




SECOND EDITION

Learning PHP, MySQL,
JavaScript, and CSS, 2E

Robin Nixon

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo



Learning PHP, MySQL, JavaScript, and CSS, 2E, Second Edition
by Robin Nixon

Copyright © 2012 Robin Nixon. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Andy Oram
Production Editor: Iris Febres
Copyeditor: Rachel Head
Proofreader: Kiel Van Horn

Indexer: Ellen Troutman Zaig
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrators: Robert Romano and Rebecca Demarest

August 2012: Second Edition. 

Revision History for the Second Edition:
2012-08-10 First release
2013-04-12 Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449319267 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning PHP, MySQL, JavaScript, and CSS, the image of sugar gliders, and related
trade dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-1-449-31926-7

[LSI]

1365716644

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781449319267


For Julie





Table of Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii

1. Introduction to Dynamic Web Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1
HTTP and HTML: Berners-Lee’s Basics 2

The Request/Response Procedure 2
The Benefits of PHP, MySQL, JavaScript, and CSS 5

Using PHP 5
Using MySQL 6
Using JavaScript 7
Using CSS 9

The Apache Web Server 9
About Open Source 10
Bringing It All Together 10
Test Your Knowledge 12

2. Setting Up a Development Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13
What Is a WAMP, MAMP, or LAMP? 14
Installing a WAMP on Windows 14

Testing the Installation 26
Alternative WAMPs 29

Installing a MAMP on Mac OS X 29
Configuring MySQL 31
Testing the Installation 33

Installing a LAMP on Linux 34
Working Remotely 35

Logging In 35
Using FTP 35

Using a Program Editor 37
Using an IDE 38
Questions 39

v



3. Introduction to PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Incorporating PHP Within HTML 41

Calling the PHP Parser 42
This Book’s Examples 43
The Structure of PHP 44

Using Comments 44
Basic Syntax 45
Understanding Variables 46
Operators 50
Variable Assignment 53
Multiple-Line Commands 55
Variable Typing 58
Constants 58
The Difference Between the echo and print Commands 60
Functions 60
Variable Scope 61

Test Your Knowledge 66

4. Expressions and Control Flow in PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  69
Expressions 69

Literals and Variables 70
Operators 71

Operator Precedence 72
Associativity 74
Relational Operators 75

Conditionals 79
The if Statement 79
The else Statement 80
The elseif Statement 82
The switch Statement 82
The ? Operator 85

Looping 86
while Loops 87
do…while Loops 89
for Loops 89
Breaking Out of a Loop 91
The continue Statement 92

Implicit and Explicit Casting 93
PHP Dynamic Linking 94

Dynamic Linking in Action 94
Test Your Knowledge 95

vi | Table of Contents



5. PHP Functions and Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  97
PHP Functions 98

Defining a Function 99
Returning a Value 100
Returning an Array 101
Passing by Reference 102
Returning Global Variables 103
Recap of Variable Scope 104

Including and Requiring Files 104
The include Statement 104
Using include_once 105
Using require and require_once 105

PHP Version Compatibility 106
PHP Objects 106

Terminology 107
Declaring a Class 108
Creating an Object 109
Accessing Objects 109
Constructors 112
Writing Methods 113
Declaring Properties 114
Declaring Constants 115
Property and Method Scope in PHP 5 116
Inheritance 118

Test Your Knowledge 121

6. PHP Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
Basic Access 123

Numerically Indexed Arrays 123
Associative Arrays 125
Assignment Using the array Keyword 126

The foreach...as Loop 126
Multidimensional Arrays 128
Using Array Functions 131

is_array 131
count 131
sort 132
shuffle 132
explode 132
extract 133
compact 134
reset 135
end 135

Table of Contents | vii



Test Your Knowledge 136

7. Practical PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
Using printf 137

Precision Setting 138
String Padding 140
Using sprintf 141

Date and Time Functions 141
Date Constants 144
Using checkdate 144

File Handling 145
Checking Whether a File Exists 145
Creating a File 145
Reading from Files 147
Copying Files 147
Moving a File 148
Deleting a File 148
Updating Files 149
Locking Files for Multiple Accesses 150
Reading an Entire File 151
Uploading Files 152

System Calls 157
XHTML 158

The Benefits of XHTML 159
XHTML Versions 159
What’s Different? 159
HTML 4.01 Document Types 160
The HTML5 Document Type 161
XHTML 1.0 Document Types 161
XHTML Validation 162

Test Your Knowledge 163

8. Introduction to MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  165
MySQL Basics 165
Summary of Database Terms 166
Accessing MySQL via the Command Line 166

Starting the Command-Line Interface 167
Using the Command-Line Interface 170
MySQL Commands 172
Data Types 176

Indexes 185
Creating an Index 186
Querying a MySQL Database 191

viii | Table of Contents



Joining Tables Together 200
Using Logical Operators 202

MySQL Functions 203
Accessing MySQL via phpMyAdmin 203

Windows Users 203
OS X Users 205
Linux Users 205
Using phpMyAdmin 205

Test Your Knowledge 206

9. Mastering MySQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
Database Design 209

Primary Keys: The Keys to Relational Databases 210
Normalization 211

First Normal Form 212
Second Normal Form 214
Third Normal Form 216
When Not to Use Normalization 218

Relationships 219
One-to-One 219
One-to-Many 220
Many-to-Many 220
Databases and Anonymity 222

Transactions 222
Transaction Storage Engines 223
Using BEGIN 224
Using COMMIT 224
Using ROLLBACK 225

Using EXPLAIN 225
Backing Up and Restoring 227

Using mysqldump 227
Creating a Backup File 228
Restoring from a Backup File 230
Dumping Data in CSV Format 230
Planning Your Backups 231

Test Your Knowledge 231

10. Accessing MySQL Using PHP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  233
Querying a MySQL Database with PHP 233

The Process 233
Creating a Login File 234
Connecting to MySQL 235

A Practical Example 240

Table of Contents | ix



The $_POST Array 242
Deleting a Record 243
Displaying the Form 243
Querying the Database 244
Running the Program 245

Practical MySQL 246
Creating a Table 246
Describing a Table 247
Dropping a Table 248
Adding Data 248
Retrieving Data 249
Updating Data 250
Deleting Data 250
Using AUTO_INCREMENT 251
Performing Additional Queries 252
Preventing SQL Injection 253
Preventing HTML Injection 256

Test Your Knowledge 258

11. Form Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259
Building Forms 259
Retrieving Submitted Data 260

register_globals: An Old Solution Hangs On 262
Default Values 262
Input Types 263
Sanitizing Input 270

An Example Program 271
Test Your Knowledge 274

12. Cookies, Sessions, and Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
Using Cookies in PHP 275

Setting a Cookie 277
Accessing a Cookie 277
Destroying a Cookie 278

HTTP Authentication 278
Storing Usernames and Passwords 281
Salting 281

Using Sessions 285
Starting a Session 285
Ending a Session 288
Session Security 290

Test Your Knowledge 293

x | Table of Contents



13. Exploring JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  295
JavaScript and HTML Text 295

Using Scripts Within a Document Head 297
Older and Nonstandard Browsers 297
Including JavaScript Files 298
Debugging JavaScript Errors 299

Using Comments 301
Semicolons 301
Variables 302

String Variables 302
Numeric Variables 302
Arrays 303

Operators 303
Arithmetic Operators 304
Assignment Operators 304
Comparison Operators 305
Logical Operators 305
Variable Incrementing and Decrementing 305
String Concatenation 306
Escaping Characters 306

Variable Typing 307
Functions 307
Global Variables 308

Local Variables 308
The Document Object Model (DOM) 309

But It’s Not That Simple 311
Using the DOM 312

Test Your Knowledge 313

14. Expressions and Control Flow in JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  315
Expressions 315

Literals and Variables 316
Operators 317

Operator Precedence 318
Associativity 318
Relational Operators 319

The with Statement 322
Using onerror 322
Using try...catch 323
Conditionals 324

The if Statement 324
The switch statement 325
The ? Operator 327

Table of Contents | xi



Looping 327
while Loops 327
do…while Loops 328
for Loops 328
Breaking Out of a Loop 329
The continue Statement 330

Explicit Casting 331
Test Your Knowledge 331

15. JavaScript Functions, Objects, and Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  333
JavaScript Functions 333

Defining a Function 333
Returning a Value 335
Returning an Array 337

JavaScript Objects 337
Declaring a Class 337
Creating an Object 339
Accessing Objects 339
The prototype Keyword 340

JavaScript Arrays 342
Numeric Arrays 342
Associative Arrays 343
Multidimensional Arrays 344
Using Array Methods 345

Test Your Knowledge 349

16. JavaScript and PHP Validation and Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . .  351
Validating User Input with JavaScript 351

The validate.html Document (Part One) 352
The validate.html Document (Part Two) 354

Regular Expressions 357
Matching Through Metacharacters 357
Fuzzy Character Matching 358
Grouping Through Parentheses 359
Character Classes 359
Some More Complicated Examples 360
Summary of Metacharacters 363
General Modifiers 364
Using Regular Expressions in JavaScript 365
Using Regular Expressions in PHP 365

Redisplaying a Form After PHP Validation 366
Test Your Knowledge 371

xii | Table of Contents



17. Using Ajax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  373
What Is Ajax? 373
Using XMLHttpRequest 374
Implementing Ajax via POST Requests 376

The readyState Property 378
The Server Half of the Ajax Process 379

Using GET Instead of POST 381
Sending XML Requests 383

About XML 385
Why Use XML? 387

Using Frameworks for Ajax 387
Test Your Knowledge 387

18. Introduction to CSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  389
Importing a Style Sheet 390

Importing a Style Sheet from Within HTML 390
Embedded Style Settings 391

Using IDs 391
Using Classes 391

CSS Rules 392
Using Semicolons 392
Multiple Assignments 392
Using Comments 393

Style Types 394
Default Styles 394
User Styles 394
External Style Sheets 394
Internal Styles 395
Inline Styles 395

CSS Selectors 396
The Type Selector 396
The Descendant Selector 396
The Child Selector 397
The Adjacent Sibling Selector 398
The ID Selector 399
The Class Selector 399
The Attribute Selector 400
The Universal Selector 400
Selecting by Group 401

The CSS Cascade 402
Style Sheet Creators 402
Style Sheet Methods 402
Style Sheet Selectors 403

Table of Contents | xiii



The Difference Between <div> and <span> 405
Measurements 406
Fonts and Typography 408

font-family 408
font-style 409
font-size 410
font-weight 410

Managing Text Styles 411
Decoration 411
Spacing 411
Alignment 412
Transformation 412
Indenting 412

CSS Colors 412
Short Color Strings 413
Gradients 414

Positioning Elements 415
Absolute Positioning 415
Relative Positioning 416
Fixed Positioning 416
Comparing Positioning Types 416

Pseudoclasses 417
Pseudoelements 419
Shorthand Rules 420
The Box Model and Layout 420

Setting Margins 421
Applying Borders 422
Adjusting Padding 423
Object Contents 424

Test Your Knowledge 425

19. Advanced CSS with CSS3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  427
Attribute Selectors 427

Matching Parts of Strings 428
The box-sizing Property 429
CSS3 Backgrounds 429

The background-clip Property 430
The background-origin Property 430
The background-size Property 432
Multiple Backgrounds 432

CSS3 Borders 434
The border-color Property 434
The border-radius Property 435

xiv | Table of Contents



Box Shadows 438
Element Overflow 439
Multicolumn Layout 439
Colors and Opacity 440

HSL Colors 441
HSLA Colors 441
RGB Colors 442
RGBA Colors 442
The opacity Property 442

Text Effects 443
The text-shadow Property 443
The text-overflow Property 443
The word-wrap Property 444

Web Fonts 444
Google Web Fonts 445

Transformations 445
Transitions 448

Properties to Transition 448
Transition Duration 448
Transition Delay 448
Transition Timing 449
Shorthand Syntax 449

Test Your Knowledge 451

20. Accessing CSS from JavaScript . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  453
Revisiting the getElementById Function 453

The O Function 453
The S Function 454
The C Function 455
Including the Functions 456

Accessing CSS Properties from JavaScript 457
Some Common Properties 457
Other Properties 459

Inline JavaScript 460
The this Keyword 461
Attaching Events to Objects in a Script 461
Attaching to Other Events 462

Adding New Elements 463
Removing Elements 464
Alternatives to Adding and Removing Elements 465

Using Interrupts 466
Using setTimeout 466
Canceling a Timeout 467

Table of Contents | xv



Using setInterval 467
Using Interrupts for Animation 469

Test Your Knowledge 471

21. Bringing It All Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  473
Designing a Social Networking Site 473
On the Website 474
functions.php 474

The Functions 474
header.php 476
setup.php 478
index.php 479
signup.php 479

Checking for Username Availability 480
checkuser.php 482
login.php 483
profile.php 485

Adding the “About Me” Text 486
Adding a Profile Image 486
Processing the Image 486
Displaying the Current Profile 487

members.php 489
Viewing a User’s Profile 490
Adding and Dropping Friends 490
Listing All Members 490

friends.php 492
messages.php 495
logout.php 497
styles.css 499

A. Solutions to the Chapter Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  503

B. Online Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  517

C. MySQL’s FULLTEXT Stopwords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  521

D. MySQL Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 525

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  537

xvi | Table of Contents



Preface

The combination of PHP and MySQL is the most convenient approach to dynamic,
database-driven web design, holding its own in the face of challenges from integrated
frameworks—such as Ruby on Rails—that are harder to learn. Due to its open source
roots (unlike the competing Microsoft .NET framework), it is free to implement and is
therefore an extremely popular option for web development.

Any would-be developer on a Unix/Linux or even a Windows/Apache platform will
need to master these technologies. At the same time, JavaScript is important, as it pro-
vides in-browser dynamic functionality and, through Ajax, hidden communication
with the web server to create seamless interfaces. In conjunction with CSS, these tech-
nologies integrate to provide a formidable array of powerful web-development tools.

Audience
This book is for people who wish to learn how to create effective and dynamic websites.
This may include webmasters or graphic designers who are already creating static web-
sites but wish to take their skills to the next level, as well as high school and college
students, recent graduates, and self-taught individuals.

In fact, anyone ready to learn the fundamentals behind the Web 2.0 technology known
as Ajax will obtain a thorough grounding in all of these core technologies: PHP, MySQL,
JavaScript, and CSS.

Assumptions This Book Makes
This book assumes that you have a basic understanding of HTML and can at least put
together a simple, static website, but it does not assume that you have any prior knowl-
edge of PHP, MySQL, JavaScript, or CSS. That said, if you do, your progress through
the book will be even quicker.

xvii



Organization of This Book
The chapters in this book are written in a specific order, first introducing all of the core
technologies it covers and then walking you through their installation on a web devel-
opment server, so that you will be ready to work through the examples.

In the following section, you will gain a grounding in the PHP programming language,
covering the basics of syntax, arrays, functions, and object-oriented programming.

Then, with PHP under your belt, you will move on to an introduction to the MySQL
database system, where you will learn everything from how MySQL databases are
structured up to how to generate complex queries.

After that, you will learn how you can combine PHP and MySQL to start creating your
own dynamic web pages by integrating forms and other HTML features.

In the next three chapters you will get down to the nitty-gritty practical aspects of PHP
and MySQL development, learning about a variety of useful functions, how to manage
cookies and sessions, and how to maintain a high level of security.

In the following four chapters you will gain a thorough grounding in JavaScript, from
simple functions and event handling to accessing the Document Object Model and in-
browser validation and error handling.

With an understanding of all three of these core technologies, you will then learn how
to make behind-the-scenes Ajax calls and turn your websites into highly dynamic
environments.

Finally, you’ll spend two chapters learning all about using CSS to style and lay out your
web pages, and then you’ll put together everything you’ve learned in a complete set of
programs that together constitute a fully working social networking website.

Along the way, you’ll also find plenty of pointers and advice on good programming
practices and tips that could help you find and solve hard-to-detect programming er-
rors. There are also plenty of links to websites containing further details on the topics
covered.

Supporting Books
Once you have learned to develop using PHP, MySQL, and JavaScript you will be ready
to take your skills to the next level using the following reference books:

• Dynamic HTML: The Definitive Reference by Danny Goodman (O’Reilly)

• PHP in a Nutshell by Paul Hudson (O’Reilly)

• MySQL in a Nutshell by Russell Dyer (O’Reilly)

• JavaScript: The Definitive Guide by David Flanagan (O’Reilly)

• CSS: The Definitive Guide by Eric A. Myer (O’Reilly)

xviii | Preface

http://oreil.ly/dynamic_html
http://oreil.ly/PHP_nutshell
http://oreil.ly/MySQL_nutshell
http://oreil.ly/JS_Definitive
http://oreil.ly/CSS_Definitive


Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width
Used for program listings, as well as within paragraphs to refer to program elements
such as variable or function names, databases, data types, environment variables,
statements, and keywords.

Constant width bold
Shows commands or other text that should be typed literally by the user.

Constant width italic
Shows text that should be replaced with user-supplied values or by values deter-
mined by context.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Learning PHP, MySQL, JavaScript &
CSS, Second Edition, by Robin Nixon. Copyright 2012 Robin Nixon,
978-1-4493-1926-7.”

If you feel your use of code examples falls outside fair use or the permission given here,
feel free to contact us at permissions@oreilly.com.

Preface | xix

mailto:permissions@oreilly.com


Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands
of books, training videos, and prepublication manuscripts in one fully searchable da-
tabase from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Tech-
nology, and dozens more. For more information about Safari Books Online, please visit
us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/PHP_MySQL_JS_CSS2.

There is also a companion website to this book, where you can see all the examples
with color-highlighted syntax, available online at http://lpmj.net.

To comment or ask technical questions about this book, send email to
bookquestions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

xx | Preface

http://my.safaribooksonline.com/?portal=oreilly
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/
http://bit.ly/PHP_MySQL_JS_CSS2
http://lpmj.net
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia


Acknowledgments
A huge thank you goes to my editor, Andy Oram, who always has great ideas for better
explaining tricky subjects; Rachel Head for an excellent job of tidying up my manu-
script; Iris Febres and Rachel Steely, who oversaw production meticulously; Robert
Romano for the easy-to-follow illustrations in both editions; Ellen Troutman Zaig for
creating a thoroughly comprehensive index; Karen Montgomery for the great sugar
glider front cover; David Futato for the clear and easy-to-read interior design; and all
the other dedicated people at O’Reilly who worked so hard on this book, and without
whom it simply wouldn’t be the same.

I would also like to thank my technical reviewers from the first edition, Derek DeHart,
Christoph Dorn, Tomislav Dugandzic, Becka Morgan, Harry Nixon, Alan Solis, and
Demian Turner, and Albert Wiersch for his invaluable input and advice on the CSS
section new to this edition. Finally, thanks to the first edition readers who spotted typos
and sent in errata and suggestions for improving the book, all of whom have helped to
bring this revised, updated, and improved web development tutorial to fruition.

Content Updates

April 12, 2013
• Added a new Chapter 2, rewritten to include Zend Server Free Edition

• Corrected all confirmed errata (mostly typos and small code errors)

Preface | xxi





CHAPTER 1

Introduction to Dynamic Web Content

The World Wide Web is a constantly evolving network that has already traveled far
beyond its conception in the early 1990s, when it was created to solve a specific prob-
lem. State-of-the-art experiments at CERN (the European Laboratory for Particle Phys-
ics—now best known as the operator of the Large Hadron Collider) were producing
incredible amounts of data—so much that the data was proving unwieldy to distribute
to the participating scientists who were spread out across the world.

At this time, the Internet was already in place, with several hundred thousand com-
puters connected to it. Tim Berners-Lee (a CERN fellow) devised a method of navi-
gating between them using a hyperlinking framework, which came to be known as the
Hyper Text Transfer Protocol, or HTTP. He also created a markup language called
HTML, or Hyper Text Markup Language. To bring these together, he wrote the first
web browser and web server.

We now take these tools for granted, but back then, the concept was revolutionary.
The most connectivity so far experienced by at-home modem users was dialing up and
connecting to a bulletin board that was hosted by a single computer, where you could
communicate and swap data only with other users of that service. Consequently, you
needed to be a member of many bulletin board systems in order to effectively commu-
nicate electronically with your colleagues and friends.

But Berners-Lee changed all that in one fell swoop, and by the mid-1990s there were
three major graphical web browsers competing for the attention of five million users.
It soon became obvious, though, that something was missing. Yes, pages of text and
graphics with hyperlinks to take you to other pages was a brilliant concept, but the
results didn’t reflect the instantaneous potential of computers and the Internet to meet
the particular needs of each user with dynamically changing content. Using the Web
was a very dry and plain experience, even if we did now have scrolling text and animated
GIFs!

Shopping carts, search engines, and social networks have clearly altered how we use
the Web. In this chapter, we’ll take a brief look at the various components that make
up the Web, and the software that helps make it a rich and dynamic experience.

1



It is necessary to start using some acronyms more or less right away. I
have tried to clearly explain them before proceeding, but don’t worry
too much about what they stand for or what these names mean, because
the details will all become clear as you read on.

HTTP and HTML: Berners-Lee’s Basics
HTTP is a communication standard governing the requests and responses that take
place between the browser running on the end user’s computer and the web server.
The server’s job is to accept a request from the client and attempt to reply to it in a
meaningful way, usually by serving up a requested web page—that’s why the term
server is used. The natural counterpart to a server is a client, so that term is applied
both to the web browser and the computer on which it’s running.

Between the client and the server there can be several other devices, such as routers,
proxies, gateways, and so on. They serve different roles in ensuring that the requests
and responses are correctly transferred between the client and server. Typically, they
use the Internet to send this information.

A web server can usually handle multiple simultaneous connections and—when not
communicating with a client—spends its time listening for an incoming connection
request. When one arrives, the server sends back a response to confirm its receipt.

The Request/Response Procedure
At its most basic level, the request/response process consists of a web browser asking
the web server to send it a web page and the server sending back the page. The browser
then takes care of displaying the page (see Figure 1-1).

These are the steps in the request and response sequence:

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request for the home page at server.com.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, looks for the web page on its hard disk.

6. The server retrieves the web page and returns it to the browser.

7. Your browser displays the web page.

For an average web page, this process takes place once for each object within the page:
a graphic, an embedded video or Flash file, and even a CSS template.

In step 2, notice that the browser looked up the IP address of server.com. Every machine
attached to the Internet has an IP address—your computer included. But we generally
access web servers by name, such as http://www.google.com. As you probably know,

2 | Chapter 1: Introduction to Dynamic Web Content

http://server.com
http://www.google.com


the browser consults an additional Internet service called the Domain Name Service
(DNS) to find the server’s associated IP address and then uses that to communicate
with the computer.

For dynamic web pages, the procedure is a little more involved, because it may bring
both PHP and MySQL into the mix (see Figure 1-2).

Here are the steps:

1. You enter http://server.com into your browser’s address bar.

2. Your browser looks up the IP address for server.com.

3. Your browser issues a request to that address for the web server’s home page.

4. The request crosses the Internet and arrives at the server.com web server.

5. The web server, having received the request, fetches the home page from its hard
disk.

6. With the home page now in memory, the web server notices that it is a file incor-
porating PHP scripting and passes the page to the PHP interpreter.

7. The PHP interpreter executes the PHP code.

8. Some of the PHP contains MySQL statements, which the PHP interpreter now
passes to the MySQL database engine.

Figure 1-1. The basic client/server request/response sequence

HTTP and HTML: Berners-Lee’s Basics | 3

http://server.com


9. The MySQL database returns the results of the statements back to the PHP inter-
preter.

10. The PHP interpreter returns the results of the executed PHP code, along with the
results from the MySQL database, to the web server.

11. The web server returns the page to the requesting client, which displays it.

Although it’s helpful to be aware of this process so that you know how the three ele-
ments work together, in practice you don’t really need to concern yourself with these
details, because it all happens automatically.

HTML pages returned to the browser in each example may well contain JavaScript,
which will be interpreted locally by the client, and which could initiate another
request—the same way embedded objects such as images would.

Figure 1-2. A dynamic client/server request/response sequence

4 | Chapter 1: Introduction to Dynamic Web Content



The Benefits of PHP, MySQL, JavaScript, and CSS
At the start of this chapter, I introduced the world of Web 1.0, but it wasn’t long before
the rush was on to create Web 1.1, with the development of such browser enhance-
ments as Java, JavaScript, JScript (Microsoft’s slight variant of JavaScript), and ActiveX.
On the server side, progress was being made on the Common Gateway Interface (CGI)
using scripting languages such as Perl (an alternative to the PHP language) and server-
side scripting (dynamically inserting the contents of one file—or the output of a system
call—into another one).

Once the dust had settled, three main technologies stood head and shoulders above
the others. Although Perl was still a popular scripting language with a strong following,
PHP’s simplicity and built-in links to the MySQL database program had earned it more
than double the number of users. And JavaScript, which had become an essential part
of the equation for dynamically manipulating CSS (Cascading Style Sheets), now took
on the even more muscular task of handling the client side of the Ajax process. Under
Ajax (described in “Using JavaScript” on page 7), web pages perform data handling
and send requests to web servers in the background—without the web user being aware
that this is going on.

No doubt the symbiotic nature of PHP and MySQL helped propel them both forward,
but what attracted developers to them in the first place? The simple answer has to be
the ease with which you can use these technologies to quickly create dynamic elements
on websites. MySQL is a fast and powerful yet easy-to-use database system that offers
just about anything a website might need in order to find and serve up data to browsers.
When PHP allies with MySQL to store and retrieve this data, you have the fundamental
parts required for the development of social networking sites and the beginnings of
Web 2.0.

And when you bring JavaScript and CSS into the mix too, you have a recipe for building
highly dynamic and interactive websites.

Using PHP
With PHP, it’s a simple matter to embed dynamic activity in web pages. When you give
pages the .php extension, they have instant access to the scripting language. From a
developer’s point of view, all you have to do is write code such as the following:

<?php
  echo "Hello World. Today is ".date("l").". ";
?>

How are you?

The opening <?php tells the web server to allow the PHP program to interpret all the
following code up to the ?> command. Outside of this construct, everything is sent to
the client as direct HTML. So, the text “How are you?” is simply output to the browser;

The Benefits of PHP, MySQL, JavaScript, and CSS | 5



within the PHP tags, the built-in date function displays the current day of the week
according to the server’s system time.

The final output of the two parts looks like this:

Hello World. Today is Wednesday. How are you?

PHP is a flexible language, and some people prefer to place the PHP construct directly
next to PHP code, like this:

Hello World. Today is <?php echo date("l"); ?>. How are you?

There are also other ways of formatting and outputting information, which I’ll explain
in the chapters on PHP. The point is that with PHP, web developers have a scripting
language that, although not as fast as compiling your code in C or a similar language,
is incredibly speedy and that also integrates seamlessly with HTML code.

If you intend to type in the PHP examples in this book to work along
with me, you must remember to add <?php in front and ?> after them to
ensure that the PHP interpreter processes them. To facilitate this, you
may wish to prepare a file called example.php with those tags in place.

Using PHP, you have unlimited control over your web server. Whether you need to
modify HTML on the fly, process a credit card, add user details to a database, or fetch
information from a third-party website, you can do it all from within the same PHP
files in which the HTML itself resides.

Using MySQL
Of course, there’s not a lot of point to being able to change HTML output dynamically
unless you also have a means to track the changes that users make as they use your
website. In the early days of the Web, many sites used “flat” text files to store data such
as usernames and passwords. But this approach could cause problems if the file wasn’t
correctly locked against corruption from multiple simultaneous accesses. Also, a flat
file can get only so big before it becomes unwieldy to manage—not to mention the
difficulty of trying to merge files and perform complex searches in any kind of reason-
able time.

That’s where relational databases with structured querying become essential. And
MySQL, being free to use and installed on vast numbers of Internet web servers, rises
superbly to the occasion. It is a robust and exceptionally fast database management
system that uses English-like commands.

The highest level of MySQL structure is a database, within which you can have one or
more tables that contain your data. For example, let’s suppose you are working on a
table called users, within which you have created columns for surname, firstname, and

6 | Chapter 1: Introduction to Dynamic Web Content



email, and you now wish to add another user. One command that you might use to do
this is:

INSERT INTO users VALUES('Smith', 'John', 'jsmith@mysite.com');

Of course, as mentioned earlier, you will have issued other commands to create the
database and table and to set up all the correct fields, but the INSERT command here
shows how simple it can be to add new data to a database. The INSERT command is an
example of SQL (which stands for Structured Query Language), a language designed
in the early 1970s and reminiscent of one of the oldest programming languages, CO-
BOL. It is well suited, however, to database queries, which is why it is still in use after
all this time.

