database Mail by performing the following tasks:
1. Create a new e-mail profile and specify ts SMTP accourts
2. Specify profile security
3. Configure system parameters
| Manage Database Mail accounts and profiles

! View or change system parameters

29

30

|
Figure 2-8:
The
Database
Mail Not
Enabled
Message.
|

|
Figure 2-9:
Creating

a New
Database
Mail profile.
|

Partl: Welcome to SQL Server 2008

8. Select Set up Database Mail by Performing the Following Tasks and

click the Next button to continue.

SQL Server warns you that Database Mail is not currently enabled by

displaying the message shown in Figure 2-8.

Microsoft SQL Server Management Studio

2 e

"0" The Database Mail feature is not available. Would you like to enable this feature?

9. Click the Yes button to confirm that you would like to install Database

Mail.

The New Profile screen, shown in Figure 2-9, appears.

10. Provide a name and description for your Database Mail profile by

typing them in the appropriate text boxes.

-'% Database Mail Configuration Wizard - VOSTRO o

New Profile
Specify the profile name., description. accourts, and failover priority.

Mail Profile
Profile for Database Mail

Profile name:

Degcription

A profile may be associated with multiple SMTP accounts. F an account fails while sending an e-mail, the profile uses the next
accourt in the priority list. Specify the accounts associated with the profile, and move the accounts to set the failover priority.

SMTF accounts
Priority Accourt Name E-mail Address Add
1 Corporate Mail address@mycomparny .com —
Help < Back Mext = Cancel

Chapter 2: Building Your SQL Server

Figure 2-10:
Creating

a New
Database
Mail
account.
|

11. Click the Add button to add an SMTP account to the profile.

Database Mail uses the Simple Mail Transfer Protocol (SMTP) to commu-
nicate with mail servers. SMTP is the standard means for transmitting
electronic mail. You may associate one or more SMTP accounts with
each Database Mail profile.

When you click the Add button, SQL Server presents the New Database
Mail Account window, shown in Figure 2-10.

:j New Database Mail Account LJ—'

Spi
Ac

Description:

Outgoing Mail Server {(SMTF)

SMTP Authertication

ecify name, description, and attributes for your SMTP account
count name: Corporate Mai

E-mail address: address@mycompany.com

Display name: Database Mail

Beply e-mail: address@mycompany.com

Server name: smtp mycompary.com Port number: 25

This server requires a secure connection (S5L)

@) i Windows Authertication using Database Engine service credertials

Basic authertication

Anormymous authentication

0K |[Camcel |[Heb

12.

13.

14.

Fill in the SMTP account details provided by your mail server
administrator and click OK.

Click the Next button to advance past the New Profile window.

SQL Server displays the Manage Profile Security window, shown in
Figure 2-11.

Select the Public check box next to the name of the profile you just
created.

Database Mail allows you to create a combination of public and private
profiles. Any user authorized to use Database Mail may send mes-
sages using a public profile. Private profiles, on the other hand, may be
restricted to specific users.

31

32 Part I: Welcome to SQL Server 2008

15. Choose Yes from the Default drop-down list next to the name of the
profile.

If you select a default profile, any Database Mail messages sent without
explicitly specifying a profile will use the default profile. You select the
default profile by choosing Yes in the Default list for that item.

16. Click the Next button to continue.
17. Click the Next button to accept the default mail system parameters.

18. Click the Finish button to complete the configuration of Database

Mail.
SMBER . . .
oﬁ."@ After you configure Database Mail, you must ensure that any users who might
need to send mail are members of the msdb database’s DatabaseMailUserRole
role. (I discuss role membership in Chapter 16.)
% Database Mail Configuration Wizard - VOSTRO o S
Manage Profile Security
Specify database users or roles that have access to profiles.
[Pubic Profilss | Prvae Profies |
A public profile can be accessed by all users of any mail-host database:
Select public profiles. You can also specify the default public profile.
Public Profile Name
i Mail Profile
S
Figure 2-11:
Managing Show only existing public profiles
profile
security. Help < Back Cancel

Chapter 2: Building Your SQL Server

Using SOL Server’s Built-In Databases

\\3

SQL Server creates four databases when you install a new instance. These
databases provide SQL Server with locations to store configuration informa-
tion and temporary data and to use as a model for newly created databases.

Master database

SQL Server uses the master database to store configuration information that
applies to the entire instance. For example, it includes:

v SQL Server configuration data

v Information on linked servers

v User logons

v High-level information about other databases on the instance
The master database is the all-important glue that holds together all the indi-
vidual databases stored on your server and is, therefore, extremely critical to
the proper operation of your server. Therefore, you should back it up regularly.
It’s especially important to create a master database backup when you

v Create or delete a database

v Alter data or log files used by a database

v Add, remove, or change logins

v Add, remove, or change a linked server

v Modify the server configuration

[discuss more about backing up databases in Chapter 18.

The msdb database

QL Server and its components store scheduling and history information in a
specialized database named msdb. Specifically, it contains information about
any scheduled SQL Server Agent jobs (which I discuss in Chapter 13) and infor-
mation about the backup and restore history of your SQL Server instance.

33

34

Partl: Welcome to SQL Server 2008

3

The model database

The model database serves as a template for all newly created databases on
your server. Each time you create a new user database, SQL Server creates
a copy of the model database to provide the initial configuration of the new
database.

If you have default settings you’d like to apply to all your new databases,
simply make the appropriate changes in the model database. For example, if
you create a stored procedure in the model database, all new databases will
automatically receive a copy of that stored procedure.

The tempdb database

SQL Server uses the tempdb database as a temporary storage location for working
data, such as intermediate query results. Users may also explicitly create temporary
tables, stored procedures, or other objects. SQL Server stores these temporary user
objects in tempdb until they are no longer necessary.

Chapter 3
Working with SQL Server Tools

In This Chapter
Configuring SQL Server with SQL Server Configuration Manager
Using SQL Server Management Studio to manage your server
Working at the command line with SQLCMD

SQL Server 2008 provides a number of tools designed to make it easier for
you to configure and manage your databases in a fashion comfortable to
you. These tools include the graphical interfaces of SQL Server Configuration
Manager and SQL Server Management Studio and the command-line utility
SQLCMD.

In addition to these tools, SQL Server provides two important tools to help
you tune and troubleshoot database server performance: Database Engine
Tuning Advisor (DETA) and SQL Profiler. I discuss these latter two tools in
Chapter 14.

In this chapter, you find out how to use SQL Server Configuration Manager,
SQL Server Management Studio, and SQLCMD to take control of your SQL
Server databases.

Using SOL Server Configuration Manager

SQL Server Configuration Manager is a lightweight tool that allows you to per-
form basic configuration of a SQL Server instance. You can use this tool to

1~ Start and stop services

1 Change the service account used to start a service

v Change the start mode of a service

1 Change the network protocols used by SQL Server

v Change the IP addresses and TCP ports used by SQL Server

36

Part |: Welcome to SOL Server 2008

|
Figure 3-1:
The SQL
Server
Configur-
ation
Manager.
|

Launching SOL Server
Configuration Manager

You can start SQL Server Configuration Manager by selecting it from the Start
menu, as follows:

1. Click the Windows button (or the Start button in Windows XP) in the
lower-left corner of your screen.

. Click the All Programs item.

. Click the SQL Server 2008 folder.

. Click the Configuration Tools folder.

1 e W N

. Click the SQL Server Configuration Manager item.

SQL Server Configuration Manager starts in a separate window and dis-
plays the interface shown in Figure 3-1.

‘il Sgl Server, Configuration Manager EJ@E|

Elle Action Wiew Help

e B2

Items

E S0L Server Services

. QL Serffer Ntetwork C?nFlguratmn 501 Server Network Configuration
+-5b SGL Mative Clisnt Configuration % 0L Mative Client Configuration

erver Services

Starting and stopping services

You can use SQL Server Configuration Manager to start, stop, pause, resume,
and restart Windows services running as part of SQL Server 2008. You may
need to perform these actions for several reasons, as follows:

Chapter 3: Working with SQL Server Tools

v You might want to start or stop a service that is infrequently used to
enable it only when necessary. Doing so conserves system resources
and improves the overall performance of your SQL Server.

» You may need to restart a service after making changes to its configura-
tion, such as changing the service account.

» You may need to restart a service that is in a nonresponsive state to
restore it to working order.

Here’s how you can change the running state of a SQL Server service using
SQL Server Configuration Manager:

1. Open SQL Server Configuration Manager, as described in the previous
section.
2. Click the SQL Server Services icon.

SQL Server Configuration Manager displays the status of all installed ser-
vices in the main window pane, as shown in Figure 3-2. Notice that this
window includes the following information:

e Service name and type

¢ Current state

e Start mode

e Service account (“Log On As™)

® Process ID

‘i 5ql Server Configuration Manager,

File Action View Help
EX

(8 501 Server Configuration Manager (Loc. | Name [state [start Mode [Logon as Process ID_| Service Type

SQL Server Services . [E¥S0L Server (MSSQ... Running Automatic Amchapple 1916 SGL Server

g, 5QL Server Metwark Configuration | 12,50y serer Brawser Stopped Cther (Bock, System... NT AUTHORITYILOCAL SERVICE 0 0L Browser

.32, S0L Native Client Configuration a5l Server Agent ... Stopped Manual \mchapple 0 SQL Agent
|
Figure 3-2:
SQL Server

Services. [z >

|

37

38 Part |: Welcome to SQL Server 2008

|
Figure 3-3:
Restarting a
SQL Server
Service.
|

3. Right-click the service you want to alter.

4. Select the action you want to perform (Start, Stop, Pause, Resume, or
Restart) from the pop-up menu.

5. Wait while SQL Server Configuration Manager makes the requested
change.

Figure 3-3 shows an example of the status screen displayed while
starting a service.

(& Colx|

Fle Action ‘View Help

B ERE 2 00D

@ SQL Server Configuration Manager (Loc. | Mame \ State | Start Mode | Log On As Process 10t | Service Type
5QL Server Services ThsaL Server (M55Q... Running Automatic Amchapple 1916 SQL Server

i g SOL Server Metwork Configuration | oy cerver Browssr Stopped Other (Bock, System.,. NT AUTHORTTYILOCAL SERWICE 0 SQL Browser
52, SQL Native Client Configuration HascL Server Agent ... Stopped Manual \mchapple 0 S0L Agent

SQL Server Configuration Manager

Starting service...

Close:

< >

Restart (stop and then start) selected service,

Changing service accounts

During the installation process, you provided SQL Server with a set of
accounts to use when starting each of its component services. If you later
want to change those initial configuration decisions, you may do so using
SQL Server Configuration Manager.

1. With SQL Server Configuration Manager open, click the SQL Server
Services folder.

2. Right-click the service you want to alter.

3. Choose Properties from the pop-up menu.
SQL Server displays the Properties window, shown in Figure 3-4.

4. Type the account name in the appropriate textbox using the DOMAIN\
account format.

Alternatively, you may click the Browse button to search for an appro-
priate account.

|
Figure 3-4:
SQL Server
Service
properties.
|

SQL Server (MSSOLSERVER) Properties
Log On | Service | Advanced

Log on as:

" Built-in account:

E

@ This account:

Account Mame:

Amchapple Browse
[
[

Password:

Confirm password:

Service status: Running

| Stop | Pause ‘ Restart |

Chapter 3: Working with SQL Server Tools

@3

[oK I [Cancel] l Apply] [Help

]

5. Provide the account password in both the Password and Confirm pass-

word textboxes.
6. Click the OK button.

SQL Server Configuration Manager warns you that it needs to restart the

service to apply your change.

7. Click the Yes button to restart the service.

Changing service start modes

Each SQL Server service has a default start mode that you may configure.
This start mode indicates the action that should occur for the service when
the system restarts. Your start mode options include:

v Automatic mode configures services to start automatically when the

operating system boots.

+ Disabled mode prevents the service from starting (automatically or
manually) unless you change the start model to automatic or manual.

+»* Manual mode does not start the service automatically, but allows users
and other services with appropriate permissions to start the service

manually.

You may verify the current start mode settings for each service by viewing them
in the SQL Server Services section of SQL Server Configuration Manager, as [

39

40

Part |: Welcome to SOL Server 2008

|
Figure 3-5:
The Service
Properties
tab.
|

describe in the “Starting and stopping services” section, earlier in this chap-
ter. If you want to change the start mode for a service, follow this process:

1. With SQL Server Configuration Manager open, click the SQL Server
Services folder.

2. Right-click the service you want to alter.

3. Choose Properties from the pop-up menu.

4. Click the Service tab.
The service properties appear, as shown in Figure 3-5.

5. Choose the appropriate start mode from the drop-down menu.

6. Click the OK button.

After you click OK, the dialog box closes, and you return to SQL Server
Configuration Manager.

SQL Server (MSSQLSERVER) Properties 2R

Log on | Service | advanced

=

Start Mode e

Start Mode
The skart mode: of this service.

QK l[Cancel]I Apply H Help

Modifying networking settings

SQL Server includes support for three major access protocols. These proto-
cols dictate the way that users and other systems may connect to your SQL
Server databases. Following are the most common protocols.

v Shared Memory allows connections on the local server to take place
without using a network. You may use shared memory connections for
access to a database instance on the local server only. There are no con-
figuration options for this protocol.

Chapter 3: Working with SQL Server Tools

1 Named Pipes sets up a network connection using interprocess commu-

nication. It is most appropriate for use on a high-speed LAN, where
it may offer enhanced performance.

v TCP/IP networking is the most common network protocol used with SQL
Server. TCP/IP connections may easily and efficiently cross wide-area
networks (such as the Internet) and are supported in almost any
computing environment.

Enabling and disabling protocols

SQL Server Configuration Manager allows you to change the protocols used

by SQL Server by either enabling or disabling them, which you can do by
following these steps:

1. With SQL Server Configuration Manager open, click the plus sign next
to the SQL Server Network Configuration folder to expand the folder.

2. Click the Protocols folder corresponding to the instance you want to
modify.

SQL Server Configuration Manager displays the status of that instance’s
networking protocols, as shown in Figure 3-6.

3. Right-click the service you want to alter.

4. Choose the appropriate action (Enable or Disable) from the pop-up menu.

SQL Server Configuration Manager warns you that the changes will not
take effect until you restart the service.

‘i Sgl Server Configuration Manager E@E\

File Action Wiew Help
& 2
@ 5QL Server Configuration Manager (Loc. | Protocol Name: Status

SQL Server Services

= 5. sGL server Metwork Configuration
a; Probocols For MSSQLSERVER

2 S0l Native Client Configuration

Shared Memory Enabled

W~ Mamed Pipes Disabled
W TCRIP Enabled
FWIA Disabled

|
Figure 3-6:
SQL Server
network
configura-
tion. |z >
|

41

42

Part |: Welcome to SOL Server 2008

|
Figure 3-7:
TCP/IP
Properties.
|

5. Restart the SQL Server service.

Refer to the “Starting and stopping services” section, earlier in this chap-
ter, where I describe how to restart a SQL Server service.

Changing protocol settings

You may also use SQL Server Configuration Manager to change networking
settings, such as the IP address(es) and TCP ports used by SQL Server. To
change network protocol settings, follow these steps:

1.

With SQL Server Configuration Manager open, expand the SQL Server
Network Configuration folder.

. Click the Protocols folder corresponding to the instance you want to

modify.

3. Right-click the service you want to alter.

4. Choose Properties from the pop-up menu.

SQL Server displays the properties for the network protocol you
selected. An example of the properties sheet for TCP/IP appears in
Figure 3-7.

5. Make any desired changes to the properties sheet and click OK
to continue.
SQL Server Configuration Manager warns you that the changes will not
take effect until you restart the service.

6. Restart the SQL Server service.
Refer to the “Starting and stopping services” section, earlier in this
chapter, where I describe how to restart a SQL Server service.

TCP/IP Properties @@

=

=

Protocol | IP Addresses

Enabled Mo

1P Address 192.168.0.23
TCP Dynamic Ports

TCP Part 1433

Active Yes
Enabled Mo

1P Address 127.0.0.1
TCP Dynamic Ports

TCP Part 1433

TCP Dynamic Porks
TCP Part 1433

Active
Indicates whether the selected IP Address is active.

‘es -

Chapter 3: Working with SQL Server Tools 43

Note that the TCP/IP properties are considerably more complex than those
for other network protocols. If you need assistance configuring TCP/IP net-
working, you should consult your network administrator. Network configura-
tion errors are one of the most common sources of server problems.

When configuring Named Pipes, the only option available to you is changing
the name of the Named Pipe. The Shared Memory protocol offers no configu-
ration options.

Managing Your Server with SOL
Server Management Studio

You can perform most of the activities I describe in this book using SQL
Server Management Studio (SSMS). Microsoft designed SSMS to be a one-stop
replacement for piecemeal tools (such as Query Analyzer and Enterprise
Manager) included in earlier versions of SQL Server. SSMS allows you to
manage multiple SQL Server instances from a single platform.

Starting SSMS and connecting
to an instance

As noted at the end of the preceding section, SSMS allows you to manage
multiple SQL Server instances on both local and remote servers.

1. Click the Windows button (or the Start button in Windows XP) in the
lower-left corner of your screen.

2. Click the All Programs item.

3. Click the SQL Server 2008 folder.

4. Click the SQL Server Management Studio item.

SSMS opens and displays the Connect to Server dialog box, shown in
Figure 3-8. If the authentication and server details are not correct, you
may make any changes needed.

5. After making any necessary changes to the connection data, click the
Connect button.

SSMS displays the server options, as shown in Figure 3-9.

b4

Part |: Welcome to SOL Server 2008

£F Connect to Server @

Microsoft®
|
) Z SQLServer2008
Figure 3-8: =
Update your Server bype; D atabase Engine v
Connection Server name: i v
data as Authentication: \Windows Authentication w
needed in
the SSMS
Connection
dialog box. [Ccommest [concel | [heb | [Dotensos
|
1z Microsaft SQL Server Management Studio @E@
File Edit View Tools Window Community Help
D NewQuery | Oy | B i i | | SVl W o | B B BB O
Object Explorer -1 x Object Explorer Details, haitd
Connect~ | 3] B3] @& 7 s
=1 (i VOSTRO (SQL Server 10.0.4075 - vostre\mch
D [VOSTRO (SQL Server 10.0.1075 - vostro\mchapple)
@ Server Objects VOSTRO 6 Item(s)
(3 Replication
| 3 Management
. [SQL Server Agent (Agent XPs disabled) Name Palicy Health State
Flgure 3-9: [~ Databases
[Security
Se rver [Server Objects
0pt|0ns n 3 Replication
(23 Management
the SU_L [25QL Server Agent (Agent XPs disabled)
Server
Manage-
ment Studio. ||« ,
Ready
|

Exploring the SSMS Interface

The SSMS interface uses a folder-based navigation structure called Object
Explorer. Notice that it uses five folders to organize SSMS options by the fol-

lowing categories:

v Databases

v Security

v Server Objects
1 Replication

v Management

Chapter 3: Working with SQL Server Tools 45

You can expand these folders to view the underlying detail by clicking the plus
(+) sign that appears to the left of the folder. The folders each contain subfold-
ers that you can expand the same way. When you click a root node, the main
pane of the SSMS window displays detailed information about that item.

Throughout this book, I describe how you can use SSMS to manage your SQL
Server instance.

Issuing Transact-SQL queries

One of the most important tasks you can perform using SSMS is executing
Transact-SQL queries against your SQL Server databases.

Don’t worry about the syntax of Transact-SQL commands just yet. I provide a
detailed discussion of Transact-SQL in Parts IIl and IV of this book.

The following two Transact-SQL commands change the current database to
the sales database and retrieve all information from the stock table in that
database.

USE sales;

SELECT *
FROM stock;

Here’s how you can execute that query using SSMS:
1. With SSMS open, click the New Query button in the upper-left corner
of SSMS.

The main SSMS pane changes to a blank window, where you may type in
Transact-SQL statements.

2. Type your Transact-SQL query into the main pane of SSMS.
3. Click the Execute button to run your Transact-SQL query.

After a moment, SSMS divides the main pane into two sections. The
top half shows the query you executed, and the bottom half shows the
results of that query. The resulting SSMS window appears in Figure 3-10.

46

Part |: Welcome to SOL Server 2008

Figure 3-10:
Issuing a
Transact-
SaL
Command
with SSMS.

4z Microsoft SQL Server Management Studie = | 5)
File Edit View Query Project Tools Window Community Help
QNewQuery [y [#y 0 Iy |3 | S el @ | E B2 BB 5
&5 B | sales cBbete v B BB TREB(QED =2 s
Object Explorer = % X || VOSTRO.sales - SQLQueryl.sql*|” Object Explorer Details - X
Connect~ |) USE sales; =
= [VOSTRO (SQL Server 10.0.1075 - vostron « serEcT -
iy FROM stock;
£ 3 Security
@ [Logins
m [Server Roles
@ [Credentials
@ [Cryptographic Providers <
£ [Server Objects a b
& [Backup Devices =
@ [Endpoints 0 Reoute |1y Messages
) [Linked Servers tem warshouse invertory wholesale_price
% [Triggers 1 Apples Seatte O 0.1300
£ [Replication 2 limes Seafe D 0.3300
& [Local Publications 3 Omnges NewYok 0O 0.5500
@ [Local Subscriptions 4 Omnges Tampz O 0.5200
& £3 Management
@ [Policy Management -
« v || @ Query executed successfully. VOSTRO (100CTF) vostm'mchapple (55) sales 00:0001 4rows
Ready Ln5 Coll Chl NS

Working from the Command Line

If you prefer working at the command line to using the graphical interface
of SSMS, SQL Server provides the SQLCMD utility that allows you to issue
Transact-SQL statements from a command prompt. Here’s a look at some of
the important syntax options for this statement:

sglcmd [-S server_name [/instance_namel]]
[-U username [-P password]]
[-d database_name]
[-1 input_filename]
[-o output_filename]

In the following bullets, I discuss each one of these command line options.
Next, I give you an example of SQLCMD in use.

v The -s option allows you to specify the name of the server and instance
to which you wish to connect. For example, you could connect to the
named instance MYDB on the server SQL2008 by specifying the command
line option “~-S SQ1.2008/MYDB”. If you do not use this option, SQL Server
will attempt to connect to a default instance on the local computer.

v The -U option allows you to specify the SQL Server login you wish
to use, and the —P option allows you to provide the password. If you
don’t specify the login using this option, SQLCMD attempts to connect
using Windows Authentication with the credentials of the user running
SQLCMD.

v The -d option allows you to specify the database you want to use
initially. If you don’t specify this option, SQL Server defaults to the
default database associated with the SQL Server login.

Chapter 3: Working with SQL Server Tools 4 7

v The -1 option allows you to specify the name of a file containing the

Transact-SQL commands you want to execute.

v The -o option allows you to specify the name of a file in which SQLCMD

will store your output.

Quite a few other command-line arguments that allow you to customize the
use of SQLCMD are available. You won’t need them to get up and running, but
if you find yourself using SQLCMD for advanced applications, you may want
to familiarize yourself with them.

Now that I've covered the basics of SQLCMD, I can give you an example to
work with. Suppose that you want to execute the same Transact-SQL query
used in the previous section against the sales database:

SELECT *
FROM stock;

To execute this query, follow these steps:

1.

Open a command prompt by choosing All
Programs=>Accessories>Command Prompt from the Start menu.

2. Type SQLCMD —d sales at the command prompt.

3. When the “1>” prompt appears, type SELECT * FROM stock; and

press Enter.

You may type as many Transact-SQL statements as you want at this
prompt and you may use as many lines as necessary to complete each
statement. For example, you could have written SELECT * on the first
line, pressed Enter, and typed FROM stock; on the second line. The key
is to end each distinct Transact-SQL statement with a semicolon.

. When the 2> prompt appears, type GO and press Enter.

The GO command indicates to SQLCMD that you're finished entering
Transact-SQL statements and want SQL Server to execute the commands.

. Review the results on the screen.

If you did not specify an output file, SQLCMD displays the results of your
Transact-SQL command(s) on the screen. If you used the —o option to
specify an output file, the query results are stored in that file.

. Type EXIT and press Enter.

SQLCMD closes, and you are returned to the Windows command
prompt.

4 8 Part |: Welcome to SQL Server 2008

Figure 3-11 shows this entire sequence in a Windows command prompt session.

BN SQLCMD [E=TEc

C:“\Hindows“system32>»sglcmd —d sales
SELECT = FROM stock;

s
I i Seattle
5 New York

Figure 3_11: Oranges Tampa
<4 rows affected>
1>

Issuing a
Transact-
SaL
command
with
SQLCMD.
|

Partll
Building SQL
Server 2008
Databases

The Sth Wave By Rich Tennant
CRATENMNT

& — |
E =
JAZ &.JAZE
3 32A8ATAd
o) ETHATIUBHOD

°
‘%u@@ﬂ

A\

“Your database is beyond repair, but before T tell you
our backup recommendation, let me ask you a question.
How many index cards do you think will £it on the

walls of gour computer room?”

In this part . . .

rlis part shows you how to create your first database
in a SQL Server environment. You need to know

how to build your database according to accepted design

principles, and a great way to plan your database is to first
diagram it on paper before implementing it for real. After

you've done all that, you're ready to really get rolling with
SQL Server 2008: creating your database, designing tables,
and enforcing relationships between tables.

Chapter 4
Planning Your Database

In This Chapter

Designing a relational database
Documenting your design with diagrams
Normalizing your database

Selecting appropriate data types for your tables

rlere’s an old saying in the military: “Prior planning prevents poor perfor-
mance.” This cliché proves true in the database world in several ways. If
you take the time to map out your database on paper, the odds are on your
side that you can build a scalable database that meets your business needs
far into the future. You can enjoy a second benefit also: Well-designed data-
bases simply perform better. They store and process data efficiently, helping
you to minimize the demands on your computer systems and reduce the
amount of time clients spend waiting for database transactions to complete.

In this chapter, I walk you through the process of properly designing a data-
base. The techniques I discuss apply to any relational database system and
work equally well in Microsoft SQL Server, Microsoft Access, Oracle, or any
other database you encounter in the future. I also discuss diagramming tech-
niques that can help you easily document your design decisions in a format
understood by database professionals around the world.

Finally, database designers follow some basic principles intended to improve
database efficiency and reduce redundant data. I conclude the chapter with
a look at these techniques, showing you how to normalize your database
design and how to choose appropriate data types for your database.

Introducing Database Design Concepts

Databases store data. You probably already knew that, but you should take
a moment to reflect on that simple statement before you read on about data-
base design. Everything I mention in this chapter is intended to help you
store data efficiently and effectively in your SQL Server databases.

52 Part II: Building SQL Server 2008 Databases

W\

Databases store data efficiently when they minimize the amount of storage space
they require to maintain your data. In addition to minimizing space require-
ments, efficient databases minimize the amount of time it takes the client to
insert and retrieve data. These two requirements may sometimes conflict. For
example, if you normally execute complex database queries that require quite a
bit of computation, you can sometimes speed up those queries dramatically by
storing precomputed results in your database. However, that storage requires
additional space. No single answer exists for all such design decisions. You need
to look at your storage and performance requirements and weigh them against
each other to determine an appropriate balance for your organization.

Databases store data effectively when they provide you with the means to
easily insert, retrieve, and modify data. Effective databases organize data in
a fashion that’s intuitive and allows users to interact with data in a natural
way. For example, a user of a retail store database might find information
about employees in one table, customers in another table, and products in
yet another table.

You can improve the effectiveness of your database by consulting with end
users and other stakeholders early in the database design process. In my
career, I've seen many cases in which database designers could have avoided
expensive mistakes by simply sitting down and discussing the business goals
of the project during the design phase. Don’t fall victim to the temptation

of diving right into the design, confident that you understand the business
requirements. An assumption you make early in the design process may come
back to haunt you down the road.

Understanding the Elements
of a Database

You've already discovered that databases are computer systems that store data
and facilitate the insertion, retrieval, and modification of that data. Now you
need to understand a little more terminology before diving in to database design.

Database servers

Database software runs on specialized computer systems known as servers.
These database servers have advanced hardware designed to optimize the
system’s performance for data storage, computation, and network commu-
nication. In contrast to user workstations, they’re not designed for graphics
work, word processing, or other applications. In fact, they usually don’t even
have a keyboard or mouse. Businesses often mount servers in racks and

Chapter 4: Planning Your Database

|
Figure 4-1:
A basic
database
table.
|

place them in data centers. Administrators normally interact with them using
remote access techniques from their regular desktop systems.

Each database server runs a server operating system (such as Microsoft
Windows Server 2003) and a database system (such as Microsoft SQL Server
2008). The database interacts with the operating system to gain access to
server resources, such as hard drive storage, the processor(s), and network
communications.

A database server may contain one or more separate databases. For example,
you might use the same database server to store a database containing cus-
tomer information and a completely separate database containing project
management information. There’s no need to build a separate server for each
database. SQL Server ensures that the databases are isolated from each other.
(In Chapter 16, I discuss how you can use database security controls to protect
against users seeing data that they shouldn’t be allowed to access.)

Relational databases

Most databases in use today are relational databases. What’s that mean?
They store data in a fashion that follows the relational model proposed by
database pioneer Edgar F. Codd in 1969.

The relational model organizes data into a series of related tables. Each
table contains rows and columns, as shown in Figure 4-1. Each column corre-
sponds to an attribute: one type of information that you want to store. Each
row corresponds to a record: one instance of each column. Each table may
be related to one or more other tables.

First Name Last Name

53

54 Part II: Building SQL Server 2008 Databases

<MBER
ég“

You may find it easier to understand these principles in the context of an
example. Suppose you wanted to create a database table containing address
information for your relatives. You might create a table similar to that shown
in Table 4-1. This table contains columns for each piece of information to
store about each of your relatives: their first name, last name, address, city,
state, and ZIP code. The table also contains rows for each relative. The row
for each relative stores the information you know about that person.

Table 4-1 Relatives Table

First Name Last Name Address ZIP
Richard Chapple 28 Cognac Street 46530
Matthew Chapple 327 Scampi Avenue 33131
Christopher Chapple 120 Hunter Terrace 21046
Renee Chapple 116 Jasmine Street 08028
Mike Chapple 223 Samantha Court 11579

The relatives table may also be related to other tables in the database. For
example, your database might also contain a cities table (such as the one
shown in Table 4-2) that contains information about each ZIP code in the
country. The relatives table (which contains the ZIP code for each relative) is
related to the cities table by the common key of the ZIP code. I discuss table
relationships in further detail in Chapter 6.

Table 4-2 Cities Table

City State ZIP
South Bend IN 46530
Miami FL 33131
Columbia MD 21046
Glasshoro NJ 08028
Sea Cliff NY 11579

Don’t be confused by database terminology. When it comes to rows and col-
umns, you find a few different terms that all mean the same thing. The terms
row and record are interchangeable. Similarly, columns are sometimes called
fields, attributes, or variables.

Chapter 4: Planning Your Database

\\3

Databases vs. spreadsheets

At this point, you may be thinking, “A database table sounds a lot like a
spreadsheet.” You'd be correct! Database tables and spreadsheets have quite
a bit in common. In fact, it may help you to think of a database as a collection
of related spreadsheets.

Databases, however, offer a number of significant advantages over the use
of simple spreadsheets. First, they allow you to create multiple tables and
model the way they relate to each other. This grouping of data into tables
reduces redundant storage of information, facilitates quick changes to infor-
mation that affects large portions of the database, and allows you to pull
together related information from multiple sources.

The similarity between databases and spreadsheets is a powerful one. In fact,
you can use Microsoft Excel as an interface to a SQL Server database, but
that’s beyond the scope of this book.

Databases also provide powerful tools to help you interact with your data.
For example, you can use a reporting facility called SQL Server Reporting
Services (SSRS), which helps you provide business users with powerful, inter-
active reports in an automated fashion. Chapter 9 tells you more about SSRS.

Organizing a Database

Earlier sections in this chapter describe the relational database model and
show you how databases organize related data into tables. In this section,
you get started on designing databases that meet your business needs. You
do that using a four-step process for organizing a database, as follows:

1. Define the objectives of your database.

2. Group related data into tables.

3. Identify primary keys that uniquely identify records.

4. Link related tables together.

I cover each of these four design steps in further detail in the following sections.

Defining your database objectives

If you were leaving town on a business trip, you wouldn’t simply get in your
car and start driving on the highway without knowing your destination. A trip
without a clearly defined goal would be a terrible waste of time.

55

56 Part Il: Building SQL Server 2008 Databases

Things are no different in a database design project. Because of our technology
and data focus, database designers often sit down and ask themselves the ques-
tion “What data do I have and how can I organize it?” That’s equivalent to our
business traveler asking “How much gas do [have and how far can it take me?”

Instead, begin your journey with the end in mind. Ask yourself these questions:

v What’s prompting your database design project?
v Who will benefit from the proper implementation of this database?
v Who are the end users of the database?

v~ Is this database project intended to support a new business process or
improve an existing one?

v What are the business requirements for the database?
v What capabilities must the database provide to support those requirements?
» What data elements are necessary to provide those capabilities?

v How do users prefer to interact with the database?

Notice that the question “What data do I have?” doesn’t appear anywhere in

that list. Instead, I encourage you to think about database design differently.

Walk through the preceding questions to determine what data your business
processes require, and only then look at methods you can use to obtain that
data and organize it effectively.

This type of thinking will help you overcome the tendency to act like a data
packrat, squirreling away all the data you can find. It forces you to focus on
business requirements and put in your database only data that is likely to
result in business value down the road.

Grouping data into tables

After you've collected all the data elements that you wish to store in your
database, you should organize them into tables for your relational database.

&,N\BEB When you design tables, keep in mind that your goal is to group related data
> and reduce redundancy. If you create too many tables, queries against your
database will take a long time to complete. If you create too few tables, you’ll
probably wind up storing redundant data in those tables that will consume
unnecessary space on your server’s hard drive.

Here’s an example of how you can organize data into tables. Suppose you are
tasked with creating a database for a newspaper delivery service. After

Chapter 4: Planning Your Database 5 7

\\3

completing your business requirement analysis, you determine that you need
to store the following data:

v Customer name (first and last)

v Customer street address

v Customer ZIP code

v Customer phone number

v Day(s) of the week the customer receives the paper
v Carrier name for each customer (first and last)

v Phone number for each carrier

v Carrier’s driver’s license number

v Carrier’s hire date

If you followed the spreadsheet mentality, you might simply create a single
table with all this information. However, having just one table would create
two significant problems for you:

1 Large quantities of redundant data. Assume that each carrier has 1,000
customers. If you used a single table design, you'd wind up storing that
carrier’s name, telephone number, driver’s license number and hire date
in each of those 1,000 rows. That’s a lot of wasted space!

v~ Difficulty updating data after a change. What if a carrier quits and you
need to reassign customers to a new hire? You’'d need to edit all 1,000
records for that carrier!

Instead, you can improve your design by grouping related data into tables.
First, look at the data and see what discrete entities already exist in your
data. This example already has the notion of a customer and the separate
notion of a carrier. Each of those entities already has some data associated
with it. There are two of your tables! The Customers table and Carriers table
are shown in Tables 4-3 and 4-4.

If you don’t understand some of the fields in these tables, don’t worry. I
introduce you to routes and subscription types later in this section.

Next, analyze the data and determine whether you can find any abstract
concepts that you can use to extract other groups of related data. You

might notice that 'm storing the days of the week each customer receives
the paper in the database. Perhaps your business process analysis revealed
that your newspaper offers only three subscription types: weekday delivery,
weekend delivery, and full-week delivery. You can create a table containing
information about each of these subscription types and reduce the amount of
information stored in the customer table, as shown in Table 4-5.

A A A A A A €
N A A A A N [A
A N N N N A l
adfy
Aepinmjes Aepry Aepsinyy Aepsaupam Aepsany Aepuopyy Aepung uonduasqng
a|qe] sadA] uonduasqng G-b 91qel
0002/01/9 86181260 GZ16-GSG (206) sauor aley [A
L00z/61L/L ¢062¢56¢1 12¢6-G4G (206) uojuiy Awaiap l
@ ajeq aliy Jaquiny 10 Jaquiny auoyq auwep jseq awep s ql 131119
kS a|qe] siauie) b-v alqel
L)
©
(=
=]
< 0216-955 18ais
P S8 (c05) [4 3740 18114 226 € 18309 yieg 1
c v61-655 108118
S ON (205) 4 Ere6y 1814216 l MINTY Aiepy)
3 7621-656 199118
n“ ON (c0a) l cveey ulejN ¢8y l ua|ly qod [A
E 5€¢-65G 109118
M ON (c0) l ceey utely €21 [A swe.qy uyor l
nw smejs Jaquiny al adfy awepy awep al
= PIOH auoyd ajnoy diz ssaippy uonduasqng jseq 1Sl Jawojsn?
n,r.m a|qe] siawolsny) €-b 9|qel

58

Chapter 4: Planning Your Database 59

\NG/
&

\\3

Your business process analysis might also reveal that you organize your
customers into routes and assign carriers to those routes. Some carriers
may have multiple routes, and carriers frequently switch from one route to
another. You should also include this concept by introducing a route table
and assigning each customer to a route rather than a carrier. A customer’s
carrier may change often, but the carrier’s route will change rarely, if at all.
An example routes table appears in Table 4-6.

Table 4-6 Routes Table
Route ID Carrier ID

1 2

2 1

3 1

Notice that the routes table is quite simple. The sole purpose of this table is
to link route and carrier information. I discuss linking of related tables later,
in the “Linking related tables” section of this chapter.

Selecting primary keys

Each table in a well-designed database should have a primary key that
uniquely identifies each row in the table. The primary key is usually a single
attribute that the database guarantees will be unique for each row. You can,
if you wish, use the combination of two or more columns as a table’s primary
key, but you'll find it easier to use a single column when possible.

When you look for a primary key, first examine the attributes that already
exist in the table. Are any of the attributes guaranteed to be unique for every
row? If so, those attributes may be a good choice for a primary key.

Make sure that your choice of a primary key is guaranteed to be unique. Some
bad choices are people’s names (very likely to repeat; how many John Smiths
are in the phone book?) and telephone numbers (often reassigned to different

people).

Social Security Numbers (SSNs) also make poor primary keys for a number of
reasons:

v People are often understandably reluctant to provide their SSN because
of privacy and identity theft concerns.

60

Part II: Building SQL Server 2008 Databases

v Businesses don’t like to store SSNs unless absolutely necessary because
of the potential liability if they are lost.

1 Not everyone has an SSN. Generally speaking, only U.S. citizens and
others authorized to work in the United States receive SSNs.

Good examples of primary keys include unique identifiers issued by an orga-
nization. Many businesses issue employee identification numbers to each
employee. If these numbers are never reused, they make excellent primary
key candidates. Similarly, colleges and universities issue student identification
numbers as an alternative to using SSNs. These also make great primary keys.

Any attribute or combination of attributes that uniquely identifies records in a
table is known as a candidate key. The candidate key that you select to uniquely
identify those records in the database is known as the primary key. Therefore, a
table may contain several candidate keys but only one primary key.

If you can’t find an appropriate primary key in your table, you may need to
create one. One common approach is to create an “ID” column in your table
that contains a unique integer. An example of this approach appears earlier in
this chapter in Table 4-3 (which used “Customer ID” as the primary key), and
Table 4-4 (which used “Carrier ID”), and Table 4-6 (which used “Route ID”).

Linking related tables

After you've identified the primary key for each table in your database, you
can harness the true power of relational databases by linking related tables.
You accomplish this task by selecting foreign keys. Foreign keys identify
records in other tables that are related to records in the primary table.
Typically, the foreign key in the primary table contains the value of the pri-
mary key from the related table.

For example, consider Table 4-3, the customers table, which appears in the
“Grouping data into tables” section, earlier in this chapter. For that table,

[introduce the notion of a subscription type and create a business rule
requiring a subscription type for each customer. I don’t include details of
each subscription type in the customer records because doing so would
introduce redundant data into the database. Instead, I created a foreign key
in Table 4-3 called “Subscription Type.” This foreign key corresponds to the
“Subscription Type” primary key in the subscription types table (Table 4-5,
also shown earlier). If you want to determine the days of the week a given
customer receives the newspaper, you must first retrieve that customer’s
subscription type from the customers table and then use that code to
retrieve the days of the week from the subscription types table.

[discuss relationships between tables in further detail in Chapter 6.

Chapter 4: Planning Your Database 6 ’

Diagramming Your Database

Figure 4-2:
Entity-
Relationship
diagram
fora
newspaper
subscription
database.
|

The adage “A picture is worth a thousand words” holds true in the world of
database design. The previous section of this chapter presents you with a
few tables and describes the relationships between them in words. Figure 4-2
shows the same concept using a diagram.

Carriers Customers Routes
PK | Carrier ID PK | Customer ID PK Route ID
First Name First Name -
Last Name Last Name FK1 Carrier ID
Phone Number FK1 | Subscription Type
Driver License Number Address
Hire Date FK2 éloputelD Subscription Types
Phone Number PK Subscription Type
Hold Status Sunday
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday

Isn’t that easier to understand than the written descriptions in the previous
section? The diagram in Figure 4-2 is an Entity-Relationship (ER) diagram. An
ER diagram is a common tool that database designers use to document their
designs and share them in a commonly understood format.

When you see an ER diagram, there are a few elements you should examine
to identify various features of the relational database:

v+ Each box in the diagram represents a table. The name of the table
appears centered in the shaded area of the box.

v~ Attributes appear in the unshaded portion of each table’s box. Each
attribute appears in a separate row.

v~ Attribute(s) that compose a table’s primary key appear in the top portion
of the unshaded area, above the horizontal line. They also have the
designation “PK” to their left.

1~ Foreign key attributes have the designation “FK” to their left. In addition,
an arrow points from the table containing the foreign key to the
referenced table.

62 Part Il: Building SQL Server 2008 Databases

3

v Required fields appear in boldface font. Attributes that may contain
NULL values (discussed later in this chapter) appear in a regular typeface.

I used Microsoft Visio to create the ER diagram shown in Figure 4-2. Visio is a
great tool that allows you to quickly and easily build many kinds of technical
diagrams.

The form of ER diagrams presented in this book is a simplified approach to
the diagramming process. Advanced approaches allow you to include addi-
tional information in your diagram, such as the type of relationship that exists
between tables.

Staying Fit and Trim with Normalization

WMBER
@%
&

In addition to creating the concept of relational databases, Eugene F. Codd
(see the “Relational databases” section, earlier in this chapter) also set forth
principles of good database design. He called these principles normalization
techniques and created several sets of requirements known as normal forms.

In this section, I discuss the three most common normal forms: first normal
form (abbreviated 1NF), second normal form (2NF), and third normal form
(3NF). A database that meets the requirements of a normal form is said to be
“in” that form. The normal forms are cumulative. That is, a database that is in
2NF must also be in INF, and a database in 3NF must also be in 2NF.

Normalization techniques provide you with guidelines for sound database
design. Keep in mind that they are only guidelines, not inviolable rules.
Sometimes business necessity or expediency may dictate deviating from these
best practices.

First normal form

There are two requirements for a table to be in first normal form:

v+ The table must have no duplicate records. This criteria is automatically
met if you define a primary key for the table.

v The table must have no multi-valued attributes. This one’s a little more
complicated. Basically, it says that you can’t combine multiple values
that are valid for a column in a single column. I provide an example
to help you understand this concept. Look back at the carriers table
in Table 4-4. If I didn’t care about 1NF, I could have simply created a
“Routes” column in the carriers table, as shown in Table 4-7.

Chapter 4: Planning Your Database

Table 4-7 Carriers Table Not in 1INF

Carrier First Last Name Phone DL Hire Date Routes

ID Name Number Number

1 Jeremy Hinton (502) 129522902 7/19/2007 2.3
555-9221

2 Kate Jones (502) 092481982 6/10/2000 1
555-5125

However, this table contains a multi-valued attribute. The “Routes” column
contains two values (“2” and “3”) for Jeremy Hinton.

An alternative approach would be to create the table shown in Table 4-8.

Table 4-8 Carriers Table in INF
Carrier First Last Phone DL Number Hire Route1 Route2
ID Name Name Number Date
1 Jeremy Hinton (502) 129522902 7/19/ 2 3
555-9221 2007
2 Kate Jones (502) 092481982 6/10/ 1
555-5125 2000

This table does meet the requirements of 1NF, but it’s still not great data-
base design. What happens if Jeremy wants to add a third route? With the
approach shown in Table 4-8, you’d need to add another column to the table.
The original approach (Table 4-4) creates a separate table to link routes and
carriers and allows for an unlimited number of routes per carrier.

Second and third normal forms

The second normal form (2NF) introduces one additional requirement: all
attributes that are not part of a candidate key must be functionally depen-
dent upon the entire primary key.

The third normal form (3NF) also requires that all attributes that are not part
of a candidate key must be nontransitively dependent upon each candidate
key in the table. This means that the attributes may not be dependent only
upon the primary key, because they are dependent upon another attribute
that is dependent upon the primary key.

63

64 Part Il: Building SQL Server 2008 Databases

What does all of this boil down to? You shouldn’t include data in a table
that’s not directly related to the table’s primary key. Imagine if you tried to
combine the routes table in Table 4-6 with the carriers table in Table 4-4 to
get the result shown in Table 4-9.

Table 4-9 Routes Table Not in 2NF or 3NF
Route ID First Last Phone DL Hire Date
Name Name Number Number

1 Kate Jones (502) 092481982 6/10/2000
555-5125

2 Jeremy Hinton (502) 129522902 7/19/2007
555-9221

3 Jeremy Hinton (502) 129522902 7/19/2007
555-9221

The primary key of this table is “Route ID”, but there’s quite a bit of informa-
tion in the table that’s not dependent upon that primary key. For example, the
driver’s license number in the third row is not determined by the route ID. It’s
linked to Jeremy Hinton, so it appears in each row representing a route served
by Jeremy.

Normalization requires that you separate this table into a carriers table and a
routes table, as | do earlier in the chapter.

The three normal forms described previously are the ones most commonly
implemented in databases. There are other, more advanced, normal forms
that impose more burdensome requirements that are difficult to implement
and often result in significant inefficiencies. They include fourth normal form
(4NF), fifth normal form (5NF), sixth normal form (6NF), Boyce-Codd normal
form (BCNF) and domain/key normal form (DKNF).

Choosing Data Types for Your Tables

After you have a normalized design, you need to transform your ER diagram
into a SQL Server database design. The primary task to perform is the selec-
tion of appropriate data types for each of the attributes in your database. The
data type tells SQL Server how to interpret the data stored in each column.

[discuss the process of creating SQL Server databases and tables in Chapter 5.
Here, you can focus on discovering the various data types and mapping them
to your design.

Chapter 4: Planning Your Database

Numeric data types

Numeric data types store any type of information that you’d like SQL Server
to use in mathematical computations. They include data types capable of
storing both integers and decimal numbers.

The numeric data types supported by SQL Server 2008 appear in Table 4-10.

Table 4-10 Numeric Data Types

Data Type Description Length

int Stores integer values rang- 4 bytes
ing from —2,147,483,648 to
2,147,483,647

tinyint Stores integer values ranging 1 byte
from 0 to 255

smallint Stores integer values ranging 2 bytes
from —32,768 to 32,767

bigint Stores integer values ranging 8 bytes
from —263 to 263-1

money Stores monetary values ranging 8 bytes
from —-922,337,203,685,477.5808 to
922,337,203,685,477.5807

smallmoney Stores monetary values rang- 4 hytes
ing from —214,748.3648 to
214,748.3647

decimal (p, s) Stores decimal values of preci- 5-17 bytes

sion p and scale s. The maximum
precision is 38 digits.

numeric (p,s) Functionally equivalent to deci-
mal

float (n) Stores floating point values with 4 bytes (when
precision of 7 digits (when n=24) n=24) or 8 bytes
or 15 digits (when n=53) (when n=53)

real Functionally equivalent to

float(24)

65

66 Part Il: Building SQL Server 2008 Databases

You need to be familiar with a few mathematical terms and concepts to
understand the differences between the numeric data types, so here’s a brief
refresher:

v Integers are numbers with no decimal point. The following numbers are
all integer values:
°2
e 32,420
¢ 1,000,000,000,000,000
e(
e _-15

v The precision of a decimal number is the number of digits that may be
stored on both sides of the decimal points. Here are a few examples:

e The value 32 has a precision of 2.
e The value 3.14159 has a precision of 6.
e The value 19402.4391024 has a precision of 12.

v The scale of a decimal number is the number of digits that may be
stored on the right side of the decimal point. Here are a few examples:

¢ The value 32 has a scale of 0.
e The value 3.14159 has a scale of 5.
e The value 19402.4391024 has a scale of 7.

v Floating-point numbers (both the float and real data types) are less
accurate than other decimal types because of the way they are stored in
binary form.

<P Always use the smallest-length variable that will accommodate all anticipated
values stored in a column. Consider the case of an integer value that stores
values between 1 and 50. If you use a standard int data type, each row will
require 4 bytes for that column. On the other hand, if you use a tinyint, that
column will require only 1 byte per row. That might not sound like much, but
the use of a tinyint reduces the column’s space consumption by 75 percent.
That’s a significant difference in a large database!

Date and time data types

SQL Server provides several data types specifically designed for the storage
of date and time data. SQL Server 2008 includes the new date and time data
types, features long requested by SQL Server users.

Chapter 4: Planning Your Database

Table 4-11

Date and Time Data Types

Data Type

Description

Length

Example

date

Stores dates between
January 1, 0001, and
December 31, 9999

3 bytes

2008-01-15

datetime

Stores dates and
times between
January 1, 1753, and
December 31, 9999,
with an accuracy of
3.33 milliseconds

8 bytes

2008-01-15
09:42:16.142

datetime?2

Stores date and
times between
January 1, 0001, and
December 31, 9999,
with an accuracy of
100 nanoseconds

6-8 bytes

2008-01-15
09:42:16.1420221

datetimeoffset

Stores date and
times with the
same precision as
datetime2 and also
includes an offset
from Universal Time
Coordinated (UTC)
(also known as
Greenwich

Mean Time)

8-10
bytes

2008-01-15
09:42:16.1420221
+05:00

smalldatetime

Stores dates and
times between
January 1, 1900, and
June 6, 2079, with
an accuracy of 1
minute (the seconds
are always listed as
“:00")

4 bytes

2008-01-15
09:42:00

time

Stores times with
an accuracy of 100
nanoseconds

3-5 bytes

09:42:16.1420221

67

Part II: Building SQL Server 2008 Databases

Character string data types

Character string data types allow you to store text in a Microsoft SQL Server
database. Table 4-12 shows the character string data types.

Table 4-12 Character String Data Types

Data Type Description Length

char (n) Stores n characters nbytes (where nis in the
range of 1-8,000)

nchar (n) Stores nUnicode 2n bytes (where niis in the

characters

range of 1-4,000)

varchar (n)

Stores approximately
ncharacters

actual string length + 2 bytes
(where nis in the range of
1-8,000)

varchar (max)

Stores up to 25'-1
characters

actual string length + 2 bytes

nvarchar (n)

Stores approximately
n characters

2*(actual string length) + 2
bytes (where nis in the range
of 1-4,000)

nvarchar (max)

Stores up to
((2%1-1)/2)-2
characters

2*(actual string length)+2
bytes

Here are a few facts you should know about character string data types:

v~ If the number of characters in a string is fairly constant, you should use
the char or nchar data type. Doing so avoids the 2-byte overhead of

the varchar and nvarchar data types.

v~ If the number of characters in a string varies significantly, use the var-
char or nvarchar data types. Doing so avoids wasting space storing
short strings in large spaces.

v If your database supports only English attributes, use the char or var-
char data types. These use half the space that the nchar and nvar-
char data types use.

v SQL Server supports the text and ntext data types for the storage of
large strings, but these are scheduled for removal in a future version of
SQL Server. You should avoid them to ensure the compatibility of your
database with future versions. Use varchar (max) or nvarchar (max)

instead.

QUING/

Binary data types

Chapter 4: Planning Your Database 69

SQL Server’s binary data types allow you to store basically any type of data
represented in binary form. The binary data types are shown in Table 4-13.

Table 4-13 Binary Data Types

Data Type Description Length

bit Stores a single bit of 1 byte per 8 bit columns
data in a table

binary (n) Stores n bytes of binary nbytes (where nis in the
data range of 1-8,000)

varbinary (n) Stores approximately n actual length+2 bytes
bytes of binary data (where nisin the range

of 1-8,000)
varbinary (max) Stores up to 2°'-1 bytes actual length+2 bytes

of binary data

Examples of binary data include documents, images, encrypted text, and any

other data that can be represented in binary form.

SQL Server also supports the image data type but, as is true of text and
ntext, image will not be supported in future releases of SQL Server. You
should use another binary data type in its place to ensure the compatibility of

your database with future versions of SQL Server.

Other data types

SQL Server also provides six additional built-in data types that don’t neatly fit
into any of the classifications described in previous sections of this chapter.

These types appear in Table 4-14.

Table 4-14 Other Built-In Data Types
Data Type Description Length
cursor Stores a referenceto a N/A (cannot be

cursor

used in a table)

(continued)

70 Part Il: Building SQL Server 2008 Databases

Table 4-14 (continued)

sqgl_variant May store any data type Up to 8,000 bytes
otherthan sql_variant,
text,ntext, image,
and timestamp

table Stores a temporary table N/A (cannot be
(such as a query result) used in a table)
rowversion Stores a value of the data- 8 bytes

base time (a relative number
that increments each time
you insert or update data in
a database. Itis not related
to calendar/clock time)

uniqueidentifier Stores a globally unique 2 bytes
identifier
xml Stores formatted XML Up to 2GB
documents
QNING/ The timestamp data type is one of the least understood aspects of SQL Server.
Ry It does not contain an actual date and time but contains a value from the data-

base’s internal counter. You can use it for comparing the relative sequence of
events, but honestly, it’s not a very useful data type.

In case all these data types aren’t enough for you, SQL Server lets you create
your own data types to meet your specific needs. You can create user-defined
types (UDTs) to develop your own, nonstandard data types. For example, you
might make a UDT for telephone numbers that enforces consistent number
formatting throughout your organization’s databases.

Working with NULL Values

The value NULL holds special meaning for database developers. It means
“nothing,” and you use it to indicate either missing information or a value of
“not applicable.” NULL does nof mean “empty” or “zero.”

Chapter 4: Planning Your Database

For example, suppose you have a customer management database that con-
tains a variable storing the number of times each customer visits your stores.
If you did not know the number of times a customer visited your store, you
would use the NULL value. If a customer has never visited your store, you would
use a value of 0.

When you create a database table, you may specify whether each column
may contain NULL values. If you do not allow a column to contain NULLs,
users may not create a row without entering an appropriate value for that
column. I cover the creation of tables that permit and deny NULL values in
Chapter 5.

When you compare database values, you need to consider the possibility
that a column might contain a NULL value and remember that it may affect
the results of your comparison. Here are a few pointers:

v 1If you want to test whether a value is NULL, use the IS NULL condition
in a query’s WHERE clause. [discuss doing so in Chapter 7.

v If you test two conditions joined with an AND (such as “X AND Y”) and
one of the values is NULL, the result will be NULL. The only exception to
this result is if one of the values is known to be false. In that case, the
clause will be false no matter what.

v Similarly, if you test two conditions joined with an OR (such as “X OR Y”)
and one of the values is true, that clause will always be true. However, if
there are no true values and there is at least one NULL value, the result
will be NULL.

/1

72 Part II: Building SQL Server 2008 Databases

Chapter 5

Creating Databases and Tahles

In This Chapter

Creating a new SQL Server database

Working with files and filegroups

Creating, modifying, and deleting database tables

ANG/
S

A fter you install SQL Server 2008, you can get down to the nuts and bolts of
SQL Server databases. And as with any database, you want to apply the
basics of good database design, which [cover in Chapter 4. In this chapter, I take
you through the process of creating a database on a SQL Server. You find out
how easily you can configure a new database, populate it with the tables that
hold your data, and modify existing tables.

Remember that a database is a collection of related tables that store your
data. Each time you install SQL Server on a system, you have the ability to
create one or more databases to store different kinds of data. When you
install SQL Server, you don’t actually create a database. Rather, you create a
server that has the capability to store databases. In this chapter, [show you
how to create a single database on your new SQL Server.

If you just opened the book and skipped to this chapter, you probably want to
take a few minutes to look over Chapter 4, where I discuss the proper way to
design a database. If you try to create your database and tables without under-
standing that information, you might make design decisions that will make
your life difficult down the road. For example, if you don’t design your tables
efficiently at first, you may need to redesign them later. Redesigning existing
database tables requires modifying all the queries and reports that use those
tables — a time-consuming task.

Creating a Database

SQL Server 2008 makes the creation of a new database simple and pain free.
Although this powerful platform certainly enables you to customize your
database, it also includes a great set of default options that can have you up

74 Part II: Building SQL Server 2008 Databases

|
Figure 5-1:
Connecting
toa SQL
Server 2008
server.
|

and running in a matter of minutes. Follow these steps to create a new SQL
Server database:

1. Choose Start->All Programs=>Microsoft SQL Server—>SQL Server
Management Studio to start SQL Server Management Studio (SSMS).

SSMS opens and prompts you to connect to an installation of Microsoft
SQL Server, as shown in Figure 5-1.

2. Click the Connect button to connect to your server.

Simply clicking Connect works if you're running SSMS on the same
computer you used to install SQL Server and you configured it to use
Windows Authentication mode (see Chapter 2 for more about Windows
Authentication mode).

If you’re connecting to the server from a remote system, you need to
specify the server name in the Connect to Server dialog box. If your
server uses SQL Server Authentication, you also need to provide your
username and password in the same window.

3. Right-click the Databases folder, which you find in the Object Explorer
pane of the resulting SSMS window, and select New Database from the
pop-up menu.

You see the first screen of the New Database wizard, shown in Figure 5-2,
which assists you in configuring your database.

4. Type a name that describes your database into the Database Name
textbox.

Every database on a SQL Server system must have a unique name. For
this example in this chapter, I use the name Cookies.

Microsoft®
> SQL Server2008

Server bype: Databaze Engine

Server name:

Authentication; ‘wiindows Authentication

[Connect H Cancel H Help H Optiong »>

Chapter 5: Creating Databases and Tables

|
Figure 5-2:
You can
configure
your data-
base using
the New
Database
Wizard.

4 General
4 Options
4 Filegroups

Server

HPLYM1

Connection:

=PLYM1smchapple

2 VYiew connection properties

Ready

‘;g Script = U Help

D atabase name:

Dwner: dsfault> E]

[Use fulltext indexing

D atabase files:
Logical Mame | File Type | Filegioup Initial Size (MB) | Autogrowth
Data PRIMARY By 1 MB, unrestricted growth
_log Log Mot Applicable [By 10 percent, unrestricted growth

Add

5. Click through the various pages by using the Select a Page pane in the
upper-left corner of the New Database Wizard window.

The New Database Wizard allows you to set a number of different
options when you create a new database, including

e Using files and filegroups to specify how SQL Server should
store your data. (You can find more details on this in the section
“Specifying Files and Filegroups,” later in this chapter.)

¢ Setting the database owner.

¢ Configuring a recovery model. (I discuss recovery models in
Chapter 17.)

e Making your database backwards compatible with earlier versions
of SQL Server.

Figure 5-3 shows the Options page with default options. In the interest
of keeping your first database simple, | recommend accepting all the
default options for now.

5. Click OK to create your database.

The computer will probably take a while to build your database. While
SQL Server is working, the Progress pane in the lower-left corner of the
New Database Wizard says “Executing,” as shown in Figure 5-4.

75

76

|
Figure 5-3:
The Options
page of

the New
Database
Wizard.

|
Figure 5-4:
The
Progress
pane
displays
while your
database is
being built.
|

F New Database

4 General
4 Options
4 Filegroups

Server

HPLYM1

Connection:
=PLYM1smchapple

2 VYiew connection properties

Ready

Part II: Building SQL Server 2008 Databases

‘; Script = u Help

Collation:
Recovery model:

Compatibility level:

Other options:
(8244
B Automatic
Auto Clase
Auto Create Statistics
Auta Shrink
Auto Update Statistics

Auto Update Statistics Aspnchionously

El Cursor

Close Cursor on Commit Enabled

Default Cursor

B Miscellaneous
ANSIMULL Defaulk
ANSIMULLS Enabled
ANS| Padding Enabled
AMNSI W arnings Enabled

Aiithmetic Abort Enabled

ANSI NULL Default

Full

S0L Server code name Katmai [100)

False
True
False
True
False

False
GLOBAL

False
False
False
False
False

6. View your database in SSMS after the New Database window disappears.

If you don’t see any entries underneath the Databases folder, expand it
by clicking the + sign to the left of the Databases folder icon. Doing so
expands the list of databases, and you should now see your new data-
base underneath the System Databases and Database Snapshots entries.
Figure 5-5 shows a SQL Server 2008 installation with the new database

that I named Cookies.

o Executing

Chapter 5: Creating Databases and Tables

|
Figure 5-5:
SQL Server
Manage-
ment

Studio
showing a
new
database.
|

/7

.~: Microsoft SQL Server Management Studio

File Edit ‘iew Tools ‘Window Community Help
5 Mew Query | [y | 1oy 0y By | [| S bl W @ B BB RS
Zplo Object Explorer Details - X
Connect | 4J =] @ [&
= [b WPLYML (SQL Server 10.0.101%9 - ZPLYM1\mchapp
SR) Databases Lj
& [System Databases Databases
(3 Database Snapshats %PLYM1\Databases 3 Ttem(s)
® | Cookies
+ [Fecurity
[Server Objects Name Palicy Health State
= [Replication [System Databases Noncritical
* ‘—-‘ Management § [J Database snapshots Moncritical
u% S6L Server Agent {Agent %Ps disabled) | Cookies Maneritical
< b3
< >
Ready

That’s all there is to it. Congratulations, you’ve now built your own SQL

Server database!

Altering database properties

You might want to change some of your initial design decisions after you've
finished creating your database. For example, suppose that you rarely use a
database and decide that you’d like SQL Server to close it automatically when
not in use. Now you want to change options so that the database automatically
closes. No problem! SQL Server Management Studio makes doing so easy.

1. With SQL Server Management Studio open, use Object Explorer
to navigate to the database you’d like to modify by expanding the
Databases folder (click the plus sign next to the folder icon) and click-
ing the desired database.

. Right-click the database and choose Properties from the pop-up menu.

The database Properties window appears and shows the currently

selected options.

78 Part Il: Building SQL Server 2008 Databases

3. Browse the property pages by clicking their titles in the Select a Page
pane of the Properties window; then, modify any option(s) you want.

Some common changes to make to database properties include the
following:

¢ Configuring a database to automatically close when not in use. To
do so, you set go to the Options page and set the Auto Close
property to True.

e Adding files to a database on the Files page.

e Altering database mirroring settings on the Mirroring page.
(I discuss mirroring in Chapter 19.)

4. Click OK to confirm your changes.

Deleting or renaming a database

Occasionally, you may need to delete an entire database when you no longer
need it. Also, you might want to change the name you initially assigned to a
database based upon changes you make after the initial design. The modifica-
tion process is slightly different if you’d like to delete or rename a database.
To delete a database, follow these steps:

1. With SQL Server Management Studio open, navigate to the database
you’d like to delete by expanding the Databases folder in Object
Explorer and clicking the desired database.

Doing things the hard way

In Chapter 1, | mention that the only language you were to choose the SQL way, your state-
that databases understand is the Structured ment would read like this:

Query Language (SQL). At this point in Chapter
5, you might be asking yourself “Where's the
SQL?” Rest assured that it's there in the back- ~ Similarly, you can rename the database with
ground. SSMS conveniently translates your this statement:

mouse clicks and data entry into SQL code ALTER DATABASE Cookies

that's sent to the database. You can actually MODIFY NAME = Brownies:;

write a SQL statement to create a database

rather than use the New Database Wizard. If

CREATE DATABASE Cookies;

3

|
Figure 5-6:
Confirming
the deletion
of a data-
base.
|

Chapter 5: Creating Databases and Tables 79

2. Right-click the object and choose Delete from the pop-up menu.

SSMS presents a Confirmation window similar to the one shown in
Figure 5-6. This window gives you one last chance to confirm that you'd

like to delete the database.

3. Verify the information in the Confirmation window and, if you’re pre-
pared to delete the database, click OK to continue.