It’s equally easy to look up data. Let’s assume that you have an email address for a user
and you need to look up that person’s name. To do this, you could issue a MySQL
query such as:

SELECT surname,firstname FROM users WHERE email='jsmith@mysite.com';

MySQL will then return Smith, John and any other pairs of names that may be associated
with that email address in the database.

As you’d expect, there’s quite a bit more that you can do with MySQL than just simple
INSERT and SELECT commands. For example, you can join multiple tables according to
various criteria, ask for results in a variety of different orders, make partial matches
when you know only part of the string that you are searching for, return only the nth
result, and a lot more.

Using PHP, you can make all these calls directly to MySQL without having to run the
MySQL program yourself or use its command-line interface. This means you can save
the results in arrays for processing and perform multiple lookups, each dependent on
the results returned from earlier ones, to drill right down to the item of data you need.

For even more power, as you’ll see later, there are additional functions built right into
MySQL that you can call up for common operations and extra speed.

Using JavaScript
The oldest of the core technologies described in this book, JavaScript, was created to
enable scripting access to all the elements of an HTML document. In other words, it
provides a means for dynamic user interaction such as checking email address validity
in input forms, displaying prompts such as “Did you really mean that?” and so on
(although it cannot be relied upon for security, which should always be performed on
the web server).

Combined with CSS (see the following section), JavaScript is the power behind dynamic
web pages that change in front of your eyes rather than when the server returns a new
page.

The Benefits of PHP, MySQL, JavaScript, and CSS | 7



However, JavaScript can also be tricky to use, due to some major differences between
the ways different browser designers have chosen to implement it. This mainly came
about when some manufacturers tried to put additional functionality into their brows-
ers at the expense of compatibility with their rivals.

Thankfully, the developers have mostly now come to their senses and have realized the
need for full compatibility between their products, so web developers don’t have to
write multiexception code. But there remain millions of legacy browsers that will be in
use for a good many years to come. Luckily, there are solutions for the incompatibility
problems, and later in this book we’ll look at techniques that enable you to safely ignore
these differences.

For now, let’s take a quick look at how you can use basic JavaScript, accepted by all
browsers:

<script type="text/javascript">
  document.write("Hello World. Today is " + Date() );
</script>

This code snippet tells the web browser to interpret everything within the script tags
as JavaScript, which the browser then interprets by writing the text “Hello World.
Today is ” to the current document, along with the date, by using the JavaScript func-
tion Date. The result will look something like this:

Hello World. Today is Thu Jan 01 2015 01:23:45

It’s worth knowing that unless you need to specify an exact version of
JavaScript, you can normally omit the type="text/javascript" and just
use <script> to start the interpretation of the JavaScript.

As previously mentioned, JavaScript was originally developed to offer dynamic control
over the various elements within an HTML document, and that is still its main use. But
more and more, JavaScript is being used for Ajax. This is a term for the process of
accessing the web server in the background. (It originally meant “Asynchronous Java-
Script and XML,” but that phrase is already a bit outdated.)

Ajax is the main process behind what is now known as Web 2.0 (a term popularized
by Tim O’Reilly, the founder and CEO of this book’s publishing company), in which
web pages have started to resemble standalone programs, because they don’t have to
be reloaded in their entirety. Instead, a quick Ajax call can pull in and update a single
element on a web page, such as changing your photograph on a social networking site
or replacing a button that you click with the answer to a question. This subject is fully
covered in Chapter 17.

8 | Chapter 1: Introduction to Dynamic Web Content



Using CSS
With the emergence of the CSS3 standard in recent years, CSS now offers a level of
dynamic interactivity previously supported only by JavaScript. For example, not only
can you style any HTML element to change its dimensions, colors, borders, spacing,
and so on, but now you can also add animated transitions and transformations to your
web pages, using only a few lines of CSS.

Using CSS can be as simple as inserting a few rules between <style> and </style> tags
in the head of a web page, like this:

<style>
  p
  {
     text-align:justify;
     font-family:Helvetica;
  }
</style>

These rules will change the default justification of the <p> tag so that paragraphs con-
tained in it will be fully justified and will use the Helvetica font.

As you’ll learn in Chapter 18, there are many different ways you can lay out CSS rules,
and you can also include them directly within tags or save a set of rules to an external
file to be loaded in separately. This flexibility lets you do more than style your HTML
precisely; you will also see how it can (for example) provide built-in hover functionality
to animate objects as the mouse pointer passes over them. You will also learn how to
access all of an element’s CSS properties from JavaScript as well as HTML.

The Apache Web Server
In addition to PHP, MySQL, JavaScript, and CSS, there’s actually a fifth hero in the
dynamic Web: the web server. In the case of this book, that means the Apache web
server. We’ve discussed a little of what a web server does during the HTTP server/client
exchange, but it actually does much more behind the scenes.

For example, Apache doesn’t serve up just HTML files—it handles a wide range of
files, from images and Flash files to MP3 audio files, RSS (Really Simple Syndication)
feeds, and more. Each element a web client encounters in an HTML page is also re-
quested from the server, which then serves it up.

But these objects don’t have to be static files, such as GIF images. They can all be
generated by programs such as PHP scripts. That’s right: PHP can even create images
and other files for you, either on the fly or in advance to serve up later.

To do this, you normally have modules either precompiled into Apache or PHP or called
up at runtime. One such module is the GD library (short for Graphics Draw), which
PHP uses to create and handle graphics.

The Apache Web Server | 9



Apache also supports a huge range of modules of its own. In addition to the PHP
module, the most important for your purposes as a web programmer are the modules
that handle security. Other examples are the Rewrite module, which enables the web
server to handle a varying range of URL types and rewrite them to its own internal
requirements, and the Proxy module, which you can use to serve up often-requested
pages from a cache to ease the load on the server.

Later in the book, you’ll see how to actually use some of these modules to enhance the
features provided by the core technologies we cover.

About Open Source
Whether or not being open source is the reason these technologies are so popular has
often been debated, but PHP, MySQL, and Apache are the three most commonly used
tools in their categories.

What can be said, though, is that being open source means that they have been devel-
oped in the community by teams of programmers writing the features they themselves
want and need, with the original code available for all to see and change. Bugs can be
found and security breaches can be prevented before they happen.

There’s another benefit: all these programs are free to use. There’s no worrying about
having to purchase additional licenses if you have to scale up your website and add
more servers. And you don’t need to check the budget before deciding whether to
upgrade to the latest versions of these products.

Bringing It All Together
The real beauty of PHP, MySQL, JavaScript, and CSS is the wonderful way in which
they all work together to produce dynamic web content: PHP handles all the main work
on the web server, MySQL manages all the data, and the combination of CSS and
JavaScript looks after web page presentation. JavaScript can also talk with your PHP
code on the web server whenever it needs to update something (either on the server or
on the web page).

Without using program code, it’s a good idea at this point to summarize the contents
of this chapter by looking at the process of combining our core technologies into an
everyday Ajax feature that many websites use: checking whether a desired username
already exists on the site when a user is signing up for a new account. A good example
of this can be seen with Gmail (see Figure 1-3).

The steps involved in this Ajax process would be similar to the following:

10 | Chapter 1: Introduction to Dynamic Web Content



1. The server outputs the HTML to create the web form, which asks for the necessary
details, such as username, first name, last name, and email address.

2. At the same time, the server attaches some JavaScript to the HTML to monitor the
username input box and check for two things: whether some text has been typed
into it, and whether the input has been deselected because the user has clicked on
another input box.

3. Once the text has been entered and the field deselected, in the background the
JavaScript code passes the username that was typed in back to a PHP script on the
web server and awaits a response.

4. The web server looks up the username and replies back to the JavaScript regarding
whether that name has already been taken.

5. The JavaScript then places an indication next to the username input box to show
whether the name is one available to the user—perhaps a green check mark or a
red cross graphic, along with some text.

6. If the username is not available and the user still submits the form, the JavaScript
interrupts the submission and reemphasizes (perhaps with a larger graphic and/or
an alert box) that the user needs to choose another username.

7. Optionally, an improved version of this process could even look at the username
requested by the user and suggest an alternative that is currently available.

All of this takes place quietly in the background and makes for a comfortable and
seamless user experience. Without using Ajax, the entire form would have to be sub-
mitted to the server, which would then send back HTML, highlighting any mistakes.

Figure 1-3. Gmail uses Ajax to check the availability of usernames

Bringing It All Together | 11



It would be a workable solution, but nowhere near as tidy or pleasurable as on-the-fly
form field processing.

Ajax can be used for a lot more than simple input verification and processing, though;
we’ll explore many additional things that you can do with it in the Ajax chapters later
in this book.

In this chapter, you have read a good introduction to the core technologies of PHP,
MySQL, JavaScript, and CSS (as well as Apache), and have learned how they work
together with each other. In Chapter 2, we’ll look at how you can install your own web
development server on which to practice everything that you will be learning. First,
though, consider these questions.

Test Your Knowledge
1. What four components are needed to create a fully dynamic web page?

2. What does HTML stand for?

3. Why does the name MySQL contain the letters SQL?

4. PHP and JavaScript are both programming languages that generate dynamic results
for web pages. What is their main difference, and why would you use both of them?

5. What does CSS stand for?

6. If you encounter a bug (which is rare) in one of the open source tools, how do you
think you could get it fixed?

See “Chapter 1 Answers” on page 503 in Appendix A for the answers to these
questions.

12 | Chapter 1: Introduction to Dynamic Web Content



CHAPTER 2

Setting Up a Development Server

If you wish to develop Internet applications but don’t have your own development
server, you will have to upload every modification you make to a server somewhere else
on the Web before you can test it.

Even on a fast broadband connection, this can still represent a significant slowdown in
development time. On a local computer, however, testing can be as easy as saving an
update (usually just a matter of clicking once on an icon) and then hitting the Refresh
button in your browser.

Another advantage of a development server is that you don’t have to worry about em-
barrassing errors or security problems while you’re writing and testing, whereas you
need to be aware of what people may see or do with your application when it’s on a
public website. It’s best to iron everything out while you’re still on a home or small
office system, presumably protected by firewalls and other safeguards.

It’s easy to set up your own development server, and once the setup is complete, you’ll
wonder how you ever managed without one. Just follow the steps in the following
sections, using the appropriate instructions for a PC, Mac, or Linux system.

In this chapter, we cover just the server side of the web experience, as described in
Chapter 1. But to test the results of your work—particularly when we start using Java-
Script and CSS later in this book—you should also have an instance of every major web
browser running on which ever system is most convenient for you. Whenever possible,
the list of browsers should include at least Internet Explorer, Mozilla Firefox, Opera,
Safari, and Google Chrome.

If you plan to ensure that your sites look good on mobile devices too, then you should
also try to arrange access to a wide range of Apple iOS and Google Android phones
and tablets.

13



What Is a WAMP, MAMP, or LAMP?
WAMP, MAMP, and LAMP are abbreviations for “Windows, Apache, MySQL, and
PHP,” “Mac, Apache, MySQL, and PHP,” and “Linux, Apache, MySQL, and PHP.”
These abbreviations describe a fully functioning setup used for developing dynamic
Internet web pages.

WAMPs, MAMPs, and LAMPs come in the form of a package that binds the bundled
programs together so that you don’t have to install and set them up separately. This
means you can simply download and install a single program, then follow a few easy
prompts to get your web development server up and running in the quickest time with
a minimum hassle.

During installation, several default settings are created for you. The security configu-
rations of such an installation will not be as tight as on a production web server, because
it is optimized for local use. For these reasons, you should never install such a setup as
a production server.

For developing and testing websites and applications, however, one of these installa-
tions should be entirely sufficient.

If you choose not to go the W/L/MAMP route for building your own
development system, you should know that downloading and integrat-
ing the various parts yourself can be very time-consuming and may re-
quire a lot of research in order to configure everything fully. But if you
already have all the components installed and integrated with each
other, they should work with the examples in this book.

Installing a WAMP on Windows
There are several available WAMP servers, each offering slightly different configura-
tions, but probably the best is Zend Server Free Edition, because it’s free and comes
from the developers of PHP itself. You can download it at http://tinyurl.com/zendfree
as shown in Figure 2-1. If there is a problem with that short URL, the full URL of the
download page is http://zend.com/en/products/server/free-edition.

14 | Chapter 2: Setting Up a Development Server

http://tinyurl.com/zendfree
http://zend.com/en/products/server/free-edition


Figure 2-1. You can download the Free Edition from the Zend Website

I recommend you always download the latest stable release (in this instance it’s 6.0.1/
PHP 5.4 for Windows), which will be listed first in the download section of the web
page, which should display the correct installer for your computer out of Linux, Win-
dows OS X, and IBM i.

It’s possible that during the lifetime of this edition, some of the screens
and options shown in the following walkthrough may change. If so, just
use your common sense to proceed in as similar manner to the sequence
of actions described.

Once downloaded, run the installer to bring up the window in Figure 2-2.

Installing a WAMP on Windows | 15



Figure 2-2. The main installation window of the installer

Click Next and accept the license agreement that follows to move onto the Setup Type
screen (see Figure 2-3). Select the Custom option so that the MySQL server can also be
installed.

16 | Chapter 2: Setting Up a Development Server



Figure 2-3. Choose the Custom install option

When the Custom Setup window appears, scroll down the list of options to the bottom
and ensure that MySQL Server is checked, as shown in Figure 2-4, then click Next.

Installing a WAMP on Windows | 17



Figure 2-4. Check MySQL Server before continuing

On the following screen (Figure 2-5), even if you already have an IIS web server in-
stalled, I recommend that you choose to install the Apache web server because the
examples in this book are for Apache. After that, click Next.

Now accept the default values of 80 for the Web Server Port, and 10081 for the Zend
Server Interface Port (see Figure 2-6). Click Next.

18 | Chapter 2: Setting Up a Development Server



Figure 2-5. Install the Apache web server

If either of the offered ports state that they are occupied (generally this
will be because you have another web server running), and they don’t
allow you to use the defaults, then try a value of 8080 (or 8000) for the
Web Server Port and 10082 for the Zend Server Interface Port. Be sure
to remember these values later when accessing either web pages or the
Zend server. For example, instead of visiting http://localhost in your web
browser, you would use localhost:8080/index.htm.

Installing a WAMP on Windows | 19

http://localhost


Figure 2-6. Accept the default values offered for the ports

Once the ports have been assigned, you will reach the screen in Figure 2-7. Click Install
to start the installation.

20 | Chapter 2: Setting Up a Development Server



Figure 2-7. Now you are ready to click Install to proceed

During installation, some extra files may be downloaded, so it may take a few minutes
for the programs to get set up. But when they are ready, you will be notified and offered
to start using the software by clicking Finish. When you do so, your default browser
will open with the page shown in Figure 2-8. To continue, you must check the box to
agree with the terms.

Installing a WAMP on Windows | 21



Figure 2-8. You must agree to the terms in order to use the server

Next, you are asked how you will be using the server. I recommend you select the
Development option for the purposes of working through the exercises in this book
(see Figure 2-9).

22 | Chapter 2: Setting Up a Development Server



Figure 2-9. Select the Development option

Now you are ready to set a password for the user admin (see Figure 2-10). You do not
need to enter a password for the user developer. Make sure you choose a password that
you will remember.

Installing a WAMP on Windows | 23



Figure 2-10. Choose your password and enter it twice

Click Next to proceed to the screen shown in Figure 2-11. You can now click Submit
to finish installation. Note that the “Create or Join a Cluster” option may not appear
on the OS X version of the installer.

24 | Chapter 2: Setting Up a Development Server



Figure 2-11. Click Submit to complete setup

After a short wait, your browser will show the Dashboard screen in Figure 2-12, which
is the place where you can administer the server.

Installing a WAMP on Windows | 25



Figure 2-12. The Zend Server administration screen

You can return to this screen at any time by entering http://localhost:10081 into your
browser. Or, if you entered a value other than 10081 for the Zend Server Interface Port
(or 10088 on a Mac), you can get to this screen by using that value after the colon
instead.

Testing the Installation
The first thing to do at this point is verify that everything is working correctly. To do
this, you are going to try to display the default web page, which will have been saved
in the server’s document root folder (see Figure 2-13). Enter either of the following two
URLs into the address bar of your browser:

localhost
127.0.0.1

The word localhost is used in URLs to specify the local computer, which will also re-
spond to the IP address of 127.0.0.1, so you can use either method of calling up the
document root of your web server.

26 | Chapter 2: Setting Up a Development Server



Figure 2-13. How the home page should look by default

If you choose a server port other than 80 during installation (such as
8080) then you must insert a colon, followed by the new value after
either of the preceding URLs. For example: localhost:8080. You will also
have to do the same for all example files in this book. For instance,
instead of entering the URL localhost/example.php, you should enter the
following one: localhost:8080/example.php (or whatever value you
choose).

The document root is the directory that contains the main web documents for a domain.
This is the one that is entered when a basic URL without a path is typed into a browser,
such as http://yahoo.com, or for your local server, http://localhost.

By default, Zend Server uses one of the following locations for this directory (the former
for 32-bit computers and the latter for 64-bit):

C:/Program Files/Zend/Apache2/htdocs
C:/Program Files (x86)/Zend/Apache2/htdocs

If you are not sure whether your computer is 32-bit or 64-bit, try to
navigate to the first directory and, if it exists, you have a 32-bit machine.
If not, open up the second directory because you have a 64-bit computer.

Installing a WAMP on Windows | 27

http://yahoo.com
http://localhost


To ensure that you have everything configured correctly, you should now create the
obligatory “Hello World” file. So create a small HTML file along the following lines
using Windows Notepad or any other program or text editor. Do not use a rich word
processor such as Microsoft Word (unless you save it as Plain Text):

<html>
  <head>
    <title>A quick test</title>
  </head>
  <body>
    Hello World!
  </body>
</html>

Once you have typed this in, save the file into the document root directory previously
discussed, using the filename test.htm. If you are using Notepad, make sure that the
“Save as type” box is changed from “Text Documents (*.txt)” to “All Files (*.*).” Or, if
you prefer, you can save the file using the .html file extension.

Now you can call this page up in your browser by entering one of the following URLs
(according to the extension you used) in its address bar (see Figure 2-14):

http://localhost/test.htm
http://localhost/test.html

Figure 2-14. Your first web page

You should now have had a trouble-free installation, resulting in a fully working
WAMP. If you encountered any difficulties, check out the comprehensive Documen-
tation at http://tinyurl.com/zenddocs, which should sort out your problem.

28 | Chapter 2: Setting Up a Development Server

http://tinyurl.com/zenddocs


Throughout this book, whenever there’s a long URL to type in, I use the
tinyurl.com web address shortening service to save time and reduce ty-
pos. For example, tinyurl.com/zendfree and tinyurl.com/zenddocs are
much shorter than the URLs they lead to:

• http://www.zend.com/en/products/server/free-edition

• http://files.zend.com/help/Zend-Server-6/zend-server.htm

Alternative WAMPs
When software is updated, it sometimes works differently than you expect, and bugs
can even be introduced. So if you encounter difficulties that you cannot resolve, you
may prefer to choose one of the various other solutions available on the Web instead.

You will still be able to make use of all the examples in this book, but you’ll have to
follow the instructions supplied with each WAMP, which may not be as easy to follow
as the preceding guide.

Here’s a selection of the best, in my opinion:

• EasyPHP

• XAMPP

• WAMPServer

• Glossword WAMP

Installing a MAMP on Mac OS X
Zend Server Free Edition is also available on OS X, and you can download it from
tinyurl.com/zendfree as shown in Figure 2-15. If there is a problem with that short URL,
try entering http://zend.com/en/products/server/free-edition.

I recommend that you always download the latest stable release (in this instance, it’s
6.01/PHP 5.4 for OS X), which will be listed first in the download section of the web
page, which should display the correct installer for your computer out of Linux, Win-
dows, OS X, and IBM i. You may be asked to log in before you download, but you can
also click a link to get the file without logging in or registering, although you’ll miss
out on product update emails and other news.

Once downloaded, double-click the .dmg file, wait for the download to verify, and then
wait for the window in Figure 2-16 to appear.

Installing a MAMP on Mac OS X | 29

http://www.zend.com/en/products/server/free-edition
http://files.zend.com/help/Zend-Server-6/zend-server.htm
http://www.easyphp.org/
http://apachefriends.org/en/xampp.html
http://wampserver.com/en/
http://glossword.biz/glosswordwamp/
http://zend.com/en/products/server/free-edition


Figure 2-15. You can download the server from the Zend Website

Figure 2-16. Double-click Zend Server to install it

Here you can double-click the README file for instructions, or double-click Zend
Server to open up the installation window shown in Figure 2-17.

30 | Chapter 2: Setting Up a Development Server



Now click Continue. Read the instructions that are displayed, and then click Continue
again to reach the screen shown in Figure 2-18. You can now decide where to put the
installed software, the default being Macintosh HD. Click Install when you are ready
and enter your password if prompted for it.

During installation, you may be asked whether you wish to install additional software.
If so, I recommend accepting everything offered to you by clicking the Install button.
Upon completion, you can click Close to close the installer.

Once installed, to complete the setup, locate the ZendServer program in your Appli-
cations folder and double-click it. This will bring up a page in your default web browser
similar to that shown in Figure 2-8. Now follow the prompts you are given (shown in
Figures 2-8 through 2-11). You must accept the license agreement and choose a pass-
word before being taken to the main dashboard, as shown in Figure 2-12.

Configuring MySQL
Unfortunately, the Installer doesn’t set up the commands needed to be able to start,
stop and restart the MySQL server, so you’re going to have to do this manually. Open
the Terminal and entering the following command:

sudo nano /usr/local/zend/bin/zendctl.sh

After entering your password, you should now be in the Nano text editor. Move the
cursor down a few lines using the down cursor key, and where you see the line that
reads MySQL_EN="false", change the word false to true.

Figure 2-17. The Zend Server Installer

Installing a MAMP on Mac OS X | 31



Now scroll down some more until you find these two lines:

case $1 in
        "start")

Below it, you’ll see an indented line that reads:

                $0 start-apache %

Just after this line, insert a new one that reads as follows:

                $0 start-MySQL %

This will allow MySQL to start, but now you need to scroll down a little more until
you get to the section that starts with:

        "stop")

Below it, you’ll see an indented line that reads:

                $0 stop-apache %

Just after this line, insert a new one that reads as follows:

                $0 stop-MySQL %

This will allow MySQL to be stopped. Now you can press Ctrl-X to exit from Edit
mode. Press the Y key when prompted to save the changes, and then press Return to
save the edited file.

Figure 2-18. Choosing the destination for installation

32 | Chapter 2: Setting Up a Development Server



Ensuring MySQL starts on booting

Unfortunately, there’s another edit you have to make so that MySQL will start when
your Mac does. You need to issue the following commands from the Terminal (sup-
plying your password in the relevant place if prompted for it):

cd /Library/StartupItems/ZendServer_init/
sudo rm zendctl.sh
sudo ln -s /usr/local/zend/bin/zendctl.sh ./

Your Mac is now configured, but MySQL has not yet been started, so now you must
issue the following command (along with password if prompted):

sudo /Library/StartupItems/ZendServer_init/zendctl.sh restart

After this, you should be all set to go.

Testing the Installation
You can now test the installation by entering either of the following URLs into your
web browser to call up the screen shown in Figure 2-13:

localhost:10088
127.0.0.1:10088

The word localhost specifies the local computer (which will also respond to the IP
address of 127.0.0.1). The reason for having to enter :10088 is because many Mac
computers will already have a web server running, so this avoids any clash.

You must therefore remember to place :10088 after every localhost for all examples in
this book. So, for example, if the file name test.php is being accessed, you would call it
up from the browser using the URL localhost:10088/test.php.

The page that gets displayed in the browser when you go to http://localhost or http://
localhost:10088 is the file index.html in the server’s document root (the directory that
contains the main web documents for a domain). This is the directory that is entered
when a basic URL without a path is typed into a browser, such as http://yahoo.com, or
in the case of your local web server, http://localhost, etc.

If you are sure that there isn’t another web server running on your Mac
you can edit the configuration file at the following URL (ensuring you
have permission to do so), changing the command (at around line 40)
that reads Listen 10088 to Listen 80:

/usr/local/zend/apache2/conf/httpd.conf

You will then need to restart the server by opening the Terminal utility
and issuing the following command (along with your password if
prompted), and you will then no-longer need to add the :10088 to local
URLs:

sudo /usr/local/zend/bin/zendctl.sh restart

Installing a MAMP on Mac OS X | 33

http://localhost
http://localhost:10088
http://localhost:10088
http://yahoo.com
http://localhost


By default, Zend Server on OS X uses the following as its document root folder:

/usr/local/zend/apache2/htdocs

To ensure that you have everything correctly configured, you should now load a test
file. Create a small HTML file along the following lines using TextEdit or any other
program or text editor (such as the popular TextWrangler). Do not use a rich word
processor like Microsoft Word (unless you save as Plain Text):

<html>
  <head>
    <title>A quick test</title>
  </head>
  <body>
    Hello World!
  </body>
</html>

Once you have typed this in, save the file into the document root directory using the
filename test.htm. Or, if you prefer, use the .html file extension. You can now call this
page up in your browser by entering one of the following URLs (according to the ex-
tension you saved with) in its address bar (see Figure 2-14):

http://localhost:10088/test.htm
http://localhost:10088/test.html

You should now have had a trouble-free installation, resulting in a fully working
MAMP. If you encountered any difficulties, check out the comprehensive Documen-
tation at http://tinyurl.com/zenddocs, which should sort out your problem.

Throughout this book, whenever there’s a long URL to type in, I use the
tinyurl.com web address shortening service to save time and reduce ty-
pos. For example, tinyurl.com/zendfree and tinyurl.com/zenddocs are
much shorter than the URLs they lead to:

http://www.zend.com/en/products/server/free-edition

http://files.zend.com/help/Zend-Server-6/zend-server.htm

Installing a LAMP on Linux
This book is aimed mostly at PC and Mac users but its contents will work equally well
on a Linux computer. However, there are dozens of popular flavors of Linux and each
of them may require installing a LAMP in a slightly different way, so I can’t cover them
all in this book.

However, many Linux versions come preinstalled with a web server and MySQL, and
chances are you’re set to go already. To find out, try entering the following into a
browser and see whether you get a default document root web page:

http://localhost

34 | Chapter 2: Setting Up a Development Server

http://tinyurl.com/zenddocs
http://www.zend.com/en/products/server/free-edition
http://files.zend.com/help/Zend-Server-6/zend-server.htm


If this works, you probably have the Apache server installed and may also have MySQL
up and running—check with your system administrator to be sure, though.

If you don’t yet have a web server installed, there’s a version of Zend Server Free Edition
available for download at http://tinyurl.com/zendfree.

All the instructions and help you need are detailed on the download page. Follow them
closely or use the provided scripts and you should be able to work through all the
examples in this book.

Working Remotely
If you have access to a web server already configured with PHP and MySQL, you can
always use that for your web development. But unless you have a high-speed connec-
tion, it is not always your best option. Developing locally allows you to test modifica-
tions with little or no upload delay.

Accessing MySQL remotely may not be easy, either. You may have to Telnet or SSH
into your server to manually create databases and set permissions from the command
line. Your web hosting company will advise you on how best to do this and provide
you with any password it has set for your MySQL access (as well as for getting into the
server in the first place).

Logging In
I recommend that, at minimum, Windows users install a program such as PuTTY,
available at http://putty.org, for Telnet and SSH access (remember that SSH is much
more secure than Telnet).

On a Mac, you already have SSH available. Just select the Applications folder, followed
by Utilities, and then launch Terminal. In the terminal window, log in to a server using
SSH as follows (where server.com is the name of the server you wish to log into and
mylogin is the username you will log in under):

ssh mylogin@server.com

You will then be prompted to enter the correct password for that username and, if you
enter it correctly, you will be logged in.

Using FTP
To transfer files to and from your web server, you will need an FTP program. If you go
searching the Web for a good one, you’ll find so many that it could take you quite a
while to come across one with all the right features for you.

Nowadays, I always recommend FireFTP, because of these advantages:

Working Remotely | 35

http://tinyurl.com/zendfree
http://putty.org


• It is an add-on for the Firefox web browser, and will therefore work on any platform
on which Firefox runs.

• Calling it up can be as simple as selecting a bookmark.

• It is one of the fastest and easiest to use FTP programs that I have encountered.

You may say “But I use only Microsoft Internet Explorer and FireFTP
is not available for it.” I would counter that if you are going to
develop web pages, you need a copy of each of the main browsers in-
stalled on your PC anyway, as suggested at the start of this chapter.

To install FireFTP, visit http://fireftp.mozdev.org using Firefox and click on the “Down-
load FireFTP” link. It’s about half a megabyte in size and installs very quickly. Once
it’s installed, restart Firefox; you can then access FireFTP from the Tools menu (see
Figure 2-19).