3¢ Delete Dbject

5 Seript + I Hel
2 General ;S P (G Helo
Object to be deleted
Object Mame Object Type Owner | Status
cookies Database HPL.
Server
=PLWT
Cornection
#PLYM1vmchapple
3¢ View connection properties
Feady Delete backup and restore history information for databases
[] Clase existing connections

Backing up your database before you delete it is a good idea. After you delete
it, your structure and data are gone, and restoring from backup is the only
way to bring the database back online.

Message

If your use of a database changes over time, you can rename the database
to match the revised use. If you explored the database property sheets, you
probably noticed that the database name appears as a property, but you
can’t change it in the property sheet. To change the name of a database,

follow these steps:

1. With SQL Server Management Studio open, navigate to the database
you’d like to rename by expanding the Databases folder in Object

Explorer.

80 Part Il: Building SQL Server 2008 Databases

2. Right-click the object and select Rename from the pop-up menu.

3. Type the new name over the old name and press Enter.

Specifying Files and Filegroups

3

If you're familiar with desktop database products (such as Microsoft Access),
you might be wondering where SQL Server actually stores your data. After
all, to open an Access database, you simply browse your computer and dou-
ble-click the database file.

SQL Server also uses files to store your data, but they’re kept behind the
scenes. Database users don’t even need to know that these files exist,
because the users interact with databases and database applications through
other interfaces, such as Web applications, instead. Administrators, however,
should be aware of these files, because their location and configuration can
affect database performance.

In this section, I offer you a look at the files that make up a SQL Server data-
base and then turn your attention to the use of filegroups, which help you
group related files for convenient file management.

SOL Server files

When you create a database using the New Database Wizard, SQL Server
automatically creates the necessary files for you on disk. By default, SQL
Server creates a primary data file named database.mdf and a log file named
database_log.mdf, where database is the name of your database. These files
are stored in SQL Server’s data directory. Unless you've changed it, this
directory is C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA.

If you can’t find a particular file, you can look up the location on the data-
base’s Files property sheet. I explain how to view database properties in the
“Altering database properties” section, earlier in this chapter.

SQL Server 2008 uses three file types to store database information and logs:

1 Primary data files serve as the “hub” of the database. Each database
has one and only one primary data file. By default, this file contains all
the data stored in your database. It also contains important configuration
information and the location of other database files. Most administrators
use the .mdf file extension to indicate a primary data file.

Chapter 5: Creating Databases and Tables 8 ’

\\J

v Secondary data files are an optional way to spread your database con-
tent over multiple files. It’s common practice to use the .ndf file exten-
sion on secondary data files.

v Log files store your database’s transaction logs. They're critical if you
ever need to restore your database from backup. I discuss transaction
logs in Chapter 18. Most administrators use the . 1df file extension
when naming log files.

Separating your data files and log files onto separate physical disks helps
optimize database performance. For example, if you have four physical disks,
you can have a primary data file, two secondary data files, and a log file all on
separate disks, improving data access times.

Adding a file
If you’'d like to spread your data across multiple files to take advantage of

multiple disks, you can add secondary data files to your database. It’s a
simple process, as follows:

1. With SQL Server Management Studio open, navigate to the database
where you’d like to add a file by expanding the Databases folder in
Object Explorer.

2. Right-click the database name and select Properties from the pop-up
menu.

The Properties dialog box appears.
3. Click the Files page in the Select a Page pane.

SSMS displays the files associated with the current database.
4. Click the Add button to add a new data file.

You see the new data file appear as a new, unnamed row in the Database
files table located in the center of the window.

5. Click in the Logical Name cell and type the name of your file (Figure 5-7).

6. Use the scroll bar to view the right side of the Database files table and
click the ellipsis (. . .) icon next to the file path field if you’d like to
change the storage location of your new file.

7. Click OK to confirm the addition.

82

Part II: Building SQL Server 2008 Databases

|
Figure 5-7:
Adding a
secondary
datafiletoa
database.
|

. Database Properties - Cookies g@@
8 Seript ~ I Hel

4 General .4_3 cP U &

12 Files

4 Filegroups D atabase name:

4 Options

Owner: RPLYM1\mchapple E]

4 Permissions

|4 Extended Properties

4 Mirroring

% Transaction Log Shipping

Use fulltext indexing

D atabase files:
Logical Mame | File Type | Filegioup Initial Size (MB) | Autogrowth
Cookiex Data PRIMARY 2 By 1 MB, unrestricted growth
Cookigs_| Log Mot Applicable 1 By 10 percent, restricted growth ta.
E:IE:DOKIES 2 Data FRIMARY 2 By 1 MB, unrestricted growth

Server
HPLW1

Connection:
=PLYM1smchapple

2 VYiew connection properties

Ready <

>

Adding log files follows the same process. Just choose the Log file type from
the drop-down menu in the Database files table to add a new log file to your
database.

Removing a file

You may want to rearrange the way you stored your database files on disk.
For example, you might plan to remove a drive from a system for mainte-
nance purposes. Before doing so, you need to remove the database files
stored on that disk. Removing a file from a database is a two-step process:

You first need to ensure that the file is empty and then you can remove it
from the database.

Ensure that the file is empty by following these steps:

1. With SQL Server Management Studio open, navigate to the database
where you’d like to remove a file by expanding the Databases folder
(click the plus sign next to if) in Object Explorer.

2. Right-click the database name and choose Tasks=~>Shrink~>Files.

SSMS displays the Shrink File window, which allows you to specify the
shrinking options you’d like to use.

Chapter 5: Creating Databases and Tables 83

3. Use the File Type, Filegroup, and File Name drop-down boxes to
identify the file you plan to remove.

4. Select the Empty File by Migrating the Data to Other Files in the Same
Filegroup radio button.

5. Click OK to empty the file.
After you’'ve emptied the file, you can delete it by following these steps:

1. With SQL Server Management Studio open, navigate to the database
where you’d like to remove a file by expanding the Databases folder
in Object Explorer.

2. Right-click the database object and select Properties from the pop-up
menu.

3. Click the Files page in the Select a Page pane.

4. On the Files page, single-click the file you’d like to delete.
The filename is now highlighted.

5. Click the Remove button.
The file disappears from the list.

6. Click OK to confirm the deletion.

Using filegroups

If you have a large, complex SQL Server environment, managing individual
files may be cumbersome. SQL Server provides the ability to group related
files into filegroups to help ease your administrative burden.

Each primary and secondary data file may be a member of one and only one
filegroup. A filegroup may contain one or more data files. Log files may not
belong to a filegroup.

Creating a new filegroup
To add a new filegroup to a SQL Server 2008 database, follow these steps:
1. With SQL Server Management Studio open, navigate to the database
where you’d like to add a filegroup.

2. Right-click the database object and select Properties from the pop-up
menu.

SSMS displays the Database Properties window.

84 Part Il: Building SQL Server 2008 Databases

3. Click the Filegroups page in the Select a Page pane.

4. Click the Add button to add a new filegroup.
The new filegroup appears as a new, unnamed entry.

5. Click in the Name cell and type the name of your filegroup.
Figure 5-8 illustrates this process.

6. Click OK to confirm the addition.

B Database Properties - Sales E@@
5 Seript = [Help

Fows
Name: Files Read-Only Default
PRIMARY 1
New Filegroup 0]

o=

]] [Bemove

Server
HPLWM1

I | e
SPLYMTmchapple

Figure 5-8: 8 View connection propeties
Creating a -
new file-
group.

You've now created a new filegroup. The next time you add a data file to your
database, you'll notice the new filegroup’s name in the Filegroup drop-down box.

Understanding the PRIMARY filegroup

SQL Server 2008 creates a filegroup called the PRIMARY filegroup in each
new database at the time of creation. The PRIMARY filegroup contains a vari-
ety of system information and, unless you specify otherwise, serves as the
default filegroup for all new data files.

You may change the default filegroup using SSMS by checking the Default box
in the desired entry on the filegroups page of the database properties sheet.

Chapter 5: Creating Databases and Tables

Creating a Table

Tables serve as the basic structure for storing data in a relational database.
In this section, you find out how to create a new table, assign it a name, add
data columns, and select a primary key.

Imagine that you're the database administrator for a chain of cookie stores and
you want to create a database to manage store information. You might create
a shops table that holds essential information about each one of the stores in
your cookie empire. Your table might contain the columns shown in Table 5-1:

Table 5-1 Shops Table

Column Name Data Type Allow Nulls
Unit Number tinyint No

Address varchar (50) No

City varchar (20) No

State Char (2) No

ZIP Char (5) No

Phone Char (12) No

Fax Char (12) Yes

Getting started

The first thing you need to do is create the basic structure of your table in
SQL Server. You can build your table using SQL Server Management Studio’s
graphical table interface. Here’s the process you can follow:

1. With SSMS open, navigate to the database where you’d like to build a
new table by expanding the Databases folder (click the plus sign next
to it) in Object Explorer.

2. Expand the database’s folder.
3. Expand the Tables folder.

If your database already has tables, you see a listing of them here. If
you’re working with a new database, the only object in this folder is the
System Tables folder.

86 Part Il: Building SQL Server 2008 Databases

|
Figure 5-9:
Starting

with an

empty table.
|

4. Right-click the Tables folder and select New Table from the pop-up
menu.

You now see SSMS’ table creation interface (Table Designer), set up and
ready to go with a new table, as shown in Figure 5-9.

£ Microsoft SQL Server, Management Studio g@@
Fie FEdt Vew FProject Debug TableDesigner Took Window Community Help

) New Query | [Ty {7y

o

IR £

Object Explorer >~ 1 X | %PL¥M1.Sales - dbo.Table_1| Object Explorer Details | SQLQueryl.sal ... mchapple (52)) - X
Connect - | #3 4 T 3 Colurn Mame Data Type: allow Hulls
S (b "PLYML (5L Server 10.0.1500 - XPLVM|mchapp|| ¥]

= [Databases
) [System Databases
i [Database Snapshots
| J ReportServer
@ | ReportServerTempDB
= [sdles
[Database Diagrams
= [Tables
@ [System Tables
@ [Views
& [Synonyms
[Frogrammability
@ [Service Broker
@ [Storage
@ [Security
@ [Security H
@ [Server Objects =
@ [Replication
& [Management
@ [5L Server Agent

Column Properties

~
v

Ready

Adding columns

After you create the basic table structure, you need to add columns to your
table that correspond to the data elements in your design. I outlined the col-
umns of a Shops table in Table 5-1, shown previously, and now you can use
them to duplicate the table by following these steps:

1. Click in the empty cell in the Column Name column (in the middle
pane of the Table Designer window) and enter the name of your
column (for example, Unit Number).

2. Select the appropriate data type using the Data Type drop-down box.

If you're working with data types that allow you to specify the length
(such as char, varchar, and binary), you may edit the value in paren-
theses to indicate the appropriate length. For example, if you want a

Chapter 5: Creating Databases and Tables

NG’
&

column of type char with length 2, you first select char (10) from the
drop-down box and then edit the length, changing it from 10 to 12.

3. Select the Allow Nulls check box if you’d like to allow users to store
NULL values in the column.

You may repeat this process as many times as necessary to create all
the columns for your database table.

Selecting a primary key

In Chapter 4, I discuss the importance of selecting an appropriate primary
key for your table. You may select either a single column or a combination of
columns to serve as your table’s primary key.

The primary key must be unique. SQL Server will not allow you to insert a new
row in a table that contains a primary key value duplicating another table
entry. For similar reasons, SQL Server will not allow you to select the Allow
Nulls attribute on a column used in the primary key.

If you're not certain that a key value will always remain unique, you can use
an identity column to automatically generate a unique key. You may set the
Identity Column property in the Table Designer category of the Property pane.

Here’s how to set a table’s primary key:

1. In the Table Designer window, select the column(s) involved in your
primary key.

If your key uses more than one column, hold down the Ctrl key and click
each one.

2. Click the primary key icon (shown here in the margin).

This icon appears in the Table Designer toolbar that is, by default, right
above the Object Explorer pane in the table window.

3. Verify that the row(s) involved in the key now have the primary key
icon next to their entries in the table window.

Save your table often! If you close SSMS without saving your work, you'll lose
it! You can save your table by choosing Save from the File menu, clicking the
disk icon in the Standard toolbar, or pressing Ctrl+S. SQL Server lets you know
when your table design contains unsaved changes by putting an asterisk (*)
next to the table name in the tab above the column definitions.

87

88

Part II: Building SQL Server 2008 Databases

Figure 5-10 shows the completed Shops table. Notice that this table is in need
of a save!

R+ Microsoft SQL Server Management Studio

File Edit ‘iew Project Table Designer Tools ‘Window Community Help
Sewouery [y | PR M R S Hdd hERES .
Object Explorer 1 X %PL¥M1.Cookies - dbo.Table_1*| Object Explorer Details
Connect ~ 4J Ed Calumn Name Data Type Allav Mulls
= [b HPLYMIL (SOL 5 10,0010/ # [Unit Number] kirink O A
j—j_J Datahases o Address varchar(50) O 2
[System Databases City varchar(20) O =) (i
t _j E:::;Te Snapshioks State char(2) O
[Datahase Diagrar P charis) O Diescription
=) [Tahles Phone char(12) O Schema dba
[System Table| |) Fax char(12)
F [Yiews —_ *| |3 Table Designer
[Synonyms . Identity Col.
% (3 Programmabiliey || | COMmn Properties
: j gteur;r:;ﬁroker :gl Reqular Dat: PRIMARY
[Security Bl {General) A
L1 Secunty (Hlame) Fax Text/Image | PRIMARY
[1 Server Objects Allow Nulls Yes
+ [Replication Data Type char
L E2 _# Management Default value or Binding
. [SQL Server Agent (fAgent Length 12
Figure 5-10: R v
The {General)
{Name)
completed e
Shops table. |¢ b
— | oo
As with all other database activities, you [State] [char] (2) NOT
may create a table using nothing other than NULL,
Transact-SQL statements. The Transact-SQL [ZIP] [char] (5) NOT
required to create the same Shops table used NULL,
in this chapter is as follows: [Phone] [char](12) NOT
NULL,
USE [Cookies]; [Fax] [char] (12) NULL,
CREATE TABLE [dbo] . [Shops] () ON [PRIMARY]
[Unit Number] [tinyint] .
NOT NULL, You may view the Transact-SQL statement
[Address] [varchar] (50) for an existing table by right-clicking a table’s
NOT NULL, name in the Object Explorer and choosing Edit
[City] [varchar] (20) NOT from the pop-up menu.
NULL,

Chapter 5: Creating Databases and Tables

A\

If you return to the Object Explorer, you’ll now notice that the name of your
table appears in the Tables folder for your database. The “dbo.” string before
your table name indicates that the dbo (database owner) account maintains
ownership of the table.

If you'd like to discover more about the CREATE TABLE Transact-SQL
statement and its options, consult SQL Server Books Online.

Modifying tables

You'll often need to modify the design of an existing table to meet the chang-
ing business requirements of your organization. For example, if your cookie
stores go online, you might need to modify the Shops table from the previous
section to add an e-mail address column. SSMS makes this a simple process:

1. With SSMS open, navigate to the database object that contains the
table you’d like to modify by expanding the Databases folder (click
the plus sign next to if).

2. Expand the Tables subfolder for the appropriate database.

3. Right-click the name of the table you plan to modify and select the
Design option from the pop-up menu.

The table opens in Design view.
4. Use Table Designer to modify your table.

The Table Designer interface is exactly the same as the one you used to
create a new table in the Creating a Table section of this chapter. You
may modify table properties or add, edit, or remove table columns.

5. Save the table when you’re finished by clicking the Save icon.

If you're a Transact-SQL junkie, the ALTER TABLE statement allows you to
modify table characteristics without using the graphic interface of Table
Designer.

Deleting tables

Occasionally, you may need to delete a table that’s no longer needed in your
database. For example, suppose your database contains a table of Social
Security numbers, and new privacy regulations require that you no longer
store sensitive personal data. Here’s how you can easily delete the table:

89

90 Part Il: Building SQL Server 2008 Databases

Figure 5-11:
Confirming a
table
deletion.
|

1. With SSMS open, navigate to the database object that contains the
table you’d like to delete.

2. Expand the Tables folder for the appropriate database by clicking the

plus sign next to it.

3. Right-click the name of the table you plan to delete and select the

Delete option from the pop-up menu.

4. Confirm the deletion by clicking OK.

SQL Server displays the confirmation screen shown in Figure 5-11 and

asks you to confirm the deletion prior to finalizing it.

You may also delete tables using the DROP TABLE Transact-SQL statement.

For example, to delete a table named Test, you use the following code:

DROP TABLE Test;

2% Delete Object

S Script = U Help

2 General

Object ta be deleted

Object Mame
Test

Server
HPLWYM1

Connection:
HPLYM14mchapple

2§ View connection properties

Ready

Object Type
Table

Ovarier | Status

dbo

Message

Show Dependencies...]

Chapter 6

Imposing Constraints
and Relationships

In This Chapter

Using constraints to limit database contents
Enforcing integrity with PRIMARY KEY and UNIQUE constraints
Linking related tables with relationships and foreign keys

A s you work with SQL Server, you'll often want to control the contents of
your database to ensure the quality of the data it contains. For example,
you might want to ensure that your customers database doesn’t contain two
duplicate records for the same customer. Similarly, you wouldn’t want an
orders table in that database to contain an order for an item that doesn’t exist
in your catalog. Both of these situations could cause embarrassing situations
for your business and possibly have a negative impact on your organization’s
profitability.

Database administrators refer to this type of quality assurance as ensuring
the integrity of the database. Microsoft SQL Server provides a number of
mechanisms for enforcing database integrity. Collectively, these mechanisms
are known as constraints, and this chapter shows you how to effectively use
them to control the contents of your databases.

Introducing Constraints

SQL Server 2008 supports five different types of database integrity constraints.
Two of them primarily enforce business rules imposed upon the database,
whereas the other three ensure the integrity of database row uniqueness and
relationships.

92 Part II: Building SQL Server 2008 Databases

The two types of constraints that primarily serve to enforce business logic in
your databases are the following:

1 DEFAULT constraints supply values to fill fields when the user doesn’t
provide a value.

1 CHECK constraints limit the values that users may insert into a particular
database field.

The three rules designed to support database relationships and enforce
uniqueness are as follows:

»” PRIMARY KEY constraints ensure that specified column(s) always contain
a unique value so that the column(s) may serve as a table’s primary key.

1 UNQIUE constraints provide functionality similar to primary key con-
straints, but do not specify that the column(s) subject to the constraint
are a table’s primary key.

»” FOREIGN KEY constraints link two tables in a database by requiring
that the data in the column(s) governed by the constraint contain values
stored in the primary key column(s) of the linked table.

Each of these constraints serves a unique purpose in a SQL Server 2008 data-
base. In the rest of this chapter, you discover how each one can help you
enforce business logic and ensure the integrity of your SQL Server databases.

Controlling Database Contents
Using Constraints

Databases allow you to do much more than simply store and retrieve data.
They also allow you to enforce business rules that ensure that your data
meets the business requirements of your organization. DEFAULT constraints
and CHECK constraints are two powerful mechanisms that SQL Server 2008
provides to help you enforce business logic. Read on to find out how to put
these mechanisms to best use.

Filling in empty values with
DEFAULT constraints

In an ideal world, users providing data for your database will always provide
a set of complete rows, containing a value for every field in the relevant table.
Unfortunately, this isn’t usually the case. You'll often receive data with

Chapter 6: Imposing Constraints and Relationships

missing or unknown values, and your database should provide mechanisms
to handle these situations.

Chapter 4 explains the concept of NULL, which is the value used by a data-
base to indicate an unknown or missing value. Sometimes, however, you
may not wish to use a NULL value for every case in which the user does not
supply data.

Deciding how to handle missing data

Consider the case of an inventory table containing information about the
products stocked in a retail store along with a current count of the on-hand
inventory of each product. If the store manager wishes to add a new product
to the catalog, but does not yet have any of the product on hand, he or she
might go ahead and insert a new record into the products table but leave the
inventory field blank.

You have several possible ways to deal with this situation:

» You could interpret the blank value literally and have the database store a
NULL value to indicate the missing data. However, this approach doesn’t
take advantage of all the information at your disposal. You know that the
store manager is entering the product into the catalog for the first time
and that there is no current inventory in stock. The database, on the
other hand, will contain a NULL value, indicating that you do not know
the current inventory status of the product. This solution is not ideal
because you're losing information that could be valuable to the organi-
zation for inventory planning purposes.

»* You could mark the column as not allowing NULL values. This approach
would require that the store manager provide a value for the column by
refusing to accept a new record containing a NULL value. This solution
might be the most technically correct, but it’s annoying to the store man-
ager. Your primary goal should be to design usable systems that meet your
business and technical requirements while imposing as little burden upon
the organization as possible. This solution fails to meet that objective.

+* You could set a value of zero by default, acknowledging the fact that when
a product is first ordered, you know there is no inventory on hand. This
solution is the ideal one because it ensures the integrity of your database
and stores all the available information for future use. It also reduces the
burden upon the store manager, providing a workable solution.

You may implement the third scenario by using SQL Server’s DEFAULT con-
straint. DEFAULT constraints provide a value that SQL Server will automatically
insert in a column when the data source does not explicitly provide a value.

93

94

|
Figure 6-1:
Design

view of a
database
table.
|

Part II: Building SQL Server 2008 Databases

Creating a DEFAULT constraint
Here’s how to create a DEFAULT constraint in SQL Server 2008:

1

. With SQL Server Management Studio open, navigate to the database
containing the table where you’d like to implement a DEFAULT con-
straint by expanding the Databases folder in Object Explorer.

Click the plus (+) icon next to the database name to expand the rel-
evant database.

Click the plus (+) icon next to the Tables folder icon to expand the
Tables folder for the relevant database.

. Right-click the name of the desired table and select Design from the
pop-up menu.

The table opens in Design view, and you see a screen similar to the one
shown in Figure 6-1.

. .
5. Select the name of the column for which you want to provide a default
value.
b BEEH
File Edit ‘iew Project Table Designer Tools ‘Window Community Help
2 Mew query | [y | Py 0 i | (8 | S ¥ el I @ | B0 B BB BB O
} SEd a3,
Object Explorer - @ x XPLY¥M1.Cookies - dbo.Products 5 X | Properties - @ x
Connect > 4J Column Mame Data Type Allow Mulls [Tbl] dbo.Products o
= [¥PLYML {SQL Server 10.0.1019 - XPLWM1{mche ¥ Froduct 1D tirvyink O i
= [Databases Name wvarchar(50) O
= (Identity)
[System Databases Cost money () ’
Mamne; Products
— DataI.Jase Snapshots B Current_Inwentory ink
= | Cookies
[l Database Diagrams O Description
= 3 Tables Schema dbo
[System Tables
= dbo.5hops E Table Designer
=1 dbo.Products = P T Identity Calur
£ views olumn Properties
3 Synaonyms Reqgular Data FRIMARY
[Programmability
[l Service Broker B (General) ~
[Storage (Marne) Current_Inventory Text/Image F PRIMARY
[Security Allows Mulls ‘s
| HR Data Type int
| test Default ¥alue or Binding
[Security E Table Designer
[Server Objects Al
[Replication (General)
3 Management .
Tdentit:
u% S6L Server Agent {Agent %Ps disabled) ¢ v)
< 3
Ttem(s) Saviclick here to begin

iy start

e

Chapter 6: Imposing Constraints and Relationships

A\\J

|
Figure 6-2:
DEFAULT
constraint
on the
Current_
Inventory
column.
|

6. In the Column Properties pane, click in the Default Value or Binding
cell and type in the default value.

If you're entering a numeric default, simply type in the numeric value. If
you’re providing a character string default value for a text field, enclose
it within single quotation marks. Figure 6-2 shows an example in which
I've provided a default value of 0 for the Current_Inventory column
within the Products table of a database.

7. Click the Save icon to save your modified table.

That’s all there is to creating a DEFAULT constraint in a SQL Server 2008 data-
base. You can remove a DEFAULT constraint from a column by simply delet-
ing the value in that column’s Default Value or Binding property.

As you may have already noticed, the Design view used to add a DEFAULT
constraint is the same one used to create a new database table. You may, in
fact, add DEFAULT constraints for columns when you create a new table by
providing a value for the Default Value or Binding property of those columns.

E.. Microsoft SQL Server Management Studio Q@@

File Edit ‘iew Project Table Designer Tools ‘Window Community Help
Direwouery [by | thth My (3| Sl H @ | BERES .
Sl GadEd

Chiject Explorer = I X | - ¥PLVYMI.Cookies - dbo.Products® = X | Properties -1 x
Connect > 4 Column Name Data Type Allow Mulls [Tbl] dbo.Preducts -
= [#PLYML (SQL Server 10.0.1019 - PLYM1imchz| | ¥ Froduct I0 tinyint O i
(= [Databases Mame varchar(S0) O B i
L3 System Databases Cost money EI E“;:'t") "
Mame, Products
[Database snapshots B Current_Inwentory ink
= [Cookies
1 Database Diagrams O Description
(= [Tables Schema dbo
[system Tables
= dbo.Shops E Table Designer
= dbo,Praducts TR T Tdentity Calur
|_J Yiews olurmn Froperties

[Synonyms
[Programmability

Regular Data PRIMARY

[Service Braker B (General) M~
[storage (Marme) Current_Inventory Text/Image F PRIMARY
[Security Allaw Mulls Yes
| HR Data Type int
| test Default Yalue or Gindingfil
[Security E Table Designer
[Server Objects b

[Replication
[Management
_:5 SOL Server dgent (hgent XPs disabled)

Default Yalue or Binding
(Identity)

< .

Ttemis) Saved

95

96 Part Il: Building SQL Server 2008 Databases

Coordinating NULL values and DEFAULT constraints

As mentioned earlier, a definite relationship exists between NULL values and
DEFAULT constraints: Both provide different ways to handle the scenario
where a user doesn’t provide data. However, these two concepts aren’t mutu-
ally exclusive. You can have NULL values in a column that also contains a
DEFAULT constraint.

Consider the example I provide earlier in this section about a store’s product
inventory. In that example, | suggest that a DEFAULT constraint on the inven-
tory column is appropriate in that situation for times when the store manager
enters a new product into the database but doesn’t provide an inventory value.

You might also want to store NULL values in that same column. For example,
suppose the same store conducts a quarterly audit of inventory, and that
audit returns inconsistent results for a particular product. At that time,
you’re not sure about the current number of products in your inventory, so a
NULL value is appropriate.

A NULL value for any column that allows that value will always trump any
DEFAULT constraint on that column. So, if a user explicitly provides a NULL
value for a column, and the column allows it, that column will take on a value
of NULL — no matter what DEFAULT constraint the column might contain.

Limiting column values with CHECK constraints

SQL Server 2008 allows you to limit the values that may be entered in a database
table with the use of CHECK constraints. CHECK constraints are simply state-
ments of business rules that apply to the data stored within your database.

For example, suppose you’re managing the database for a retail store and
have a table that contains information about all your products, including the
current selling price of each item in your inventory. Your store might have a
policy of not selling any items valued at greater than $100 and never giving
away items for free. This is a perfect example of a scenario in which you
might want to use a CHECK constraint to limit the sales price of products to
values greater than $0 and less than $100.

Another common use of CHECK constraints is to ensure that values match an
appropriate format. For example, suppose your store database has a table
containing information about each store location, including the store’s nine-
digit ZIP Code (in the form 12345-6789). You can use a CHECK constraint to
ensure that all values entered in the ZIP Code field match the nine-digit ZIP
Code format.

Writing CHECK constraints

You write CHECK constraints as SQL expressions, similar to those used to create
the WHERE clause in a SQL query. To do so, you use the Transact-SQL syntax,
which I discuss in more detail in Chapter 7 but provide a few examples of here.

Chapter 6: Imposing Constraints and Relationships 9 7

If you want to create a CHECK constraint that limits the maximum cost of an
item to $100, you use the following SQL expression:

Cost <= 100

Similarly, if you want to ensure that there is a non-negative, nonzero cost,
you use a CHECK constraint with this expression:

Cost > 0

Things get a little more complicated when you use CHECK constraints to
enforce pattern matching. You need to use wildcards to specify the various
patterns you wish to allow. Here are a few common expressions you might
use to create patterns:

v The underscore character (_) matches any single character.

v The percent sign (%) matches any sequence of zero or more characters.

v Enclosing a list or range of characters in square brackets ([1) matches
any single character in the list or range. For example:

® [aeiou] matches any vowel

® [a-z] matches any letter

® [0-9] matches any digit

® [a-d] matches the letters a, b, cord

v Putting a carat symbol (*) as the first character within square brackets

makes the expression match any character that is not within the list or
range that follows. For example:

* [~aeiou] matches any character other than a vowel

* [~a-z] matches any character other than a letter

® [~0-9] matches any character other than a digit

e [~a-d] matches any character other than the letters a, b, ¢, or d

If you wanted to write a CHECK constraint that matched nine-digit ZIP Codes,
you would use the following syntax:

ZIP_Code LIKE '[0-9][0-9][0-9][0-9][0-9]-[0-9][0-9]([0-9]
[0-91"

Using this syntax would ensure that you have a sequence of five digits,
followed by a hyphen, followed by four digits.

98 Part Il: Building SQL Server 2008 Databases

A\\J

Similarly, if your company had a bizarre business rule that said it won’t open
stores in cities that start with the letter A, you could enforce that with a
CHECK constraint using the following expression:

City LIKE '["al%'

You could also accomplish the same goal by using the following expression
in your CHECK constraint:

City NOT LIKE 'a%'

Note that in the two preceding examples, | used square brackets in one case
but not the other. The first example requires square brackets because you're
telling SQL Server to match anything other than the character a. In that case,
the square brackets delimit the portion of the statement that includes the list
of characters that may not be matched. For example, if you wanted to match
all cities that started with letters other than A and B, you would write:

City LIKE '["ab]l%'

On the other hand, if you wanted to match cities that had a starting letter
other than A and a second letter that is b, you would write:

City LIKE '["alb%'

CHECK constraints are quite versatile, and you can use them to enforce a
variety of business rules. If you can express a business rule in SQL, you can
enforce it with a CHECK constraint.

Determining when to enforce CHECK constraints

When you create a CHECK constraint, SQL Server offers you three options for
enforcing the constraint:

» You may enforce the constraint on data that already exists in the
table when you create (or reenable) the constraint by using the Check
Existing Data on Creation or Enabling option.

» You may enforce the constraint for new data added to the table by using
the Enforce for INSERTs and UPDATESs option.

» You may enforce the constraint for data added by replication agents by
using the Enforce for Replication option. [discuss database replication
in Chapter 15.

These options are most relevant when you’re adding a CHECK constraint

to an existing database. If you select Check Existing Data on Creation or
Enabling, you won’t be able to create the CHECK constraint until you go
through the table and correct any entries that don’t meet the requirements of
the constraint.

Chapter 6: Imposing Constraints and Relationships 99

Creating a CHECK constraint

You can create a CHECK constraint using SQL Server Management Studio’s
Table Designer. I walk you through the process of creating the constraint that
limits the city field to values that start with a letter.

Before you begin, you need to determine the correct expression for your
CHECK constraint. In this case, [want to ensure that values in the City field
start with a letter. The business rule doesn’t specify what follows the letter,
so you can check for a single letter followed by any sequence of zero or more
characters using this expression:

City LIKE '[a-z]%'

Now you can create the CHECK constraint in SQL Server, as follows:

1.

With SQL Server Management Studio open, navigate to the database
containing the table where you’d like to implement a CHECK constraint
and expand the Databases folder in Object Explorer by clicking the plus
(+) icon to its left.

. Click the plus (+) icon next to the relevant database name to expand

that database.

. Click the plus (+) icon next to the Tables folder icon to expand the

Tables folder for the relevant database.

. Right-click the name of the desired table and select Design from the

pop-up menu.

The table opens in Design view, and you see a screen similar to the one
shown in Figure 6-1.

. Click the Table Designer menu at the top of the screen and choose

Check Constraints from the drop-down list.

If the table contains no CHECK constraints, you see the empty window
shown in Figure 6-3.

. Click Add to create a new CHECK constraint.

7. Type your expression into the Expression field under the “(General)”

heading.

If you've already written the expression elsewhere, you can simply cut
and paste it into this field.

. Review the remaining information in the window.

The other properties of the new constraint appear below the expression.
They include the name of the constraint and the three enforcement options
discussed in the previous section. You may choose to accept the default
values for these properties or modify them to suit your business require-
ments. Figure 6-4 provides an example of the completed CHECK constraint.

’ 00 Part Il: Building SQL Server 2008 Databases

Check Constraints @El

Selected Check Constraint:
Use the add button ko create a new check constraint.

I
Figure 6-3:
Check
Constraints
window. Add
I
Check Constraints @El
Selected Check Constraint:
| 5 Editing properties For existing check constraint,
B {General)
Expression Ciby LIKE [a-z]%"
= Identity
— {niame) K _sheps.L
Description
Figure 6_4: E Table Des?gner
Check Existing Data On Cres Yes
CHECK Enforce For INSERTS And UF Ves
Constraint Enforce For Replication Yes
on the
Shops table.
I

9. Click the Close button to close the Check Constraints window.

10. From the File menu, choose Save to commit your new constraint to the
database.

It’s important to realize that the database will not enforce the constraint
until after you complete this last step.

Disabling CHECK constraints

After you add a CHECK constraint to your database, it won’t be possible to
add new rows to a table that violate the constraint (provided, of course, that
you chose the Enforce for INSERTs and UPDATESs option). If you try to insert
a row that violates the constraint, you'll see an error message similar to the
one shown in Figure 6-5.

Chapter 6: Imposing Constraints and Relationships

|
Figure 6-5:
Constraint
violation
error
message.
|

WMBER
‘x&
&

Microsoft SQL Server Management Studio E]E]

\!':) Mo row was updated.

The data in row 1 was not commitked.

Error Source: Met SqlClient Data Provider,

Error Message: The INSERT statement conflicted with the CHECK constraint

"k _Shops". The conflick occurred in database "Cookies”, table "dba. Shops", column
'City',

The statement has been terminated.

Correct the errors and retry or press ESC ko cancel the change(s).

However, in some cases, you may wish to temporarily disable a constraint
to allow the insertion of data that violates the business logic enforced

by the constraint. Here’s how you can disable a constraint in SQL Server
Management Studio:

1. With the Check Constraints window open, select the constraint you’d
like to disable in the Selected Check Constraint list.

2. In the Table Designer section of the constraint properties, change the
value for Enforce For INSERTs and UPDATEs from Yes to No.

3. Click the Close button.

4. Choose File>Save to commit your changed constraint to the database.

If you inserted rows that violate the CHECK constraint while the constraint
is disabled, you won'’t be able to enable the constraint again if you have the
Check Existing Data on Creation or Enabling option selected. If you try to do
so, you'll see an error message similar to the following:

'Shops' table

- Unable to add constraint 'CK_Shops_1'.

The ALTER TABLE statement conflicted with the CHECK
constraint "CK_Shops_1". The conflict occurred in
database "Cookies", table "dbo.Shops", column 'City’'.

CHECK constraints and rules

If you used earlier versions of SQL Server, you might be familiar with the con-
cept of database rules that offer similar functionality to the CHECK constraint
but can be reused across different database tables and columns. Rules also have
a significant limitation: You can apply only one rule to a database column,
whereas you can apply multiple CHECK constraints to the same column.

SQL Server 2008 still supports database rules, but Microsoft no longer encour-
ages their use. Microsoft announced that it will remove rule functionality from
future versions of SQL Server and recommends that you “avoid using this
feature in new development work, and plan to modify applications that cur-
rently use this feature. Use CHECK constraints instead.”

101

’ 02 Part ll: Building SQL Server 2008 Databases

Enforcing Database Integrity

|
Figure 6-6:
The
Indexes/
Keys
window
showing a
table with a
PRIMARY
KEY
constraint.
|

As I mention at the beginning of the chapter, SQL Server offers three types
of constraints that you may use to enforce the integrity of your database:
PRIMARY KEY constraints, UNIQUE constraints, and FOREIGN KEY con-
straints. I cover the selection and creation of primary keys in Chapter 5, so |
discuss the remaining two types in this section.

Enforcing uniqueness

UNIQUE constraints allow you to enforce the uniqueness property of col-
umns other than the primary key in a table. They act in a similar manner to
PRIMARY KEY constraints, but with two important differences:

v Columns subject to a PRIMARY KEY constraint may not contain NULL
values. Columns subject to a UNIQUE constraint may contain one row with
a NULL value. (If you had two rows with a NULL value in the same option,
that would be a duplicate value, which violates the UNTIQUE constraint.)

v A table may have only one PRIMARY KEY constraint but may have
multiple UNIQUE constraints.

Here’s how to create a UNIQUE constraint on a column in an existing SQL
Server table:

1. Open the table in Design View using SQL Server Management Studio
by right-clicking the table and selecting Design from the pop-up menu.
2. From the Table Designer pull-down menu, select Indexes/Keys.

The Indexes/Keys window, shown in Figure 6-6, opens. Notice that in this
example, the table already has a PRIMARY KEY constraint.

Indexes/Keys E]@
Selected Primaryflnique Key or Index:

Editing properties For existing primary funique key or index.

B {General) -
Calumns Unit Mumber {ASC)

El Identity
(Mame) PK_Shops
Description

E Table Designer
Create As Clustersd Yes

Data Space Specification PRIMARY

Fill Specification i

Chapter 6: Imposing Constraints and Relationships

|
Figure 6-7:
Creating a
Unique Key.
|

3. Click the Add button to create a new key.
4. Click the Type property and change the value from Index to Unique Key.

5. Click the ellipsis (. . .) next to the Columns property and select the col-
umns you want to include in your UNIQUE constraint.

You may also change the name of the key, if you want. I like to use the
naming convention UK_name (for Unique Key) to help identify my con-
straints. Figure 6-7 shows the completed window.

6. Click the Close button.

7. Choose Save from the File menu to save your new constraint.

Indexes/Keys E]@
Selected Primaryflnique Key or Index:
PK_Shops Editing properties For existing primary funique key or index.
LIK_Shops
B {General) -
Calumns ZIP (ASC)
Type Unique ey
El Identity
(Mame) UK_Shops
Description
E Table Designer
Data Space Specification PRIMARY
Fill Specification i

Enforcing referential integrity with
FOREIGN KEV constraints

Your database tables will often contain related information. For example, the
retail store database I discuss in this chapter contains a table with informa-
tion about each store owned by the company. [might also wish to have an
Employees table containing information about each of the company’s employ-
ees. It would be logical to include the store that hired each employee in that
employee’s record.

The easiest way to include this information is to create a Unit_Number field
in the Employees table. This field would contain the Unit_Number (the pri-
mary key of the Shops table) of the employee’s store, creating a link between
the two tables.

103

’ 04 Part ll: Building SQL Server 2008 Databases

WMBER
@%
&

|
Figure 6-8:
The

Foreign Key
Relation-
ships
window.
|

However, including the field creates a potential issue down the road. What
happens if a store closes? All the employees associated with that store would
then be “orphaned” because they would be associated with a Unit_Number
that didn’t exist. Similarly, if no business logic is used in creating the table, a
data entry clerk might accidentally create an orphaned employee by mistyp-
ing an employee’s Unit_Number and entering a number that’s not assigned to
any store.

These issues are known as referential integrity issues, and SQL Server pro-
vides the FOREIGN KEY constraint to prevent their occurrence. A foreign key
creates a relationship between two tables by linking the foreign key in one
table to the primary key (or any other unique key) in the referenced table. In
the stores example, the Unit_Number field in the Employees table would be
a foreign key to the Unit_Number primary key in the Shops table.

When you create a foreign key relationship between two columns, the columns
must have the same data type. Additionally, if you create a foreign key relation-
ship that involves multiple-column keys, the two keys must contain the same
number of columns.

Here’s how to create a FOREIGN KEY constraint in SQL Server Management
Studio:

1. Open the table that will contain the foreign key in Design View using
SQL Server Management Studio by right-clicking the table and select-
ing Design from the pop-up menu.

In my example, the Shops table contains the foreign key.
2. From the Table Designer drop-down list, select Indexes/Keys.

The Foreign Key Relationships window, shown in Figure 6-8, opens.

Selected Relationship:

Use the add button ta create a new relationship.

e

Chapter 6: Imposing Constraints and Relationships

|
Figure 6-9:
The Tables
and
Columns
window
with a
FOREIGN
KEY
constraint.
|

3. Click the Add button to create a new FOREIGN KEY constraint.

4. Click the ellipsis (. . .) next to the Tables and Columns Specification
property.
The Tables and Columns window opens.

5. Select the table that your foreign key refers to in the Primary Key
Table drop-down list.

6. Select the names of the column(s) involved in your primary key from
the drop-down lists in the grids below the primary key table name and
the foreign key table name.

When you're finished, the window should look like the example in Figure 6-9.
7. Click OK to close the Tables and Columns window.
8. Click Close to close the Foreign Key Relationships window.

9. Choose Save from the File menu to save your new constraint.

After you've created a foreign key relationship between the two tables,

SQL Server will require that all values associated with the constraint in the
foreign key table have corresponding values in the primary key table. The
constraint does not, however, require that all values in the primary key table
have corresponding values in the foreign key table. Additionally, there may
be multiple values in the foreign key table that reference the same record in
the primary key table.

Tables and Columns E]EJ
Relationship name:
F¥_Employees_Shops
Primary key table: Foreign key table:
Shops v Employees
Unit Mumber Unit_Mumber

105

7 06 Part Il: Building SQL Server 2008 Databases

Part lll

Retrieving Data
from Databases

The Sth Wave By Rich Tennant

[AUTO SHOW FOR COMPUTER [
| STORAGE EXEQUTIVES

ORIHTENNANT

In this part . . .

n this part, you find out how to retrieve information

from a SQL Server database. I introduce the Structured
Query Language (SQL) and show you how to use it to pull
the exact information you need out of your database. You
also find out about some advanced database queries that
let you combine information from multiple tables and take
various actions based on the results of your database
queries.

Chapter 7

Constructing Simple
Database Queries

In This Chapter
Using SELECT statements to retrieve data from a SQL Server database
Summarizing data with aggregate functions
Grouping results by attributes
Formatting SQL Server output

n most databases, the vast majority of SQL statements issued are

designed to retrieve information from a database. You can use the SQL
SELECT statement to retrieve information from database tables. The beauty
of this statement is that it’s quite simple to use in its basic form, but it also
contains quite a bit of flexible power, allowing you to precisely specify the
exact information you’d like to retrieve.

In this chapter, I dissect the SELECT statement, clause-by-clause, and show
you how to put together simple database queries. | recommend that you
master this material before you check out the more powerful uses of the
SELECT statement that I present in Chapter 8.

Retrieving Data with SELECT Statements

The SQL command used to retrieve data from a database is the SELECT state-
ment. As do other SQL statements, the SELECT statement reads almost like
an English statement. If you can fill in the blanks in the following sentence,
you can compose a SELECT statement:

Select columns from table where
conditions__

7 1 0 Part lll: Retrieving Data from Databases

A\\J

That’s really all there is to it. You simply need to identify three things to
compose a proper SELECT query:

v The columns you want to retrieve
v The table you want to retrieve them from

v The conditions (if any) that the data must satisfy

You then take this information and plug it into the proper SQL syntax. For
example, suppose you wanted to retrieve a list of students from a school
database to determine which students might qualify for a boys’ hockey team.
It’s a boy’s team, so you're interested in only male students. Also, you're
planning to give this list to the team’s coach, so you want to include only
names and telephone numbers, omitting any other personal information
stored in the database. Here’s how that would look in SQL:

SELECT first_name, last_name, phone
FROM students
WHERE gender = 'male’

That query would produce the following results:

first_name last_name phone

Richard Jones 574-555-0125
Matthew Jones 574-555-0125
Christopher Murphy 574-555-8224
Mike Abrams 574-555-1925
Edward Sorin 574-555-1902

(5 row(s) affected)

[discuss using SQL Server Management Studio to execute SQL statements in
Chapter 3.

As you can probably imagine, there are more advanced SELECT statements
as well. This basic format allows you to retrieve data from a single table
using simple conditions. In Chapter 8, I discuss advanced concepts, including
combining data from multiple tables and writing complex SELECT queries.

The SELECT. . .FROM clause

The first two components of the SELECT statement (the columns you want to
retrieve and the table that contains them) appear in the SELECT. . .FROM
clause.

Chapter 7: Constructing Simple Database Queries

What does the number of rows affected mean?

Notice at the end of the query that SAL Server SET NOCOUNT ON
reports the number of rows “affected” by the
query. In the case of a SELECT statement,
this report includes the number of rows that
your query returned. If you don’t want SQL
Server to produce this summary reporting, issue

This command causes SQL Server to suppress
reporting the number of rows affected by future
queries. You can restore the default behavior
with the following command:

the following SQL command: SET NOCOUNT OFF

\\J

If you’d like to select a single column, simply type the name of the column
between the SELECT and FROM keywords. If you'd like to include multiple col-
umns, include a comma-separated list, as I demonstrate in the previous sec-
tion’s query.

You may also choose to retrieve all the columns from a database table by sub-
stituting an asterisk (*) for the column listing.

After you've listed the names of the column(s) you want to retrieve, simply
type the name of the table containing those columns after the FROM keyword.

The SELECT..FROM clause is the only required component of a SQL SELECT
query. For example, if you wanted to retrieve all columns from the students
table, you could use this simple query:

SELECT *
FROM students

which would produce the following results:

first_name last_name student_id phone gender
Richard Jones 1 574-555-0125 male
Matthew Jones 2 574-555-0125 male
Christopher Murphy 3 574-555-8224 male
Renee Smith 4 574-555-9201 female
Mike Abrams 5 574-555-1925 male
Edward Sorin 6 574-555-1902 male
Mary Keenan 7 574-555-9889 female
Susan Davis 8 574-555-9124 female

(8 row(s) affected)

111

7 1 2 Part lll: Retrieving Data from Databases

The WHERE clause

The WHERE clause allows you to be specific about the types of data you’d like
to retrieve from the tables identified in the SELECT..FROM clause. You may
include condition(s) that each row in the result set must satisfy.

For example, if you wanted to identify all the members of the Jones family
enrolled in your school, you might use the following SQL statement:

SELECT first_name, last_name
FROM students

WHERE last_name = 'Jones'

which would produce the following results:

first_name last_name
Richard Jones
Matthew Jones

(2 row(s) affected)

Combining several conditions

You’re not limited to including a single condition in your WHERE clause.

For example, suppose you wanted to identify all the students in your school
who are male and are among the first five students to enroll (meaning their
student_id is less than or equal to 5). You could retrieve the names of the
students who meet both of these two conditions by joining those conditions
with the AND keyword, as shown in the following SQL statement:

SELECT *
FROM students
WHERE gender = 'male' AND student_id <= 5

which would produce the following results:

first_name last_name student_id phone gender
Richard Jones 1 574-555-0125 male
Matthew Jones 2 574-555-0125 male
Christopher Murphy 3 574-555-8224 male
Mike Abrams 5 574-555-1925 male

(4 row(s) affected)

Similarly, you can use the OR conjunction to retrieve all rows that meet
either one of the conditions. If you modified the previous query to use the
OR conjunction, as follows:

Chapter 7: Constructing Simple Database Queries ’ ’3

SELECT *
FROM students
WHERE gender = 'male' OR student_id <= 5

you would retrieve the following rows from the database:

first_name last_name student_id phone gender
Richard Jones 1 574-555-0125 male
Matthew Jones 2 574-555-0125 male
Christopher Murphy 3 574-555-8224 male
Renee Smith 4 574-555-9201 female
Mike Abrams 5 574-555-1925 male
Edward Sorin 6 574-555-1902 male

(6 row(s) affected)

Note that the results include the same four rows as the previous query (those
that met both criteria), but also includes two additional rows. Renee Smith

is included in the results because she meets one condition (she’s student #4)
but not the other (she’s female). Similarly, Edward Sorin wasn’t included in
the first query results because he wasn’t among the first five students, but he
is included in this set because he meets the gender condition.

Using the BETWEEN condition

Sometimes you need to retrieve records that satisfy a range condition. That
is, they contain a value that’s within a specified range of values. For example,
you might want to retrieve a list of all students born between 1997 and 2004.
One way to accomplish this task is by using two conditions joined by an AND
conjunction, as follows:

SELECT first_name, last_name, birthdate

FROM students

WHERE birthdate >= '1-Jan-1997' AND birthdate <=
'31-Dec-2004"

As you’d expect, the result of this query is a list of all students born between
the two dates:

first_name last_name birthdate

Richard Jones 2001-02-23 00:00:00
Matthew Jones 1999-03-27 00:00:00
Renee Smith 2004-11-06 00:00:00
Susan Davis 2000-06-10 00:00:00

(4 row(s) affected)

You’d probably agree that this looks a little clumsy and makes it difficult to
tell what the query is actually doing. SQL provides an alternative that’s a

7 14 Part lll: Retrieving Data from Databases

little more readable: the BETWEEN clause, which allows you to specify a range
of values in “BETWEEN x AND y” format. For example, you could rewrite the
previous query as:

SELECT first_name, last_name, birthdate
FROM students
WHERE birthdate BETWEEN '1l-Jan-1997' AND '31-Dec-2004"

This query produces the same results as the previous query.

Negating conditions with NOT

Sometimes it is easier to express your query in terms of the data that you
don’t want to retrieve. SQL provides the NOT keyword for such cases. For
example, if you wanted to pull a list of students who aren’t in the Jones
family, you could use the following SQL statement:

SELECT first_name, last_name
FROM students
WHERE NOT last_name = 'Jones'

As you’ve probably noticed already, there are often several ways to accom-
plish the same thing in SQL. Some people prefer to write the preceding query
using the <> (greater than or less than) operator. Using that notation, you
would issue the following SQL command:

SELECT first_name, last_name
FROM students
WHERE last_name <> 'Jones'

Using list conditions

If you have a list of values you’d like to search for, you can use the SQL. IN
keyword to provide that list in your SQL statement. For example, you can
retrieve a list of all students from the Jones, Smith, and Keenan families with
the following SQL command:

SELECT first_name, last_name
FROM students
WHERE last_name IN ('Jones', 'Smith', 'Keenan')

When executed, that statement produces the following results:

first_name last_name
Richard Jones
Matthew Jones
Renee Smith
Mary Keenan

(4 row(s) affected)

Chapter 7: Constructing Simple Database Queries

Similarly, you can combine the IN and NOT keywords to obtain a list of
students who are not in those families with this SQL statement:

SELECT first_name, last_name
FROM students
WHERE last_name NOT IN ('Jones', 'Smith', 'Keenan')

As you’d expect, that command lists the other four students in the school
database:

first_name last_name
Christopher Murphy
Mike Abrams
Edward Sorin
Susan Davis

(4 row(s) affected)

Matching text patterns with LIKE

In some cases, you won'’t be able to describe the condition you wish to place
on a text variable in the simple form:

WHERE variable = 'value'

For example, you might want to retrieve a list of students who have first
names beginning with the letter M. You can do this by using a LIKE clause
with wildcard values that can represent more than one possible character.
Here’s an example:

SELECT first_name, last_name
FROM students
WHERE first_name LIKE 'M%'

This query produces the following results:

first_name last_name
Matthew Jones
Mike Abrams
Mary Keenan

(3 row(s) affected)

The LIKE clause allows you to match patterns in text variables using several
different wildcard types, as listed in Table 7-1.

115

’ 76 Part lll: Retrieving Data from Databases

MBER
‘x&
&

Table 7-1 Wildcard Types

Wildcard Description

_ Any single character

% Any series of zero or more characters

[a-f] Any single character in the range a—f

[ra-£f] Any single character notin the range a—f

[abc] Any single character contained in the list (a, b, or c)
[~abc] Any single character not contained in the list (a, b, or ¢)

These are the same wildcard values used in CHECK constraints, as I discuss in
Chapter 6.

You can use combinations of these wildcards to construct complicated pat-
terns. For example, the following query will select any students who have last
names starting with J, K, or S but that do not end with an S:

SELECT first_name, last_name
FROM students
WHERE last_name LIKE '[j,k,s]%["s]'

This statement produces the following results:

first_name last_name
Renee Smith
Edward Sorin
Mary Keenan

(3 row(s) affected)

In addition to pattern matching with LIKE conditions, SQL Server 2008 sup-
ports Full Text Search (FTS) capabilities that allow you to perform advanced
text searches. FTS is beyond the scope of this book.

Selecting rows with NULL values

In Chapter 4, I explain how databases use the special value NULL to represent
unknown or missing values. If you want to use the value NULL in a WHERE
condition, you should use the special keywords IS NULL and IS NOT NULL
to do so. The following example shows you how.

Say that you wanted to retrieve a birthday list for students in your school
and you used the following query to do so:

Chapter 7: Constructing Simple Database Queries

SELECT first_name, last_name, birthdate
FROM students

which produces the results:

first_name last_name birthdate

Richard Jones 2001-02-23 00:00:00
Matthew Jones 1999-03-27 00:00:00
Christopher Murphy NULL

Renee Smith 2004-11-06 00:00:00
Mike Abrams 2007-01-21 00:00:00
Edward Sorin NULL

Mary Keenan 1995-02-08 00:00:00
Susan Davis 2000-06-10 00:00:00

(8 row(s) affected)

Note that the database doesn’t contain birthdates for two students:
Christopher Murphy and Edward Sorin. If you want to omit those names
from the query results, you can use the IS NOT NULL clause, as shown in
this query:

SELECT first_name, last_name, birthdate

FROM students

WHERE birthdate IS NOT NULL

Executing this query produces the following list:

first_name last_name birthdate

Richard Jones 2001-02-23 00:00:00
Matthew Jones 1999-03-27 00:00:00
Renee Smith 2004-11-06 00:00:00
Mike Abrams 2007-01-21 00:00:00
Mary Keenan 1995-02-08 00:00:00
Susan Davis 2000-06-10 00:00:00

(6 row(s) affected)

If you want to produce a list of students who have missing birthdates,
perhaps to follow up and obtain that information, you can use the following
SQL query:

SELECT first_name, last_name, birthdate

FROM students

WHERE birthdate IS NULL

The query would produce the following results:

117

7 78 Part lll: Retrieving Data from Databases

first_name last_name birthdate
Christopher Murphy NULL
Edward Sorin NULL

(2 row(s) affected)

Organizing Query Results

Retrieving the correct data from SQL Server is only half the battle. When
you've successfully retrieved data using a SELECT statement, you can use
the power of SQL to help you organize your results. In this section, I cover
techniques you can use to sort, summarize, group, and format the data you
retrieve from your database.

Sorting output

One of the simplest ways you can manipulate your data is to sort it, alphabet-
ically or numerically. SQL Server allows you to sort by any attribute or
combination of attributes using the ORDER BY clause in your SELECT state-
ment. For example, to retrieve an alphabetical list of students, you might use
the following SQL statement:

SELECT first_name, last_name
FROM students
ORDER BY last_name

This statement produces a list of students, sorted alphabetically by last
name, as follows:

first_name last_name
Mike Abrams
Susan Davis
Richard Jones
Matthew Jones
Mary Keenan
Christopher Murphy
Renee Smith
Edward Sorin

(8 row(s) affected)

Chapter 7: Constructing Simple Database Queries

Note that the output is sorted by last name, but there are two students
named Jones. You may wish to specify a secondary sort attribute to further
sort rows for which the primary sort attribute has the same value. The
following SQL statement sorts primarily by last name but then further sorts
by first name for cases in which students have the same last name:

SELECT first_name, last_name
FROM students
ORDER BY last_name, first_name

Matthew and Richard Jones are now sorted by first name within the results
sorted by last name:

first_name last_name
Mike Abrams
Susan Davis
Matthew Jones
Richard Jones
Mary Keenan
Christopher Murphy
Renee Smith
Edward Sorin

(8 row(s) affected)

You can sort by any attribute in your table. SQL Server determines the appro-
priate way to sort based upon the data type. For example, you could sort the
list by birth date using this SQL command:

SELECT first_name, last_name, birthdate
FROM students

WHERE birthdate IS NOT NULL

ORDER BY birthdate

This produces a list of students sorted by birth date, in ascending order:

first_name last_name birthdate

Mary Keenan 1995-02-08 00:00:00
Matthew Jones 1999-03-27 00:00:00
Susan Davis 2000-06-10 00:00:00
Richard Jones 2001-02-23 00:00:00
Renee Smith 2004-11-06 00:00:00
Mike Abrams 2007-01-21 00:00:00

(6 row(s) affected)

119

7 20 Part lll: Retrieving Data from Databases

MBER
@&
&

SQL Server always assumes that you want to sort your results in ascending
order (A-Z for text and smallest to largest for numeric values). You may
override this behavior by specifying the sort order with the keywords ASC
(for ascending order) or DESC (for descending order) after each attribute in
your ORDER BY clause. For example, to re-sort your birthday list so that the
youngest student appears first (descending order), you can use the following
SQL statement:

SELECT first_name, last_name, birthdate
FROM students

WHERE birthdate IS NOT NULL

ORDER BY birthdate DESC

This statement produces the desired sorting as follows:

first_name last_name birthdate

Mike Abrams 2007-01-21 00:00:00
Renee Smith 2004-11-06 00:00:00
Richard Jones 2001-02-23 00:00:00
Susan Davis 2000-06-10 00:00:00
Matthew Jones 1999-03-27 00:00:00
Mary Keenan 1995-02-08 00:00:00

(6 row(s) affected)

[instructed the database to omit records with NULL birth date values from the
results. If your result set does include NULL values, SQL Server will treat them

as the smallest value in your result set. This means that they will appear at the
top of results in ascending order and at the bottom in descending order.

Summatrizing data with
aggregate functions

SQL Server also allows you to answer more complicated questions about
datasets. For example, you might want to know the number of records

that meet a certain condition or the average value in a recordset. For this
purpose, SQL provides a class of functions called aggregate functions. These
functions work on groups (or aggregations) of data.

Table 7-2 lists the common aggregate functions used in Transact-SQL
programming.

Chapter 7: Constructing Simple Database Queries ’ 2 ’

Table 7-2 Transact-SQL Aggregate Functions

Function Description

AVG Returns the average of the values in the group

COUNT Returns a count of the number of items in the group

MAX Returns the largest value in the group

MIN Returns the smallest value in the group

SUM Returns the sum of all values in the group

STDEV Returns the statistical standard deviation of all values in the group
VAR Returns the statistical variance of all values in the group

To help illustrate these functions, I've added a new column to the students
table that appears earlier in this chapter. It now includes the number of
absences for each student in the current school year. Here are the values
now inserted in the table:

first_name last_name absences
Richard Jones 3
Matthew Jones NULL
Christopher Murphy 5

Renee Smith 2

Mike Abrams 8

Edward Sorin 14

Mary Keenan 0

Susan Davis 6

Read on for some examples of using aggregate functions.

Counting records

Suppose you want to count all the students in your school. You can use the
COUNT aggregate function, as follows:

SELECT COUNT (*)
FROM students

This returns the following output:

(1 row(s) affected)

7 22 Part llI: Retrieving Data from Databases

You should notice a few interesting things about this output:

v The value 8 is the answer to the question. How many rows are in the
students table?

v The output value has no variable name; nothing is listed above the
header. [show you how to correct this problem in the Formatting
Output section later in this chapter.

v The statement 1 row(s) affected refers to the number of rows of
output, not the number of rows counted by the query. I asked a question
that takes only a single line (8) to be answered, so only one row is
“affected” by the query.

Working with unique records

SQL Server also allows you to count unique instances of a variable using
the DISTINCT keyword. For example, suppose you wanted to know how
many different last names exist in your student body. You could use COUNT
DISTINCT as follows:

SELECT COUNT (DISTINCT (last_name))
FROM students

This produces the following output:

(1 row(s) affected)

\3
P You can also use the DISTINCT keyword with a regular SELECT statement.
For example, the following statement retrieves a list of all student last names

without duplicates:

SELECT DISTINCT (last_name)
FROM students

Finding minimum, maximum, and average values

Aggregate functions can also help you identify the smallest or largest value
in a dataset using the MIN and MAX functions. Similarly, the AVG function
determines the mathematical average of the specified variable.

The following SQL statement demonstrates these three functions on the
absences attribute:

SELECT min (absences), max (absences), avg(absences)
FROM students

It produces the following results:

Chapter 7: Constructing Simple Database Queries

0 14 5
Warning: Null value is eliminated by an aggregate or other
SET operation.

(1 row(s) affected)

From these results, the smallest number of absences in your database is 0,
the largest is 14, and the average is 5. The Warning statement in the output
indicates that SQL Server ignores NULL values when calculating aggregate
functions. This means that the two NULL absence values were not used when
calculating the average number of absences.

Totaling values

The suM function allows you to determine the total of a variable in a record-
set. For example, the following statement allows you to determine the total
number of days missed by all of your students:

SELECT sum(absences)
FROM students

Once again, SQL Server reminds you that the result (38 total days) does not
include NULL values:

38
Warning: Null value is eliminated by an aggregate or other
SET operation.

(1 row(s) affected)

You can also add WHERE clauses to your aggregate functions to limit the
records considered by the SQL statement. For example, if you wanted to
know the total number of absences recorded by male students, you could use
the following SQL statement:

SELECT sum(absences)
FROM students
WHERE gender = 'male'

Grouping results

In the example in the preceding section, I show you how you can limit the use
of aggregate functions to results that meet condition(s) specified in a WHERE
clause. SQL also allows you to group results into categories and use aggre-
gate functions to summarize data across those categories instead of across
the entire dataset.

123

7 24 Part lll: Retrieving Data from Databases

For example, suppose you want to investigate whether boys or girls are more
likely to skip school. You can determine the average number of absences for
each gender using the following SQL statement:

SELECT gender, avg (absences)
FROM students
GROUP BY gender

SQL Server then groups the results by gender, showing you the average for
each gender:

female 2
male 7

(2 row(s) affected)

Renaming columns in your output

The examples that appear so far in this chapter are missing some headers,
as you may have noticed if you've read straight through this chapter. By
default, SQL Server provides header names for regular variable columns but
does not do so for computed columns, such as those generated by aggregate
functions.

For example, the query

SELECT gender, min (absences), max (absences), avg(absences)
FROM students
GROUP BY gender

produces the following results:

gender
female 0 6 2
male 3 14 7

(2 row(s) affected)

You can provide reader-friendly column headings for those results by using
the AS clause in your SQL statement. You simply include the phrase As
column-name after each expression listed in your SELECT..FROM clause.
For example, you can rewrite the previous query as:

Chapter 7: Constructing Simple Database Queries ’ 25

SELECT gender AS 'Gender', min(absences) AS 'Lowest
Absences', max(absences) AS 'Highest Absences',
avg (absences) AS 'Average Absences'

FROM students

GROUP BY gender

which produces the nicely formatted results that follow:
Gender Lowest Absences Highest Absences Average Absences

female 0 6 2
male 3 14 7

(2 row(s) affected)

Note that I also renamed the gender column to capitalize the first letter,
making it consistent with the other columns in the results.

7 26 Part lll: Retrieving Data from Databases

Chapter 8
Joins and Other Advanced Queries

In This Chapter
Combining related data from different tables with JOIN statements
Computing values in a SELECT statement
Using subqueries to simplify complicated queries

Controlling data access with views

Tansact-SQL provides SQL Server users with a variety of advanced func-
tionality that allows you to harness the power of a relational database.
In this chapter, I describe a number of these technologies and explain how
you can use them to issue powerful, compact database commands.

[begin by exploring Transact-SQL’s JOIN functionality that allows you to
easily combine related data from multiple tables. I then describe several
twists on the standard SQL queries: computed values, subqueries, and CASE
statements. I wrap up this chapter by taking a brief look at SQL views.

Joining Data from Multiple Tables

In the previous chapter, [describe simple queries that you can use to extract
data from a single table. However, in many cases, you'll need to combine data
from multiple tables to meet business requirements. Transact-SQL allows you
to do this through the use of JOIN statements.

In this section, I explain three types of JOIN statements:

» INNER JOINs allow you to match related records from different tables.

» OUTER JOINs also include records from one or both tables that do not
have corresponding record(s) in the other table.

v Self-joins are a special case in which you join a table with itself to
compare records in the same table.

’ 2 8 Part lll: Retrieving Data from Databases

Matching records with INVER JOINs

The most common type of JOIN statement is the INNER JOIN. This state-
ment, also known as an equi-join, combines records from two tables that
have one or more specified attributes in common. For example, suppose you
have a school database containing the students table shown in Table 8-1.

Table 8-1 Students Table

first_name last_name student _id Gender teacher
Richard Jones 1 Male 1
Matthew Jones 2 Male 2
Christopher Murphy 3 Male 2
Renee Smith 4 Female 1

Mike Abrams 5 Male NULL
Edward Sorin 6 Male 2

Mary Keenan 7 Female 2
Susan Davis 8 Female 1

If you’'ve been following along, you may be noticing that this is a simplified
version of the students table used in Chapter 7. [added the teacher column
to the table as a foreign key to the teachers table shown in Table 8-2.

Table 8-2 Teachers Table

teacher _id first_name last_name
1 Richard Allen

2 Mary Brady

3 Ann Edwards

The school principal might ask you to generate a class list showing each
student’s name and the name of his or her teacher. This is a reasonable,
straightforward request, but you can’t fulfill it with a basic SELECT state-
ment. The best you’d be able to do is retrieve a list of students with the ID
number of their teacher and provide the principal with two separate lists:
students with teacher IDs and teacher IDs and teacher names. That’s cer-
tainly not a business-friendly answer!

This is where the INNER JOIN simplifies your life. You can use this state-
ment to retrieve data from both the student and teacher tables!

Chapter 8: Joins and Other Advanced Queries ’ 29

3

Writing an INVER JOIN statement

You create an INNER JOIN by including the two tables in the FROM clause
with the INNER JOIN keyword and specifying the join condition using the
ON keyword. For example, if you want to fulfill the principal’s request, you
may do so with the following SQL statement:

SELECT students.first_name, students.last_name, teachers.
first_name, teachers.last_name

FROM students INNER JOIN teachers

ON students.teacher = teachers.teacher_id

Note that [use a different form for attribute names in this query than those I
use in earlier chapters. Instead of simply writing the attribute name, I specified
the table name as well, using the form table_name.attribute_name. This
is necessary when two tables share common attribute names. For example,
both the students and teachers tables contain an attribute named “first_
name.” If | hadn’t specified the table name, SQL Server would have refused to
process the query, returning the following error:

Msg 209, Level 16, State 1, Line 1
Ambiguous column name 'first_name'.

NULL is a special value that corresponds to missing or unknown data.
Therefore, records that have NULL values for the join condition do not match
each other and will not appear in the output of an INNER JOIN statement.

Technically, it’s necessary to use the table_name.attribute_name format
when only working with attributes that appear in both tables. However, most
SQL Server users consider it good practice to use this format any time you
write queries involving multiple tables.

Analyzing the results
Here are the results of the INNER JOIN statement:

first_name last_name first_name last_name
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen

(7 row(s) affected)

You should notice two important things about the results of this
INNER JOIN:

’30 Part lll: Retrieving Data from Databases

v There is no record for the student Mike Abrams. Refer back to Table
8-1 and you'’ll notice that his teacher is NULL. INNER JOINs don’t print
records where the join attribute has a NULL value in either table.

v There are no records for the teacher Ann Edwards. Again, refer back
to Table 8-1 and notice that there are no students assigned to Ann
(her teacher ID is 3). INNER JOINs do not print records that don’t have
corresponding matches in the other table.

Cleaning things up with aliases

One thing you probably noticed is that both the SELECT statement and
the results in the previous example are quite ugly! The SELECT statement
repeats the table names (“students” and “teachers™) multiple times, while
the output doesn’t specify table names at all, leaving us with ambiguous
attribute names.

Fortunately, you can clean up these situations by using aliases. I describe one
use of aliases, renaming columns, in Chapter 7 when I discuss using the AS
clause to rename output columns. You can also use the AS clause to rename
table names within a query. For example, you can rename the students table
as “s” and the teachers table as “t” to simplify your SQL.

The following SQL statement uses aliases to both rename tables for brevity
and rename columns to disambiguate the output:

SELECT s.first_name AS 'Student FN', s.last_name AS
'Student LN', t.first_name AS 'Teacher FN',
t.last_name AS 'Teacher LN'

FROM students AS s INNER JOIN teachers AS t

ON s.teacher = t.teacher_id

Using this SQL statement, you get the following results:

Student FN Student LN Teacher FN Teacher LN
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen

(7 row(s) affected)

That’s certainly easier to understand than the previous example!

Chapter 8: Joins and Other Advanced Queries

In this chapter, I discuss using INNER JOIN statements where the join condi-
tion contains an equality statement (for example, attribute X = attribute Y).
This covers the vast majority of INNER JOINs used in the real world. However,
you can also use other operators to write the join condition. That’s beyond the
scope of this book, but you can find more information in SQL For Dummies.

Including nonmatching records
with OUTER JOIN's

In some cases, you’ll need to include records in your results that don’t
have any matching records in the second table. The various OUTER JOIN
statements, LEFT OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER
JOIN, help you accomplish this.

All three OUTER JOINs begin with the results of the INNER JOIN. They
include all records in the left table along with their matching records in the
right table. However, they go one step further: Each type of OUTER JOIN
includes additional information on nonmatching records.

LEFT OUTER JOINs

The LEFT OUTER JOIN includes rows that appear in the left table (the
Students table in my example) but don’t have a matching record in the right
table (the teachers table). It includes both records that have a nonmatching
value for the join attribute(s) and records that have NULL values for the join
attribute(s).

The SQL code that follows shows the format of a LEFT OUTER JOIN for the
students and teachers table:

SELECT s.first_name AS 'Student FN', s.last_name AS
'Student LN', t.first_name AS 'Teacher FN',
t.last_name AS 'Teacher LN'

FROM students AS s LEFT OUTER JOIN teachers AS t

ON s.teacher = t.teacher_id

The results of this query appear below:

Student FN Student LN Teacher FN Teacher LN
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen

Mike Abrams NULL NULL
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen

(8 row(s) affected)

131

’32 Part lll: Retrieving Data from Databases

Notice that Mike Abrams appears in the results of this query. This is the only
difference between these results and the results of the INNER JOIN I discuss
earlier in this chapter. Also, notice that the values of all attributes from the
right table are NULL for records that appeared in the left table but did not
have matching values in the right table.

RIGHT OUTER JOINs

The RIGHT OUTER JOIN is very similar to the LEFT OUTER JOIN; it
simply reverses the direction of the query. In this case, the results include
records that appear in the right table but don’t have a matching record in
the left table.

Here’s the familiar student/teacher query written as a RIGHT OUTER JOIN:

SELECT s.first_name AS 'Student FN', s.last_name AS
'Student LN', t.first_name AS 'Teacher FN',
t.last_name AS 'Teacher LN'

FROM students AS s RIGHT OUTER JOIN teachers AS t

ON s.teacher = t.teacher_id

The results of this query are as follows:

Student FN Student LN Teacher FN Teacher LN
Richard Jones Richard Allen
Renee Smith Richard Allen
Susan Davis Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Edward Sorin Mary Brady
Mary Keenan Mary Brady

NULL NULL Ann Edwards

(8 row(s) affected)

In this case, Mike Abrams no longer appears in the results because he has
no match in the right table. However, there is now a new row corresponding
to the teacher Ann Edwards. She has no students assigned to her in the stu-
dents table, so she didn’t appear in the INNER JOIN or LEFT OUTER JOIN
version of this query.

FULL OUTER JOINs

The FULL OUTER JOIN is essentially a combination of the LEFT OUTER
JOIN and the RIGHT OUTER JOIN. The output includes records that appear
in either the left or right table. The FULL OUTER JOIN version of the query
is as follows:

Chapter 8: Joins and Other Advanced Queries 733

SELECT s.first_name AS 'Student FN', s.last_name AS
'Student LN', t.first_name AS 'Teacher FN',
t.last_name AS 'Teacher LN'

FROM students AS s FULL OUTER JOIN teachers AS t

ON s.teacher = t.teacher_id

Here are the results of that query:

Student FN Student LN Teacher FN Teacher LN
Richard Jones Richard Allen
Matthew Jones Mary Brady
Christopher Murphy Mary Brady
Renee Smith Richard Allen

Mike Abrams NULL NULL
Edward Sorin Mary Brady
Mary Keenan Mary Brady
Susan Davis Richard Allen

NULL NULL Ann Edwards

(9 row(s) affected)

In this case, the output set has nine rows: the seven rows from the INNER
JOIN results along with the Mike Abrams result from the LEFT OUTER JOIN
and the Ann Edwards result from the RIGHT OUTER JOIN.

Joining a table with itself

In some cases, you'll want to join a table with itself. This situation is known
as a self-join, and it occurs when you want to compare records in a table

to each other. The classic example of a self-join is a “flattened” employees
table that contains information on an organizational hierarchy, as shown in
Table 8-3.

Table 8-3 Employees Table
employee_id first_name last_name title manager _id
1 Mike Kristov President NULL
2 Betsy Simon Executive Vice 1
President
3 Mark Edmond Senior Vice 2
President

(continued)

’34 Part lll: Retrieving Data from Databases

Table 8-3 (continued)

employee_id first_name last_name title manager _id

4 Ellen Jacobs Senior Vice 2
President

5 Bob Quinn District 1 3
Manager

6 Ben Reilly District 2 3
Manager

7 Kelly Smith District 3 4
Manager

8 Anita Jober District 4 4
Manager

This is known as a self-referential table: Each record contains a reference
to another record in the same table. In this case, the manager ID for each
employee is simply the employee ID of the individual’s manager. The data
in this table can be expressed visually in the organizational chart shown in
Figure 8-1.

If you wanted to retrieve a listing of all employees and their managers, you
could use a self-join SQL statement. There’s nothing special about the
syntax — you simply use the same table name on both sides of the join
clause. You must use table renaming to eliminate ambiguity, because both
tables have the same attribute names. Here’s the Transact-SQL statement
you could use to retrieve the desired list:

Mike Kristo:
President

Mark Edmond Ellen Jacob

— Senior VP Senior VP
Figure 8-1:
An orga-

nizational

Bob Quin h Anita Jobe
District 1 Mgr District 4 Mgr
|

chart.

Chapter 8: Joins and Other Advanced Queries ’35

SELECT e.first_name AS 'Employee FN', e.last_name AS
'Employee LN', e.title AS 'Employee Title',
m.first_name AS 'Manager FN', m.last_name AS
'Manager LN'

FROM employees AS e LEFT OUTER JOIN employees AS m

ON e.manager_id = m.employee_id

This statement produces the following output:

Employee FN Employee LN Employee Title Manager FN Manager LN
Mike Kristov President NULL NULL

Betsy Simon Executive Vice President Mike Kristov
Mark Edmond Senior Vice President Betsy Simon
Ellen Jacobs Senior Vice President Betsy Simon

Bob Quinn District 1 Manager Mark Edmond

Ben Rilley District 2 Manager Mark Edmond
Kelly Smith District 3 Manager Ellen Jacobs
Anita Jober District 4 Manager Ellen Jacobs

(8 row(s) affected)

<MBER It’s still very important to select the right type of join statement when writ-
ing a self-join. In this case, if used an INNER JOIN instead of a LEFT OUTER
JOIN, my employee list would have omitted the company’s president, who
has no manager!

Taking SELECT to the Next Level

The SELECT statement offers a number of other bells and whistles designed
to help you squeeze more efficiency out of your SQL queries. In this section,
I describe how you can compute values within your SELECT statement, nest
SQL statements with subqueries, and handle different cases in different
manners within the same SQL statement.

Computing values

In Chapter 7, I describe how you can use aggregate functions to find the
average, minimum, or maximum value for a column, count the number

of rows that match certain criteria, and perform other computations. In
addition to these functions, Transact-SQL allows you to perform a variety
of other computations on query results, ranging from basic arithmetic
operations to complex calculations.

736 Part lll: Retrieving Data from Databases

Returning to the school database example from earlier in the chapter,
suppose you wanted to provide the principal with a report detailing the
number of absences for each student. You could accomplish this with a
simple SQL query:

SELECT first_name, last_name, absences

FROM students

WHERE absences IS NOT NULL

This query would provide the results:

first_name last_name absences
Richard Jones 3
Christopher Murphy 5

Renee Smith 2

Mike Abrams 8

Edward Sorin 14

Mary Keenan 0

Susan Davis 6

(7 row(s) affected)

Many schools allow students a number of “free” absences before trigger-

ing parental notification. If your school has a policy of allowing two “free”
absences, you may want to provide the principal with a report that takes that
into account. You can do this by creating an “Absence Score” column that
subtracts two from the number of absences using this query:

SELECT first_name, last_name, absences-2 as 'Absence
Score'

FROM students

WHERE absences-2 > 0

ORDER BY absences DESC

That query produces the output:

first_name last_name Absence Score
Edward Sorin 12
Mike Abrams 6
Susan Davis 4
Christopher Murphy 3
Richard Jones 1

(5 row(s) affected)

This output is much more useful for the principal. It now contains the names
of only those students exceeding the absence quota and rank orders them
using the ORDER BY clause (discussed in Chapter 7).

Chapter 8: Joins and Other Advanced Queries ’3 7

Transact-SQL supports dozens of additional functions that you can use to
manipulate data. Some of the more common ones appear in Table 8-4.

Table 8-4 Common Transact-SQL Functions

Function Description

ABS() Returns the absolute value of numeric input

DATEADD () Adds an amount of time to a date and time value

DATEDIFF () Determines the difference between two date and time
values

DATEPART () Returns the specified part of a date and time value

LEFT () Returns the specified number of characters from the left
side of a string

LEN () Returns the number of characters in a string

LOWER () Converts a string to lowercase

PI() Returns the value 3.14159265358979

RAND () Returns a pseudo-random number between 0 and 1

RIGHT () Returns the specified number of characters from the right
side of a string

ROUND () Rounds a number to a specified precision

SQRT () Returns the square root of a number

SQUARE () Returns the square of a number

UPPER () Converts a string to uppercase

For a complete list of Transact-SQL functions, consult SQL Server Books
Online.

Managing complexity with subqueries

You can dramatically simplify complex SQL statements by nesting queries
within each other. For example, suppose you wanted to retrieve a list of
teachers who don’t have any assigned students. You can easily accomplish
this by combining two SELECT queries:

SELECT first_name, last_name
FROM teachers
WHERE teacher_id NOT IN (SELECT teacher
FROM students
WHERE teacher IS NOT NULL)

738 Part lll: Retrieving Data from Databases

This query builds upon the list condition queries I discussed in Chapter 7,
but uses the results of another SQL query (the subquery) as the source of the
list. It produces the output you probably expect:

first_name last_name

Ann Edwards

(1 row(s) affected)

Dealing with different cases

The CASE statement allows you to perform different actions based upon the
value of a database column. For example, suppose the principal of the school
wanted to expand the absence scoring system I discussed earlier to include
ratings for each student, based upon the following criteria:

v Students with two or fewer absences receive a rating of “Good.”
v Students with three to five absences receive a rating of “Warning.”

v Students with six or more absences receive a rating of “Violation.”

You could implement these three cases by using the following SELECT
statement:

SELECT first_name, last_name, absences, 'Absence Rating' =
CASE
WHEN absences IS NULL THEN 'Unknown'
WHEN absences > 5 THEN 'Violation'
WHEN absences > 2 THEN 'Warning'
ELSE 'Good'
END
FROM students
ORDER BY absences DESC

This produces the desired report:

first_name last_name absences Absence Rating
Edward Sorin 14 Violation
Mike Abrams 8 Violation
Susan Davis 6 Violation
Christopher Murphy 5 Warning
Richard Jones 3 Warning

Renee Smith 2 Good

Mary Keenan 0 Good

Matthew Jones NULL Unknown

(8 row(s) affected)

Chapter 8: Joins and Other Advanced Queries ’39

Notice a few things about the CASE statement:

v Cases are processed from top down and each row only matches one
case. For example, Mike Abrams had more than five absences, so he

received a rating of “Violation.” SQL Server then ignored the remaining
two conditions.

v Cases begin with the CASE keyword and end with the END keyword.

» You should handle the NULL case explicitly in a CASE statement, as I did
with the “Unknown” rating.

» You can use the ELSE keyword as a catch-all for any cases you don’t
explicitly list.

For more details on constructing CASE statements, see SQL For Dummies, 6th
Edition, by Allen G. Taylor (Wiley Publishing, Inc.).

Using Database Views

Database views allow you to create virtual tables based upon query results.
There are two major reasons you might want to use views instead of provid-
ing users with access to the underlying database table(s) themselves:

+* Views allow you to limit the data users can access. For example, you
can create a view that returns only certain rows from a table and then
grant users permission to access the view. They won’t be able to access
rows in the table that don’t meet the criteria of the view.

1 Views reduce complexity for end users. If end users aren’t comfortable

writing complex SQL queries, you can write the query for them and then
hide the complexity in a view.

Creating a view

In the previous section, I provide you with a complex query that uses a CASE
statement to create an absence report. If you won’t be the only one retrieving

that report, you probably want to hide the complexity of the query from the
end user.

Here’s the SQL command that you can use to create a view called absence_
report that uses the earlier query:

7 4 0 Part lll: Retrieving Data from Databases

CREATE VIEW absence_report AS
SELECT first_name, last_name, absences, 'Absence Rating' =
CASE
WHEN absences IS NULL THEN 'Unknown'
WHEN absences > 5 THEN 'Violation'
WHEN absences > 2 THEN 'Warning'
ELSE 'Good'
END
FROM students

When you execute this statement, you see the simple result:
Command (s) completed successfully.

You can now access the view just as you would any other SQL Server data-
base table. For example, the query

SELECT * FROM absence_report
ORDER BY absences desc

returns the same results as my original query:

first_name last_name absences Absence Rating
Edward Sorin 14 Violation
Mike Abrams 8 Violation
Susan Davis 6 Violation
Christopher Murphy 5 Warning
Richard Jones 3 Warning

Renee Smith 2 Good

Mary Keenan 0 Good

Matthew Jones NULL Unknown

(8 row(s) affected)

That’s certainly a lot simpler than rewriting the original query repetitively,
isn’t it?

Modifying a view

After you've created a view, you can change the underlying SQL statement
by using the ALTER VIEW command. Suppose you wanted to provide the
teacher Richard Allen with access to the absence report, but you don’t
want him to see the absence records from students not in his class. You can
rewrite the view as

Chapter 8: Joins and Other Advanced Queries ’4 ’

ALTER VIEW absence_report AS
SELECT first_name, last_name, absences, 'Absence Rating' =
CASE
WHEN absences IS NULL THEN 'Unknown'
WHEN absences > 5 THEN 'Violation'
WHEN absences > 2 THEN 'Warning'
ELSE 'Good'

END
FROM students
WHERE teacher = (SELECT teacher_id
FROM teachers
WHERE first_name = 'Richard' AND
last_name = 'Allen')

Now, if you issue the same command I used earlier to retrieve all records
from the view, as follows:

SELECT * FROM absence_report
ORDER BY absences desc

your view of the results is limited to those students in Richard Allen’s class,
as shown in the following output:

first_name last_name absences Absence Rating
Susan Davis 6 Violation
Richard Jones 3 Warning

Renee Smith 2 Good

(3 row(s) affected)

Deleting a view

You may find it necessary to delete an existing view based upon changing
business needs. You can delete a view using the DROP VIEW command. For
example, if you wanted to delete the absence report view, you would issue
the command:

DROP VIEW absence_report

SQL Server confirms the successful deletion of the view with the following
result message:

Command (s) completed successfully.

7 4 2 Part lll: Retrieving Data from Databases

Chapter 9

Turning Data into Information with

SQL Server Reporting Services

In This Chapter

Configuring SQL Server Reporting Services with Reporting Services Configuration

Manager

Designing reports

Publishing and viewing reports

\

SQL Server Reporting Services (SSRS) is one of SQL Server 2008’s
advanced features. SSRS provides database administrators and
developers with a built-in mechanism for designing and publishing data-
driven reports to end users. Microsoft gave SSRS a significant overhaul with
the release of SQL Server 2008. Most notably, SSRS no longer requires
Internet Information Server (IIS) as it did in earlier SQL Server versions. It’s
now a stand-alone service.

SSRS offers a wide variety of reporting functionality and is the subject of many
entire books. In this chapter, I provide you with a basic introduction to SQL
Server Reporting Services. I discuss how to set up and configure SSRS, create
and publish a basic report, and manage SSRS reports.

If you're interested in learning more after reading this chapter, [suggest
you read Professional SQL Server 2008 Reporting Services, by Paul Turley,
Thiago Silva, Bryan C. Smith, and Ken Withee (Wiley Publishing, Inc.)

Setting up SOL Server Reporting Services

3

Before you can create and publish reports with SSRS, you need to configure
it to meet the requirements of your business environment. You may do this
using the Reporting Services Configuration Manager.

To use SQL Server Reporting Services, you must have it installed on your SQL
Server instance. (I discuss installing SQL Server components in Chapters 1
and 2.) Follow these steps to set up SSRS:

’44 Part lll: Retrieving Data from Databases

|
Figure 9-1:
Report
Server
status.
|

1.

i d

From the All Programs menu, choose Microsoft SQL Server 2008=>
Configuration Tools=>Reporting Services Configuration.

. Provide the connection details for your Report Server in the

Reporting Services Configuration Connection window and click the
Connect button.

If you're running the configuration tool on your SQL Server computer,
the window will most likely pop up preconfigured with the correct
server name and instance. If you're connecting to a remote SSRS server,
you need to provide the server name. Additionally, you need to select
the report server instance if more than one exists on that system.

Review the details on the Report Server Status screen.

The status screen, shown in Figure 9-1, provides basic information about
your Report Server. You may use the Start and Stop buttons on this
screen to change the status of the SSRS instance.

. Click the Service Account page and confirm that SSRS is running

under the correct account. If you decide to make changes, click the
Apply button when you’re finished.

The Server Account page, shown in Figure 9-2, allows you to select the
account used to run SSRS. You may choose to use a domain account
(as shown in the example) or a built-in account.

L} Rep

orting Services Configuration Manager: VOSTRO\MSSQLSERVER [olE =

=

Micrasoft SQL Senver 2008 Reporting Services

\ﬁf Reporting Services Configuration Manager

3
Sacennec Report Server Status
= VOSTRO\MSSQLSERVER
, Service Account =] Usethe Reporting Services Configuration Manager tool to define or modify settings for the Report Server and
J Report Manager. If you installed Reporting Services in files-only mode, you must configure the Web service URL,
4 Web Service URL the database, and the Report Manager URL.
[] Database
@ Report Manager URL Current Report Server
=] Email Settings SQL Server Instance: MSSQLSERVER
[P Bxecution Account Instance ID: MSRS10.MSSQLSERVER
neryption Keys ition:
A\ Encryption Ki Edit DEVELOPER EDITION
% Scale-out Deployment Product Version: 10.0.1075.23
Report Server Database Name: ReportServer
Report Server Mode: Native
Report Service Status: started
Stop

__ Chapter 9: Turning Data into Information with SQL Server Reporting Services ’ 45

5. Click the Web Service URL page to review the Web server configura-
tion and make any desired changes. When you finish, click the
Apply button.

SSRS distributes reports through the use of a Web server. On this
screen, shown in Figure 9-3, you may modify the IP address(es) and
TCP port assigned to SSRS. This is especially important if your server
fills multiple roles in your organization, because you may have only one
server listening on the default HTTP port (80) for each IP address.

This screen also allows you to choose an SSL certificate to use if you
want to provide HTTPS secure encrypted access to your reports. This
protects them against eavesdropping as they travel across the network
from the server to the client. Your server administrator will need to
install an SSL certificate on your server before it will appear in the SSL
Certificate drop-down menu.

Make note of the URL(s) shown in the Report Server Web Service URLs
section of this window. You should provide these URLs to users who
need to access SSRS.

6. Review the other pages in the Configuration Manager and customize
any settings you want.

7 Reporting Services Configuration Manager: VOSTRO\MSSQLSERVER | = =R

=3 Micmsoft SQL Server 2008 Reporting Senvices

\ﬁf Reporting Services Configuration Manager

3

24 Connect Service Account

= VOSTRO\MSSQLSERVER
;) Service Account ? Spedify a built-in account or Windows domain user account to run the report server service.
& Web Service URL L
[] Database

@ Report Manager URL Report Server Service Account

Choose an option to setthe service account and then click Apply.
2 Email Settings

[P Execution Account Use built-in account: (etwork Service
4, Encryption Keys @ Use another account:
4%, Seale-out Deployment Agcount (Domain\user): VOSTROmchapple

Password: sesssess

|
Figure 9-2:
Selecting

a service
account.
|

’46 Part lll: Retrieving Data from Databases

[P)

%7 Reporting Services Configuration Manager: VOSTRO\MSSQLSERVER

=% Micmsok SQU Senver 2008 Repoing Services

\ﬁf Reporting Services Configuration Manager

S St Web Service URL
- VOSTRO\MSSQLSERVER
Service Account anfigure 2 URL used to access the Report Server. Click Advanced to define multiple URL for asingle Repo
2 P fi URL usedt the Report Server. Click Advanced to definemultiple URLs f e Report
2 P Server instance, or to specify additional parameters anthe URL,
[_.1 Web Service URL
i Database Report Server Web Service Virtual Directory
@ Report Manager URL Virtual Directory: ReportServer
- Email Settings
[Execution Accourt Report Server Web Service Site identification
= P Address: Al Assigned (Recommended) |
#, Encryption Keys —
4", Scale-out Deplayment Tepaom &l
S5L Certificate: (ot Selected) -
S5L Port: Advanced... |
Report Server Web Service URLs
URLs: http://VOSTRO:80/ReportServer
|
Figure 9-3:
Configuring
the SSRS
Web
Service. | =
|

I return to the Configuration Manager later in this chapter when I
discuss Report Manager (see the “Working with Deployed [Published]
Reports” section, later in this chapter). In the meantime, you should
take a few minutes to familiarize yourself with the other configuration
settings offered in the tool.

7. Click the Exit button to close the Reporting Services Configuration

Manager.

After you’ve set your basic configuration settings with Configuration
Manager, you're ready to begin designing reports for distribution on your

Report Server.

Creating an SSRS Report
with Report Builder

Report Builder allows you to create reports for distribution on an SSRS
server. It provides a graphical interface that allows you to visually design
reports, dropping in data-driven elements as needed. Report Builder allows
you to include tables, images, matrices, lists, and charts in your reports and
to populate those elements with data from your SQL Server database, and a
variety of other data sources.

__ Chapter 9: Turning Data into Information with SQL Server Reporting Services

Installing and starting Report Builder 2.0

With the release of SQL Server 2008, Microsoft also planned to introduce a
new stand-alone reporting tool: Report Builder 2.0.

QNING/ Unfortunately, immediately before this book went to press, Microsoft removed
R Report Builder from the product and announced plans to release it separately
in late August 2008. The material on Report Builder in this chapter is based on
a beta version of that tool. When Microsoft releases the final version of Report
Builder, I will update this chapter and make the new download available on
the Web at:

www . dummies.com/go/sglserver2008fd

Downloading and installing Report Builder is easy: Just walk through the
wizard and accept all the default options. When you’ve installed Report
Builder, you may start it by choosing SQL Server 2008 Report Builder=>
Report Builder 2.0 from the All Programs menu.

Choosing a data source and data set

After you start Report Builder, it opens with a new blank report, ready for
your design, as shown in Figure 9-4. Before you begin, you need to configure
a data source using the following process:

1. With Report Builder open, choose Newr>Data Source from the drop-
down list in the Data pane.

Report Builder displays the Data Source Properties window, shown in
Figure 9-5.

2. Provide a name for your data source by typing it in the Name textbox.

3. Choose the Embedded connection radio button and select the
appropriate connection type from the drop-down menu.

If you already have a shared data source you would like to use instead,
you may select the “Use Shared Data Source Reference option instead.
For SQL Server database connections, choose Microsoft SQL Server
from the Type drop-down menu.

Report Builder allows you to pull in data from non-SQL Server data
sources. Some of those include:

® Oracle databases

e SAP NetWeaver

e OLE DB and ODBC data sources
* XML data sources

* Hyperion Essbase

147

’ 4 8 Part lll: Retrieving Data from Databases

|
Figure 9-4:
Microsoft
Report
Builder.
|

|
Figure 9-5:
Data source
properties.
|

Untitled - Microsoft SQL Server Repart Bulder

[Lot v\| Ty Bring to front &
I Send ta back
. . .| 3 sendtobad oreven

|55 Algn -

Clipboard Font Alignment Border Arrange Previen

Data
Mew + Edi.. X & &

3 Bultn Fiekds To add an item to the page header: add an item to the report and then drag it here.

Parameters
4 Images
To add an item ko the page Footer: add an ikem to the report and then drag it here.
=] Row Groups T column Groups
Data Source Properties @
" Generat = R \ |
] Change name, type, and connection options.
Credentials 2

Mame:

My Data Source

@ Embedded connection:
Type:
Microsoft SQL Server -

() Use shared data source reference

\ -] [et

Use single transaction when processing the queries

Data Source=VOSTRO:Initial Catalog=AdvantureWorksLT Edit...

Nes>

4. Click the Edit button.

The Connection Properties screen for your selected connection
type appears. Figure 9-6 shows the screen for Microsoft SQL Server

connections.

__ Chapter 9: Turning Data into Information with SQL Server Reporting Services

|
Figure 9-6:
The
Connection
Properties
screen.
|

. Provide the connection details for your database and click the OK

button to continue.

I recommend that before you click OK, you click the Test Connection
button to verify that you have provided correct connection details.

6. Click the Next button to continue.

7. Type the SQL Query you want to use for your data source in the Query

o

Editor window.

You need to provide a SQL query that produces the data you want
included in your report in the Query Editor window, as shown in Figure
9-7. If you don’t want to enter the query manually, you may open an
existing query (. sql) file or import a query from another report using
Query Editor’s toolbar icons.

. Click the green triangle (“play”) button to test your query.

When you click the green triangle, SQL Server executes your query and
displays the results in the bottom pane of the Query Editor window.
Use this pane to verify that your query produces the desired results.
This pane is also where you can make any necessary modifications.

. Click the Finish button to create your data source.

You return to Report Builder. Note that the dataset you created now
appears as an expandable folder in Report Builder’s Data pane.

Connection Properties 7 ==
Data source:
Microsoft SQL Server (SqlClient) Change...
Server name:
VOSTRO - Refresh
Log on to the server
@ Use Windows Authentication
Use SQL Server Authertication
Connect to a database
'@ Select or enter a datsbase name:
AdventursWorksLT -
Attach a database file
Advanced..
ok (Co

149

’50 Part lll: Retrieving Data from Databases

|
Figure 9-7:
Type your
query in

the Query
Editor.
|

|
Figure 9-8:
Click Insert
on the
Ribbon.
|

Query Editor o [
=~ B9

SELECT SUM(ordergty) as Quantity, SUM({linetotal) a3 Price, Name
FROM sales.salesorderdetail =

INNER JOIN producticon.product p

ON p.productid = s.productid

GROUP BY Name

Quantity Price Mame -
v EE 20591 000000 | AI-Pupose Bike Stand

2311 51229.445623 | AWC Logo Cap

319 18406.972080 | Bike Wash - Dissolver

1087 16240.220000 | Cable Lock

i4 9377710144 Chain

207 12839.700000 | Classic Vest, L

2284 50250600550 | Classic Vest, M

4247 156398.067950 | Classic Vest,

121 ARE1G Rennnn Famdar Cat - Manrd=in
266 rows selected < Back | | Finish | ‘ Cancel

Laying out the report

After you've added a data source for your report, you may use the various
items on the Insert Ribbon of Report Builder to add elements to your report.
Report Builder allows you to simply drag and drop elements where you’d
like them to appear.

Adding a text box
You may add static (unchanging) text to your report using the Text Box con-
trol within Report Builder. Here’s the process:
1. Ensure that you’re viewing the Insert menu on the Report Builder
Ribbon, as shown in Figure 9-8.
2. Click the Text Box icon in the Report Items section of the Insert menu.
3. Drag the text box to the desired spot on your report.

For example, you may want to place the text box in the header or footer
section of your report.

= 9 Untitled - Microscoft Report Designer

Home Insert View

7 all Ad [dl \] § &

Table Matrix Chart List TextBox Image Line Rectangle Subreport Header Footer

Diata Regions Report ltems Subreports Header & Footer

__ Chapter 9: Turning Data into Information with SQL Server Reporting Services ’5 ’

4. Use the mouse to click inside the text box and type the text that you
would like to appear in the report.

\NG/
§g~“ As with any other document, be sure to save your report periodically to avoid

losing your work. You can save your report by clicking the disk icon in the
upper-left corner of Report Builder.

Adding a chart

Report Builder makes it easy to add a variety of charts to your SSRS reports.
Available chart types include:

v~ Pie charts

v Line graphs

v Column graphs

v+ Funnel charts

v Bar graphs

v Area graphs

v Range graphs

v Scatter plots

To add a chart to your report, follow these steps:

1. Click the Chart icon on the Ribbon’s Insert menu.

Report Builder displays the Select Chart Type window, shown in
Figure 9-9.

2. Select the type of chart you want to include in your report and
click OK.

Report Builder inserts a default chart of the type you selected, as shown
in Figure 9-10.

3. Choose the data field or fields for your chart and drag them from
the Data pane onto the Drop Data Fields Here area above the
sample chart.

The data fields contain the values to be plotted on your chart. (In the
example shown later in Figure 9-12, the quantity field is the data field.)

4. Choose the category field or fields for your chart and drag them from
the Data pane onto the Drop Category Fields Here area above the
sample chart.

The category fields contain the names corresponding to each of the data
fields in your chart. In the example shown in Figure 9-12, the product
name field is the category field.

’ 5 2 Part lll: Retrieving Data from Databases

Select Chart Type 3]
o lala] (23] 8] e8] 98] i
o A o) 98]
N 2 [222 [5

O] @]« [0] Q] V]

Figure 9-9: |? |A |g

The Select
Chart Type ar

mType SIS T

in Report
Buider.)

g o) Untitled - Microsoft SQL Server Repart Bulder = x

Home: [Insert I Wien

ElER k2]

AN O H

=

Table Matrix Chart Gauge List TextBox Image Lne Rectangle Subreport Headsr Footer

Data Regians Report Items Subreports | Header & Footer

Data
Mew > Edi. X o @

32 Buit-n Fiskds i - To add an ke to the page hearer: add an item ko the report and then drag i here. I

Rl
Parameters H Chart Title
{1 Images 1
-1 MyDataSource 1 BN Category 1

Category 2
B Category 3
I Category 4

Category &
B Category 6

To add an tem to the page Footer: add an ftem to the report and then drag it here.

Figure 9-10:
Report
Builder with
a default pie
chart.
|

F=] Row Groups M column Groups -

5. Click the Chart Title text box and enter the title you want to use for
your chart.

__ Chapter 9: Turning Data into Information with SQL Server Reporting Services

Figure 9-11:
A completed
reportin
Design

view.
|

Adding a table

Adding a table to your report follows a similar process:

1. Click the Table icon on the Ribbon’s Insert menu.

2. Add or delete columns from your table by right-clicking the table and
selecting the appropriate entries from the pop-up menu.

3. Click each cell in the Header row and type the text you want to
appear in the table header.

4. Drag the data elements you would like to appear in each column

from the Data pane to the appropriate column in the Data portion of

the table.

You need to fill in only one row of the table. SSRS automatically creates
the necessary number of rows when it generates your report.

Figure 9-11 shows a completed report in the Design view of Report Builder.

Preview your report

When you complete the layout of your report, you may preview it by switch-
ing to the Ribbon’s View menu and selecting the Preview Report view. Doing
so produces a report preview similar to the one shown in Figure 9-12.

=

Heme Insert

Paste
Clipboard
Data
Mew ~ Edit.. 7

- Built-in Fields
[Parameters
[Images.
- My Data Source
£ DataSetl
- =1 Quantity
L2=] Price
L] Name

Font

View

Slignment

Unfitled - Microscft Report Designer

Border

|%a Align -

Arrange

A
Preview

Preview

Sales Report

P

Row Groups

Product Sales

. Point 1
Point2
W Point 3
W Point 4
Point§
W Point 8

Product Mame

[Mame]

.

Column Groups

Quantity Sold
[Quantity]

Revenue
[Sum(Price]]

{2 G jpao0zeg=)
=

o

(e

153

’54 Part lll: Retrieving Data from Databases

|
Figure 9-12:
Previewing
areport.
|

\\3

Sales Report

Product Sales Product Name Quantity Sold Revenue
[Name] [Quartity] [Sum(Price)]

q

Publishing the report

After you’ve completed your report layout and previewed it to ensure that it
meets with your satisfaction, you can publish the report to your Report
Server for other users to view.

Here’s how to publish a report to an SSRS server:

1. Click the round report icon in the upper-left corner of the screen to
activate the Report Builder pull-down menu and then choose Publish,
as shown in Figure 9-13.

2. Confirm the deployment settings and click OK.

Confirm that the Report Server URL, report folder, and report name
chosen by Report Builder are correct (as shown in Figure 9-14). The
default settings should be acceptable, but you may make any necessary
modifications.

After clicking OK, you see a Report Deployed Successfully notification.

If you attempt to publish a report and receive an error message about
improper permissions, verify that your account has membership in the
Publisher role. For more information, see “Configuring report security,” later
in this chapter.

After you publish your report, it will be available to users accessing the
reporting server with the appropriate permissions.

Working with Deployed
(Published) Reports

You may access and modify your deployed reports using the URLs you
provided in the Reporting Services Configuration Manager. In this section,
I describe the basic concepts behind the SSRS Web interfaces.

__ Chapter 9: Turning Data into Information with SQL Server Reporting Services

Figure 9-13:
Publishing a
report.
|

Figure 9-14:
Deployment
settings.
|

Figure 9-15:
SSRS Web
Service
menu.
|

L 3 @md-| wx -
Sales Report
Product Sales Product Name Quantity Sold
s LL Mountain Frame- LL Mountain
Black, Frame - Black. 44
Solgu o rreme- LL Touring Frame -
Mountain Bike Socks, L- Yellow, 58
B G antity
m 4/-PUrpOsE Bike Stand- Mountain Bike
Quantity Socks, L
ML Road Frame - Red Al-Purpose Bike
I Men's Bib-Shorts, M- Stand
ML Road Frame -
Red, 52

Men's Bib-Shorts
M

1616

Find | Next
Revenue
93584 422996
7201.872000
513.000000

39591.000000

32120.820000

86166.045931

Deployment Settings

Report Server URL:

http: jflocalhostfreportserver
Report Folder:

i

Report name:

My Repart

Viewing reports

The simplest way to view SSRS reports is to use the Web Services URL you
provided in the Reporting Services Configuration Manager. Simply open a

Web browser and type that URL into the address bar. SSRS will prompt you
for your username and password and then display a report menu similar to

the one shown in Figure 9-15.

Click the name of the report you want to view, and SSRS will generate the
report dynamically and display it in your browser window, as shown in

Figure 9-16.

vostro/ReportServer - /

Saturday, December

08, 2007 3:55 PHM 21063 sales

Microsoft SQL Server Reporting Services Version 10.0.1075.23

155

’56 Part lll: Retrieving Data from Databases

/& Report Viewer - Windows Intemet Explorer [E=R e
@\J ~ [2] http://vostro:8080/ReportServer/Pages/ReportViewer.aspx?%2fsalesBirs; Command=Render = [42] | Googte 2 -]
Links] Customize Links & | Tomlet
F 4 | @ Report Viewer fir = B - # - [Page = & Tooks ~
4 4 of1 b Pkl 100% - Find | Next Select a format w Export (3] =1
Sales Report
I
Product Sales Product Name Quantity Sold Revenue
1 -16" LL Mountain Frame - LL Mountain Frame - 625 93584.422996
Figure 9-16: - Blsck, 44
LLTouring Frame-
The SSRS Yellow, ? LL Touring Frame - 36 7201.872000
mm Wountain Bike Socks, L- Yellow, 58
Report Quantity
mm AIl-Purpese Bike Stand- Mountain Bike 90 513.000000
. Quantity Socks, L
Viewer ML Road Frame - Red
. 52- All-Purpose Bike 249 39591.000000
displays I Ver's Bib-Shorts, M- Stand
ML Road Frame - 90 32120.820000
your report Red, 52
in your Men's Bib-Shorts, M 1616 86166.045931
browser.
I

Configuring report security

You need to set up permissions for the users you want to administer and
view SSRS reports. To do this, you first need to enable SSRS Report Manager
and then use it to assign SSRS roles to the appropriate users and groups.

Setting up Report Manager
Report Manager is a Web application that allows you to modify SSRS settings

through your Web browser. Before you can access Report Manager, you need
to enable it using the following process:

. Open Reporting Services Configuration Manager.

. Click the Report Manager URL page.

. Click the Advanced button.

. Click the Add button under Multiple Identities for Report Manager.

. Click OK to accept the default options.

. Click OK to close the Advanced Multiple Web Site Configuration.

N S U AW N -

. Click the Apply button to start Report Manager.

Note the URL displayed in Configuration Manager. This is the URL
required to access Report Manager.

__ Chapter 9: Turning Data into Information with SQL Server Reporting Services ’57

Configuring site roles
Site-wide roles allow you to assign users permission to access Report
Manager. By default, all users in the BUILTIN\Administrators local adminis-
trators group are Report Manager System Administrators. Here’s how you
can add additional users:

1. Using Internet Explorer, open the URL for Report Manager.

You specified this URL when starting Report Manager in the previous
section.

. Click the Site Settings link.
. Click the Security page.
. Click the New Role Assignment button.

1 e W N

. Type the name of the user or group in the Group or User Name
text box.

6. Select the box or boxes corresponding to any roles you would like
to assign to the user or group.

The roles you may choose from are as follows:

e System Administrator role members may perform all Report
Manager administrative activities.

e System User role members may view system properties and shared
schedules only.

7. Click the OK button to finish.

Setting up content roles

In addition to creating site roles to access Report Manager, you may also
create content roles that grant users varying levels of permission over SSRS
content. You may create these permissions at the Home level, where they
inherit downward to all newly created reports. Alternatively, you may set
role membership for subfolders or individual items.

To set content roles at the Home folder level, follow this process:

1. Click the Home link in Report Manager.
2. Click the Properties tab.
3. Click the New Role Assignment button.

You see the New Role Assignment screen, shown in Figure 9-17.

’ 5 8 Part lll: Retrieving Data from Databases

4. Type the name of the user or group in the Group or User Name
text box.

5. Select the box or boxes corresponding to any role you would like
to assign to the user or group.

The roles you may choose from are as follows:

¢ Publisher role members may publish and update reports on the
Report Server.

¢ Content Manager role members may manage folders, reports, and
resources.

& Report Manager - Windows Internet Explorer
@U - &) httppost g
Links & | Custonize Links & Tomlet

F Gk | @ ReportManager

= tri=http% ~ | 7 | x || Google £~

% or B v @ v [Page v { Tools »

® Protected mode is currently turned off for the Local intranet zone, Click here to open security settings.

Home | My Subscriptions | Site Settings | Help -+
0 SQL Server Reporting Services

&5 New Role Assignment Search for: a2

Use this page to define role-based security for Home.
Group or user name: AOLIO‘\mchapple

Select one or more roles to assign to the group or user.

Roled Description
Browser May view folders, reports and subscribe to reports
| 7] Content Manager May manage content in the Report Server. This includes folders, reports and resources.

My Reports May publish reports and linked reports; manage folders, reports and resources in a users My Reports
1 .17 folder.
Flgure 9-17: ¥] Publisher

May publish reports and linked reports to the Report Server.
ASS|gn|ng Report Builder May view report definitions.
an SSRS || e
role. !
@) hitp://vestro:8080/Reporth /Pages/Subsc asp: €& Local intranet | Protected Mode: Off #100% ~
I

e My Reports role members may publish reports and manage folders,
reports, and resources within their own My Reports folder.

¢ Browser role members may view and subscribe to reports
and folders.

® Report Builder role members may view report definitions.

6. Click the OK button to finish.

Part IV

Inserting and
Manipulating
Your Data

The Sth Wave By Rich Tennant
[ORCTTENNANT

1 told Russell he
1 should data model
before we go any further.

Mayl speakto |
- Kate Moss, please.

In this part . . .

n this part, you find out how to go beyond simple
retrieval of data and see how to get new data into a
database. I also show you how to modify information that

exists within a database table. Here, you discover how
you can use SQL statements and bulk import tools to add
information to your database tables. [also tell you about
stored procedures, functions, and triggers — all great
tools for making your life easier by automating those
tedious database tasks.

Chapter 10

Inserting, Updating,
and Deleting Data

In This Chapter

Inserting data into SQL Server databases using the graphical user interface
Inserting, modifying, and deleting data with Transact-SQL

Importing large quantities of data with INSERT INTO, BULK INSERT, and bcp
Working with SQL Server Integration Services

M icrosoft SQL Server 2008 provides you with a number of different
ways to insert new data into your databases. Just as a carpenter has
many different tools that can achieve the end goal of joining two pieces of
wood, SQL Server offers different data insertion tools that are best suited for
certain circumstances.

In this chapter, I explain each of those tools and provide advice on how you
can determine the appropriate tool for a given situation. I begin by looking at
the options available to you when you need to insert small numbers of rows
into your database. I then expand the discussion to look at bulk import tools
and techniques you can use to retrieve data from remote databases.

Inserting Small Quantities of Data

In many cases, you simply need to add a few new rows to your database, one
at a time. Microsoft SQL Server provides you with two basic techniques for
achieving this goal: data entry with SQL Server Management Studio’s graphic
interface and the SQL INSERT statement.

’ 62 Part IV: Inserting and Manipulating Your Data

Figure 10-1:
SSMS

Data Entry
window.
|

Understanding simple data entry

The easiest way to insert new data into your database is to use the graphic
interface of SQL Server Management Studio (SSMS). SSMS provides a
spreadsheet-style data entry format that allows you to simply access the
table you’d like to insert data into and begin typing, just as you would in
Microsoft Excel.

I use this technique in earlier chapters, so it may already be familiar to you if
you've been following along. To insert data into a table, follow these steps:

1. Open SQL Server Management Studio and connect to the SQL Server
instance containing the database that you’d like to modify.
If you're not already familiar with this process, flip back to Chapter 3.

2. Expand the Databases folder (click the plus icon next to the word
Databases).

3. Expand the folder of the database you’d like to modify.
4. Expand the Tables folder for the database you’d like to modify.

5. Right-click the table name and choose Edit Top 200 Rows from the
pop-up menu to open the table.

You should see the window shown in Figure 10-1.

. Microsoft SOL Server Management Studio

File Edit Yiew Project Query Designer Tools Window Community Help
2 ew query | [y | 0 0 T | 35 |5 ¥l W @ | B2 B B B ORF
) B s Change Type ¥ B = #_:I -
Ohject Explarer > x XPL¥M1.5chool - dbo.students | %PLYM1.5chool - SQLQuery1 sal 5 X
Connect ~ | & First_name last_name student_id phone gendsr
= (b ¥PLUMI (SQL Server 10,0,1019 - ¥PLyMLir & | | P Jones 1 5745550125 male
= [Databases Matthew Jones 2 574-555-0125 male
[System Databases .
Christophe Murphe 3 S74-555-8224 |
[Database Snapshots ristapher lald male
5 | cookies Renee Smith 4 574-555-9201 female
| HR Mike Abramns 5 574-555-1925 male
= Y schoal Edward Sorin H 574-EES-1902 male
[3 Database Diagrams
= C@ Tables Mary Keenan 7 574-555-9859 femals
[System Tables Susan Davis 8 574-555-9124 Female
& = dbo.students * e Mt e AL ML
[dbo.teachers
+ [Views
+ [Synonyms
F [Programmability
F [Service Broker
+ [Storage
+ [Security
| test
+ [Security
[Server Objects
[Replication
+ [Management < »
[%% 50L Server Agent: {Agent #Ps disabled) ™
2 3 L ofs | b bl b
Ready

Chapter 10: Inserting, Updating, and Deleting Data

NG’

Figure 10-2:
The excla-
mation point
indicates
unsaved
changes
toarowin
SSMS.
|

\\3

6. Enter the data into the last row of the table to insert the new row into
the table.

The last row of the table will contain NULL values for every column.
Simply use the mouse to highlight those values and type over them with
the data you’d like to insert into the table.

7. Click the X in the upper-left corner of the window to close the data
entry window.

You must exit the line that you're editing by clicking into another line before
exiting. SSMS does not save your data to the database until you've done so.
SSMS indicates unsaved changes to a row with a circular red exclamation
point icon, as shown in Figure 10-2.

Kelly Johins 9 574-432-4241
F Michael & tlen & 10 @ s74-328-5550 O
* N RULL RULL BULL

Writing INSERT statements

You can also insert data into a SQL Server database using Transact-SQL. The
INSERT statement allows you to add a row to a table and uses the following
syntax:

INSERT INTO <table_name> (<columns>)
VALUES (<values>)

in which <columns> and <values> are comma-separated lists of the column
names in the table and the values you’d like to insert, respectively.

The column list is actually an optional part of the INSERT statement. If you
don’t include the list of columns, SQL Server assumes that your list of values
includes all columns in the correct order. However, I strongly recommend
that you play it safe by specifying the column list in your INSERT statement.
I've seen database users make far too many mistakes by taking shortcuts with
their syntax.

You can also insert more than one row with the same INSERT statement
by separating multiple rows (each enclosed in its own set of parentheses)
with commas.

163

7 64 Part IV: Inserting and Manipulating Your Data

Here’s how you would use the INSERT statement to add two new students
into the students table from Chapter 7:

INSERT INTO students (first_name, last_name, student_id,
phone, gender, birthdate, absences, teacher,
city)

VALUES ('Mead', 'Remke', 11, '574-224-2312', 'male'’,
2/12/1999, 5, 1, 'South Bend'),

('Calvin', 'Reynolds', 12, '574-482-2329', 'male',
3/15/1999, 2, NULL, 'Granger')

In response, SQL Server offers a simple result:

(2 row(s) affected)

Modifying and Deleting Data

When it comes time to modify or remove data from your database, you have
two options: use the graphical SSMS interface or write Transact-SQL state-
ments. If you choose to use the SSMS interface, simply open the table as if
you were going to add new rows and modify the table in Open Table view.
In this section, I explain how to modify or remove data from your database
using Transact-SQL.

Modifying data with UPDATE

SQL’s UPDATE command allows you to modify data stored in a SQL Server
table based upon data attributes. The basic syntax of this statement is
as follows:

UPDATE <table_name>
SET <attribute> = <value>
WHERE <conditions>

For example, suppose you hire a new teacher, Ann Edwards, with a teacher
ID of 3 and assign her all the students in your school not currently assigned
to a teacher. You can update your student records to reflect these assign-
ments by using the following UPDATE statement:

UPDATE students
SET teacher = 3
WHERE teacher IS NULL

which produces the following result:

(2 row(s) affected)

Chapter 10: Inserting, Updating, and Deleting Data

3

Notice that executing the query simply results in a statement showing the
number of rows modified. This is normal. SQL Server will not display the
contents of the modified rows.

The WHERE clause is optional. If you omit it, your change will affect all rows
in the table. For example, if the principal wants to close the school for a

day and assess all the students an absence, she can do so with the following
statement:

UPDATE students
SET absences = absences + 1

This statement affects all rows in the table and produces the following
output:

(12 row(s) affected)

The previous query computed a new value for the absences column by adding
1 to the existing value. Recall that NULL is a special value, so it is not changed.
Adding 1 to NULL has no effect, and the result is still NULL.

Removing data from a database

You have several ways to remove data from a SQL Server database: delet-
ing individual rows with the DELETE statement; deleting all rows with the
TRUNCATE TABLE statement; and removing the entire table with the DROP
TABLE statement.

Deleting rows with the DELETE statement

The SQL DELETE statement allows you to remove rows from your database
that meet specified criteria. The format of the statement is as follows:

DELETE FROM <table_ name>
WHERE <conditions>

Suppose that because of a school boundary realignment, you want to remove
all students from your school who live in Granger. You can delete them from
the students table using the following command:

DELETE FROM students
WHERE city = 'Granger'

SQL Server responds with the number of rows that were deleted:

(3 row(s) affected)

105

7 66 Part IV: Inserting and Manipulating Your Data

Deleting all row's from a table

If you want to delete all the rows from a table, you can simply use the
DELETE statement with no WHERE condition. However, this method will take
a long time for larger tables. SQL offers the TRUNCATE TABLE statement to
make this process faster, using the following syntax:

TRUNCATE TABLE <table_name>
SQL Server responds with a simple
Command (s) completed successfully.

The TRUNCATE TABLE command removes all data from the table, but leaves
the basic table structure intact for future use.

Deleting an entire table

To delete an entire table, including all data and the table structure itself, you
can use the DROP TABLE statement, with the following syntax:

DROP TABLE <table_name>

Importing Large Quantities of Data

SQL Server also provides methods that you can use when you need to insert
large quantities of data into a database at the same time. These automated
techniques can help you insert data from the results of a SQL query, a text
file, or another database.

Inserting query results

You can insert data into a table from the results of a SQL subquery by simply
including it in place of the VALUES clause in an INSERT INTO statement.

For example, when graduation time arrives and all students born in 1999
leave the school, you can copy their records into an alumni table using the
following Transact-SQL statement:

INSERT INTO alumni
SELECT * FROM students
WHERE birthdate BETWEEN '12/31/1998' AND
'1/1/2000"

3

Chapter 10: Inserting, Updating, and Deleting Data ’ 6 7

In response to the alumni query shown previously, SQL Server will display
the number of rows inserted:

(2 row(s) affected)

The preceding query assumes that the students and alumni tables share a
common table structure (that is, they have the same columns).

Copying bulk data with BULK INSERT

If you need to insert data from a text file, the BULK INSERT command may
be the best option for you. This Transact-SQL statement allows you to read a
text file from your file system and insert the contents into a SQL Server table.

The basic syntax of the BULK INSERT statement is as follows:

BULK INSERT <table_name> FROM <file_name>
WITH <conditions>

For example, suppose you had a file called C: \classes. txt that contains
information on all the courses taught at your school. The contents of that
tab-delimited file appear below:

1 Mathematics 1 102
2 Science 3 204
3 History 2 213
4 Literature 2 102
5 Mathematics 1 114
6 Literature 2 119
7 Science 3 210
8 Science 3 221
9 Mathematics 1 125
10 Literature 2 102
11 Science 3 104
12 Mathematics 1 102
13 Literature 2 115
14 History 2 114
15 Mathematics 1 210
16 Science 3 221
17 Mathematics 1 205
18 Literature 2 208

You could insert these rows into your classes table with the following
Transact-SQL statement:

BULK INSERT classes FROM 'C:\classes.txt'

7 68 Part IV: Inserting and Manipulating Your Data

SQL Server responds with the number of rows inserted:
(18 row(s) affected)

The BULK INSERT statement offers many options that help you insert dif-
ferent data types in a flexible manner. For example, you may specify how to
handle constraints, how many rows to insert in each batch, the format of the
file, and many other characteristics. These are beyond the scope of this book.
For more information, see SQL Server Books Online.

Performing blk operations from
the command line with bcp

SQL Server’s bep (bulk copy) command provides you with the ability to
insert bulk data from the command line rather than use the BULK INSERT
SQL statement. This approach is particularly useful if you need to insert data
from within other programs or through batch files.

The basic format of the bcp command is as follows:
becp <table_name> <direction> <file_name> <options>
in which
v table_name is the fully qualified name of a table, in the format data-
base _name.owner.table_ name.
v direction is either in (for data import) or out (for data export).
v file_name is the full path to a file.

v options are the arguments to the command. Common options include:

e —c to specify a text file containing tab-delimited columns with a
newline character at the end of each row

e —T to specify a trusted connection using Windows authentication
There are many more options designed to make the bcp command a flexible,

powerful data import and export utility. For more information, see SQL Server
Books Online.

Importing bulk data with bep

You can use the following command to import the same text file that I use as
an example in the previous section’s BULK INSERT command:

bcp school.dbo.classes in "C:\classes.txt" -c -T

Here’s what it looks like from the DOS prompt:

Chapter 10: Inserting, Updating, and Deleting Data ’ 69

C:\>bcp school.dbo.classes in "C:\classes.txt" -c -T
Starting copy...

18 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.) Total : 16 Average : (1125.00
rows per sec.)C:\>

Exporting bulk data with bep

You can also use bcp to export bulk data by simply changing the in operator
to an out operator. If you want to create a tab-delimited file containing all the
records in your classes table, you can use the following command:

bcp school.dbo.classes out "C:\classes_output.txt" -c -T
At the DOS prompt, you see

C:\>bcp school.dbo.classes out "C:\classes_output.txt" -c
=T

Starting copy...

18 rows copied.

Network packet size (bytes): 4096

Clock Time (ms.) Total g A Average : (18000.00
rows per sec.)

C:\>

And you now have a file stored on your hard drive called classes_output.
txt that contains exactly the same contents as the classes. txt input file
used earlier.
CMBER . .
The major difference between the bcp and BULK INSERT commands is where
you execute them. BULK INSERT is a SQL statement issued from within SSMS,
whereas bep is a command-line utility used at the DOS prompt.

Working with SOL Server
Integration Services

SQL Server Integration Services (SSIS) offers a clean, graphic interface that
allows you to easily import or export data from your SQL Server databases.
Microsoft first introduced SSIS with the release of SQL Server 2005, as a
replacement to the Data Transformation Services (DTS) found in earlier ver-
sions of the product.

’ 70 Part IV: Inserting and Manipulating Your Data

To import data into your database with SSIS, use the following process:
1. With SSMS open, right-click the name of the database into which you
will import data.
2. Choose Import Data from the Tasks menu. (See Figure 10-3.)
3. Click Next to advance past the Welcome screen.
The Welcome screen, shown in Figure 10-4, appears when SSIS starts.

4. Click the Data Source drop-down list and choose Flat File Source. (See
Figure 10-5.)

Notice that you have many other options for data sources. SSIS allows
you to import data from Microsoft Access, Microsoft Excel, other SQL
Server or Oracle databases, and many other data sources.

5. Enter a valid filename or click the Browse button to locate a file; then,
click the Next button to continue.

At this step, you can also change file format options, if necessary.

'.v: Microsoft SQL Server Management Studio

File Edit ‘iew Project Tools ‘window Community Help
Direwouery [by | thth My (3| Sl H @ | BERES .
] E: ~Object Explorer Details - X
Connect > 4J E] @ -
= [b ¥PLYML (SQL Server 10.0.1019 - ¥PLYM1mch
= 3 Databases D
[System Databases SChOOI
[_3 Database Snapshots ¥PLYM1)Databases|School & Itemis)
|l Cookies
[=R
g JEEm — ——H | Marne: Policy Health State
= T PR e Moncritical
= New Query Bl oncritical
.
S Script Database as 3 Take OFfline oncritical
oncritical
S | Tasks 4 | onctitical
=] Policies » Shink v loncrtical
Ea oncritical
LJ Pt Reports » Back Up... oncritical
1 Security 3 Restare 3
[Server g Ename
[3 Replicati Delete Mirrar....
[Manage: Launch Database Mirraring Monitar ., .
uc} S6L Ser Refresh
) Ship Transaction Logs...
Properties
| Generate Scripts...
- . Import Data,..
Figure 10-3:
. ¢ 5 Export Data...
Invoking
SS I S Ready Copy Database...

Chapter 10: Inserting, Updating, and Deleting Data ’ 7 ’

QL Server Import and Export Wizard Elgl
» Welcome to SQL Server Import and
| Export Wizard
This wizard helps you to create simple packages that import and
export data between many popular data formats including
databases, spreadshests, and text files. The wizard can alo
create the destination database and the tables into which the data
iz inserted
I
Figure 10-4:
SSIS ™ Do not show this starting page again
Welcome
screen. Help | Mext > | Cancel |
— |
QL Server Import and Export Wizard Q@@
Choose a Data Source
Select the source from which to copy data.
D ata source: @ Met Framewaork Data Provider for Odbe j
o= A 3 Met Framework Data Provider for Odbe Lol
=8 2 ﬂ Met Framewark. Data Provider for Oracle
Bl Data . . ﬂ Met Framework, Data Provider for SqlServer
ConnectionSting
El Named ConnectionShss e
Dsn &L Microsoft Access
B Source (RS Microsoft Excel
Driver ﬁ Microzoft OLE DB Provider for Analpsis Services 10.0
@r Microgoft OLE DB Provider For Data Mining Services ~
I
. Driver
F|gu|‘e 10-5: The name of the ODBC Driver ko uge when connecting to the Data Source.
Choosing a
data source. Help < Back | Mext > Cancel |
— Z|

172

Part IV: Inserting and Manipulating Your Data

6. View the preview on the next screen and confirm that the import

10.

|
Figure 10-6:
Choosing
the import

deStination' Help < Back ‘ Next » Cancel ‘

Tisstialis |8 30L Server Native Ciert 10.0 |

Server name: ‘XPLVM] j

Authentication
(+ UseWindows Authentication

" Use SOL Server Authentication

Database

appears to be functioning properly. Click the Next button to continue
when you are satisfied.

. Click the Destination drop-down list and choose SQL Server Native

Client.

This choice indicates that you want to import data into a SQL Server
database table.

. Choose the destination database for your import operation by select-

ing it from the Database drop-down list and then click Next. (See
Figure 10-6.)

. Verify the destination table and variable mappings; then click Next

to continue.

SQL Server will attempt to guess the correct destination table and vari-
able mappings based upon the filename and attributes. If the destination
table is not correct, use the drop-down list under Destination to choose
the correct table. You can verify the mapping of text file columns to
database variables by clicking the Edit Mappings button.

Click the Finish button.

You may also elect to save the steps you performed as an SSIS Package.
Saving these steps will allow you to repeat this operation in the future
without repeating the wizard process.

B s0L Server Import and Export Wizard E@@

Choose a Destination
Specify where to copy data ta.

User name: |

Passwiord |

Refresh Mew

% |

Chapter 10: Inserting, Updating, and Deleting Data ’ 73

11. Click Finish again to begin the import.

SQL Server presents the screen shown in Figure 10-7, which updates you
on the import progress.

\P
P Reversing the process to export data is straightforward: Simply switch
Steps 4 and 7 to choose a SQL Server database as your source and a Flat File
as your destination.
B soL Server Import and Export Wizard E@El
The execution was successful N
@ 5 12 Total 0 Emor
uccess 11 Success 1 “Warning
Details:
| Action Statuz Meszage
@ Initidlizing D ata Flow Task Success
@ Initidizing Cannections Success
@ Setting SOL Command Success
@ Setting Source Connection Success
@ Sefting Destination Connection Success
4y Walidating “Waining Meszages...
@ Prepare tor Execute Success
(i) Pre-execute Success
(i) Executing Success
(i) Copying to [School].[dba] [classes] Success 18 rows tanstered
E— (i) Post-execute Success
@ Cleanup Success
Figure 10-7: . | .
. ilter - eport v
SSIS import
status. -
— Z|

7 74 Part IV: Inserting and Manipulating Your Data

Chapter 11

Saving Time with Functions,
Stored Procedures, and Triggers

In This Chapter

Use SQL Server functions to simplify your queries

Write stored procedures to reuse code and improve application security

Use triggers to update tables automatically

n Chapters 4 through 6, [describe many of the powerful features of SQL
Server and Transact-SQL. That discussion focuses on writing Transact-
SQL statements that explicitly tell SQL Server how you’d like the database to
react. In the real world, SQL statements can become quite complex, taking

dozens of lines (or longer!) to fully express a complex query.

SQL Server provides several features to help you manage this complexity and
simplify your Transact-SQL statements. In this chapter, I describe how you
can use functions, stored procedures, and triggers to streamline your SQL
statements, reuse code, and improve database and application security.

Reusing Logic with Functions

3

Functions allow you to reuse common functionality, saving you the time and
trouble of cutting and pasting (or rewriting!) SQL code that you use often.
Before diving in to SQL Server’s functions, I give you a brief example of the
way you might use functions in the real world.

If you're a programmer, you're probably already familiar with the concept of
a function. SQL Server functions are no different than those used by any other
programming language.

7 76 Part IV: Inserting and Manipulating Your Data

Imagine that you're the supervisor at a vehicle depot and have several
employees working for you who assist you in the management of a fleet of
hundreds of vehicles. Before issuing a vehicle to a customer, you send an
employee to verify that the car has enough gas. That employee might take
the following steps:

. Obtain the keys for the vehicle from the key rack.

. Walk to the vehicle’s location in the garage.

. Unlock the vehicle and open the door.

. Insert the key into the ignition and start the vehicle.

. Check the gas gauge and write the fuel level down on a piece of paper.

. Walk back to the supervisor’s desk.

N YU s W N =

. Inform the supervisor of the fuel level.