Figure 2-19. FireFTP offers full FTP access from within Firefox

Another excellent FTP program is the open source FileZilla, available for Windows,
Linux, and Mac OS X 10.5 or newer.

Of course, if you already have an FTP program, all the better—stick with what you
know.

36 | Chapter 2: Setting Up a Development Server

http://fireftp.mozdev.org
http://filezilla-project.org


Using a Program Editor
Although a plain-text editor works for editing HTML, PHP, and JavaScript, there have
been some tremendous improvements in dedicated program editors, which now in-
corporate very handy features such as colored syntax highlighting. Today’s program
editors are smart and can show you where you have syntax errors before you even run
a program. Once you’ve used a modern editor, you’ll wonder how you ever managed
without one.

There are a number of good programs available, but I have settled on Editra, because
it’s free and available Mac, Windows, and Linux/Unix. You can download a copy by
visiting http://editra.org and selecting the Download link toward the top left of the page,
where you can also find the documentation for it.

As you can see from Figure 2-20, Editra highlights the syntax appropriately to help
clarify what’s going on. What’s more, you can place the cursor next to brackets or
braces and Editra will highlight the matching pair so that you can check whether you
have too many or too few. In fact, Editra can do a lot more than this, which you will
discover and enjoy as you use it.

Figure 2-20. Program editors are superior to plain-text editors

Using a Program Editor | 37

http://editra.org


Again, if you have a different preferred program editor, use that—it’s always a good
idea to use programs you’re already familiar with.

Using an IDE
As good as dedicated program editors can be for your programming productivity, their
utility pales into insignificance when compared to Integrated Developing Environ-
ments (IDEs), which offer many additional features such as in-editor debugging and
program testing, as well as function descriptions and much more.

Figure 2-21 shows the popular phpDesigner IDE with a PHP program loaded into the
main frame, and the right-hand Code Explorer listing the various classes, functions,
and variables that it uses.

Figure 2-21. When using an IDE such as phpDesigner, PHP development becomes much quicker and
easier

When developing with an IDE, you can set breakpoints and then run all (or portions)
of your code, which will then stop at the breakpoints and provide you with information
about the program’s current state.

As an aid to learning programming, the examples in this book can be entered into an
IDE and run then and there, without the need to call up your web browser.

38 | Chapter 2: Setting Up a Development Server



There are several IDEs available for different platforms, most of which are commercial,
but there are some free ones, too. Table 2-1 lists some of the most popular PHP IDEs,
along with their download URLs.

Table 2-1. A selection of PHP IDEs

IDE Download URL From Win Mac Lin

Eclipse PDT http://eclipse.org/pdt/downloads/ Free ☑ ☑ ☑
Komodo IDE http://activestate.com/Products/komodo_ide $245 ☑ ☑ ☑
NetBeans http://www.netbeans.org Free ☑ ☑ ☑
phpDesigner http://mpsoftware.dk $39 ☑ ☐ ☐
PHPEclipse http://phpeclipse.de Free ☑ ☑ ☑
PhpED http://nusphere.com $119 ☑ ☐ ☑
PHPEdit http://phpedit.com $119 ☑ ☐ ☐
Zend Studio http://zend.com/en/downloads $395 ☑ ☑ ☑

Choosing an IDE can be a very personal thing, so if you intend to use one, I advise you
to download a couple or more to try them out first—they all either have trial versions
or are free to use, so it won’t cost you anything. 

You should take the time to install a program editor or IDE you are comfortable with.
Afterward, you’ll be ready to type in and try out the examples in the coming chapters.

Armed with these tools, you are now ready to move onto Chapter 3, where we’ll start
exploring PHP in further depth and find out how to get HTML and PHP to work
together, as well as how the PHP language itself is structured. But before moving on, I
suggest you test your new knowledge with the following questions.

Questions
1. What is the difference between a WAMP, a MAMP, and a LAMP?

2. What do the IP address 127.0.0.1 and the URL http://localhost have in common?

3. What is the purpose of an FTP program?

4. Name the main disadvantage of working on a remote web server.

5. Why is it better to use a program editor instead of a plain text editor?

See the “Chapter 2 Answers” section in Appendix A for the answers to these
questions.

Questions | 39

http://eclipse.org/pdt/downloads/
http://activestate.com/Products/komodo_ide
http://www.netbeans.org
http://mpsoftware.dk
http://phpeclipse.de
http://nusphere.com
http://phpedit.com
http://zend.com/en/downloads
http://localhost




CHAPTER 3

Introduction to PHP

In Chapter 1, I explained that PHP is the language that you use to make the server
generate dynamic output—output that is potentially different each time a browser re-
quests a page. In this chapter, you’ll start learning this simple but powerful language;
it will be the topic of the following chapters up through Chapter 6.

I encourage you to develop your PHP code in one of the IDEs listed in Chapter 2. It
will help you catch typos and speed up learning tremendously in comparison to less
feature-rich editors.

Many of these development environments let you run the PHP code and see the output
discussed in this chapter. I’ll also show you how to embed the PHP in an HTML file
so that you can see what the output looks like in a web page (the way your users will
ultimately see it). But that step, as thrilling as it may be at first, isn’t really important
at this stage.

In production, your web pages will be a combination of PHP, HTML, and JavaScript,
and some MySQL statements laid out using CSS. Furthermore, each page can lead to
other pages to provide users with ways to click through links and fill out forms. We
can avoid all that complexity while learning each language, though. Focus for now on
just writing PHP code and making sure that you get the output you expect—or at least,
that you understand the output you actually get!

Incorporating PHP Within HTML
By default, PHP documents end with the extension .php. When a web server encounters
this extension in a requested file, it automatically passes it to the PHP processor. Of
course, web servers are highly configurable, and some web developers choose to force
files ending with .htm or .html to also get parsed by the PHP processor, usually because
they want to hide the fact that they are using PHP.

Your PHP program is responsible for passing back a clean file suitable for display in a
web browser. At its very simplest, a PHP document will output only HTML. To prove

41



this, you can take any normal HTML document, such as an index.html file, and save it
as index.php; it will display identically to the original.

Calling the PHP Parser
To trigger the PHP commands, you need to learn a new tag. The first part is:

<?php

The first thing you may notice is that the tag has not been closed. This is because entire
sections of PHP can be placed inside this tag, and they finish only when the closing
part, which looks like this, is encountered:

?>

A small PHP “Hello World” program might look like Example 3-1.

Example 3-1. Invoking PHP

<?php
echo "Hello world";
?>

The way you use this tag is quite flexible. Some programmers open the tag at the start
of a document and close it right at the end, outputting any HTML directly from PHP
commands.

Others, however, choose to insert only the smallest possible fragments of PHP within
these tags wherever dynamic scripting is required, leaving the rest of the document in
standard HTML.

The latter type of programmer generally argues that their style of coding results in faster
code, while the former say that the speed increase is so minimal that it doesn’t justify
the additional complexity of dropping in and out of PHP many times in a single
document.

As you learn more, you will surely discover your preferred style of PHP development,
but for the sake of making the examples in this book easier to follow, I have adopted
the approach of keeping the number of transfers between PHP and HTML to a mini-
mum—generally only once or twice in a document.

By the way, a slight variation to the PHP syntax exists. If you browse the Internet for
PHP examples, you may also encounter code where the opening and closing syntax
used is like this:

<?
echo "Hello world";
?>

Although it’s not as obvious that the PHP parser is being called, this is a valid, alternative
syntax that also usually works. However, it should be discouraged, as it is incompatible

42 | Chapter 3: Introduction to PHP



with XML and its use is now deprecated (meaning that it is no longer recommended
and that support could be removed in future versions).

If you have only PHP code in a file, you may omit the closing ?>. This
can be a good practice, as it will ensure you have no excess whitespace
leaking from your PHP files (especially important when writing object-
oriented code).

This Book’s Examples
To save you the time it would take to type them in, all the examples from this book
have been archived onto the website at http://lpmj.net, from where you can download
the file 2nd_edition_examples.zip by clicking the “Download Examples” link in the
heading section (see Figure 3-1). 

Figure 3-1. Viewing examples from this book at http://lpmj.net

As well as having all the examples saved by chapter and example number (such as
example3-1.php), the provided examples.zip archive also contains an extra folder called

This Book’s Examples | 43

http://lpmj.net
http://lpmj.net


named_examples, in which you’ll find all the examples I suggest saving using a specific
filename (such as the upcoming Example 3-4, which should be saved as test1.php).

The Structure of PHP
We’re going to cover quite a lot of ground in this section. It’s not too difficult, but I
recommend that you work your way through it carefully, as it sets the foundation for
everything else in this book. As always, there are some useful questions at the end of
the chapter that you can use to test how much you’ve learned.

Using Comments
There are two ways in which you can add comments to your PHP code. The first turns
a single line into a comment by preceding it with a pair of forward slashes, like this:

// This is a comment

This version of the comment feature is a great way to temporarily remove a line of code
from a program that is giving you errors. For example, you could use such a comment
to hide a debugging line of code until you need it, like this:

// echo "X equals $x";

You can also use this type of comment directly after a line of code to describe its action,
like this:

$x += 10; // Increment $x by 10

When you need multiple-line comments, there’s a second type of comment, which
looks like Example 3-2.

Example 3-2. A multiline comment

<?php
/* This is a section
   of multiline comments
   that will not be
   interpreted */
?>

You can use the /* and */ pairs of characters to open and close comments almost
anywhere you like inside your code. Most, if not all, programmers use this construct
to temporarily comment out entire sections of code that do not work or that, for one
reason or another, they do not wish to be interpreted.

44 | Chapter 3: Introduction to PHP



A common error is to use /* and */ to comment out a large section of
code that already contains a commented-out section that uses those
characters. You can’t nest comments this way; the PHP interpreter
won’t know where a comment ends and will display an error message.
However, if you use a program editor or IDE with syntax highlighting,
this type of error is easier to spot.

Basic Syntax
PHP is quite a simple language with roots in C and Perl, yet it looks more like Java. It
is also very flexible, but there are a few rules that you need to learn about its syntax and
structure.

Semicolons

You may have noticed in the previous examples that the PHP commands ended with
a semicolon, like this:

$x += 10;

Probably the most common cause of errors you will encounter with PHP is forgetting
this semicolon, which causes PHP to treat multiple statements like one statement,
which it is unable to understand. This leads to a “Parse error” message.

The $ symbol

The $ symbol has come to be used in many different ways by different programming
languages. For example, if you have ever written in the BASIC language, you will have
used the $ to terminate variable names to denote them as strings.

In PHP, however, you must place a $ in front of all variables. This is required to make
the PHP parser faster, as it instantly knows whenever it comes across a variable.
Whether your variables are numbers, strings, or arrays, they should all look something
like those in Example 3-3.

Example 3-3. Three different types of variable assignment

<?php
$mycounter = 1;
$mystring  = "Hello";
$myarray   = array("One", "Two", "Three");
?>

And really, that’s pretty much all the syntax that you have to remember. Unlike lan-
guages such as Python, which is very strict about how you indent and lay out our code,
PHP leaves you completely free to use (or not use) all the indenting and spacing you
like. In fact, sensible use of what is called whitespace is generally encouraged (along
with comprehensive commenting) to help you understand your code when you come
back to it. It also helps other programmers when they have to maintain your code.

The Structure of PHP | 45



Understanding Variables
There’s a simple metaphor that will help you understand what PHP variables are all
about. Just think of them as little (or big) matchboxes! That’s right, matchboxes that
you’ve painted over and written names on.

String variables

Imagine you have a matchbox on which you have written the word username. You then
write Fred Smith on a piece of paper and place it into the box (see Figure 3-2). Well,
that’s the same process as assigning a string value to a variable, like this:

$username = "Fred Smith";

Figure 3-2. You can think of variables as matchboxes containing items

The quotation marks indicate that “Fred Smith” is a string of characters. You must
enclose each string in either quotation marks or apostrophes (single quotes), although
there is a subtle difference between the two types of quote, which is explained later.
When you want to see what’s in the box, you open it, take out the piece of paper, and
read it. In PHP, doing so looks like this:

echo $username;

Or you can assign it to another variable (i.e., photocopy the paper and place the copy
in another matchbox), like this:

$current_user = $username;

If you are keen to start trying out PHP for yourself, you could try entering the examples
in this chapter into an IDE (as recommended at the end of Chapter 2), to see instant
results, or you could enter the code in Example 3-4 into a program editor and save it
to your server’s document root directory (also discussed in Chapter 2) as test1.php.

46 | Chapter 3: Introduction to PHP



Example 3-4. Your first PHP program

<?php // test1.php
$username = "Fred Smith";
echo $username;
echo "<br />";
$current_user = $username;
echo $current_user;
?>

Now you can call it up by entering the following into your browser’s address bar:

http://localhost/test1.php

If during installation of your web server (as detailed in Chapter 2) you
changed the port assigned to the server to anything other than 80, you
must place that port number within the URL in this and all other ex-
amples in this book. So, for example, if you changed the port to 8080,
the preceding URL becomes:

http://localhost:8080/test1.php

I will not mention this again, so just remember to use the port number
if required when trying out any examples or writing your own code.

The result of running this code should be two occurrences of the name “Fred Smith,”
the first of which is the result of the echo $username command and the second of the
echo $current_user command.

Numeric variables

Variables don’t contain just strings—they can contain numbers, too. Using the match-
box analogy, to store the number 17 in the variable $count, the equivalent would be
placing, say, 17 beads in a matchbox on which you have written the word count:

$count = 17;

You could also use a floating-point number (containing a decimal point); the syntax is
the same:

$count = 17.5;

To examine the contents of the matchbox, you would simply open it and count the
beads. In PHP, you would assign the value of $count to another variable or perhaps just
echo it to the web browser.

Arrays

So what are arrays? Well, you can think of them as several matchboxes glued together.
For example, let’s say we want to store the player names for a five-person soccer team
in an array called $team. To do this, we could glue five matchboxes side by side and

The Structure of PHP | 47



write down the names of all the players on separate pieces of paper, placing one in each
matchbox.

Across the top of the matchbox assembly, we would write the word team (see
Figure 3-3). The equivalent of this in PHP would be:

$team = array('Bill', 'Joe', 'Mike', 'Chris', 'Jim');

Figure 3-3. An array is like several matchboxes glued together

This syntax is more complicated than the instructions I’ve explained so far. The array-
building code consists of the following construct:

array();

with five strings inside the parentheses. Each string is enclosed in single quotes.

If we then wanted to know who player 4 is, we could use this command:

echo $team[3]; // Displays the name Chris

The reason the previous statement has the number 3 and not a 4 is because the first
element of a PHP array is actually the zeroth element, so the player numbers will there-
fore be 0 through 4.

Two-dimensional arrays

There’s a lot more you can do with arrays. For example, instead of being single-di-
mensional lines of matchboxes, they can be two-dimensional matrixes or can even have
three or more dimensions.

As an example of a two-dimensional array, let’s say we want to keep track of a game
of tic-tac-toe, which requires a data structure of nine cells arranged in a 3×3 square. To

48 | Chapter 3: Introduction to PHP



represent this with matchboxes, imagine nine of them glued to each other in a matrix
of three rows by three columns (see Figure 3-4).

Figure 3-4. A multidimensional array simulated with matchboxes

You can now place a piece of paper with either an “x” or an “o” in the correct matchbox
for each move played. To do this in PHP code, you have to set up an array containing
three more arrays, as in Example 3-5, in which the array is set up with a game already
in progress.

Example 3-5. Defining a two-dimensional array

<?php
$oxo = array(array('x', '',  'o'),
             array('o', 'o', 'x'),
             array('x', 'o', '' ));
?>

Once again, we’ve moved up a step in complexity, but it’s easy to understand if you
grasp the basic array syntax. There are three array() constructs nested inside the outer
array() construct.

To then return the third element in the second row of this array, you would use the
following PHP command, which will display an “x”:

echo $oxo[1][2];

The Structure of PHP | 49



Remember that array indexes (pointers at elements within an array) start
from zero, not one, so the [1] in the previous command refers to the
second of the three arrays, and the [2] references the third position
within that array. It will return the contents of the matchbox three along
and two down from the top left.

As mentioned, arrays with even more dimensions are supported by simply creating
more arrays within arrays. However, we will not be covering arrays of more than two
dimensions in this book.

Don’t worry if you’re still having difficulty getting to grips with using arrays, as the
subject is explained in detail in Chapter 6.

Variable naming rules

When creating PHP variables, you must follow these four rules:

• Variable names must start with a letter of the alphabet or the _ (underscore)
character.

• Variable names can contain only the characters a-z, A-Z, 0-9, and _ (underscore).

• Variable names may not contain spaces. If a variable must comprise more than one
word, the words should be separated with the _ (underscore) character (e.g.,
$user_name).

• Variable names are case-sensitive. The variable $High_Score is not the same as the
variable $high_score.

Operators
Operators are the mathematical, string, comparison, and logical commands such as
plus, minus, times, and divide, which in PHP looks a lot like plain arithmetic; for in-
stance, the following statement outputs 8:

echo 6 + 2;

Before moving on to learn what PHP can do for you, take a moment to learn about the
various operators it provides.

Arithmetic operators

Arithmetic operators do what you would expect. They are used to perform mathemat-
ics. You can use them for the main four operations (plus, minus, times, and divide), as
well as to find a modulus (the remainder after a division) and to increment or decrement
a value (see Table 3-1).

50 | Chapter 3: Introduction to PHP



Table 3-1. Arithmetic operators

Operator Description Example

+ Addition $j + 1

- Subtraction $j - 6

* Multiplication $j * 11

/ Division $j / 4

% Modulus (division remainder) $j % 9

++ Increment ++ $j

−− Decrement −− $j

Assignment operators

These operators are used to assign values to variables. They start with the very simple
= and move on to +=, -=, and so on (see Table 3-2). The operator += adds the value on
the right side to the variable on the left, instead of totally replacing the value on the
left. Thus, if $count starts with the value 5, the statement:

$count += 1;

sets $count to 6, just like the more familiar assignment statement:

$count = $count + 1;

Table 3-2. Assignment operators

Operator Example Equivalent to

= $j = 15 $j = 15

+= $j += 5 $j = $j + 5

-= $j -= 3 $j = $j - 3

*= $j *= 8 $j = $j * 8

/= $j /= 16 $j = $j / 16

.= $j .= $k $j = $j . $k

%= $j %= 4 $j = $j % 4

Strings have their own operator, the period (.), detailed in the section “String concat-
enation” on page 54 a little later in this chapter.

Comparison operators

Comparison operators are generally used inside a construct such as an if statement in
which you need to compare two items. For example, you may wish to know whether
a variable you have been incrementing has reached a specific value, or whether another
variable is less than a set value, and so on (see Table 3-3).

The Structure of PHP | 51



Table 3-3. Comparison operators

Operator Description Example

== Is equal to $j == 4

!= Is not equal to $j != 21

> Is greater than $j > 3

< Is less than $j < 100

>= Is greater than or equal to $j >= 15

<= Is less than or equal to $j <= 8

Note the difference between = and ==. The first is an assignment operator, and the
second is a comparison operator. Even more advanced programmers can sometimes
transpose the two when coding hurriedly, so be careful.

Logical operators

If you haven’t used them before, logical operators may at first seem a little daunting.
But just think of them the way you would use logic in English. For example, you might
say to yourself, “If the time is later than 12 PM and earlier than 2 PM, then have lunch.”
In PHP, the code for this might look something like the following (using military
timing):

if ($hour > 12 && $hour < 14) dolunch();

Here we have moved the set of instructions for actually going to lunch into a function
that we will have to create later called dolunch. The then of the statement is left out,
because it is implied and therefore unnecessary.

As the previous example shows, you generally use a logical operator to combine the
results of two of the comparison operators shown in the previous section. A logical
operator can also be input to another logical operator (“If the time is later than 12 PM
and earlier than 2 PM, or if the smell of a roast is permeating the hallway and there are
plates on the table...”). As a rule, if something has a TRUE or FALSE value, it can be input
to a logical operator. A logical operator takes two true-or-false inputs and produces a
true-or-false result.

Table 3-4 shows the logical operators.

Table 3-4. Logical operators

Operator Description Example

&& And $j == 3 && $k == 2

and Low-precedence and $j == 3 and $k == 2

|| Or $j < 5 || $j > 10

or Low-precedence or $j < 5 or $j > 10

52 | Chapter 3: Introduction to PHP



Operator Description Example

! Not ! ($j == $k)

xor Exclusive or $j xor $k

Note that && is usually interchangeable with and; the same is true for || and or. But
and and or have a lower precedence, so in some cases, you may need extra parentheses
to force the required precedence. On the other hand, there are times when only and or
or is acceptable, as in the following statement, which uses an or operator (to be ex-
plained in Chapter 10):

mysql_select_db($database) or die("Unable to select database");

The most unusual of these operators is xor, which stands for exclusive or and returns
a TRUE value if either value is TRUE, but a FALSE value if both inputs are TRUE or both
inputs are FALSE. To understand this, imagine that you want to concoct your own
cleaner for household items. Ammonia makes a good cleaner, and so does bleach, so
you want your cleaner to contain one of these. But the cleaner must not contain both,
because the combination is hazardous. In PHP, you could represent this as:

$ingredient = $ammonia xor $bleach;

In the example snippet, if either $ammonia or $bleach is TRUE, $ingredient will also be
set to TRUE. But if both are TRUE or both are FALSE, $ingredient will be set to FALSE.

Variable Assignment
The syntax to assign a value to a variable is always variable = value. Or, to reassign the
value to another variable, it is other_variable = variable.

There are also a couple of other assignment operators that you will find useful. For
example, we’ve already seen:

$x += 10;

which tells the PHP parser to add the value on the right (in this instance, the value 10)
to the variable $x. Likewise, we could subtract as follows:

$y -= 10;

Variable incrementing and decrementing

Adding or subtracting 1 is such a common operation that PHP provides special oper-
ators for these tasks. You can use one of the following in place of the += and -= operators:

++$x;
−−$y;

In conjunction with a test (an if statement), you could use the following code:

if (++$x == 10) echo $x;

The Structure of PHP | 53



This tells PHP to first increment the value of $x and then test whether it has the value
10 and, if so, output its value. You can also require PHP to increment (or, in the fol-
lowing example, decrement) a variable after it has tested the value, like this:

if ($y−− == 0) echo $y;

which gives a subtly different result. Suppose $y starts out as 0 before the statement is
executed. The comparison will return a TRUE result, but $y will be set to −1 after the
comparison is made. So what will the echo statement display: 0 or −1? Try to guess, and
then try out the statement in a PHP processor to confirm. Because this combination of
statements is confusing, it should be taken as just an educational example and not as
a guide to good programming style.

In short, whether a variable is incremented or decremented before or after testing de-
pends on whether the increment or decrement operator is placed before or after the
variable.

By the way, the correct answer to the previous question is that the echo statement will
display the result −1, because $y was decremented right after it was accessed in the if
statement, and before the echo statement.

String concatenation

String concatenation uses the period (.) operator to append one string of characters to
another. The simplest way to do this is as follows:

echo "You have " . $msgs . " messages.";

Assuming that the variable $msgs is set to the value 5, the output from this line of code
will be:

You have 5 messages.

Just as you can add a value to a numeric variable with the += operator, you can append
one string to another using .= like this:

$bulletin .= $newsflash;

In this case, if $bulletin contains a news bulletin and $newsflash has a news flash, the
command appends the news flash to the news bulletin so that $bulletin now comprises
both strings of text.

String types

PHP supports two types of strings that are denoted by the type of quotation mark that
you use. If you wish to assign a literal string, preserving the exact contents, you should
use the single quotation mark (apostrophe), like this:

$info = 'Preface variables with a $ like this: $variable';

In this case, every character within the single-quoted string is assigned to $info. If you
had used double quotes, PHP would have attempted to evaluate $variable as a variable.

54 | Chapter 3: Introduction to PHP



On the other hand, when you want to include the value of a variable inside a string,
you do so by using a double-quoted string:

echo "There have been $count presidents of the US";

As you will realize, this syntax also offers a simpler form of concatenation in which you
don’t need to use a period, or close and reopen quotes, to append one string to another.
This is called variable substitution. You will notice some applications using it exten-
sively and others not using it at all.

Escaping characters

Sometimes a string needs to contain characters with special meanings that might be
interpreted incorrectly. For example, the following line of code will not work, because
the second quotation mark (apostrophe) encountered in the word sister’s will tell the
PHP parser that the end of the string has been reached. Consequently, the rest of the
line will be rejected as an error:

$text = 'My sister's car is a Ford'; // Erroneous syntax

To correct this, you can add a backslash directly before the offending quotation mark
to tell PHP to treat the character literally and not to interpret it:

$text = 'My sister\'s car is a Ford';

You can perform this trick in almost all situations in which PHP would otherwise return
an error by trying to interpret a special character. For example, the following double-
quoted string will be correctly assigned:

$text = "My Mother always said \"Eat your greens\".";

Additionally, you can use escape characters to insert various special characters into
strings, such as tabs, newlines, and carriage returns. These are represented, as you might
guess, by \t, \n, and \r. Here is an example using tabs to lay out a heading; it is included
here merely to illustrate escapes, because in web pages there are always better ways to
do layout:

$heading = "Date\tName\tPayment";

These special backslash-preceded characters work only in double-quoted strings. In
single-quoted strings, the preceding string would be displayed with the ugly \t se-
quences instead of tabs. Within single-quoted strings, only the escaped apostrophe
(\') and the escaped backslash itself (\\) are recognized as escaped characters.

Multiple-Line Commands
There are times when you need to output quite a lot of text from PHP, and using several
echo (or print) statements would be time-consuming and messy. To overcome this,
PHP offers two conveniences. The first is just to put multiple lines between quotes, as
in Example 3-6. Variables can also be assigned, as in Example 3-7.

The Structure of PHP | 55



Example 3-6. A multiline string echo statement

<?php
$author = "Alfred E Newman";

echo "This is a Headline

This is the first line.
This is the second.
Written by $author.";
?>

Example 3-7. A multiline string assignment

<?php
$author = "Alfred E Newman";

$text = "This is a Headline

This is the first line.
This is the second.
Written by $author.";
?>

PHP also offers a multiline sequence using the <<< operator, commonly referred to as
here-document or heredoc for short. This is a way of specifying a string literal, preserving
the line breaks and other whitespace (including indentation) in the text. Its use can be
seen in Example 3-8.

Example 3-8. Alternative multiline echo statement

<?php
$author = "Alfred E Newman";

echo <<<_END
This is a Headline

This is the first line.
This is the second.
- Written by $author.
_END;
?>

What this code does is tell PHP to output everything between the two _END tags as if it
were a double-quoted string. This means it’s possible, for example, for a developer to
write entire sections of HTML directly into PHP code and then just replace specific
dynamic parts with PHP variables.

It is important to remember that the closing _END; tag must appear right at the start of
a new line and must be the only thing on that line—not even a comment is allowed to
be added after it (nor even a single space). Once you have closed a multiline block, you
are free to use the same tag name again.

56 | Chapter 3: Introduction to PHP



Remember: using the <<<_END..._END; heredoc construct, you don’t
have to add \n line-feed characters to send a line feed—just press Return
and start a new line. Also, unlike either a double-quote- or single-quote-
delimited string, you are free to use all the single and double quotes you
like within a heredoc, without escaping them by preceding them with a
backslash (\).

Example 3-9 shows how to use the same syntax to assign multiple lines to a variable.

Example 3-9. A multiline string variable assignment

<?php
$author = "Alfred E Newman";

$out = <<<_END
This is a Headline

This is the first line.
This is the second.
- Written by $author.
_END;
?>

The variable $out will then be populated with the contents between the two tags. If you
were appending rather than assigning, you also could have used .= in place of = to
append the string to $out.

Be careful not to place a semicolon directly after the first occurrence of _END, as that
would terminate the multiline block before it had even started and cause a “Parse error”
message. The only place for the semicolon is after the terminating _END tag, although
it is safe to use semicolons within the block as normal text characters.

By the way, the _END tag is simply one I chose for these examples because it is unlikely
to be used anywhere else in PHP code. You can use any tag you like, such as _SEC
TION1, _OUTPUT, and so on. Also, to help differentiate tags such as this from variables or
functions, the general practice is to preface them with an underscore, but you don’t
have to use one if you choose not to.

Laying out text over multiple lines is usually just a convenience to make
your PHP code easier to read, because once it is displayed in a web page,
HTML formatting rules take over and whitespace is suppressed (but
$author is still replaced with the variable’s value).

So, for example, if you load these multiline output examples into a
browser they will not display over several lines, because all browsers
treat newlines just like spaces. However, if you use the browser’s view
source feature, you will find that the newlines are correctly placed, and
the output does appear over several lines.