This is a multistep process that employees repeat frequently to obtain a
simple piece of information. You certainly wouldn’t want to tell the employee
all these steps every time you need to check a vehicle’s fuel level. (“Hey Bill,
go get the keys for vehicle #2, walk over to parking spot #2, unlock the

door . ..”) You'd spend your whole day repeating the same thing over and
over again, and your employees would think that you're insane.

Instead, you’d use the equivalent of a function. On the first day Bill reports
for work, you’d explain the full seven-step process to him. On future days, the
conversation would go like this:

You: “Bill, go check the fuel level on vehicle 2.”
(Bill goes and follows the seven-step process.)
Bill: “It’s half full.”

N SQL Server functions allow you to do the same thing with database queries. If

you find yourself repeating the same SQL code over and over again, you've
probably found a good candidate for a function.

In the following two sections, I describe two different types of SQL Server
functions and how they can improve the efficiency of your database queries:
built-in functions supplied as part of SQL Server, and user-defined functions
that you can create yourself.

Understanding types of functions

You can use two different types of functions in SQL Server 2008: scalar
functions and table-valued functions. They differ based upon the type of
output they provide:

____ Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers ’ 77

v Scalar functions return a single value. If you’ve used functions in other
programming languages, these are the type of functions that you're
probably most familiar with. They may have one, many, or no input
parameters but always return a single value. For example, the
GETDATE () function (built in to SQL Server) takes no arguments and
always returns a datetime value containing the current date and time.

v Table-valued functions allow you to offer more complex output, in the
form of a table. You might use a table-valued function to retrieve all the
records in a table associated with a particular person. You'll often use
table-valued functions in the FROM clause of a SELECT statement that
further refines the output.

Leveraging SOL Server’s
built-in functions

To save you time, Microsoft included a large number of commonly used
functions with SQL Server 2008. These function come in the following
categories (among others):

1 Aggregate (discussed in Chapter 7)

v Date and time

v Mathematical

v Security

v~ String

v Text and image

<P Providing a full description of each of SQL Server’s built-in functions is beyond

the scope of this book (it would take an entire book to do so!), but I give you
the information you need to get started. In the next two sections, I show you

how to call a built-in function and how to get a list of each function offered by
SQL Server 2008.

[use the stock table from a fictional fruit wholesale company throughout this
example. Here are the table contents:

item warehouse inventory wholesale_price
Apples New York 511 0.12
Apples Seattle 412 0.13
Limes Seattle 104 0.33
Oranges New York 120 0.55
Oranges Tampa 982 0.52
Pears New York 9 0.39

7 78 Part IV: Inserting and Manipulating Your Data

NG/
QV'

You might have noticed that the stock table isn’t very well designed. It
violates several of the database normalization rules I discuss in Chapter 4.1
designed the table this way intentionally, to keep this example simple.

Calling built-in functions

Using SQL Server’s built-in functions is very straightforward. After you under-
stand the function’s inputs (if any), you simply use the function within your
SQL statement, providing the appropriate input. I give you a few examples in
the sections that follow.

Functions without input parameters

One of the simplest SQL Server functions is Pi (). As you might expect, this
function provides you with an easy way to use the mathematical value 7 in
your SQL statements. Pi () takes no arguments and returns a scalar value
that approximates =. If you want to test it, you can issue the following SQL
command:

SELECT Pi() AS 'Pi'

SQL Server returns simply

3.14159265358979

(1 row(s) affected)

You can also use this value within a more complex SQL statement. For exam-
ple, suppose (for some strange reason) that you wanted to increase the price
of products in your Seattle warehouse by a factor of n . You could use the

Pi () function, as follows:

SELECT item, warehouse, inventory, wholesale price * Pi()
AS 'Pi Price'

FROM stock

WHERE warehouse = 'Seattle'

This would produce the results:

item warehouse inventory Pi Price
Apples Seattle 412 0.408407044966673
Limes Seattle 104 1.03672557568463

(2 row(s) affected)

____ Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers ’ 79

Functions with input parameters
Some functions use input parameters to provide information that the func-

tion will transform or use in its logic. For example, suppose you use the
following query to retrieve a list of the warehouses owned by your company:

SELECT DISTINCT warehouse from stock
Normally, this would produce the following output:

warehouse

New York
Seattle
Tampa

(3 row(s) affected)

Perhaps you intend to provide this information directly to another program
that requires input in all capital letters. You could use SQL Server’s built-in
upper () function to transform the warehouse column to an all-uppercase
format. The upper () function takes a single input parameter of any text data
type and returns an all-uppercase version of that parameter. Your new query
would look like this:

SELECT DISTINCT upper (warehouse) AS 'WAREHOUSE' from stock

Your new query would also provide output in a format ready for the program
that requires uppercase data:

WAREHOUSE

NEW YORK
SEATTLE
TAMPA

(3 row(s) affected)

Obtaining a list of built-in functions
You can find out more information about SQL Server’s built-in functions using
SQL Server Management Studio. To do so, follow these steps:

1. Open SQL Server Management Studio and connect to your SQL Server.

2. Expand the Databases folder by clicking the plus (+) icon to the left of
the word Databases.

3. Expand the folder for any database on your server.

’ 80 Part IV: Inserting and Manipulating Your Data

Figure 11-1:
Exploring
SaL

Server's
built-in
functions.
|

The built-in functions are available in any SQL Server database, so for
exploration purposes, it doesn’t matter which database you choose in
this step.

4. Expand the Programmability folder under the database folder.
5. Expand the Functions folder.
6. Expand the System Functions folder.

You see a series of category folders used to organize the SQL Server
built-in functions.

7. Expand the category folder of your choice.

A list of the built-in functions appears within the category that you
selected.

8. Expand the function folder of your choice.
Select a function that interests you and expand its folder.
9. Using the mouse, hover over the name of the function.

SQL Server displays a pop-up window that offers a brief description of
the function’s purpose.

10. Click the Parameters folder.

When you click the Parameters folder, the SSMS Object Explorer window
provides information about the function’s parameters, including the
parameter names and types.

Figure 11-1 shows SSMS displaying the explanatory pop-up window and
parameters for the Datediff () function.

Object Explorer ~ X VOSTRO.sales - 5QLQuery2:sql” | VOSTRO.sales - SQLQueryl.sqi* | Object Explorer Details -~ X
Connect~ | 43 & @E S
m 3 Triggers -
f 3 Indexes Lj
= B Sttitics Parameters
[Views VOSTRO\D: unct Functions\Date and Time Functions\Datedil 4 tem(s)

® (3 Synonyms
= (3 Programmability

@ [Stored Procedures Name Policy Heslth State
= [Functions (57 Date part (varchen) Noncritical
@ @ Table-valued Functions (@ Starting date (datetime) Noncritical
; j Z‘;g":;gﬁ:;:::t:‘::‘f"s (@1 Ending date (datetime) Noncritical
[Returns datetime Noneritical

= £ System Functions
@ [Aggregate Functions
@ [3 Configuration Functions
@ [Cursor Functions
= [Date and Time Functions
M3 Current_Timestamp

= Datediff()
6'\, Returns the number of date and time boundaries crossed between two specified dates.

@ Ending date (datetime)
& Returns datetime

2l

@ W} Getdate()

@} Getutcdate() -
i '

____ Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

Creating Your Own Functions

Although SQL Server’s built-in functions are powerful and useful, they’re not
always sufficient to meet your customized needs. Fortunately, SQL Server
allows you to create your own user-defined functions using the CREATE
FUNCTION command.

The structure of the CREATE FUNCTION statement is as follows:

CREATE FUNCTION <owner>.<function_ name> (<parameters>)
RETURNS <type>
AS
BEGIN
<SQIL code>
END

The following list describes the user-defined elements in this statement.

v owner is the SQL Server account that owns the function. In many cases,
this will be the database owner (dbo) account.

vV function_name is the name you select for your function.

vV parameters consist of zero, one, or more input parameters that
must be supplied when the function is executed. You provide them in
the form @parameter_name datatype, and you separate multiple
parameters with commas.

v type is the datatype of the function’s output value.

V¥ SQL codeis the “meat” of the function, where you perform whatever
actions are necessary to create the output value. Here are some tips:

e Separate multiple SQL statements by ending each one with a
semicolon.

¢ Create working variables (used within the function or returned as
output) using the DECLARE <variable_name> <datatype> SQL
statement.

e Set variable values using the SET <variable_name> = <value>
SQL statement.

* When finished, provide the return value using the
RETURN (<value>) SQL command.

Suppose you wanted to create a function for use in your business that takes
a wholesale price as input and computes the sales price based upon two
business rules:

181

7 82 Part IV: Inserting and Manipulating Your Data

3

v All wholesale prices are marked up 20 percent to cover the business’
operating expenses and profit margin.

v The business is required to collect 6.5 percent sales tax on all
purchases.

You could create a function called GetSalesPrice to perform this
computation for you, as follows:

CREATE FUNCTION dbo.GetSalesPrice (@wholesale_price smallmoney)
RETURNS smallmoney
AS
BEGIN
-- Declare a temporary value to hold our sales price
DECLARE @salesprice smallmoney;

-- Add on a 20% markup to the wholesale price
SET @salesprice = @wholesale_price + @wholesale_price * 0.2;

-- Add on 6.5% sales tax
SET @salesprice = @salesprice + @salesprice * .065;

RETURN (@salesprice);
END;

You should be able to correlate each part of the preceding CREATE
FUNCTION statement with the general syntax I provide earlier in this section.

After you create the GetSalesPrice function, you can call it from within
any other SQL statement. Here’s a simple example in which I ask SQL Server
to tell me the sales price corresponding to a wholesale price of $1:

SELECT dbo.GetSalesPrice(1.00) AS 'Sales Price'

SQL Server responds with the new value, including the 20 percent markup
and 6.5 percent sales tax:

Sales Price

(1 row(s) affected)

You can also use the function within the context of a more complicated state-
ment. Suppose you wanted to retrieve the wholesale and selling price for
each item in your database. You could use this statement:

____ Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

Comments

Note that in the preceding statement, | do intro-
duce one new item, however: the SQL com-
ment. You use a comment when you want to
add some explanatory text so that people can
understand the purpose of each SQL statement
in the function, but you don‘t want SQL Server
to think that it's part of the function itself.

Comments are a critical part of any type of pro-
gramming, whether you're using SQL or any
other programming language. They allow you to
leave notes within your code explaining how it
works so that when another person comes

across your work, he or she can easily interpret
your syntax. In fact, I've found myself grateful
that | left comments in my own SQL statements
when I've needed to look back at them
years later!

You can make an entire line a comment by
beginning the line with two dashes (--) or com-
ment out multiple lines of the statement by
inserting a line with the text / * before the first
line and ending it with a last line of * /. This
comment syntax works in any SQL statement,
not just function definitions.

SELECT item, warehouse,

FROM stock

which provides the output

wholesale_price,
GetSalesPrice (wholesale_price) AS

dbo.

item warehouse
Apples New York
Apples Seattle
Limes Seattle
Oranges New York
Oranges Tampa
Pears New York

(6 row(s) affected)

wholesale_price sales price
0.12 0.1534
0.13 0.1661
0.33 0.4217
0.55 0.7029
0.52 0.6646
0.39 0.4984

Reusing SOL Code with

Stored Procedures

SQL Server stored procedures are precompiled bundles of SQL statements
that are stored within a SQL Server database. Stored procedures may have
zero, one, or more input parameters and may return a scalar value, a table,

or nothing at all.

'sales price'

183

’ 84 Part IV: Inserting and Manipulating Your Data

Why use stored procedures? There are two great reasons to include them in
your SQL Server repertoire:

v~ Stored procedures offer the same code reuse benefits provided by
functions.

v Stored procedures allow you to enhance the security of your database.
You may grant users permission to execute a stored procedure (which
in turn inserts, updates, retrieves, or removes data from your tables)
without granting them full access to the underlying table.

At this point, you may be asking yourself, “Gee, stored procedures sure
sound a lot like functions. What’s the difference?” There are actually two
significant differences between stored procedures and functions:

v Functions must always return a value to the caller. Stored procedures
do not have this requirement. They may simply execute and complete
silently.

» You commonly use functions within another expression, whereas you
often use stored procedures independently.

As I do with functions earlier in this chapter, in this section I first explain the
system stored procedures included with SQL Server 2008 and then cover how
you can create your own stored procedures.

Saving time with system stored procedures

SQL Server offers dozens of built-in system stored procedures. Most of these
allow you to obtain or modify information about SQL Server or your data-
base. One very helpful system stored procedure is sp_helptext, which
retrieves the SQL statement associated with a function, stored procedure,
trigger, CHECK constraint, or database view (among other SQL Server
objects). This ability to retrieve a statement is very useful when you want to
verify or modify the functionality of one of these objects.

You can execute a system stored procedure (or any stored procedure, for
that matter) using the EXEC command. If you wanted to use sp_helptext to
retrieve the text of the GetSalesPrice function I describe earlier in the
chapter, you would use the following SQL statement:

EXEC sp_helptext GetSalesPrice

SQL Server then provides the statement used to create the function. SQL
Server will include comments and formatting, as shown in the following code:

____ Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers

A\

CREATE FUNCTION dbo.GetSalesPrice (@wholesale_price smallmoney)
RETURNS smallmoney
AS
BEGIN
-- Declare a temporary value to hold our sales price
DECLARE @salesprice smallmoney;

-- Add on a 20% markup to the wholesale price
SET @salesprice = @wholesale_price + @wholesale_price * 0.2;

-- Add on 6.5% sales tax
SET @salesprice = @salesprice + @salesprice * .065;

RETURN (@salesprice);
END;

Notice that SQL Server provides the text of the function in CREATE
FUNCTION format. You could recreate this function by simply cutting and
pasting the text into SSMS and executing it. Similarly, you could change the
words CREATE FUNCTION to ALTER FUNCTION and use this SQL statement
to modify the function’s behavior. (I discuss ALTER FUNCTION more at the
end of this chapter.)

You can obtain information about system stored procedures using the
same process | describe in the “Obtaining a list of built-in functions” section
of this chapter. However, rather than expand the Functions and System
Functions folders, you expand the Stored Procedures and System Stored
Procedures folders.

Writing your own stored procedures

It’s very likely that at some point in your SQL Server career, you’ll want to
create your own stored procedure. I do this constantly and I encourage you
to embrace the reusability and security benefits of stored procedures in
your own databases.

Creating your stored procedures

You can create stored procedures using a syntax very similar to that used
to create a function. Simply change the CREATE FUNCTION statement to
CREATE PROCEDURE. You don’t need to include the RETURNS clause if your
stored procedure has no output.

Suppose you wanted to write a stored procedure that removes an item from
your inventory. Specifically, you want to

185

7 86 Part IV: Inserting and Manipulating Your Data

gMBER
S

v Delete the item from the stock table.

v Send an e-mail to the supervisor alerting him or her of the change.
You can accomplish these tasks with the following stored procedure:

CREATE PROCEDURE dbo.RemoveProduct (@item varchar(16), @warehouse varchar (16))
AS
BEGIN
-- Delete the item from the stock table
DELETE
FROM stock
WHERE item = @item AND warehouse = @warehouse;

-- Send an e-mail to the supervisor
EXEC msdb.dbo.sp_send_dbmail
@profile_name = 'Inventory Mail',
@recipients = 'supervisor@foo.com',
@body = 'Stored procedure RemoveProduct altered the inventory.',
@subject = 'Inventory Deleted' ;
END

Executing your stored procedures

after you create the stored procedure, you execute it using the same syntax
used for a system stored procedure, except that you must also include the
name of the stored procedure’s owner (dbo, in this case):

EXEC dbo.RemoveProduct 'Pears', 'New York'

My stored procedure doesn’t include any return value, so the output is quite
simple:

(1 row(s) affected)
Mail queued.

The “1 row(s) affected” statement is the result of the DELETE SQL statement,
and the “Mail queued” statement is the result of sending the message to the
supervisor.

Notice that I'm calling a system stored procedure (msdb.dbo.sp_send_
dbmail ()) from within my own stored procedure. Calling one stored proce-
dure from within another is known as “nesting” stored procedures, and it’s
perfectly acceptable.

SQL Server allows you to have up to 32 levels of nesting.

The send_dbmail () stored procedure uses SQL Server’s Database Mail
functionality, which I discuss in Chapter 2.

____ Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers ’ 8 7

Performing complex database interactions
with SQLCLR technology

Functions and stored procedures provide a ¢~ Triggers
sophisticated way to hide the complexity of
your SQL statements and improve security.
However, they're not always the best way 1~ Aggregates
to achieve your goal. If you need to perform
very complex operations, you can improve their
performance by using Microsoft's SQL Common
Language Runtime (SQLCLR). v Microsoft Visual Basic

v User-defined types

You can use any of the following Microsoft .NET
programming languages with SQLCLR:

SQLCLR allows programmers to use advanced ¢~ Microsoft Visual C++
programming languages to create SQL Server . .

objects, including: v Microsoft Visual C#
Creating SQLCLR objects requires programming
skills in one of these languages and is beyond
v~ Stored procedures the scope of this book.

v User-defined functions

Updating Data Automatically
with Triggers

Triggers are actions that take place when a series of conditions are met. You
see them in everyday life all the time. Consider the dreaded Internal Revenue
Service (IRS). It depends on a complex series of triggers to help it in collect-
ing taxes and keeping us honest. Here are some examples:

v When it receives a W-2 from an employer stating your annual wages, it
checks to make sure that you reported that income on your 1040 form. If
you didn’t, the IRS sends you a notice that you must correct your taxes.

» When you claim a dependent on your tax return, the IRS checks the
Social Security number of that dependent against other forms in its
database to ensure that only one taxpayer claims each dependent. If it
detects duplication, it opens an investigation.

» When you file a form with itemized deductions, it compares your deduc-
tions to those of similar taxpayers and flags your return for an audit if
your deductions seem excessive.

7 88 Part IV: Inserting and Manipulating Your Data

Each of these triggers consists of a condition (“if there is duplication of
SSNs™) and an action (“open an investigation™). SQL Server provides similar
functionality for database users, allowing you to automatically take specified
actions when certain conditions are met.

Creating a trigger
SQL Server triggers consist of four major components:

v Trigger name

v~ Trigger scope (the database, server, table, or view affected by the
trigger)

v Trigger timing (determining whether the trigger should fire after [using
the AFTER function] or instead of [using the INSTEAD OF function] the
triggering action)

v~ Trigger condition (the conditions that cause the trigger to fire)

v Trigger action (the action SQL Server should take when the trigger
condition is met)

The basic syntax used for creating a trigger is as follows:

CREATE TRIGGER <trigger. name>

ON <scope>

<trigger timing> <trigger condition>
AS

BEGIN

<trigger action>

END

Suppose you wanted to create a trigger that automatically notifies the super-
visor whenever anyone changes your stock table. You would want this trig-
ger to fire whenever an INSERT or UPDATE statement occurs on the table.
Here’s the way to make that happen:

CREATE TRIGGER inventory_ minimum

ON stock

AFTER INSERT, UPDATE

AS

BEGIN

EXEC msdb.dbo.sp_send_dbmail

@profile_name = 'Inventory Mail',
@recipients = 'supervisor@foo.com',
@body = 'Someone changed the inventory.',
@subject = 'Change Notification' ;

END

____ Chapter 11: Saving Time with Functions, Stored Procedures, and Triggers ’ 89

After you create the trigger, SQL Server automatically monitors the database
every time an INSERT or UPDATE statement modifies the stock table.

Disabling a trigger

You may want to temporarily disable a trigger in certain circumstances using
the DISABLE TRIGGER statement. For example, if you plan to make numer-
ous changes to your inventory and don’t want to clutter your e-mail with
notifications from the inventory_minimum trigger, you can disable it with
the following statement:

DISABLE TRIGGER inventory_ minimum
ON stock

Re-enabling the trigger uses a similar statement:

ENABLE TRIGGER inventory minimumON stock

Modifying and Deleting Functions,
Stored Procedures, and Triggers

Throughout this chapter, I show you how to create programmable SQL
Server objects: functions, stored procedures, and triggers. It’s also some-
times necessary to change or remove those objects after you create them.
The syntax for doing this is very similar for all three types of programmable
objects.

Modifying objects

If you want to modify a function, stored procedure, or trigger, simply write a
CREATE statement that contains the modified SQL and change the keyword
CREATE to ALTER.

For example, to modify the GetSalesPrice stored procedure to charge a
higher markup of 25 percent, use this SQL statement:

ALTER FUNCTION dbo.GetSalesPrice (@wholesale_price smallmoney)
RETURNS smallmoney
AS
BEGIN
-- Declare a temporary value to hold our sales price
DECLARE @salesprice smallmoney;

190

Part IV: Inserting and Manipulating Your Data

-- Add on a 20% markup to the wholesale price
SET @salesprice = @wholesale_price + @wholesale_price * 0.25;

-- Add on 6.5% sales tax
SET @salesprice = @salesprice + @salesprice * .065;

RETURN (@salesprice);

END;
‘SQ,N\BEB The sp_helptext command described earlier in this chapter comes in quite
& handy when you need to modify a function, stored procedure, or trigger. You

can use sp_helptext to retrieve the CREATE command used to create the
object and simply change the keyword CREATE to ALTER, modify the logic,
and execute the statement to update your database.

Deleting objects

Deleting programmable objects is simple. Use one of the following DROP
commands:

DROP FUNCTION <function_name>
DROP PROCEDURE <procedure_name>
DROP TRIGGER <trigger_name>

For example, you could delete the GetSalesPrice function using the following
SQL statement:

DROP FUNCTION GetSalesPrice;

PartV

SQL Server
Administration

The 5th Wave By Rich Tennant
CRICTTENNANT

\é
|

A4 L
“Maybe your Keyword search, ‘legal

secretary,love,fame, fortune,’ needs to
be refined.”

In this part . . .

f you're responsible for administering SQL Server data-

bases, this part is especially for you. Here you discover
a variety of tips and tricks to help you keep your database
operating at its best by tuning performance parameters
and governing the best use of resources. You'll also find
advice on using SQL Server’s administration tools to make
the server do the routine work for you.

The final chapters in this part are dedicated to helping
you troubleshoot SQL Server problems and administer
multiple servers in the same environment.

Chapter 12

Keeping Your SQL Server
Running Smoothly

In This Chapter

Using indexes to improve SQL Server query performance
Partitioning tables and indexes

Keeping control over file sizes

Verifying database integrity

Placing limits on resource consumption

A ny complex mechanism you deal with requires some type of routine
maintenance. You probably bring your car in for service every 3,000
miles to verify that it’s functioning properly. You may have an air conditioning
specialist perform preventive maintenance on your HVAC system before the
warm summer months arrive. SQL Server databases also require maintenance
to stay in tip-top shape and deliver optimal performance.

In this chapter, I describe a number of ways you can improve the performance
of your SQL Server databases. I begin by discussing the use of indexes and
partitioning to speed up database queries. Then [show you how you can
optimize disk utilization by automatically or manually shrinking files. Finally,
[give you some advice on verifying the integrity of your database and placing
limits on the use of resources by individual users.

Indexing Data to Improve
Ouery Performance

Here’s a challenge for you: Pick up this book and identify every page that
contains information about SQL Server’s use of transactions. You have two
basic options for meeting my challenge:

’ 94 Part V: SQL Server Administration

v Read every page in the book and report each page that contains a reference
to transactions.

v Turn to the index in the back of the book and look up “transactions.”

Obviously, it’s a whole lot faster to consult the index. If I didn’t include one in
this book, you would have much more trouble quickly finding information on a
particular topic. It’s obviously a good idea for my publisher to hire a specialist to
create an index that allows you easy access to the information you need.

SQL Server databases use indexes for a similar purpose. When you want to
retrieve data from a database, SQL Server could check every single row to
see if it matches your query, but that would be horribly inefficient. Instead,
SQL Server builds and maintains indexes that allow it to quickly locate
commonly used fields.

The catch is that building and maintaining indexes requires both computing
time (to develop the index) and space (to store the index). You need to
decide what indexes are appropriate for your database based upon the types
of queries that you perform.

SQL Server allows you to create indexes on single or multiple columns.
Generally speaking, an index will speed up query performance for queries
based upon the column(s) in the index.

Using clustered indexes

Each database can (and should!) have only one clustered index, which is an
index that defines how SQL Server sorts the data stored in the table. The data
in the table may be sorted in only one way, hence the reason that having two
clustered indexes on the same table isn’t possible.

In almost all cases, the best clustered index for a table is the table’s primary
key. This isn’t always true, but the rule is general enough that you can rely
upon it. The good news is that SQL Server automatically creates an index
when you define a primary key for a table and, by default, makes that index a
clustered index. SQL Server does all the work for you!

Creating nonclustered indexes

You can create your own nonclustered indexes to improve the performance
of queries against your SQL Server databases. Nonclustered indexes are

Chapter 12: Keeping Your SQL Server Running Smoothly ’ 95

similar to the index in the back of this book: They allow SQL Server to quickly
locate information, but they don’t change the sort order of data stored in a
table.

The only decision you need to make when creating an index for a table is the
column(s) you want to include in that index. If you're just getting started with
indexes, it’s generally best to stick to single-column indexes. However, you
can gain some performance benefits by creating indexes that include multiple
columns when those columns are found together in frequently executed

3 queries.

Some excellent candidates for indexes are columns that are

v Commonly used in the WHERE or HAVING clauses of queries
v Frequently used for GROUP BY query results

v Used to sort results in an ORDER BY clause

v Used to reference another table as a foreign key

v Used to specify JOIN conditions

Follow these steps to create a nonclustered index in SQL Server, using SQL
Server Management Studio:

1. Start SQL Server Management Studio and connect to your SQL Server
instance.
2. Click the plus (+) icon to the left of the Databases folder to expand it.

You see the contents of the folder: a subfolder for each database on the
SQL Server instance.

3. Click the plus (+) icon to the left of the database where you would like
to create an index.

The subfolders for that database appear, containing groupings of data-
base information.

4. Click the plus (+) icon to the left of the Tables folder to expand it.
A list of database tables appears.

5. Click the plus (+) icon to expand the folder corresponding to the table
upon which you would like to create an index.

SQL Server presents a series of subfolders containing information about
the table.

6. Right-click the Indexes folder and then select New Index from the
pop-up menu that appears.

You see the New Index dialog box, as shown in Figure 12-1.

’ 96 Part V: SQL Server Administration

h New Index (= ===
Selectapage r o
7 General ;S Saw, 15 Help
f Options
_""‘ Included Colurnns Table name:
L Storage Index name: ice_price
Index type Monclustered - I
[Unique
Index key columns:
Name Sort Order Data Type Size Add...]
Conneclion
Server:
VOSTRO
Connection:
sa
I
3 View connection properties
Figure 12-1:
. P
Creatinga | =
Ready
new non-
4 n 13
clustered
index. [ok | [Cacel
I
7. Type a name for your index in the Index Name text box and then click
the Add button.
The Select Columns dialog box appears, as shown in Figure 12-2.
=] Select Columns from 'dbo.stock’ (== ==
Select table columns to be added to the index key.
Table columns
Mame: Data Type Bytes Identity Allow Mulls
item varchar{16} 16 No No
[warehouse wvarchar(16} 16 Na No
invertory int 4 No Yes
I holesale_price smallmoney 4 No Yes
Figure 12-2:
Selecting
columns for
the nonclus-
tered index. 0K I ‘ Cancel | ‘ Help
I

W\

8. Select the box(es) next to the column(s) you want to include in your
nonclustered index.

9. Click OK to close the Select Columns window.
10. Click OK to close the New Index window and create your index.

SQL Server creates your index, which may take a considerable amount

of time, depending upon the size of your table. When the index creation
completes, you see the new index in SSMS Object Explorer. If it doesn’t

appear automatically, right-click the Indexes folder and choose Refresh
from the pop-up menu.

Optimizing index performance

Over time, changes to indexes may cause them to become fragmented,
which means they’re not using disk space in an optimal fashion. You should
periodically check the fragmentation level of your database indexes and
reorganize or rebuild those indexes when the fragmentation reaches an
unacceptable level.

Microsoft recommends reorganizing an index when the total fragmentation is
between 5 and 30 percent, and rebuilding it if the total fragmentation is more
than 30 percent. You don’t need to worry about fragmentation levels below 5
percent because they have negligible impact on the performance of your
database.

Here’s how to check the fragmentation level of an index using SQL Server
Management Studio:

1. Open SSMS and navigate to the Indexes folder of the database and
table in question.

2. Right-click the index and choose Reorganize or Rebuild, as
appropriate.

You see a window similar to the one shown in Figure 12-3. Note the Total
Fragmentation column, which indicates the current level of fragmentation
in the index.

3. Click OK to reorganize (or rebuild) the index.

This process may take hours if the index is large or complex.

Chapter 12: Keeping Your SQL Server Running Smoothly ’ 9 7

’ 98 Part V: SQL Server Administration

Figure 12-3:
Rebuilding/
reorganizing
anindex.
|

E¥ Reorganize Indexes l [|EEE‘$J
Select a page f= =
Script + Hel
2 General == Sept K3 Hep
You can analyze index fragmentation using Total Fragmentation. Total Fragmertation indicates the
percentage of logical fragmentation of the index. For more information see Reorganize and Rebuilding
Indexes in Books Online
Indexes to be reorganized
Index Name Table Name Index Type Total Fragmentat... Status
] ide_price stock Nonclustered o
Connechion
Server:
VOSTRO
Connection:
53
2 View connection properties
Progress
Ready < M -
[¥] Compact large object column data
ok | [Cancel

Improving Performance with Partitions

In Chapter 5, I tell you how SQL Server allows you to create filegroups that
you can use to separate tables for performance optimization. Partitions let
you to go a step further and distribute the contents of individual tables or
indexes on separate filegroups, which are collections of related files. One
way to efficiently manage large databases is by placing parts that change
frequently (volatile data) on one filegroup and parts that change infrequently
(nonvolatile data) on another filegroup.

To create a partition, you first need to define the partition function, which
describes how SQL Server should separate the data. Next, you must create
a partition scheme that defines how SQL Server will place the partitions on
filegroups. Finally, you create the table or index and specify the appropriate
partition scheme.

Chapter 12: Keeping Your SQL Server Running Smoothly ’ 99

Creating a patrtition function

The first step in partitioning a table is to write a partition function describing
how you want SQL Server to partition your data. You create a partition
function using the following Transact-SQL syntax:

CREATE PARTITION FUNCTION partition_function_name (Input_parameter_ type)
AS RANGE [LEFT | RIGHT]
FOR VALUES ([boundary value [,...n 1 1)

in which:

Vv partition_function_name is the name you want to assign to the function.

Vv input_parameter_type is the data type you will partition on. It may
be any data type other than text, ntext, image, xml, timestamp,
varchar (max), nvarchar (max) and varbinary (max).

v The RANGE statement specifies either the LEFT or RIGHT keyword,
indicating the “side” into which each boundary condition should fall.

v boundary_value is a series of values of type input_parameter_type that
identify the partition boundaries.

Here’s an example to help clarify. Suppose you administer a school database
that holds a table containing records on all graduates. One logical way to
partition that table would be to base it upon year of graduation. Doing so
would place recent graduates on one partition and older graduates on a series
of other partitions. You might want to break the table up as shown in Table 12-1.

Table 12-1 Partitions for an Alumni Table
Using RANGE RIGHT

Partition Number Years of Graduation

1 earlier than 1960

2 1960-1969

3 1970-1979

4 1980-1989

5

6

1990-1999
2000 and later

You can create a partition function (I call it alumni_partfunct) using the
following Transact-SQL:

CREATE PARTITION FUNCTION alumni_partfunct (int)
AS RANGE RIGHT
FOR VALUES (1960, 1970, 1980, 1990, 2000)

200 Part V: SQL Server Administration

Note that the values clause specifies the “boundary” years that correspond
to the partition boundaries specified in Table 12-1. The RANGE RIGHT clause
indicates that SQL Server should include values that fall on the boundary itself
in the partition on the “right” side. Alternatively, if | had used RANGE LEFT, the
partitions would have been slightly different, as shown in Table 12-2.

Table 12-2 Partitions for an Alumni Table
Using RANGE LEFT

Partition Number Years of Graduation

1960 and earlier

1961-1970

1971-1980

1991-2000

1
2
3
4 1981-1990
5
6

2001 and later

Creating a partition scheme

When you create a partition function, it merely describes a way that you
might separate data into hypothetical partitions. It does not, however, define
the specific filegroups that will store the partitions. That’s where a partition
scheme comes into play.

You create a partition scheme using the CREATE PARTITION SCHEME
command with the following syntax:

CREATE PARTITION SCHEME partition scheme name
AS PARTITION partition function name
[ALL] TO ({ file group names | [PRIMARY] })

The elements of this command are as follows:

Vv partition_scheme_name is the name you want to assign to the partition
scheme.

Vv partition_function_name is the name of a partition function (see the
previous section) that defines your partition boundary conditions.

Vv file_group_names is a comma-delimited list of filegroup(s) on which you
wish to store the partitions. Alternatively, you may use the ALL keyword
and specify a single filegroup name to place all partitions on the same
group. You may also use the PRIMARY keyword in place of a filegroup
name to specify that you wish to place the partitions on the primary
filegroup.

CMBER

\\J

Chapter 12: Keeping Your SQL Server Running Smoothly 20 ’

Before creating a partition scheme, you need to create the filegroups. If you
aren’t familiar with the filegroup creation process, you can read about it in
Chapter 5.

Continuing the alumni example that [use to create a partition function in

the previous section, here I create a partition scheme named alumni_
partscheme that specifies six different file groups (which I creatively named
filegroupl through filegroupé6) for the data. Here’s the Transact-SQL:

CREATE PARTITION SCHEME alumni_partscheme

AS PARTITION alumni_partfunct

TO (filegroupl, filegroup2, filegroup3, filegroup4,
filegroup5, filegroupé6)

Creating a partitioned table

In the previous two sections, I show you how to create a partition function
specifying how to divide data into partitions and to create a partition scheme
describing how to store the partitions on different filegroups. However, you
still haven’t actually partitioned any data!

Actually, after you've created the partition function and partition scheme,
partitioning a table is easy. You simply add the following clause to your
CREATE TABLE statement:

ON { partition_scheme_name (partition_column_name)

In this clause, the partition_scheme_name is the name of a partition scheme
you created earlier (if you followed along in the previous section of this
chapter). Your partition scheme already links to a specific partition function,
(remember, you specified it in the AS PARTITION clause), so you don’t need
to include it in the CREATE TABLE statement.

You also need to specify the partition_column_name, that is, the column that
contains the values referenced by the partition function. For example, you

could create a simple alumni table using the partition function and scheme I
build in the previous sections with the following CREATE TABLE statement:

CREATE TABLE alumni (FirstName nvarchar (40), LastName
nvarchar (40), GraduationYear int)
ON alumni_partscheme (GraduationYear)

For more information on the CREATE TABLE statement, see Chapter 5.

I mention earlier in this chapter that you can also partition an index. The
process for creating a partitioned index is exactly the same as that for
creating a partitioned table. Add an ON clause to the CREATE INDEX
statement specifying the partition scheme and partition column.

202 Part V: SQL Server Administration

Updating Database Statistics

SQL Server uses a query optimizer to determine the most efficient execution
plan for database queries. This powerful tool works behind the scenes to
improve the performance of your database. You may choose to either let SQL
Server automatically update statistics or you can update them manually.

Automatically updating statistics

In most cases, letting SQL Server automatically create and update database
statistics is fine. This is the default behavior of SQL Server. If you've already
disabled it on your database, you may reenable the automatic creation and
updating of statistics by executing the following Transact-SQL statements in
SSMS:

ALTER DATABASE database_ name
SET AUTO_CREATE_STATISTICS ON;

ALTER DATABASE database name
SET AUTO_UPDATE_STATISTICS ON;

Also, you may verify the current status of automatic statistics creation or
updating for a table by executing the following stored procedure in SSMS (see
Chapter 3 for more about SSMS):

sp_autostats 'table name'

Manually updating statistics

If you're not using automatic statistics updating, you may periodically update
statistics for a table manually using the following Transact-SQL statement:

UPDATE STATISTICS table name

To view the statistics used by the query optimizer, you can access them
using the DBCC SHOW_STATISTICS command. This command takes two
parameters: the name of the table or view and the name of the statistics

“target” — that is, the index name, statistics name, or column name.

For example, to view information about the PK_stock primary key index on
a hypothetical stock table, you use the following Transact-SQL statement:

DBCC SHOW_STATISTICS ('stock', PK_stock)

Chapter 12: Keeping Your SQL Server Running Smoothly 203

3

There’s much more to the creation and updating of statistics than I can
discuss within the limited scope of this chapter. If you're really trying to eke
out that last bit of performance from SQL Server, you may want to explore this
subject in further detail.

Managing File Sizes

QWING/

As with any other data file, SQL Server database files consume space on your
disk that could be used for other purposes. By default, SQL Server will “grow”
database files as you add data to them to ensure that you don’t run out of
space. However, SQL Server does not have a corresponding default shrinking
action to reduce the amount of unused space consumed by database files.

In most cases, this behavior is fine; databases tend to grow over time as you
add more and more data. However, if you remove a large quantity of data
from a database, you may wind up unintentionally “hogging” a large amount
of disk space that you're not actually using to store data. SQL Server allows
you to reclaim this unused space by automatically or manually shrinking
your database files.

Automatically shrinking database files

You can have SQL Server can automatically shrink the files associated with a
database by using the following Transact-SQL statement:

ALTER DATABASE database name
SET AUTO_SHRINK ON

After you set this option, SQL Server periodically checks the database files
to determine whether they contain excess free space. If they do, it begins a
background process to shrink the database’s files.

Automatically shrinking database files may have a significant negative impact
on database performance, especially if the size of your database files tends
to fluctuate on a regular basis. I generally don’t recommend using the AUTO_
SHRINK option unless you have a unique situation that requires it.

If you're not sure whether a database is set to automatically shrink, you can
check it by issuing the following Transact-SQL statement:

SELECT DATABASEPROPERTYEX ('database name',
'IsAutoShrink') ;

This statement returns a value of 1 if the database is configured to automati-
cally shrink and a value of 0 otherwise.

204 Part V: SQL Server Administration

sMBER
S

\\J

Manually shrinking a single database file

If you want to manually shrink a single database file that contains a large
amount of unused space (perhaps after you've deleted a large amount of data
from the database), you may use the following Transact-SQL command:

DBCC SHRINKFILE (file name, target_size)

in which file_name is the name of the file you want to shrink and target_size is
the desired size (in megabytes) after the shrinking operation.

For example, to shrink the file dbfile to a size of 10MB, you use the
following statement:

DBCC SHRINKFILE (dbfile, 10)

Manually shrinking all files
associated with a database

SQL Server also allows you to shrink all the data and log files associated with
a single database. You can do this using the DBCC SHRINKDATABASE
command, as follows:

DBCC SHRINKDATABASE ('database name', target_percent)

in which database_name is the name of the database and target_percent
is the amount of free space that you’d like to leave in the file for future use.

Many people confuse the target_percent parameter with the percent of
the database that you want to shrink. If you specify a target_percent of 10,
you're stating that you want 10 percent free space remaining in the database
file after the shrinking completes. You are not saying that you want to shrink
the database by 10 percent.

For example, if you wanted to shrink all files in the sales database so that
they had 10 percent free space, you would use the following Transact-SQL
command:

DBCC SHRINKDATABASE ('sales', 10)

You should note an important difference between the SHRINKFILE and
SHRINKDATABASE commands. SHRINKDATABASE never shrinks a file below
its original size (when you created it). If you need to shrink a file below its
original size, you must use the SHRINKFILE command.

Chapter 12: Keeping Your SQL Server Running Smoothly 205

Checking Database Integrity

Databases are complex structures and, as with any complex information
system, can become corrupt over time. As a database administrator, you
should periodically check the integrity of your database using the DBCC
CHECKDB command.

Running DBCC CHECKDB

If you simply execute the Transact-SQL statement DBCC CHECKDB, SQL
Server checks the integrity of the current database. Otherwise, you can
specify the name of a database using the following format:

DBCC CHECKDB ('database_name')

For example, to check the integrity of the sales database, issue the following
command:

DBCC CHECKDB ('sales')

Completing the execution of this command can take quite a long time, even
as long as several hours, depending upon the size of your database and its
structural complexity. Therefore, you should always plan to run a
consistency check during periods of low demand.

If your database is so large that you can’t reasonably run DBCC CHECKDB
without negatively impacting performance, you might want to consider other
options. DBCC CHECKDB actually executes a number of other DBCC commands
behind the scenes. Among other activities, it

1 Checks the database disk structure integrity using the DBcC
CHECKALLOC command.

v Checks the consistency of each table and view individually using the
DBCC CHECKTABLE command.

v Checks the database catalog consistency using the DBCC
CHECKCATALOG command.

If you need to minimize disruptions, you can create your own integrity veri-
fication schedule by using the commands in the list above. Simply run each
one at different times to consume resources in a more manageable fashion.

Here’s an example of DBCC CHECKDB output from a database table named
sales:

206 Part V: SQL Server Administration

DBCC results for 'sales'.

Service Broker Msg 9675, State
Service Broker Msg 9676, State
Service Broker Msg 9667, State
Service Broker Msg 9668, State
Service Broker Msg 9669, State
Service Broker Msg 9674, State
Service Broker Msg 9670, State
DBCC results for 'sys.sysrscols'.
There are 567 rows in 6 pages for object "sys.sysrscols".

Message Types analyzed: 14.

Service Contracts analyzed: 6.
Services analyzed: 3.

Service Queues analyzed: 3.
Conversation Endpoints analyzed: 0.
Conversation Groups analyzed: 0.
Remote Service Bindings analyzed: 0.

SRR R R R e e

DBCC results for 'sys.sysrowsets'.

There are 81 rows in 1 pages for object "sys.sysrowsets".

DBCC results for 'sysallocunits'.

There are 92 rows in 1 pages for object "sysallocunits".

DBCC results for 'sys.sysfilesl'.

There are 2 rows in 1 pages for object "sys.sysfilesl".

DBCC results for 'sys.sysfgfrag'.

There are 2 rows in 1 pages for object "sys.sysfgfrag".

DBCC results for 'sys.sysphfg'.

There are 1 rows in 1 pages for object "sys.sysphfg".

DBCC results for 'sys.sysprufiles'.

There are 2 rows in 1 pages for object "sys.sysprufiles".

DBCC results for 'stock'.

There are 4 rows in 1 pages for object "stock".

DBCC results for 'sys.queue_messages_1977058079"'.

There are 0 rows in 0 pages for object "sys.queue_messages_1977058079".

DBCC results for 'sys.queue_messages_2009058193"'.

There are 0 rows in 0 pages for object "sys.queue_messages_2009058193".

DBCC results for 'sys.queue_messages_2041058307'.

There are 0 rows in 0 pages for object "sys.queue_messages_2041058307".

CHECKDB found 0 allocation errors and 0 consistency errors in database 'sales'.

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

[have to omit part of the results. Even for a simple database, the full results
would consume a good part of this chapter!

The key is to look at the second-to-last line of the output, where SQL Server
reports the results of the integrity check. My example contains neither
allocation errors nor consistency errors. This is the sign of a perfectly
healthy database.

Correcting integrity errors

If you do detect errors, you’ll want to repair them. You have three options for
repairing database integrity errors:

Chapter 12: Keeping Your SQL Server Running Smoothly 20 7

v Use the REPAIR_REBUILD option. This options performs nonrisky
repairs to your database that don’t jeopardize your data. For example,
to use this option on a database named “sales,” you issue the following
sequence of commands:

ALTER DATABASE sales SET SINGLE USER;
DBCC CHECKDB ('sales', REPAIR_REBUILD) ;
ALTER DATABASE sales SET MULTI_USER;

Note that before running DBCC CHECKDB with a repair option, I place
the database into single-user mode. Doing so prevents other users from
accessing the database while SQL Server is in the middle of the repair.
When the repair completed, | put the database back into standard
multiuser mode.

1 Restore from backup. If you have serious database integrity errors,
restoring from backup is often best. In fact, this is Microsoft’s recom-
mended practice. I discuss options for creating and restoring database
backups in Chapter 18.

v Use the REPAIR_ALLOW_DATA_LOSS option. This option sounds
scary, and there’s good reason behind the menacing name. Running
DBCC with this option may correct your integrity errors, but it might
destroy portions of your database in the process! As with REPATR_
REBUILD, if you decide to use this option, you need to first put the data-
base into single-user mode, as follows:

ALTER DATABASE sales SET SINGLE_USER;
DBCC CHECKDB ('sales', REPAIR_ALLOW_DATA_LOSS) ;
ALTER DATABASE sales SET MULTI_USER;
v?&\\NG!
Because of the risky nature of this command, I strongly recommend that
you back up your database immediately before executing it.

Governing Resource Consumption

SQL Server 2008 includes a new feature, Resource Governor, that allows you
to limit the server resources consumed by various types of connection. For
example, you can use Resource Governor to place limits on the CPU time and
memory used by particular users, applications, and systems.

You should understand a little terminology before reading more about
Resource Governor:

1 Resource pools contain portions of the total CPU time and memory
available to SQL Server.

208 Part V: SQL Server Administration

1 Workload groups are collections of similar SQL Server sessions that
make use of server resources. When you create a workload group, you
assign it a resource pool.

v Classifier functions help SQL Server assign new sessions to workload
groups based upon connection attributes (such as the user, application,
or host initiating the connection).

Each time a new session starts on a SQL Server instance, Resource Governor
(if activated) uses a classifier function to analyze the connection attributes of
that session and assign it to a workload group based upon those attributes.
SQL Server then allows the session to use the CPU and memory resources
allocated to its resource pool on a shared basis with other sessions in that
workload group (or other workload groups assigned the same resource

pool).
<MBER - . -
é‘,* Resource Governor only classifies a session once: when it is created. If you
change the classifier function, the change will only affect new sessions.
Existing sessions will retain their original classification.
<P Microsoft will very likely add new features to Resource Governor in the near

future. Be sure to check the release notes for future SQL Server 2008 service
packs to identify any new capabilities.

In the remainder of this chapter, I walk you through an example of configur-
ing Resource Governor with the goal of limiting SSMS users to a maximum of
50 percent of available CPU time and memory.

Creating resource pools

SQL Server comes with two resource pools preconfigured:

v The internal resource pool (which uses the internal workload group)
handles the resource needs of SQL Server itself. There are no limitations
on the use of resources within the internal pool, and you can’t modify
this behavior.

v The default resource pool has minimum values of 0 and maximum values
of 100 for both memory and CPU time by default. You may modify these
characteristics if you wish.

You can create your own user-defined resource pools using the CREATE
RESOURCE POOL Transact-SQL statement, which has the following syntax:

Chapter 12: Keeping Your SQL Server Running Smoothly 209

WMBER
6&
&

WMBER
@&
&

CREATE
WITH (

[
[
[

RESOURCE POOL resource pool_name

[MIN_CPU_PERCENT = value]

[,] MAX_CPU_PERCENT = value]

[,] MIN_MEMORY_ PERCENT = value]

[,] MAX_MEMORY_PERCENT = value])

In this statement, resource_pool_name must be a unique alphanumeric name
of no more than 128 characters. Each value should be specified as an integer
between 0 and 100. The resource pool parameters are as follows:

» MIN_CPU_PERCENT indicates the guaranteed average CPU percentage
for the resource pool.

The sum of the MIN_CPU_PERCENT values for all resource pools in an
instance may not exceed 100 percent.

» MAX_CPU_PERCENT provides the maximum average CPU percentage
that queries assigned to this resource pool will receive when other
queries compete for CPU time.

» MIN_MEMORY_PERCENT indicates the guaranteed minimum portion of
memory dedicated to this resource pool.

The sum of the MIN_MEMORY_PERCENT values for all resource pools in
an instance may not exceed 100 percent.

» MAX_MEMORY_PERCENT provides the maximum amount of memory that
a resource pool may use.

Recalling our example from the previous section, | wanted to use Resource
Governor to limit SSMS users to 50 percent of available CPU and memory
resources. You can create a resource pool named SSMS pool containing
those resources with the following Transact-SQL statement:

CREATE RESOURCE POOL SSMSpool
WITH (MAX CPU_PERCENT = 50,
MAX_ MEMORY_PERCENT = 50)

If you wish to modify a resource pool, the ALTER RESOURCE POOL
statement uses a similar syntax:

ALTER RESOURCE POOL {resource pool_name / "default"}

WITH

(
[
[
[

[MIN_CPU_PERCENT = value]

[, 1] MAX_CPU_PERCENT = value]

[,] MIN_MEMORY_PERCENT = value]

[,] MAX_MEMORY_PERCENT = value])

2 1 0 Part V: SQL Server Administration

For example, if you wished to modify the default pool so that it can only
consume a maximum of 75 percent of CPU time and 25 percent of memory,
you would use the following Transact-SQL statement:

ALTER RESOURCE POOL "default"
WITH (MAX_CPU_PERCENT = 75,
MAX_MEMORY_PERCENT = 25)

\3 . . .
P As demonstrated in the preceding example, if you want to alter the resources
assigned to the default pool, you must enclose the word default in quotation

marks.

Creating workload groups

SQL Server 2008 also comes preconfigured with two workload groups,
internal and default. These workload groups use the resource pools of the
same names, as | discussed in the previous section.

You can create new workload groups using the CREATE WORKLOAD GROUP
statement, with the following syntax:

CREATE WORKLOAD GROUP workload_group_name
WITH ([IMPORTANCE = { LOW | MEDIUM | HIGH } 1

[[,] REQUEST_MAX MEMORY_GRANT_PERCENT = value]
[[,] REQUEST_MAX CPU_TIME_SEC = value]

[[,] REQUEST_MEMORY_GRANT_ TIMEOUT_SEC = value]
[l

,] MAX_DOP = value]
[[,] GROUP_MAX_REQUESTS = value])
[USING { resource pool_name | "default" } 1

The parameters to the CREATE WORKLOAD GROUP command are:

v IMPORTANCE reflects the relative importance of the workload group and
may have a value of HIGH, MEDIUM or LOW. Resource Governor uses this
value to allocate resources when different workload groups using the
same resource pool compete for CPU time or memory.

»* REQUEST_MAX_MEMORY_GRANT_PERCENT is a value between 0 and 100
specifying the maximum amount of memory that a query may take from
the resource pool. This number is a percentage of the memory assigned
to the pool, rather than a percentage of the total system memory.

» REQUEST_MEMORY_GRANT_TIMEOUT_SEC is the maximum amount of
time (in whole seconds) that a query may wait for resources used by
other queries.

v MAX_DOP is a number between 0 and 64 indicating the maximum degree
of parallelism.

Chapter 12: Keeping Your SQL Server Running Smoothly 2 ’ ’

V¥ GROUP_MAX_REQUESTS is an integer specifying the maximum number of
queries that may execute simultaneously in the group.

v resource_pool_name is the name of the resource pool available to the
workload group.

You can create a simple workload group for my SSMS example with a medium
relative importance using the following command:

CREATE WORKLOAD GROUP SSMSworkload
WITH (IMPORTANCE = MEDIUM)
USING SSMSpool

You may modify an existing workload group using the ALTER WORKLOAD
GROUP command, which has the same syntax as the CREATE WORKLOAD
GROUP command.

Creating classifier functions

The classifier function is a user-defined function that assigns new sessions to
workload groups based upon connection attributes. I fully describe the
creation of user-defined functions in Chapter 11 but will provide an example
of a classifier function in this section.

Here are a few important characteristics of classifier functions:

»* You should create classifier functions in the master database.

v The classifier function should return the name of a workload group.
If the classifier function does not return the name of a valid workload
group, Resource Governor will assign the session to the default group.

v The classifier function must be schema-bound. You create a schema-
bound function by including the WITH SCHEMABINDING clause in your
function definition.

»* You may only have one active classifier function at any time.

Here’s a classifier function that implements the scenario I described earlier:
placing all SSMS sessions in the SSMS workload group:

CREATE FUNCTION dbo.SSMSClassifier()
RETURNS SYSNAME
WITH SCHEMABINDING
AS
BEGIN
DECLARE @wkldgroup SYSNAME
IF (APP_NAME() = 'Microsoft SQL Server Management Studio')

2 1 2 Part V: SQL Server Administration

SET @wkldgroup = 'SSMSgroup'
ELSE
RETURN NULL
RETURN @wkldgroup
END

Activating and deactivating
Resource Governor

When you’re ready to activate Resource Governor, you must first assign it a
classifier function, as shown in the Transact-SQL command below:

ALTER RESOURCE GOVERNOR
WITH (CLASSIFIER_FUNCTION = dbo.SSMSClassifier)

Of course, you’'ll want to replace dbo . SSMSClassifier with the name of
your classifier function. Finally, you need to apply your changes by instruct-
ing SQL Server to reconfigure Resource Governor with your modifications.
The following Transact-SQL statement accomplishes this:

ALTER RESOURCE GOVERNOR RECONFIGURE

You must issue the RECONFIGURE command any time you make a change to
the Resource Governor configuration or SQL Server won’t apply your change.

If you’d like to deactivate Resource Governor on a SQL Server instance, use
the following command:

ALTER RESOURCE GOVERNOR DISABLE

Chapter 13

Automating SQL Server 2008
Administration

In This Chapter
Schedule recurring tasks with SQL Server Agent
Use Maintenance Plans to automate administration

Alerting administrators to database events

SQL Server database administration is full of mundane, repetitive tasks
such as log reviews and preventive maintenance. Fortunately, SQL
Server offers techniques to alleviate much of this boring work through the
use of SQL Server Agent and maintenance plans. As does any other agent,
SQL Server agent acts on your behalf to assist with database maintenance
and monitoring tasks.

In this chapter, you discover how to automate your database administration
tasks using these tools. I show you how you can get rid of the burden of
regularly implementing the techniques discussed in Chapter 12 through the
power of automation.

Scheduling Tasks with
SOL Server Agent

SQL Server Agent is the core of SQL Server’s automation capabilities. It allows
you to instruct SQL Server to perform actions on a scheduled, automated basis,
alleviating you of many of the tedious demands of database administration.

In this section, I provide you with the information you need to start SQL
Server Agent running on your database server, create jobs that you would
like to run in an automated fashion, and schedule those jobs to occur on a
periodic basis.

2 1 4 Part V: SQL Server Administration

A\

Figure 13-1:
SQL Server
2008 Service
Status.
|

\\J

|
Figure 13-2:
Starting

a SQL
Server 2008
Service.
|

Starting SOL Server Agent

Before you can schedule tasks with SQL Server Agent, you need to make sure
that the SQL Server Agent service is running on your database server. To do
so, follow these steps:

1. Start SQL Server Configuration Manager.

I discuss the process for starting SQL Server Configuration Manager in
Chapter 3.

2. Select SQL Server Services from the menu in the left pane.

You see the service list shown in Figure 13-1. Locate the service named
SQL Server Agent (MSSQLSERVER) and examine the current service
state. If it reads Running, SQL Server Agent is already running and you
can continue to the next section, “Creating a SQL Server Agent job.”
Otherwise, you need to start SQL Server Agent.

& Sql Server Configuration Manager =3[)
File Action View Help
e (zE6E0
48 5L Server Configuration Manager (Locall || Name State Start Mode Log On As Process 1D Service Type
BLSOH SeverSenices =) SQL Server Integration Services 100 Running Automatic NT AUTHORTTY\Ne... 1336 SSIS Server
- SQL Server Network Configuration 2] SQL Server FullText Search (MSSQLSERVER) Running Automatic LocalSystem 0 Full Tet
| SQL Native Client Configuration .
SQL Server (SQLEXPRESS) Running Automatic NT AUTHORITY\Ne... 1572 5QL Server
SQL Server (MSSQLSERVER) Running Automatic LocalSystem a7 SQL Server
SQL Server Browser Stopped Other (Boot, Syste... LocalSystem 0 5QL Browser
[E]sqL server Agent (MSSQLSERVER) Stopped [LocalSystem 0 SQL Agent

3. Right-click SQL Server Agent and select Start from the pop-up menu.

SQL Server Configuration Manager starts the service, a process that may
take a minute or longer to complete. While you wait, SQL Server displays
the status window shown in Figure 13-2.

Following this process starts SQL Server Agent only a single time. If you want
to ensure that SQL Server Agent will run every time your system starts, you
need to set it to use the automatic start mode. I discuss service start modes in
Chapter 3.

o]
g
5

@ Sql Server Configuration Manager
File Action View Help

e nEB=H®

48 SQL Server Configuration Manager (Local)
| SQL Server Services
*| SQL Server Network Configuration
| SQL Native Client Configuration

ProcessID
ORITY\Ne... 1336
=/ SQL Serv| Starting service... em 340

ool [[[[[[]] ORITVNe... 1572

SQL Servi em 2176

SqL Sen em 0

2 sqL senf em 0

Name Service Type

SQL Server Configuration Manager
=] SQL Serv, SSIS Server
Full Text
5QL Server
SQL Server
5QL Browser
SQL Agent

Chapter 13: Automating SQL Server 2008 Administration 2 ’5

4. Close SQL Server Configuration Manager.

Creating a SOL Server Agent job

SQL Server Agent uses the concept of a job to group related tasks. Each job
consists of a series of job steps that you may schedule to run on a periodic
basis. In this section, I describe the process for creating a SQL Server Agent
job. A job establishes the shell in which you may define job steps for SQL
Server Agent to carry out on your behalf.

1. Connect to a SQL Server instance using SQL Server Management
Studio.
2. Expand the SQL Server Agent folder in Object Explorer.

You see the options shown in Figure 13-3.

IS ._\Li) SQL Server Agent
Figure 13-3: 2 R Jobs .
] Job Activity Monitor
The SQL 5 £ Alerts
Server + [Operators
Agent folder % [Proxies
in SSMS. + [Error Logs
I
3. Right-click the Jobs folder and select New Job from the start-up menu.
SSMS then presents the New Job creation window, shown in Figure 13-4.
<P 4. Give your job a name by typing it into the Name field.

You may choose any name you like, but | recommend using a descriptive
name. Doing so makes identifying the job in the future much easier.

5. Specify the job owner in the Owner text box.

You may either type in the name of the account that you want to
designate as the job owner, or search for and select it by clicking the
ellipses (. . .) to the right of the text box.

The owner of the job is the only account (other than members of the
sysadmin role) that may modify the job after you create it. When the
job runs, it does so with the same permission settings that apply to the
owning account.

6. Select a job category from the drop-down list.

SQL Server provides a number of predefined categories to help you
classify your jobs. Many of the administrative tasks you facilitate with
SQL Server Agent will naturally fall under the “Database Maintenance”
category.

2 1 6 Part V: SQL Server Administration

52 New Job =
Selecta page :) N = ==
S - Hel

4 General 5 St~ [Help

& Steps

&0 Schedules MName

2 Merts . _]

2 Notfiications Owner: P O

& Targets -
oz ‘[UnCatEganzed (Local)] v| |_|
Description:

Connechion

Server:
VOSTRO /| Enabled

Connection
sa

— 4 View connection properties
Figure 13-4
The SSMS | Froo==
New Joh Fesa
creation
window. e
|

7. Type a plain-English description of your job in the Description
textbox.

This textbox gives you the opportunity to record a written description
of your job’s purpose to help other administrators understand your job.
It’s also a great way to remind your future self of what you intended to
do months or years ago!

8. Ensure that the Enabled box is selected.

In order to run according to a schedule (I show you how to define one
later in this section), you must enable the job by selecting the Enabled
check box on this screen.

At this point, you've created an empty SQL Server Agent job. In the next section,
[describe how you can add steps to this job, defining the actions that you
want SQL Server to carry out each time the job executes. When that’s complete,
[show you how to schedule the job to execute on a periodic basis.
<MBER . . , A
o‘? Note that the series of steps [use to create the job don’t end by clicking OK
to close the New Job window. You should keep this window open to add job
steps in the next section.

Chapter 13: Automating SQL Server 2008 Administration

Adding job steps to a SOL
Server Agent job

SQL Server Agent allows you to create job steps defining the individual
actions you would like included in the job. SQL Server 2008 supports a
number of different job step types, including:

v Transact-SQL scripts

v ActiveX scripts

v Operating system (CmdExec) scripts

v Replication-related scripts (see Chapter 15 for more information on
replication)

v SQL Server Integration Services (SSIS) packages (see Chapter 10 for
more information on SSIS)

v SQL Server Analysis Services (SSAS) commands and queries
SSAS is beyond the scope of this book.

In the following steps, [walk you through the process of creating a single-step
job designed to run the DBCC CHECKDB command, discussed in Chapter 12:
1. Within the New Job window, click the Steps icon under Select a Page.
You see the blank Job Step list shown in Figure 13-5.
2. Click the New button.
SQL Server presents the New Job step window, shown in Figure 13-6.
3. Name the step by typing a descriptive name in the Step name text box.
4. Choose the step type from the Type drop-down list.

Here, | assume that you'’re using a Transact-SQL script step type. Other
step types support advanced functionality and are beyond the scope of
this book.

5. Select a database context using the Database drop-down list.

Your selection here tells SQL Server which database it should execute
the script against. SQL Server allows you to specify the database at the
step, rather than the job, level. Specifying it at this level permits you to
run scripts against multiple databases within the same job. For example,
you might create a job that executes database consistency checks
against several databases that you administer.

217

2 1 8 Part V: SQL Server Administration

Figure 13-5:
The SQL
Server
Agent Job
Step list.
|

Figure 13-6:
Creating
anew job
step with
SSMS.

Lo [E=S[EoR (5
Selectapage c . =
S Script = Hel
147 General ‘; # [heb
|5 Steps
27 Schedules Job step list:
A
1 ﬁ;ritfiscaﬁuns Step Name Type On Success On Failure
E‘“ Targets
Connection
Server:
VOSTRO
Connection
sa
24 View connection properties
Progress Move step Start step:
Ready + | ¥
Newlob Step =l
Seleciapage r -
4P General ‘;S U Hep
| Advanced
Step name:
Type:
[Transact-5QL sonpt (T-5GL) -
Run as:
[3
Database [mastar v]
Command: b
Select All
Comecton
Server:
VO5TRO
sa
2 View connection properties
Progress 7| r

Ready

Chapter 13: Automating SQL Server 2008 Administration 2 ’ 9

A\

|
Figure 3-7:
Parse
Command
Text.
|

6. Enter your Transact-SQL script in the Command text box.

You may include any valid Transact-SQL statements that you want

to execute against the database specified in the previous step. For
example, enter the text DBCC CHECKDB to run a database consistency
check against the database specified in Step 5.

7. Click the Parse button to validate your input.

This step gives you the opportunity to have SQL Server validate your
Transact-SQL script before creating the job. It’s a good opportunity to
perform a quick syntax check before scheduling the job to run. If your
syntax is correct, you see the pop-up window shown in Figure 13-7.
Otherwise, correct your syntax and click the Parse button again.

Parse Command Text ==
6 The command was successfully parsed.
[)
£

8. Click the OK button to create the step.

You may repeat this process as many times as necessary to create your job.
You may customize your job steps even further by using the Advanced page
of the Job Step Properties sheet, shown in Figure 13-8. This page allows you to
specify the following:

v The number of times SQL Server Agent should attempt to retry the step
if it fails and the time interval it should wait between retry attempts.

v The action SQL Server Agent should take if the step ultimately fails.
These actions include:

® Go to the next step
e Quit the job and report success
¢ Quit the job and report failure

v The action SQL Server Agent should take if the step ultimately succeeds.
These are the same options you have for step failure.

v The output file where SQL Server Agent should record the results of the
Transact-SQL command and whether the results should overwrite the
file’s current contents or be appended to the current contents.

v The name of a table where SQL Server Agent should store log results.

v The user account that SQL Server Agent should use to execute the
Transact-SQL statement.

220 Part V: SQL Server Administration

Figure 13-8:
Job Step
Advanced
page.

E Job Step Properties - Sales database consistency check ===
Selecta page ‘ Y

- Hel
& General ';S atep

#1 Advanced
On success action

‘ Go to the next step - |

Betry attempts Retry interval {minutes):
] z 0 z

On failure action:

Quit the: job reporting failure - |

Transact-5QL script (T-S5GL)

Output file (=]

Append output to existing file

Log to table

Conneci Include step output in history

Server:
VOSTRO

Run as user
Cannection

E

37 View connection properties

Progress
Ready

G|

When you’ve finished creating your job steps, you can use the Move Step
arrows at the bottom of the list to rearrange the order of job steps, as
necessary.

Scheduling a SQL Server Agent job

One of the most powerful features offered by SQL Server Agent is the ability
to schedule jobs to occur in the future on a one-time or repetitive basis. SQL
Server Agent offers a number of flexible job-scheduling options, thereby
allowing you to select the mix appropriate for your environment.

To add a schedule to your SQL Server Agent job, follow these steps:

1. Click the Schedule icon in the Select a Page portion of the New Job
window.

I’'m assuming that you're still in the New Job window opened earlier in
this section. If you're not, simply open the Properties sheet associated
with the job from within the SQL Server Agent folder of SSMS.

Figure 13-9:
Creating
anew job
schedule.
|

Chapter 13: Automating SQL Server 2008 Administration

2. Click the New button at the bottom of the window.

You see the New Job Schedule window, which is shown in Figure 13-9.
3. Provide a descriptive name for your schedule in the Name text box.

4. Choose a schedule type from the Schedule Type drop-down box.

You have the following options:

e One Time

® Recurring

e Start Automatically when SQL Server Agent Starts
e Start Whenever the CPUs Become Idle

5. Provide the appropriate details for the schedule frequency and

duration.

SQL Server Agent allows you to specify the frequency of the schedule

with a great degree of detail.

6. Click the OK button to add the schedule to the job.

] New Job Schedule

Name

Schedule type

Frequency

Occurs:

Becurs every:

Daily frequency
@ Occurs once at:

Occurs every:

Duration

Start date:

Summary

Description:

Recuming

-

Weeky]

1 | weekis) on
Monday Wednesday Friday
Tuesday Thursday

12:00:00 AM |
: Starting at
Ending at:
11/ 4/2007 [E~ End date:
@ Mo end date

| Enabled

[E=3(EcH

Saturday

V| Sunday

Occurs every week on Sunday at 12:00:00 AM. Schedule will be used starting on 11/4/2007.

Cancel Help

221

222 Part V: SQL Server Administration

Notifying someone when
the job completes

Schedule SQL Server Agent jobs run on an unattended basis. Therefore, it’s
often advisable to notify database administrators when a job completes.
Here’s how you can configure job completion notification:

1. Click the Notifications icon in the Select a Page portion of the New
Job window.

I’'m assuming that you're still in the New Job window opened earlier in
this section. If you're not, simply open the Properties sheet associated
with the job from within the SQL Server Agent folder of SSMS.

2. Select the box(es) corresponding to the notification actions you want
SQL Server Agent to perform when the job completes.

Your options include the following:
¢ Send an e-mail to a database operator
¢ Send a pager message to a database operator
¢ Send a “net send” message to a database operator
* Write a message to the Windows Application Event Log
¢ Delete the job

3. Choose the notification target from the drop-down box next to each
option, if applicable.

You need to select a database operator to notify for the e-mail, page, or
net send notification options. I discuss creating database operators later
in this chapter.

4. Select the notification condition(s) from the drop-down box(es) next to
the selected notification type(s).

You may choose from the following notification options:
¢ Execute the option any time the job completes
¢ Execute the option when the job completes successfully

¢ Execute the option when the job fails to complete

Implementing Database
Maintenance Plans

SQL Server 2008 also offers another way (in addition to SQL Server Agent
jobs) to automate administrative tasks: the use of database maintenance
plans. The primary advantage of these plans over SQL Server Agent jobs is

Chapter 13: Automating SQL Server 2008 Administration 223

their ease of creation: You can use a graphical wizard to create them and
you can add many common maintenance tasks without writing Transact-SQL
statements.

Identifying the tasks to include
in a maintenance plan

Before you begin the process of creating a database maintenance plan, you
should think carefully about the actions the plan will perform and the
frequency with which you desire each to occur. The maintenance plan tasks
supported by SQL Server 2008 include:

v Back up a database

v Check the integrity of a database

v Execute a SQL Server Agent job

v Execute a Transact-SQL statement

v Clean up historical database information

v Clean up leftover files from maintenance plan execution

v Perform an operator notification

+* Rebuild or reorganize an index

v Shrink a database

v Update database statistics

After you've selected the appropriate mix of maintenance tasks, you can
move on to creating the maintenance plan itself.

Creating a maintenance plan

The easiest way to create a database maintenance plan is by using the
Maintenance Plan Wizard provided with SQL Server 2008. This wizard guides
you through the process step-by-step using a graphical interface. Here’s how
you can use it to create your own plan:

1. With SSMS open, expand the Management folder.

2. Right-click the Maintenance Plans folder and select Maintenance Plan
Wizard from the pop-up menu.

You see the welcome screen shown in Figure 13-10.

224 Part V: SQL Server Administration

Figure 13-10:
The
Database
Main-
tenance
Plan Wizard.
|

l#§ Maintenance Plan Wizard o |[[E &%

» SQL Server Maintenance
Plan Wizard

This wizard helps you create a maintenance plan that SQL
Server Agent can run on a regular basis. With this wizard
you can perform routine database administration tasks such

as:
”l # Check dstabase integrity
o P » Perform index maintenance
L # Update database statistics

Perform database backups

This wizard will create mairtenance plans that can be
edited in SQL Server Management Studio. Edit
maintenance plans to add new tasks or define workflow
among the tasks.

Do not show this starting page again.

Help Cancel

3. Click the Next button to advance to the next wizard screen.

4. Provide a Name and Description for your maintenance plan by typing

each in its appropriate text box.

Figure 13-11 shows the Plan Properties page of the wizard. You should pro-
vide an understandable name and clear description of your maintenance
plan’s purpose to help future administrators understand your work.

Figure 13-11:
Setting the
Database
Main-
tenance
Plan
properties.
|

L£{ Maintenance Plan Wizard == =)
Select Plan Properties
How do you want to schedule your maintenance tasks? 'S .

MName Daily Maintenance Tasks

This plan contains all of the daity maintenance tasks

Description:
performed against production database servers

Separate schedules for each task
@ Single schedule for the entire plan or no schedule

Schedule:

Dceurs every day at 12:00:00 AM. Scheduls will be used starting on 11/6/20

Cancel

| Help < Back | | Mext =

Chapter 13: Automating SQL Server 2008 Administration

Figure 13-12:
Selecting
tasks to
include in
the mainte-
nance plan.
|

5. Choose to use a single schedule for the entire plan or separate
schedules for each task.

For simplicity’s sake, you probably want to choose a single schedule for
each task in your maintenance plan. However, if you desire more
scheduling flexibility, you may choose the Separate Schedules for Each
Task option and then configure each task individually.

6. Click the Change button, fill out the schedule options in the screen
that appears, and click OK.

Note that this is the same New Job Schedule screen that’s used for SQL
Server Agent jobs and is shown previously in Figure 13-9.

7. Click the Next button to advance to the task selection window.

8. Select the check box(es) next to the task(s) you want to include in your
maintenance plan. Then click the Next button to continue.

The Select Maintenance Tasks screen, shown in Figure 13-12, allows you
to select the tasks you’d like to include in your plan. Don’t worry about
the details at this point; you’ll be asked to provide further configuration
options for each task at a later step in the process.

|4 Maintenance Plan Wizard ===

Select Maintenance Tasks

Which tasks should this plan perform? N N

Select one or more maintenance tasks

v
Shrink Database
Rearganize Index
Rebuild Index
Update Statistics
Clean Up History
Execute SQL Server Agent Job
Back Up Database (Full)

V| Back Up Database (Differential)
Back Up Database (Transaction Log)
Mairtenance Cleanup Task

\i‘j The Check Database Integrity task performs intemal consistency checks of the data and
index pages within the database

[B | <Back || Ned> Canecel

9. Click the Move Up and Move Down buttons to provide the correct
order of task execution. Then click the Next button to continue.

You may rearrange the order of tasks by using the Move Up and Move
Down buttons, as shown in Figure 13-13.

225

226 Part V: SQL Server Administration

Figure 13-13:
Configuring
the mainte-

nance task
order.
|

A\

L4fj Maintenance Plan Wizard ===
Select Maintenance Task Order

Select the order for the tasks to execute:

(Check Database Integrity
Back Up Database (Differential)

In which order should these tasks be peformed? Y ~

Move Down...

j/ The Check Database Integrity task performs intemal consistency checks of the data and

index pages within the database.

Help < Back Neat > Cancel
\ I

10.

11.

Configure the details of each maintenance plan task and click the Next
button to continue.

The wizard then presents a series of screens asking you to provide
details for each task that you selected in Step 8. These screens vary
from task to task. For example, the Differential Backup screen is shown
in Figure 13-14. I provide more information on the configuration details
necessary for each task elsewhere in this book. Information on backup
tasks appears in Chapter 18.

These task configuration screens also contain a Change button to
configure a per-task schedule. This button is unavailable (greyed out) if
you selected a single schedule for the entire plan in Step 5.

Select the check box(es) corresponding to the reporting option(s) you
want and click the Next button to continue.

You have two options for reporting the results of maintenance plan
execution, as shown in Figure 13-15: writing the output to a text file and
e-mailing the report to a SQL Server database operator. You can choose
them both, if you want.

12. Click Finish to create the maintenance plan.

Only members of the sysadmin server role may view, create, or modify SQL
Server maintenance plans. [discuss managing server roles and user
permissions in Chapter 16.

Chapter 13: Automating SQL Server 2008 Administration 22 7

L£{ Maintenance Plan Wizard == =)
Define Back Up Database (Differential) Task
Corfigure the maintenance task. [.
Database(s): All user databases j
Backup component
/| Backup set will expire:
@ After 14 2! days
On
Backupto: @ Disk Tape
Back up databases across one or more files:
@ Create a backup file for every datasbase
Create a sub-directory for each database
[] Folder: C\Program Files'\Microsoft SQL Server\MSSQL.1\MSSQL"\Bac |:|
Figure 13_1 4 Backup file extension: bak
Conﬁgurmg V| Verify backup integrity
a differential
backup
mainte- | [
nance plan
task. [Hep <Back | [Met> | Cancel |
I
|£} Maintenance Plan Wizard EI@
Select Report Options
gg;aﬂ::sapﬂons for saving or distributing a report of the maintenance plan N
| Write a report to a text file
Folder location: C:\Program Files'\Microsoft SQL Server\MSSQL. 1\ I:I
E-mail report
To:
I
Figure 13-15:
Configuring
mainte-
nance plan
reporting
options. | [e <Bock][ted> [Cancel |
I

228 Part V: SQL Server Administration

Alerting Administrators
about Database Events

Database monitoring is one of the most important tasks facing SQL Server
administrators. Vigilant monitoring of database resource utilization and
performance issues will help you stay in control of your database and pre-
vent significant problems from occurring. Constant monitoring of these
issues without the use of automated tools is quite difficult. Fortunately, SQL
Server provides an alerting facility that monitors the database status on your
behalf and notifies you when issues requiring your attention occur.

Configuring database operators

You can use database operators in SQL Server to define individuals who
should receive alert notifications. Here’s how to create a new database
operator:

1. Open SSMS and expand the SQL Server Agent folder.

2. Right-click the Operators icon and choose New Operator from the
pop-up menu.

3. Provide a useful name for the operator (usually the person’s first and
last name).

4. Provide an e-mail address, net send address, or pager address for
each operator.

You can provide all three addresses if you want.
5. Provide details of the operator’s on-call schedule, if applicable.

If you want an operator to receive notifications only during specified
time periods or on specified days, configure those options on this
screen as well. This is a useful function when you have rotating on-call
schedules, because you can create different operators with notification
schedules corresponding to your on-call schedule.

An example of a completed New Operator screen appears in
Figure 13-16.

6. Click the OK button to create the operator.

Chapter 13: Automating SQL Server 2008 Administration 229

Figure 13-16:
Creating
anew
database
operator.
|

£, New Operator F=s[E=n =<
Selecta page P o: Y
Script ~ Hel
& General = Seret L3 Hep
& Notffications
MName Mike Chapple | Enabled
Motification options
E-mail name: mike@chapple.org
Met send address:
Pager e-mail name:

Pager on duty schedule

V| Monday
V| Tuesday
V| Wednesday
V| Thursday Workday begin Workday end
7] Friday 8:00:00 AM = 6:00:00 PM =
. V| Saturday 8:00:00 AM $ 6:00:00 PM 2
Conneclion
Server: V] Sunday: - .
vostRo | end ay; 8:00:00 AM o 6:00:00 PM =

Cannection
sa

37 View connection properties

Progress
Ready

G|

Creating SOL Server alerts

SQL Server allows you to create automated administrator alerts based upon
three types of conditions:

v SQL Server events defined by a combination of a database name and
SQL Server error code or severity. For example, you can create an alert
that occurs when an error of severity 23 (a fatal error where the
integrity of the entire database is in jeopardy) occurs.

v SQL Server performance conditions defined by an object, counter,
instance, and threshold value. For example, you can create an alert when
the log file uses 85 percent of its capacity for a particular database.

v Windows Management Instrumentation (WMI) events. WMI is an interface
that allows Windows components to share performance information. The
topic of WMI is beyond the scope of this book.

230 Part V: SQL Server Administration

Figure 13-17:
Creating a
SQL Server
alert for
fatal hard-
ware errors.
|

You can create a new alert using SQL Server Management Studio, as follows:

1. With SSMS open, expand the SQL Server Agent folder.

2. Right-click Alerts and select New Alert from the pop-up menu.
3. Choose a name for your alert and type it in the Name text box.
4

. Choose a type for your alert (SQL Server event, SQL Server
performance condition, or WMI event).

5. Provide the appropriate details for the alert type you chose.

The configuration details you need to provide in this step will vary
based upon the type of alert selected. Figure 13-17 shows a SQL Server
event alert configured to alarm when fatal hardware errors occur.
Figure 13-18 shows a SQL Server performance condition alert configured
to alarm when the server login rate rises above three logins per second.

6. Ensure that a checkmark appears in the Enabled check box.

7. Choose the Response page from the Select a Page portion of the New
Alert window.

@ New Alert [F=2[E=RE<=]

Selecta page (= 5
Script * Hely
2 General = Serpt g Hep

|4 Response

2 Options Name Fatal Hardware Emor /| Engble
Type ‘ SQL Server event alet -
Event alert definttion
Database name: <all databases> -
Alerts will be raised based on
Error number: 1
@ Severity: 024 - Fatal Error: Hardware Emor -
Raise alert when message contains:
Connechion

Server:

WVOSTRO

Connection
sa

2 View connection properties

Progress
Ready

o]

Chapter 13: Automating SQL Server 2008 Administration 23 ’

8. Select the Notify Operators check box and then select the notification
method(s) you want to use (if any) for each database operator in the
list.

9. Click OK to create the alert.

& New Alert ===
Selecta page = .
S - Hel
4 General £ Sert 12 Helo
" Response
|4 Options Name Logins/sec = 3 V| Enable
Type ‘SQL Server performance condition alert -
Performance condition alert definition
Object:
SQLServerGeneral Statistics -
Counter:
Logins/sec -
Instance
Alert if courter
rises sbove | Value 3
Connection
Server:
I VOSTRO
Figure 13-18: | Cemmecton
Creatmg a 3¢ View connection properties
SQL Server
Progress
Alert based
Ready
upon the
logins/sec
rate. par—
I

232 Part V: SQL Server Administration

Chapter 14

Troubleshooting SOL
Server 2008 Problems

In This Chapter

Exploring server performance issues with SQL Server Profiler

Using System Monitor to keep track of server performance
Mining error logs for valuable troubleshooting information
Using Performance Studio to monitor your server

Tuning database performance with Database Engine Tuning Advisor

Fom time to time, you may encounter problems with your SQL Server
databases. These issues may come as the result of poorly written data-
base queries, hardware/software performance issues, or the physical failure
of hardware components.

When performance issues arise, troubleshooting often requires a joint effort
between database administrators and server administrators. In this chapter, |

describe some of the tools available to SQL Server 2008 DBAs to assist in the
detection and troubleshooting of database problems.

Understanding the Inner Workings
of SOL Server Queries

SQL Server allows you to capture quite a bit of information about queries in
progress. Some commonly used data elements include:

v Transact-SQL statements executed

v Stored procedures invoked

234 Part V: SQL Server Administration

v Query execution time (in CPU time or clock time)
v Physical disk activity

v Login name responsible for each query

SQL Server provides this information through the use of the SQL Trace
facility. This complex programming environment is accessible through an
Application Programmer Interface (API). Alternatively, you can access this
advanced functionality using the graphical user interface offered by SQL
Server Profiler.

Creating a trace with SOL Server Profiler

If you’d like to capture detailed information about SQL Server performance
using SQL Server Profiler, you must first create a trace. Each trace defines
the events you would like to gather data about and the specific data elements
you would like to capture.

Here’s how to create a new trace using SQL Server Profiler:

1. Open SQL Server Management Studio.
2. Choose Tools=>SQL Server Profiler.

SQL Server Profiler opens in a new window.
3. Choose Filer>New Trace.

A connection window (identical to the window used to connect to SSMS)
opens.

4. Fill in the details required to log in to your SQL Server instance and
click the Connect button to continue.

If you need assistance determining the appropriate connection details,
see Chapter 3. After you complete the connection, the Trace Properties
window (shown in Figure 14-1) opens. This is where you perform the ini-
tial configuration of your new trace.

5. Create a descriptive name for your trace and type it into the Trace
Name text box.

6. Select a template for your trace from the drop-down list.

SQL Server Profiler includes a number of built-in templates to help you
create new traces quickly. These include:

e Blank: Exactly what the name implies: An empty template that
allows you to define the exact events and columns you’d like to
capture with your trace.

Chapter 14: Troubleshooting SQL Server 2008 Problems 235

Trace Properties li_&J
General | Everts Selection
Trace name |My Practice Trace
Trace provider name |v0 STRO
Trace provider type: |M|cr\:|sul1 SQL Server 10.0 version: 10.0.1049
Use the template: |TSQL7DUI3UDH ﬂ
¥ Savetofile: |C \Users\mchappleWDocuments\My Practice Trace trc ﬁ
Set maximum file size (MB): 5
I¥ Enable file rollover
| ™ Server processes trace data
Flgure 14-1: I Saveto table J
The SQL - .
Server
Profiler [Eniable trace stop time [111182007 =] [3i838Pm =
Trace
Properties
win d OW. Run Cancel Help
I

e SP_Counts: Captures the number of times each stored procedure
executes.

e Standard: The default template for SQL Server Profiler. It captures
a variety of information about every connection, stored procedure,
or Transact-SQL statement executed.

TSQL: Collects all Transact-SQL batches and stored procedures
executed against a database for troubleshooting purposes.

TSQL_Duration: Records the Transact-SQL statements executed
against a database along with the time (in milliseconds) required
to complete each statement.

e TSQL_Grouped: Collects the same information as the Transact-SQL
template but also groups the results by the user/application issu-
ing the statement.

TSQL_Replay: Gathers very detailed information about each
Transact-SQL statement. This information is sufficient to replay the
activity on the server in the future. It is commonly used for bench-
mark testing.

TSQL_SPs: Records information about stored procedures executed
against a database.

Tuning: Provides detailed information required to tune a SQL
Server database. The output of a Tuning trace may be used with
the Database Engine Tuning Advisor that [describe in the last sec-
tion of this chapter.

236 Part V: SQL Server Administration

3

NG’
§v

Figure 14-2:
The SQL
Server
Profiler
Events
Selection
screen.
|

10.

Remember that these templates are only a starting point and that you
may modify them. If you want to develop a custom template, you don’t
have to use the Blank template as your starting point. You can save time
by selecting the predefined template that most closely matches your
needs and then customizing it to meet your specific requirements.

. Select the Save to File check box.

SQL Server Profiler provides two options for capturing trace data: saving
to a file or saving to a database table. [strongly recommend that you
save trace data to files only. Saving this information to a database table
may cause significant database performance degradation.

. Click the Save As icon to the right of the filename text box and select
the location/name of the file where you’d like to store the results of
your trace.

. If you’d like to stop your trace automatically, select the Enable Trace
Stop Time check box and choose an appropriate date and time from
the drop-down lists.

Select the Events Selection tab in the Trace Properties window.

This tab, shown in Figure 14-2, allows you to select the exact events

and event columns you will capture with your trace. If you selected a
template other than Blank in Step 6, this table will already contain some
entries.

Trace Properties &J

General Events Selection

Review selected events and evert columns to trace. To see a complete list, select the "Show all events” and "Show all columns™ options

Everts [TextD... [Applic. [NTUs... [Login. [CPU | Reads | Wites | Durti.. [Client. | SPID | StanT.. |
-1 Security Audit
"7 Audi Login v [T 7 - - -

[Audit Logout v v 3 v W v v 3 v 0
E Sessions

[¥ ExistingConnection Ird v v = v I 7
= Stored Procedures

[+ RPC:Completed r v ¥ = i = v v 7 v =]
S TSQL

¥ SQL:BatchCompleted I Ira i~ = v I~] v v T W

[SQL:BatchStarting w w v = 5 " W
d I -
Security Audit

Includes event classes that are used to audit server activity. [Show all events

[Show all columns
No data column selected
Column Fitters...
Organize Columns...

Run Cancel | Help ‘

Chapter 14: Troubleshooting SQL Server 2008 Problems

\NG/
&

11. Select the Show all Events check box.

By default, the Events Selection tab will show only events included in
your base template. If you'd like to include additional events, you need
to first select this check box to display events not included in the cur-
rent trace.

12. Select the Show All Columns check box.

SQL Server Profiler allows you to capture quite a bit of information
about each event. The Events Selection tab displays these data elements
as table columns. If you want to include elements not already part of
your trace, select the Show All Columns check box.

13. Select the check boxes corresponding to any other data elements
you’d like the trace to capture.

Be conservative when selecting the events to trace and the columns
you wish to capture in your trace. Traces collecting too much data can
quickly consume massive quantities of disk space and cause server per-
formance issues. You don’t want your troubleshooting efforts to create
brand new problems!

14. Click the Run button to start your trace.

Reviewing trace results

When SQL Server Profiler begins executing your trace, it opens a trace
window similar to the one shown in Figure 14-3.

Each line in the trace results window corresponds to a single event that you
selected in the Events Selection tab. When you run your first trace against a
database, you’ll quickly understand the importance of being selective about
the events and data elements you choose to capture; it’s not unusual for a
single trace to collect thousands of events per minute on a production data-
base server.

You may navigate through the trace results using the scrollbar on the right
side of the trace window. Additionally, if you click any individual row, you
will see the Text Data element from that event occurrence in the large pane
at the bottom of the window.

You may stop or pause a running trace using the stop, pause, and restart but-
tons at the top of the trace window. Figure 14-4 illustrates these buttons. The
triangle icon is the restart button, the two parallel lines are the pause button,
and the red square is the stop button.

237

238 Part V: SQL Server Administration

Figure 14-3:
The SQL
Server
Trace
Results
window.

|
|
Figure 14-4:
Trace
manipula-

tion buttons.
|

fj SQL Server Profiler SIS
File Edit View Replay Tools Window Help
B - -
ANSEH & n om RIA=E @
EE My Practice Trace (VOSTRO) E@
| EventClass TextData | ApplicationMame -
sQL:BatchCompleted SELECT N'PolicyStore’' AS [uUrn] Microsoft SQL Server Manag
sQL:Batchstarting use [sales] Microsoft SQL Server Manac
SQL:BatchCompleted use [sales] Microsoft SQL Server Manac
SQL:BatchsStarting SELECT case when exists (select = f... Microsoft SQL Server Manac
SqL:BatchCompleted SELECT case when exists (select *# f... Microsoft SQL Server Manac
SgL:BatchStarting USE [master]) Microsoft SQL Server Manag
SqL:BatchCcompleted USE [master] Microsoft SQL Server Manag
sqQL:eatchstarting SELECT @@LOCK_TIMEOUT Microsoft sQL Server Manac
sQL:eatchCcompleted SELECT @@LOCK_TIMEQUT Microsoft SQL Server Manac
sQL:Batchstarting SELECT N'PolicyStore' AS [uUrn] Microsoft SQL Server Manac
SQL:BatchCompleted SELECT N'PolicyStore’ AS [Urn] Microsoft SQL Server Manag
SQL:BatchStarting USE [master] Microsoft SQL Server Manac
SQL:BatchCompleted USE [master] Microsoft SQL Server Managz=
SgL:BatchStarting QSELECT * FROM stock iMicrosoft SQL Server Manag _
4 T b
SELECT = FROM stock -
< I 3
Trace is running. Ln170, Col 2 Rows: 171
Connections: 1

n m

Reviewing Log Records

Let’s face it: Reviewing server logs is a boring, thankless task. However, this
mundane activity is one of the most important things you can do to keep
your server running efficiently. It also provides valuable information that will
assist you in your troubleshooting efforts.

SQL Server writes log data to two different locations during the course of
normal activity:

Chapter 14: Troubleshooting SQL Server 2008 Problems 239

v SQL Server’s error log stores error information in a text file stored on
the server.

v SQL Server also logs error information to the Windows Application Log,
accessible through Event Viewer.

SOL Server error log

SQL Server uses a plain-text file to store error information reported by the
SQL Server database engine. By default, the current SQL Server error log is
stored in this location:

Program Files\Microsoft SQL Server\MSSQL.n\MSSQL\LOG\ERRORLOG
When the log becomes full, SQL Server closes the file and creates a new one.
0Old log files have a number appended to them indicating the sequence in
which they occurred. SQL Server saves them as

Program Files\Microsoft SQL Server\MSSQL.n\MSSQL\LOG\ERRORLOG.n

In both cases, replace the n in the filenames with an integer number indicat-
ing the file/directory sequence number.

You may view these log files using any standard text file viewer, such as
Windows Notepad.

Windows Application Log

Microsoft Windows operating systems provide their own native logging facil-
ity, accessed through the Windows Event Viewer. The three standard logs
created by Windows are as follows:

v Application Log

v Security Log

v System Log

SQL Server writes error information to the Windows Application Log, as
shown in Figure 14-5.

24 0 Part V: SQL Server Administration

= 2

Actions

=] | Applcation .

Open Saved Log
¥ Conate "

] Syitem
[7] Forwarded tvents

Appkcation: and Senices Lo e 1003 (100) ¥ s
] DF5 Repheateon A e o A o T = Properties
I+ Hardware Events Lvent 5170, MSSQLEIRVIR % B0 king
5] Intermet Exglores e
E ical| | Genern | Detds b Save Ferets Aa
View b
B #t Office Disgnes | | [Cannat craste file C:\Prograen Files\Microsolt SOL Senver MSSGLIMESGU DATA MOV, mat
e 1 Office Smssiond | | [Because # already asts. Change the file path oo the file name, and retry the opertion. i Refresh
T B Hen ¥

Event 5170, MSSQUSERVER -

Figure 14-5: Loghme Agpiction B Seveseectd e
Sousce: MSSUSERVER, Logged: SBA200T BILIH P 3 Redresh
The Event ID: s Task Categany Server B e
. Level [Keywords Classic 4 L
Windows o A
. . OpCode
Application Hom i L s
Log.
|

The exact process for starting Event Viewer varies slightly depending on the
Windows operating system you use to run your SQL Server. Consult the doc-
umentation for that operating system if you're not familiar with Event Viewer.

SOL Server Management
Studio Log File Uiewer

In addition to the SQL Server error log and the Windows Application Log, SQL
Server creates separate log files for SQL Agent activity and Database Mail
events. As a SQL Server administrator, you may find it cumbersome to review
and correlate records from all those locations. Fortunately, SSMS provides a
Log File Viewer (shown in Figure 14-6) that consolidates all of this informa-
tion in a single location.

Here’s how to start Log File Viewer:

1. Open SSMS and connect to the database server of your choice.

2. Expand the Management folder.

3. Right-click the SQL Server Logs folder.

4. Choose View=>SQL Server and Windows Log from the pop-up menu.

Chapter 14: Troubleshooting SQL Server 2008 Problems 24 ’

Log File Viewer - VOSTRO —TE
Selectlogs [Load Log |l Export [@]Refresh T Filter .. 4 Search... I Help
S0L Agent
t J Log file summary: No filter applied

Date
) 11/18/2007 3:4

Currert - 11/18/2007
V| Archive #1-11/14/2

IJ Save the current displayed information on disk

frequency has changed from

Archive #2 - 10/10/2 @ 11/18/2007 3.46:08 PM MSSQLSSQLEXPRESS The time stamp counter of CPL on scheduler
Archive #3 - 9/28/20 (E) 11/18/2007 3:38:05PM Windows Error Reporting Fault bucket 516572746, type 1 Event Name
Amm:!“e g; :ﬁ 1 éﬁg €3 11/18/200733758PM Applcation Eror Faulting appiication iexplore exe, version 7.0.€
An::h::: m}.: 9/10/20 @ 11/18/2007 3:33:22PM MSSQLSERVER SQL Trace stopped. Trace |D ="2". Login Mar
= (7] Windows NT () 11/18/2007 3:33:12PM MSSQLSERVER 50L Trace 1D 2 was started by login "sa”.
] Application 3 (E) 11/18/2007 3:33:10PM MSSQLSERVER 5QL Trace stopped. Trace 1D = 2" Login Nar
DFS Replication (E) 11/18/2007 32501 PM MSSQLSERVER S0L Trace |0 2 was started by login "sa"
:“a’d“'are E"Ie"“s () 11/18/2007 3:24:40PM MSSQLSERVER SQL Trace stopped. Trace 1D = "2 Login Nar
K"g";:;ﬂi’;’;:;’_ﬂ o @) 11/18/2007 32208 M MSSQLSSQLEXPRESS CPU time stamp fraquency has changed from
ODiag (E) 11/18/2007 317:20PM MSSQLSERVER SQL Trace 1D 2 was started by login "sa".
OSession () 11/18/2007 316:43PM MSSQLSERVER SQL Trace stopped. Trace 1D = 2" Login Nar
Security () 11/18/2007 31628 PM MSSQLSERVER SQL Trace 1D 2 was started by login "sa”.
System - @ 11/18/2007 3.06:08 PM MSSQLSSQLEXPRESS CPUtime stamp frequency has changed from
d LI} L @ 11/18/2007 2.42.08 PM MSSQLSSQLEXPRESS The time stamp counter of CPU on scheduler
Status @ 11/18/2007 234:08 PM MSSQLSSQLEXPRESS CPUtime stamp frequency has changed from
Last Refresh: @ 11/18/2007 210:07 PM MSSQLSSQLEXPRESS CPUtime stamp frequency has changed from
11/18/2007 3:43:36 PM @ 11/18/2007 2.06:07 PM MSSQLSSQLEXPRESS CPUtime stamp frequency has changed from
@ 11/18/2007 2.02.07 PM MSSQLSSQLEXPRESS CPUtime stamp frequency has changed from
Fitter: None: @ 11/18/2007 1:34:07 PM MSSQLSSQLEXPRESS The time stamp counter of CPU on scheduler _
“ = 3
T View fiter settings
I Selected row details:
P Date 11/18/2007 3:46:08 PM -
Fi 186 || Log Windaws NT (Application) =
Igure R o Done (7144 records). 5
The SSMS '@ Sgturce MSSQLSSGLEXPRESS
egory Server
Log File Event 1073759719 o
Viewer. Close
|
Log File Viewer opens and displays a consolidated view of the SQL
Server error log and the Windows Application Log, sorted by the time of
s
each event’s occurrence, which helps you identify related entries from
different log files.
\\3

You can add different log files to this view by expanding the entries in the
Select Logs pane and checking the boxes to the left of any files you'd like to
import into Log File Viewer.

Monitoring Your Server with
Performance Studio

SQL Server Performance Studio provides you with a data warehouse-driven
way to monitor SQL Server performance. In this section, I explain how you
can configure and use Performance Studio to monitor your SQL Server
installations.

24 2 Part V: SQL Server Administration

Figure 14-7:
Configuring
Manage-
ment Data
Warehouse
Storage.
|

Configuring Performance Studio

Before you use Performance Studio for the first time, you must tell SQL
Server that you want to begin collecting performance data. Here’s how you
configure the Management Data Warehouse to begin collecting this data:

1. Open SQL Server Management Studio and connect to the SQL Server
instance you want to monitor.

2. Click the plus (+) icon to the left of the Management folder to expand

that folder.

3. Right-click Data Collection and select Configure Management Data
Warehouse from the pop-up menu.

You see the Configure Management Data Warehouse Wizard’s introduc-

tory screen.
4. Click the Next button to advance past the Welcome screen.

5. Choose Create or upgrade a management data warehouse and click
the Next button to continue.

You see the Configure Management Data Warehouse Storage screen,
shown in Figure 14-7.

' Configure Management Data Warehouse Wizard E@@
Configure Management Data Warehouse Storage
Chaoose a database to use as a management data warehouse and, when
configuring a data collection, the location of the cache directory on the target
Select a server and database to hast your management data warehouse.
Server name; HPLYM1
Database name: | Performance v Mew
- oo) mow>

Chapter 14: Troubleshooting SQL Server 2008 Problems

Figure 14-8:
Mapping
logins and
users.
|

6. Click the New button to create a new database for the storage of per-
formance data.

SQL Server opens the New Database window.

7. Provide a name for the performance statistics database and click the
OK button to create it.

8. Select the user accounts or groups you want to grant data warehouse
permissions using the check boxes to the left of their names in the
Users Mapped to This Login section of the Map Logins and Users
window.

[show this process in Figure 14-8.

' Configure Management Data Warehouse Wizard E@@

Map Logins and Users
Map logins and users to management data warehouse oles

Map loging and users to management data warehouse administrator, reader, and witer rales. The
reader role iz used for reports, and the writer rale is used to upload data. The administratar ole has
both reader and wiiter permissions.

Users mapped to this login:

Login User Type ~

#HMS_PolicyEventProcessingloginitf SOL login

HHS_PolicyT sqlExecutionLoginH SGL login
BUILTIMAdministrators BUILTIM%A... ‘windows group

MT AUTHORITYASYSTEM “wiindows user -

Databasze role membership for: Performance

rdw_admir
mdw_reader
rndw_writer
[] g

9. Select the role(s) you want to grant each user in the Database Role
Membership section of the window.

The available roles are the following:

e mdw_admin: Grants the user/group full administrative control of
the Management Data Warehouse.

e mdw_reader: Grants the user/group read-only permission to the
Management Data Warehouse.

e mdw_uwriter: Grants the user/group write permission to the
Management Data Warehouse.

243

24 4 Part V: SQL Server Administration

10. Click the Next button to continue.
11. Click the Finish button to create the Management Data Warehouse.

You see the status window shown in Figure 14-9 while SQL Server cre-
ates and enables the data warehouse.

¥ aEE
Configure Data Collection Wizard Progress
Click. Stop ta intenmupt the operation.

b o 5 Total 0 Emor
2 Remaining 3 Success 0 “warring

Details:
Action Status Message
Create management data warehouse Pe... Success

Run inztallation script on Performance: Success

Map loging and users Success
Start system collection sets In progress...
I Enable data collection

Figure 14-9:
Creating the
Manage-

g -
ment Data

Warehouse.
|

@
=

12. Click the Close button to exit the wizard.

Reviewing performance data

You can review performance data collected in the Management Data
Warehouse by viewing reports directly within SQL Server Management
Studio. Here’s how:

1. Open SQL Server Management Studio and connect to the SQL Server
instance you want to monitor.

2. Click the plus (+) icon to the left of the Management folder to expand
that folder.

3. Right-click the Data Collection folder and select the Reports sub-
menu from the pop-up menu. From this submenu, choose the Data
Warehouse submenu. From that submenu, select the name of the
report you want to view.

Figure 14-10:
Disk Usage
Summary
report.
|

Figure 14-11:
Server
Activity
Summary
report.
|

Chapter 14: Troubleshooting SQL Server 2008 Problems

SQL Server provides built-in reports covering the following areas:

* Disk Usage

e Query Statistics

e Server Activity

Figure 14-10 shows an example of the Disk Usage Summary report.

K. Microsoft SQL Server Management Studio

Fle Edt Vew Tods Window Communty el
Swewouery | Oy | Ff i Fa [y |5 ¥ o W @ (B8 B O
Object Explarer v B X | ~Disk Usage Su...54 PM - XPLYM1 | = %
Connect - 92 97 @] =RFaN= |
1= 48 ¥PLYML (5QL Server 10.0.1300 - XPLuM1imchap| a
3 Databases Disk Usage Collection Set
Seauriy
oronr Bbjects an KPLVMI a1 4113/2008 2:5452 PM
Replication
= (3 Management Thisrepett provides an oversisi of e disk spscs usedlfor sl detabaces on the server and arowth rends for s cats s and he log s for sach detabase fot the act 5
o Petry Managoment collchon poits between 4/12/2008 5 20:48 P and 4/13/2008 120013 PH
= (] Data Colection
= (2 Systom Data Callction Sets e =
3 ik Ussge
3 query Statistics DatabaseName ; | Stant ; Trend| Curont 3 | Avemge Start 3 Teend Cument 3 | Average
et Size Size Giowh Size Size Growih
o i MB) (MB) MB/D) (MB) (MB) (MB/Da)
%3 Resares Governar
Maintennce Flans AdveriugWoks 17244 17244 0 20 ————— 200 0
3 501 Server Logs
G nctwviy worior master 40— 400 0 [— 07 0
:ﬁ Databasa Ml
Disrbuted Transsction Coordiator ol 28 218 o o ——— o5)
(3 Legaey
SQL Server Agert 3
8 st server Agen mudh 1275 ee— 1550 275 1) —————— 100 0
Pafomance 10000 _— 15000 0 1000 = 1000 0
tempdb ap ———— 00 0 05 —————— 05 0
< | > 3
Ready

Figure 14-11 shows an example of the Server Activity Summary report.

« Microsofl SOL Server Management Studio

(B] 4 Hew ook Widew Comundy teb
L T W=, s e W A e
¥ X Server Acthat 57 P - TPLYMI . Dok Liage S 54 11 - 1m0 - x®
Bl .
Server 10.0. 1300 - PLITA]inchan b e el -
AT
ey Moy Lisags Dk /0 g Mebwark Lissge
41 (1 Poky Margmrent
(3 System Dt Cobischion Sets
7 et
T sy Ratetice
et acthety = 'I'F' =
i] Messe Geverrer
% [Mankenance Flans
8 364, Barver Loge 500 Server = Systers SOl Server = Syteey 50U Server = Systens Srstem
A sty Mtor
1 Ditisbise Mad
o E——— 41 Server waits
2 [Lagecy
& B 5O Servew Ayt
1.1 a1 B
Orher Lok - Corptsion
bobwork 110 W Latch I e Latch
L = Dufter 10
+ 3 ST "
Rasdy

245

24 6 Part V: SQL Server Administration

Tuning Your Database with Database
Engine Tuning Advisor

Every SQL Server deployment performs different tasks with a different mix

of queries. Some may involve a large number of simple data lookup opera-
tions, whereas others may perform repetitive complex joins. Each of these
instances requires unique configuration to achieve optimal performance. The
configuration that works best for the server performing simple queries won’t
work well on the server performing complex join operations.

SQL Server includes the Database Engine Tuning Advisor (DTA) to help you
optimally configure your database based upon your unique workload require-
ments. DTA makes recommendations to help you improve the physical
structure of your database. It also allows you to immediately implement the
recommendations or view the Transact-SQL statements required to imple-
ment the recommendations manually at a later time.

Here’s how to run DTA:
1. With SSMS open, choose Database Engine Tuning Advisor from the
Tools menu.
DTA opens and displays a connection window.
2. Fill in the connection details and click the Connect button.

DTA presents the tuning setup window shown in Figure 14-12.

Figure 14-12:
The |-,
Database |**
Engine |«
Tuning]
Advisor.

-l — — — — ———
3. Select the File radio button in the Workload section and navigate to the file

Chapter 14: Troubleshooting SQL Server 2008 Problems

\\3

Figure 14-13:
The
Database
Engine
Tuning

Advisor |**

Status
Screen.
|

you’d like to use as your workload.

The workload tells DTA what tasks you’d like to optimize your database
performance against. You may specify a SQL Trace file, an XML file, or
an SQL file. You should ensure that you choose a workload file that cor-
responds to common activity on your database server. DTA will use this
workload as the basis for all its recommendations.

I describe creating a SQL Trace workload in the section “Creating a
Trace with SQL Server Profiler,” earlier in this chapter. Be sure to use
the Tuning template when creating a trace for use with DTA.

4. Click the check box(es) to the left of the database(s) you’d like to tune.
5. Click the Start Analysis button.

DTA begins the analysis process and shows the status screen that
appears in Figure 14-13.

. Review the recommendations presented and select the check boxes to

the left of any you want to implement.

Figure 14-14 shows sample recommendations. If you want to apply any
recommendations immediately, select the check boxes to their left.

. Select Apply Recommendations from the Actions menu.

T Ly

247

24 8 Part V: SQL Server Administration

T Database Engine Tuning Advisor E@E\
x

File Edit Wiew Actions Took ‘Window Help
i b3 B AR P
izl Monkor XPLYM1 -mchapple 4/13/2008 31307 PM %PLYM1 - mchapple 4/13/2008 3114148 PM «»
B connect | F7
=] \B SPLVHT General Tuning Options Progress Recommendations Reports
W] mohappie 47132008 3144 || [partition Recommendations ¥ &
7 mchapple 4/13/2008 3130 -
] mchapple 4/13/2008 3111/ | |Index Recommendations ¥,
I (7 mehapele 413/2008 3063|| 7] Databaseame ¥ | Dbject Name ~ Reconmendation ¥ | Tagetof Reconmendation A
. ks 1 [Humanl [Employee] drop i PeEmployastanagedl
Figure 14-14: ks 3 M EnpleveeDepamentbion] dop ¢ BErplyesDepsimanbliss
I Ad ks 3 [H [Employe=D: History] drop K B EmployssDapstmentl
Database [) Adverturewoks 1 [HumsnResources]PobCandidste] drop g B eECandidsts Enployssl
Engine [F [Adverturewoks T [Person] [addess] drop i) PobddhessStateRiouinsalD:
g [() Adverturewoks = [Person][Contact] drop i P4ContastEmalbddross
Tuning & 3|l 0 advertursweks 3 [Production] [BIDM aterizls] drop SR BB storakUaidasn
. [[adverturewoks = [Production] [ProductReview] drop i PProdustavisuPradustt
AdV|Sor [#] 1] Adverturewforks = [Production] [TransactionHistary] drop iy B TransactiontistonBaian
B General A 7 75 At et 1 1t T st it e e 1 Temanmicllionns eocts ¥
recommen- _
dations. | st || I show esising cbiects @) See Fepots fo sizes of esisting obiects 3
— | T sossion completed successfuly. Connections: 3

8. Click the OK button to apply the recommendations immediately.

Alternatively, you may use the Schedule for later option to apply the rec-
ommendations at a future time.

9. Review the status screen and click the Close button to complete the
process.

Chapter 15

Replicating Data across
Multiple Servers

In This Chapter

Using replication to share SQL Server data across multiple servers
Publishing data from the primary server
Subscribing to published data

S)metimes a single database server isn’t sufficient to meet all your
business requirements. You may need to distribute your data among
multiple servers to meet growing demand. Fortunately, SQL Server provides

several replication options to help you keep the contents of multiple data-
bases synchronized.

Some scenarios in which you might want to employ replication include:

v You have multiple, geographically separated sites that need access to
information on your SQL Server database. Connections between the

sites are slow and expensive, so you want to host a local copy of the
database at each site.

»* You want to provide travelling users with an offline copy of a portion of
your database for use on the road.

v Your organization has complex reporting needs, and you want to pro-
vide the reporting group with an offline copy of your database that the

group can use without affecting the performance of your production SQL
Server environment.

250 Part V: SQL Server Administration

Understanding Replication

Replication allows you to transport copies of your databases between different
SQL Server instances and keep those copies up-to-date as the database changes.
SQL Server provides several different replication technologies, each of which
uses different techniques to provide varying levels of currency in the data.

Server roles

In any SQL Server replication environment, there are three server roles that
must be filled: the publisher, the distributor, and the subscriber.

Figure 15-1 illustrates the flow of data in this model from the publisher to the
distributor and on to the subscribers.

Publisher

The publisher is the ultimate source of the data published in any replication
scenario. It contains the “master” copy of the database and provides this
data to the distributor.

Distributor

The distributor is responsible for managing the distribution of published data
to the subscribers. In many cases, the publisher and distributor run on the
same database server, referred to as a local distributor. In high-performance
environments, DBAs often separate the distributor onto a separate database
server, known as the remote distributor.

Subscriber

Subscribers are the end receivers of the published data. They may contact
the distributor periodically to check for updates (known as the pull subscrip-
tion model, shown in Figure 15-2). Alternatively, they may wait until the dis-
tributor contacts them with a notification that an update is available (known
as the push subscription model, shown in Figure 15-3).

You should also be aware of the relationships between publishers, distribu-
tors, and subscribers. Each publication must have one and only one distribu-
tor. However, a single distributor may contain publications from multiple
publishers. Each one of those publications may, in turn, serve multiple sub-
scribers. This is the model illustrated in Figure 15-1, shown previously.

Chapter 15: Replicating Data across Multiple Servers 25 ’

W o//@
=
i o//@
Q

Publisher Publisher

7

1ig

Distributor

//@/

e

|
Figure 15-1:
The SQL
Server
replication

=G0 iy &Iy

— Subscriber Subscriber Subscriber

a1

=

=

252 Part V: SQL Server Administration

a1

Distributor

1sanbay ——

-<— Update

|
Figure 15-2:
The pull
subscription
model.
|

W o//@
=

Subscriber

Articles and publications

In the previous section, you probably noticed that the terminology used for
replication is borrowed from the publishing industry. The publisher/distribu-
tor/subscriber model used for replication is exactly the same as that used to
publish and distribute magazines.

Chapter 15: Replicating Data across Multiple Servers 253

i o//@
=

Distributor

|
Figure 15-3:
The push
subscription
model.
— Subscriber

W o//@
=

You can continue with this analogy to describe the type of information that
the publisher makes available to subscribers. The publisher selects various
articles that it desires to publish and then bundles them together into a pub-
lication that it makes available to subscribers through the distributor.

254 Part V: SQL Server Administration

SQL Server publishers may create articles that correspond to the following
types of database object:

v Tables
v Views
v Stored procedures

v User-defined functions

Replication types

There’s one more set of technologies I need to discuss before [move on to
the process of creating and subscribing to publications: the types of replica-
tion supported by SQL Server 2008. Three options are available to you: snap-
shot replication, transactional replication, and merge replication.

Snapshot replication

Snapshot replication is the simplest form of SQL Server replication. In this
scenario, the publisher periodically provides the distributor with a complete
copy (or “snapshot”) of the publication. The distributor, in turn, provides
that copy to each one of the subscribers.

Snapshot replication may be simple to understand, but it can also be quite
costly in terms of resources consumed, especially if your publication con-
tains large amounts of data that are infrequently updated. Consider the case
of a large product catalog that receives a massive update once per quarter
but also receives minor price changes on a daily basis. If you use snapshot
replication, you will need to transfer the entire product catalog to each sub-
scriber during each update interval.

Snapshot replication also does not allow the subscriber to perform any
updates to the database. It is strictly a one-way replication model, passing
data from the publisher to the subscriber and not allowing any flow of data in
the reverse direction.

Transactional veplication

Transactional replication steps in where snapshot replication falls short. It
begins by performing an initial snapshot replication to create a baseline at
the subscriber. However, from that point forward, rather than transfer the
entire publication, it transfers only update information. Here’s how transac-
tional replication works:

Chapter 15: Replicating Data across Multiple Servers

1. The subscriber receives an initial snapshot from the distributor and
uses it to create a baseline database.

2. The Log Reader Agent running on the distributor monitors the publish-
er’s transaction log.

3. When the Log Reader Agent detects an INSERT, UPDATE, or DELETE
statement (or any other statement that modifies data), it stores them in
the distributor’s distribution database.

4. The Distribution Agent retrieves committed transactions from the distri-
bution database and sends them to the subscriber.

The Distribution Agent runs in different places, depending upon the subscrip-
tion model in use. In the case of a push subscription, the Distribution Agent
runs on the distributor. This allows it to monitor the distribution database for
changes continuously and push those changes out to subscribers when neces-
sary. In the case of a pull subscription, the Distribution Agent runs at the sub-
scriber, allowing it to reach out to the distributor when the subscriber wants
to receive an update.

As does snapshot replication, the basic transactional replication model uses
a one-way data flow; subscribers cannot make updates to the publisher.
However, two variations on basic transactional replication exist that allow
such exchanges: bidirectional transactional replication and peer-to-peer
transactional replication. These approaches are beyond the scope of this
book.

Some common scenarios that are particularly well-suited for transactional
replication include:

v Business requirements dictate a very short period of time between when
updates are made at the publisher and received at the subscriber (also
known as “low latency”).

v Applications require access to each intermediate state of a database,
rather than just the final end state.

v One of the participants in the replication runs a DBMS other than SQL
Server (such as Oracle).

Merge replication

Merge replication is designed to support the incorporation of data modifica-
tions made at either the publisher or a subscriber. In contrast to transac-
tional replication, which relies upon the use of the transaction log, merge
replication uses a series of triggers to detect changes in the database and
propagate those changes to other participating databases.

255

256 Part V: SQL Server Administration

You can use merge replication in any case in which the subscribers need to
update data and want those changes reflected at the publisher. It’s also quite
useful when the subscribers need to take data offline, make changes, and
then later synchronize with the publisher by applying those changes.

Here’s the basic idea behind merge replication:

1. The Merge Agent applies the initial snapshot to all subscribers.

2. Triggers notify the Merge Agent each time a modification occurs to a
published table.

3. The Merge Agent resolves any conflicts that may exist and propagates
the changes to the publisher and other subscribers.

The trick with merge replication is that conflicts may occur that require
resolution. For example, suppose that you're using merge replication to allow
users to set the prices of items in a retail store. Also suppose that three dif-
ferent managers check out laptops at the beginning of the day and make pric-
ing changes. Matthew changes the price of carrots at 2 p.m. and synchronizes
his changes at 4 p.m. Renee changes the price at 10 a.m. but doesn’t synchro-
nize her changes until 5 p.m. Finally, Christopher changes the price at

3 p.m. and synchronizes immediately. Which price change should SQL

Server retain?

The answer to that question is complex. You could argue that Renee’s change
was the last to synchronize, so it should be permanent. On the other hand,
you could make a similar argument that Christopher was the last to change
the price, so his change should be permanent.

By default, SQL Server uses the following merge replication conflict resolu-
tion protocol:

v~ If one of the changes is made on the publisher, that change is made
permanent.

v~ If both changes are made on subscribers using client subscriptions (nor-
mally used in pull subscriptions), the change from the first subscriber to
synchronize is made permanent.

v 1f both changes are made on subscribers using server subscriptions
(normally used in push subscriptions), the change from the subscriber
with the highest priority value is made permanent.

There isn’t a single “correct” answer to this question. Therefore, SQL Server
allows you to modify this default behavior by selecting a conflict resolver
during the merge replication setup process. You select this conflict resolve
on the Article Properties screen, shown in Figure 15-4.

Figure 15-4:
Merge
replication
article
properties.

Chapter 15: Replicating Data across Multiple Servers 25 7

é Article Properties - stock = | B

Properties | Resolver

A resolver is a module called by the Merge Agent that handles merge
conflicts.

! Use the default resolver

) Use 3 custom resolver {registered at the Distributor):

Microsoft SQL Server Additive Conflict Resolver -
Microsoft SQL Server Averaging Corflict Resolver =
Microsoft SQL Server DATETIME (Earier Wins) Corflict Resolver |=
Microsoft SGL Server DATETIME {Later Wins) Conflict Resolver
Microsoft SQL Server Download Onfy Corflict Resolver

Microsoft SQL Server Maximum Corflict Resolver il
Mirrnenft Sl Server Meme Tevt Calimne Carflid Resnher

4 n

Enter information needed by the resolver:

[] Bequire verification of a digital signature before merging

[Allow Subscriber to resolve corflicts interactively during on-demand
synchronization

ok | [Conce | [Hebp

The Article Properties screen allows you to select from the COM Conflict
Resolvers predefined by Microsoft and listed in Table 15-1. One of those
resolvers, the Stored Procedure Resolver, allows you to create a stored pro-
cedure with user-defined logic specifying how SQL Server should resolve

conflicts. Alternatively, if you're a developer with COM skills, you can create
your own COM Conflict Resolver.

Table 15-1 Merge Replication COM Conflict Resolvers

Resolver Name Description

Additive Conflict Resolver Adds the conflicting values together to

determine the winning value.

Averaging Conflict Resolver Averages the conflicting values to deter-

mine the winning value.

DATETIME (Earlier Wins) Conflict Works only with DATETIME columns;

Resolver the earlier value wins.
DATETIME (Later Wins) Conflict Works only with DATETIME columns;
Resolver

the later value wins.

Maximum Conflict Resolver The mathematically larger value wins.

Minimum Conflict Resolver The mathematically smaller value wins.

(continued)

258 Part V: SQL Server Administration

Table 15-1 (continued)

Resolver Name Description

Merge Text Conflict Resolver Works only with text columns; the two
columns are combined to form the
winner.

Subscriber Always Wins Conflict The value at the subscriber always wins.

Resolver

Upload Only Conflict Resolver Changes uploaded to the publisher
win; changes on the publisher itself are
ignored.

Download Only Conflict Resolver Changes on the publisher win; changes
uploaded to the publisher are ignored.

Stored Procedure Resolver Allows you to specify a stored procedure
containing custom conflict resolution
logic.

Replication is a complex topic with many technical nuances. In the remainder
of this chapter, I describe how to set up a simple snapshot replication sce-
nario. My intention is to make sure that you have a basic understanding of
SQL Server’s replication capabilities and can recognize when replication might
play a useful role in your organization. If you intend to implement replication
in a production environment, I strongly recommend reading one of the many
books dedicated to this topic alone.

Publishing Data with
Snapshot Replication

The previous section covers the basics of replication; in this section, I turn to
the actual implementation of replication in a SQL Server environment using
snapshot replication. This is a three-step process. In this section, I explain
the first two steps: creating a distributor and creating a publisher. The next
section covers the third step: creating subscribers.

Creating a distributor

The first thing you must do when enabling snapshot replication is create a
distributor. As mentioned earlier in this chapter, most small environments

Chapter 15: Replicating Data across Multiple Servers 259

use the local distributor model, where the publisher and distributor reside
on the same server. | assume that’s the case as [walk you through the dis-
tributor creation process:

1. Open SQL Server Management Studio and connect to the database
server that you want to serve as the publisher/distributor.

2. Right-click the Replication folder and choose Configure Distribution
from the pop-up menu.

The Configure Distribution Wizard begins.
3. Click Next to advance past the wizard’s welcome screen.

4. Select the option that this server will act as its own distributor and
click the Next button to continue.

Figure 15-5 illustrates this step. If you want to use a remote distributor
instead, you must first create the distributor and then return to this
screen to select it from the list.

=" Configure Distribution Wizard =HACE X")

Distributor
Use this server as its own Distibutor or select another server as the Distibutor.

The Distributor is the server responsible for storing replication information used during
synchronizations

@ WOSTRO will act as its own Distributor; SQL Server will create a distribution database and
log

Use the following server as the Distributor (Mote: the server you select must already be
configured as a Distributor):

|
Figure 15-5:
Selecting
the dis-

tribUtor- ‘ Help < Back |[Neat > ” Finish =] || Cancel
I

5. Accept the default selection — that SQL Server Agent should start
automatically — and click the Next button to continue.

Replication requires SQL Server Agent, so it’s a good idea to let it start
automatically when the computer starts. If you don’t select this option,
you will need to manually start SQL Server Agent each time the com-
puter restarts, or replication will fail.

260

Part V: SQL Server Administration

6.

Type a UNC name or local file path for snapshot file storage into the
Snapshot Folder field and click the Next button to continue.

If you're using only push subscriptions, you may provide either a local
path (for example, C: \Program Files\Microsoft SQL Server\
MSSQL.1\MSSQL\ReplData). If you want to support pull subscriptions,
you must provide a UNC path (for example, \ \myserver\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\ReplData).

. Accept the default name and paths for the distribution database and

click Next to continue.

. Select any other servers that may act as publishers to this distributor

and click the Next button to continue.

Figure 15-6 illustrates this process. By default, the distributor may act
as a publisher to itself. If you want to allow additional publishers, select
them here.

=J* Configure Distribution Wizard oS

|
Figure 15-6:
Selecting
authorized

Publishers

V| VOSTRO distribution]

Enable servers to use this Distributor when they become Publishers.

Publishers:
Publisher - Distribution Database

Add v

publishers. ‘

Help < Back |[Mext >]| Finigh >>| || Cancel |

9.

10.

Click the Next button to advance to the confirmation screen.

If you want to defer the distributor configuration to a later date, you
may deselect the Configure Distribution check box and instead use the
Generate a Script File with Steps to Configure Distribution check box.
This option creates a reusable script.

Review the choices presented in the Complete the Wizard screen and
click Finish to configure your distributor.

Figure 15-7:
Distributor
configura-
tion status.

|

Chapter 15: Replicating Data across Multiple Servers 26 ’

When you click Finish, SQL Server presents the status screen shown in
Figure 15-7. It may take a few minutes for the configuration to success-

fully complete.

+* Configure Distribution Wizard

Configuring. ..
Click Stop to interrupt the operation.

@ oo

Details:
Action
@ Configuring the Distibutor
i@ Enabling Publisher VOSTRO"
i@ Configuring SQL Server Agent to start au...

3 Total
3 Success

Status
Success
Success

Success

0 Emor
0 Waming

Message

Bepot *

Creating a publication

After you’'ve successfully created a publisher/distributor, you next need to
create a publication to which other servers may subscribe. The publication
contains those articles (database objects) that you would like to replicate
across servers. Here’s how to create a publication:

1. With SSMS open, expand the Replication folder of the server that will
serve as the publisher.

2. Right-click Local Publications and select New Publication from the

pop-up menu.

The New Publication Wizard starts.

3. Click the Next button to launch the wizard.

4. Choose the publication database and click the Next button, as shown

in Figure 15-8.

5. Choose the publication type and click the Next button.

In this example, I use the Snapshot publication type, as shown in

Figure 15-9.

262 Part V: SQL Server Administration

7% New Publication Wizard [E=REC =X
Publication Database
Choose the database that contains the data or objects you want to publish.
Databases:
MDW
e
scan
searchspy
I
Figure 15-8:
Choosing a
publication
database. | (i) (et
I
% New Publication Wizard i]
Publication Type
Choose the publication type that best supports the requirements of your
application.
Publication type:
["1 Sniapshot publicatio
il_[Transactional publication
‘:11 Transactional publication with updatable subscriptions
% Merge publication
Publication type descriptions:
The Publisher sends a snapshot of the published data to Subscribers at scheduled intervals. |
Transactional publication:
The Publisher streams transactions to the Subscribers after they receive an initial snapshot of | =
E— the published data
. Ti i ication with i
Flgul'e 15-9: The Publisher streams transactions to SQL Server Subscribers after they receive an initial
. snapshot of the published data. Transactions originating at the Subscriber are applied at the:
Choosing a || |rubisher.
publication
type. |) (s
I

6. Choose the article(s) you wish to publish and click the Next button.

You may select from any tables, stored procedures, or user-defined
functions within the publication database, as shown in Figure 15-10.
Optionally, you may click the Article Properties button to set advanced
properties for each article.

Chapter 15: Replicating Data across Multiple Servers 263

1+ New Publication Wizard = HCT X

Articles
Select tables and other objects to publish as articles. Select columns to fitter
tables

Objects to publish:
=[] Tables
- {¥[:Z] Stored Procedures

Adicle Properties -

Show only checked atticles in the list

|
Figure 15-10:
Choosing
articles
for the
pUbllcatlon ‘ Help < Back | [Mead > m
|
7. Click Next to advance past the Filter Table Rows screen.
If you want, you may use a table filter to limit the rows that are repli-
cated to subscribers for security or performance reasons. For example,
if you're replicating a sales catalog to retail stores, you may want to
filter out catalog entries for items not available at a particular store.
8. Click the Create a Snapshot Immediately check box and click the Next
button to continue.
You may also schedule the Snapshot Agent to run at future time(s) on
this screen.
9. Click the Security Settings button and provide the appropriate account
details for the Snapshot Agent.
You must provide two items on the screen shown in Figure 15-11:
\NG/
§g~“ e A domain or machine account used to run the Snapshot Agent.

For security reasons, Microsoft does not recommend running the
Snapshot Agent using the SQL Server Agent account.

¢ A method for connecting to the publisher, either by impersonating
the process account or using a specified SQL Server login.

10. Click OK to close the Snapshot Agent Security screen and then click
the Next button to continue.

11. In the next screen of the New Publication Wizard, click the Next
button to accept the default option of creating the publication immedi-
ately upon completion of the wizard.

264 Part V: SQL Server Administration

Figure 15-11:
The
Snapshot
Agent
Security
screen.
|

|
Figure 15-12:
Publication

status.
—

Snapshot Agent Security

Process accourt:

Password:

Conffimn Password:

practice.)

Connect to the Publisher

Login:

Password:

Corfirmm Password

@ Bun underthe following Windows account

Specify the domain or machine account under which the Snapshot Agent process will un.

WOSTROmchapple

Example: domain‘\account

@ Byimpersonating the process accourt

Using the following SQL Server login:

-

Run under the SQL Server Agent service account (This is not a recommended security best

oK |

| Cancel

Help

As with the creation of a publisher/distributor, you may also choose to
create a script that you can use to generate the publication at a later date.

12. Provide a publication name in the Publication Name text box and
click the Finish button to create it.

SQL Server presents the status screen shown in Figure 15-12. The pro-
cess of creating the publication may take a few minutes to complete.

i+ New Publication Wizard = 23
Creating Publication
Click Stop to intemupt the operation.
" . 3 Total 0 Emor
us® 2 Remaining 1 Success 0 Waming
Details:
Action Status Message
@ Cresting Publication "My TestPub’ Success
() Adding article 10of 2 In progress...

Starting the Snapshot Agent

Subscribing to a Publication

Figure 15-13:
Selecting

a pull sub-
scription.
|

The final step in setting up replication is configuring subscribers for the pub-
lication. You can do this at either the subscriber or the publisher, using the

following process:

1. With SSMS open, expand the Replication folder on the publisher.
2. Expand the Local Publications folder.

3. Right-click the publication to which you want to create a subscription

and select New Subscriptions from the pop-up menu.
SQL Server starts the New Subscription Wizard.

4. Click Next to advance past the Welcome screen.

5. Verify that the Publication pages shows the appropriate publisher and

publication. Click the Next button to continue.

6. Choose either a push or pull subscription and click the Next button to

continue.

The choice of a push or pull subscription (described earlier in this chap-

ter, in the “Server roles” section) determines where the Distribution

Agent runs. For push subscriptions, the Distribution Agent runs on the

distributor. For pull subscriptions, the Distribution Agent runs on the
subscriber. In this example, I choose a pull subscription, as shown in
Figure 15-13.

B New Subscription Wizard E@@

Distribution Agent Location
Choose where to n the Distribution Agent(s).

For the subscriptions | create in this wizard:

() Run all agents at the Distributor, XP4YM [push subscriptions)

This option makes it easier to administer the synchronization of subscriptions centrally.

(%) Run gach agent at its Subscriber (pull subscriptions]

Thiz option reduces the processing overhead at the Distributor and lets each
Subscriber administer the synchronization of its subscription.

Run the wizard more than once if you want some agents to run at the Distibutor and some to
run at Subscribers.

[Hel <Back | [Ne> | [Finsh>sl [Caneel

Chapter 15: Replicating Data across Multiple Servers

265

266 Part V: SQL Server Administration

\\3

Figure 15-14:
Selecting
subscrib-

ers and
subscription
databases.
|

7. Choose one or more subscribers using the check boxes, and choose

subscription databases using the pull-down menus. When finished,
click the Next button to continue.

Figure 15-14 illustrates this process. If you want to add a subscriber not
already shown, click the Add Subscriber button to configure the server.

You may use this wizard to configure subscribers running Microsoft SQL
Server, Oracle, or IBM DB2 databases.

22 New Subscription Wizard [
Subscribers
Choose one or more Subscribers and specify each subscription database.
Subscribers and subscription databases:
Subscriber < Subscription Database
V| VOSTRO sales_replica
| Add Subscriber A ‘
| Help < Back | [Next >] Cancel
8. Click the ellipses (. . .) button to configure Distribution Agent Security.

10.

After configuring the appropriate information, click the Next button to
continue.

You need to specify account information for the subscription connec-
tions. Doing so is similar to the process shown in Figure 15-11 for the
Snapshot Agent.

. Choose a Distribution Agent schedule and click the Next button to

continue.