The Structure of PHP | 57



Variable Typing
PHP is a very loosely typed language. This means that variables do not have to be
declared before they are used, and that PHP always converts variables to the type re-
quired by their context when they are accessed.

For example, you can create a multiple-digit number and extract the nth digit from it,
simply by assuming it to be a string. In the following snippet of code (Example 3-10),
the numbers 12345 and 67890 are multiplied together, returning a result of 838102050,
which is then placed in the variable $number.

Example 3-10. Automatic conversion from a number to a string

<?php
$number = 12345 * 67890;
echo substr($number, 3, 1);
?>

At the point of the assignment, $number is a numeric variable. But on the second line,
a call is placed to the PHP function substr, which asks for one character to be returned
from $number, starting at the fourth position (remembering that PHP offsets start from
zero). To do this, PHP turns $number into a nine-character string, so that substr can
access it and return the character, which in this case is 1.

The same goes for turning a string into a number, and so on. In Example 3-11, the
variable $pi is set to a string value, which is then automatically turned into a floating-
point number in the third line by the equation for calculating a circle’s area, which
outputs the value 78.5398175.

Example 3-11. Automatically converting a string to a number

<?php
$pi = "3.1415927";
$radius = 5;
echo $pi * ($radius * $radius);
?>

In practice, what this all means is that you don’t have to worry too much about your
variable types. Just assign them values that make sense to you, and PHP will convert
them if necessary. Then, when you want to retrieve values, just ask for them—for ex-
ample, with an echo statement.

Constants
Constants are similar to variables, holding information to be accessed later, except that
they are what they sound like—constant. In other words, once you have defined one,
its value is set for the remainder of the program and cannot be altered.

58 | Chapter 3: Introduction to PHP



One example of a use for a constant might be to hold the location of your server root
(the folder containing the main files of your website). You would define such a constant
like this:

define("ROOT_LOCATION", "/usr/local/www/");

Then, to read the contents of the variable, you just refer to it like a regular variable (but
it isn’t preceded by a dollar sign):

$directory = ROOT_LOCATION;

Now, whenever you need to run your PHP code on a different server with a different
folder configuration, you have only a single line of code to change.

The main two things you have to remember about constants are that
they must not be prefaced with a $ (as with regular variables), and that
you can define them only using the define function.

It is generally agreed to be good practice to use only uppercase for constant variable
names, especially if other people will also read your code.

Predefined constants

PHP comes ready-made with dozens of predefined constants that you generally will be
unlikely to use as a beginner. However, there are a few, known as the magic con-
stants, that you will find useful right from the start. The names of the magic constants
always have two underscores at the beginning and two at the end, so that you won’t
accidentally try to name one of your own constants with a name that is already taken.
They are detailed in Table 3-5. The concepts referred to in the table will be introduced
in future chapters.

Table 3-5. PHP’s magic constants

Magic constant Description

__LINE__ The current line number of the file.

__FILE__ The full path and filename of the file. If used inside an include, the name of the included file is returned.
In PHP 4.0.2, __FILE__ always contains an absolute path with symbolic links resolved, whereas in older
versions it might contain a relative path under some circumstances.

__DIR__ The directory of the file. If used inside an include, the directory of the included file is returned. This is
equivalent to dirname(__FILE__). This directory name does not have a trailing slash unless it is the
root directory. (Added in PHP 5.3.0.)

__FUNCTION__ The function name. (Added in PHP 4.3.0.) As of PHP 5, returns the function name as it was declared (case-
sensitive). In PHP 4, its value is always lowercase.

__CLASS__ The class name. (Added in PHP 4.3.0.) As of PHP 5, returns the class name as it was declared (case-sensitive).
In PHP 4, its value is always lowercase.

The Structure of PHP | 59



Magic constant Description

__METHOD__ The class method name. (Added in PHP 5.0.0.) The method name is returned as it was declared (case-
sensitive).

__NAME
SPACE__

The name of the current namespace (case-sensitive). This constant is defined at compile time. (Added in
PHP 5.3.0.)

One handy use of these constants is for debugging purposes, when you need to insert
a line of code to see whether the program flow reaches it:

echo "This is line " . __LINE__ . " of file " . __FILE__;

This causes the current program line in the current file (including the path) being ex-
ecuted to be output to the web browser.

The Difference Between the echo and print Commands
So far, you have seen the echo command used in a number of different ways to output
text from the server to your browser. In some cases, a string literal has been output. In
others, strings have first been concatenated or variables have been evaluated. I’ve also
shown output spread over multiple lines.

But there is also an alternative to echo that you can use: print. The two commands are
quite similar to each other, but print is an actual function that takes a single parameter,
whereas echo is a PHP language construct.

By and large, the echo command will be a tad faster than print in general text output,
because—not being a function—it doesn’t set a return value.

On the other hand, because it isn’t a function, echo cannot be used as part of a more
complex expression, whereas print can. Here’s an example to output whether the value
of a variable is TRUE or FALSE using print—something you could not perform in the
same manner with echo, because it would display a “Parse error” message:

$b ? print "TRUE" : print "FALSE";

The question mark is simply a way of interrogating whether variable $b is TRUE or
FALSE. Whichever command is on the left of the following colon is executed if $b is
TRUE, whereas the command to the right is executed if $b is FALSE.

Generally, though, the examples in this book use echo, and I recommend that you do
so as well until you reach such a point in your PHP development that you discover the
need for using print.

Functions
Functions are used to separate out sections of code that perform a particular task. For
example, maybe you often need to look up a date and return it in a certain format. That
would be a good example to turn into a function. The code doing it might be only three

60 | Chapter 3: Introduction to PHP



lines long, but if you have to paste it into your program a dozen times, you’re making
your program unnecessarily large and complex, unless you use a function. And if you
decide to change the data format later, putting it in a function means you’ll have to
change it in only one place.

Placing such code into a function not only shortens your source code and makes it more
readable, it also adds extra functionality (pun intended), because functions can be
passed parameters to make them perform differently. They can also return values to
the calling code.

To create a function, declare it in the manner shown in Example 3-12.

Example 3-12. A simple function declaration

<?php
function longdate($timestamp)
{
    return date("l F jS Y", $timestamp);
}
?>

This function takes a Unix timestamp (an integer number representing a date and time
based on the number of seconds since 00:00 AM on January 1, 1970) as its input and
then calls the PHP date function with the correct format string to return a date in the
format Monday August 1st 2016. Any number of parameters can be passed between the
initial parentheses; we have chosen to accept just one. The curly braces enclose all the
code that is executed when you later call the function.

To output today’s date using this function, place the following call in your code:

echo longdate(time());

This call uses the built-in PHP time function to fetch the current Unix timestamp and
passes it to the new longdate function, which then returns the appropriate string to the
echo command for display. If you need to print out the date 17 days ago, you now just
have to issue the following call:

echo longdate(time() - 17 * 24 * 60 * 60);

which passes to longdate the current Unix timestamp less the number of seconds since
17 days ago (17 days × 24 hours × 60 minutes × 60 seconds).

Functions can also accept multiple parameters and return multiple results, using tech-
niques that I’ll introduce over the following chapters.

Variable Scope
If you have a very long program, it’s quite possible that you could start to run out of
good variable names, but with PHP you can decide the scope of a variable. In other
words, you can, for example, tell it that you want the variable $temp to be used only

The Structure of PHP | 61



inside a particular function and to forget it was ever used when the function returns.
In fact, this is the default scope for PHP variables.

Alternatively, you could inform PHP that a variable is global in scope and thus can be
accessed by every other part of your program.

Local variables

Local variables are variables that are created within, and can be accessed only by, a
function. They are generally temporary variables that are used to store partially pro-
cessed results prior to the function’s return.

One set of local variables is the list of arguments to a function. In the previous section,
we defined a function that accepted a parameter named $timestamp. This is meaningful
only in the body of the function; you can’t get or set its value outside the function.

For another example of a local variable, take another look at the longdate function,
which is modified slightly in Example 3-13.

Example 3-13. An expanded version of the longdate function

<?php
function longdate($timestamp)
{
    $temp = date("l F jS Y", $timestamp);
    return "The date is $temp";
}
?>

Here we have assigned the value returned by the date function to the temporary variable
$temp, which is then inserted into the string returned by the function. As soon as the
function returns, the value of $temp is cleared, as if it had never been used at all.

Now, to see the effects of variable scope, let’s look at some similar code in Exam-
ple 3-14. Here, $temp has been created before calling the longdate function.

Example 3-14. This attempt to access $temp in the function longdate will fail

<?php
$temp = "The date is ";
echo longdate(time());

function longdate($timestamp)
{
    return $temp . date("l F jS Y", $timestamp);
}
?>

Because $temp was neither created within the longdate function nor passed to it as a
parameter, longdate cannot access it. Therefore, this code snippet only outputs the date
and not the preceding text. In fact, it will first display the error message “Notice: Un-
defined variable: temp.”

62 | Chapter 3: Introduction to PHP



The reason for this is that, by default, variables created within a function are local to
that function and variables created outside of any functions can be accessed only by
nonfunction code.

Some ways to repair Example 3-14 appear in Example 3-15 and Example 3-16.

Example 3-15. Rewriting to refer to $temp within its local scope fixes the problem

<?php
$temp = "The date is ";
echo $temp . longdate(time());

function longdate($timestamp)
{
    return date("l F jS Y", $timestamp);
}
?>

Example 3-15 moves the reference to $temp out of the function. The reference appears
in the same scope where the variable was defined.

Example 3-16. An alternative solution: passing $temp as an argument

<?php
$temp = "The date is ";
echo longdate($temp, time());

function longdate($text, $timestamp)
{
    return $text . date("l F jS Y", $timestamp);
}
?>

The solution in Example 3-16 passes $temp to the longdate function as an extra argu-
ment. longdate reads it into a temporary variable that it creates called $text and outputs
the desired result.

Forgetting the scope of a variable is a common programming error, so
remembering how variable scope works will help you debug some quite
obscure problems. Suffice it to say that unless you have declared a vari-
able otherwise, its scope is limited to being local: either to the current
function or to the code outside of any functions, depending on whether
it was first created or accessed inside or outside a function.

Global variables

There are cases when you need a variable to have global scope, because you want all
your code to be able to access it. Also, some data may be large and complex, and you
don’t want to keep passing it as arguments to functions.

The Structure of PHP | 63



To declare a variable as having global scope, use the keyword global. Let’s assume that
you have a way of logging your users into your website and you want all your code to
know whether it is interacting with a logged-in user or a guest. One way to do this is
to create a global variable such as $is_logged_in:

global $is_logged_in;

Now your login function simply has to set that variable to 1 upon success of a login
attempt, or 0 upon its failure. Because the scope of the variable is global, every line of
code in your program can access it.

You should use global variables with caution, though. I recommend that you create
them only when you absolutely cannot find another way of achieving the result you
desire. In general, programs that are broken into small parts and segregated data are
less buggy and easier to maintain. If you have a thousand-line program (and some day
you will) in which you discover that a global variable has the wrong value at some point,
how long will it take you to find the code that set it incorrectly?

Also, if you have too many global variables, you run the risk of using one of those names
again locally, or at least thinking you have used it locally, when in fact it has already
been declared as global. All manner of strange bugs can arise from such situations.

Sometimes I adopt the convention of making all global variable names
uppercase (just as it’s recommended that the names of constants should
be uppercase) so that I can see at a glance the scope of a variable.

Static variables

In the section “Local variables” on page 62, I mentioned that the value of the variable
is wiped out when the function ends. If a function runs many times, it starts with a
fresh copy of the variable each time and the previous setting has no effect.

Here’s an interesting case. What if you have a local variable inside a function that you
don’t want any other parts of your code to have access to, but that you would also like
to keep its value for the next time the function is called? Why? Perhaps because you
want a counter to track how many times a function is called. The solution is to declare
a static variable, as shown in Example 3-17.

Example 3-17. A function using a static variable

<?php
function test()
{
    static $count = 0;
    echo $count;
    $count++;
}
?>

64 | Chapter 3: Introduction to PHP



Here, the very first line of function test creates a static variable called $count and ini-
tializes it to a value of 0. The next line outputs the variable’s value; the final one incre-
ments it.

The next time the function is called, because $count has already been declared, the first
line of the function is skipped. Then the previously incremented value of $count is
displayed before the variable is again incremented.

If you plan to use static variables, you should note that you cannot assign the result of
an expression in their definitions. They can be initialized only with predetermined
values (see Example 3-18).

Example 3-18. Allowed and disallowed static variable declarations

<?php
static $int = 0;         // Allowed
static $int = 1+2;       // Disallowed (will produce a Parse error)
static $int = sqrt(144); // Disallowed
?>

Superglobal variables

Starting with PHP 4.1.0, several predefined variables are available. These are known as
superglobal variables, which means that they are provided by the PHP environment but
are global within the program, accessible absolutely everywhere.

These superglobals contain lots of useful information about the currently running pro-
gram and its environment (see Table 3-6). They are structured as associative arrays, a
topic discussed in Chapter 6.

Table 3-6. PHP’s superglobal variables

Superglobal name Contents

$GLOBALS All variables that are currently defined in the global scope of the script. The variable names are the keys
of the array.

$_SERVER Information such as headers, paths, and script locations. The web server creates the entries in this array,
and there is no guarantee that every web server will provide any or all of these.

$_GET Variables passed to the current script via the HTTP GET method.

$_POST Variables passed to the current script via the HTTP POST method.

$_FILES Items uploaded to the current script via the HTTP POST method.

$_COOKIE Variables passed to the current script via HTTP cookies.

$_SESSION Session variables available to the current script.

$_REQUEST Contents of information passed from the browser; by default, $_GET, $_POST, and $_COOKIE.

$_ENV Variables passed to the current script via the environment method.

The Structure of PHP | 65



All of the superglobals are named with a single initial underscore and only capital let-
ters; therefore, you should avoid naming your own variables in this manner to avoid
potential confusion.

To illustrate how you use them, let’s look at a bit of information that many sites employ.
Among the many nuggets of information supplied by superglobal variables is the URL
of the page that referred the user to the current web page. This referring page infor-
mation can be accessed like this:

$came_from = $_SERVER['HTTP_REFERER'];

It’s that simple. Oh, and if the user came straight to your web page, such as by typing
its URL directly into a browser, $came_from will be set to an empty string.

Superglobals and security

A word of caution is in order before you start using superglobal variables, because they
are often used by hackers trying to find exploits to break into your website. What they
do is load up $_POST, $_GET, or other superglobals with malicious code, such as Unix
or MySQL commands that can damage or display sensitive data if you naïvely access
them.

Therefore, you should always sanitize superglobals before using them. One way to do
this is via the PHP htmlentities function. It converts all characters into HTML entities.
For example, less-than and greater-than characters (< and >) are transformed into the
strings &lt; and &gt; so that they are rendered harmless, as are all quotes and back-
slashes, and so on.

Therefore, a much better way to access $_SERVER (and other superglobals) is:

$came_from = htmlentities($_SERVER['HTTP_REFERER']);

This chapter has provided you with a solid background in using PHP. In Chapter 4,
we’ll start using what you’ve learned to build expressions and control program flow—
in other words, some actual programming.

But before moving on, I recommend that you test yourself with some (if not all) of the
following questions to ensure that you have fully digested the contents of this chapter.

Test Your Knowledge
1. What tag is used to cause PHP to start interpreting program code? And what is the

short form of the tag?

2. What are the two types of comment tags?

3. Which character must be placed at the end of every PHP statement?

4. Which symbol is used to preface all PHP variable names?

5. What can a variable store?

66 | Chapter 3: Introduction to PHP



6. What is the difference between $variable = 1 and $variable == 1?

7. Why do you suppose that an underscore is allowed in variable names
($current_user), whereas hyphens are not ($current-user)?

8. Are variable names case-sensitive?

9. Can you use spaces in variable names?

10. How do you convert one variable type to another (say, a string to a number)?

11. What is the difference between ++$j and $j++?

12. Are the operators && and and interchangeable?

13. How can you create a multiline echo or assignment?

14. Can you redefine a constant?

15. How do you escape a quotation mark?

16. What is the difference between the echo and print commands?

17. What is the purpose of functions?

18. How can you make a variable accessible to all parts of a PHP program?

19. If you generate data within a function, what are a couple of ways to convey the
data to the rest of the program?

20. What is the result of combining a string with a number?

See “Chapter 3 Answers” on page 504 in Appendix A for the answers to these
questions.

Test Your Knowledge | 67





CHAPTER 4

Expressions and Control Flow in PHP

The previous chapter introduced several topics in passing that this chapter covers more
fully, such as making choices (branching) and creating complex expressions. In the
previous chapter, I wanted to focus on the most basic syntax and operations in PHP,
but I couldn’t avoid touching on some more advanced topics. Now I can fill in the
background that you need to use these powerful PHP features properly.

In this chapter, you will get a thorough grounding in how PHP programming works in
practice and in how to control the flow of the program.

Expressions
Let’s start with the most fundamental part of any programming language: expressions.

An expression is a combination of values, variables, operators, and functions that re-
sults in a value. Anyone who has taken an algebra class should recognize this sort of
expression:

y = 3(abs(2x) + 4)

which in PHP would be written as:

$y = 3 * (abs(2*$x) + 4);

The value returned (y or $y in this case) can be a number, a string, or a Boolean value
(named after George Boole, a nineteenth-century English mathematician and philoso-
pher). By now, you should be familiar with the first two value types, but I’ll explain the
third.

A basic Boolean value can be either TRUE or FALSE. For example, the expression 20 >
9 (20 is greater than 9) is TRUE, and the expression 5 == 6 (5 is equal to 6) is FALSE.
(Boolean operations can be combined using operators such as AND, OR, and XOR, which
are covered later in this chapter.)

Note that I am using uppercase letters for the names TRUE and FALSE. This is because
they are predefined constants in PHP. You can also use the lowercase versions, if you

69



prefer, as they are also predefined. In fact, the lowercase versions are more stable, be-
cause PHP does not allow you to redefine them; the uppercase ones may be redefined,
which is something you should bear in mind if you import third-party code.

Example 4-1 shows some simple expressions: the two I just mentioned, plus a couple
more. For each line, it prints out a letter between a and d, followed by a colon and the
result of the expression (the <br /> tag is there to create a line break and thus separate
the output into four lines in HTML).

Example 4-1. Four simple Boolean expressions

<?php
echo "a: [" . (20 > 9) . "]<br />";
echo "b: [" . (5 == 6) . "]<br />";
echo "c: [" . (1 == 0) . "]<br />";
echo "d: [" . (1 == 1) . "]<br />";
?>

The output from this code is as follows:

a: [1]
b: []
c: []
d: [1]

Notice that both expressions a: and d: evaluate to TRUE, which has a value of 1. But
b: and c:, which evaluate to FALSE, do not show any value, because in PHP the constant
FALSE is defined as NULL, or nothing. To verify this for yourself, you could enter the code
in Example 4-2.

Example 4-2. Outputting the values of TRUE and FALSE

<?php // test2.php
echo "a: [" . TRUE  . "]<br />";
echo "b: [" . FALSE . "]<br />";
?>

This code outputs the following:

a: [1]
b: []

By the way, in some languages FALSE may be defined as 0 or even −1, so it’s worth
checking on its definition in each language.

Literals and Variables
The simplest form of an expression is a literal, which simply means something that
evaluates to itself, such as the number 73 or the string “Hello”. An expression could
also simply be a variable, which evaluates to the value that has been assigned to it.
These are both types of expressions because they return a value.

70 | Chapter 4: Expressions and Control Flow in PHP



Example 4-3 shows five different literals, all of which return values, albeit of different
types.

Example 4-3. Five types of literals

<?php
$myname = "Brian";
$myage = 37;
echo "a: " . 73      . "<br />"; // Numeric literal
echo "b: " . "Hello" . "<br />"; // String literal
echo "c: " . FALSE   . "<br />"; // Constant literal
echo "d: " . $myname . "<br />"; // Variable string literal
echo "e: " . $myage  . "<br />"; // Variable numeric literal
?>

As you’d expect, you’ll see a return value from all of these with the exception of c:,
which evaluates to FALSE, returning nothing in the following output:

a: 73
b: Hello
c:
d: Brian
e: 37

In conjunction with operators, it’s possible to create more complex expressions that
evaluate to useful results.

When you combine assignment or control-flow constructs with expressions, the result
is a statement. Example 4-4 shows one of each. The first assigns the result of the ex-
pression 366 - $day_number to the variable $days_to_new_year, and the second outputs
a friendly message only if the expression $days_to_new_year < 30 evaluates to TRUE.

Example 4-4. An expression and a statement

<?php
$days_to_new_year = 366 - $day_number;  // Expression
if ($days_to_new_year < 30)
{
     echo "Not long now till new year"; // Statement
}
?>

Operators
PHP offers a lot of powerful operators, ranging from arithmetic, string, and logical
operators to operators for assignment, comparison, and more (see Table 4-1).

Table 4-1. PHP operator types

Operator Used for Example

Arithmetic Basic mathematics $a + $b

Array Array union $a + $b

Operators | 71



Operator Used for Example

Assignment Assigning values $a = $b + 23

Bitwise Manipulating bits within bytes 12 ^ 9

Comparison Comparing two values $a < $b

Execution Executing contents of backticks `ls -al`

Increment/Decrement Adding or subtracting 1 $a++

Logical Boolean comparisons $a and $b

String Concatenation $a . $b

Different types of operators take a different number of operands:

• Unary operators, such as incrementing ($a++) or negation (-$a), take a single
operand.

• Binary operators, which represent the bulk of PHP operators (including addition,
subtraction, multiplication, and division), take two operands.

• There is one ternary operator, which takes the form x ? y : z. It’s a terse, single-
line if statement that chooses between two expressions, depending on the result
of a third one. This conditional operator takes three operands.

Operator Precedence
If all operators had the same precedence, they would be processed in the order in which
they are encountered. In fact, many operators do have the same precedence—Exam-
ple 4-5 illustrates one such case.

Example 4-5. Three equivalent expressions

1 + 2 + 3 - 4 + 5
2 - 4 + 5 + 3 + 1
5 + 2 - 4 + 1 + 3

Here you will see that although the numbers (and their preceding operators) have been
moved around, the result of each expression is the value 7, because the plus and minus
operators have the same precedence. We can try the same thing with multiplication
and division (see Example 4-6).

Example 4-6. Three expressions that are also equivalent

1 * 2 * 3 / 4 * 5
2 / 4 * 5 * 3 * 1
5 * 2 / 4 * 1 * 3

72 | Chapter 4: Expressions and Control Flow in PHP



Here the resulting value is always 7.5. But things change when we mix operators with
different precedences in an expression, as in Example 4-7.

Example 4-7. Three expressions using operators of mixed precedence

1 + 2 * 3 - 4 * 5
2 - 4 * 5 * 3 + 1
5 + 2 - 4 + 1 * 3

If there were no operator precedence, these three expressions would evaluate to 25,
−29, and 12, respectively. But because multiplication and division take precedence over
addition and subtraction, there are implied parentheses around these parts of the ex-
pressions, which would look like Example 4-8 if they were visible.

Example 4-8. Three expressions showing implied parentheses

1 + (2 * 3) - (4 * 5)
2 - (4 * 5 * 3) + 1
5 + 2 - 4 + (1 * 3)

Clearly, PHP must evaluate the subexpressions within parentheses first to derive the
semi-completed expressions in Example 4-9.

Example 4-9. After evaluating the subexpressions in parentheses

1 + (6) - (20)
2 - (60) + 1
5 + 2 - 4 + (3)

The final results of these expressions are −13, −57, and 6, respectively (quite different
from the results of 25, −29, and 12 that we would have seen had there been no operator
precedence).

Of course, you can override the default operator precedence by inserting your own
parentheses and force the original results that we would have seen, had there been no
operator precedence (see Example 4-10).

Example 4-10. Forcing left-to-right evaluation

((1 + 2) * 3 - 4) * 5
(2 - 4) * 5 * 3 + 1
(5 + 2 - 4 + 1) * 3

With parentheses correctly inserted, we now see the values 25, −29, and 12, respectively.

Table 4-2 lists PHP’s operators in order of precedence from high to low.

Table 4-2. The precedence of PHP operators (high to low)

Operator(s) Type

() Parentheses

++ −− Increment/Decrement

Operators | 73



Operator(s) Type

! Logical

* / % Arithmetic

+ - . Arithmetic and string

<< >> Bitwise

< <= > >= <> Comparison

== != === !== Comparison

& Bitwise (and references)

^ Bitwise

| Bitwise

&& Logical

|| Logical

? : Ternary

= += -= *= /= .= %= &= != ^= <<= >>= Assignment

and Logical

xor Logical

or Logical

Associativity
We’ve been looking at processing expressions from left to right, except where operator
precedence is in effect. But some operators can also require processing from right to
left. The direction of processing is called the operator’s associativity.

This associativity becomes important in cases in which you do not explicitly force
precedence. Table 4-3 lists all the operators that have right-to-left associativity.

Table 4-3. Operators with right-to-left associativity

Operator Description

NEW Create a new object

! Logical NOT

~ Bitwise NOT

++ −− Increment and decrement

+ − Unary plus and negation

(int) Cast to an integer

(double) Cast to a float

(string) Cast to a string

(array) Cast to an array

74 | Chapter 4: Expressions and Control Flow in PHP



Operator Description

(object) Cast to an object

@ Inhibit error reporting

= Assignment

For example, let’s take a look at the assignment operator in Example 4-11, where three
variables are all set to the value 0.

Example 4-11. A multiple-assignment statement

<?php
$level = $score = $time = 0;
?>

This multiple assignment is possible only if the rightmost part of the expression is
evaluated first and then processing continues in a right-to-left direction.

As a PHP beginner, you should learn to avoid the potential pitfalls of
operator associativity by always nesting your subexpressions within
parentheses to force the order of evaluation. This will also help other
programmers who may have to maintain your code to understand what
is happening.

Relational Operators
Relational operators test two operands and return a Boolean result of either TRUE or
FALSE. There are three types of relational operators: equality, comparison, and logical
operators.

Equality operators

The equality operator, which we’ve already encountered a few times in this chapter, is
== (two equals signs). It is important not to confuse it with the = (single equals sign)
assignment operator. In Example 4-12, the first statement assigns a value and the sec-
ond tests it for equality.

Example 4-12. Assigning a value and testing for equality

<?php
$month = "March";
if ($month == "March") echo "It's springtime";
?>

As you see, returning either TRUE or FALSE, the equality operator enables you to test for
conditions using, for example, an if statement. But that’s not the whole story, because
PHP is a loosely typed language. If the two operands of an equality expression are of
different types, PHP will convert them to whatever type makes best sense to it.

Operators | 75



For example, any strings composed entirely of numbers will be converted to numbers
whenever compared with a number. In Example 4-13, $a and $b are two different strings
and we would therefore expect neither of the if statements to output a result.

Example 4-13. The equality and identity operators

<?php
$a = "1000";
$b = "+1000";
if ($a == $b) echo "1";
if ($a === $b) echo "2";
?>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to TRUE. This is because both strings were
first converted to numbers, and 1000 is the same numerical value as +1000.

In contrast, the second if statement uses the identity operator—three equals signs in
a row—which prevents PHP from automatically converting types. $a and $b are there-
fore compared as strings and are now found to be different, so nothing is output.

As with forcing operator precedence, whenever you feel there may be doubt about how
PHP will convert operand types, you can use the identity operator to turn off this
behavior.

In the same way that you can use the equality operator to test for operands being equal,
you can test for them not being equal using !=, the inequality operator. Take a look at
Example 4-14, which is a rewrite of Example 4-13 in which the equality and identity
operators have been replaced with their inverses.

Example 4-14. The inequality and not identical operators

<?php
$a = "1000";
$b = "+1000";
if ($a != $b) echo "1";
if ($a !== $b) echo "2";
?>

As you might expect, the first if statement does not output the number 1, because the
code is asking whether $a and $b are not equal to each other numerically.

Instead, it outputs the number 2, because the second if statement is asking whether
$a and $b are not identical to each other in their present operand types, and the answer
is TRUE; they are not the same.

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
PHP also gives you > (is greater than), < (is less than), >= (is greater than or equal to),
and <= (is less than or equal to) to play with. Example 4-15 shows these operators in use.

76 | Chapter 4: Expressions and Control Flow in PHP



Example 4-15. The four comparison operators

<?php
$a = 2; $b = 3;
if ($a > $b)  echo "$a is greater than $b<br />";
if ($a < $b)  echo "$a is less than $b<br />";
if ($a >= $b) echo "$a is greater than or equal to $b<br />";
if ($a <= $b) echo "$a is less than or equal to $b<br />";
?>

In this example, where $a is 2 and $b is 3, the following is output:

2 is less than 3
2 is less than or equal to 3

Try this example yourself, altering the values of $a and $b, to see the results. Try setting
them to the same value and see what happens.