By default, the Distribution Agent synchronizes continuously. You may
choose to make it synchronize on demand or define a custom schedule.

Choose when to initialize the subscription and click the Next button to
continue.

Chapter 15: Replicating Data across Multiple Servers

11.

12.

Normally, you should accept the default option Immediately. If you set
up a delayed synchronization schedule, you may opt to delay the sub-
scription initialization until the first synchronization occurs.

Click Next to accept the default option to create the subscription
immediately upon exiting the wizard.

As with other processes described in this chapter, you also have the
option to create a script that will generate the subscription at a later
time.

Click the Finish button to create the subscription.

SQL Server presents a status window similar to that shown previously in
Figure 15-12 and notifies you when the operation completes.

Monitoring Replication

SQL Server provides a simple mechanism for viewing replication status: the
Replication Monitor, shown in Figure 15-15.

Figure 15-15:
The SQL
Server
Replication
Monitor.

Replication Monitor S -
File Action Go Help
-4 Replication Monitor
B3 My Publishers .
& VOSTRO Publications | Subscnption Vatch .E!S‘J Agerts |
Show Snapshot Subscriptions - Show: [All subseriptions -~

[Status | Subscription | Publication Last Synchronization |
%3] | Running [VOSTRO) jsales_replicz] [sales]: MyTestPub 11/21/2007 12:44:21 PM

Replication Monitor allows you to track the following:

v The status of each publication on a server, including

e Number of subscriptions active
* Number of subscriptions currently synchronizing
e Average performance

e Worst performance

267

268 Part V: SQL Server Administration

v The status of each subscription, including

e The subscribing database

e The publication

e The date and time of the last synchronization
v The status of the following agents:

¢ Snapshot Agent

* Log Reader Agent

® Queue Reader Agent

* Maintenance Jobs

To invoke Replication Monitor, simply right-click the Replication folder in
SSMS and select Launch Replication Monitor from the pop-up menu.

Part VI

Protecting
Your Data

The 5th Wave By Rich Tennant

ORYFTENNANT ? o
N

ow maybe these folks got a
decent disaster vecovery plan
and maybe they don’t...

In this part . . .

K nowing how to protect your SQL Server data
from unwanted intruders and natural or technical

disasters is a critical requirement, and this part covers
the basics of doing just that. You find out how to imple-
ment access controls to limit the rights of database users
and how to use encryption to protect your information
from unauthorized access. An entire chapter in this part
is dedicated to introducing the concept of transactions
and explaining how they can protect the integrity of

data stored within your database. Finally, you discover
techniques for backing up your database so that you can
restore your data in the event of a disaster.

Chapter 16

Protecting Your Data
from Prying Eyes

In This Chapter

Creating database logins and user accounts

Using roles to manage user rights efficiently
Protecting data with encryption in storage and transit
Auditing SQL Server activity

Databases often contain extremely sensitive information that is valuable
to your organization and your customers. In many cases, laws, regula-
tions, or good business practices dictate that you protect that information
from disclosure to unauthorized individuals.

In this chapter, I discuss the mechanisms offered in SQL Server 2008 that
help you protect your data from unauthorized access. I describe the process
of managing database users and roles, grouping objects with schemas, using
encryption to protect data in storage and transit, and enabling database
auditing to meet compliance requirements.

Creating and Managing Logins

As I discuss in Chapter 2, SQL Server has two different authentication modes:
Windows Authentication mode and SQL Server and Windows Authentication
(mixed) mode. In either case, you may grant Windows users permission to
connect to and manipulate SQL Server databases. If you use mixed mode
authentication, you may also create dedicated SQL Server logins that exist
only on the database server.

2 72 Part VI: Protecting Your Data

Creating server logins

Creating a database user follows the same basic process, whether you're
granting SQL Server permissions to a Windows user or creating a SQL Server
login account. Here are the basic steps:

1. Open SQL Server Management Studio and connect to the SQL Server
instance for which you want to create a new login.
2. Expand the Security folder.

3. Right-click the Logins folder and select New Login from the pop-up
menu.

SSMS displays the Login - New window, shown in Figure 16-1.

4. Click the radio button corresponding to the type of login you want to
create: Windows authentication or SQL Server authentication.

5. Provide a login name in the appropriate text box.

B Login - New EE&®
5 ot + 74 Hel

 General S seibl - [Hep

5 Sever Rcles

5 User Mapping Login name: VOIS TR admiristrator

i Securables
2 Slatus (& Windows authentication

) SOL Server authentication

) Mapped to cettificate
) Mapped to aspmmetiic key
] Map to Credential
Mapped Credential:
Server.
HPLVM 1

Connection:

I | LM 1\mchapple

4] View connestion propetties

Figure 16-1:
Creatmg a Fieady Default database: master &
new data- N <delad> v
base login.
|

If you chose SQL Server authentication, simply provide a login name
(such as jdoe). If you chose Windows authentication, provide it in the
form DOMAIN\username (such as MYDOMAIN\jdoe). In addition to
selecting Windows domain users, you may also create a login corre-
sponding to a Windows domain group.

Chapter 16: Protecting Your Data from Prying Eyes 2 73

6. Provide SQL Server authentication details, if applicable.

If you are creating a SQL Server authentication login, provide a pass-
word by typing it in the Password text box and the Confirmation text
box. You may also choose whether you want to enforce the server’s
password complexity and expiration policies or force the user to change
the password at the next login.

7. Use the drop-down lists to change the login’s default database and lan-
guage, if you want.

8. Click the OK button to create the login.

Removing database logins

If you want to remove an existing login (using either SQL Server authentica-
tion or Windows authentication), simply right-click it in the Logins folder of

” SSMS and choose Delete from the pop-up menu.
h\

You cannot delete a login associated with an active server session. You must
first disconnect the user before deleting the login.

Adding Database Users

Once you’ve created server logins, you must explicitly grant those logins
access to databases by creating corresponding database users. Here’s how
you create a new database user:

1. With SSMS open, connect to the server containing the database where
you would like to add a user.
2. Expand the Databases folder.

3. Expand the folder of the databases where you would like to add a
user.

4. Expand the Security folder of that database.

5. Right-click the Users folder and select New User from the pop-up
menu.

SSMS displays the Database User - New window shown in Figure 16-2.

2 74 Part VI: Protecting Your Data

Figure 16-2:
Creating a
new data-
base user.

| || Database User - New = | B | |
Selecta page : . =
S - Helj
2 General ';g e L5 Help
2 Securables
12" Extended Propertiss User name: VOSTROmchapple
@ Login name: VOSTRO mchapple| D
Default schema: D

Schemas owned by this user:
Owned Schemas -

_accessadmin

) db_backupoperator
db_datareader
db_datawriter
db_ddladmin

Connechion db_denydatarsader

Ak Amensd=toritar

m

Server,
VOSTRO Database role membership

R

Connection: lembers; i

sa

_accessadmin
db_backupoperator
db_datareader
db_datawriter
db_ddladmin
db_denydatareader
db_denydatawriter >

o]

4 View connection properties

m

Progress
Ready

Note that Login Name isn’t the only user option on this page. SQL Server also

allows you to create database users associated with digital certificates, asym-
metric encryption keys, and no login. These advanced options are beyond the
scope of this book.

6. Provide the name of the login you wish to associate with the database
user in the Login Name text box.

You may click the ellipses (. . .) button if you want to search for the
login.
7. Provide the name of the database user in the User Name check box.

You may choose anything you want. However, best practice dictates
that you use the same name for both the username and the login name.

8. Click the OK button to create the user.

If you want, you may explicitly grant permissions to database users in the
Securables page of the New Database User window. However, database roles
offer a much more efficient way to manage user permissions. I discuss the
creation and management of database roles in the next section.

Chapter 16: Protecting Your Data from Prying Eyes 2 75

Managing Rights with Roles

Managing individual user permissions on a large SQL Server deployment can
be an absolute nightmare for database administrators. It’s very difficult to
track the large number of permissions associated with each user account,
and the sheer complexity of this approach makes errors very likely.

SQL Server helps avoid these problems by providing server and database
roles. You may define roles that are associated with a type of user, rather
than an individual, and then assign that role the permissions required by that
type of user. You may then associate each user with one or more roles neces-
sary to complete the user’s job function.

Understanding fixed server roles

SQL Server provides eight built-in server-level roles that define sets of user

permissions that apply to the entire server. These fixed server roles appear
in Table 16-1. These are the only possible options for server-wide roles; you
can’t create your own server roles.

Table 16-1 SQL Server 2008 Fixed Server Roles

Role Name Description

Bulkadmin Authorized to perform bulk insert operations

Dbcreator Authorized to create, alter, drop or restore
any database on the SQL Server instance

Diskadmin Authorized to manage disk files

Processadmin Authorized to end processes running on the
SQL Server instance

Securityadmin Authorized to grant, revoke and deny server
and database permissions and reset passwords

Serveradmin Authorized to shut down the server and
modify server configuration options

Setupadmin Authorized to add and removed linked server
instances

Sysadmin Authorized to perform any action on the SQL

Server

2 76 Part VI: Protecting Your Data

You may grant fixed server roles only to server logins. Database users may
not be members of a server role. Here’s how to view and modify the member-
ship of a fixed server role:

1. With SSMS open, connect to the server instance for which you want to
modify role membership.

2. Expand the Security folder.

3. Expand the Server Roles folder.

4. Right-click the role you want to modify and choose Properties from
the pop-up menu.

SSMS displays the Server Role Properties window, shown in Figure 16-3.
You may review the list of role members that appears within this
window.

5. Use the Add or Remove buttons to modify role members.

[d Server Role Properties - sysadmin o

Selecta page
2F General

,;S Scipt = [Help

Server role name:

Server role membership:

Role Members

sa

A NTAUTHORITY\SYSTEM

A BUILTIN\Administrators

;f- vostro®SGL ServerMSSAL UserSvostroSMSSALSERVER

A VOSTRO\SQLServerSQLAgent UserSVOSTROSMS SQLSERVER

Connection
Server:
VOSTRO
Connection:
sa
I
3 View connection properties
Figure 16-3:
Modifying |[™°®=*
Ready
server role
Add... Remove
member-
ship. o

Chapter 16: Protecting Your Data from Prying Eyes 2 77

QNING/ By default, any member of the Administrators group on the local Windows

Y server is also a member of the sysadmin fixed server role. Generally speaking,
you should practice separation of privileges and not grant this permission

to system administrators. Rather, it should be reserved for database admin-
istrators. You may change this default behavior by removing the BUILTIN\
Administrators group from the sysadmin role.

Understanding fixed database roles

Just as SQL Server provides built-in fixed server roles to grant server-wide
permissions, it also provides fixed database roles to grant users predeter-
mined sets of permissions to individual databases. The SQL Server 2008 fixed
database roles appear in Table 16-2.

Table 16-2

Fixed Database Roles

Role Name

Description

db_accessadmin

Authorized to add or remove database users
corresponding to Windows users/groups and
SQL Server logins

db_backupoperator

Authorized to back up the database

db_datareader

Authorized to read any data from all user
tables

db_datawriter

Authorize to add, delete or modify data in any
user table

db_ddladmin

Authorized to run any DDL command, modify-
ing the structure of the database

db_denydatareader

Prohibited from reading data stored in any
user table

db_denydatawriter

Prohibited from adding, deleting or modifying
data from any user table

db_owner

Authorized to perform any database con-
figuration activity, including dropping the
database

db_securityadmin

Authorized to modify role membership and
database permissions

You may grant database role membership to any database user by following
these steps:

2 78 Part VI: Protecting Your Data

Figure 16-4:
Modifying
database
role mem-
bership.
|

1. With SSMS open, connect to the server instance that contains the data-

base for which you want to modify role membership.
2. Expand the Databases folder.

3. Expand the folder corresponding to the database for which you want
to modify role membership.

. Expand the Security folder.
. Expand the Roles folder.
. Expand the Database Roles folder.

g S U1 A

. Right-click the role you want to modify and choose Properties from
the pop-up menu.

SSMS displays the Database Role Properties window, shown in Figure 16-4.
You may review the list of role members that appears within this
window.

8. Use the Add or Remove buttons to modify role members.

J Database Rale Properties - db_owner | (B |
Selecta page I 7
44 General ';S Soript ~ L3 Help
E‘“ Extended Properties
Role name: db_owner
Qwner: dbo]
Schemas owned by this role:
Owned Schemas -
db_accessadmin L
dbo
db_securtyadmin
db_owner
db_backupoperator
db_ddladmin &
Members of this role:
Role Members
|8 abo
Connection A} voSTROmchapple
Server:
VOSTRO
Connection:
sa
4 View connection properties
Progress
Ready
OK Cancel

Chapter 16: Protecting Your Data from Prying Eyes 2 79

Creating database roles

In contrast to server roles, SQL Server allows you to create your own custom
database roles to simplify database management. For example, if you're
running a retail store, you might create database roles for cashiers, store
managers, district managers, and executives. You could then grant differ-
ent permissions to each one of these roles. Granting different permissions
gives you tremendous flexibility in management. For example, if a user
changes jobs within the organization, you simply need to change his or her
role membership to correspond to the new job responsibilities. Similarly, if
you replace an employee, you need only to remove the old employee’s user
account and create an account for the new employee with the same role
membership.

The real power of roles becomes clear when you need to change the permis-
sions associated with a role. Suppose, for example, that you create a new
table that store managers must access. Rather than go through every user
account to determine whether the individual is a store manager requiring
access to that role, you simply add permissions for that table to the store
manager role.

Here’s the process for creating a new database role:
1. With SSMS open, connect to the server instance that contains the data-
base for which you want to modify role membership.

2. Expand the Databases folder.

3. Expand the folder corresponding to the database for which you want
to modify role membership.

4. Expand the Security folder.
5. Expand the Roles folder.

6. Right-click the Database Roles folder and select Newr>Database Role
from the pop-up menu.

SSMS displays the Database Role - New window, shown in Figure 16-5.
7. Provide a descriptive name for the role in the Role Name text box.

The Owner text box allows you to specify the database user that will
own the role. If you leave this text box blank, the account used to create
the role will own it.

8. Click the Securables page in the Select a Page portion of the New
Database Role window.

SSMS displays the Securables page, shown in Figure 16-6.

280 Part VI: Protecting Your Data

Figure 16-5:
Creating a
new data-
base role.

|

|
Figure 16-6:
Adding role

permissions.
|

|J Database Role - New

=

L serpt = [y Help

: Secursbles
2 Exended Properies

‘Connection

Server
VOSTRO

Connection:
sa

!? View connection properties

Progress
Ready

Role name: Cashiers
Cover =
Schemas owned by this role:
Owned Schemas -
b_accessadmin H
dbo
db_securtyadmin
db_owner
db_backupoperator
"] db ddladmin a2

Members of this role:

Role Members

Cancel

|5 seript ~ [Hel
A General st ~ @b
& Securables
27 Ewtended Properties Database tolspame: | Cashiers]
Secuoties
Schema Name Type
Sewer: Explici
HPH Pemission Grantor Grant Wilh Giant | Deny
Connection
P ke
4} Yiew connection piopetties
Ready

Chapter 16: Protecting Your Data from Prying Eyes 2 8 ’

9. Click the Search button.
SSMS displays the Add Objects dialog box, shown in Figure 16-7.

7. Add Objects =5
‘What objects do you wish to add?
@ Specific objects

I All objects of the types.

Figure 16-7: All objects belonging to the schema

The Add Schema name: db_accessadmin
Objects dia-
|0g box. 0K l ‘ Cancel | ‘ Help

I

10. Click the OK button to accept the Specific Objects option.

(Alternatively, you may decide to assign permissions for all objects of a
certain type or all objects contained within a database schema.)

SSMS displays the Select Object Types window, shown in Figure 16-8.

% Select Object Types =
Select the types of objects to find
Object Type -
| Databases

B Stored procedures
Tables
Views

m

I i Inline functions
. “{43 Scalarfunctions
Flgure 16-8: _L Table-valued functions
Se|ecting I Aggregate functions
object || = B = .
types. ok | [cancel | [Hep
I

11. Select the type(s) of objects you want to grant the role permissions on
and click OK to continue.

12. Click the Browse button.
SSMS displays the Browse for Objects window, shown in Figure 16-9.
13. Select the database object(s) you want to change role permissions on.

14. Click the OK button twice to return to the Database Role - New
window.

282

Part VI: Protecting Your Data

Figure 16-9:
Browsing
for database
objects.
|

% Browse for Objects [th
1 objects were found matching the types you selected
Matching objects
Name Type
i 2 [dbo]stock] Table
Cancel Help

15. Highlight the first object in the Securables portion of the page and
click the appropriate check boxes for the permissions you want to
grant the role on that object.

16. Repeat Step 15 for each object in the Securables portion of the page.
17. Click OK to create the new role.
During this process, you assigned permissions on database objects to the
new role. The permissions you may choose from depend on the type of
object you are accessing. For each of those permissions, you may grant the
following types of access:
1 GRANT allows role members to use the permission.
» WITH GRANT allows role members to grant others use of the permission.

* DENY explicitly forbids role members to use the permission.

Keep in mind that DENY permissions override GRANT permissions.

Assigning users to database roles

You may assign a user to one or more roles within a database by selecting
the role in the Database role membership section of the user’s Properties
page. This page is shown in Figure 16-2, which appears earlier in this chapter.

Preserving Confidentiality
with Encryption

Encryption technology allows you to prevent unauthorized access to infor-
mation by people who bypass the normal security controls implemented by

Chapter 16: Protecting Your Data from Prying Eyes 2 8 3

your database. For example, someone with access to your network might
attempt to eavesdrop on network communications, or a person with physical
access to your server might try to remove the hard drive and access it with
data recovery tools.

Encryption blocks these attacks by making the data undecipherable to
people who don’t have access to the appropriate encryption key. SQL Server
provides encryption mechanisms that allow you to protect your data while
it’s in transit (protection against network eavesdroppers) and while it’s
stored (protection against those accessing the physical disk). In this section,
I explain how you can implement these protections.

Encrypting database connections

Encrypting database connections protects you against network eavesdrop-
pers who might intercept the communications between a user and the data-
base server.

<P To encrypt database connections, you must first ensure that your server
administrator has configured an SSL certificate for the server. This process
varies depending upon your server operating system and is beyond the scope
of this book.

Here’s how to encrypt database connections in SQL Server 2008:

1. Start SQL Server Configuration Manager.
2. Expand the SQL Server Network Configuration folder.

3. Right-click the Protocols folder corresponding to the SQL Server
instance you want to configure and select Properties from the pop-up
menu.

SQL Server Configuration Manager displays the Protocol Properties
window, shown in Figure 16-10.

4. Use the drop-down box to change the Force Encryption value to Yes.

Selecting this option will require that all database users connect using
encryption, thereby providing maximum protection for your database.

5. Select the Certificate tab of the Protocol Properties window.

6. Use the Certificate drop-down menu to select the certificate installed
by your server administrator.

7. Click the OK button to close the window.

284 Part VI: Protecting Your Data

Figure 16-10:
Configuring
encryption
for SQL
Server
connections.
|

Protocals for MSSQLSERVER Properties 2R

Flags | Certificate |

Force Encryption
Turn on or off encryption for selected server instance

S

When you complete this process, the server will reject any requests for unen-
crypted communications. This feature will protect your database contents
from eavesdropping while in transit between the client and server.

Encrypting stored data

SQL Server 2008 introduces Transparent Data Encryption (TDE), a new
technology designed to allow the encryption of stored data. TDE provides
real-time encryption and decryption of the data and log files that SQL Server
stores on disk. TDE also ensures the encryption of database backups.

Creating a master encryption key and certificate

Before you can use TDE for the first time on a SQL Server instance, you need
to perform two preliminary tasks: creating a master encryption key and creat-
ing a certificate based upon that key. SQL Server will use this key to protect
the keys you use to encrypt individual databases.

To create a master encryption key, use the following Transact-SQL
statements:

USE master;
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'pick_a_strong_
password' ;

Chapter 16: Protecting Your Data from Prying Eyes

q“;\N G/

Replace the phrase pick_a_strong_password with the password of your
choice. This password is literally the key to the security of your entire SQL
Server database; be sure to treat it with care!

After you’'ve created a master encryption key, you need to create a server
certificate with the following Transact-SQL statement:

CREATE CERTIFICATE MyCert WITH SUBJECT = 'My Encryption
Certificate’';

You may replace the certificate name (MyCert) and the subject (My
Encryption Certificate) with the name and subject of your choice.

Encrypting a database with Transparent Data Encryption

After you've created a server certificate, you can use it to configure Trans-
parent Data Encryption for your database. First, you must create a database
encryption key based upon your server certificate. Here’s the Transact-SQL
to create such a key:

USE sales;

CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_256
ENCRYPTION BY SERVER CERTIFICATE MyCert;

Replace sales with the name of the database you plan to encrypt. You may
choose among several encryption algorithms supported by SQL Server 2008:

V¥ AES_256 uses the Advanced Encryption Standard (AES) with a 256-bit
encryption key. This is the strongest encryption supported by SQL
Server, but it also causes the greatest performance impact on the server.

v AES_192 uses AES with a shorter, 192-bit encryption key.

v AES_128 uses AES with the shortest possible (128-bit) encryption key.
This is the default algorithm used by SQL Server 2008 unless you specify
an alternative algorithm.

v TRIPLE_DES_3KEY uses three iterations of the Data Encryption
Standard (DES) with three different keys. It has an effective key length of
112 bits.

After creating the encryption key, you may turn on encryption using the fol-
lowing Transact-SQL statement:

ALTER DATABASE Sales
SET ENCRYPTION ON;

285

286 Part VI: Protecting Your Data

SQL Server then begins a background process that encrypts the database.
The time required to complete the initial database encryption will vary based
upon the size of the database and the available server resources.

Backing up your master key and certificates

You must create backups of both your master encryption key and any server
certificates used to encrypt data stored in your database. Without those
backups, you will be unable to restore data to SQL Server in the event of a
disaster. Be sure to create the backups and store them in a safe location.

Here’s the Transact-SQL statement to back up your master encryption key:

BACKUP MASTER KEY TO FILE = 'filename'
ENCRYPTION BY PASSWORD = 'choose_a_strong_password'

You can use the following command to back up a server certificate:

BACKUP CERTIFICATE MyCert TO FILE = 'cert_filename'
WITH PRIVATE KEY (FILE = 'key filename',
ENCRYPTION BY PASSWORD = 'choose_a_strong_password') ;

Restoring a master key or certificate

If you later need to restore a master key, you may use the following Transact-
SQL command:

RESTORE MASTER KEY FROM FILE = 'filename'
DECRYPTION BY PASSWORD = 'backup_password'
ENCRYPTION BY PASSWORD = 'choose_a_strong password'

The password specified in the first clause must be the same password speci-
fied in the ENCRYPTION BY PASSWORD clause of the BACKUP MASTER KEY
command used to create the backup. SQL Server will use the password speci-
fied in the second clause to encrypt the new master key.

There is no comparable command to restore a certificate. Rather, you use the
CREATE CERTIFICATE command and specify that the certificate be created
from a file, as follows:

CREATE CERTIFICATE MyCert

FROM FILE = 'cert_filename'

WITH PRIVATE KEY (FILE = 'key filename',
DECRYPTION BY PASSWORD = 'backup_ password')

Chapter 16: Protecting Your Data from Prying Eyes 2 8 7

Auditing SOL Server Activity

SQL Server 2008 introduces a greatly enhanced auditing capability that
allows you to meet regulatory compliance requirements. For example, if
you're responsible for a database that stores credit card information, the
Payment Card Industry Data Security Standard requires that you use auto-
mated auditing to log all individual user accesses to cardholder data. SQL
Server’s auditing facility allows you to meet these requirements.

Enabling and configuring auditing

Using SQL Server’s auditing functionality involves two discrete steps: creat-
ing an audit object and creating either a server audit specification or a data-
base audit specification. As you might imagine, server audit specifications
allow you to track server-level events, such as logins. Database audit specifi-
cations, on the other hand, monitor database-specific activity, including data
insertions, deletions, modifications, and accesses.

Creating an audit object

Before you begin auditing SQL Server activity, you must create a SQL Server
audit object. This object identifies the location where SQL Server will store
the audit trail, but does not identify the activities that will be audited. Here’s
how to create a new audit object:

1. Open SQL Server Management Studio and connect to the database
server you want to audit.

2. Click the plus (+) icon to the left of the Security folder to expand the
folder.

3. Right-click the Audits folder and select New Audit from the pop-up
menu.

You see the Create Audit page, shown in Figure 16-11.
4. Provide a name for your audit object in the Audit name field.
5. Select an audit destination from the list.

SQL Server allows you to store your audit records in three different
types of location:

e To afile
* To the Windows Application log
¢ To the Windows Security log

288 Part VI: Protecting Your Data

Figure 16-11:

Creating an
audit object.
|

K. Create Audit

4 Ener file path

2 General

B2 XPLYM1 [XPLYMI\mchapple]

Wigw connection properties

Ready

| EyHeip

Aude nEme:
Quete delaytin |00 v
[shut down server on audit log Failure:
Audit destination; | File v
File path: E]
Maximumn rollover

Unlimited
Maximum file sige

Unimited
[Reserve disk space

ox

6. Click the OK button to create the audit object.

Creating a server audit specification

Server audit specifications allow you to identify the specific activities you’d

like SQL Server to audit. Here’s how to create one:

1. Open SQL Server Management Studio and connect to the database
server you want to audit.

2. Click the plus (+) icon to the left of the Security folder to expand the

folder.

3. Right-click the Server Audit Specifications folder and select New
Server Audit Specification from the pop-up menu.

You see the Create Server Audit Specification page, shown in Figure 16-12.

4. Provide a name for the specification in the Name field.

5. Select a Server Audit object from the list.

6. Provide details of the actions you want to audit by creating rows in

the grid in the bottom half of the window.

E: Create Server Audit Specification

4 Enter server audt

| A3 Help

2 General

Harne: Serveraudicspecification-20090608- 183301
Audit; ¥
Actians;
Auiit Action Type Chject Class Ohject
1| SCHEMA_OBIECT_PERMISSION CHAMGE ... v

L |F -1 e0_LoGm_crRoue

~

#3 - ~

I
Figure 16-12: B2 XPLYM1 [XPLYMI\mchapple]

Creatin g a Wigw connection properties

server audit ready
specifica- : 2

tion. o

You may add new audit activities by using the Audit Action Type drop-
down menu in a blank row of the grid. For example, you might select the
SCHEMA_OBJECT_PERMISSION_CHANGE_GROUP to audit all object per-
mission changes. Similarly, you may use the FAILED_LOGIN_GROUP to
monitor failed login attempts.

7. Click the OK button to create the specification and begin auditing.

Creating a database audit specification

If you wish to audit database-specific activity, you may do so by creating a
database audit specification. Here’s the process:

1. Open SQL Server Management Studio and connect to the database
server you wish to audit.

2. Click on the plus (+) icon to the left of the Databases folder to expand
the folder.

3. Expand the folder for the database you want to audit.
4. Expand the Security folder for that database.

5. Right-click Database Audit Specifications and select New Database
Audit Specification from the pop-up menu.

You see the Create Database Audit Specification window, shown in
Figure 16-13.

Chapter 16: Protecting Your Data from Prying Eyes 2 8 9

290 Part VI: Protecting Your Data

Figure 16-13:
Creating a
database
audit
specification.
|

0 ready

14 General

Server:
XPLVML

Connection:
¥PLUMimchapple

S view connection propertiss

Ready

K Create Database Audit Specification A=

1 Help

Name: DatabaseAudizSpecification-20080412- 164126

<

Audit
Ensbled

fudic Action Type Object Schema | Obiject Name Principal Hame
SELECT ~ |Humanesources | EmplayecPayti... [] J
INSERT ~ |Humanesources | Emplayecpayt... [=
UPDATE + |umarresowrces | EmployeePayH... [.| J
> DELETE v |HumanResowces | EmployesPayH. ..]
o g] UJ

. Provide a name for the specification in the Name field.

7. Select a Server Audit object from the list.

8. Use the Audit Action Type drop-down menu to select an action you

10.
11.
12.
13.

14.

15.

want to audit in the first empty row of the grid.

. Click the ellipses (. . .) icon in the Object Name field of that row to

open the Select Objects window.

Click the Browse button.

Select the check boxes to the left of the object(s) you want to audit.
Click the OK button to close the Browse for Objects window.

Click the OK button to close the Select Objects window.

You may repeat Steps 8-13 as many times as you want to audit different
actions in the same database audit specification.

Click the ellipses (. . .) icon in the Principal Name field of that row to
open the Select Objects window.

Follow the same process used in Steps 10-13 to select the principal(s)
you wish to audit.

Click the OK button to create the specification and begin auditing.

Chapter 16: Protecting Your Data from Prying Eyes 2 9 ’

Reviewing audit records

SQL Server provides a built-in log file viewer that allows you to peruse SQL
Server audit records. Here’s how you can open the viewer:

1. Open SQL Server Management Studio and connect to the database
server containing the audit records you want to view.

N

. Click the plus (+) icon to the left of the Security folder to expand the
folder.

3. Expand the Audits folder.

4. Right-click the Server Audit object used to log the audit events you
want to view and choose View Audit Logs from the pop-up menu.

The records in Log File Viewer open, as shown in Figure 16-14.

[5rLoad Log (il Export (]Refresh T Fiker .. % Search .. [F4Help J
1216125 L0 fle summy: No fiter applied
& DWindows T Date EventTine Sewver Instance Name | Action ID Class Type | Sequence Number | Succeeded | Permision BitMask | Colun Perission | Session ID | Server F A
TR EEGTTPM | 2050:11.4200000 LOGINSUCCEEDED LOGIN 1 Toe [Fale a6
O NZARESITTPM | 205011.4033333 LOGIN SUCCEEDED LOGIN 1 Te] Falie 85 23
v ANZAMBESITIPM 2050113566668 LOGINSUCCEEDED LOGIN 1 Te 0 False £ 263
v AN20BESOTPM 2050:11.3400000 LOGINSUCCEEDED LOGIN 1 Tue o Fabe Ed 263
v ANZNBESOOGPM 2DSDOBOISER0 XPLYMI SELECT TABLE 1 Te 1 Te 65 23
v ANZABESIOSPM 205005870000 KPLYMI SELECT TABLE 1 Toie 1 Te 65 23
v 4N20BESOOSPM 20SO05EBTHOND KPLVMI SELECT TABLE 1 Tue 1 Te &5 263
v AN2ANBESIOSPM 2DSOOSEISEA0 XPLYMI SELECT TABLE 1 Tue 1 Te 65 23
v ANZABESIOSPM 2050053125000 XPLYMI SELECT TABLE 1 Te 1 Te 65 23
v ANZAWESIOSPM 2DST0517IETS KPLYMI SELECT TABLE 1 Te 1 Te &5 263
v NN0BESOOAPM 2DE004S1E7H0 KPLVMI SELECT TARLE 1 Tue 1 Te 65 263
v ANZNBESTOAPM 20SO04T0N0 XPLYMI SELECT TABLE 1 Te 1 Te 65 23
v ANZABESIOAPM 2050044843750 XPLYMI SELECT TABLE 1 Te 1 Te 65 263
v AN20BESOOMPM 2050043125000 KPLVMI SELECT TABLE 1 Tue 1 Te &5 263
v ANNBESIOAPM 205004109750 XPLYMI SELECT TABLE 1 Tue 1 Te 65 23
L v ANZABESIOIPM 20ST03NZ0 XPLYMI SELECT TABLE 1 Te 1 Te 65 23
) . S| v WI203E0IPH 20SOTIBM KM SELECT TABLE 1 Te 1 Te &5 263
F|g ure 16-14: v AN2N0BESIOSPM 2DE003453250 KPLVMI SELECT TARLE 1 Tue 1 Te 65 263
. v ANNBESIO2PM 2DST02UITE0 XPLYMI SELECT TABLE 1 Te 1 Te 65 23
R eVi EWI n LestRefesh: v 4/12/20088:4350PM 20:43501233333 LOGIN SUCCEEDED LOGIN 1 Te o Falsz 4 23
. v ANNBEAGIBPM 20:43:388400000 LOGINSUCCEEDED LOGIN 1 Tue [Fabe a2 263
Audit | Frerere v AN2/BEATSSPM 2047554200000 LOGINSUCCEEDED LOGIN 1 Tre [False &1 X ™
T View et setings 3 3
Records Seleced ron deta
Date 4412/2008 5011 PM -
. - Log Aucit Collecton Audit-20080412-161525)
with Log File Dore (2racars),
Event Tine 2050:11.4200000
. Server Istance Name:
Viewer. pction D LOGIN SUCCEEDED v
I

292 Part VI: Protecting Your Data

Chapter 17

Preserving the Integrity
of Your Transactions

In This Chapter

Using the ACID model to describe transaction benefits
Creating, committing, and rolling back transactions in SQL Server 2008
Testing Transact-SQL statements using transactions

Handling error conditions within transactions using TRY. . .CATCH

u ntil this point in the book, I've presented each Transact-SQL statement
as an isolated event. When I've used more than one statement, they’ve
been a series of independent statements. Sometimes, however, this isn’t the
behavior you want. In many cases, you'll want a series of SQL statements

to occur as an “all or nothing” event. Transactions are the answer to this
dilemma. They allow you to bundle independent Transact-SQL statements
into a linked bundle.

For example, consider the process used to transfer money between two dif-
ferent bank accounts. You might view the transfer of $50 from account X to
account Y as two separate steps:

1. Deduct $50 from account X.
2. Add $50 to account Y.

However, the bank certainly doesn’t want these two steps to occur indepen-
dently, for several reasons:

v~ 1f the deduction of funds from account X doesn’t succeed (perhaps
the balance is less than $50), the bank doesn’t want $50 credited to
account Y.

v~ If the addition of funds to account Y doesn’t succeed (perhaps account
Y doesn’t exist or is closed), the bank doesn’t want $50 deducted from
account X.

294 Part VI: Protecting Your Data

Combining these two statements into a single transaction allows the bank to
ensure that they happen in the desired “all or nothing” fashion.

In this chapter, you find out how to use the ACID model to preserve transac-
tion integrity and to work with transactions in SQL Server 2008.

Preserving Transaction Integrity
with the ACID Model

Database professionals use the ACID model to describe the four essential fea-
tures of a database transaction. That is, a database transaction should be

¥ Atomic

v Consistent

v Isolated

v Durable

In the remainder of this section, I describe each one of these transaction characteristics.

Atomicity

The atomicity requirement of the ACID model formalizes the “all or nothing
principle I describe in the introduction to this chapter. Atomicity requires
that, in order for a transaction to succeed, all the components of that trans-
action must succeed. If a single component of the transaction fails, all the
transaction components must be rolled back (undone).

th]

In addition to scenarios in which Transact-SQL statements may dictate

that the transaction be rolled back, atomicity requires that the database be
resilient in the face of hardware and software failures. If a database server
crashes in the middle of a transaction, the database should not contain any
changes made as intermediate steps in that transaction when it restarts.

To put this idea in the context of the banking example [use in the introduc-
tion to this chapter, suppose that the database server crashes after Step 1
executes but before Step 2 takes place. When the database restarts, account
X should not show the $50 deduction because the second half of the transac-
tion (crediting the funds to account Y) did not take place.

Chapter 17: Preserving the Integrity of Your Transactions 295

Consistency

The consistency principle requires that all data written to the database is
consistent with business rules. In Chapter 6, I discuss how you can use con-
straints and relationships to enforce business rules in your database. The
consistency principle ensures that the database always honors those
requirements.

In the world of transactions, consistency requires that the database be com-
pliant with all those rules when the transaction completes. You can view a
transaction as bringing the database from one consistent state (the state
prior to the transaction) to another consistent state (the state after the
transaction).

If the Transact-SQL statements contained within the transaction would bring
the database into an inconsistent state, the entire transaction must be rolled
back so that the database remains in its original, consistent state.

Isolation

The isolation principle states that each database transaction must be exe-
cuted independently of other database transactions. For example, suppose
you had the following two transactions:

Transaction 1

1. Check to see whether account X has a balance >= $50.
2. Deduct $50 from account X.
3. Add $50 to account Y.

Transaction 2

1. Check to see whether account X has a balance >= $50.
2. Deduct $50 from account X.
3. Add $50 to account Z.

As you can see, I've added a step to this example that verifies the balance of

account X before deducting funds. If you execute these transactions sequen-

tially (that is, execute transaction 1, wait until it completes, and then execute
transaction 2 or vice versa), it’s obvious that there isn’t any problem.

296 Part VI: Protecting Your Data

Figure 17-1:
Improper
transaction
sequencing.
|

However, suppose that you execute these two transactions simultaneously?
If they are not isolated from each other, the sequence of events shown in
Figure 17-1 might occur.

Transaction 1 Transaction 2
1. Check account X balance
1. Check account X balance
2. Deduct $50 from account X
3. Add $50 to account Y
2. Deduct $50 from account X
3. Add $50 to account Y

In that sequence of events, trouble occurs if the opening balance of account
X is $75. Both transactions first check the balance and see that it’s over $50.
Then they go and carry out their tasks, leaving account X with a negative
balance.

Fortunately, databases prevent this scenario by enforcing isolation —
transactions must execute independently. In this case, all three statements
of Transaction 1 must complete before Transaction 2 may begin.

Durability

Durability ensures that after a transaction commits, it is permanently
recorded in the database. If a hardware or software failure occurs, adminis-
trators may use database backups and transaction logs to restore the data-
base to its state prior to the failure.

Creating SOL Server Transactions

Creating a SQL Server transaction in Transact-SQL is straightforward. Simply
write the series of T-SQL statements that you’d like to bundle in a transaction
and wrap them in BEGIN TRANSACTION and COMMIT TRANSACTION state-
ments, as follows:

Chapter 17: Preserving the Integrity of Your Transactions

BEGIN TRANSACTION

<Transact-SQL Statements>
COMMIT TRANSACTION

SQL Server is now responsible for executing all the statements between the
BEGIN TRANSACTION and COMMIT TRANSACTION statements in an atomic,
consistent, isolated, and durable fashion.

COMMIT or ROLLBACK?

In addition to adding protection against a database failure, you may program-
matically rollback transactions because of an error condition. For example,
consider the following transaction, designed to record the transfer of 100
oranges from a Tampa warehouse to a New York warehouse:

DECLARE @tampa INT
BEGIN TRANSACTION

UPDATE stock

SET inventory = inventory + 100
WHERE item = 'Oranges'

AND warehouse = 'New York'

UPDATE stock

SET inventory = inventory - 100
WHERE item = 'Oranges'

AND warehouse = 'Tampa'

SELECT @tampa = inventory
FROM stock

WHERE item = 'Oranges'
AND warehouse = 'Tampa'

IF (@tampa < 0)
BEGIN
PRINT 'Insufficient Inventory'
ROLLBACK TRANSACTION
END
ELSE
BEGIN
PRINT 'Transfer Successful'
COMMIT TRANSACTION
END

297

298 Part VI: Protecting Your Data

Note that this transaction includes several steps:

1. Increase the inventory of oranges in New York by 100.
2. Decrease the inventory of oranges in Tampa by 100.

3. Check the inventory of oranges in Tampa to see whether it is greater
than zero. If the transaction resulted in a negative inventory, print an
insufficient inventory error message and roll back the transaction. If the
inventory in Tampa is zero or greater, print a message that the transfer
was successful and commit the transfer to the database.

<P You may have noticed that there’s an easier way to accomplish this task: |
could have simply checked the Tampa inventory level before changing either
warehouse’s inventory. [used this somewhat roundabout approach to pro-
vide a simple scenario of programmatically making the decision of whether to
commit or roll back a transaction.

Testing Transact-SQL statements
with transactions

Transactions are a great way to test Transact-SQL statements. If you're trying
to determine whether a transaction will execute properly, wrap it in a set of
BEGIN TRANSACTION...ROLLBACK TRANSACTION statements.

3

Suppose, for example, that you wanted to evaluate the effect of a 20 percent
increase in the wholesale price of products in your store with a current
wholesale price under 50 cents. You might first want to see what the table
would look like after the price increase without actually making changes to
your database. You can test the increase by using this Transact-SQL code:

SELECT item, warehouse, wholesale_price
FROM stock;

BEGIN TRANSACTION

UPDATE stock

SET wholesale_price = wholesale_price * 1.2

WHERE wholesale_price < 0.5;

SELECT item, warehouse, wholesale_price
FROM stock;

ROLLBACK TRANSACTION

SELECT item, warehouse, wholesale_price
FROM stock;

Chapter 17: Preserving the Integrity of Your Transactions

Before [show you the results, take a moment to walk through this series of
statements. Note that the first thing I do is show the prices in the stock table,
outside the transaction. This provides a “before” look at the table’s contents.

Next, | begin the transaction with the BEGIN TRANSACTION statement. Inside
the transaction, I change the prices and then check the price table again.

Finally, I cancel my work by rolling back the transaction with the ROLLBACK
TRANSACTION statement and then display the final state of the table.

Here are the results:

item warehouse wholesale_ price
Apples Seattle 0.13
Limes Seattle 0.33
Oranges New York 0.55
Oranges Tampa 0.52

(4 row(s) affected)

(2 row(s) affected)

item warehouse wholesale_price
Apples Seattle 0.156

Limes Seattle 0.396

Oranges New York 0.55

Oranges Tampa 0.52

(4 row(s) affected)

item warehouse wholesale_price
Apples Seattle 0.13
Limes Seattle 0.33
Oranges New York 0.55
Oranges Tampa 0.52

(4 row(s) affected)

The results demonstrate the usefulness of rolling back transactions as a
testing tool. The first table in the output is the status of the stock table
before I make any modification. It concludes with the statement (4 row(s)
affected).

Next, you see the simple statement (2 row(s) affected). Thisis your
indication that the UPDATE statement processed successfully and changed
the price of the two items in the table with wholesale prices under 50 cents.

299

300 Part VI: Protecting Your Data

3

The evidence of this appears in the following table output. Note that the
prices of apples and oranges in Seattle are 20 percent higher in that table.
This output is from the second SELECT statement.

Recall that I followed the second SELECT statement with a ROLLBACK
TRANSACTION command. This command undoes the effect of all SQL state-
ments that occurred after the BEGIN TRANSACTION statement, including the
price update.

Finally, the last set of output is from the SELECT statement that appeared
after the ROLLLBACK TRANSACTION statement. This output is outside the
loop of our transaction and shows that the final table state is the same as
the initial table state. My test transaction had no effect on the integrity of the
table.

SQL Server also supports the use of named savepoints to partially roll back

a transaction to an intermediate step. You might find this feature useful for
performance reasons when dealing with large, complex transactions. The use
of savepoints is beyond the scope of this book. For more information, see SQL
Server Books Online.

Changing the Transaction Isolation Level

Early in this chapter, I describe how the ACID model requires databases to
enforce strict isolation between transactions. Well, as with any rule, there are
exceptions to the strict enforcement of transaction isolation. You may, when
the situation warrants, change the way SQL Server isolates transactions from
one another.

SQL Sever provides five different isolation levels that define different tech-
niques for handling isolation. I describe them in the next five subsections.

READ UNCOMMITTED

READ UNCOMMITTED is the lowest possible isolation level in SQL Server.
When you set this mode, you allow the reading of data that a transaction has
written, but not committed, to the database. Reading at this level may result
in three potentially unpleasant situations:

Chapter 17: Preserving the Integrity of Your Transactions 30 ’

v Dirty reads occur when a transaction reads data written by another
uncommitted transaction that is later rolled back.

+ Phantom reads occur when a transaction inserts or deletes a row from a
range of values accessed by another transaction. The other transaction,
if it reads the values before and after the update, may see “phantom”
rows that appear or disappear.

+* Nonrepeatable reads occur when a transaction reads the same data
twice. If another transaction writes the same data between the two read
statements, the original transaction may retrieve two different values for
the same data element at different points in the transaction.

To set the transaction isolation level to READ UNCOMMITTED, execute the fol-
lowing Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED

READ COMMITTED

READ COMMITTED is the default isolation level used by SQL Server 2008. It
implements traditional database isolation and ensures that Transact-SQL
statements cannot read data written to a database by an uncommitted trans-
action. The statement will instead see the state of the database table before
the transaction executed.

The READ COMMITTED level solves the problems associated with dirty reads
but still suffers from nonrepeatable reads and phantom reads.

If you need to restore the transaction isolation level to the READ COMMITTED
state, execute this statement within SSMS:

SET TRANSACTION ISOLATION LEVEL READ COMMITTED

REPEATABLE READ

If you need to prevent nonrepeatable reads, SQL Server offers the REPEATABLE
READ isolation level. It enhances READ COMMITTED mode by adding the
requirement that a transaction may not modify data already read by a second
transaction until the second transaction completes or rolls back.

To set the transaction isolation level to REPEATABLE READ, use the following
Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

302 Part VI: Protecting Your Data

\\J

SERIALIZABLE

SERIALIZABLE transaction isolation prevents phantom reads through the
use of range locks. These locks prevent other transactions from inserting or
deleting records within a range accessed by a second transaction until the
second transaction completes.

To set the transaction isolation level to SERIALIZABLE, use the following
Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

SNAPSHOT

SNAPSHOT isolation offers an interesting twist: It essentially takes a picture
of the data at the beginning of a transaction and allows the transaction to
access that snapshot until it completes.

To set the transaction isolation level to SNAPSHOT, use the following
Transact-SQL statement within SSMS:

SET TRANSACTION ISOLATION LEVEL SNAPSHOT

In case you're having trouble keeping SQL Server transaction isolation levels
straight, Table 17-1 offers a convenient summary of their benefits.

Table 17-1 SQL Server 2008 Isolation Issues

Isolation Level Dirty Reads? Nonrepeatable Phantom
Reads? Reads?

READ X X X

UNCOMMITTED

READ X X

COMMITTED

REPEATABLE X

READ

SERIALIZABLE

SNAPSHOT

Chapter 17: Preserving the Integrity of Your Transactions 303

Handling Errors

Error handling is another essential component of Transact-SQL develop-
ment. SQL Server contains robust mechanisms to detect error conditions
and, by default, aborts a Transact-SQL statement that would cause an error.
However, you may want to handle errors more gracefully by specifically
instructing SQL Server how it should react to an error. You can use error
handling in conjunction with transactions to accommodate error situations
with an explicitly defined response.

Transact-SQL uses the “try. . .catch” exception handling model familiar to
many software developers. Simply put, you write a T-SQL statement that
you want SQL Server to “try” and then provide instructions on how it should
“catch” an error if one occurs. The syntax for implementing “try. . .catch”
error handling is as follows:

BEGIN TRY
<T-SQL to "try">
END TRY

BEGIN CATCH
<T-SQL to execute in the event of an error>
END CATCH

Here’s a more concrete example. Suppose someone attempted to execute the
following statement:

INSERT INTO stock(item, warehouse, inventory, wholesale_
price)
VALUES ('Apples', 'Seattle', 100, 0.15)

If the stock table already contained a record with the same item and ware-
house (the table’s primary key), SQL Server would report this error and ter-
minate the statement’s execution with this error:

Msg 2627, Level 14, State 1, Line 1

Violation of PRIMARY KEY constraint 'PK_stock'. Cannot
insert duplicate key in object 'dbo.stock'.

The statement has been terminated.

If the SQL statement is part of a larger application, this type of error might
cause a program crash. Additionally, it doesn’t provide you with the ability
to handle the error in a manner of your own choosing. Suppose, for example,
that you wanted the program to print a friendly error message and notify the
supervisor of the error by e-mail. You might use the following “try. . .catch”
statement:

304

Part VI: Protecting Your Data

gMBER
>

BEGIN TRY
INSERT INTO stock(item, warehouse, inventory,
wholesale_price)
VALUES ('Apples', 'Seattle', 100, 0.15)
END TRY
BEGIN CATCH
PRINT 'Error: ' + ERROR_MESSAGE() ;
EXEC msdb.dbo.sp_send dbmail
@profile_name = 'Inventory Mail',
@recipients = 'supervisor@foo.com',
@body = 'An error occurred creating the Seattle
Apples inventory record.',
@subject = 'Inventory Duplication Error' ;
END CATCH

Executing this statement produces the following result:

Error: Violation of PRIMARY KEY constraint 'PK_stock'.
Cannot insert duplicate key in object 'dbo.
stock"'.

Mail queued.

Isn’t that a much friendlier response? More important, the execution of the
calling program may continue normally.

When writing Transact-SQL statements that may produce error conditions,
you should always enclose them in a “try. . .catch” statement that gracefully
handles the error. This is especially important if you're accessing SQL Server
programmatically.

Chapter 18
Preparing for Disaster

In This Chapter

Backing up your databases and transaction logs
Working with SQL Server recovery models

Restoring data after a disaster

W hether we like it or not, bad things happen. When [was a new system
administrator, an old pro in my office summed this reality up well by

offering me this advice: “Don’t think of disaster recovery as preparing for if a
disaster happens; think of it as preparing for when a disaster happens.” Sure,
your data center might not be swept away by floodwaters or destroyed by a
fire or earthquake. I can, however, guarantee that you will suffer some sort of
disaster at some point in the future.

The most common type of disaster you need to prepare for is a system fail-
ure caused by faulty hardware, software, or user error. Hard drive failure,
for example, is one of the most common problems occurring on produc-
tion systems. Despite the march of technology, hard drives still rely upon
mechanical, fast-moving parts that are prone to failure. Disaster recovery
technologies such as RAID arrays and clustering help minimize the impact
of such a failure on your environment, but no set of countermeasures can
totally eliminate the risk.

Fortunately, SQL Server 2008 includes advanced disaster recovery functional-
ity designed to help you protect your organization’s data from the effects of
such events. In this chapter, I discuss the use of these technologies to back
up and restore your business data.

Backing Up Vour Data

The general concept of a backup is simple and probably something you're
familiar with from other aspects of computing. Backups involve the creation

306 Part VI: Protecting Your Data

of a copy of your data that’s stored in a separate location for use the in the
event of a critical failure. If such a failure occurs, administrators restore
that backup, bringing the system back to its state at the time the backup
occurred.

Backing up databases

The full database backup is the most basic type of backup offered by SQL
Server. Full backups create a file that contains a copy of every single scrap
of data used by a database for any type of object (for example, tables, stored
procedures, user-defined functions, triggers). If you create a full backup, you
can use that file at a later date to restore your entire database to any SQL
Server instance.

Here’s how to create a full database backup:
1. With SSMS open, connect to the server containing the database you
want to back up.

2. Expand the Databases folder.

3. Right-click the database you want to back up and choose Tasks=>Back
Up from the pop-up menu.

SQL Server presents the Back Up Database window, shown in Figure 18-1.

4. Verify that the database specified in the drop-down menu is the data-
base that you want to back up.

5. Verify that the Backup type is set to Full.

6. Provide a name and description for your database backup in the
appropriate text boxes.

7. Choose whether you want to create the backup on disk or tape by
selecting the appropriate radio button.

In this example, I assume that you're backing up your data to disk.
8. Click the Remove button to clear the default destination file location.

You may, of course, leave this default location, but most people prefer
to specify the exact location for backup storage.

9. Click the Add button.

SQL Server presents the Select Backup Destination window, shown in
Figure 18-2.

Figure 18-1:
Backing

up a SQL
Server
database.
|

|
Figure 18-2:
Selecting a
backup
destination.
|

gMBER

Chapter 18: Preparing for Disaster 30 7

 Back Up Database - Sales [=E3]
2 Germel 6 Seript + I Help
12 Dptions
Saurce
Datsbass R
Flecovery model
Backup type Ful v
[Copy Only Backup
Backup compaonent:
@ Database
© Files and flegroups:
Backup set
MHame Sales-Full Database Backup
Deseription:
Backup set wil expie:
@) After: 0 2| daps
Server: @)
SPLVM1T Destination
Conmection Back up to: ® Disk
*PLYM Timchapple am B:
) View connection propeities

| Select Backup Destination

Select the file or backup device for the backup destination. You can create
backup devices for frequently used files.

Destinations on disk

@ File name

10. Provide the appropriate filename/path in the File name textbox and

click OK.

One of the purposes of a backup is to protect you from hard drive fail-
ure. Be sure to store your backup on a physical hard drive that’s sepa-
rate from where your data files are located. Ideally, you should store
your backups on tape and then store those tapes in a different building.

308 Part VI: Protecting Your Data

3

Figure 18-3:
The

Back Up
Database
Options
page.

11.

One easy way to keep your backups secure is to write them to a location
on disk that’s backed up by your enterprise backup software. Doing so
spares you, as a DBA, from the burden of managing backup tapes and
lets you take advantage of the backup infrastructure used and managed
by the rest of your organization. It’s always nice to transfer your work to
someone else!

Click the Options page in the Select a Page pane of the Back Up
Database window.

The Options page appears, as shown in Figure 18-3.

| | Back Up Database - sales =[S
Selecta page 0 . =
= 5 - Hel
12 General ';S E L5 Hek
#f Options
Overwrite media
@ Back up to the existing media set
@ Append to the existing backup set
Owerwrite all existing backup sets
Check media set name and backup set expiration
Media set name:
Back up to a new media set. and erase all existing backup sets
MNew media set name:
MNew media set description:
Reliability
Verify backup when finished
Perform chechksum before wiiting to media
Conneciion
Server, Transaction log
VOSTRO
Connection:
sa
47 View connection properties | Tape diive
Progress
Ready Compression
Set backup compression: Use the default server setting - |
——
12. Verify that the Overwrite Media options match your preferences.

These options are extremely important if you're backing up your data-
base to a file that already exists. By default, SQL Server will append your
backup to the end of that file. If you want to conserve space by discard-
ing older backups, you need to select the Overwrite All Existing Backup
Sets option.

Chapter 18: Preparing for Disaster 309

Other options on this page allow you more advanced control over your
backup sets. You may choose to use expiration dates to determine over-
write behavior and tell SQL Server how to handle older backup sets.

13. Select the Verify Backup when Finished check box.

When you select this box, SQL Server automatically tests the validity of
your backup when it completes. You should almost always enable this
option to ensure the integrity of your backups. The only case in which
you might not want to perform this verification is when time doesn’t
permit the full verification on the primary server. In such a case, you
should test your backup by other means, such as by restoring it on a
test/development SQL Server.

14. Click the OK button to begin your backup.

The length of time required to complete the backup will vary depending
upon the size of your database. When it completes, SQL Server displays
the dialog box shown in Figure 18-4.

F_ 18 4 Microsoft SQL Server Management Studio lihj
igure l1o-4:
Il The backup of database 'sales’ completed successfully,
The Backup || ()
Complete =
dialog box. || ==
I

Saving time with differential backups

For small databases, you may be able to perform full backups on a regular
basis, but larger databases may not provide that luxury. Large production
databases may not be able to frequently suffer the performance hit that
occurs during a backup. That’s where differential backups come into play.

In a large database, chances are that a very small percentage of data actually
changes in any given day. Therefore, when you perform a full backup, you're
likely spending a lot of time copying the same data, day after day. Differential
backups eliminate this inefficiency by backing up only data that has been
added or changed since the last full backup. When it comes time to restore
your database, you need to first restore the full backup and then restore the
most recent differential backup.

N Many organizations use a simple approach to database backups: Perform a full

backup on the weekend and then perform a differential backup daily on other

days. This common approach works well.

3 1 0 Part VI: Protecting Your Data

Performing a differential backup follows almost exactly the same process as
creating a full backup, as described in the previous section. The only differ-
ence is that you should select the Differential backup type in the Back Up
Database window, as shown in Figure 18-5.

| | Back Up Database - sales o[
S:_‘llzc:;;lage ;S Script + Lj Help
|2 Options
Source
Database: Isales - I
Recovery model LLL
Bachup type: I Differential - I

Backup component
@ Database
_) Files and filegroups:
Backup set
Name: sales-Differertial Database Backup

Description

Bachup set will expire:

@ After: o 2 days
Conneclion) on: 11/21/2007
\?'E)“Sd'el'rRO Destination
I o Back up to: @ Disk
onnection:
sa Add...
3 View connection properties m
7 i Contents
Figure 18-5: || [Comterts]
. Ready
Creating a
differential
backup. Cancel |
|

If you’'ve worked in disaster recovery before, you may be familiar with the
concept of an incremental backup. In this approach, each incremental

backup contains only changes made since the last full or incremental backup.
Restoring backups created with this approach requires the full backup and all
incremental backups. SQL Server 2008 does not support incremental backups.

Saving space with backup compression

A new feature in SQL Server 2008 allows you to compress your backups to
save storage space. Compression uses mathematical algorithms to reduce
the size of database files, in a fashion similar to that used to create com-
pressed ZIP folders in Windows.

Chapter 18: Preparing for Disaster

Figure 18-6:
Configuring
backup
compres-
sion.
|

ANG/
o

Using backup compression requires setting the Compress Backup option
within SQL Server. You may do this by setting the server-wide compression
default using the following process:

1. With SSMS open, right-click the server you want to configure and
select Properties from the pop-up menu.
2. In the left pane under Select a Page, select Database Settings.

3. Click the Compress Backup check box, as shown in Figure 18-6.

[J Server Praperties - VOSTRO = | B |G
Selecta page I . =

%A General ';S Serpt L] Help

E:“ Memory

Y Prcessors Defauk index il factor:

12 Securty

%7 Connections 0 :
f Database Settings

A4 Advanced Backup and restore

|5 Permissions Specify how long SQL Server will wait for a new tape
@ Wait indefinitely

Try once

Try for il minute(s)
Default backup media retention {n days):

0 =

/| Compress backup

Recovery

Connection Recaovery interval (minutes):
Server. 0 -
VOSTRO =

Connection: Database default locations

sa

Data: C:\Program Files“Microsoft SQL Server\MSSQL10.MSSQLSERVERWMSSQ \:I
3 View connection properties —
Log: C:\Program Files“Microsoft SQL Server\MSSQL10.MSSQLSERVERWMSSQ _I
Progress
Ready
@ Configured values BRunning values
G

You may override the server default on a per-backup setting by selecting
either the Compress Backup or Do Not Compress Backup option on the
Database Back Up Options page (shown previously in Figure 18-3).

Before creating a backup, be sure to consider the cost/benefit trade-off of
using this option. Compressed backups take up less space on your disk.
Additionally, they often take less time to complete because the majority

of backup time is spent writing data to disk, and compression reduces the
amount of this data dramatically. The trade-off is that backup compression

311

3 1 2 Part VI: Protecting Your Data

<MBER
&

\\3

\NG/
s

consumes more CPU cycles than uncompressed backups, reducing the perfor-
mance of your server during the backup creation process.

Full support for backup compression exists in SQL Server 2008 Enterprise
Edition only. Other editions may restore compressed backups, but Microsoft
restricted the ability to create backups to Enterprise Edition installations of
SQL Server. SQL Server 2005 and earlier installations cannot create or restore
compressed backups.

If you’d like to see how much of an effect compression has on the size of your
backups, issue the following Transact-SQL command:

SELECT name, backup_size/compressed_backup_size AS 'ratio'
FROM msdb. .backupset;

SQL Server will respond with the name of each backup on your system
and the file’s compression ratio. For example, the following result shows
two backup sets for the same database. The first is uncompressed, and the
second uses backup compression:

scan-Full Database Backup 1.000000000000000000
scan-Full Database Backup 4.876425871709171865

(2 row(s) affected)

The compression ratio of approximately 5 shown here indicates that the
compressed backup is saving approximately 80 percent of the disk space
used by the uncompressed backup.

Backing up the transaction log

SQL Server maintains a log file called the transaction log that includes a
record of any modifications made to the database. The transaction log plays
an important role in disaster recovery efforts because you can use it to
restore data modified after the most recent backup.

The contents (and usefulness!) of the transaction log vary based upon the
recovery model you select. Specifically, transaction log backups are not avail-
able under the simple recovery model. I discuss this in more detail in the next
section.

If you have a database failure and need to restore from disk, you need to
first restore a full backup. You may then restore the most recent differential

Truncating and shrinking the transaction log

The transaction log can take up a significant
amount of space for an active SQL Server data-
base. There are two actions SQL Server per-
forms to manage the amount of space consumed
by the log: log truncation and log shrinking.

Normally, log truncation happens automatically.
If you're using the simple recovery model, SQL
Server truncates the log every time you reach
a transaction checkpoint. If you're using the full
or bulk-logged recovery model, SQL Server trun-
cates the transaction log after each log backup,
assuming that a checkpoint occurred since the
last backup. (For details on the situations that
may prevent this automatic truncation, see the
SQL Server Books Online article “Factors That
Can Delay Log Truncation.”)

backup, if any exist. Finally, you can restore the database to the most current

Truncation simply removes entries from the
transaction log, making space available for
other log entries. It doesn’t affect the physical
size of the transaction log file on disk. In Chapter
12, | discuss how you may need to manage
database file sizes manually. The same is true
for transaction logs.

If you want to reduce the amount of physical
disk space consumed by the transaction log
file, you must manually shrink the file. You may
do this within SQL Server Management Studio
by right-clicking the database and choosing
Tasks=>Shrinke>Files from the pop-up menu.

state possible by applying all of the transaction log backups created since
the most recent full or differential backup.

A transaction log backup scenario
A common backup scenario for large databases is performing full backups

every Sunday, differential backups every day at midnight, and transaction log

backups on an hourly basis. In this case, if a database failure occurs at 2:30 a.m.
on Tuesday, you would apply backups in the following order:

v Sunday’s full backup restores the database to its state on Sunday

morning.

v Applying Wednesday’s differential backup restores any modifications
made between Sunday’s full backup and Wednesday’s differential
backup. This restores the database to its current state as of midnight

Wednesday.

Chapter 18: Preparing for Disaster 3 ’3

v Applying Wednesday’s 1 a.m. transaction log backup restores the data-
base to its state as of 1 a.m. Wednesday.

v Applying Wednesday’s 2 a.m. transaction log backup restores the data-
base to its state as of 2 a.m. Wednesday.

3 1 4 Part VI: Protecting Your Data

|
Figure 18-7:
Transaction
log backup
options.
|

In this scenario, any modifications made to the database during the 30-minute
period between 2:00 a.m. and 2:30 a.m. on Wednesday are irretrievably lost.

Creating a transaction log backup

You may create a transaction log backup using the process described ear-
lier for creating a full or differential backup. The only difference is that you
should select the Transaction Log backup type on the Back Up Database
screen. You also have two new options on the Back Up Database Options
page, as shown in Figure 18-7.

The first option (which is selected by default) is Truncate the Transaction
Log. This process, described in the “Truncating and shrinking the transaction
log” sidebar, ensures the efficient use of transaction log disk space. The
tail-log backup is used if you want to capture all entries not yet backed up.
For example, in the scenario I describe in the previous section, if the data-
base failure was not fatal, you may be able to create a tail-log backup to cap-
ture those transactions occurring between 2:00 a.m. and 2:30 a.m.

| J Back Up Database - sales = | (5] |
Selecta page 0 . =
= Script ~ Hel
12 General ';S # L5 Hek
kg Opiions|
- Ovenwrite media
@ Back up to the existing media set
@ Append to the existing backup set
Owerwrite all existing backup sets
Check media set name and backup set expiration
Media set name:
Back up to a new media set. and erase all existing backup sets
New media set name:
MNew media set description:
Reliability
Verify backup when finished
Perform checlsum before writing to media
Conneclion
Server, Transaction log
VOSTRO @ Truncate the transaction log
Connection:
s Back up the tail of the log. and leave the database in the restoring state
47 View connection properties | Tape diive
Progress
Ready Compression
Set backup compression: Use the default server setting - |
i

Chapter 18: Preparing for Disaster 3 ’5

Specifying Disaster Recovery Requirements
with Recovery Models

SQL Server recovery models allow you to easily define the way you would
like to balance the robustness of your disaster recovery approach with the
amount of server resources consumed in those efforts.

Choosing a recovery model

SQL Server offers three different choices of recovery model. They differ in the
approach used to manage transaction log files. The models supported by SQL
Server 2008 are the full recovery model, the simple recovery model, and the
bulk-logged recovery model. I discuss each of these models in the upcoming
sections.

The full recovery model

The full recovery model maintains the entire transaction log until the transac-
tions in the log are backed up. Using this model, you can restore a database
to any particular point in time by using the transaction log backups. For
example, you can choose to restore a backup to a very specific time (such

as 2:36 p.m. Tuesday) regardless of the time the transaction log backups
occurred. SQL Server accomplishes this by reading timestamps on transac-
tion log entries to determine whether they occurred before or after your
specified point in time.

If you choose the full recovery model, you should always schedule transac-
tion log backups. Failure to do so not only negates the benefit of using the
full recovery model but also can cause the transaction logs to consume large
amounts of disk space.