Logical operators

Logical operators produce true-or-false results, and therefore are also known as Boolean
operators. There are four of them (see Table 4-4).

Table 4-4. The logical operators

Logical operator Description

AND TRUE if both operands are TRUE

OR TRUE if either operand is TRUE

XOR TRUE if one of the two operands is TRUE

NOT TRUE if the operand is FALSE or FALSE if the operand is TRUE

You can see these operators used in Example 4-16. Note that the ! symbol is required
by PHP in place of the word NOT. Furthermore, the operators can be lower- or uppercase.

Example 4-16. The logical operators in use

<?php
$a = 1; $b = 0;
echo ($a AND $b) . "<br />";
echo ($a or $b)  . "<br />";
echo ($a XOR $b) . "<br />";
echo !$a         . "<br />";
?>

This example outputs NULL, 1, 1, NULL, meaning that only the second and third echo
statements evaluate as TRUE. (Remember that NULL—or nothing—represents a value of
FALSE.) This is because the AND statement requires both operands to be TRUE if it is going
to return a value of TRUE, while the fourth statement performs a NOT on the value of
$a, turning it from TRUE (a value of 1) to FALSE. If you wish to experiment with this, try
out the code, giving $a and $b varying values of 1 and 0.

Operators | 77



When coding, remember to bear in mind that AND and OR have lower
precedence than the other versions of the operators, && and ||. In com-
plex expressions, it may be safer to use && and || for this reason.

The OR operator can cause unintentional problems in if statements, because the second
operand will not be evaluated if the first is evaluated as TRUE. In Example 4-17, the
function getnext will never be called if $finished has a value of 1.

Example 4-17. A statement using the OR operator

<?php
if ($finished == 1 OR getnext() == 1) exit;
?>

If you need getnext to be called at each if statement, you could rewrite the code as has
been done in Example 4-18.

Example 4-18. The if…OR statement modified to ensure calling of getnext

<?php
$gn = getnext();
if ($finished == 1 OR $gn == 1) exit;
?>

In this case, the code in function getnext will be executed and the value returned stored
in $gn before the if statement.

Another solution is to simply switch the two clauses to make sure that
getnext is executed, as it will then appear first in the expression.

Table 4-5 shows all the possible variations of using the logical operators. You should
also note that !TRUE equals FALSE and !FALSE equals TRUE.

Table 4-5. All possible PHP logical expressions

Inputs Operators and results

a b AND OR XOR

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

78 | Chapter 4: Expressions and Control Flow in PHP



Conditionals
Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. Conditionals are central to dy-
namic web pages—the goal of using PHP in the first place—because they make it easy
to create different output each time a page is viewed.

There are three types of nonlooping conditionals: the if statement, the switch state-
ment, and the ? operator. By nonlooping, I mean that the actions initiated by the state-
ment take place and program flow then moves on, whereas looping conditionals (which
we’ll come to shortly) execute code over and over until a condition has been met.

The if Statement
One way of thinking about program flow is to imagine it as a single-lane highway that
you are driving along. It’s pretty much a straight line, but now and then you encounter
various signs telling you where to go.

In the case of an if statement, you could imagine coming across a detour sign that you
have to follow if a certain condition is TRUE. If so, you drive off and follow the detour
until you rejoin your original route; you then continue on your way in your original
direction. Or, if the condition isn’t TRUE, you ignore the detour and carry on driving
(see Figure 4-1).

Figure 4-1. Program flow is like a single-lane highway

The contents of the if condition can be any valid PHP expression, including equality,
comparison, tests for zero and NULL, and even the values returned by functions (either
built-in functions or ones that you write).

The action to take when an if condition is TRUE are generally placed inside curly braces,
{}. You can omit the braces if you have only a single statement to execute, but if you

Conditionals | 79



always use curly braces you’ll avoid potentially difficult-to-trace bugs, such as when
you add an extra line to a condition but forget to add the braces in, so it doesn’t get
evaluated. (Note that for reasons of layout and clarity, many of the examples in this
book ignore this suggestion and omit the braces for single statements.)

In Example 4-19, imagine that it is the end of the month and all your bills have been
paid, so you are performing some bank account maintenance.

Example 4-19. An if statement with curly braces

<?php
if ($bank_balance < 100)
{
    $money        = 1000;
    $bank_balance += $money;
}
?>

In this example, you are checking your balance to see whether it is less than 100 dollars
(or whatever your currency is). If so, you pay yourself 1000 dollars and then add it to
the balance. (If only making money were that simple!)

If the bank balance is 100 dollars or greater, the conditional statements are ignored and
program flow skips to the next line (not shown).

In this book, opening curly braces generally start on a new line. Some people like to
place the first curly brace to the right of the conditional expression instead. Either of
these approaches is fine, because PHP allows you to set out your whitespace characters
(spaces, newlines, and tabs) any way you choose. However, you will find your code
easier to read and debug if you indent each level of conditionals with a tab.

The else Statement
Sometimes when a conditional is not TRUE, you may not want to continue on to the
main program code immediately but might wish to do something else instead. This is
where the else statement comes in. With it, you can set up a second detour on your
highway, as in Figure 4-2.

What happens with an if...else statement is that the first conditional statement is
executed if the condition is TRUE, but if it’s FALSE, the second one is executed. One of
the two choices must be executed. Under no circumstances can both (or neither) be
executed. Example 4-20 shows the use of the if...else structure.

Example 4-20. An if…else statement with curly braces

<?php
if ($bank_balance < 100)
{
    $money        = 1000;
    $bank_balance += $money;
}

80 | Chapter 4: Expressions and Control Flow in PHP



else
{
    $savings      += 50;
    $bank_balance -= 50;
}
?>

In this example, having ascertained that you have over $100 in the bank, the else
statement is executed, by which you place some of this money into your savings
account.

As with if statements, if your else has only one conditional statement, you can opt to
leave out the curly braces. (Curly braces are always recommended, though: they make
the code easier to understand, and they let you easily add more statements to the branch
later.)

Figure 4-2. The highway now has an if detour and an else detour

Conditionals | 81



The elseif Statement
There are also times when you want a number of different possibilities to occur, based
upon a sequence of conditions. You can achieve this using the elseif statement. As
you might imagine, it is like an else statement, except that you place a further condi-
tional expression prior to the conditional code. In Example 4-21, you can see a complete
if...elseif...else construct.

Example 4-21. An if…elseif…else statement with curly braces

<?php
if ($bank_balance < 100)
{
    $money        = 1000;
    $bank_balance += $money;
}
elseif ($bank_balance > 200)
{
    $savings      += 100;
    $bank_balance -= 100;
}
else
{
    $savings      += 50;
    $bank_balance -= 50;
}
?>

In this example, an elseif statement has been inserted between the if and else state-
ments. It checks whether your bank balance exceeds $200 and, if so, decides that you
can afford to save $100 of it this month.

Although I’m starting to stretch the metaphor a bit too far, you can imagine this as a
multiway set of detours (see Figure 4-3).

An else statement closes one of the following: an if...else statement
or an if...elseif...else statement. You can leave out a final else if it
is not required, but you cannot have one before an elseif; neither can
you have an elseif before an if statement.

You may have as many elseif statements as you like, but as the number of elseif
statements increases it becomes advisable to consider a switch statement instead, if it
fits your needs. We’ll look at that next.

The switch Statement
The switch statement is useful in cases in which one variable or the result of an ex-
pression can have multiple values, which should each trigger a different function.

82 | Chapter 4: Expressions and Control Flow in PHP



For example, consider a PHP-driven menu system that passes a single string to the main
menu code according to what the user requests. Let’s say the options are Home, About,
News, Login, and Links, and we set the variable $page to one of these, according to the
user’s input.

The code for this written using if...elseif...else might look like Example 4-22.

Example 4-22. A multiple-line if…elseif…statement

<?php
if     ($page == "Home")  echo "You selected Home";
elseif ($page == "About") echo "You selected About";
elseif ($page == "News")  echo "You selected News";
elseif ($page == "Login") echo "You selected Login";
elseif ($page == "Links") echo "You selected Links";
?>

Using a switch statement, the code might look like Example 4-23.

Figure 4-3. The highway with if, elseif, and else detours

Conditionals | 83



Example 4-23. A switch statement

<?php
switch ($page)
{
    case "Home":
        echo "You selected Home";
        break;
    case "About":
        echo "You selected About";
        break;
    case "News":
        echo "You selected News";
        break;
    case "Login":
        echo "You selected Login";
        break;
    case "Links":
        echo "You selected Links";
        break;
}
?>

As you can see, $page is mentioned only once at the start of the switch statement.
Thereafter, the case command checks for matches. When one occurs, the matching
conditional statement is executed. Of course, in a real program you would have code
here to display or jump to a page, rather than simply telling the user what was selected.

One thing to note about switch statements is that you do not use curly
braces inside case commands. Instead, they commence with a colon and
end with the break statement. The entire list of cases in the switch state-
ment is enclosed in a set of curly braces, though.

Breaking out

If you wish to break out of the switch statement because a condition has been fulfilled,
use the break command. This command tells PHP to break out of the switch and jump
to the following statement.

If you were to leave out the break commands in Example 4-23 and the case of “Home”
evaluated to be TRUE, all five cases would then be executed. Or if $page had the value
“News,” all the case commands from then on would execute. This is deliberate and
allows for some advanced programming, but generally you should always remember
to issue a break command every time a set of case conditionals has finished executing.
In fact, leaving out the break statement is a common error.

Default action

A typical requirement in switch statements is to fall back on a default action if none of
the case conditions are met. For example, in the case of the menu code in

84 | Chapter 4: Expressions and Control Flow in PHP



Example 4-23, you could add the code in Example 4-24 immediately before the final
curly brace.

Example 4-24. A default statement to add to Example 4-23

    default: echo "Unrecognized selection";
        break;

Although a break command is not required here because the default is the final sub-
statement, and program flow will automatically continue to the closing curly brace,
should you decide to place the default statement higher up it would definitely need a
break command to prevent program flow from dropping into the following statements.
Generally, the safest practice is to always include the break command.

Alternative syntax

If you prefer, you may replace the first curly brace in a switch statement with a single
colon and the final curly brace with an endswitch command, as in Example 4-25. How-
ever, this approach is not commonly used and is mentioned here only in case you
encounter it in third-party code.

Example 4-25. Alternate switch statement syntax

<?php
switch ($page):
    case "Home":
        echo "You selected Home";
        break;

    // etc...

    case "Links":
        echo "You selected Links";
        break;
endswitch;
?>

The ? Operator
One way of avoiding the verbosity of if and else statements is to use the more compact
ternary operator, ?, which is unusual in that it takes three operands rather than the
more usual two.

We briefly came across this in Chapter 3 in the discussion about the difference between
the print and echo statements, as an example of an operator type that works well with
print but not echo.

The ? operator is passed an expression that it must evaluate, along with two statements
to execute: one for when the expression evaluates to TRUE, the other for when it is FALSE.

Conditionals | 85



Example 4-26 shows code we might use for writing a warning about the fuel level of a
car to its digital dashboard.

Example 4-26. Using the ? operator

<?php
echo $fuel <= 1 ? "Fill tank now" : "There's enough fuel";
?>

In this statement, if there is one gallon or less of fuel (in other words, if $fuel is set to
1 or less), the string “Fill tank now” is returned to the preceding echo statement. Other-
wise, the string “There’s enough fuel” is returned. You can also assign the value re-
turned in a ? statement to a variable (see Example 4-27).

Example 4-27. Assigning a ? conditional result to a variable

<?php
$enough = $fuel <= 1 ? FALSE : TRUE;
?>

Here, $enough will be assigned the value TRUE only when there is more than a gallon of
fuel; otherwise, it is assigned the value FALSE.

If you find the ? operator confusing, you are free to stick to if statements, but you
should be familiar with it because you’ll see it in other people’s code. It can be hard to
read, because it often mixes multiple occurrences of the same variable. For instance,
code such as the following is quite popular:

$saved = $saved >= $new ? $saved : $new;

If you take it apart carefully, you can figure out what this code does:

$saved =                    // Set the value of $saved
        $saved >= $new      // Check $saved against $new
    ?                       // Yes, comparison is true ...
        $saved              // ... so assign the current value of $saved
    :                       // No, comparison is false ...
        $new;               // ... so assign the value of $new

It’s a concise way to keep track of the largest value that you’ve seen as a program
progresses. You save the largest value in $saved and compare it to $new each time you
get a new value. Programmers familiar with the ? operator find it more convenient than
if statements for such short comparisons. When not used for writing compact code,
it is typically used to make some decision inline, such as when testing whether a variable
is set before passing it to a function.

Looping
One of the great things about computers is that they can repeat calculating tasks quickly
and tirelessly. Often you may want a program to repeat the same sequence of code

86 | Chapter 4: Expressions and Control Flow in PHP



again and again until something happens, such as a user inputting a value or reaching
a natural end. PHP’s various loop structures provide the perfect way to do this.

To picture how this works, take a look at Figure 4-4. It is much the same as the highway
metaphor used to illustrate if statements, except that the detour also has a loop section
that—once a vehicle has entered—can be exited only under the right program
conditions.

Figure 4-4. Imagining a loop as part of a program highway layout

while Loops
Let’s turn the digital car dashboard in Example 4-26 into a loop that continuously
checks the fuel level as you drive using a while loop (Example 4-28).

Example 4-28. A while loop

<?php
$fuel = 10;

while ($fuel > 1)
{
    // Keep driving ...
    echo "There's enough fuel";
}
?>

Actually, you might prefer to keep a green light lit rather than output text, but the point
is that whatever positive indication you wish to make about the level of fuel is placed
inside the while loop. By the way, if you try this example for yourself, note that it will
keep printing the string until you click the Stop button in your browser.

Looping | 87



As with if statements, you will notice that curly braces are required to
hold the statements inside the while statements, unless there’s only one.

For another example of a while loop that displays the 12 times table, see Example 4-29.

Example 4-29. A while loop to print the 12 times table

<?php
$count = 1;

while ($count <= 12)
{
    echo "$count times 12 is " . $count * 12 . "<br />";
    ++$count;
}
?>

Here the variable $count is initialized to a value of 1, then a while loop is started with
the comparative expression $count <= 12. This loop will continue executing until the
variable is greater than 12. The output from this code is as follows:

1 times 12 is 12
2 times 12 is 24
3 times 12 is 36
...and so on...

Inside the loop, a string is printed along with the value of $count multiplied by 12. For
neatness, this is also followed with a <br /> tag to force a new line. Then $count is
incremented, ready for the final curly brace that tells PHP to return to the start of the
loop.

At this point, $count is again tested to see whether it is greater than 12. It isn’t, but it
now has the value 2, and after another 11 times around the loop it will have the value
13. When that happens, the code within the while loop will be skipped and execution
will pass on to the code following the loop, which in this case is the end of the program.

If the ++$count statement (which could equally have been $count++) had not been there,
this loop would have been like the first one in this section. It would never end, and only
the result of 1 * 12 would be printed over and over.

There’s a much neater way that this loop can be written, though, which I think you
will like. Take a look at Example 4-30.

Example 4-30. A shortened version of Example 4-29

<?php
$count = 0;
while (++$count <= 12)
    echo "$count times 12 is " . $count * 12 . "<br />";
?>

88 | Chapter 4: Expressions and Control Flow in PHP



In this example, it was possible to remove the ++$count statement from inside the
while loop and place it directly into the conditional expression of the loop. What now
happens is that PHP encounters the variable $count at the start of each iteration of the
loop and, noticing that it is prefaced with the increment operator, first increments the
variable and only then compares it to the value 12. You can therefore see that $count
now has to be initialized to 0, not 1, because it is incremented as soon as the loop is
entered. If you keep the initialization at 1, only results between 2 and 12 will be output.

do…while Loops
A slight variation to the while loop is the do...while loop, used when you want a block
of code to be executed at least once and made conditional only after that. Exam-
ple 4-31 shows a modified version of our code for the 12 times table using such a loop.

Example 4-31. A do…while loop for printing the times table for 12

<?php
$count = 1;
do
    echo "$count times 12 is " . $count * 12 . "<br />";
while (++$count <= 12);
?>

Notice that we are back to initializing $count to 1 (rather than 0), because the code is
being executed immediately, without an opportunity to increment the variable. Other
than that, though, the code looks pretty similar to Example 4-29.

Of course, if you have more than a single statement inside a do...while loop, remember
to use curly braces, as in Example 4-32.

Example 4-32. Expanding Example 4-31 to use curly braces

<?php
$count = 1;
do {
    echo "$count times 12 is " . $count * 12;
    echo "<br />";
} while (++$count <= 12);
?>

for Loops
The final kind of loop statement, the for loop, is also the most powerful, as it combines
the abilities to set up variables as you enter the loop, test for conditions while iterating
loops, and modify variables after each iteration.

Example 4-33 shows how you could write the multiplication table program with a
for loop.

Looping | 89



Example 4-33. Outputting the 12 times table from a for loop

<?php
for ($count = 1 ; $count <= 12 ; ++$count)
    echo "$count times 12 is " . $count * 12 . "<br />";
?>

See how the entire code has been reduced to a single for statement containing a single
conditional statement? Here’s what is going on. Each for statement takes three pa-
rameters:

• An initialization expression

• A condition expression

• A modification expression

These are separated by semicolons, like this: for (expr1 ; expr2 ; expr3). At the start
of the first iteration of the loop, the initialization expression is executed. In the case of
the times table code, $count is initialized to the value 1. Then, each time around the
loop, the condition expression (in this case, $count <= 12) is tested, and the loop is
entered only if the condition is TRUE. Finally, at the end of each iteration, the modifi-
cation expression is executed. In the case of the times table code, the variable $count
is incremented.

All this structure neatly removes any requirement to place the controls for a loop within
its body, freeing it up just for the statements you want the loop to perform.

Remember to use curly braces with a for loop if it will contain more than one statement,
as in Example 4-34.

Example 4-34. The for loop from Example 4-33 with added curly braces

<?php
for ($count = 1 ; $count <= 12 ; ++$count)
{
    echo "$count times 12 is " . $count * 12;
    echo "<br />";
}
?>

Let’s compare when to use for and while loops. The for loop is explicitly designed
around a single value that changes on a regular basis. Usually you have a value that
increments, as when you are passed a list of user choices and want to process each
choice in turn. But you can transform the variable any way you like. A more complex
form of the for statement even lets you perform multiple operations in each of the three
parameters:

for ($i = 1, $j = 1 ; $i + $j < 10 ; $i++ , $j++)
{
    // ...
}

90 | Chapter 4: Expressions and Control Flow in PHP



That’s complicated and not recommended for first-time users. The key is to distinguish
commas from semicolons. The three parameters must be separated by semicolons.
Within each parameter, multiple statements can be separated by commas. Thus, in the
previous example, the first and third parameters each contain two statements:

$i = 1, $j = 1  // Initialize $i and $j
$i + $j < 10    // Terminating condition
$i++ , $j++     // Modify $i and $j at the end of each iteration

The main thing to take from this example is that you must separate the three parameter
sections with semicolons, not commas (which should be used only to separate state-
ments within a parameter section.)

So, when is a while statement more appropriate than a for statement? When your
condition doesn’t depend on a simple, regular change to a variable. For instance, if you
want to check for some special input or error and end the loop when it occurs, use a
while statement.

Breaking Out of a Loop
You can break out from a for loop using the same break command you use to break
out of a switch statement. This step can be necessary when, for example, one of your
statements returns an error and the loop cannot continue executing safely.

One case in which this might occur is when writing a file returns an error, possibly
because the disk is full (see Example 4-35).

Example 4-35. Writing a file using a for loop with error trapping

<?php
$fp = fopen("text.txt", 'wb');

for ($j = 0 ; $j < 100 ; ++$j)
{
    $written = fwrite($fp, "data");
    if ($written == FALSE) break;
}

fclose($fp);
?>

This is the most complicated piece of code that you have seen so far, but you’re ready
for it. We’ll look into the file handling commands in a later chapter; for now all you
need to know is that the first line opens the file text.txt for writing in binary mode and
then returns a pointer to the file in the variable $fp, which is used later to refer to the
open file.

The loop then iterates 100 times (from 0 to 99), writing the string data to the file. After
each write, the variable $written is assigned a value by the fwrite function representing

Looping | 91



the number of characters correctly written. But if there is an error, the fwrite function
assigns the value FALSE.

The behavior of fwrite makes it easy for the code to check the variable $written to see
whether it is set to FALSE and, if so, to break out of the loop to the following statement
closing the file.

If you are looking to improve the code, the line:

if ($written == FALSE) break;

can be simplified using the NOT operator, like this:

if (!$written) break;

In fact, the pair of inner loop statements can be shortened to the following single
statement:

if (!fwrite($fp, "data")) break;

The break command is even more powerful than you might think. If you have code
nested more than one layer deep that you need to break out of, you can follow the
break command with a number to indicate how many levels to break out of, like this:

break 2;

The continue Statement
The continue statement is a little like a break statement, except that it instructs PHP to
stop processing the current loop and to move right to its next iteration. So, instead of
breaking out of the whole loop, only the current iteration is exited.

This approach can be useful in cases where you know there is no point continuing
execution within the current loop and you want to save processor cycles, or prevent an
error from occurring, by moving right along to the next iteration of the loop. In Ex-
ample 4-36, a continue statement is used to prevent a division-by-zero error from being
issued when the variable $j has a value of 0.

Example 4-36. Trapping division-by-zero errors using continue

<?php
$j = 11;

while ($j-- > -10)
{
    if ($j == 0) continue;
    echo "$j " . (10 / $j) . "<br />";
}
?>

For all values of $j between 10 and −10, with the exception of 0, the result of calculating
10 divided by $j is displayed. But for the particular case of $j being 0, the continue
statement is issued and execution skips immediately to the next iteration of the loop.

92 | Chapter 4: Expressions and Control Flow in PHP



Implicit and Explicit Casting
PHP is a loosely typed language that allows you to declare a variable and its type simply
by using it. It also automatically converts values from one type to another whenever
required. This is called implicit casting.

However, there may be times when PHP’s implicit casting is not what you want. In
Example 4-37, note that the inputs to the division are integers. By default, PHP converts
the output to floating-point so it can give the most precise value—4.66 recurring.

Example 4-37. This expression returns a floating-point number

<?php
$a = 56;
$b = 12;
$c = $a / $b;
echo $c;
?>

But what if we had wanted $c to be an integer instead? There are various ways in which
this could be achieved. One way is to force the result of $a / $b to be cast to an integer
value using the integer cast type (int), like this:

$c = (int) ($a / $b);

This is called explicit casting. Note that in order to ensure that the value of the entire
expression is cast to an integer, the expression is placed within parentheses. Otherwise,
only the variable $a would have been cast to an integer—a pointless exercise, as the
division by $b would still have returned a floating-point number.

You can explicitly cast to the types shown in Table 4-6, but you can usually avoid having
to use a cast by calling one of PHP’s built-in functions. For example, to obtain an integer
value, you could use the intval function. As with some other sections in this book, this
one is mainly here to help you understand third-party code that you may encounter.

Table 4-6. PHP’s cast types

Cast type Description

(int) (integer) Cast to an integer by dropping the decimal portion

(bool) (boolean) Cast to a Boolean

(float) (double) (real) Cast to a floating-point number

(string) Cast to a string

(array) Cast to an array

(object) Cast to an object

Implicit and Explicit Casting | 93



PHP Dynamic Linking
Because PHP is a programming language, and the output from it can be completely
different for each user, it’s possible for an entire website to run from a single PHP web
page. Each time the user clicks on something, the details can be sent back to the same
web page, which decides what to do next according to the various cookies and/or other
session details it may have stored.

But although it is possible to build an entire website this way, it’s not recommended,
because your source code will grow and grow and start to become unwieldy, as it has
to take account of every possible action a user could take.

Instead, it’s much more sensible to split your website development into different parts.
For example, one distinct process is signing up for a website, along with all the checking
this entails to validate an email address, check whether a username is already taken,
and so on.

A second module might well be one for logging users in before handing them off to the
main part of your website. Then you might have a messaging module with the facility
for users to leave comments, a module containing links and useful information, another
to allow uploading of images, and so on.

As long as you have created a means of tracking your users through your website by
means of cookies or session variables (both of which we’ll look at more closely in later
chapters), you can split your website up into sensible sections of PHP code, each one
self-contained, and therefore treat yourself to a much easier future developing each new
feature and maintaining old ones.

Dynamic Linking in Action
One of the more popular PHP-driven applications on the Web today is the blogging
platform WordPress (see Figure 4-5). As a blogger or a blog reader, you might not realize
it, but every major section has been given its own main PHP file, and a whole raft of
generic, shared functions have been placed in separate files that are included by the
main PHP pages as necessary.

The whole platform is held together with behind-the-scenes session tracking, so that
you hardly know when you are transitioning from one subsection to another. So, as a
web developer, if you want to tweak WordPress, it’s easy to find the particular file you
need, make a modification, and test and debug it without messing around with un-
connected parts of the program.

Next time you use WordPress, keep an eye on your browser’s address bar, particularly
if you are managing a blog, and you’ll notice some of the different PHP files that it uses.

94 | Chapter 4: Expressions and Control Flow in PHP



This chapter has covered quite a lot of ground, and by now you should be able to put
together your own small PHP programs. But before you do, and before proceeding with
the following chapter on functions and objects, you may wish to test your new knowl-
edge on the following questions.

Test Your Knowledge
1. What actual underlying values are represented by TRUE and FALSE?

2. What are the simplest two forms of expressions?

3. What is the difference between unary, binary, and ternary operators?

4. What is the best way to force your own operator precedence?

5. What is meant by operator associativity?

6. When would you use the === (identity) operator?

7. Name the three conditional statement types.

8. What command can you use to skip the current iteration of a loop and move on
to the next one?

Figure 4-5. The WordPress blogging platform is written in PHP

Test Your Knowledge | 95



9. Why is a for loop more powerful than a while loop?

10. How do if and while statements interpret conditional expressions of different data
types?

See “Chapter 4 Answers” on page 505 in Appendix A for the answers to these
questions.

96 | Chapter 4: Expressions and Control Flow in PHP



CHAPTER 5

PHP Functions and Objects

The basic requirements of any programming language include somewhere to store data,
a means of directing program flow, and a few bits and pieces such as expression eval-
uation, file management, and text output. PHP has all these, plus tools like else and
elseif to make life easier. But even with all these in your toolkit, programming can be
clumsy and tedious, especially if you have to rewrite portions of very similar code each
time you need them.

That’s where functions and objects come in. As you might guess, a function is a set of
statements that performs a particular function and—optionally—returns a value. You
can pull out a section of code that you have used more than once, place it into a function,
and call the function by name when you want the code.

Functions have many advantages over contiguous, inline code:

• Less typing is involved.

• Functions reduce syntax and other programming errors.

• They decrease the loading time of program files.

• They also decrease execution time, because each function is compiled only once,
no matter how often you call it.

• Functions accept arguments and can therefore be used for general as well as specific
cases.

Objects take this concept a step further. An object incorporates one or more functions,
and the data they use, into a single structure called a class.

In this chapter, you’ll learn all about using functions, from defining and calling them
to passing arguments back and forth. With that knowledge under your belt, you’ll start
creating functions and using them in your own objects (where they will be referred to
as methods).

97



PHP Functions
PHP comes with hundreds of ready-made, built-in functions, making it a very rich
language. To use a function, call it by name. For example, you can see the print function
in action here:

print("print is a function");

The parentheses tell PHP that you’re referring to a function. Otherwise, it thinks you’re
referring to a constant. You may see a warning such as this:

Notice: Use of undefined constant fname - assumed 'fname'

followed by the text string fname, under the assumption that you must have wanted to
put a literal string in your code. (Things are even more confusing if there is actually a
constant named fname, in which case PHP uses its value.)

Strictly speaking, print is a pseudofunction, commonly called a con-
struct. The difference is that you can omit the parentheses, as follows:

print "print doesn't require parentheses";

You do have to put parentheses after any other function you call, even
if it’s empty (that is, if you’re not passing any argument to the function).

Functions can take any number of arguments, including zero. For example, phpinfo,
as shown below, displays lots of information about the current installation of PHP and
requires no argument. The result of calling this function can be seen in Figure 5-1.

phpinfo();

The phpinfo function is extremely useful for obtaining information
about your current PHP installation, but that information could also be
very useful to potential hackers. Therefore, never leave a call to this
function in any web-ready code.

Some of the built-in functions that use one or more arguments appear in Example 5-1.

Example 5-1. Three string functions

<?php
echo strrev(" .dlrow olleH"); // Reverse string
echo str_repeat("Hip ", 2);   // Repeat string
echo strtoupper("hooray!");   // String to uppercase
?>

This example uses three string functions to output the following text:

Hello world. Hip Hip HOORAY!