The simple recovery model

The simple recovery model keeps the transaction log entries for only an
extremely short period of time. This renders the transaction log useless for
disaster recovery purposes.

3 1 6 Part VI: Protecting Your Data

3

Choosing the simple recovery model minimizes SQL Server’s use of transac-
tion log space, but also inhibits your ability to recover recent changes in the
event of a database failure.

The bulk-logged recovery model

The bulk-logged recovery model is a variant of the full recovery model that
treats bulk transactions (such as bulk imports) differently. Rather than
record the details of each transaction that occurs within a bulk transaction, it
records the end result of those imports using a technique called minimal log-
ging. This model is highly efficient because it reduces the drastic impact that
the logging of bulk transactions can have on server performance.

If you use the bulk-logged recovery model and a bulk transaction occurs
within the scope of a particular log file, you will be able to restore the
changes made in that log file, but you won’t be able to take advantage of the
point-in-time restore option available under the full recovery model.

Because you can’t use the point-in-time option with the bulk-logged model,
Microsoft’s best practices dictate that you the bulk-logged recovery model
only for short periods of time. If you plan to perform bulk transactions, change
your database to the bulk-logged recovery model immediately before the bulk
operations and then return to the full recovery model immediately afterward.

Changing recovery models

If you’d like to change the recovery model used by your database, follow
these steps:

1. With SSMS open and connected to the server containing the database,
expand the Databases folder.

2. Right-click the database you want to modify and select Properties
from the pop-up menu.

3. Click the Options page in the Database Properties window.

4. Select the appropriate recovery model (Full, Simple or Bulk-logged)
from the Recovery model drop-down box, as shown in Figure 18-8.

5. Click OK to apply the change to your database.

Chapter 18: Preparing for Disaster 3 ’ 7

| || Database Properties - sales = | B
Selecta page : . -
Script + Hel
2 General ,;5 # Bree
2 Files
2" Filegroups Collation: |SGL_La‘tan_Genem_CP]_CI_AS v|
=
127 Change Tracking Recovery model | Full - |
22 Permissions Compatibility level: |SGLSer\rer 2008 (100) hd |
24 Bxtended Properties
A Mimoring Other options:
12 Transaction Log Shipping Al |
El Automatic -
Auto Close False
Auto Create Statistics True
Auto Shrink True
HAuto Update Statistics True
HAuto Update Statistics Asynchronoushy False
El Cursor 3
Close Cursor on Commit Enabled False
Default Cursor GLOBAL
[l Miscellaneous
- ANSI NULL Defautt False
Conmeckmn ANSI NULLS Enabled False
Server: ANS| Padding Enabled False
VOSTRO ANSI Wamings Enabled False
Connection: Arthmetic Abort Enabled False
sa Concatenate Mull Yields Null False
I Cross unership Chaining £ False
E properi T ! Chaining £
. 2 View connection properies Date Comelation Optimization Enabled
Figure 18-8: Numeric Round-Abort Felse i
H Progress = ~
Changing ANSI NULL Default
Ready
a database
recovery
model. o)
I

Restoring Vour Data after a Disaster

Restoring a full backup requires access to the backup file(s) you created ear-
lier. You may restore the backup on the same SQL Server instance or on any
other SQL Server.

It’s important to remember that you have some constraints on which data-
base backup(s) you may restore:
v You may restore a full backup of any database from any time period.

» You may restore a differential backup if you also restore the full backup
created most recently before that differential backup.

» You may restore transaction log backups only if you're using the full or
bulk-logged recovery model.

v You may restore your database to an arbitrary date and time only if
you’re restoring transaction log backups.

3 1 8 Part VI: Protecting Your Data

Here’s the process for restoring a backup that was created using disk file(s):

1. Open SQL Server Management Studio and connect to the instance for
which you want to restore the database.

2. Right-click the Databases folder and select Restore Database from the
pop-up menu.

SSMS presents the Restore Database window, as shown in Figure 18-9.

| J Restore Database - sales = | (S
Selecta page I . =
- Script + Hel
2 General ';S # L5 ek
2 Options
Destination for restare
Select or type the name of a new or existing database for your restore operation
To database: sales -
To a point in time: Most recent possible D
Source for restore
Specify the source and location of backup sets to restore
From database:
@ From device: Chsales.bak l:/
Select the backup sets to restore:
Restore Name Component Type Server Dz
sales-Full Database Backup Database Full VOSTRO =3
Connection sales-Full Database Backup Database Full VOSTRO 53
Server] sales-Full Database Backup Database Full VOSTRO sa3
VOSTRO 7 sales-Differential Database Backup Database Differertial VOSTRO =g
Connection: sales-Transaction Log Backup Transaction Log VOSTRO sa
sa
4 View connection properties
S | |Progress
. Ready
Figure 18-9:
. < I 3
Restoring a
database. el |
I

3. Select the From Device radio button in the Source for Restore section
of the Restore Database window.

4. Click the ellipses (. . .) button to open the Specify Backup window,
shown in Figure 18-10.

5. Click the Add button and select the file(s) you want to restore. When
finished, click the OK button to close the Specify Backup window.

6. Select the boxes next to the backup sets you want to restore.

Review the list of backups contained within the files you specified in the
Select Backup Sets to Restore section of the Restore Database window.

Chapter 18: Preparing for Disaster 3 ’9

e =
Specify the backup media and its location for your restore operation
Backup media: File: - |
Backup location
Csales bak Add
Bemove
|
Figure 18-10:
Selecting
backup files. oK] ‘ Cancel ‘ ‘ Help
|
You may select any valid combination of full, differential, and transac-
tion log backups.
7. Use the drop-down arrow to select the database that you want to
restore the backup set to in the To Database field.
You may restore your backup to an existing database or type the name
of a new database in the text box.
Note that if you already have a database with the same name on the
target server that you want to overwrite, you need to also select the
Overwrite the Existing Database check box on the Options page.
8. If you want to restore your database to a specific point in time, click
the ellipses (. . .) button to the right of the To a Point in Time text box.
This action brings up the Point in Time Restore dialog box, shown in
Figure 18-11. Select the A Specific Date and Time option and then use
the drop-down boxes to enter the date and time you want to restore to.
When finished, click OK to close the Point in Time Restore dialog box.
3 Point in time restore][5
Point in time restore stops the restoration of the transaction log entries after a specified point in
time. You can specify the point in time or the most recent state possible
| Restar=to
Figure 18-11; || Tomerories e
The Point —
in Time
Restore
dialog box. 0K | [Cancel | [Heb
|

9. Click OK to restore the backup set.

320 Part VI: Protecting Your Data

Using Database Snapshots

WMBER
‘x&
&

Database snapshots allow you to take a moment-in-time picture of a database
for later reference. They provide you with the ability to “freeze” your data-
base by creating a read-only copy. You can then later issue read-only queries
against that data or even use a snapshot to revert your database to an earlier
state.

Snapshots can play an important role in your disaster recovery strategy.
They’re also useful when you have a special need to maintain a frozen copy
of your data (such as in response to legal issues). Snapshots are also useful
for historical reporting purposes.

Snapshots are a feature of SQL Server Enterprise Edition only and were first
introduced in SQL Server 2005.

SQL Server manages snapshots intelligently using a concept known as sparse
files to conserve both time and space. When you create a database snap-
shot, SQL Server simply creates an empty file that consumes very little disk
space. SQL Server then manages these sparse files by using a copy-on-write
approach. Whenever the first change is made to a data page in the original
source database, SQL Server first copies the pre-change page to the database
snapshot and then writes the change to the source database. When a user
later requests data from the snapshot, SQL Server first checks to see whether
each page exists in the snapshot. If it does not, SQL Server knows that the
page was unchanged from the original source database and retrieves the
unchanged page from the source. This prevents the redundant storage of
unchanged pages in both the source and snapshot databases.

Creating a database snapshot

In contrast to most of the technologies I describe in this book, you can’t
create a database snapshot using the graphic interface of SQL Server Manage-
ment Studio. You'll need to break out your Transact-SQL skills for this one.

To create a database snapshot, simply write a CREATE DATABASE statement
as you would for the original database, with two differences:

v Add the clause AS SNAPSHOT OF <source_database> to your
statement.

v Specify the logical filenames for every file in your snapshot database.

Chapter 18: Preparing for Disaster 32’

3

For example, if I wanted to create a snapshot of the sales database, [would
issue the following Transact-SQL command:

CREATE DATABASE sales_snapshot_friday ON

(NAME = 'sales', FILENAME =
'C:\DATA\sales_snapshot_friday.ss')

AS SNAPSHOT OF sales

You may name your data file anything you want. However, as a matter of best
practice, you should use the . ss file extension to alert others to the fact that
the file contains a SQL Server snapshot. Also, you may have many snapshots
of the same database from different points in time, so | recommend naming
your snapshot something that conveys both the name of the source database
and the time that the snapshot was taken.

Accessing a database snapshot

Accessing a database snapshot is straightforward: You simply reference

the snapshot name just as you would any other database. For example, to
retrieve the contents of the stock table from the snapshot, issue the following
Transact-SQL statements:

USE sales_snapshot_friday;
SELECT * FROM stock;

Accessing a snapshot from within SQL Server Management Studio is slightly
different. Rather than expand the Databases folder, expand the Database
Snapshots folder to locate your snapshot.

Reverting to a database snapshot

In the event of a serious user error, you may want to revert your database to
the state it was in when you took a database snapshot. SQL Server makes this
possible, but I must share a few words of caution first:

»* You may revert a database to a snapshot only when it’s the only existing
snapshot of that database. If other snapshots exist, you must drop them
first, using the following Transact-SQL statement:

DROP DATABASE <snapshot_name>

322 Part VI: Protecting Your Data

For example, if | wished to remove the Friday snapshot from my data-
base, I would issue the following command:

DROP DATABASE sales_snapshot_Friday

‘&N\BEB Database snapshots basically stick around forever and can consume
& large amounts of disk space. You should always keep tabs on the number
of snapshots that exist for each one of your databases and drop them
when you no longer need them around to meet business requirements.
v Reverting to a snapshot automatically drops any full-text catalogs you
created on the database.
QUING/ v Reverting a database to a snapshot won’t work if the database becomes
y corrupted. It won’t work because of the use of sparse files: The cor-

rupted data may not even exist in the snapshot file. Therefore, although
snapshots play a role in a disaster recovery scenario, they are not a
panacea and should be used only in conjunction with normal backups
and restores.

With those words of caution under your belt, if you still want to revert a data-
base to a snapshot, use the following Transact-SQL command:

RESTORE DATABASE <source_database_ name>
FROM DATABASE_SNAPSHOT = '<snapshot_name>'

For example, suppose that on Friday morning, a user accidentally issued this
query against my sales database:

UPDATE stock set inventory = 0

This wiped out all of the organization’s inventory records. I could revert
my sales database to the snapshot I took on Friday, using the following
command:

RESTORE DATABASE sales
FROM DATABASE_SNAPSHOT 'sales_snapshot_Friday'

Chapter 19

Staying Alive: High Availability
in SQL Server 2008

In This Chapter
Using database mirroring to create redundant databases

Using log shipping to synchronize databases

M any organizations depend upon their databases for the very liveli-
hood of their businesses. For example, an e-commerce store would

cease to operate without the database that drives its product catalog and
ordering process. Similarly, a bank would be unable to process any customer
transactions without access to live financial data.

In enterprises like these, time is literally money. You can directly measure
the financial cost of database downtime in terms of lost revenue. There are
also additional intangible factors, such as reputation and customer goodwill,
that play a definite role. Would you want to do your banking with a financial
institution that has unreliable databases?

For these reasons, SQL Server provides a number of high-availability solu-
tions designed to reduce the amount of downtime suffered by your organi-
zation. Database mirroring allows you to maintain a completely redundant
database environment that serves as a hot or warm standby in the event of a
primary server failure. Log shipping lets you transfer the transaction log from
a primary database to secondary database(s) on a regular basis, providing

a way to both keep a backup server ready and waiting and to provide users
with a secondary data source for queries where time is not of the essence.

324 Part VI: Protecting Your Data

Creating Redundancy with
Database Mirroring

When you establish a database mirroring relationship, you define a partner-
ship between two servers. The result of this partnership is that one server
will always act as the primary server, processing all transactions and provid-
ing updates to the other (secondary) server. The secondary server stays in
standby mode, applying changes received from the primary server to ensure
that it maintains a current copy of the primary server’s data. In the event that
the primary server fails, the secondary server is ready for an automatic or
manual failover. At that time, it takes on the role of the primary server and
processes all transactions for the mirrored database with minimal impact on
database availability.

<MBER Database mirroring is available only in the Standard and Enterprise editions
of SQL Server. Additionally, you may implement database mirroring only on
databases that use the full recovery model. If you're not sure which recovery
model is in use on your database, see Chapter 18.

Database mirroring provides three important benefits to your enterprise:

v Mirroring increases the availability of your enterprise database
architecture.

By implementing mirroring, you gain the ability to automatically or
manually fail over to a standby server in the event of a database failure.
Depending upon your operating mode (I discuss operating modes later
in this section), you may have little or no downtime with zero data loss
when your primary server fails.

v Mirroring provides you with an efficient way to patch your servers.

Mirroring allows you to employ the concept of a rolling upgrade when
you want to apply service packs to your SQL Servers. For more informa-
tion on this topic, see the MSDN article “How to: Install a Service Pack on
a System with Minimal Downtime for Mirrored Databases,” available at
http://msdn.microsoft.com/en-us/library/bb497962.aspx.

v Mirroring provides an automated way to correct minor errors.

If a database server experiences a read error and is part of a cluster, it
will attempt to retrieve the offending page from its mirroring partner
and use that page to resolve the local read error. This feature is avail-
able only with SQL Server 2008 Enterprise Edition.

Chapter 19: Staying Alive: High Availability in SQL Server 2008 325

Choosing an operating mode

SQL Server offers two database mirroring operating modes: high-safety mode,
which is designed to prevent data loss at the expense of performance, and
high-performance mode, which provides less assurance of data protection
but offers less of a performance hit.

High-safety mode

Mirror partners running in high-safety mode (also known as synchronous
operation) require the confirmed commitment of transactions on both part-
ners before returning an acknowledgement to the client. This confirmation
guarantees that both mirror partners retain consistent copies of the database
at all times, but it increases the transaction latency by requiring the wait for
synchronization.

High-safety mode also supports the use of automatic failover, when imple-
mented with a witness server. The witness server does not contain a copy of
the database but bears responsibility for monitoring the status of the pri-
mary and mirror server to determine whether a failover is required.

High-performance mode

The alternative, high-performance mode, eliminates the synchronization
latency by allowing transactions to commit on the principal server before

the mirror server synchronizes. Doing so introduces the possibility of data
loss in the event of a primary server failure. High-performance mode does not
support automatic failover.

Configuring mirroring

Configuring SQL Server mirroring requires several preparatory steps before
you create the mirror relationship. In this section, I explain the process of
creating a SQL Server database mirror. First, you must ensure that you meet
the prerequisites for mirroring:

v The mirroring partners must be running the same edition (either
Standard or Enterprise) of SQL Server.

v The mirroring partners (and witness, if applicable) must be running the
same version of SQL Server.

Creating logins on the mirror server

SQL Server doesn’t allow you to mirror either the master or msdb databases.
Therefore, you must ensure that accounts exist for database users on both

326 Part VI: Protecting Your Data

Figure 19-1:
Restoring

a database
using the
WITH NO
RECOVERY
option.
|

SQL Server instances. If both instances run under the same domain account,
SQL Server handles this automatically. If not, you must manually create the

accounts. I describe how to create accounts in Chapter 16.

Restoring data to the mirror server

Next, you need to load the database onto the mirror server. To do this, restore
a backup from your primary server on the secondary server. You should follow
the process I explain in Chapter 18, with one modification. On the Options page
of the Restore Database window, select the RESTORE WITH NORECOVERY
option, as shown in Figure 19-1. You must restore a full backup and any trans-

action log backups required to make the two databases consistent.

| J Restore Database - d = | (S |
Selecta page 0 . =
A General ';S SR © U HED
E‘“ Options
Restore options
QOvwerwrite the existing database
Prompt before restoring each backup
Restrict access to the restored database
Restore the database files as
Origi File Type Restore As
‘s Rows Data C:\Program Files'Microsoft 5Q... \:I
sales_log Log C:\Program Files'Microsoft 5Q... \:I
Recovery state
Conneclion
Leave the database ready to use by roling back uncommitted transactions. Additional
\?'E)“S"EIIRO transaction logs cannot be restored (RESTORE WITH RECOVERY)

Connection:
sa

3 View connection properties

Progress
Ready

Leave the database non-operational, and do not roll back uncommitted transactions. Additional

transaction logs can be restored (RESTORE WITH NORECOVERY)

Leaye the database in read-only mode. Undoe uncommitted transactions, but save the undo
actions in a standby file so that recovery effects can be reversed (RESTORE WITH
STANDBY)

==

1. Open SSMS and connect to the SQL Server instance hosting the pri-

Configuring the mirror partnership

After you've restored data to the mirror server, you may configure the mir-
roring partnership by following these steps:

mary copy of the database.

Figure 19-2:
Database
mirroring

properties.
|

2. Expand the Databases folder.

Chapter 19: Staying Alive: High Availability in SQL Server 2008 32 7

3. Right-click the database you want to mirror and choose Tasks=>Mirror
from the pop-up menu.

This brings up the Mirroring page of the Database Properties window, as
shown in Figure 19-2.

| || Database Properties - sales =RACIE X
e~ Soemt - Qe
E‘“ Files
4 Filegroups Ensure that sscurity is corfigured for mimoring this -
- Opligunsp database. Configure Security...
E‘“ Change Tracking
::“ Permissions Server network addresses
4" Exdended Properties .
3 Mimoring Principal:
1 Transaction Log Shipping Miror:
Witness:
Note: Use fully-qualified TCP addresses. For example
TCP://svr5.comp.abc.com: 5022
Operating mode:
Connection
Server:
VOSTRO
Connection:
sa Status: This database has not been configured for
4 View connection properties it
Progress
Ready
OK Cancel

4. Click the Configure Security button to bring up the Configure
Database Mirroring Security Wizard.

5. Click the Next button to advance to the first page of the wizard.

6. If you want to include a witness server in the mirroring relationship,
answer Yes to the question on the next screen and click Next to

continue.

Remember, a witness server is required if you intend to run in synchro-
nous high-safety mode with automatic failover. This screen is shown in

Figure 19-3.

328 Part VI: Protecting Your Data

1 Configure Database Mirroring Security Wizard = |]
Include Witness Server i
Specify whether to include a witness server in the security configuration
-

To operate database miroring in synchronous mode with automatic failover, you must
configure a witness server instance to monitor the status of the principal and mimor
server instances and control the failover.

Do you want to configure security to include & witness server instance?

@ Yes
Ng
I
Figure 19-3:
Including
a witness
server. [Hep <Back || Cancel
I
7. Click Next to confirm that you want to configure all servers.
8. Provide details for the principal server on the next screen, as shown
in Figure 19-4, and then click Next to continue.
You need to provide an endpoint name and listener port if you want to
change the SQL Server default settings.
1 Configure Database Mirroring Security Wizard = | E]
Principal Server Instance i
Specify information about the server instance where the database was originally
located.
-
Principal server instance:
Spedfy the properties of the endpoint through which the principal server instance will accept
connections from the mirror and witness server instances:
Listener port: V| Engypt data sent through this endpoint
Js022]
Endpoint name:
Mirroring
I
. MOTE: If the principal, mirror or witness are instances on the same server,
F|gu|‘e 19-4: their endpoints must use different ports.
Configure
the princi-
pal server
instance. [b <Bock [teds Cancel

Chapter 19: Staying Alive: High Availability in SQL Server 2008 329

|
Figure 19-5:
Server
account
specification.
|

9. Click the Connect button to connect to the mirror server instance.
SQL Server prompts you for credentials.

10. Provide details for the mirror server if you want to change the default
settings; then, click the Next button to continue.

11. Provide details for the witness server, if applicable, and click the Next
button to continue.

12. If the service accounts for any of the servers involved are different
accounts within the same domain, provide the details in the Service
Accounts window; otherwise, leave the text boxes empty, as shown in
Figure 19-5.

1) Configure Database Mirroring Security Wizard =HACE X")

Service Accounts
Specify the service accounts of the server instances.

.
[the server instances use different accourts in the same or trusted domain as their service
accourts for SQL Server, enter the accounts below. Leave the textboxes empty if all instances

use the same account, the accounts are non-domain accourts, or the accourts are in
urtrusted domains.

Service accounts for the following instances:

Principal: Witness:

Mirror;

If the service accounts are diferent, the wizard will create logins for the accounts (f necessary)
and grant CONNECT pemissions on the endpaints for each account.

‘ Help < Back | [Mext >] | Finish | | | Cancel

13. Click the Next button to continue.

14. Review the mirroring details in the confirmation screen and click
Finish to complete the wizard.

SQL Server displays a status screen while it configures the mirroring
endpoints, as shown in Figure 19-6.

15. Click the Close button to close the status screen.

SQL Server presents the dialog box shown in Figure 19-7, asking you
whether you’d like to start mirroring immediately. (In this example, I'm
running all three SQL Server instances on the same server. That’s why
you see the shared server name “vostro” in the dialog box.)

330 Part VI: Protecting Your Data

1 Configure Database Mirroring Security Wizard = | EJ
Configuring Endpoints
Click Stop to interupt the operation. >
@ 3 Total 0 Emor
Success 3 Success 0 Waming
Details:
Action Status Message
@ Configuring endpoairt on principal server(... Success
i@ Configuring endpeint on mimor server(V0... Success

i@ Corfiguring endpoint on witness server{V. Success

|
Figure 19-6:

Mirroring —

endpoint
creation.
I
Database Properties
! Do you want to start mirroring this database using the following settings?
~ Principal network address: TCP://vostro: 5022
Mirror network address: TCP:ffvostro:5023
Witness network address: TCP: [fvostro:5024
L Operating mode: High safety with automatic failover {synchronous)
Fi ure 19-7 If you do not start mirroring now, you can start it later by dicking Start Mirroring on the Mirroring page of
g . : M ; :
the Database Properties dislog box. If you dose the Database Properties dialog box without starting
The Sta rt mirrering, the server network addresses will not be saved. (Mote that any security configuration
) . performed by the Configure Database Mirroring Security Wizard will be saved.)
Mirroring
dialog box. By [startMiraring | [Do Not Start Miroring
I

16. Click the Start Mirroring button to initiate database mirroring.

Monitoring Database Mirroring

SQL Server provides a Database Mirroring Monitor to help you monitor the
status of your mirroring relationships. Here’s how to start the monitor:

1. With SSMS open, expand the Databases folder on either the primary
or mirror server.

2. Right-click the name of the mirrored database and choose Tasks~
Launch Database Mirroring Monitor from the pop-up menu.

Chapter 19: Staying Alive: High Availability in SQL Server 2008 33 ’

Figure 19-8 shows the Database Mirroring Monitor. The monitor displays the
status of each server instance participating in database mirroring:

v Unknown: The monitor is not connected to either of the mirroring
partners.

v Synchronized: The primary server and mirror server are synchronized.
In high-safety mode, this indicates that a failover can occur without any
data loss.

v Synchronizing: The contents of the two instances are not yet synchro-
nized and failover may not occur.

v Suspended: The principal database is online, but the mirror server is
not receiving logs.

v Disconnected: The server cannot connect to its mirroring partner.

[Database Mirroring Monitor =
File Action Go Help

EJ_) _Da_iabase Mimoring Monitor
i-|]| sales (Synchronized, VOSTRO->VOS

l Wamings I
Status

Server Insta. ‘ Current Role ‘ Mimoring State Witness Connection | History ‘
VOSTROMG... Mimor @ Smchronized .
WOSTRO Principal “’) Synchronized .
Principal log (11/24/2007 6:47:01 PM) Mirror log (11/24/2007 6:47:01 PM)

Unsent log: 0 KB Unrestored log: OKE

Oldest unsent transaction Time To restore log

(estimated):
Time to send log
(estimated) : Current restore rate: |0 KB/sec
Current send rate: 0 KB/sec
Current rate of new 0 KB/sec

E— transactions:
Figure 19'8: Mirror commit overhead: W
The Time to send and restore all current ,7
Database tos(estmared)
|V|II’I’0I’Ing \fitness address: |
M on |t0 r. Operating mode: High safety without automatic failover (synchronous)
) m b
I

Failing over a mirrored database

If you're using high-safety mode with a witness server, SQL Server will auto-
matically fail over when the following conditions are met:

332 Part VI: Protecting Your Data

v The primary and mirror databases are in the synchronized state.

v The mirror and witness are able to communicate with each other.

v Neither the mirror nor the witness can communicate with the primary
server for 10 seconds.

You may also manually failover to a mirror database as follows:

1. With SSMS open, connect to the primary server instance.
2. Expand the Databases folder.

3. Right-click the database to be failed over and choose Tasks~>Mirror
from the pop-up menu.

SQL Server opens the Database Properties window to the Mirroring
page, as shown in Figure 19-9.

| | Database Properties - sales o[
Selecta I . =
A GEnE;Tge ';s Serpt v L3 Help
E‘“ Files
44 Flagroups Ensure that security is corfigured for mimoring this =
i Omlgonsp database. Contigure Security

-2 Change Tracking

1= Permissions Server network addresses
o o]
=, Bxended Properties Principal- TCP-//vostro 5022
1= Mimoring
1 Transaction Log Shipping Mimor: TCP://127.0.0.1:5023 Pause
Witness: Bemove Mimoring

Mate: Use fully-qualified TCP addresses. For example o
TCP.//svr5.comp.abc.com: 5022 =
Operating mode

High performance (asynchronous) — Commit changes at the principal and then transfer them
to the mirar.

@ High safety without automatic failover (synchronous) — Always commit changes &t both the
principal and mimor.

Conneciion

Server

VOSTRO

Connection:

sa Status:

Synchronized: the databases are fully Refresh
synchronized

4 View connection properties

S | |Progress

Figure 19-9: e
Mirroring
properties. oK Cancel
|

4. Click the Failover button.

5. Click the Yes button to commence the failover.

Chapter 19: Staying Alive: High Availability in SQL Server 2008

Synchronizing Databases
with Log Shipping

SQL Server’s other major mechanism for high availability databases is

log shipping. This technology allows you to keep databases synchronized
through the use of the transaction log. In a log shipping relationship, the pri-
mary server automatically transfers backups of the synchronized database’s
transaction logs to one or more secondary SQL Server instances.

There are three stages in the log shipping process:

1. The primary server creates a transaction log backup using a SQL Server
Agent job. (I discuss SQL Server Agent in Chapter 13.)

2. The secondary server(s) retrieve the transaction log backup from the
primary server using a SQL Server Agent job.

3. The secondary server(s) apply the transaction log backup to their data-
bases using a different SQL Server Agent job.

All servers participating in log shipping must be running SQL Server Standard
Edition, Workgroup Edition, or Enterprise Edition. The primary server must
also be running either the full recovery model or the bulk-logged recovery
model. For more on recovery models, see Chapter 18.

You may combine database mirroring and log shipping if dictated by your
business needs. Both technologies have the same goal: creating a redundant
server that receives transaction updates as the primary database changes.
However, there are important differences between the two. A primary server
may only have one mirror partner. The same server may have multiple log
shipping partners. However, a secondary server created with log shipping
can’t participate in an automatic failover relationship, whereas a mirrored
server in high-safety mode can.

Many organizations that require more than one redundant server implement
a combination of database mirroring and log shipping. The mirror server is
the “primary” backup server and takes advantage of automatic failover. The
log shipping recipients are the “secondary” backup servers and may also be
used for read-only queries.

Configuring log shipping

Configuring log shipping is similar to the process used to configure database
mirroring. After you identify the primary server and secondary server(s) that
will participate in log shipping, follow these steps to configure log shipping:

333

334 Part VI: Protecting Your Data

. Create a new database on the secondary server(s) by restoring back-

ups, including transaction log backups, using the WITH NORECOVERY
option.

If you're not sure how to do this, see the “Restoring data to the mirror
server” section, earlier in this chapter. The process is identical.

. Create a network file sharing location where you will store transac-

tion log backups.

This may be a location on the primary server, or it may be a shared
folder on another server. It must be accessible to all servers that will
participate in the log shipping relationship. The SQL Server service
account for the primary server must have both read and write permis-
sion to this share so that it may write transaction log backups to the
share. The SQL Server Agent service account on the secondary server(s)
must have read permission to retrieve the transaction log backups.

. Open SSMS and connect to the SQL Server instance hosting the pri-

mary copy of the database.

4. Expand the Databases folder.

5. Right-click the database you want to mirror and choose Tasks->Ship

10.
11.

Transaction Logs from the pop-up menu.

This brings up the Transaction Log Shipping properties page, as shown
in Figure 19-10.

. Select the Enable This as a Primary Database in a Log Shipping

Configuration check box.

. Click the Backup Settings button.

You see the Transaction Log Backup Settings window, shown in
Figure 19-11.

. Enter the network share path you created in Step 2 in the network

path text box.

. If the network share is located on the primary server, enter the local

path in the second text box. Otherwise, leave this field blank.

You should also review the other settings in this window. You
may either accept the default values or modify them to meet your
requirements.

Click OK to close the Transaction Log Backup Settings window.

Click the Add button in the Secondary Databases section of the
Transaction Log Shipping properties page.

SQL Server displays the Secondary Database Settings window, shown in
Figure 19-12.

Chapter 19: Staying Alive: High Availability in SQL Server 2008 335

Figure 19-10:
Transaction
Log

Shipping
properties.
|

MBER
é‘("
&

| || Database Properties - sales = B | e |

Selecta page
2 General
2 Files

2 Filegroups Enable this as a primary database in & log shipping corfiguration
2 Options

1% Change Tracking

22 Permissions

24 Bxtended Properties

2 Mimoring Ters
%" Transaction Log Shipping

Conneciion

Server

VOSTRO

Connection:

sa

4 View connection properties

S Script + Lﬁ Help

Progress
Ready
Cancel
12. Click the Connect button and provide connection details for the first

13.

14.
15.

16.

secondary server you want to include in the log shipping relationship.

Note that the Initialize Secondary Database page on this screen allows
you to automatically create and restore the necessary backups to initial-
ize the database. You may explore this option if you want, but I prefer
to create and restore the backups manually to maintain control over the
process. That’s why [have you restore your own backups in Step 1.

Verify that the Secondary Database drop-down box contains the name
of the database you created in Step 1.

Click the Copy Files tab.

Provide a destination folder for the copied files in the text box on this
page.

You may choose any path you want. For performance reasons, you
should normally choose a local path on the secondary server.

Review the settings on the Restore Transaction Log tab and make any
changes to the default values you deem necessary.

36 Part VI: Protecting Your Data

Figure 19-11:
Transaction
Log Backup

settings.
|

Figure 19-12:
Secondary
Database
settings.
|

nsaction Log Backup Settings El

Transaction log backups are perfoimed by a SOL Server Agent job iunning on the primary server instance.

Network path to backup folder [example: “\fileserverbackup).
“WDBSERYVERMbklogs

If the backup folder is located on the primary server, type a local path to the folder (example: c:\backup]:

Mote: pou must grant read and write pemission on this folder to the SOL Server service account of this primary server instance.
“Y'ou must also grant read permizsion to the proxy account for the copy job [usually the SAL Server Agent service account for
the secondary server instance).

Delete files older thar: 72 = | [Houwrz] ~
Alegt if no backup occurs within: 1 = | [Houwrz] v
Backup job

Job name;

LSBackup_Sales

Schedule..

Scheduls: Ocours every day every 15 minutels) between 12:00:00 8M | [] Disable this job
and 11:59:00 PM. Schedule will be used starting on
8/8/2003
Compresszion

et backup gompression: Use the default server setting v

Note: If you backup the transaction logs of this database with any ather job or maintenance plan, Management Studio will not
be able to restore the backups on the secondary server instances.

Cancel

|

Secondary Database Settings

B

VOSTROVGAMMA

Secondary server instance:

Secondary database: sales -

Select an existing database or enter the name to create a new database.

tInitislize Secondary Database |Copy Files I Restore Transaction Log

You must restore a full backup of the primary database into secondary database before it can be a log shipping
destination.

Do you want the Management Studio to restore a backup into the secondary dstabase?

Yes, generate a full backup of the primary database and restore it into the
secondary database (and create the secondary database if it doesnt exist)

Yes, restore an existing backup of the primary database irto the secondary database (and create the
secondary database if it doesn't exist)

Specify & network path to the backup file that is accessible by the secondary server instance

Backup file

@ Mo, the secondary database is initialized.

Cancel

Chapter 19: Staying Alive: High Availability in SQL Server 2008 33 7

17. Click the OK button to continue.

18. Repeat Steps 11-17 if you want to configure any additional secondary
servers.

19. Click the OK button to close the Database Properties window.

SQL Server displays the status window shown in Figure 19-13 while it
enables log shipping.

| | Save Log Shipping Configuration

Restoring backup to secondary database

I 2 Total 0 Emor
Success

2 Success 0 Waming
Figure19-13: ||
The LOg Action Status Message

Sh i pp i ng .3 Saving secondary destination corfiguration [VOST... Success
Config-
uration
status
window. Close | ‘ Repot ¥
I

@ Saving primary backup setup Success

20. Click the Close button to close the status window.

Failing over to a log shipping
secondary instance

If your primary database fails, you may manually failover to a secondary
database synchronized with log shipping. In contrast to database mirroring,
there is no automatic failover option for log shipping secondary servers.

<P Before failing over, ensure that the secondary server has applied as many
recent transaction log backups as possible. If the primary server is still acces-
sible, you should perform a manual transaction log backup and apply it to the
secondary server. This ensures that the secondary server includes transac-
tions occurring after the last scheduled transaction log backup.

When you are ready to failover, issue the following command on the second-
ary server:

RESTORE DATABASE <secondary. database_name>
WITH RECOVERY

338 Part VI: Protecting Your Data

For example, to restore the sales database, you would execute this Transact-
SQL statement:

RESTORE DATABASE sales
WITH RECOVERY

You then need to manually reconfigure any database clients to use the sec-
ondary server instead of the primary server.

Chapter 20

Implementing Policy-Based
Management with the Declarative
Management Framework

In This Chapter
Creating DMF policies
Determining SQL Server policy compliance status
Applying DMF policies to SQL Server
Automating DMF policy enforcement

rle Declarative Management Framework (DMF) is one of the most excit-
ing new features in SQL Server 2008. DMF allows administrators to create
and apply policies that regulate the configuration and operation of SQL
Server(s) in an enterprise.

For example, suppose that your business has a security policy that requires
the use of SQL Server’s password expiration functionality. You may use DMF
to create a policy that requires this feature on all SQL Servers in your organi-
zation. You may then use that policy to perform the following actions (which
[cover in this chapter):

v Verify whether a server complies with the policy (that is, password expi-
ration is turned on).

v Apply the policy to a server manually, changing the server’s configura-
tion to make it compliant with the policy.

v Prevent changes to the server that would violate the policy.

v Record log entries when the server fails to comply with the policy.

34 0 Part VI: Protecting Your Data

Coming to Terms with DMF

Before you can manage servers with DMF, you should understand a few
DMF-specific terms. These can be somewhat confusing but they’re essential
to understanding how DMF works. Be sure to take a few moments to review
these terms before proceeding:

v Targets: Entities that you may manage by DMF. They may be broad in
scope, such as an entire SQL Server instance, or narrow, such as an indi-
vidual database, table, or login.

1 Management facets: Collections of related properties of a management
target. Some examples of management facets include logins, filegroups,
servers, and stored procedures.

v Conditions: Collections of one or more clauses that specify properties of
a management facet. Each management facet has many properties that
may be specified in conditions. For example, the logins management
facet may have conditions related to the login name, creation date, and
password complexity enforcement, among others.

v Policies: Specify the condition that you expect a target to comply with
and way you’d like to enforce that policy (the evaluation mode). Each
policy contains one (and only one) condition.

Here’s an example to tie this all together. Earlier, | used an example of enforc-
ing password expiration requirements. If you decide to enforce that require-
ment on a SQL Server instance called MyDatabase, you use the following
configuration:

v The target of your policy is the SQL Server instance: MyDatabase.

v The relevant management facet is Logins, which contains properties
related to SQL Server logins.

v You then create a condition based upon the Logins management
facet containing a single clause requiring that the @Password
ExpirationEnabled field has a value of True.

v Finally, you create a policy that enforces your condition against the
MyDatabase target.

Creating DMF Policies

SQL Server 2008 includes a number of predefined policies created by
Microsoft for your convenience. For example, some of the policies included
with SQL Server are the following:

Chapter 20: The Declarative Management Framework 34 ’

+* SQL Server Password Expiration Best Practice: Verifies that the SQL
Server requires password expiration for every login.

+* SQL Server Password Policy Best Practice: Ensures every login requires
a password.

+ Database Auto Shrink Best Practice: Verifies that auto shrink is dis-
abled for all online user databases.

v+~ Data and Log File Location Best Practice: Checks whether the data and
log files are stored on separate drives for any database that is 5GB or
larger.

<P In many cases, you can make use of these built-in DMF policies and avoid cre-
ating your own policies or conditions. However, if you want to experience the
true power of DMF, you’ll want to create your own customized policies and
conditions that implement your organization’s specific business requirements.
If you simply want to execute predefined policies, you can skip ahead to the
“Verifying policy compliance” section of this chapter.

In the remainder of this section, I show you how to create a custom DMF
policy that enforces a specific business requirement: that all nonsystem
stored procedures have names that begin with the prefix “sp_" and end with
a non-numeric character.

Creating a condition

[mentioned earlier that SQL Server includes a number of predefined best
practice DMF policies. In addition, it includes a wide range of conditions

that you may use or modify for your own purposes. SQL Server does not,
however, ship with a predefined condition that requires compliance with the
stored procedure naming convention of the previous section, so I have to
create a new one. Here’s how:

1. With SSMS open, expand the Management folder.
2. Expand the Conditions folder.

Take some time to explore the predefined conditions that appear in this
folder. There are many useful items here, such as:

e Auto Close Disabled
¢ Database is 5GB or Larger
e File is 1GB or Larger

34 2 Part VI: Protecting Your Data

|
Figure 20-1:
Predefined
DMF
conditions.
|

¢ Not Enterprise Edition
® Recovery Model Full

¢ Windows Authentication Mode

Figure 20-1 shows some of the conditions included in this folder by
default.

42 Microsoft SQL Server Management Studio

Fle Edit View Tools Window Community Help
B, New Query | [y | £ iy B | [|5 ¥ 6l & @ | B

Object Explorer

Connect

- Ex
TE

= [VOSTRO (SQL Server 10.0.1075 - vostro\mchapple) -
@ [Databases
@ 3 Security
@ [Server Objects
@ [Replication

= 3 Management

= [Policy Management
@ [Policies
= 1 Conditions

m

S 32-bit Affinity Mask Overlapped

£ 32-bit Configuration

k. 32-bit Configuration of SQL Server Version 200
S 64-bit Affinity Mask Overlapped

£ 64-bit Configuration

. 64-bit Configuration of SQL Server Version 200
S Affinity Mask Default

S Auto Close Disabled

. Auto Shrink Disabled

S Aute-configured Dynamic Locks

S Auto-configured Maximum Worker Threads
. Auto-configured Open Objects

S Blocked Process Threshold Optimized

S Cluster Disk Resource Corruption Error Check
. CmdExec Rights for sysadmins Only

S Collation Matches master or model

i Dats and Backup on Separate Drive

. Data and Log Files on Separate Drives

fi Database is 5 GB or Larger

i Database Owner Not sysadmin

. Default Trace Enabled

£ Device Driver Control Error Check

i Device Not Ready Error Check

4 Disk Defragmentation Resulting Data Corruptic _

I b

=]
- X
1J conditions

VOSTRO! Policy Condition: 69 Item(s)

Name Created Policy Health State ~~ *
“f Maximum Warker Threads for 32-bit Configur... 11/8/2007
i Maximum Worker Threads for 64-bit Configur... 11/8/2007
Sf Microsoft Service Master Key 11/8/2007
i Network Packet Size Optimized 11/8/2007
5 Not Enterprise Edition 11/8/2007
A Not Read-only 11/8/2007
“f Online User Database 11/8/2007
i Page Verify Checksum 11/8/2007
i Password Expiration Enzbled 11/8/2007
Sf Password Policy Enforced 11/8/2007
i Public Server Role Has Mo Granted Permissions 11/8/2007
i Read Retry Error Check 11/8/2007
5 Read-only 11/8/2007
i Recovery Model Full 11/8/2007
“fi Recovery Model Simple 11/8/2007
S RSA 1024 or RSA 2048 Encrypted 11/8/2007

i Safe Last Backup Date 11/8/2007 L

£ SQL Server 2005 or a Later Version 11/8/2007 1
i SQL Server 2005 SPL or a Later Version 11/8/2007
54 SQL Server Agent Proxies Grant Secured 11/8/2007
i SQL Server Version 2000 11/8/2007
" Storage System I/ Timeout Error Check 11/8/2007
" strongly Encrypted 11/8/2007

“# Suctem Datahases Not Including Master 11/8/2007 S

Ready

3. Right-click the Conditions folder and select New Condition from the

pop-up menu.

SQL Server displays the blank Create New Condition window, as shown
in Figure 20-2.

4. Provide a name for the condition in the appropriate text box.

You have plenty of space here, so try to choose a very descriptive name
that will help you understand the condition later when you incorporate

it into a policy. For example, I'm calling my condition “Stored Procedure
Follows Naming Convention.”

Chapter 20: The Declarative Management Framework 343

"= Create New Condition - == EoR)
QB Property 'Mame' is not set. -
General MName: ®
Description
Facet: |Application Role v|
Expression:
AndOr Field Operator Value
. [L]
I
Figure 20-2:
Creating a
new DMF
condition. oK Cancel Help
I

5. Select the appropriate management facet from the drop-down menu.

In my example, I'm creating a DMF condition for use with stored proce-
dures, so I choose that management facet.

6. Provide the field, operator and value for the first clause in your
condition.

As I mentioned earlier, each condition may consist of one or more
clauses. Each clause is a single, testable statement about a property of
the management facet. For example, | want to ensure that all stored pro-
cedures begin with the three characters “sp_". I can verify this by test-
ing the @Name field using the LIKE operator against the clause 'sp_%'.
If you're not familiar with the use of the LIKE operator, see Chapter 7.

7. Create additional clauses, as necessary, joining them with the AND or
OR operator.

Many conditions may require multiple tests. For example, I checked
only whether the stored procedure name begins with the “sp_” prefix.
still need to check whether it ends with a non-numeric character. I can
do this by verifying that @Name is NOT LIKE '%[0-9]'.Finally, [want
this condition to apply only to nonsystem stored procedures, so I must
create a third clause that verifies that the @IsSystemObject field is
False.

In this example, | wanted to create three clauses, each of which is joined
with the AND condition. If you need to create very complex queries, you
may need to perform more complex comparisons. For example, you
could perform the same check by testing whether the stored proce-
dure name follows the naming convention OR the @IsSystemObject

344 Part VI: Protecting Your Data

property is false. To create this type of condition, you must first group
the two @Name clauses by selecting them both. You do so by clicking
each one while holding down the Shift key. You may then right-click
them and select Group Clauses from the pop-up menu. Grouping the
clauses allows you to join them together in an OR statement with the @
IsSystemObject clause.

The resulting condition window appears, as shown in Figure 20-3.

7 Open Conditien - Stered Procedure Fellows Naming Convention =n|E=R|==
© Ready
General Name: |Stored Procedure Follows Naming Convention
Description
Dependent Polices Eacctlll Stored Brocedure
Expression:
AndOr Field Operator Value
» - @Name [uke sp_%' (]
I AND @Name [noT. mpep (]
Figure 20-3: AND @ESystemObject [.]= False (]
Stored # || Click here fo.add a clause
procedure
naming
convention
cond|‘t|0n oK] ‘ Cancel | | Help
|

8. Click the OK button to create the condition.

The new condition then appears in the list of available DMF conditions.

Creating a policy
After you've created the condition that you would like to enforce, you
may create a DMF policy object that enforces that condition against DMF
target(s). Here’s how to create a new DMF policy:

1. With SSMS open, expand the Management folder.

2. Expand the Policies folder.

Take some time to explore the predefined policies that appear in this
folder.

Chapter 20: The Declarative Management Framework

3. Right-click the Policies folder and select New Policy from the pop-up
menu.

4. Provide a name for your policy by typing it into the Name text box.
I call my example policy “Stored Procedure Naming Convention.”
5. From the drop-down menu, choose the condition you want to enforce.

You'll find the conditions sorted by the management facet they affect.
I found my “Stored Procedure Follows Naming Convention” condition
under the Stored Procedure facet.

6. Modify the policy targets, if necessary.

You may modify any of the target characteristics that appear in blue.
For example, when I chose the “Stored Procedure Follows Naming
Convention” condition, SQL Server allowed me to specify conditions
to limit the types of stored procedures or databases that the policy
includes. You may modify these conditions by clicking the down arrow
icon next to the blue text.

<P You may use conditions here to apply policies selectively. For example,
rather than apply a policy to “Every” database, you could create a new
condition that applies the policy to only those databases with a name of
“MyDatabase.”

7. Choose the evaluation mode from the drop-down menu.
SQL Server 2008 offers four DMF policy evaluation modes:

e On Demand: Does not perform any automated policy enforcement.
It allows you to manually run the policy at your discretion.

¢ On Schedule: Allows you to specify a schedule for policy execu-
tion. In this mode, SQL Server creates log entries each time the
policy runs and detects noncompliant targets. These policies run
using SQL Server Agent jobs. For more information on SQL Server
Agent, see Chapter 13.

¢ On Change - Log Only: Creates a log entry immediately whenever
the database changes in a fashion that causes it to violate the

policy.
¢ On Change - Prevent: Checks the policy before allowing any

changes to the database, blocking those that would violate the
policy.

For now, | use the On Demand evaluation mode. I discuss the other
evaluation modes in the “Automated Policy Enforcement” section, later
in this chapter.

345

346 Part VI: Protecting Your Data

Figure 20-4:
Creating a
new DMF

policy.
|

3

Note that the Create New Policy window contains an Enabled checkbox.
This checkbox does not apply to policies using the On Demand evalua-
tion mode. For other evaluation modes, you must select this box, or SQL

Server will not enforce the policy.

8. Click the OK button to create the policy.

Figure 20-4 shows the completed Create New Policy window. After you
click OK, SQL Server creates the policy, and you may view it in the SSMS

Policies folder.

i Create New Policy - Stored Procedure Naming Convention ol =)
0 Ready
General Name: Stored Procedure Maming Convention
Description Enabled
Check condition: Stored Procedure Follows Naming Convention "
AR Every - StoredProcedure
in Every - Database
Execution Mode: ‘On Demand v|
Server restriction: |Nnne V‘
oK l ‘ Cancel ‘ | Help |

SQL Server stores DMF policies and conditions in the msdb database. If you
don’t back up this database, you won'’t be able to restore DMF policies after a
system failure. For more information on backing up databases, see Chapter 18.

Using On Demand Evaluation Mode

On Demand evaluation mode allows you to manually test targets for policy
compliance and manually apply settings required by a policy to DMF targets.
This mode does not apply to any DMF policies automatically and is a good

way to get started with DMF.

|
Figure 20-5:
Testing
compliance
with a DMF
policy.
|

Verifying policy compliance

The most basic DMF task you can perform is verifying whether DMF target(s)
comply with a specific policy. Here’s how you can perform that check:

1. With SSMS open, expand the Management folder.
2. Expand the Policies folder.

3. Scroll through the list of policies and locate the policy you want to
test. Right-click it and select Test Policy from the pop-up menu.

4. Review the results.

Depending upon the type of policy you verify and the number of targets,
policy verification may take an extended period of time. When the check
is complete, you may review the results. As shown in Figure 20-5, the
results window uses a red “X” symbol to denote targets that failed the
policy and a green checkmark to identify targets that passed the policy
check.

-z Run Now - Stored Procedure Naming Convention == =)
lj Policy Check Completed

Check | | Configure
Results
Policy Server Target Date Det.. Message -
23 Stored Procedure.. VOSTRO 1/5/2008 6:2...
9 Stored Procedure.. VOSTRO Server[@Name="VOSTRO'/Dat... 1/5/2008 6:2... Vie.
v3 Stored Procedure.. VOSTRO Server[@MName="VOSTRO']/Dat... 1/5/2008 6:2... Vie.
!3 Stored Procedure... VOSTRO Server[@Name="VOSTRO']/Dat... 1/5/2008 6:2... Vie.
23 Stored Procedure., VOSTRO Server[@Name="VOSTRO']/Dat... 1/5/2008 6:2... Vie... il
=P . PR - o imerm e o 4 mnnn e e
Close ‘ | Help

5. Investigate detailed results by clicking the View link in the Details
column.

SQL Server allows you to view the details of the condition checked by
the policy for a particular target by clicking the View link. An example
appears in Figure 20-6. The Results Detailed View window includes a
line for each clause in the condition specified by the policy and uses the
red “X”/green checkmark notation to indicate which clause(s) the target
failed.

Chapter 20: The Declarative Management Framework 34 7

348 Part VI: Protecting Your Data

a5 Results Detailed View == =)
AndOr Result Field Operator Expected Value Actual Value
3 @ @Name LIKE sp_% usplGethanagerEmployess
@ AND @ @Name NOTLL.. %[0-9] usplGetManagerEmployees
AND .{) @IsSystemObj... = False False
I
Policy description:
Figure 20-6:
Viewing
detailed -
olic
r.) v Additional help:
compliance
results. Cose || riep
I

6. Click the Close buttons on the Results Detailed View and Run Now
windows to return to SSMS.

Enforcing a policy manually
DMF also allows you to reconfigure a target to comply with a DMF policy.

<P Not all conditions may be enforced using this mechanism. For example, SQL
Server would not be able to reconfigure targets to comply with the stored pro-
cedure naming convention policy I created earlier in this chapter. The reason
for this is simple: Although SQL Server would know that a given stored proce-
dure name doesn’t meet my standards, it wouldn’t know how to rename it to
meet those standards without potentially breaking queries and applications
that depend on that stored procedure.

Here’s how to configure a target to comply with a DMF policy:

1. With SSMS open, expand the Management folder.
2. Expand the Policies folder.

Chapter 20: The Declarative Management Framework

3. Scroll through the list of policies and locate the policy you want to
test. Right-click it and choose Test Policy from the pop-up menu.

4. When the results window appears, click the row representing the non-
compliant target you want to reconfigure.

5. Click the Configure button.

SQL Server attempts to reconfigure the target to comply with the DMF
policy.

QUING/ The process described in this section forces compliance with a DMF policy,

Y but it is only a one-time change. It reconfigures the target to comply with the
policy, but does nothing to prevent future configuration changes from bring-
ing the target out of compliance or alert you to such changes. If you want to
have this type of proactive notification, you must use one of the automated
policy enforcement techniques described in the next section.

Automated Policy Enforcement

You may choose to have SQL Server automatically enforce your policy by
using an evaluation mode other than the On Demand mode I used earlier in
this chapter. Here’s how SQL Server enforces DMF policies using other evalu-
ation modes:

1 SQL Server creates SQL Server Agent jobs for On Schedule evaluation
mode policies. Each time the SQL Server Agent job executes, it verifies
that the targets satisfy the condition and reports noncompliant targets
by creating a log entry.

v+ SQL Server monitors event notifications to identify any events that con-
flict with On Change — Log Only policies and records them in the log.

v SQL Server uses DDL triggers to enforce On Change — Prevent policies,
blocking actions that would bring a target out of compliance.

You may activate automated policy enforcement by changing a policy’s
evaluation mode. Simply double-click the policy in SSMS to bring up the Open
Policy window and choose the appropriate mode from the Evaluation Mode
drop-down menu.

“&N\BEB When you choose an automated policy evaluation mode, you must also ensure
> that you enabled the policy by either selecting the Enabled box on the policy’s
General tab or by right-clicking it in the SSMS Policy folder and choosing
Enable from the pop-up menu.

349

350 Part VI: Protecting Your Data

Viewing Policies Affecting a Target

SQL Server allows you to view all the polices that affect a target in a consoli-
dated report using SSMS. To view this report, right-click the target in SSMS
and choose Policies=>View from the pop-up menu. An example of the View
Policies report appears in Figure 20-7.

7 View Policies - sales

'.@" Ready

Policies:

Effective Policy

Dis.. Dataand Log File Locati...

I Mo: Dis... Read-only Database Rec...
Moz Dis... Trustworthy Database B...

Figure 20-7:
View
policies
report.
|

Mo: Dis... Database Auto Close Be...
Mo: Dis... Database Auto Shrink Be...
Me: Dis... Database Collation Best ...
Mo: Dis... Database Page Verificati...
Mo: Dis... Database Status Best Pra...
Mo: Dis... Last Successful Backup ...
Mo: Dis.. Mon-Read-only Databas...

Category Execution Mode History Run Last Execution
I g ey N VY-V

Database .. On Demand History Run MNever

Database .. On Demand History Run MNever

Database .. On Demand History Run 1/5/2008 4:05:53 PM
Database .. On Demand History Run MNever

Database .. On Demand History Run MNever

Database .. On Demand History Run MNever

Database .. On Demand History Run 1/5/2008 5:09:07 PM
Database .. On Demand History Run MNever

Database .. On Demand History Run MNever

Database .. On Demand History Run 1/5/2008 6:32:58 PM

[E=3Ecl)

Close] l Help

Part VI
The Part of Tens

The 5th Wave By Rich Tennant
O RIUTENNa T

“Ves, T kKnow how to query information £rom |
the program, but what if T just want to
leak it insteadz”

In this part . . .

A Part of Tens is a standard component of most

kinds of For Dummies books. In the first list of ten, I
describe ways you can keep your database operating in an
efficient fashion. In the second list of ten, I give you tips
for properly designing new SQL Server databases.

Chapter 21

Ten Ways to Keep Your SQL Server
2008 Databases Humming

In This Chapter

Monitoring your SQL Server database performance and logs

Protecting your data through backups and database integrity checks

Using the Database Engine Tuning Advisor

Saving disk space by controlling the transaction log size

Automating administrative alerts

Managing large SQL Server enterprise deployments with multiserver administration

Simplifying user rights administration with database roles and account reviews

A dministering a SQL Server 2008 database can certainly be a full-time
job! Throughout this book, I share some tips that will help you reduce
the amount of time you spend on database administration and improve the
effectiveness of your efforts. In this chapter, I summarize the top ten things
you can do to improve your SQL Server database performance and preserve
your sanity!

Monitor Query Performance

When it comes to SQL Server 2008 performance tuning, one size definitely
does not fit all. You should monitor your database performance to watch for
bottlenecks and tune the database to the specific queries that your users
commonly perform. SQL Server 2008 provides two tools to help you with this
monitoring:

v SQL Trace: Allows you to monitor the performance of individual queries
running on a SQL Server database.

354 Part VIl: The Part of Tens

v SQL Server Profiler: Provides a user-friendly graphical interface to SQL
Trace functionality.

For more detail, see the discussion of SQL Server Profiler and SQL Trace in
Chapter 14.

Back Up Your Data Routinely

Something will go wrong with your SQL Server database at some point. This
isn’t a question of “if”, but “when.” Therefore, you should routinely perform
database backups to ensure that your data is available in the event of a
disaster or technical failure.

For more information on backing up and restoring SQL Server 2008 data-
bases, see Chapter 18.

Verify Database Integrity Often

As with any complex information systems, databases may become corrupt
over time. You can help prevent database corruption by using SQL Server’s
built-in integrity verification and repair functionality. The following DBCC
commands help you perform this routine maintenance:

v DBCC CHECKDB verifies the integrity of your entire database structure.

v DBCC CHECKALLOC verifies the integrity of the database’s disk
structure.

» DBCC CHECKTABLE verifies the integrity of an individual table or view.

» DBCC CHECKCATALOG validates the consistency of the database catalog.

[offer a detailed discussion of database integrity verification and the DBCC
commands in Chapter 12.

Tune the Physical Structure
of Vour Databases

The Database Engine Tuning Advisor allows you to analyze the performance
of your database against various workload scenarios. DETA makes specific

Chapter 21: Ten Ways to Keep Your SQL Server 2008 Databases Humming 355

recommendations for improving the index structure of your database and
provides you with the Transact-SQL statements you need to execute to
implement the recommendations.

For more information on the Database Engine Tuning Advisor, see
Chapter 14.

Conserve Transaction Log Disk Space

Transaction logs provide an important piece of the disaster recovery puzzle
(see Chapter 18 for more about transaction logs), allowing you to restore a
database to its exact state prior to a failure. However, if left unmanaged, they
can consume quite a bit of valuable disk space. You can perform two tasks to
help you manage your database transaction logs:

v Log truncation: Frees up space in the transaction log file for potential
reuse.

v Log shrinking: Frees up space reserved for the transaction log file for
reuse by other files.

[discuss transaction log management, including log truncation and shrinking,
in Chapter 18.

Monitor Database Logs

During troubleshooting and routine maintenance, you may want to know
about events that occurred in your SQL Server database. SQL Server records
important database performance and error information in two locations for
your review:

v The SQL Server Error Log contains specific database system events
recorded by SQL Server. SQL Server stores this file on disk as a
plain-text file.

v The Windows Application Log contains information recorded by SQL
Server to the standard Windows logging facility. You may view the
Windows Application Log using Event Viewer.

SQL Server offers a consolidated log viewer, SQL Server Management Studio
Log Viewer, that allows you to monitor both logs in a single view. You can
find more information on database monitoring and other troubleshooting
tasks in Chapter 14.

356 Part VII: The Part of Tens

Automate Administrative Alerts

SQL Server is a complex system and has many individual components
that you’ll want to track. You certainly don’t want to check each of those
manually on a daily basis, only to find nothing of interest.

To help alleviate this monotony, SQL Server provides an automated
administrative alert facility. You may configure SQL Server to automatically
notify you via pager, e-mail, or network message when specific events or
performance conditions occur.

[provide a full discussion of automating SQL Server 2008 administrative tasks
in Chapter 13.

Manage Multiple Servers

If you work in a large enterprise, you may have many SQL Server databases
and servers running within a single environment. When you grow beyond
one or two servers, administrative chores can become a nightmare.
Fortunately, SQL Server offers a multiserver administration facility that
allows you to manage multiple servers and schedule information flows
within a data warehouse.

Administration of enterprise database deployments is beyond the scope of
this book. For more information, see Microsoft SQL Server 2008 Bible (Wiley).

Simplify User Rights Administration
with Roles

SQL Server roles allow you to create job-based permissions for groups of
database users and then apply those permissions uniformly to all users
performing similar functions. Doing so reduces the administrative burden of
managing individual user permissions and helps ensure that you won'’t lose
track of the permissions assigned to an individual over time.

A full discussion of database user rights administration with roles appears in
Chapter 16.

Chapter 21: Ten Ways to Keep Your SQL Server 2008 Databases Humming 35 7

Perform Security Reviews

In addition to using role-based user administration to simplify SQL Server
user management, you should perform periodic account reviews to ensure
that users retain only the level of access necessary to perform their job
functions. The frequency of these reviews will depend upon your organiza-
tion’s security requirements, but they should always consist of several
core tasks:

v Verify that each user account was authorized through your organiza-
tion’s access-approval process.

v Verify with each user’s account sponsor (typically a manager or
supervisor) that each user has a continued need for such access.

v Verify that each user is assigned only to role(s) required for the
performance of his or her assigned job duties.

You can find more information on database users, roles, and objects in
Chapter 16.

358 Part VII: The Part of Tens

Chapter 22
Ten Database Design Tips

In This Chapter

Using advance planning to prevent poor performance

Selecting keys with care

Saving space by selecting appropriate data types
Preserving atomicity of database fields
Normalizing your database

Managing database relationships

Choosing good names for database fields

p utting a little time and energy into properly designing your databases
can pay big dividends down the road when your database is in produc-

tion. Well-designed databases perform better, providing users with more
efficient and more reliable service.

In this section, I provide ten short database design tips that will help you
design your databases well.

Plan Ahead

Planning your database before you implement it is one of the most important
steps in ensuring a good database design. You'll benefit greatly by sitting
down with the eventual end users of the database and designing it to meet
their business requirements. Take the time to determine the appropriate
fields for your database and group them into logical tables. You'll find

that designing your database correctly from the start is much easier than
correcting those issues after you’'ve deployed your database.

I provide a detailed discussion of effectively planning a database design in
Chapter 4.

360 Part VII: The Part of Tens

Draw Before You Click

Database professionals have long relied upon the power of visualization to
convey important design characteristics to others. Entity relationship (ER)
diagrams provide a convenient, standardized mechanism to record database
design decisions in an easy-to-read format. ER diagrams capture both the
contents and structure of database tables as well as the relationships
between those tables.

I discuss Entity relationship diagrams in depth in Chapter 4.

Choose Primary Keys Carefully

Primary keys play a critical role in the design of database tables; they
uniquely identify individual rows, allowing you to differentiate records. If you
choose a poor primary key, you may wind up running into problems when
the need arises to have duplicate records with the same key. In some cases,
you may not be able to find a natural primary key that suits your needs and
you may wish to use an artificially generated identifier that’s used only for
the purpose of guaranteeing uniqueness.

[cover this topic in more detail in Chapter 4.

Select Data Types with Space
Efficiency in Mind

When designing tables, you may be tempted to choose large data types
“just in case” you have entries that require the extra space down the road.
This type of decision making can become extremely costly as your database
grows in size.

For example, consider the decision to use an int data type to store a four-
digit product ID. Each record will consume four bytes for the product ID field.
On the other hand, if you use the smallint data type instead, you cut that
requirement in half, using only two bytes for this field in each record. Now,
two bytes might not sound like much, but if the table contains 10 million
records, that’s a total of around 20MB of storage saved by that minor change
to a single field.

I discuss the various SQL Server data types and their space requirements in
Chapter 4.

Chapter 22: Ten Database Design Tips

Make Sure Vour Fields
Are Single Purpose

When designing tables, make sure you develop columns that have a clearly
defined single purpose. You want to store only one type of data in each
column.

Why is this important? Allow me to share an example from practical experi-
ence. [recently came across a database that stored data from credit card
transactions. One table contained a field that combined several different
pieces of credit card data, including the card number, expiration date, and
three-digit security code. New regulations set forth by the credit card indus-
try required that they no longer store the three-digit security code in the
database. The design that combined three different pieces of data into a
single column made this removal very difficult. Rather than be able to simply
deleting the security code column, we had to deconstruct the column and
rewrite all the software that interacted with the database to work with the
new design.

Remember the Meaning of NULL

NULL means “unknown.” It does not mean “none” or “zero,” and it requires
special checks to determine whether it exists (such as the IS NULL query
clause). When adding data to a database, keep this in mind and ensure that
you're using the NULL value properly.

[provide a more detailed discussion of NULL values in Chapter 4.

Normalize when Possible

Database normalization principles consolidate the collective wisdom of years
of database design into some straightforward rules that help you design data-
bases well. Making your database designs consistent with the first, second,
and third normal forms ensures that you take advantage of this community
knowledge. However, you won’t always be able to fully comply with this
advice because business requirements or operational efficiencies may
require you to deviate from best practice. When you must deviate from

the normal forms, do so with your eyes wide open, understanding the
compromise you make and the rationale behind that decision.

I discuss the three most common normal forms in Chapter 4.

361

362 Part VII: The Part of Tens

Manage Your Relationships

Databases naturally contain a good deal of related information (that’s why we
call them “relational” databases!). SQL Server allows you to keep track of
those relationships automatically, using foreign keys to define relationships
between tables at a high level. After you define those relationships, SQL
Server can ensure that the database enforces referential integrity, requiring
that any changes to the database preserve those high-level relationships
between tables.

[discuss this topic in greater detail in Chapter 6.

Use Descriptive Names

Life is much easier if you use descriptive names for your database fields.
Use a few extra letters, if necessary, to provide intuitive names. Anyone
navigating your database will have a much easier time understanding the
purpose of a column called “Item Unit Cost” than one called “D_IUC.”

Although you should always try to use descriptive column names, it’s also
important to avoid including data in the name. For example, you wouldn’t
want to have a column in a vehicle dealership inventory table called “Car
Color.” In that case, the word “car” is actually data. What if, in the future,
the dealership adds trucks to its inventory? Would you then need to create
anew “Truck Color” column or rename the existing “Car Color” column?
You’d be much better off calling this column “Color” and using a separate
“Vehicle Type” column to track whether each record relates to a car or
truck, if necessary.