98 | Chapter 5: PHP Functions and Objects



As you can see, the strrev function reversed the order of the characters in the string,
str_repeat repeated the string “Hip ” twice (as required by a second argument), and
strtoupper converted “hooray!” to uppercase.

Defining a Function
The general syntax for a function is:

function function_name([parameter [, ...]])
{
    // Statements
}

The first line of the syntax indicates that:

• A definition starts with the word function.

• Following that is a name, which must start with a letter or underscore, followed
by any number of letters, numbers, or underscores.

• The parentheses are required.

• One or more parameters, separated by commas, are optional (indicated by the
square brackets, which are not part of the function syntax).

Figure 5-1. The output of PHP’s built-in phpinfo function

PHP Functions | 99



Function names are case-insensitive, so all of the following strings can refer to the
print function: PRINT, Print, and PrInT.

The opening curly brace starts the statements that will execute when you call the func-
tion; a matching curly brace must close it. These statements may include one or more
return statements, which force the function to cease execution and return to the calling
code. If a value is attached to the return statement, the calling code can retrieve it, as
we’ll see next.

Returning a Value
Let’s take a look at a simple function to convert a person’s full name to lowercase and
then capitalize the first letter of each part of the name.

We’ve already seen an example of PHP’s built-in strtoupper function in Example 5-1.
For our current function, we’ll use its counterpart, strtolower:

$lowered = strtolower("aNY # of Letters and Punctuation you WANT");

echo $lowered;

The output of this experiment is:

any # of letters and punctuation you want

We don’t want names all lowercase, though; we want the first letter of each part of the
name capitalized. (We’re not going to deal with subtle cases such as Mary-Ann or Jo-
En-Lai, for this example.) Luckily, PHP also provides a ucfirst function that sets the
first character of a string to uppercase:

$ucfixed = ucfirst("any # of letters and punctuation you want");

echo $ucfixed;

The output is:

Any # of letters and punctuation you want

Now we can do our first bit of program design: to get a word with its initial letter
capitalized, we call strtolower on a string first, and then ucfirst. The way to do this
is to nest a call to strtolower within ucfirst. Let’s see why, because it’s important to
understand the order in which code is evaluated.

If you make a simple call to the print function:

print(5-8);

The expression 5-8 is evaluated first, and the output is −3. (As you saw in the previous
chapter, PHP converts the result to a string in order to display it.) If the expression
contains a function, that function is also evaluated at this point:

print(abs(5-8));

PHP is doing several things in executing that short statement:

100 | Chapter 5: PHP Functions and Objects



1. Evaluate 5-8 to produce −3.

2. Use the abs function to turn −3 into 3.

3. Convert the result to a string and output it using the print function.

In other words, PHP evaluates each element from the inside out. The same procedure
is in operation when we call the following:

ucfirst(strtolower("aNY # of Letters and Punctuation you WANT"))

PHP passes our string to strtolower and then to ucfirst, producing (as we’ve already
seen when we played with the functions separately):

Any # of letters and punctuation you want

Now let’s define a function (shown in Example 5-2) that takes three names and makes
each one lowercase with an initial capital letter.

Example 5-2. Cleaning up a full name

<?php
echo fix_names("WILLIAM", "henry", "gatES");

function fix_names($n1, $n2, $n3)
{
    $n1 = ucfirst(strtolower($n1));
    $n2 = ucfirst(strtolower($n2));
    $n3 = ucfirst(strtolower($n3));
    return $n1 . " " . $n2 . " " . $n3;
}
?>

You may well find yourself writing this type of code, because users often leave their
Caps Lock keys on, accidentally insert capital letters in the wrong places, or even forget
capitals altogether. The output from this example is:

William Henry Gates

Returning an Array
We just saw a function returning a single value. There are also ways of getting multiple
values from a function.

The first method is to return them within an array. As you saw in Chapter 3, an array
is like a bunch of variables stuck together in a row. Example 5-3 shows how you can
use an array to return function values.

Example 5-3. Returning multiple values in an array

<?php
$names = fix_names("WILLIAM", "henry", "gatES");
echo $names[0] . " " . $names[1] . " " . $names[2];

function fix_names($n1, $n2, $n3)

PHP Functions | 101



{
    $n1 = ucfirst(strtolower($n1));
    $n2 = ucfirst(strtolower($n2));
    $n3 = ucfirst(strtolower($n3));
    return array($n1, $n2, $n3);
}
?>

This method has the benefit of keeping all three names separate, rather than concate-
nating them into a single string, so you can refer to any user simply by first or last name,
without having to extract either name from the returned string.

Passing by Reference
In PHP, prefacing a variable name with the & symbol tells the parser to pass a reference
to the variable’s value, not the value itself. This concept can be hard to get your head
around, so let’s go back to the matchbox metaphor from Chapter 3.

Imagine that, instead of taking a piece of paper out of a matchbox, reading it, copying
it to another piece of paper, putting the original back, and passing the copy to a function
(phew!), you simply attach a piece of thread to the original piece of paper and pass one
end of it to the function (see Figure 5-2).

Figure 5-2. Imagining a reference as a thread attached to a variable

Now the function can follow the thread to find the data to be accessed. This avoids all
the overhead of creating a copy of the variable just for the function’s use. What’s more,
the function can now modify the variable’s value.

This means you can rewrite Example 5-3 to pass references to all the parameters, and
then the function can modify these directly (see Example 5-4).

102 | Chapter 5: PHP Functions and Objects



Example 5-4. Returning values from a function by reference

<?php
$a1 = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";

echo $a1 . " " . $a2 . " " . $a3 . "<br />";
fix_names($a1, $a2, $a3);
echo $a1 . " " . $a2 . " " . $a3;

function fix_names(&$n1, &$n2, &$n3)
{
    $n1 = ucfirst(strtolower($n1));
    $n2 = ucfirst(strtolower($n2));
    $n3 = ucfirst(strtolower($n3));
}
?>

Rather than passing strings directly to the function, you first assign them to variables
and print them out to see their “before” values. Then you call the function as before,
but put an & symbol in front of each parameter, which tells PHP to pass the variables’
references only.

Now the variables $n1, $n2, and $n3 are attached to “threads” that lead to the values of
$a1, $a2, and $a3. In other words, there is one group of values, but two sets of variable
names are allowed to access them.

Therefore, the function fix_names only has to assign new values to $n1, $n2, and $n3 to
update the values of $a1, $a2, and $a3. The output from this code is:

WILLIAM henry gatES
William Henry Gates

As you see, both of the echo statements use only the values of $a1, $a2, and $a3.

Be careful when passing values by reference. If you need to keep the
original values, make copies of your variables and then pass the copies
by reference.

Returning Global Variables
You can also give a function access to an externally created variable by declaring it a
global variable from within the function. The global keyword followed by the variable
name gives every part of your code full access to it (see Example 5-5).

Example 5-5. Returning values in global variables

<?php
$a1 = "WILLIAM";
$a2 = "henry";
$a3 = "gatES";

PHP Functions | 103



echo $a1 . " " . $a2 . " " . $a3 . "<br />";
fix_names();
echo $a1 . " " . $a2 . " " . $a3;

function fix_names()
{
    global $a1; $a1 = ucfirst(strtolower($a1));
    global $a2; $a2 = ucfirst(strtolower($a2));
    global $a3; $a3 = ucfirst(strtolower($a3));
}
?>

Now you don’t have to pass parameters to the function, and it doesn’t have to accept
them. Once declared, these variables remain global and available to the rest of your
program, including its functions.

If at all possible, in order to retain as much local scope as possible, you should try
returning arrays or using variables by association. Otherwise, you will begin to lose
some of the benefits of functions.

Recap of Variable Scope
A quick reminder of what you know from Chapter 3:

• Local variables are accessible just from the part of code where you define them. If
they’re outside of a function, they can be accessed by all code outside of functions,
classes, and so on. If a variable is inside a function, only that function can access
the variable, and its value is lost when the function returns.

• Global variables are accessible from all parts of your code.

• Static variables are accessible only within the function that declared them but retain
their value over multiple calls.

Including and Requiring Files
As you progress in your use of PHP programming, you are likely to start building a
library of functions that you think you will need again. You’ll also probably start using
libraries created by other programmers.

There’s no need to copy and paste these functions into your code. You can save them
in separate files and use commands to pull them in. There are two types of commands
to perform this action: include and require.

The include Statement
Using include, you can tell PHP to fetch a particular file and load all its contents. It’s
as if you pasted the included file into the current file at the insertion point. Exam-
ple 5-6 shows how you would include a file called library.php.

104 | Chapter 5: PHP Functions and Objects



Example 5-6. Including a PHP file

<?php
include "library.php";

// Your code goes here
?>

Using include_once
Each time you issue the include directive, it includes the requested file again, even if
you’ve already inserted it. For instance, suppose that library.php contains a lot of useful
functions, so you include it in your file. Now suppose you also include another library
that includes library.php. Through nesting, you’ve inadvertently included library.php
twice. This will produce error messages, because you’re trying to define the same con-
stant or function multiple times. To avoid this problem, use include_once instead (see
Example 5-7).

Example 5-7. Including a PHP file only once

<?php
include_once "library.php";

// Your code goes here
?>

Then, if another include or include_once for the same file is encountered, PHP will
verify that it has already been loaded and, if so, will ignore it. To determine whether
the file has already been executed, PHP resolves all relative paths and checks whether
the absolute file path is found in your include path.

In general, it’s probably best to stick with include_once and ignore the
basic include statement. That way you will never have the problem of
files being included multiple times.

Using require and require_once
A potential problem with include and include_once is that PHP will only attempt to
include the requested file. Program execution continues even if the file is not found.

When it is absolutely essential to include a file, require it. For the same reasons I gave
for using include_once, I recommend that you generally stick with require_once when-
ever you need to require a file (see Example 5-8).

Including and Requiring Files | 105



Example 5-8. Requiring a PHP file only once

<?php
require_once "library.php";

// Your code goes here
?>

PHP Version Compatibility
PHP is in an ongoing process of development, and there are multiple versions. If you
need to check whether a particular function is available to your code, you can use the
function_exists function, which checks all predefined and user-created functions.

Example 5-9 checks for the function array_combine, which is specific to PHP version 5.

Example 5-9. Checking for a function’s existence

<?php
if (function_exists("array_combine"))
{
    echo "Function exists";
}
else
{
    echo "Function does not exist - better write our own";
}
?>

Using code such as this, you can identify any features available in newer versions of
PHP that you will need to replicate if you want your code to still run on earlier versions.
Your functions may be slower than the built-in ones, but at least your code will be much
more portable.

You can also use the phpversion function to determine which version of PHP your code
is running on. The returned result will be similar to the following, depending on the
version:

5.2.8

PHP Objects
In much the same way that functions represent a huge increase in programming power
over the early days of computing, where sometimes the best program navigation avail-
able was a very basic GOTO or GOSUB statement, object-oriented programming (OOP)
takes the use of functions to a whole new level.

Once you get the hang of condensing reusable bits of code into functions, it’s not that
great a leap to consider bundling the functions and their data into objects.

106 | Chapter 5: PHP Functions and Objects



Let’s consider a social networking site that has many parts. One handles all user func-
tions: code to enable new users to sign up and to enable existing users to modify their
details. In standard PHP, you might create a few functions to handle this and embed
some calls to the MySQL database to keep track of all the users.

Imagine how much easier it would be, though, to create an object to represent the
current user. To do this you could create a class, perhaps called User, which would
contain all the code required for handling users and all the variables needed for ma-
nipulating the data within the class. Then, whenever you needed to manipulate a user’s
data, you could simply create a new object with the User class.

You could treat this new object as if it were the actual user. For example, you could
pass the object a name, password, and email address; ask it whether such a user already
exists; and, if not, have it create a new user with those attributes. You could even have
an instant messaging object, or one for managing whether two users are friends.

Terminology
When creating a program to use objects, you need to design a composite of data and
code called a class. Each new object based on this class is called an instance (or occur-
rence) of that class.

The data associated with an object are called its properties; the functions it uses are
called methods. In defining a class, you supply the names of its properties and the code
for its methods. See Figure 5-3 for a jukebox metaphor for an object. Think of the CDs
that it holds in the carousel as its properties; the method of playing them is to press
buttons on the front panel. There is also the slot for inserting coins (the method used
to activate the object), and the laser disc reader (the method used to retrieve the music,
or properties, from the CDs).

When creating objects, it is best to use encapsulation, or writing a class in such a way
that only its methods can be used to manipulate its properties. In other words, you
deny outside code direct access to its data. The methods you supply are known as the
object’s interface.

This approach makes debugging easy: you have to fix faulty code only within a class.
Additionally, when you want to upgrade a program, if you have used proper encapsu-
lation and maintained the same interface, you can simply develop new replacement
classes, debug them fully, and then swap them in for the old ones. If they don’t work,
you can swap the old ones back in to immediately fix the problem before further de-
bugging the new classes.

Once you have created a class, you may find that you need another class that is similar
to it but not quite the same. The quick and easy thing to do is to define a new class
using inheritance. When you do this, your new class has all the properties of the one
from which it has inherited. The original class is now called the superclass, and the new
one is the subclass (or derived class).

PHP Objects | 107



In our jukebox example, if you invent a new jukebox that can play a video along with
the music, you can inherit all the properties and methods from the original jukebox
superclass and add some new properties (videos) and new methods (a movie player).

An excellent benefit of this system is that if you improve the speed or any other aspect
of the superclass, its subclasses will receive the same benefit.

Declaring a Class
Before you can use an object, you must define a class with the class keyword. Class
definitions contain the class name (which is case-sensitive), its properties, and its
methods. Example 5-10 defines the class User with two properties: $name and $pass
word (indicated by the public keyword—see “Property and Method Scope in PHP
5” on page 116, later in this chapter). It also creates a new instance (called $object) of
this class.

Example 5-10. Declaring a class and examining an object

<?php
$object = new User;

Figure 5-3. A jukebox: a great example of a self-contained object

108 | Chapter 5: PHP Functions and Objects



print_r($object);

class User
{
    public $name, $password;

    function save_user()
    {
        echo "Save User code goes here";
    }
}
?>

Here I have also used an invaluable function called print_r. It asks PHP to display
information about a variable in human-readable form (the _r stands for “in human-
readable format”). In the case of the new object $object, it prints the following:

User Object
(
    [name]     =>
    [password] =>
)

However, a browser compresses all the whitespace, so the output in the browser is
slightly harder to read:

User Object ( [name] => [password] => )

In any case, the output says that $object is a user-defined object that has the properties
name and password.

Creating an Object
To create an object with a specified class, use the new keyword, like this: $object =
new Class. Here are a couple of ways in which we could do this:

$object = new User;
$temp   = new User('name', 'password');

On the first line, we simply assign an object to the User class. In the second, we pass
parameters to the call.

A class may require or prohibit arguments; it may also allow arguments, but not require
them.

Accessing Objects
Let’s add a few more lines to Example 5-10 and check the results. Example 5-11 extends
the previous code by setting object properties and calling a method.

PHP Objects | 109



Example 5-11. Creating and interacting with an object

<?php
$object = new User;
print_r($object); echo "<br />";

$object->name     = "Joe";
$object->password = "mypass";
print_r($object); echo "<br />";

$object->save_user();

class User
{
    public $name, $password;

    function save_user()
    {
        echo "Save User code goes here";
    }
}
?>

As you can see, the syntax for accessing an object’s property is $object->property.
Likewise, you call a method like this: $object->method().

You should note that the property and method names do not have dollar signs ($) in
front of them. If you were to preface them with a $, the code would not work, as it
would try to reference the value inside a variable. For example, the expression
$object->$property would attempt to look up the value assigned to a variable named
$property (let’s say that value is the string “brown”) and then attempt to reference the
property $object->brown. If $property is undefined, an attempt to reference $object-
>NULL will occur and cause an error.

When looked at using a browser’s view source facility, the output from Example 5-11 is:

User Object
(
     [name]     =>
     [password] =>
)
User Object
(
     [name]     => Joe
     [password] => mypass
)
Save User code goes here

Again, print_r shows its utility by providing the contents of $object before and after
property assignment. From now on I’ll omit print_r statements, but if you are working
along with this book on your development server, you can put some in to see exactly
what is happening.

110 | Chapter 5: PHP Functions and Objects



You can also see that the code in the method save_user was executed via the call to
that method. It printed the string reminding us to create some code.

You can place functions and class definitions anywhere in your code,
before or after statements that use them. Generally, though, it is con-
sidered good practice to place them toward the end of a file.

Cloning objects

Once you have created an object, it is passed by reference when you pass it as a pa-
rameter. In the matchbox metaphor, this is like keeping several threads attached to an
object stored in a matchbox, so that you can follow any attached thread to access it.

In other words, making object assignments does not copy objects in their entirety.
You’ll see how this works in Example 5-12, where we define a very simple User class
with no methods and only the property name.

Example 5-12. Copying an object?

<?php
$object1       = new User();
$object1->name = "Alice";
$object2       = $object1;
$object2->name = "Amy";
echo "object1 name = " . $object1->name . "<br />";
echo "object2 name = " . $object2->name;

class User
{
    public $name;
}
?>

We’ve created the object $object1 and assigned the value “Alice” to the name property.
Then we created $object2, assigning it the value of $object1, and assigned the value
“Amy” just to the name property of $object2—or so we might think. But this code
outputs the following:

object1 name = Amy
object2 name = Amy

What has happened? Both $object1 and $object2 refer to the same object, so changing
the name property of $object2 to “Amy” also sets that property for $object1.

To avoid this confusion, you can use the clone operator, which creates a new instance
of the class and copies the property values from the original instance to the new in-
stance. Example 5-13 illustrates this usage.

PHP Objects | 111



Example 5-13. Cloning an object

<?php
$object1       = new User();
$object1->name = "Alice";
$object2       = clone $object1;
$object2->name = "Amy";
echo "object1 name = " . $object1->name . "<br>";
echo "object2 name = " . $object2->name;

class User
{
    public $name;
}
?>

Voilà! The output from this code is what we initially wanted:

object1 name = Alice
object2 name = Amy

Constructors
When creating a new object, you can pass a list of arguments to the class being called.
These are passed to a special method within the class, called the constructor, which
initializes various properties.

In the past, you would normally give this method the same name as the class, as in
Example 5-14.

Example 5-14. Creating a constructor method

<?php // Example 5-14
class User
{
    public function User($param1, $param2)
    {
        // Constructor statements go here
        $username = "Guest";
    }
}
?>

However, PHP 5 provides a more logical approach to naming the constructor, which
is to use the function name __construct (that is, construct preceded by two underscore
characters), as in Example 5-15.

Example 5-15. Creating a constructor method in PHP 5

<?php // Example 5-15
class User
{
    public function __construct($param1, $param2)
    {

112 | Chapter 5: PHP Functions and Objects



        // Constructor statements go here
        $username = "Guest"; //
    }
}
?>

PHP 5 destructors

Also new in PHP 5 is the ability to create destructor methods. This ability is useful when
code has made the last reference to an object or when a script reaches the end. Exam-
ple 5-16 shows how to create a destructor method.

Example 5-16. Creating a destructor method in PHP 5

<?php
class User
{
    function __destruct()
    {
        // Destructor code goes here
    }
}
?>

Writing Methods
As you have seen, declaring a method is similar to declaring a function, but there are a
few differences. For example, method names beginning with a double underscore
(__) are reserved and you should not create any of this form

You also have access to a special variable called $this, which can be used to access the
current object’s properties. To see how this works, take a look at Example 5-17, which
contains a different method from the User class definition called get_password.

Example 5-17. Using the variable $this in a method

<?php
class User
{
    public $name, $password;

    function get_password()
    {
        return $this->password;
    }
}
?>

What get_password does is use the $this variable to access the current object and then
return the value of that object’s password property. Note how the $ is omitted from the
property $password when using the -> operator. Leaving the $ in place is a typical error
you may run into, particularly when you first use this feature.

PHP Objects | 113



Here’s how you would use the class defined in Example 5-17:

$object           = new User;
$object->password = "secret";
echo $object->get_password();

This code prints the password “secret”.

Static methods in PHP 5

If you are using PHP 5, you can also define a method as static, which means that it is
called on a class and not on an object. A static method has no access to any object
properties and is created and accessed as in Example 5-18.

Example 5-18. Creating and accessing a static method

<?php
User::pwd_string();

class User
{
    static function pwd_string()
    {
        echo "Please enter your password";
    }
}
?>

Note how the class itself is called, along with the static method, using a double colon
(::, also known as the scope resolution operator) and not ->. Static functions are useful
for performing actions relating to the class itself, but not to specific instances of the
class. You can see another example of a static method in Example 5-21.

If you try to access $this->property, or other object properties from
within a static function, you will receive an error message.

Declaring Properties
It is not necessary to explicitly declare properties within classes, as they can be implicitly
defined when first used. To illustrate this, in Example 5-19 the class User has no prop-
erties and no methods but is legal code.

Example 5-19. Defining a property implicitly

<?php
$object1       = new User();
$object1->name = "Alice";
echo $object1->name;

114 | Chapter 5: PHP Functions and Objects



class User {}
?>

This code correctly outputs the string “Alice” without a problem, because PHP im-
plicitly declares the variable $object1->name for you. But this kind of programming can
lead to bugs that are infuriatingly difficult to discover, because name was declared from
outside the class.

To help yourself and anyone else who will maintain your code, I advise that you get
into the habit of always declaring your properties explicitly within classes. You’ll be
glad you did.

Also, when you declare a property within a class, you may assign a default value to it.
The value you use must be a constant and not the result of a function or expression.
Example 5-20 shows a few valid and invalid assignments.

Example 5-20. Valid and invalid property declarations

<?php
class Test
{
    public $name  = "Paul Smith"; // Valid
    public $age   = 42;           // Valid
    public $time  = time();       // Invalid - calls a function
    public $score = $level * 2;   // Invalid - uses an expression
}
?>

Declaring Constants
In the same way that you can create a global constant with the define function, you
can define constants inside classes. The generally accepted practice is to use uppercase
letters to make them stand out, as in Example 5-21.

Example 5-21. Defining constants within a class

<?php
Translate::lookup();

class Translate
{
    const ENGLISH = 0;
    const SPANISH = 1;
    const FRENCH  = 2;
    const GERMAN  = 3;
    // ...

    static function lookup()
    {
        echo self::SPANISH;
    }
}
?>

PHP Objects | 115



Constants can be referenced directly, using the self keyword and the double colon
operator. Note that this code calls the class directly, using the double colon operator
at line 1, without creating an instance of it first. As you would expect, the value printed
when you run this code is 1.

Remember that once you define a constant, you can’t change it.

Property and Method Scope in PHP 5
PHP 5 provides three keywords for controlling the scope of properties and methods:

public
These properties are the default when declaring a variable using the var or pub
lic keywords, or when a variable is implicitly declared the first time it is used. The
keywords var and public are interchangeable because, although deprecated, var is
retained for compatibility with previous versions of PHP. Methods are assumed to
be public by default.

protected
These properties and methods (members) can be referenced only by the object’s
class methods and those of any subclasses.

private
These members can be referenced only by methods within the same class—not by
subclasses.

Here’s how to decide which you need to use:

• Use public when outside code should access this member and extending classes
should also inherit it.

• Use protected when outside code should not access this member but extending
classes should inherit it.

• Use private when outside code should not access this member and extending
classes also should not inherit it.

Example 5-22 illustrates the use of these keywords.

Example 5-22. Changing property and method scope

<?php
class Example
{
    var $name   = "Michael"; // Same as public but deprecated
    public $age = 23;        // Public property
    protected $usercount;    // Protected property

    private function admin() // Private method
    {
        // Admin code goes here
    }

116 | Chapter 5: PHP Functions and Objects



}
?>

Static properties and methods

Most data and methods apply to instances of a class. For example, in a User class, you
want to do such things as set a particular user’s password or check when the user has
been registered. These facts and operations apply separately to each user and therefore
use instance-specific properties and methods.

But occasionally you’ll want to maintain data about a whole class. For instance, to
report how many users are registered, you will store a variable that applies to the whole
User class. PHP provides static properties and methods for such data.

As shown briefly in Example 5-18, declaring members of a class static makes them
accessible without an instantiation of the class. A property declared static cannot be
directly accessed within an instance of a class, but a static method can.

Example 5-23 defines a class called Test with a static property and a public method.

Example 5-23. Defining a class with a static property

<?php
$temp = new Test();
echo "Test A: " . Test::$static_property . "<br />";
echo "Test B: " . $temp->get_sp()        . "<br />";
echo "Test C: " . $temp->static_property . "<br />";

class Test
{
    static $static_property = "I'm static";

    function get_sp()
    {
        return self::$static_property;
    }
}
?>

When you run this code, it returns the following output:

Test A: I'm static
Test B: I'm static

Notice: Undefined property: Test::$static_property
Test C:

This example shows that the property $static_property could be directly referenced
from the class itself using the double colon operator in Test A. Also, Test B could obtain
its value by calling the get_sp method of the object $temp, created from class Test. But
Test C failed, because the static property $static_property was not accessible to the
object $temp.

PHP Objects | 117



Note how the method get_sp accesses $static_property using the keyword self. This
is the way in which a static property or constant can be directly accessed within a class.

Inheritance
Once you have written a class, you can derive subclasses from it. This can save lots of
painstaking code rewriting: you can take a class similar to the one you need to write,
extend it to a subclass, and just modify the parts that are different. This is achieved
using the extends operator.

In Example 5-24, the class Subscriber is declared a subclass of User by means of the
extends operator.

Example 5-24. Inheriting and extending a class

<?php
$object           = new Subscriber;
$object->name     = "Fred";
$object->password = "pword";
$object->phone    = "012 345 6789";
$object->email    = "fred@bloggs.com";
$object->display();

class User
{
    public $name, $password;

    function save_user()
    {
        echo "Save User code goes here";
    }
}

class Subscriber extends User
{
    public $phone, $email;

    function display()
    {
        echo "Name:  " . $this->name     . "<br />";
        echo "Pass:  " . $this->password . "<br />";
        echo "Phone: " . $this->phone    . "<br />";
        echo "Email: " . $this->email;
    }
}
?>

The original User class has two properties, $name and $password, and a method to save
the current user to the database. Subscriber extends this class by adding an additional
two properties, $phone and $email, and includes a method of displaying the properties
of the current object using the variable $this, which refers to the current values of the
object being accessed. The output from this code is:

118 | Chapter 5: PHP Functions and Objects



Name:  Fred
Pass:  pword
Phone: 012 345 6789
Email: fred@bloggs.com

The parent operator

If you write a method in a subclass with the same name as one in its parent class, its
statements will override those of the parent class. Sometimes this is not the behavior
you want, and you need to access the parent’s method. To do this, you can use the
parent operator, as in Example 5-25.

Example 5-25. Overriding a method and using the parent operator

<?php
$object = new Son;
$object->test();
$object->test2();

class Dad
{
    function test()
    {
        echo "[Class Dad] I am your Father<br />";
    }
}

class Son extends Dad
{
    function test()
    {
        echo "[Class Son] I am Luke<br />";
    }

    function test2()
    {
        parent::test();
    }
}
?>

This code creates a class called Dad and a subclass called Son that inherits its properties
and methods, then overrides the method test. Therefore, when line 2 calls the method
test, the new method is executed. The only way to execute the overridden test method
in the Dad class is to use the parent operator, as shown in function test2 of class Son.
The code outputs the following:

[Class Son] I am Luke
[Class Dad] I am your Father

If you wish to ensure that your code calls a method from the current class, you can use
the self keyword, like this:

self::method();

PHP Objects | 119



Subclass constructors

When you extend a class and declare your own constructor, you should be aware that
PHP will not automatically call the constructor method of the parent class. To be certain
that all initialization code is executed, subclasses should always call the parent con-
structors, as in Example 5-26.

Example 5-26. Calling the parent class constructor

<?php
$object = new Tiger();
echo "Tigers have...<br>";
echo "Fur: " . $object->fur . "<br />";
echo "Stripes: " . $object->stripes;

class Wildcat
{
    public $fur; // Wildcats have fur

    function __construct()
    {
        $this->fur = "TRUE";
    }
}

class Tiger extends Wildcat
{
    public $stripes; // Tigers have stripes

    function __construct()
    {
        parent::__construct(); // Call parent constructor first
        $this->stripes = "TRUE";
    }
}
?>

This example takes advantage of inheritance in the typical manner. The Wildcat class
has created the property $fur, which we’d like to reuse, so we create the Tiger class to
inherit $fur and additionally create another property, $stripes. To verify that both
constructors have been called, the program outputs the following:

Tigers have...
Fur: TRUE
Stripes: TRUE

Final methods

In cases in which you wish to prevent a subclass from overriding a superclass method,
you can use the final keyword. Example 5-27 shows how.