Document Your Design

Many novice database designers are tempted to perform design work “in
their heads,” insisting that they’ll remember the design down the road or
that the design is simple enough to be intuitive. Those thought patterns are
fallacies and have haunted many a database administrator.

Whether you're inheriting a database designed by someone else or trying to
interpret a design that you implemented years ago, you’ll find it incredibly
difficult to untangle the mysterious web of an undocumented database.

For this reason, be considerate to both yourself and your successors by
taking the time to document your design with descriptions of database
tables, views, stored procedures, and other critical elements. Keep that
documentation in a location where those needing it will be sure to locate it.

Index

! (exclamation point), 163

% (percentage) character, 116
* (asterisk), 111

~ (carat) symbol, 97

_ (underscore) character, 97, 115-116
INF (first normal form), 62-63
2NF (second normal form), 63-64
3NF (third normal form), 63-64
4NF (fourth normal form), 64
5NF (fifth normal form), 64

6NF (sixth normal form), 64

o/] o

ABS () function, 137
Access, importing data from, 170
ACID model, 294-296
atomicity, 295
consistency, 295
durability, 296
isolation, 295-296
ActiveX scripts, 217
Add button, 81
Add Objects dialog box, 281
adding
charts, 151-153
columns, 87
files, 81-82
job steps, 217-220
tables, 153
text box, 150-151
users, 273-274
Additive Conflict Resolver, 257
Advanced Multiple Web Site
Configuration, 156
Advanced Encryption Standard (AES), 285
AES (Advanced Encryption Standard), 285
function, 188
aggregate functions, 120-123
counting records with, 121-122
finding minimum, maximum and
average values, 122-123

totaling values with, 123
working with unique records, 122
by type
AVG, 121, 122-123
COUNT, 121
MAX, 121, 122-123
MIN, 121, 122-123
STDEV, 121
sum, 121, 123
VAR, 121
alerts, 229-231, 356
aliases, 130-131
Allow Nulls check box, 87
ALTER keyword, 189-190
ALTER RESOURCE POOL statement,
209-210
ALTER TABLE statement, 89
ALTER VIEW command, 140-141
ALTER WORKLOAD command, 211
Analysis Services, 16
AND operator, 112, 343
Arabic collation, 21-22
area graphs, 151
Article Properties button, 262
AS column-name, 124-125
ASC keyword, 120
asterisk (*), 111
atomicity, of database transactions, 295
attributes, 54
Audit Action Type drop-down menu, 290
Audit name field, 287
Audits folder, 287
Authentication drop-down list, 29
authentication modes, 272, 20-21
AUTO_CREATE_STATISTICS
command, 202
AUTO_SHRINK option, 203
automatic mode, 39
average values, 122-123
Averaging Conflict Resolver, 257
AVG aggregate function, 121, 122-123

364

Microsoft SQL Server 2008 For Dummies

ol e

Back Up Database window, 307, 308, 310
Backup Complete dialog box, 309
backups, 306-319
compression, 310-312
differential, 309-310
full, 306-309
in performance tuning, 354
restoring, 317-319
restoring from, 207
transaction logs, 312-314
BCNF (Boyce-Codd normal form), 64
becp (bulk copy) command, 168-169
exporting bulk data with, 169
importing bulk data with, 168-169
BEGIN TRANSACTION statement, 297-300
BETWEEN clause, 113-114
bigint data type, 65
binary data types, 69
bit datatype, 69
boundary_value, 199
Boyce-Codd normal form (BCNF), 64
Browse for Objects window, 290
Browser role, 158
built-in functions, 177-180
calling, 178-179
with input parameters, 179
obtaining list of, 179-180
without input parameters, 178
bulk data, 167-169
copying, 167-168
exporting, 169
importing, 168-169
bulk copy (bcp) command, 168-169
exporting bulk data with, 169
importing bulk data with, 168-169
BULK INSERT command, 167-168
Bulkadmin role, 275
bulk-logged recovery model, 316
buttons
Add, 81
Article Properties, 262
Configure Security, 327
Connect button, 74
Edit Mappings, 172

Named Instance, 22
New Query, 45
Parse, 219

Start Analysis, 247

oo

Cache Directory box, 243
carat (*) symbol, 97
CASE statement, 138-139
cases, 138-139
Certificate tab, 283
certificates
server, 284-286
backing up, 286
creating, 284-285
restoring, 286
SSL, 145
char data type, 68
character string date types, 68
characters
% (percentage), 116
_ (underscore), 97, 115-116
Chart icon, 151
Chart Title text box, 152
charts, 151-153
Check Constraints window, 100
CHECK constraints, 92
creating, 99-100
and database rules, 101
disabling, 100-101
enforcing, 98
limiting column values with, 96-101
writing, 96-98
classifier functions, 208, 211-212
clauses, 343
clustered indexes, 194-197
CmdExec scripts, 217
Codd, Edgar F., 53-54
collations, 21-22
column graphs, 151
Column Name column, 87
columns, 53-54
adding, 87
renaming, 124-125
uniqueness of, 102-103

Index 365

Columns property, 103
command line, 46-48
Command text box, 219
commands
ALTER RESOURCE POOL, 209-210
ALTER TABLE, 89
ALTER VIEW, 140-141
ALTER WORKLOAD, 211
AUTO_CREATE_STATISTICS, 202
bep, 168-169
exporting bulk data with, 169
importing bulk data with, 168-169
BEGIN TRANSACTION, 297-300
BULK INSERT, 167-168
CASE, 138-139
COMMIT TRANSACTION, 297
CREATE DATABASE, 320-321
CREATE PARTITION, 200-201
CREATE PROCEDURE, 185-186
CREATE RESOURCE POOL, 209-210
CREATE TABLE, 201
CREATE TRIGGER, 188
CREATE WORKLOAD GROUP, 210-211
DBCC CHECKALLOC, 205, 354
DBCC CHECKCATALOG, 205, 354
DBCC CHECKDB, 205, 219, 354
DBCC CHECKTABLE, 205, 354
DELETE, 165-166, 255
DISABLE TRIGGER, 189
DROP FUNCTION, 190
DROP PROCEDURE, 190
DROP TABLE Transact-SQL, 90
DROP TRIGGER, 190
DROP VIEW, 141
FULL OUTER JOIN, 132
INNER JOIN, 128-131
aliases, 130-131
analyzing results of, 129-130
writing, 129
INSERT, 163-164, 255
INSERT INTO, 166-167
JOIN, 127-135, 195
LEFT OUTER JOIN, 131-132
RECONFIGURE, 212
RIGHT OUTER JOIN, 132
ROLLBACK TRANSACTION, 297-300

SELECT, 109-110
computing values, 135-137
SET NOCOUNT OFF, 111
SET NOCOUNT ON, 111
SHOW_STATISTICS, 202
SHRINKDATABASE, 204
SHRINKFILE, 204
TRUNCATE TABLE, 166
UPDATE, 164-165, 255
COMMIT TRANSACTION statement, 297
Compress Backup check box, 311
compression, 310-312
conditions
clauses, 343
combining, 112-113
creating, 341-344
list, 114-115
negating, 114
Conditions folder, 341-344
Configuration Manager, 35-43
changing service accounts, 38-39
changing start modes, 39-40
launching, 36
modifying network settings, 40-43
overview, 13-14
starting and stopping services, 36
Configure Database Mail, 29
Configure Database Mirroring Security
Wizard, 327, 330
Configure Distribution Wizard, 259-261
Configure Management Data Warehouse
Wizard, 242-243
Configure Security button, 327
Confirmation text box, 273
Confirmation window, 79
Connect button, 74
Connect to Server dialog box, 74
Connection Parameters screen, 28
Connection Properties screen, 149
consistency principle, 295
constraints, 91-101
CHECK, 92
creating, 99-100
and database rules, 101
disabling, 100-101
enforcing, 98

366

Microsoft SQL Server 2008 For Dummies

constraints, CHECK, (continued)
limiting column values with, 96-101
writing, 96-98
DEFAULT, 92
creating, 94-95
filling in empty values with, 92-93
and NULL values, 96
FOREIGN KEY, 92, 103-105
PRIMARY KEY, 92
UNIQUE, 92, 102-103
Content Manager role, 158
content roles, 157-158
COUNT aggregate function, 121
CPU time, 207-210
Create a Snapshot Immediately
check box, 263
Create Audit page, 288
Create Database Audit Specification
window, 290
Create New Condition window, 342
Create New Policy window, 345-346
CREATE DATABASE statement, 320-321
CREATE PARTITION command, 200-201
CREATE PROCEDURE statement, 185-186
CREATE RESOURCE POOL statement,
209-210
CREATE TABLE statement, 201
CREATE TRIGGER statement, 188
CREATE WORKLOAD GROUP command,
210-211
creating
alerts, 229-231
CHECK constraints, 99-100
classifier functions, 211-212
database operators, 228-229
database roles, 279-282
database snapshots, 320-321
databases, 74-77
DEFAULT constraints, 94-95
distributor, 258-261
filegroups, 83-84
files, 181-183
maintenance plans, 223-227
nonclustered indexes, 194-197
partition function, 199-200
partition tables, 201

policies, 344-346

resource pools, 208-210

server logins, 272-273

stored procedures, 185-186

transactions, 296-300

UNIQUE constraints, 102-103

views, 139-140

workload groups, 210-211
cursor data type, 69

o e

-d option, 46
data, 161-169
aggregate functions, 120-123
counting records with, 121-122

finding minimum, maximum and average

values, 122-123
totaling values with, 123
working with unique records, 122

copying, 167-168

entering, 162-163

exporting, 168-169

grouping into tables, 56-59

importing, 167-169

indexing, 193-198

inserting, 161-164

modifying, 164-165

retrieving from different tables, 128-131

updating with trigger, 188-189
Data and Log File Location Best

Practice, 341

Data Collection folder, 245
Data Encryption Standard (DES), 285
Data Entry window, 162
data set, 147-150
data source, 147-150
Data Source drop-down list, 170
Data Transformation Services (DTS), 169
Data Type drop-down box, 87
data types, 64-70

character string, 68

selecting, 87, 360

bigint, 65

binary, 69

bit, 69

Index 36 7

char, 68
cursor, 69
date, 18
DATE, 18
date, 66-67
DATE, 66-67
Datetime, 67
DATETIME2, 18, 67
DATETIME/OFFSET, 18, 67
decimal, 65
float, 65
int, 65
money, 65
nchar, 68
numeric, 65-66
nvarchar, 68
nvarchar (max), 68
real, 65
rowversion, 70
smalldatetime, 67
smallint, 65
smallmoney, 65
sqgl-variant, 70
table, 70
TIME, 18, 66-67
time, 18, 66-67
tinyint, 65
uniqueidentifier, 70
varbinary, 69
varbinary (max), 69
varchar, 68
varchar (max), 68
xml, 70
Database Auto Shrink Best Practice, 341
Database Backup Options page, 308, 311
database connections, encrypting, 283-284
database design, 51-52
data types, 64-70
diagramming database, 61-62
normalization techniques, 62-64
first normal form, 62-63
second normal form, 63-64
third normal form, 63-64
organizing databases, 55-60
grouping data into tables, 56-59
linking related tables, 60

objectives, 55-56
selecting primary keys, 59-60
servers, 52-55
tips, 359-362
choosing primary keys, 360
normalization techniques, 361
planning ahead, 359
selecting data types, 360
single purpose for fields, 361
using entity relationship diagrams, 360
using NULL value property, 361
working with NULL values, 70-71
Database drop-down list, 217
Database Engine Configuration window,
24-25
Database Engine Tuning Advisor (DTA),
246-248, 354-355
database logs, 355
Database Mail, 28-32
configuring, 28-32
creating profile, 30
Database Mail Configuration Wizard, 29-30
Database Maintenance Plan Wizard, 224
database mirroring, 324-332
benefits of, 324
configuring, 325-330
logins, 325-326
partnership, 326-327
restoring data, 326
fail over, 331-332
monitoring, 330-331
operating modes, 325
Database Mirroring Monitor, 330-331
database objects, 261
database operators, 228-229
database owner (dbo), 87
Database Properties window, 84, 327
Database Role Properties window, 278
database roles
assigning users to, 282
creating, 279-282
Database Roles folder, 278
database servers, 52-53

368

Microsoft SQL Server 2008 For Dummies

database snapshots, 320-322
accessing, 321
creating, 320-321
reverting to, 321-322
database statistics, updating, 202
Database Role Membership section, 244
database_log.mdf, 80
database_name, 204
DatabaseMailUserRole role, 32
database.mdf, 80
databases. See also database design;
database mirroring
altering properties of, 77-78
auditing, 287-291
creating audit objects, 287-288
enabling and configuring, 287
reviewing audit records, 291
server specifications, 288-289
in SQL Server 2008, 18
backing up, 306-319
compression, 310-312
differential, 309-310
full, 306-309
in performance tuning, 354
restoring, 317-319
restoring from, 207
transaction logs, 312-314
creating, 74-77
data types, 64-70
deleting, 78-79, 165-166
diagramming, 61-62
importing into
bulk data, 168-169
data, 167-169
indexes, 193-198
clustered, 194
fragmentation level of, 197
nonclustered, 194-197
optimizing, 197-198
integrity of
checking, 205-206
correcting errors, 206-207
referential, 103-105
verifying, 354

maintenance plans, 222-227
configuring tasks in, 226
creating, 223-227
tasks, 223

naming, 74-75

normalization techniques, 62-64

organizing, 55-60
defining objectives, 55-56

grouping data into tables, 56-59

linking related tables, 60

primary keys, 59-60
overview, 33-34
relational, 53-54
renaming, 79-80
shrinking files, 203-204
snapshots, 320-322
spreadsheets versus, 55
statistics, 202

synchronizing with log shipping, 333-338

tuning, 246-248

types of
master, 33-34
model, 34
msdb, 33
tempdb, 34

uniqueness of columns, 102-103

users, 273-274

working with NULL_values, 70-71
Databases folder, 74, 162, 195, 278-279, 318

DATE data type, 18, 66-67

DATEADD () function, 137
Datediff () function, 180
DATEPART () function, 137

DATETIME Conflict Resolver, 257

Datetime data type, 67
DATETIME2 data type, 18, 67

DATETIME/OFFSET data type, 18, 67

db_accessadmin role, 277

db_backupoperator role, 277

db_datareader role, 277
db_datawriter role, 277
db_ddladmin role, 277

db_denydatareader role, 277

db_owner role, 277

Index 369

db_securityadmin role, 277 organizing databases, 55-60
DBCC CHECKALLOC command, 205, 354 grouping data into tables, 56-59
DBCC CHECKCATALOG command, 205, 354 linking related tables, 60
DBCC CHECKDB command, 205, 219, 354 objectives, 55-56
DBCC CHECKTABLE command, 205, 354 selecting primary keys, 59-60
Dbcreator role, 275 servers, 52-55
dbfile, 204 tips, 359-362
dbo (database owner), 87 choosing primary keys, 360
decimal data type, 65 normalization techniques, 361
decimal number, 66 planning ahead, 359
Declarative Management Framework selecting data types, 360
(DMF), 337-338 single purpose for fields, 361
automated policy enforcement, 348-349 using entity relationship diagrams, 360
conditions, 341-342 Design View, 102
enforcing policy manually, 348-349 design, database
overview, 17 tips
policies, 340-341, 344-346 using NULL value property, 361
verifying policy compliance, 347-348 working with NULL_values, 70-71
default instance, 19-20 Destination drop-down list, 172
default resource pool, 208 diagramming databases, 61-62
DEFAULT constraints, 92 Differential Backup screen, 227
creating, 94-95 differential backups, 309-310
filling in empty values with, 92-93 direct upgrade, 28
and NULL_values, 96 dirty reads, 301
DELETE statement, 165-166, 255 DISABLE TRIGGER statement, 189
deleting, 78-80 disabled mode, 39
data, 165-166 disaster recovery, 305-322
databases, 78-79, 165-166 backup compression, 310-312
files, 82-83 database snapshots, 320-322
functions, 190 differential backups, 309-310
logins, 273 full database backup, 306-309
objects, 190 models, 315-317
rows, 166 restoring data, 317-318
stored procedures, 190 transaction log backups, 312-314
tables, 90 Disk Usage Summary report, 245
triggers, 190 Diskadmin role, 275
views, 141 display, 12
DES (Data Encryption Standard), 285 DISTINCT keyword, 122
DESC keyword, 120 Distribution Agent, 255, 265-266
Description text box, 216 distributor, 250, 258-261
design, database, 51-52 DKNF (domain/key normal form), 64
data types, 64-70 DMF (Declarative Management
diagramming database, 61-62 Framework), 337-338
normalization techniques, 62-64 automated policy enforcement, 348-349
first normal form, 62-63 conditions, 341-342
second normal form, 63-64 enforcing policy manually, 348-349

third normal form, 63-64

370

Microsoft SQL Server 2008 For Dummies

DMF (Declarative Management
Framework) (continued)

overview, 17

policies, 340-341, 344-346

verifying policy compliance, 347-348
domain account, 144
domain/key normal form (DKNF), 64
Download Only Conflict Resolver, 258
Drop Category Fields Here area, 151
Drop Data Fields Here area, 151
DROP FUNCTION command, 190
DROP PROCEDURE command, 190
DROP TABLE Transact-SQL statement, 90
DROP TRIGGER command, 190
DROP VIEW command, 141
DTA (Database Engine Tuning Advisor),

246-248, 354-355

DTS (Data Transformation Services), 169
dual core processors, 12
duplicate records, 62
durability, of database transactions, 296

oF o

Edit Mappings button, 172
Edit Top 200 Rows, 162
elements, user-defined, 181
ELSE keyword, 139
Enable Trace Stop Time check box, 236
encryption, 282-286
of database connections, 283-284
in SQL Server 2008, 18
of stored data, 284-286
backing up master key and certificates,
286
encrypting database, 285-286
master encryption key, 284-285
restoring master key and certificates,
286
server certificate, 285
END keyword, 139
Enterprise Edition, 10-11
entity relationship (ER) diagrams,
61-62, 360
equi-join, 128-131
ER (entity relationship) diagrams, 61-62,
360

Error and Usage Reporting window, 25
error handling, 303-304
error log, 239, 355
Event Viewer, 239-240
Events Selection tab, 236-237
Excel, importing data from, 170
exclamation point (!), 163
execution mode, 340
Express Edition, 10-11
extensions, file

.1df, 81

.mdf, 80

.ndf, 81

ofF e

fail over, 337-338, 331-332
fields, 54, 361
fifth normal form (5NF), 64
File Name drop-down box, 83
File name text box, 307
File Type drop-down box, 83
file extensions

.1df, 81

.mdf, 80

.ndf, 81
file_name, 204
Filegroup drop-down box, 83
filegroups, 83-85

creating, 83-84

naming, 84

PRIMARY, 84
files, 80-83

adding, 81-82

log, 81

naming, 81

primary data files, 80

removing, 82-83

secondary data files, 81

size management

automatically shrinking, 203
manually shrinking, 204

Filter Table Rows screen, 263
first normal form (1NF), 62-63
fixed database roles, 277-282
fixed server roles, 275-277

Index

Flat File Source, 170
float data type, 65
floating-point number, 66
Foreign Key Relationships window,
104-105
foreign keys, 60
FOREIGN KEY constraints, 92, 103-105
fourth normal form (4NF), 64
FROM keyword, 111
FTS (Full Text Search), 116
full recovery model, 315
Full Text Search (FTS), 116
FULL OUTER JOIN statement, 132
function_name element, 181
functions, 175-183
aggregate, 120-123
counting records with, 121-122
finding minimum, maximum and average
values, 122-123
totaling values with, 123
working with unique records, 122
built-in, 177-180
calling, 178-179
with input parameters, 179
obtaining list of, 179-180
without input parameters, 178
classifier, 208, 211-212
creating, 181-183
deleting, 190
with input parameters, 179
modifying, 189-190
scalar, 177
stored procedures versus, 184
table-valued, 177
without input parameters, 178
Functions folder, 180
funnel charts, 151

oG o

GETDATE () function, 177
GROUP_MAX_REQUESTS parameter, 211

o H o

hard drives, 12

HAVING clause, 195
high-performance mode, 325
high-safety mode, 325

Home folder, 157

HTTP port, 145

Hyperion Essbase, 147

o]e

-1 option, 47
IMPORTANCE parameter, 210
importing
bulk data, 168-169
data, 167-169
databases, 166-169
IN keyword, 115
incremental backup, 310
Index Name text box, 196
indexes, 194-198
clustered, 194
fragmentation level of, 197
nonclustered, 194-197
optimizing, 197-198
Indexes folder, 195
Indexes/Keys window, 102, 104-105
INNER JOIN statement, 128-131
aliases, 130-131
analyzing results of, 129-130
writing, 129
input parameters, 178-179
input_parameter_type, 199
INSERT INTO statement, 166-167
INSERT statement, 163-164, 255
installing SQL Server 2008, 19-25
authentication mode, 20-21
collations, 21-22
default versus named instances, 19-20
service accounts, 21
steps in, 22-25
upgrading with Upgrade Advisor, 26-28
Instance Configuration window, 22-23

371

372

Microsoft SQL Server 2008 For Dummies

instances, 19-20
connecting to, 43-44
INSTEAD OF function, 188
int data type, 65
integers, 66
Integration Services, 169-173
choosing data source in, 171
import destination, 172
import status, 173
welcome screen, 171
integrity, of database
checking, 205-206
correcting errors, 206-207
verifying, 354
IP addresses, 42, 145
IS NOT NULL clause, 117
IS NULL condition, 71, 116
isolation levels, 300-302
isolation principle, 295-296
isolation levels
READ COMMITTED, 301
READ UNCOMMITTED, 300-301
REPEATABLE READ, 301
SERIALIZABLE, 302
SNAPSHOT, 302

°] °

Job Step list, 218

Job Step Properties sheet, 220

jobs, 215-222
adding steps to, 217-220
category, 215
creating, 215-216
notification of completion, 222
owner, 215
scheduling, 219-221

Jobs folder, 215

JOIN statements, 127-135, 195

oK o

keywords
ALTER, 189-190
ASC, 120
DESC, 120

DISTINCT, 122
ELSE, 139
END, 139
FROM, 111

IN, 115

LEFT, 199
NOT, 114, 115
RIGHT, 199

o/ o

Latin 1_General collation, 21-22
. 14df file extension, 81
LEFT () function, 137
LEFT keyword, 199
LEFT OUTER JOIN statement, 131-132
LEN () function, 137
LIKE operator, 115-116, 343
line graphs, 151
list conditions, 114-115
local distributor, 250
Log File Viewer, 240-241, 291
log files, 81, 238-241
error, 239
viewing, 240-241
Windows application, 239-240
Log Reader Agent, 255
log shipping
configuring, 333-337
failing over to, 337-338
Log Shipping Configuration checkbox, 334
Log Shipping Configuration status window,
337
log shrinking, 313, 355
log truncation, 313-314, 355
Logical Name cell, 81
login name, 274
Login Name text box, 274
logins, 271-273
creating, 272-273
on mirror server, 325-326
removing, 273
logs
database, 355
error, 239, 355
transaction, 312-314

backup scenario, 313-314
creating backups, 314
disk space, 355
shrinking, 313
truncating, 313-314
Windows Application, 239-240, 287, 355
Windows Security, 287
LOWER () function, 137

ol o

Maintenance Plan Wizard, 223-228
maintenance plans, 222-227
configuring tasks in, 226
creating, 223-227
tasks, 223
Maintenance Plans folder, 223
Maintenance Tasks screen, 225
Manage Profile Security window, 32
Management Data Warehouse, 242-244
management facet, 340
Management folder, 29, 223, 242, 245
Management Studio, 43-48
adding and deleting files in, 81-83
command line, 46-48
connecting to instance, 43-44
creating alerts in, 230-231
creating constraints in, 94, 99-105
creating filegroups in, 83-84
creating nonclustered indexes, 195-197
databases, 74-80
altering properties of, 77-78
creating, 74-77
deleting or renaming, 78-80
interface, 44-45
issuing Transact-SQL queries, 45-46
list of built-in functions, 179-180
log file viewer, 240-241
overview, 14-15
Server options, 44
starting, 43
tables, 85-90
creating, 85-88
deleting, 90
modifying, 89
manual mode, 39

Map Logs and Users window, 243
master database, 33
master encryption key
backing up, 286
creating, 284-285
restoring, 286
MAX aggregate function, 121, 122-123
MAX_CPU_PERCENT parameter, 209
MAX_DOP parameter, 210
MAX_MEMORY_PERCENT parameter, 209
Maximum Conflict Resolver, 257
maximum values, 122-123
.mdf file extension, 80
mdw_admin role, 244
mdw_reader role, 244
mdw_writer role, 244
memory, 12, 207-210
Merge Agent, 256
merge replication, 255-258
Merge Text Conflict Resolver, 258
Microsoft Access, importing data from, 170
Microsoft Excel, importing data from, 170
Microsoft Windows 2000 Professional, 12
Microsoft Windows Application log,
239-240, 287, 355
Microsoft Windows authentication mode,
20-21, 272
Microsoft Windows Event Viewer, 239-240
Microsoft Windows Management
Instrumentation (WMI), 229
Microsoft Windows Security log, 287
Microsoft Windows Server 2003, 53
Microsoft Windows XP, 12
migration, side-by-side, 27
MIN aggregate function, 121, 122-123
MIN_CPU_PERCENT parameter, 209
MIN_MEMORY_PERCENT parameter, 209
Minimum Conflict Resolver, 257
minimum system requirements, 11-12
minimum values, 122-123
mirroring, 324-332
benefits of, 324
configuring, 325-330
logins, 325-326
partnership, 326-327
restoring data, 326

Index 3 73

374

Microsoft SQL Server 2008 For Dummies

mirroring (continued)
fail over, 331-332
monitoring, 330-331
operating modes, 325
missing data, 93
mixed authentication mode, 21
model database, 34
Modern_Spanish collation, 21-22
modes
authentication, 20-21, 272
automatic, 39
On Change - Log Only, 345, 349
On Change - Prevent, 345, 349
On Demand, 345
disabled, 39
execution, 340
high-performance, 325
high-safety, 325
manual, 39
operating, 325
On Schedule, 345, 349
money data type, 65
msdb database, 33

Multiple Identities for Report Manager, 156

multiple servers, 356
multi-valued attributes, 62-63
My Reports role, 158

o\ o

Name cell, 84
Name text box, 221
named instance, 19-20
Named Instance radio button, 24
named pipes, 41
naming. See also renaming
databases, 74-75
filegroups, 84
files, 81
tables, 86
traces, 234
nchar data type, 68
.ndf file extension, 81
.NET Framework 2.0, 12
network file sharing, 334
network protocols, 40-43

network settings, 40-43
changing protocol settings, 42
enabling and disabling protocols, 41-42
modifying, 40-43
New Database Audit Specification, 289
New Database Mail Account window, 31
New Database Role window, 279
New Database User window, 274
New Database window, 243
New Database Wizard, 74-76
New Index dialog box, 196
New Job creation window, 215-216
New Job Schedule window, 221
New Job step window, 218
New Operator screen, 228-229
New Profile screen, 30
New Publication Wizard, 261-264
New Query button, 45
New Role Assignment screen, 158
nonclustered indexes, 194-197
nonmatching records, 131-133
nonrepeatable reads, 301
nonvolatile data, 198
normal forms
INF (first normal form), 62-63
2NF (second normal form), 63-64
3NF (third normal form), 63-64
4NF (fourth normal form), 64
5NF (fifth normal form), 64
6NF (sixth normal form), 64
BCNF (Boyce-Codd normal form), 64
DKNF (domain/key normal form), 64
normalization techniques, 62-64
NOT keyword, 114, 115
notifications, 222
Notify Operators check box, 231
NULL values, 70-71
in database design, 361
and DEFAULT constraints, 96
and missing data, 93
in rows, 116-118, 163
storing, 87
numeric data types, 65-66
nvarchar data type, 68
nvarchar (max) data type, 68

o () o

-o option, 46
Object Explorer, 44, 88
objects
deleting, 190
modifying, 189-190
ODBC data, 147
OLE DB data, 147
On Change - Log Only execution
mode, 345, 349
On Change - Prevent execution mode,
345, 349
On Demand execution mode, 345
On Schedule execution mode, 345, 349
online documentation, 14
operating modes, 325
operating system, 11-12, 53
operators
AND, 112, 343
database operators, 228-229
LIKE, 115-116, 343
OR, 343
OR conjunction, 112
OR operator, 343
Oracle databases, 147
ORDER BY clause, 118-120, 195
organizing databases, 55-60
defining objectives, 55-56
grouping data into tables, 56-59
linking related tables, 60
primary keys, 59-60
Overwrite Media options, 308
owner element, 181
Owner text box, 215

oo

7 (pi), 179

Parameters folder, 180
parameters element, 181
Parse button, 219
partition_column_name, 201
partition_function_name, 199
partition_scheme_name, 201

partitions, 199-201
function, 199-200
scheme, 200-201
tables, 201
password, 39, 155, 285
Password text box, 273
percentage (%) character, 116
performance data, reviewing,
244-246
Performance Studio, 242-244
performance tuning, 353-357
automating administrative alerts, 356
backing up, 354
conserving transaction logs disk
space, 355
database tuning, 354-355
managing multiple servers, 356
monitoring database logs, 355
monitoring query performance,
353-354
performing security reviews, 357
simplifying user rights administration,
356
verifying database integrity, 354
permissions, 274, 281
phantom reads, 301
physical processor, 12

PI () function, 137
Pi () function, 178
pi (M), 179

pie charts, 151
Point in Time restore dialog box, 319
policies, 340-348
automated enforcement, 349
conditions, 341-344
manual enforcement, 348-349
verifying compliance to, 347-348
viewing, 350
Preview Report view, 153-154
primary data files, 80
PRIMARY filegroup, 84
Primary Key drop-down list, 105
primary keys, selecting,
59-60, 87-88, 360
PRIMARY KEY constraints, 92
Principal Name field, 290

Index 3 75

376

Microsoft SQL Server 2008 For Dummies

process ID, 37
Processadmin role, 275
processors, 12
Programmability folder, 180
Properties dialog box, 81
Properties window, 77-78
Protocol Properties window, 283-284
protocols, 40-43

enabling and disabling, 41-42
Protocols folder, 283
publication, 261-267

creating, 261-264

status of, 264

subscribing to, 265-267
Publication Name text box, 264
publisher, 250
Publisher role, 158
pull subscription, 250, 252, 265
push subscription, 250, 253, 265

OQ.

quad core processors, 12

queries, 109-125
computing values, 135-137
grouping results, 123-124
inserting results of, 166-167
renaming columns in output, 124-125
retrieving data, 109-110
SELECT. .FROM clause, 110-111
sorting output, 118-120
subqueries, 137-138
summarizing data, 120-123
views, 139-141
WHERE_clause, 112-118

Query Editor window, 149-150

o R o

RAND () function, 137

range graphs, 151

READ COMMITTED isolation, 301

READ UNCOMMITTED isolation, 300-301
reads, 301

real datatype, 65

RECONFIGURE command, 212
records, 53-54
recovery models, 315-317
bulk-logged, 316
changing, 316
full, 315
simple, 315-316
redundant data, 57
referential integrity, 103-105
relational databases, 53-54
Remember icon, 5
remote distributor, 250
renaming. See also naming
columns, 124-125
databases, 79-80
REPATIR_ALLOW_DATA_LOSS option, 207
REPAIR_REBUILD option, 207
REPEATABLE READ isolation, 301
replication, 249-268
articles and publications, 252-254
model, 251
monitoring, 267-268
publishing data, 258-264
server roles, 250-252
subscribing to publication, 265-267
types, 254-258
merge, 255-258
snapshot, 254
transactional, 254-255
using, 249
Replication folder, 259
Replication Monitor, 267-268
replication relationship, 21
Report Builder 2.0, 147-154
adding charts to, 151-153
adding text box, 150-151
choosing data source and data set in,
147-150
installing and starting, 147
laying out report, 150-153
Report Builder Ribbon, 150
Report Manager, 156-157
Report Server Status screen, 144
Report Server Web Service URLs, 145
Report Builder role, 158

Index

Reporting Services, 143-158
creating report, 145-154
overview, 15
setting up, 143-146
working with published reports, 154-158
Reporting Services Configuration Manager,
15, 143-146
reports
adding tables to, 153
adding text box to, 150-151
configuring security, 156-158
laying, 150-153
previewing, 153-154
publishing, 154
viewing, 155-156
REQUEST_MAX_MEMORY_GRANT_ PERCENT
parameter, 210
REQUEST_ MEMORY_GRANT_ TIMEOUT_SEC
parameter, 210
Resource Governor, 207-212
activating and deactivating, 212
creating classifier functions, 211-212
creating resource pools, 208-210
creating workload groups, 210-211
resource pools, 207
creating, 208-210
default, 208
internal, 208
resource_pool_name, 209, 211
Restore Database window, 318, 326
Restore Transaction Log tab, 336
RESTORE WITH NORECOVERY option, 326
restoring backups, 326, 317-319
Results Detailed View window, 347-348
RIGHT () function, 137
RIGHT keyword, 199
RIGHT OUTER JOIN statement, 132
Role Name text box, 279
roles, 275-282
assigning users to, 282
content, 157-158
Browser, 158
Content Manager, 158
My Reports, 158
Publisher, 158
Report Builder, 158

creating, 279-282
DatabaseMailUserRole, 32
fixed database, 277-282
fixed server, 275-277
fixed database
db_accessadmin, 277
db_backupoperator, 277
db_datareader, 277
db_datawriter, 277
db_ddladmin, 277
db_denydatareader, 277
db_denydatawriter, 277
db_owner, 277
db_securityadmin, 277
fixed server
Bulkadmin, 275
Dbcreator, 275
Diskadmin, 275
Processadmin, 275
Securityadmin, 275
Serveradmin, 275
Setupadmin, 275
Sysadmin, 275
Management Data Warehouse, 244
permissions, 281
site, 157
user rights administration, 356
Roles folder, 278
ROLLBACK TRANSACTION statement,
297-300
rows, 53-54
deleting, 166
retrieving, 113-114
selecting, 116-118
rowversion data type, 70

oS o

-S option, 46

SAP Netweaver, 147

scalar functions, 177

scatter plots, 151

Schedule Type drop-down box, 221
schema-bound function, 211
scripts, 217

second normal form (2NF), 63-64

377

378

Microsoft SQL Server 2008 For Dummies

secondary data files, 81

Secondary Database drop-down box, 336

Securables page, 279
security
configuring, 156-158
reviewing, 357
Security folder, 273, 278, 279
Securityadmin role, 275
Select Backup Destination window, 307

Select Backup Sets to Restore section, 318

Select Chart Type window, 152
Select Columns dialog box, 196
Select Configuration Task window, 29
Select Objects Types window, 281
Select Objects window, 290
SELECT. . .FROM clause, 110-111,
124-125

SELECT statement, 109-110, 135-137
self-referential table, 133-135
SERIALIZABLE isolation, 302
Serve Activity Summary report, 246
Server Account page, 145
server certificate, 284-286

backing up, 286

creating, 284-285

restoring, 286
server roles, 250-252
Server Name drop-down list, 29
Server Role Properties window, 276
Serveradmin role, 275
servers, 52-53

auditing facility, 287-291

connecting to, 74

mirror, 325-326

multiple, 356

witness, 325
Service Account page, 144-145
service accounts, 21, 37-39, 329
Service Accounts window, 329
service name, 37
service type, 37
SET NOCOUNT OFF command, 111
SET NOCOUNT ON command, 111
Setupadmin role, 275
shared memory, 39
Ship Transaction Logs, 334

Show All Columns check box, 237
Show All Events check box, 237
SHOW_STATISTICS command, 202
Shrink File window, 82
SHRINKDATABASE command, 204
SHRINKFILE command, 204
side-by-side migration, 26

Simple Mail Transfer Protocol (SMTP), 31

simple recovery model, 315-316
single-core processors, 12

site roles, configuring, 157

sixth normal form (6NF), 64
smalldatetime data type, 67
smallint data type, 65
smallmoney data type, 65

SMTP (Simple Mail Transfer Protocol), 31

Snapshot Agent, 263
Snapshot Agent Security screen, 263-264
Snapshot Folder field, 260
SNAPSHOT isolation, 302
snapshots, 320-322
accessing, 321
creating, 320-321
replication
distributor, 258-261
overview, 254
publication, 261-264
reverting to, 321-322
Social Security Numbers (SSNs), 59-60
software, 12
sorting, 118-120
Source for Restore section, 318
SP_Counts template, 235
sp_helptext stored procedure, 184, 190
Specific Objects option, 281
Specify Backup window, 318-319
spreadsheets, 55
SQL (Structured Query Language), 13
SQL code element, 181
SQL Common Language Runtime
(SQLCLR), 187
SQL Server 2000, upgrading, 28
SQL Server 2005, upgrading, 28
SQL Server 2008
alerts, 229-231
built-in functions, 177-180

Index 3 79

changing service accounts, 38-39
components, 13-16
analysis services, 15
configuration manager, 13-14
management studio, 14-15
online documentation, 14
reporting services, 14
databases, 16-17
master, 31
model, 34
msdb, 33
tempdb, 34
editions, 10-11
error log, 239-240
implementing databases with, 16-17
installing, 19-25
new features, 17-18
declarative management, 17
encryption and auditing, 18
system requirements, 11-12
SQL Server Agent, 215-221
adding jobs steps, 217-220
creating jobs, 215-216
notification of job completion, 222
in replication, 259
scheduling jobs, 219-221
starting, 21
SQL Server Analysis Services (SSAS), 217
SQL Server authentication, 272-273
SQL Server Books Online, 14
SQL Server Configuration Manager, 35-43
changing service accounts, 38-39
changing start modes, 39-40
launching, 36
modifying network settings, 40-43
overview, 13-14
starting and stopping services, 36
SQL Server Error Log, 355
SQL Server Installation Center, 22
SQL Server Integration Services (SSIS),
169-173
choosing data source in, 171
import destination, 172
import status, 173
welcome screen, 171

SQL Server Management Studio
(SSMS), 43-48
adding and deleting files in, 81-83
connecting to instance, 43-44
creating alerts in, 230-231
creating constraints in, 94, 99-105
creating filegroups in, 83-84
creating nonclustered indexes, 195-197
databases, 74-80
altering properties of, 77-78
creating, 74-77
deleting or renaming, 78-80
interface, 44-45
issuing Transact-SQL queries, 45-46
line, 46-48
list of built-in functions, 179-180
log file viewer, 240-241
overview, 14-15
Server options, 44
starting, 43
tables, 85-90
creating, 85-88
deleting, 90
modifying, 89
SQL Server Native Client, 172
SQL Server Network Configuration
folder, 42, 283
SQL Server Password Expiration Best
Practice, 341
SQL Server Password Policy Best
Practice, 341
SQL Server Profiler, 234-238, 354
SQL Server Reporting Services, 143-158
creating report, 145-154
overview, 15
setting up, 143-146
working with published reports,
154-158
SQL Server Services, 37-39
SQL Server Upgrade Advisor, 26-28
SQL Trace, 353
SQL Server 2008
new features
data/time data types, 18

380

Microsoft SQL Server 2008 For Dummies

SQLCLR (SQL Common Language
Runtime), 187
SQLCMD utility, 46-48
sql-variant data type, 70
SQRT () function, 137
SQUARE () function, 137
SSAS (SQL Server Analysis Services), 217
SSIS (SQL Server Integration Services),
169-173
choosing data source in, 171
import destination, 172
import status, 173
welcome screen, 171
SSL certificate, 145
SSL Certificate drop-down menu, 145
SSMS (SQL Server Management Studio),
43-48
adding and deleting files in, 81-83
connecting to instance, 43-44
creating alerts in, 230-231
creating constraints in, 94, 99-105
creating filegroups in, 83-84
creating nonclustered indexes, 195-197
databases, 74-80
altering properties of, 77-78
creating, 74-77
deleting or renaming, 78-80
interface, 44-45
issuing Transact-SQL queries, 45-46
line, 46-48
list of built-in functions, 179-180
log file viewer, 240-241
overview, 14-15
Server options, 44
starting, 43
tables, 85-90
creating, 85-88
deleting, 90
modifying, 89
SSMS Connection dialog box, 44
SSMS Policies folder, 346, 349
SSNs (Social Security Numbers), 59-60
Standard Edition, 10-11
Standard toolbar, 88
Standard trace template, 235

Start Analysis button, 247
Start Mirroring dialog box, 330
start modes, 37, 39-40
statements
ALTER RESOURCE POOL, 209-210
ALTER TABLE, 89
ALTER VIEW, 140-141
ALTER WORKLOAD, 211
AUTO_CREATE_STATISTICS, 202
BEGIN TRANSACTION, 297-300
BULK INSERT, 167-168
CASE, 138-139
COMMIT TRANSACTION, 297
CREATE DATABASE, 320-321
CREATE PARTITION, 200-201
CREATE PROCEDURE, 185-186
CREATE RESOURCE POOL, 209-210
CREATE TABLE, 201
CREATE TRIGGER, 188
CREATE WORKLOAD GROUP, 210-211
DBCC CHECKALLOC, 205, 354
DBCC CHECKCATALOG, 205, 354
DBCC CHECKDB, 205, 219, 354
DBCC CHECKTABLE, 205, 354
DELETE, 165-166, 255
DISABLE TRIGGER, 189
DROP FUNCTION, 190
DROP PROCEDURE, 190
DROP TABLE Transact-SQL, 90
DROP TRIGGER, 190
DROP VIEW, 141
FULL OUTER JOIN, 132
INNER JOIN, 128-131
aliases, 130-131
analyzing results of, 129-130
writing, 129
INSERT, 163-164, 255
INSERT INTO, 166-167
JOIN, 127-135, 195
LEFT OUTER JOIN, 131-132
RECONFIGURE, 212
RIGHT OUTER JOIN, 132
ROLLBACK TRANSACTION, 297-300
SELECT, 109-110
computing values, 135-137
SET NOCOUNT OFF, 111

SET NOCOUNT ON, 111
SHOW_STATISTICS, 202
SHRINKDATABASE, 204
SHRINKFILE, 204
TRUNCATE TABLE, 166
UPDATE, 164-165, 255
statements, retrieving, 184
statistics, updating, 202
STDEV aggregate function, 121
Step name text box, 217
stored data encryption, 284-286
backing up master key and certificates,
286
encrypting database, 285-286
master encryption key, 284-285
restoring master key and certificates, 286
server certificate, 285
Stored Procedure Resolver, 258
stored procedures, 183-186
advantages of, 184
creating, 185-186
deleting, 190
executing, 186
functions versus, 184
modifying, 189-190
saving time with, 184-185
system, 184-185
Structured Query Language (SQL), 13
subqueries, 137-138
Subscriber Always Wins Conflict Resolver,
258
subscribers, 250
SUM aggregate function, 121, 123
synchronized servers, 331
synchronizing servers, 331
synchronous operation, 325
Sysadmin role, 275
System Data Collection Sets folder, 245
System Functions folder, 180
system requirements, 11-12
system stored procedures, 184-185
System Tables folder, 85
System Administrator role, 157
System User role, 157

oJ e

table data type, 70
Table Designer window, 86-89, 99
tables, 85-90
adding columns to, 87
creating basic structure of, 85-86
data types for, 64-70
deleting, 90
deleting rows from, 166
grouping data into, 56-59
joining with itself, 133-135
linking, 60
modifying, 89
naming, 86
partitioned, 201
selecting primary key for, 87-88
Tables and Columns Specification
property, 105
Tables and Columns window, 105
Tables folder, 85-86, 162
table-valued functions, 177
target_percent parameter, 204
target_size, 204
targets, 340, 350
TCP ports, 42, 145
TCP/IP Properties, 42
TDE (Transparent Data Encryption),
18, 284, 285-286
Technical Stuff icon, 5
tempdb database, 34
Test Policy, 347
text box, 150-151
text patterns, matching, 115-116
third normal form (3NF), 63-64
TIME data type, 18, 6667
tinyint data type, 65
Tip icon, 5
Total Fragmentation column, 197-198
trace, 234-238
creating, 234-237
monitoring queries with, 353
naming, 234
reviewing results of, 237-238
saving, 236
Trace Name text box, 234

Index 38 ’

382

Microsoft SQL Server 2008 For Dummies

Trace Properties window, 234-236
Transaction Log Backup Settings
window, 335
Transaction Log Shipping properties, 335
transaction logs, 312-314
backup scenario, 313-314
creating backups, 314
disk space, 355
shrinking, 313
truncating, 313-314
transactional replication, 254-255
transactions, 293-304
ACID model, 294-296
creating, 296-300
error handling, 303-304
isolation levels, 300-302
testing Transact-SQLs, 298-300
Transact-SQL (T-SQL)
accessing database snapshots, 321
activating and deactivating Resource
Governor, 212
copying bulk data, 167
creating database snapshots, 320-321
creating resource pools, 208-209
creating tables with, 89
creating partition function, 199
deleting tables with, 90
encrypting stored data, 284-286
inserting query results, 167
line, 46-48
overview, 13
queries, 45-46
reverting to database snapshots, 321-322
testing with transactions, 298-300
updating statistics, 202
Transparent Data Encryption (TDE), 18,
284, 285-286
triggers, 187-189
components of, 188
creating, 188-189
deleting, 190
disabling, 189
modifying, 189-190
updating data with, 188-189
troubleshooting, 232-248
log records, 238-241
server monitoring, 241-246

trace, 234-238
tuning database, 246
TRUNCATE TABLE statement, 166
Truncate the Transaction Log option, 314
truncation, 313-314
T-SQL (Transact-SQL)
accessing database snapshots, 321
activating and deactivating Resource
Governor, 212
copying bulk data, 167
creating database snapshots, 320-321
creating partition function, 199
creating resource pools, 208-209
creating tables with, 89
deleting tables with, 90
encrypting stored data, 284-286
inserting query results, 167
line, 46-48
overview, 13
queries, 45-46
reverting to database snapshots, 321-322
testing with transactions, 298-300
updating statistics, 202
TSQL template, 235
TSQL_Duration template, 235
TSQL_Grouped template, 235
TSQL_Replay template, 235
TSQL_SPs template, 235
Tuning template, 235
Type drop-down list, 217
type element, 181
Type property, 103

o lf o

-U option, 46

UDTs (user-defined types), 70
UNC name, 260
underscore (_
unique key, 103
UNIQUE constraints, 92, 102-103
uniqueidentifier data type, 70
UPDATE command, 164-165
UPDATE statement, 255

Upgrade Advisor, 26-27

) character, 97, 116

Index 383

upgrading SQL Server, 25-28

direct upgrade, 28

side-by-side migration, 26

with Upgrade Advisor, 26-27
Upload Only Conflict Resolver, 258
UPPER () function, 137
URK for Report Manager, 157
User Name check box, 274
user-defined elements, 181
user-defined types (UDTs), 70
username, 155, 274
users

adding, 273-274

assigning to database roles, 282
Users folder, 273
Users Mapped to This Login section, 243

oo

values, computing, 135-137
VAR aggregate function, 121
varbinary data type, 69
varbinary (max) data type, 69
varchar data type, 68
varchar (max) data type, 68
variables, 54
Verify Backup when Finished check box,
309

video adapter, 12
View Audit Logs, 291
View Policies report, 349, 350
views, 139-141

creating, 139-140

deleting, 141

modifying, 140-141
Vista Home Basic, 12
volatile data, 198

o ([o

Warning! icon, 5

Web browser, 155

WHERE clause, 112-118
combining several conditions in, 112-113
indexes, 195
list conditions, 114-115
matching text patterns with LIKE, 115-116
modifying data, 165
negating conditions with NOT, 114
selecting rows with NULI,_values, 116-118
working with NULL_values, 71

wildcards, 116

Windows 2000 Professional, 12

Windows Application log, 239-240, 287, 355

Windows authentication mode, 20-21, 272

Windows Event Viewer, 239-240

Windows Management Instrumentation

(WMD), 229

Windows Security log, 287

Windows Server 2003, 53

Windows XP, 12

WITH NORECOVERY option, 334

WITH SCHEMABINDING clause, 211

witness server, 327-328

WMI (Windows Management

Instrumentation), 229
Workgroup Edition, 10-11
workload groups, 208, 210-211

o X o
XML data sources, 147

XML file, 247
xml data type, 70

BUSINESS, CAREERS & PERSONAL FINANCE

Fundraising Investing

A ﬁefeﬁnce
ar th
RestofUs!' 3

"A Reference for the Rest of Ust -

0-7645-9847-3 0-7645-2431-3

HOME & BUSINESS COMPUTER BASICS

Also available:

v*Business Plans Kit For Dummies
0-7645-9794-9

v*Economics For Dummies
0-7645-5726-2

v Grant Writing For Dummies
0-7645-8416-2

»Home Buying For Dummies
0-7645-5331-3

»Managing For Dummies
0-7645-1771-6

1”Marketing For Dummies
0-7645-5600-2

Personal Finance For Dummies
0-7645-2590-5*

v»Resumes For Dummies
0-7645-5471-9

1~Selling For Dummies
0-7645-5363-1

1”Six Sigma For Dummies
0-7645-6798-5

v*Small Business Kit For Dummies
0-7645-5984-2

v~ Starting an eBay Business For Dummies
0-7645-6924-4

»*Your Dream Career For Dummies
0-7645-9795-7

A Reference
for the
Rest of Us!

A Rf.l’ejrence
Rest of Us!

0-470-05432-8 0-471-75421-8

Also available:

v”Cleaning Windows Vista For Dummies
0-471-78293-9

»*Excel 2007 For Dummies
0-470-03737-7

»Mac OS X Tiger For Dummies
0-7645-7675-5

»”MacBook For Dummies
0-470-04859-X

»Macs For Dummies
0-470-04849-2

1 Office 2007 For Dummies
0-470-00923-3

FOOD, HOME, GARDEN, HOBBIES, MUSIC & PETS

1*Qutlook 2007 For Dummies
0-470-03830-6

»PCs For Dummies
0-7645-8958-X

1~ Salesforce.com For Dummies
0-470-04893-X

Upgrading & Fixing Laptops For
Dummies
0-7645-8959-8

»Word 2007 For Dummies
0-470-03658-3

»Quicken 2007 For Dummies
0-470-04600-7

%
=8 »

DUMMIES

0-7645-8404-9

0-7645-9904-6

INTERNET & DIGITAL MEDIA

Also available:

vCandy Making For Dummies
0-7645-9734-5

v Card Games For Dummies
0-7645-9910-0

vCrocheting For Dummies
0-7645-4151-X

»*Dog Training For Dummies
0-7645-8418-9

v Healthy Carb Cookbook For Dummies
0-7645-8476-6

»Home Maintenance For Dummies
0-7645-5215-5

v*Horses For Dummies
0-7645-9797-3

1~ Jewelry Making & Beading
For Dummies
0-7645-2571-9

1#Orchids For Dummies
0-7645-6759-4

»Puppies For Dummies
0-7645-5255-4

»*Rock Guitar For Dummies
0-7645-5356-9

”Sewing For Dummies
0-7645-6847-7

1#Singing For Dummies
0-7645-2475-5

ot

Pod'&ires
DUMMIES I DUMMIES

A Rfﬁm_enze
or
Rest of Us!
o e

T aving moner

£ a
A Reference for the Rest of Lis! s =

0-470-04529-9 0-470-04894-8

* Separate Canadian edition also available
T Separate U.K. edition also available

Also available:

v*Blogging For Dummies
0-471-77084-1

v~Digital Photography For Dummies
0-7645-9802-3

vDigital Photography All-in-One Desk
Reference For Dummies
0-470-03743-1

v~Digital SLR Cameras and Photography
For Dummies
0-7645-9803-1

v~eBay Business All-in-One Desk
Reference For Dummies
0-7645-8438-3

»HDTV For Dummies
0-470-09673-X

»Home Entertainment PCs For Dummies
0-470-05523-5

»MySpace For Dummies
0-470-09529-6

v*Search Engine Optimization For
Dummies
0-471-97998-8

”Skype For Dummies
0-470-04891-3

1 The Internet For Dummies
0-7645-8996-2

1~Wiring Your Digital Home For Dummies
0-471-91830-X

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974. Wl LEY
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

SPORTS, FITNESS, PARENTING, RELIGION & SPIRITUALITY

Also available:

v Catholicism For Dummies
0-7645-5391-7

vExercise Balls For Dummies
0-7645-5623-1

v*Fitness For Dummies
0-7645-7851-0

v*Football For Dummies

v 0-7645-3936-1

A Reference for the Rest of Usl’ I/JUdaiSm For Dummies

0-7645-5299-6

»Pregnancy For Dummies
0-7645-4483-7 t

»Ten Minute Tone-Ups For Dummies
0-7645-7207-5

”NASCAR For Dummies
0-7645-7681-X

1~Religion For Dummies
0-7645-5264-3

v*Soccer For Dummies
0-7645-5229-5

v»*Women in the Bible For Dummies
0-7645-8475-8

0-471-76871-5 0-7645-7841-3 ~Potty Training For Dummies
0-7645-5417-4
vBuddhism For Dummies
TRAVEL 0-7645-5359-3
______ P Also available:
rk Cit v~ Alaska For Dummies
hlew Yors =) 0-7645-7746-8
DUMMIES 1~ Cruise Vacations For Dummies

0-7645-6941-4
»England For Dummies
0-7645-4276-1
v”Europe For Dummies
0-7645-7529-5
v”Germany For Dummies
0-7645-7823-5
vHawaii For Dummies
0-7645-7402-7

0-7645-7749-2 0-7645-6945-7

GRAPHICS, DESIGN & WEB DEVELOPMENT

v“Italy For Dummies
0-7645-7386-1

1 Las Vegas For Dummies
0-7645-7382-9

vLondon For Dummies
0-7645-4277-X

v Paris For Dummies
0-7645-7630-5

RV Vacations For Dummies
0-7645-4442-X

1~Walt Disney World & Orlando
For Dummies
0-7645-9660-8

Also available:

3D Game Animation For Dummies
0-7645-8789-7

v AutoCAD 2006 For Dummies
0-7645-8925-3

*Building a Web Site For Dummies
0-7645-7144-3

v”Creating Web Pages For Dummies
0-470-08030-2

v”Creating Web Pages All-in-One Desk
Reference For Dummies

0-7645-8815-X 0-7645-9571-7 0-7645-4345-8

v*Dreamweaver 8 For Dummies
0-7645-9649-7

NETWORKING, SECURITY, PROGRAMMING & DATABASES

#InDesign CS2 For Dummies
0-7645-9572-5

v*Macromedia Flash 8 For Dummies
0-7645-9691-8

v*Photoshop CS2 and Digital
Photography For Dummies
0-7645-9580-6

v*Photoshop Elements 4 For Dummies
0-471-77483-9

v#Syndicating Web Sites with RSS Feeds
For Dummies
0-7645-8848-6

*Yahoo! SiteBuilder For Dummies
0-7645-9800-7

Also available:

v Access 2007 For Dummies
0-470-04612-0

1 ASP.NET 2 For Dummies
0-7645-7907-X

v C# 2005 For Dummies
0-7645-9704-3

" Wireless Home
W;{freetworkmg

A Reference A Reference

_ReStof Us! RESHOF UsT , Hacking For Dummies
T ST 0-470-05235-X
Eieiree v”Hacking Wireless Networks
For Dummies
0-7645-7728-X 0-471-74940-0 0-7645-9730-2

v Java For Dummies
0-470-08716-1

v Microsoft SQL Server 2005 For Dummies
0-7645-7755-7

*Networking All-in-One Desk Reference
For Dummies
0-7645-9939-9

1~ Preventing Identity Theft For Dummies
0-7645-7336-5

v Telecom For Dummies
0-471-77085-X

vVisual Studio 2005 All-in-One Desk
Reference For Dummies
0-7645-9775-2

XML For Dummies
0-7645-8845-1

HEALTH & SELF-HELP

o D,abetes
cookboo

ok
A Refesence for the Rest of Usl 20

0-7645-8450-2

0-7645-4149-8

Also available:

v#Bipolar Disorder For Dummies
0-7645-8451-0

vChemotherapy and Radiation
For Dummies
0-7645-7832-4

v#Controlling Cholesterol For Dummies
0-7645-5440-9

v”Diabetes For Dummies
0-7645-6820-5* T

vDivorce For Dummies
0-7645-8417-0 t

EDUCATION, HISTORY, REFERENCE & TEST PREPARATION

v~ Fibromyalgia For Dummies
0-7645-5441-7

v*Low-Calorie Dieting For Dummies
0-7645-9905-4

»Meditation For Dummies
0-471-77774-9

#Osteoporosis For Dummies
0-7645-7621-6

1 Overcoming Anxiety For Dummies
0-7645-5447-6

1*Reiki For Dummies
0-7645-9907-0

1~ Stress Management For Dummies
0-7645-5144-2

A Reference for the Rest of Ul Lo

A Reference for the Rest of Usl % o)

0-7645-8381-6

0-7645-9554-7

Also available:

»»The ACT For Dummies
0-7645-9652-7

~Algebra For Dummies
0-7645-5325-9

v~ Algebra Workbook For Dummies
0-7645-8467-7

v Astronomy For Dummies
0-7645-8465-0

v#Calculus For Dummies
0-7645-2498-4

#Chemistry For Dummies
0-7645-5430-1

vForensics For Dummies
0-7645-5580-4

v Freemasons For Dummies
0-7645-9796-5

v French For Dummies
0-7645-5193-0

v”Geometry For Dummies
0-7645-5324-0

*Organic Chemistry | For Dummies
0-7645-6902-3

v*The SAT | For Dummies
0-7645-7193-1

v*Spanish For Dummies
0-7645-5194-9

v~ Statistics For Dummies
0-7645-5423-9

Dummies; Home

- | Get smart @ dummies.com

®

DUMMIE‘S “-DM' he Onfine Rezouror * Find a full list of Dummies titles

Everyday Computing * Look into loads of FREE on-site articles

2| Advanced Computing Wrrra mp m l‘ azunmf Mexico
Enter 1o win a luxurious vacation for two .

* Sign up for FREE eTips e-mailed to you weekly

: . * See what other products carry the Dummies name
ocus on the Academy Awards
o1 Taking Your Besl Shol o Your Film
& Ewmq far an Acting Fale: What o

i At Home

[* Shop directly from the Dummies bookstore

® Crafing Your Character's Dialogue in
Tour Screargiay

J etna kanaging * Enter to win new prizes every month!
Sports & Lefsure

o Travel

Dummies
Promotions

it o store near you €

CEaunaht B 2004 & Imdemad by ity

* Separate Canadian edition also available
T Separate U.K. edition also available

Available wherever books are sold. For more information or to order direct: U.S. customers visit www.dummies.com or call 1-877-762-2974.
U.K. customers visit www.wileyeurope.com or call 0800 243407. Canadian customers visit www.wiley.ca or call 1-800-567-4797.

Pilates

Workout

.D_‘lr‘ill}'(ll E-:j ,f :)f_i’*{"‘llgﬁ

S

‘705 Soul Music

UNMMIES

Tarot Deck
& Book Set

@‘) Y Instructional DVDs » Music Compilations

) Games & Novelties * Culinary Kits
P% Crafts & Sewing Patterns
Home Improvement/DIY Kits * and more!

Check out the Dummies Specialty Shop at www.dummies.com for more information! WI LEY

	Microsoft SQL Server 2008
	Table of Contents
	Introduction
	Part I Welcome to SQL Server 2008
	Chapter 1 Introducing SQL Server 2008
	Starting Off on the Right Foot
	Understanding the Basic Components of SQL Server
	Implementing Databases with SQL Server 2008
	What’s New in SQL Server 2008

	Chapter 2 Building Your SQL Server
	Installing SQL Server 2008
	Upgrading an Existing SQL Server Installation
	Configuring Database Mail
	Using SQL Server’s Built-In Databases

	Chapter 3 Working with SQL Server Tools
	Using SQL Server Configuration Manager
	Managing Your Server with SQL Server Management Studio
	Working from the Command Line

	Part II Building SQL Server 2008 Databases
	Chapter 4 Planning Your Database
	Introducing Database Design Concepts
	Understanding the Elements of a Database
	Organizing a Database
	Diagramming Your Database
	Staying Fit and Trim with Normalization
	Choosing Data Types for Your Tables
	Working with NULL Values

	Chapter 5 Creating Databases and Tables
	Creating a Database
	Specifying Files and Filegroups
	Creating a Table

	Chapter 6 Imposing Constraints and Relationships
	Introducing Constraints
	Controlling Database Contents Using Constraints
	Enforcing Database Integrity

	Part III Retrieving Data from Databases
	Chapter 7 Constructing Simple Database Queries
	Retrieving Data with SELECT Statements
	Organizing Query Results

	Chapter 8 Joins and Other Advanced Queries
	Joining Data from Multiple Tables
	Taking SELECT to the Next Level
	Using Database Views

	Chapter 9 Turning Data into Information with SQL Server Reporting Services
	Setting up SQL Server Reporting Services
	Creating an SSRS Report with Report Builder
	Working with Deployed (Published) Reports

	Part IV Inserting and Manipulating Your Data
	Chapter 10 Inserting, Updating, and Deleting Data
	Inserting Small Quantities of Data
	Modifying and Deleting Data
	Importing Large Quantities of Data
	Working with SQL Server Integration Services

	Chapter 11 Saving Time with Functions, Stored Procedures, and Triggers
	Reusing Logic with Functions
	Leveraging SQL Server’s built-in functions
	Creating Your Own Functions
	Reusing SQL Code with Stored Procedures
	Updating Data Automatically with Triggers
	Modifying and Deleting Functions, Stored Procedures, and Triggers

	Part V SQL Server Administration
	Chapter 12 Keeping Your SQL Server Running Smoothly
	Indexing Data to Improve Query Performance
	Improving Performance with Partitions
	Updating Database Statistics
	Managing File Sizes
	Checking Database Integrity
	Governing Resource Consumption

	Chapter 13 Automating SQL Server 2008 Administration
	Scheduling Tasks with SQL Server Agent
	Implementing Database Maintenance Plans
	Alerting Administrators about Database Events

	Chapter 14 Troubleshooting SQL Server 2008 Problems
	Understanding the Inner Workings of SQL Server Queries
	Reviewing Log Records
	Monitoring Your Server with Performance Studio
	Tuning Your Database with Database Engine Tuning Advisor

	Chapter 15 Replicating Data across Multiple Servers
	Understanding Replication
	Publishing Data with Snapshot Replication
	Subscribing to a Publication
	Monitoring Replication

	Part VI Protecting Your Data
	Chapter16 Protecting Your Data from Prying Eyes
	Creating and Managing Logins
	Adding Database Users
	Managing Rights with Roles
	Preserving Confidentiality with Encryption
	Auditing SQL Server Activity

	Chapter 17 Preserving the Integrity of Your Transactions
	Preserving Transaction Integrity with the ACID Model
	Creating SQL Server Transactions
	Changing the Transaction Isolation Level
	Handling Errors

	Chapter 18 Preparing for Disaster
	Backing Up Your Data
	Specifying Disaster Recovery Requirements with Recovery Models
	Restoring Your Data after a Disaster
	Using Database Snapshots

	Chapter 19 Staying Alive: High Availability in SQL Server 2008
	Creating Redundancy with Database Mirroring
	Synchronizing Databases with Log Shipping

	Chapter 20 Implementing Policy-Based Management with the Declarative Management Framework
	Coming to Terms with DMF
	Creating DMF Policies
	Using On Demand Evaluation Mode
	Automated Policy Enforcement
	Viewing Policies Affecting a Target

	Part VII The Part of Tens
	Chapter 21 Ten Ways to Keep Your SQL Server 2008 Databases Humming
	Monitor Query Performance
	Back Up Your Data Routinely
	Verify Database Integrity Often
	Tune the Physical Structure of Your Databases
	Conserve Transaction Log Disk Space
	Monitor Database Logs
	Automate Administrative Alerts
	Manage Multiple Servers
	Simplify User Rights Administration with Roles
	Perform Security Reviews

	Chapter 22 Ten Database Design Tips
	Plan Ahead
	Draw Before You Click
	Choose Primary Keys Carefully
	Select Data Types with Space Efficiency in Mind
	Make Sure Your Fields Are Single Purpose
	Remember the Meaning of NULL
	Normalize when Possible
	Manage Your Relationships
	Use Descriptive Names
	Document Your Design

	Index

MicrosoftsQL.
Server 2008

DUMMIES