120 | Chapter 5: PHP Functions and Objects



Example 5-27. Creating a final method

<?php
class User
{
    final function copyright()
    {
        echo "This class was written by Joe Smith";
    }
}
?>

Once you have digested the contents of this chapter, you should have a strong feel for
what PHP can do for you. You should be able to use functions with ease and, if you
wish, write object-oriented code. In Chapter 6, we’ll finish off our initial exploration
of PHP by looking at the workings of PHP arrays.

Test Your Knowledge
1. What is the main benefit of using a function?

2. How many values can a function return?

3. What is the difference between accessing a variable by name and by reference?

4. What is the meaning of scope in PHP?

5. How can you incorporate one PHP file within another?

6. How is an object different from a function?

7. How do you create a new object in PHP?

8. What syntax would you use to create a subclass from an existing one?

9. How can you call an initializing piece of code when an object is created?

10. Why is it a good idea to explicitly declare properties within a class?

See “Chapter 5 Answers” on page 506 in Appendix A for the answers to these
questions.

Test Your Knowledge | 121





CHAPTER 6

PHP Arrays

In Chapter 3, I gave a very brief introduction to PHP’s arrays—just enough for a little
taste of their power. In this chapter, I’ll show you many more things that you can do
with arrays, some of which—if you have ever used a strongly typed language such as
C—may surprise you with their elegance and simplicity.

Arrays are an example of what has made PHP so popular. Not only do they remove the
tedium of writing code to deal with complicated data structures, but they also provide
numerous ways to access data while remaining amazingly fast.

Basic Access
We’ve already looked at arrays as if they were clusters of matchboxes glued together.
Another way to think of an array is like a string of beads, with the beads representing
variables that can be numbers, strings, or even other arrays. They are like bead strings,
because each element has its own location and (with the exception of the first and last
ones) each has other elements on either side.

Some arrays are referenced by numeric indexes; others allow alphanumeric identifiers.
Built-in functions let you sort them, add or remove sections, and walk through them
to handle each item through a special kind of loop. And by placing one or more arrays
inside another, you can create arrays of two, three, or any number of dimensions.

Numerically Indexed Arrays
Let’s assume that you’ve been tasked with creating a simple website for a local office
supplies company and you’re currently working on the section devoted to paper. One
way to manage the various items of stock in this category would be to place them in a
numeric array. You can see the simplest way of doing so in Example 6-1.

Example 6-1. Adding items to an array

<?php
$paper[] = "Copier";

123



$paper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

print_r($paper);
?>

In this example, each time you assign a value to the array $paper, the first empty location
within that array is used to store the value and a pointer internal to PHP is incremented
to point to the next free location, ready for future insertions. The familiar print_r
function (which prints out the contents of a variable, array, or object) is used to verify
that the array has been correctly populated. It prints out the following:

Array
(
     [0] => Copier
     [1] => Inkjet
     [2] => Laser
     [3] => Photo
)

The previous code could equally have been written as in Example 6-2, where the exact
location of each item within the array is specified. But, as you can see, that approach
requires extra typing and makes your code harder to maintain if you want to insert
supplies or remove supplies from the array. So, unless you wish to specify a different
order, it’s usually better to simply let PHP handle the actual location numbers.

Example 6-2. Adding items to an array using explicit locations

<?php
$paper[0] = "Copier";
$paper[1] = "Inkjet";
$paper[2] = "Laser";
$paper[3] = "Photo";

print_r($paper);
?>

The output from these examples is identical, but you are not likely to use print_r in a
developed website, so Example 6-3 shows how you might print out the various types
of paper the website offers using a for loop.

Example 6-3. Adding items to an array and retrieving them

<?php
$paper[] = "Copier";
$paper[] = "Inkjet";
$paper[] = "Laser";
$paper[] = "Photo";

for ($j = 0 ; $j < 4 ; ++$j)
    echo "$j: $paper[$j]<br>";
?>

124 | Chapter 6: PHP Arrays



This example prints out the following:

0: Copier
1: Inkjet
2: Laser
3: Photo

So far, you’ve seen a couple of ways in which you can add items to an array and one
way of referencing them, but PHP offers many more. We’ll get to those shortly, but
first, let’s look at another type of array.

Associative Arrays
Keeping track of array elements by index works just fine, but it can require extra work
in terms of remembering which number refers to which product. It can also make code
hard for other programmers to follow.

This is where associative arrays come into their own. Using them, you can reference
the items in an array by name rather than by number. Example 6-4 expands on the
previous code by giving each element in the array an identifying name and a longer,
more explanatory string value.

Example 6-4. Adding items to an associative array and retrieving them

<?php
$paper['copier'] = "Copier & Multipurpose";
$paper['inkjet'] = "Inkjet Printer";
$paper['laser']  = "Laser Printer";
$paper['photo']  = "Photographic Paper";

echo $paper['laser'];
?>

In place of a number (which doesn’t convey any useful information, aside from the
position of the item in the array), each item now has a unique name that you can use
to reference it elsewhere, as with the echo statement—which simply prints out Laser
Printer. The names (copier, inkjet, and so on) are called indexes or keys and the items
assigned to them (such as “Laser Printer”) are called values.

This very powerful feature of PHP is often used when extracting information from XML
and HTML. For example, an HTML parser such as those used by a search engine could
place all the elements of a web page into an associative array whose names reflect the
page’s structure:

$html['title'] = "My web page";
$html['body']  = "... body of web page ...";

The program would also probably break out all the links found within a page into
another array, and all the headings and subheadings into another. When you use as-
sociative rather than numeric arrays, the code to refer to all of these items is easy to
write and debug.

Basic Access | 125



Assignment Using the array Keyword
So far, you’ve seen how to assign values to arrays by just adding new items one at a
time. Whether you specify keys, specify numeric identifiers, or let PHP assign numeric
identifiers implicitly, this is a long-winded approach. A more compact and faster as-
signment method uses the array keyword. Example 6-5 shows both a numeric and an
associative array assigned using this method.

Example 6-5. Adding items to an array using the array keyword

<?php
$p1 = array("Copier", "Inkjet", "Laser", "Photo");

echo "p1 element: " . $p1[2] . "<br>";

$p2 = array('copier' => "Copier & Multipurpose",
            'inkjet' => "Inkjet Printer",
            'laser'  => "Laser Printer",
            'photo'  => "Photographic Paper");

echo "p2 element: " . $p2['inkjet'] . "<br>";
?>

The first half of this snippet assigns the old, shortened product descriptions to the array
$p1. There are four items, so they will occupy slots 0 through 3. Therefore, the echo
statement prints out the following:

p1 element: Laser

The second half assigns associative identifiers and accompanying longer product de-
scriptions to the array $p2 using the format index => value. The use of => is similar to
the regular = assignment operator, except that you are assigning a value to an index and
not to a variable. The index is then inextricably linked with that value, unless it is
reassigned a new value. The echo command therefore prints out:

p2 element: Inkjet Printer

You can verify that $p1 and $p2 are different types of array, because both of the following
commands, when appended to the code, will cause an “undefined index” or “undefined
offset” error, as the array identifier for each is incorrect:

echo $p1['inkjet']; // Undefined index
echo $p2[3];        // Undefined offset

The foreach...as Loop
The creators of PHP have gone to great lengths to make the language easy to use. So,
not content with the loop structures already provided, they added another one espe-
cially for arrays: the foreach...as loop. Using it, you can step through all the items in
an array, one at a time, and do something with them.

126 | Chapter 6: PHP Arrays



The process starts with the first item and ends with the last one, so you don’t even have
to know how many items there are in an array. Example 6-6 shows how foreach can
be used to rewrite Example 6-3.

Example 6-6. Walking through a numeric array using foreach...as

<?php
$paper = array("Copier", "Inkjet", "Laser", "Photo");
$j = 0;

foreach ($paper as $item)
{
    echo "$j: $item<br>";
    ++$j;
}
?>

When PHP encounters a foreach statement, it takes the first item of the array and places
it in the variable following the as keyword, and each time control flow returns to the
foreach the next array element is placed in the as keyword. In this case, the variable
$item is set to each of the four values in turn in the array $paper. Once all values have
been used, execution of the loop ends. The output from this code is exactly the same
as for Example 6-3.

Now let’s see how foreach works with an associative array by taking a look at Exam-
ple 6-7, which is a rewrite of the second half of Example 6-5.

Example 6-7. Walking through an associative array using foreach...as

<?php
$paper = array('copier' => "Copier & Multipurpose",
               'inkjet' => "Inkjet Printer",
               'laser'  => "Laser Printer",
               'photo'  => "Photographic Paper");

foreach ($paper as $item => $description)
    echo "$item: $description<br>";
?>

Remember that associative arrays do not require numeric indexes, so the variable $j is
not used in this example. Instead, each item of the array $paper is fed into the key/value
pair of variables $item and $description, from where they are printed out. The result
of this code is as follows:

copier: Copier & Multipurpose
inkjet: Inkjet Printer
laser: Laser Printer
photo: Photographic Paper

As an alternative syntax to foreach...as, you can use the list function in conjunction
with the each function, as in Example 6-8.

The foreach...as Loop | 127



Example 6-8. Walking through an associative array using each and list

<?php
$paper = array('copier' => "Copier & Multipurpose",
               'inkjet' => "Inkjet Printer",
               'laser'  => "Laser Printer",
               'photo'  => "Photographic Paper");

while (list($item, $description) = each($paper))
    echo "$item: $description<br>";
?>

In this example, a while loop is set up and will continue looping until the each function
returns a value of FALSE. The each function acts like foreach: it returns an array con-
taining a key/value pair from the array $paper and then moves its built-in pointer to the
next pair in that array. When there are no more pairs to return, each returns FALSE.

The list function takes an array as its argument (in this case, the key/value pair re-
turned by function each) and then assigns the values of the array to the variables listed
within parentheses.

You can see how list works a little more clearly in Example 6-9, where an array is created
out of the two strings “Alice” and “Bob” and then passed to the list function, which
assigns those strings as values to the variables $a and $b.

Example 6-9. Using the list function

<?php
list($a, $b) = array('Alice', 'Bob');
echo "a=$a b=$b";
?>

The output from this code is:

a=Alice b=Bob

You can take your pick when walking through arrays. Use foreach...as to create a loop
that extracts values to the variable following the as, or use the each function and create
your own looping system.

Multidimensional Arrays
A simple design feature in PHP’s array syntax makes it possible to create arrays of more
than one dimension. In fact, they can be as many dimensions as you like (although it’s
a rare application that goes further than three).

That feature is the ability to include an entire array as a part of another one, and to be
able to keep on doing so, just like the old rhyme: “Big fleas have little fleas upon their
backs to bite ’em. Little fleas have lesser fleas, add flea, ad infinitum.”

128 | Chapter 6: PHP Arrays



Let’s look at how this works by taking the associative array in the previous example
and extending it—see Example 6-10.

Example 6-10. Creating a multidimensional associative array

<?php
$products = array(
    'paper' =>  array(
        'copier' => "Copier & Multipurpose",
        'inkjet' => "Inkjet Printer",
        'laser'  => "Laser Printer",
        'photo'  => "Photographic Paper"),

    'pens' => array(
        'ball'   => "Ball Point",
        'hilite' => "Highlighters",
        'marker' => "Markers"),

    'misc' => array(
        'tape'   => "Sticky Tape",
        'glue'   => "Adhesives",
        'clips'  => "Paperclips") );

echo "<pre>";
foreach ($products as $section => $items)
    foreach ($items as $key => $value)
        echo "$section:\t$key\t($value)<br>";
echo "</pre>";
?>

To make things clearer now that the code is starting to grow, I’ve renamed some of the
elements. For example, seeing as the previous array $paper is now just a subsection of
a larger array, the main array is now called $products. Within this array there are three
items, paper, pens, and misc, and each of these contains another array with key/value
pairs.

If necessary, these subarrays could have contained even further arrays. For example,
under ball there might be an array containing all the different types and colors of
ballpoint pens available in the online store. But for now, I’ve restricted the code to just
a depth of two.

Once the array data has been assigned, I use a pair of nested foreach...as loops to print
out the various values. The outer loop extracts the main sections from the top level of
the array, and the inner loop extracts the key/value pairs for the categories within each
section.

As long as you remember that each level of the array works the same way (it’s a key/
value pair), you can easily write code to access any element at any level.

The echo statement makes use of the PHP escape character \t, which outputs a tab.
Although tabs are not normally significant to the web browser, I let them be used for
layout by using the <pre>...</pre> tags, which tell the web browser to format the text

Multidimensional Arrays | 129



as preformatted and monospaced, and not to ignore whitespace characters such as tabs
and line feeds. The output from this code looks like the following:

paper:  copier  (Copier & Multipurpose)
paper:  inkjet  (Inkjet Printer)
paper:  laser   (Laser Printer)
paper:  photo   (Photographic Paper)
pens:   ball    (Ball Point)
pens:   hilite  (Highlighters)
pens:   marker  (Markers)
misc:   tape    (Sticky Tape)
misc:   glue    (Adhesives)
misc:   clips   (Paperclips)

You can directly access a particular element of the array using square brackets, like this:

echo $products['misc']['glue'];

which outputs the value “Adhesives”.

You can also create numeric multidimensional arrays that are accessed directly by in-
dexes rather than by alphanumeric identifiers. Example 6-11 creates the board for a
chess game with the pieces in their starting positions.

Example 6-11. Creating a multidimensional numeric array

<?php
$chessboard = array(
    array('r', 'n', 'b', 'q', 'k', 'b', 'n', 'r'),
    array('p', 'p', 'p', 'p', 'p', 'p', 'p', 'p'),
    array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
    array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
    array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
    array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
    array('P', 'P', 'P', 'P', 'P', 'P', 'P', 'P'),
    array('R', 'N', 'B', 'Q', 'K', 'B', 'N', 'R'));

echo "<pre>";
foreach ($chessboard as $row)
{
    foreach ($row as $piece)
        echo "$piece ";
    echo "<br />";
}
echo "</pre>";
?>

In this example, the lowercase letters represent black pieces and the uppercase white.
The key is r=rook, n=knight, b=bishop, k=king, q=queen, and p=pawn. Again, a pair of
nested foreach...as loops walk through the array and display its contents. The outer
loop processes each row into the variable $row, which itself is an array, because the
$chessboard array uses a subarray for each row. This loop has two statements within
it, so curly braces enclose them.

130 | Chapter 6: PHP Arrays



The inner loop then processes each square in a row, outputting the character ($piece)
stored in it, followed by a space (to square up the printout). This loop has a single
statement, so curly braces are not required to enclose it. The <pre> and </pre> tags
ensure that the output displays correctly, like this:

r n b q k b n r
p p p p p p p p

P P P P P P P P
R N B Q K B N R

You can also directly access any element within this array using square brackets, like
this:

echo $chessboard[7][3];

This statement outputs the uppercase letter Q, the eighth element down and the fourth
along (remembering that array indexes start at 0, not 1).

Using Array Functions
You’ve already seen the list and each functions, but PHP comes with numerous other
functions for handling arrays. The full list is at http://tinyurl.com/phparrayfuncs. How-
ever, some of these functions are so fundamental that it’s worth taking the time to look
at them here.

is_array
Arrays and variables share the same namespace. This means that you cannot have a
string variable called $fred and an array also called $fred. If you’re in doubt and your
code needs to check whether a variable is an array, you can use the is_array function
like this:

echo (is_array($fred)) ? "Is an array" : "Is not an array";

Note that if $fred has not yet been assigned a value, an “Undefined variable” message
will be generated.

count
Although the each function and the foreach...as loop structure are excellent ways to
walk through an array’s contents, sometimes you need to know exactly how many
elements there are in your array, particularly if you will be referencing them directly.
To count all the elements in the top level of an array, use a command such as the
following:

Using Array Functions | 131

http://tinyurl.com/phparrayfuncs


echo count($fred);

Should you wish to know how many elements there are altogether in a multidimen-
sional array, you can use a statement such as:

echo count($fred, 1);

The second parameter is optional and sets the mode to use. It should be either 0 to limit
counting to only the top level, or 1 to force recursive counting of all subarray elements
too.

sort
Sorting is so common that PHP provides a built-in function for this purpose. In its
simplest form, you would use it like this:

sort($fred);

Unlike some other functions, sort will act directly on the supplied array rather than
returning a new array of sorted elements. It returns TRUE on success and FALSE on error
and also supports a few flags. The main two methods that you might wish to use force
sorting either numerically or as strings, like this:

sort($fred, SORT_NUMERIC);
sort($fred, SORT_STRING);

You can also sort an array in reverse order using the rsort function, like this:

rsort($fred, SORT_NUMERIC);
rsort($fred, SORT_STRING);

shuffle
There may be times when you need the elements of an array to be put in random order,
such as when creating a game of playing cards:

shuffle($cards);

Like sort, shuffle acts directly on the supplied array and returns TRUE on success or
FALSE on error.

explode
explode is a very useful function that allows you to take a string containing several items
separated by a single character (or string of characters) and place each of these items
into an array. One handy example is to split up a sentence into an array containing all
its words, as in Example 6-12.

Example 6-12. Exploding a string into an array using spaces

<?php
$temp = explode(' ', "This is a sentence with seven words");

132 | Chapter 6: PHP Arrays



print_r($temp);
?>

This example prints out the following (on a single line when viewed in a browser):

Array
(
    [0] => This
    [1] => is
    [2] => a
    [3] => sentence
    [4] => with
    [5] => seven
    [6] => words
)

The first parameter, the delimiter, need not be a space or even a single character.
Example 6-13 shows a slight variation.

Example 6-13. Exploding a string delimited with *** into an array

<?php
$temp = explode('***', "A***sentence***with***asterisks");
print_r($temp);
?>

The code in Example 6-13 prints out the following:

Array
(
    [0] => A
    [1] => sentence
    [2] => with
    [3] => asterisks
)

extract
Sometimes it can be convenient to turn the key/value pairs from an array into PHP
variables. One such time might be when processing the $_GET or $_POST variables sent
to a PHP script by a form.

When a form is submitted over the Web, the web server unpacks the variables into a
global array for the PHP script. If the variables were sent using the GET method, they
will be placed in an associative array called $_GET, and if they were sent using POST, they
will be placed in an associative array called $_POST.

You could, of course, walk through such associative arrays in the manner shown in the
examples so far. However, sometimes you just want to store the values sent into vari-
ables for later use. In this case, you can have PHP do the job automatically for you:

extract($_GET);

Using Array Functions | 133



So, for example, if the query string parameter q is sent to a PHP script along with the
associated value “Hi there”, a new variable called $q will be created and assigned that
value.

Be careful with this approach, though, because if any extracted variables conflict with
ones that you have already defined, your existing values will be overwritten. To avoid
this possibility, you can use one of the many additional parameters available to this
function, like this:

extract($_GET, EXTR_PREFIX_ALL, 'fromget');

In this case, all the new variables will begin with the given prefix string followed by an
underscore, so $q will become $fromget_q. I strongly recommend that you use this
version of the function when handling $_GET and $_POST arrays, or any other array whose
keys could be controlled by the user, because malicious users could submit keys chosen
deliberately to overwrite commonly used variable names and compromise your
website.

compact
There may also be times when you’ll want to use compact, the inverse of extract, to
create an array from variables and their values. Example 6-14 shows how you might
use this function.

Example 6-14. Using the compact function

<?php
$fname   = "Elizabeth";
$sname   = "Windsor";
$address = "Buckingham Palace";
$city    = "London";
$country = "United Kingdom";

$contact = compact('fname', 'sname', 'address', 'city', 'country');
print_r($contact);
?>

The result of running Example 6-14 is:

Array
(
    [fname] => Elizabeth
    [sname] => Windsor
    [address] => Buckingham Palace
    [city] => London
    [country] => United Kingdom
)

Note that compact requires the variable names to be supplied in quotes and not as
variables preceded with a $ symbol. This is because compact is looking for an array of
variable names.

134 | Chapter 6: PHP Arrays



Another use of this function is for debugging, when you wish to quickly view several
variables and their values, as in Example 6-15.

Example 6-15. Using compact to help with debugging

<?php
$j       = 23;
$temp    = "Hello";
$address = "1 Old Street";
$age     = 61;

print_r(compact(explode(' ', 'j temp address age')));
?>

This works by using the explode function to extract all the words from the string into
an array, which is then passed to the compact function. This function in turn returns an
array to print_r, which shows its contents.

If you copy and paste the print_r line of code, you only need to alter the variables
named there for a quick printout of a group of variables’ values. In this example, the
output is:

Array
(
    [j] => 23
    [temp] => Hello
    [address] => 1 Old Street
    [age] => 61
)

reset
When the foreach...as construct or the each function walks through an array, it keeps
an internal PHP pointer that makes a note of which element of the array it should return
next. If your code ever needs to return to the start of an array, you can issue reset,
which also returns the value of the first element. Examples of how to use this function
are:

reset($fred);         // Throw away return value
$item = reset($fred); // Keep first element of the array in $item

end
Similarly, you can move PHP’s internal array pointer to the final element in an array
using the end function, which also returns the value of that element and can be used as
in these examples:

end($fred);
$item = end($fred);

Using Array Functions | 135



This chapter concludes your basic introduction to PHP, and you should now be able
to write quite complex programs using the skills you have learned. In the next chapter,
we’ll look at using PHP for common, practical tasks.

Test Your Knowledge
1. What is the difference between a numeric and an associative array?

2. What is the main benefit of the array keyword?

3. What is the difference between foreach and each?

4. How can you create a multidimensional array?

5. How can you determine the number of elements in an array?

6. What is the purpose of the explode function?

7. How can you set PHP’s internal pointer into an array back to the first element of
the array?

See “Chapter 6 Answers” on page 506 in Appendix A for the answers to these
questions.

136 | Chapter 6: PHP Arrays



CHAPTER 7

Practical PHP

Previous chapters went over the elements of the PHP language. This chapter builds on
your new programming skills to teach you how to perform some common but impor-
tant practical tasks. You will learn the best ways to manage string handling to achieve
clear and concise code that displays in web browsers exactly how you want it to, in-
cluding advanced date and time management. You’ll also find out how to create and
otherwise modify files, including those uploaded by users.

There’s also a comprehensive introduction to XHTML, a markup language that is sim-
ilar to and intended to supersede HTML (and which conforms to the XML syntax used
to store data such as RSS feeds). Together these topics will extend your understanding
of both practical PHP programming and developing to international web standards.

Using printf
You’ve already seen the print and echo functions, which simply output text to the
browser. But a much more powerful function, printf, controls the format of the output
by letting you put special formatting characters in a string. For each formatting char-
acter, printf expects you to pass an argument that it will display using that format. For
instance, the following example uses the %d conversion specifier to display the value 3
in decimal:

printf("There are %d items in your basket", 3);

If you replace the %d with %b, the value 3 will be displayed in binary (11). Table 7-1
shows the conversion specifiers supported.

Table 7-1. The printf conversion specifiers

Specifier Conversion action on argument arg Example (for an arg of 123)

% Display a % character (no arg is required) %

b Display arg as a binary integer 1111011

c Display the ASCII character for the arg {

137



Specifier Conversion action on argument arg Example (for an arg of 123)

d Display arg as a signed decimal integer 123

e Display arg using scientific notation 1.23000e+2

f Display arg as floating point 123.000000

o Display arg as an octal integer 173

s Display arg as a string 123

u Display arg as an unsigned decimal 123

x Display arg in lowercase hexadecimal 7b

X Display arg in uppercase hexadecimal 7B

You can have as many specifiers as you like in a printf function, as long as you pass a
matching number of arguments and as long as each specifier is prefaced by a % symbol.
Therefore, the following code is valid, and will output “My name is Simon. I’m 33 years
old, which is 21 in hexadecimal”:

printf("My name is %s. I'm %d years old, which is %X in hexadecimal", 
  'Simon', 33, 33);

If you leave out any arguments, you will receive a parse error informing you that a right
bracket, ), was unexpectedly encountered.

A more practical example of printf sets colors in HTML using decimal. For example,
suppose you know you want a color that has a triplet value of 65 red, 127 green, and
245 blue, but you don’t want to convert this to hexadecimal yourself. An easy solution
is:

printf("<font color='#%X%X%X'>Hello</font>", 65, 127, 245);

Check the format of the color specification between the apostrophes ('') carefully. First
comes the pound sign (#) expected by the color specification. Then come three %X
format specifiers, one for each of your numbers. The resulting output from this com-
mand is:

<font color='#417FF5'>Hello</font>

Usually, you’ll find it convenient to use variables or expressions as arguments to
printf. For instance, if you stored values for your colors in the three variables $r, $g,
and $b, you could create a darker color with:

printf("<font color='#%X%X%X'>Hello</font>", $r-20, $g-20, $b-20);

Precision Setting
Not only can you specify a conversion type, but you can also set the precision of the
displayed result. For example, amounts of currency are usually displayed with only two
digits of precision. However, after a calculation, a value may have a greater precision
than this (e.g., $123.42/12, which results in $10.285). To ensure that such values are

138 | Chapter 7: Practical PHP



correctly stored internally, but displayed with only two digits of precision, you can
insert the string “.2” between the % symbol and the conversion specifier:

printf("The result is: $%.2f", 123.42 / 12);

The output from this command is:

The result is $10.29

But you actually have even more control than that, because you can also specify whether
to pad output with either zeros or spaces by prefacing the specifier with certain values.
Example 7-1 shows four possible combinations.

Example 7-1. Precision setting

<?php
echo "<pre>"; // Enables viewing of the spaces

// Pad to 15 spaces
   printf("The result is $%15f\n", 123.42 / 12);

// Pad to 15 spaces, fill with zeros
   printf("The result is $%015f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision
   printf("The result is $%15.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with zeros
   printf("The result is $%015.2f\n", 123.42 / 12);

// Pad to 15 spaces, 2 decimal places precision, fill with # symbol
   printf("The result is $%'#15.2f\n", 123.42 / 12);
?>

The output from this example looks like this:

The result is $      10.285000
The result is $00000010.285000
The result is $          10.29
The result is $000000000010.29
The result is $##########10.29

The way it works is simple if you go from right to left (see Table 7-2). Notice that:

• The rightmost character is the conversion specifier. In this case, it is f for floating
point.

• Just before the conversion specifier, if there is a period and a number together, the
precision of the output is specified as the value of the number.

• Regardless of whether there’s a precision specifier, if there is a number, that rep-
resents the amount of characters to which the output should be padded. In the
previous example, this is 15 characters. If the output is already equal to or greater
than the padding length, this argument is ignored.

Using printf | 139



• The leftmost parameter allowed before the % symbol is a 0, which is ignored unless
a padding value has been set, in which case the output is padded with zeros instead
of spaces. If a pad character other than zero or a space is required, you can use any
one of your choice as long as you preface it with a single quotation mark, like this:
'#.

• On the left is the % symbol, which starts the conversion.

Table 7-2. Conversion specifier components

Start
conversion

Pad character Number of pad
characters

Display
precision

Conversion
specifier Examples

%  15  f 10.285000

% 0 15 .2 f 000000000010.29

% '# 15 .4 f ########10.2850

String Padding
You can also pad strings to required lengths (just as you can with numbers), select
different padding characters, and even choose between left and right justification.
Example 7-2 shows various examples.

Example 7-2. String padding

<?php
echo "<pre>"; // Enables viewing of the spaces

$h = 'House';

printf("[%s]\n",        $h); // Standard string output
printf("[%10s]\n",      $h); // Right justify with spaces
printf("[%-10s]\n",     $h); // Left justify with spaces
printf("[%010s]\n",     $h); // Zero padding
printf("[%'#10s]\n\n",  $h); // Use the custom padding character '#'

$d = 'Doctor House';

printf("[%10.8s]\n",    $d); // Right justify, cutoff of 8 characters
printf("[%-10.6s]\n",   $d); // Left justify, cutoff of 6 characters
printf("[%-'@10.6s]\n", $d); // Left justify, pad '@', cutoff 6 chars
?>

Note how, for the purposes of layout in a web page, I’ve used the <pre> HTML tag to
preserve all the spaces and the \n newline character after each of the lines to be dis-
played. The output from this example is as follows:

[House]
[     House]
[House     ]
[00000House]
[#####House]

140 | Chapter 7: Practical PHP



[  Doctor H]
[Doctor    ]
[Doctor@@@@]

When you specify a padding value, it will be ignored for any string whose length is
equal to or greater than that value, unless a cutoff value is given that shortens the string
back to less than the padding value.

Table 7-3 shows a breakdown of the components available to string conversion
specifiers.

Table 7-3. String conversion specifier components

Start
conversion

Left/right
justify

Padding
character

Number of
pad characters Cutoff

Conversion
specifier Examples

%     s [House ]

% -  10  s [House ]

%  '# 8 .4 s [####Hous]

Using sprintf
Often you don’t want to output the result of a conversion but need it to use elsewhere
in your code. This is where the sprintf function comes in. With it, you can send the
output to another variable rather than to the browser.

You might use it simply to make a conversion, as in the following example, which
returns the hexadecimal string value for the RGB color group 65, 127, 245 in $hex
string:

$hexstring = sprintf("%X%X%X", 65, 127, 245);

Or you may wish to store the output so it’s ready to display later:

$out = sprintf("The result is: $%.2f", 123.42 / 12);
echo $out;

Date and Time Functions
To keep track of the date and time, PHP uses standard Unix timestamps, which are
simply the number of seconds elapsed since midnight, January 1, 1970. To determine
the current timestamp, you can use the time function:

echo time();

Because the value is stored as seconds, to obtain the timestamp for this time next week
you would use the following, which adds 7 days × 24 hours × 60 minutes × 60 seconds
to the returned value:

echo time() + 7 * 24 * 60 * 60;

Date and Time Functions | 141



If you wish to create a timestamp for a given date, you can use the mktime function. Its
output is the timestamp 946684800 for the first second of the first minute of the first
hour of the first day of the year 2000:

echo mktime(0, 0, 0, 1, 1, 2000);

The parameters to pass are, in order from left to right:

• The number of the hour (0–23)

• The number of the minute (0–59)

• The number of seconds (0–59)

• The number of the month (1–12)

• The number of the day (1–31)

• The year (1970–2038, or 1901–2038 with PHP 5.1.0+ on 32-bit signed systems)

You may ask why you are limited to the years 1970 through 2038. Well,
it’s because the original developers of Unix chose the start of the year
1970 as the base date that no programmer should need to go before!
Luckily, because as of version 5.1.0 PHP supports systems using a signed
32-bit integer for the timestamp, dates from 1901 to 2038 are allowed
on them. However, a problem even worse than the first comes about
because the Unix designers also decided that nobody would be using
Unix after about 70 years or so, and therefore believed they could get
away with storing the timestamp as a 32-bit value—which will accom-
modate dates only up to January 19, 2038! This will create what has
come to be known as the Y2K38 bug (much like the “millennium bug,”
which was caused by storing years as two-digit values, and which also
had to be fixed). We have to hope it will all be solved well before we get
too close to that date.

To display the date, use the date function. This function supports a plethora of for-
matting options, enabling you to display the date any way you could wish. The format
is as follows:

date($format, $timestamp);

The parameter $format should be a string containing formatting specifiers as detailed
in Table 7-4, and $timestamp should be a Unix timestamp. For the complete list of
specifiers, please see http://tinyurl.com/phpdatefuncs. The following command will out-
put the current date and time in the format “Thursday April 15th, 2010 - 1:38pm”:

echo date("l F jS, Y - g:ia", time());

142 | Chapter 7: Practical PHP

http://tinyurl.com/phpdatefuncs


Table 7-4. The major date function format specifiers

Format Description Returned value

Day specifiers

d Day of month, two digits, with leading zeros 01 to 31

D Day of week, three letters Mon to Sun

j Day of month, no leading zeros 1 to 31

l Day of week, full names Sunday to Saturday

N Day of week, numeric, Monday to Sunday 1 to 7

S Suffix for day of month (useful with specifier j) st, nd, rd, or th

w Day of week, numeric, Sunday to Saturday 0 to 6

z Day of year 0 to 365

Week specifier

W Week number of year 01 to 52

Month specifiers

F Month name January to December

m Month number with leading zeros 01 to 12

M Month name, three letters Jan to Dec

n Month number, no leading zeros 1 to 12

t Number of days in given month 28, 29, 30, or 31

Year specifiers

L Leap year 1 = Yes, 0 = No

Y Year, four digits 0000 to 9999

y Year, two digits 00 to 99

Time specifiers

a Before or after midday, lowercase am or pm

A Before or after midday, uppercase AM or PM

g Hour of day, 12-hour format, no leading zeros 1 to 12

G Hour of day, 24-hour format, no leading zeros 1 to 24

h Hour of day, 12-hour format, with leading zeros 01 to 12

H Hour of day, 24-hour format, with leading zeros 01 to 24

i Minutes, with leading zeros 00 to 59

s Seconds, with leading zeros 00 to 59

Date and Time Functions | 143



Date Constants
There are a number of useful constants that you can use with the date command to
return the date in specific formats. For example, date(DATE_RSS) returns the current
date and time in the valid format for an RSS feed. Some of the more commonly used
constants are:

DATE_ATOM
This is the format for Atom feeds. The PHP format is “Y-m-d\TH:i:sP” and example
output is “2012-08-16T12:00:00+00:00”.

DATE_COOKIE
This is the format for cookies set from a web server or JavaScript. The PHP format
is “l, d-M-y H:i:s T” and example output is “Thursday, 16-Aug-12 12:00:00 UTC”.

DATE_RSS
This is the format for RSS feeds. The PHP format is “D, d M Y H:i:s O” and example
output is “Thu, 16 Aug 2012 12:00:00 UTC”.

DATE_W3C
This is the format for the World Wide Web Consortium. The PHP format is “Y-
m-d\TH:i:sP” and example output is “2012-08-16T12:00:00+00:00”.

The complete list can be found at http://tinyurl.com/phpdates.

Using checkdate
You’ve seen how to display a valid date in a variety of formats. But how can you check
whether a user has submitted a valid date to your program? The answer is to pass the
month, day, and year to the checkdate function, which returns a value of TRUE if the
date is valid, or FALSE if it is not.

For example, if February 30 of any year is input, it will always be an invalid date.
Example 7-3 shows code that you could use for this. As it stands, it will find the given
date invalid.

Example 7-3. Checking for the validity of a date

<?php
$month = 9;      // September (only has 30 days)
$day   = 31;     // 31st
$year  = 2012;   // 2012

if (checkdate($month, $day, $year)) echo "Date is valid";
else echo "Date is invalid";
?>

144 | Chapter 7: Practical PHP

http://tinyurl.com/phpdates


File Handling
Powerful as it is, MySQL is not the only (or necessarily the best) way to store all data
on a web server. Sometimes it can be quicker and more convenient to directly access
files on the hard disk. Cases in which you might need to do this include for modifying
images, such as uploaded user avatars, or log files that you wish to process.

First, though, a note about file naming. If you are writing code that may be used on
various PHP installations, there is no way of knowing whether these systems are case-
sensitive. For example, Windows and Mac OS X filenames are not case-sensitive, but
Linux and Unix ones are. Therefore, you should always assume that the system is case-
sensitive and stick to a convention such as all-lowercase filenames.

Checking Whether a File Exists
To determine whether a file already exists, you can use the file_exists function, which
returns either TRUE or FALSE and is used like this:

if (file_exists("testfile.txt")) echo "File exists";

Creating a File
At this point testfile.txt doesn’t exist, so let’s create it and write a few lines to it. Type
in Example 7-4 and save it as testfile.php.

Example 7-4. Creating a simple text file

<?php // testfile.php
$fh = fopen("testfile.txt", 'w') or die("Failed to create file");
$text = <<<_END
Line 1
Line 2
Line 3

_END;
fwrite($fh, $text) or die("Could not write to file");
fclose($fh);
echo "File 'testfile.txt' written successfully";
?>

When you run this in a browser, all being well, you will receive the message “File
‘testfile.txt’ written successfully”. If you receive an error message, your hard disk may
be full or, more likely, you may not have permission to create or write to the file, in
which case you should modify the attributes of the destination folder according to your
operating system. Otherwise, the file testfile.txt should now be residing in the same
folder in which you saved the testfile.php program. Try opening the file in a text or
program editor—the contents will look like this:

File Handling | 145



Line 1
Line 2
Line 3

This simple example shows the sequence that all file handling takes:

1. Always start by opening the file. This is done through a call to fopen.

2. Then you can call other functions; here we write to the file (fwrite), but you can
also read from an existing file (fread or fgets) and do other things.

3. Finish by closing the file (fclose). Although the program does this for you when it
ends, you should clean up yourself by closing the file when you’re finished.

Every open file requires a file resource so that PHP can access and manage it. The
preceding example sets the variable $fh (which I chose to stand for file handle) to the
value returned by the fopen function. Thereafter, each file handling function that ac-
cesses the opened file, such as fwrite or fclose, must be passed $fh as a parameter to
identify the file being accessed. Don’t worry about the content of the $fh variable; it’s
a number PHP uses to refer to internal information about the file—you just pass the
variable to other functions.

Upon failure, fopen will return FALSE. The previous example shows a simple way to
capture and respond to the failure: it calls the die function to end the program and give
the user an error message. A web application would never abort in this crude way (you
would create a web page with an error message instead), but this is fine for our testing
purposes.

Notice the second parameter to the fopen call. It is simply the character w, which tells
the function to open the file for writing. The function creates the file if it doesn’t already
exist. Be careful when playing around with these functions: if the file already exists, the
w mode parameter causes the fopen call to delete the old contents (even if you don’t
write anything new!).

There are several different mode parameters that can be used here, as detailed in Ta-
ble 7-5.

Table 7-5. The supported fopen modes

Mode Action Description

'r' Read from file start Open for reading only; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

'r+' Read from file start and al-
low writing

Open for reading and writing; place the file pointer at the beginning of the file. Return
FALSE if the file doesn’t already exist.

'w' Write from file start and
truncate file

Open for writing only; place the file pointer at the beginning of the file and truncate the
file to zero length. If the file doesn’t exist, attempt to create it.

'w+' Write from file start, trun-
cate file, and allow read-
ing

Open for reading and writing; place the file pointer at the beginning of the file and
truncate the file to zero length. If the file doesn’t exist, attempt to create it.

146 | Chapter 7: Practical PHP



Mode Action Description

'a' Append to file end Open for writing only; place the file pointer at the end of the file. If the file doesn’t exist,
attempt to create it.

'a+' Append to file end and al-
low reading

Open for reading and writing; place the file pointer at the end of the file. If the file doesn’t
exist, attempt to create it.

Reading from Files
The easiest way to read from a text file is to grab a whole line through fgets (think of
the final s as standing for “string”), as in Example 7-5.

Example 7-5. Reading a file with fgets

<?php
$fh = fopen("testfile.txt", 'r') or
    die("File does not exist or you lack permission to open it");
$line = fgets($fh);
fclose($fh);
echo $line;
?>

If you created the file as shown in Example 7-4, you’ll get the first line:

Line 1

Or you can retrieve multiple lines or portions of lines through the fread function, as in
Example 7-6.

Example 7-6. Reading a file with fread

<?php
$fh = fopen("testfile.txt", 'r') or
    die("File does not exist or you lack permission to open it");
$text = fread($fh, 3);
fclose($fh);
echo $text;
?>

I’ve requested three characters in the fread call, so the program displays the following:

Lin

The fread function is commonly used with binary data, but if you use it on text data
that spans more than one line, remember to count newline characters.

Copying Files
Let’s try out the PHP copy function to create a clone of testfile.txt. Type in Exam-
ple 7-7 and save it as copyfile.php, then call up the program in your browser.

File Handling | 147



Example 7-7. Copying a file

<?php // copyfile.php
copy('testfile.txt', 'testfile2.txt') or die("Could not copy file");
echo "File successfully copied to 'testfile2.txt'";
?>

If you check your folder again, you’ll see that you now have the new file testfile2.txt in
it. By the way, if you don’t want your programs to exit on a failed copy attempt, you
could try the alternate syntax in Example 7-8.

Example 7-8. Alternate syntax for copying a file

<?php // copyfile2.php
if (!copy('testfile.txt', 'testfile2.txt')) echo "Could not copy file";
else echo "File successfully copied to 'testfile2.txt'";
?>

Moving a File
To move a file, rename it with the rename function, as in Example 7-9.

Example 7-9. Moving a file

<?php // movefile.php
if (!rename('testfile2.txt', 'testfile2.new'))
    echo "Could not rename file";
else echo "File successfully renamed to 'testfile2.new'";
?>

You can use the rename function on directories, too. To avoid any warning messages if
the original file or directory doesn’t exist, you can call the file_exists function first to
check.

Deleting a File
Deleting a file is just a matter of using the unlink function to remove it from the file-
system, as in Example 7-10.

Example 7-10. Deleting a file

<?php // deletefile.php
if (!unlink('testfile2.new')) echo "Could not delete file";
else echo "File 'testfile2.new' successfully deleted";
?>

Whenever you access files on your hard disk directly, you must also
always ensure that it is impossible for your filesystem to be compro-
mised. For example, if you are deleting a file based on user input, you
must make absolutely certain that it is a file that can be safely deleted
and that the user is allowed to delete it.

148 | Chapter 7: Practical PHP



As with moving a file, a warning message will be displayed if the file doesn’t exist; you
can avoid this by using file_exists to first check for its existence before calling unlink.

Updating Files
Often you will want to add more data to a saved file, which you can do in many ways.
You can use one of the append write modes (see Table 7-5), or you can simply open a
file for reading and writing with one of the other modes that supports writing, and
move the file pointer to the place within the file that you wish to write to.

The file pointer is the position within a file at which the next file access will take place,
whether it’s a read or a write. It is not the same as the file handle (as stored in the variable
$fh in Example 7-4), which contains details about the file being accessed.

You can see this in action by typing in Example 7-11, saving it as update.php, then
calling it up in your browser.

Example 7-11. Updating a file

<?php // update.php
$fh = fopen("testfile.txt", 'r+') or die("Failed to open file");
$text = fgets($fh);
fseek($fh, 0, SEEK_END);
fwrite($fh, "$text") or die("Could not write to file");
fclose($fh);
echo "File 'testfile.txt' successfully updated";
?>

This program opens testfile.txt for both reading and writing by setting the mode with
'r+', which puts the file pointer right at the start of the file. It then uses the fgets
function to read in a single line from the file (up to the first line feed). After that, the
fseek function is called to move the file pointer right to the file end, at which point the
line of text that was extracted from the start of the file (stored in $text) is then appended
to file’s end and the file is closed. The resulting file now looks like this:

Line 1
Line 2
Line 3
Line 1

The first line has successfully been copied and then appended to the file’s end.

As used here, in addition to the $fh file handle, the fseek function was passed two other
parameters, 0 and SEEK_END. The SEEK_END tells the function to move the file pointer to
the end of the file, and the 0 parameter tells it how many positions it should then be
moved backwards from that point. In the case of Example 7-11, a value of 0 is used
because the pointer is required to remain at the file’s end.

There are two other seek options available to the fseek function: SEEK_SET and
SEEK_CUR. The SEEK_SET option tells the function to set the file pointer to the exact

File Handling | 149



position given by the preceding parameter. Thus, the following example moves the file
pointer to position 18:

fseek($fh, 18, SEEK_SET);

SEEK_CUR sets the file pointer to the current position plus the value of the given offset.
Therefore, if the file pointer is currently at position 18, the following call will move it
to position 23:

fseek($fh, 5, SEEK_CUR);

Although this is not recommended unless you have very specific reasons for it, it is even
possible to use text files such as this (but with fixed line lengths) as simple flat file
databases. Your program can then use fseek to move back and forth within such a file
to retrieve, update, and add new records. Records can also be deleted by overwriting
them with zero characters, and so on.

Locking Files for Multiple Accesses
Web programs are often called by many users at the same time. If more than one person
tries to write to a file simultaneously, it can become corrupted. And if one person writes
to it while another is reading from it, the file will be all right but the person reading it
may get odd results. To handle simultaneous users, it’s necessary to use the file locking
function flock. This function queues up all other requests to access a file until your
program releases the lock. Whenever your programs use write access on files that may
be accessed concurrently by multiple users, you should add file locking to them, as in
Example 7-12, which is an updated version of Example 7-11.

Example 7-12. Updating a file with file locking

<?php
$fh   = fopen("testfile.txt", 'r+') or die("Failed to open file");
$text = fgets($fh);

if (flock($fh, LOCK_EX))
{
    fseek($fh, 0, SEEK_END);
    fwrite($fh, "$text") or die("Could not write to file");
    flock($fh, LOCK_UN);
}

fclose($fh);
echo "File 'testfile.txt' successfully updated";
?>

There is a trick to file locking to preserve the best possible response time for your
website visitors: perform it directly before a change you make to a file, and then unlock
it immediately afterwards. Having a file locked for any longer than this will slow down
your application unnecessarily. This is why the calls to flock in Example 7-12 are di-
rectly before and after the fwrite call.

150 | Chapter 7: Practical PHP



The first call to flock sets an exclusive file lock on the file referred to by $fh using the
LOCK_EX parameter:

flock($fh, LOCK_EX);

From this point onwards, no other processes can write to (or even read from) the file
until the lock is released by using the LOCK_UN parameter, like this:

flock($fh, LOCK_UN);

As soon as the lock is released, other processes are again allowed access to the file. This
is one reason why you should reseek to the point you wish to access in a file each time
you need to read or write data: another process could have changed the file since the
last access.

However, did you notice that the call to request an exclusive lock is nested as part of
an if statement? This is because flock is not supported on all systems, and therefore
it is wise to check whether you successfully secured a lock before you make your
changes, just in case one could not be obtained.

Something else you must consider is that flock is what is known as an advisory lock.
This means that it locks out only other processes that call the function. If you have any
code that goes right in and modifies files without implementing flock file locking, it
will always override the locking and could wreak havoc on your files.

Implementing file locking and then accidentally leaving it out in one section of code
can lead to an extremely hard-to-locate bug.

flock will not work on NFS and many other networked filesystems.
Also, when using a multithreaded server like ISAPI, you may not be able
to rely on flock to protect files against other PHP scripts running in
parallel threads of the same server instance. Additionally, flock is not
supported on any system using the old FAT filesystem, such as older
versions of Windows.

Reading an Entire File
A handy function for reading in an entire file without having to use file handles is
file_get_contents. It’s very easy to use, as you can see in Example 7-13.

Example 7-13. Using file_get_contents

<?php
echo "<pre>";  // Enables display of line feeds
echo file_get_contents("testfile.txt");
echo "</pre>"; // Terminates pre tag
?>

But the function is actually a lot more useful than that—you can also use it to fetch a
file from a server across the Internet, as in Example 7-14, which requests the HTML

File Handling | 151



from the O’Reilly home page and then displays it as if the page itself had been surfed
to. The result will be similar to the screen grab in Figure 7-1.

Example 7-14. Grabbing the O’Reilly home page

<?php
echo file_get_contents("http://oreilly.com");
?>

Figure 7-1. The O’Reilly home page grabbed with file_get_contents

Uploading Files
Uploading files to a web server is a subject area that seems daunting to many people,
but it actually couldn’t be much easier. All you need to do to upload a file from a form
is choose a special type of encoding called multipart/form-data; your browser will han-
dle the rest. To see how this works, type in the program in Example 7-15 and save it
as upload.php. When you run it, you’ll see a form in your browser that lets you upload
a file of your choice.

Example 7-15. Image uploader (upload.php)

<?php // upload.php
echo <<<_END
<html><head><title>PHP Form Upload</title></head><body>
<form method='post' action='upload.php' enctype='multipart/form-data'>

152 | Chapter 7: Practical PHP



Select File: <input type='file' name='filename' size='10' />
<input type='submit' value='Upload' />
</form>
_END;

if ($_FILES)
{
    $name = $_FILES['filename']['name'];
    move_uploaded_file($_FILES['filename']['tmp_name'], $name);
    echo "Uploaded image '$name'<br /><img src='$name' />";
}

echo "</body></html>";
?>

Let’s examine this program a section at a time. The first line of the multiline echo
statement starts an HTML document, displays the title, and then starts the document’s
body.

Next we come to the form that selects the POST method of form submission, sets the
target for posted data to the program upload.php (the program itself), and tells the web
browser that the data posted should be encoded using the content type multipart/form-
data.

With the form set up, the next lines display the prompt “Select File:” and then request
two inputs. The first input being asked for is for a file, which is done by using an input
type of file and a name of filename. This input field has a width of 10 characters.

The second requested input is just a Submit button that is given the label “Upload”
(replacing the default button text of “Submit Query”). And then the form is closed.

This short program shows a common technique in web programming in which a single
program is called twice: once when the user first visits a page, and again when the user
presses the Submit button.

The PHP code to receive the uploaded data is fairly simple, because all uploaded files
are placed into the associative system array $_FILES. Therefore, a quick check to see
whether $_FILES has anything in it is sufficient to determine whether the user has up-
loaded a file. This is done with the statement if ($_FILES).

The first time the user visits the page, before uploading a file, $_FILES is empty, so the
program skips this block of code. When the user uploads a file, the program runs again
and discovers an element in the $_FILES array.

Once the program realizes that a file was uploaded, the actual name, as read from the
uploading computer, is retrieved and placed into the variable $name. Now all that’s
necessary is to move the uploaded file from the temporary location in which PHP stored
it to a more permanent one. This is done using the move_uploaded_file function, passing
it the original name of the file, with which it is saved to the current directory.

File Handling | 153



Finally, the uploaded image is displayed within an <IMG> tag, and the result should look
like the screen grab in Figure 7-2.

Figure 7-2. Uploading an image as form data

If you run this program and receive warning messages such as “Permis-
sion denied” for the move_uploaded_file function call, you may not have
the correct permissions set for the folder in which the program is
running.

Using $_FILES

Five things are stored in the $_FILES array when a file is uploaded, as shown in Ta-
ble 7-6 (where file is the file upload field name supplied by the submitting form).

Table 7-6. The contents of the $_FILES array

Array element Contents

$_FILES[' file '][' name '] The name of the uploaded file (e.g., smiley.jpg)

$_FILES[' file '][' type '] The content type of the file (e.g., image/jpeg)

$_FILES[' file '][' size '] The file’s size in bytes

$_FILES[' file '][' tmp_name '] The name of the temporary file stored on the server

$_FILES[' file '][' error '] The error code resulting from the file upload

Content types used to be known as MIME (Multipurpose Internet Mail Extension)
types, but because their use later expanded to the whole Internet, they are nowadays
often called Internet media types. Table 7-7 shows some of the more frequently used
types that turn up in $_FILES['file']['type'].

154 | Chapter 7: Practical PHP



Table 7-7. Some common Internet media content types

application/pdf image/gif multipart/form-data text/xml

application/zip image/jpeg text/css video/mpeg

audio/mpeg image/png text/html video/mp4

audio/x-wav image/tiff text/plain video/quicktime

Validation

Hopefully it now goes without saying (although I’ll do so anyway) that form data val-
idation is of the utmost importance, due to the possibility of users attempting to hack
into your server.

In addition to maliciously formed input data, some of the things you also have to check
are whether a file was actually received and, if so, whether the right type of data was sent.

Taking all these things into account, Example 7-16, upload2.php, is a rewrite of up-
load.php.

Example 7-16. A more secure version of upload.php

<?php // upload2.php
echo <<<_END
<html><head><title>PHP Form Upload</title></head><body>
<form method='post' action='upload2.php' enctype='multipart/form-data'>
Select a JPG, GIF, PNG or TIF File:
<input type='file' name='filename' size='10' />
<input type='submit' value='Upload' /></form>
_END;

if ($_FILES)
{
    $name = $_FILES['filename']['name'];

    switch($_FILES['filename']['type'])
    {
        case 'image/jpeg': $ext = 'jpg'; break;
        case 'image/gif':  $ext = 'gif'; break;
        case 'image/png':  $ext = 'png'; break;
        case 'image/tiff': $ext = 'tif'; break;
        default:           $ext = '';    break;
    }
    if ($ext)
    {
        $n = "image.$ext";
        move_uploaded_file($_FILES['filename']['tmp_name'], $n);
        echo "Uploaded image '$name' as '$n':<br />";
        echo "<img src='$n' />";
    }
    else echo "'$name' is not an accepted image file";
}
else echo "No image has been uploaded";

File Handling | 155



echo "</body></html>";
?>

The non-HTML section of code has been expanded from the half-dozen lines of Ex-
ample 7-15 to more than 20 lines, starting at: if ($_FILES).

As with the previous version, this if line checks whether any data was actually posted,
but there is now a matching else near the bottom of the program that echoes a message
to screen when nothing has been uploaded.

Within the if statement, the variable $name is assigned the value of the filename as
retrieved from the uploading computer (just as before), but this time we won’t rely on
the user having sent us valid data. Instead, a switch statement is used to check the
uploaded content type against the four types of images this program supports. If a
match is made, the variable $ext is set to the three-letter file extension for that type.
Should no match be found, the file uploaded was not of an accepted type and the
variable $ext is set to the empty string "".

The next section of code then checks the variable $ext to see whether it contains a string
and, if so, creates a new filename called $n with the base name image and the extension
stored in $ext. This means that the program is in full control over the name of the file
to be created, as it can be only one of image.jpg, image.gif, image.png, or image.tif.

Safe in the knowledge that the program has not been compromised, the rest of the PHP
code is much the same as in the previous version. It moves the uploaded temporary
image to its new location and then displays it, while also displaying the old and new
image names.

Don’t worry about having to delete the temporary file that PHP creates
during the upload process, because if the file has not been moved or
renamed, it will be automatically removed when the program exits.

After the if statement there is a matching else, which is executed only if an unsup-
ported image type was uploaded, in which case it displays an appropriate error message.

When you write your own file uploading routines, I strongly advise you to use a similar
approach and have pre-chosen names and locations for uploaded files. That way no
attempts to add pathnames and other malicious data to the variables you use can get
through. If this means that more than one user could end up having a file uploaded
with the same name, you could prefix such files with the user’s name, or save them to
individually created folders for each user.

If, however, you must use a supplied filename, you should sanitize it by allowing only
alphanumeric characters and the period, which you can do with the following com-
mand, using a regular expression (see Chapter 17) to perform a search and replace on
$name:

156 | Chapter 7: Practical PHP



$name = preg_replace("/[^A-Za-z0-9.]/", "", $name);

This leaves only the characters A–Z, a–z, 0–9 and . in the string $name, and strips out
everything else.

Even better, to ensure that your program will work on all systems (regardless of whether
they are case-sensitive or case-insensitive), instead use the following command, which
changes all uppercase characters to lowercase at the same time:

$name = strtolower(preg_replace("/[^A-Za-z0-9.]/", "", $name));

Sometimes you may encounter the media type image/pjpeg, which in-
dicates a progressive JPEG. You can safely add this to your code as an
alias of image/jpeg, like this:

case 'image/pjpeg':
case 'image/jpeg': $ext = 'jpg'; break;

System Calls
Sometimes PHP will not have the function you need to perform a certain action, but
the operating system it is running on may. In such cases, you can use the exec system
call to do the job.

For example, to quickly view the contents of the current directory, you can use a pro-
gram such as the one in Example 7-17. If you are on a Windows system, it will run
as-is using the Windows dir command. On Linux, Unix, or Mac OS X, comment out
or remove the first line and uncomment the second to use the ls system command.
You may wish to type in this program, save it as exec.php, and call it up in your browser.

Example 7-17. Executing a system command

<?php // exec.php
$cmd = "dir";   // Windows
// $cmd = "ls"; // Linux, Unix & Mac

exec(escapeshellcmd($cmd), $output, $status);

if ($status) echo "Exec command failed";
else
{
    echo "<pre>";
    foreach($output as $line) echo "$line\n";
}
?>

Depending on the system you are using, the result of running this program will look
something like this (from a Windows dir command):

Volume in drive C is HP
Volume Serial Number is E67F-EE11

System Calls | 157



Directory of C:\web

20/01/2011  10:34
            .
    20/01/2011  10:34
                ..
        19/01/2011  16:26               236 maketest.php
        20/01/2011  10:47               198 exec.php
        20/01/2011  08:04            13,741 smiley.jpg
        19/01/2011  18:01                54 test.php
        19/01/2011  16:59                35 testfile.txt
        20/01/2011  09:35               886 upload.php
                    6 File(s)        15,150 bytes
                    2 Dir(s)  382,907,748,352 bytes free

exec takes three arguments:

1. The command itself (in the previous case, $cmd)

2. An array in which the system will put the output from the command (in the pre-
vious case, $output)

3. A variable to contain the returned status of the call (in the previous case, $status)

If you wish, you can omit the $output and $status parameters, but you will not know
the output created by the call or even whether it completed successfully.

You should also note the use of the escapeshellcmd function. It is a good habit to always
use this when issuing an exec call because it sanitizes the command string, preventing
the execution of arbitrary commands should you supply user input to the call.

The system calling functions are typically disabled on shared web hosts,
as they pose a security risk. You should always try to solve your prob-
lems within PHP if you can, and go to the system directly only if it is
really necessary. Also be aware that going to the system is relatively slow,
and you’ll need to code two implementations if your application is ex-
pected to run on both Windows and Linux/Unix systems.

XHTML
I’ve used some elements of XHTML (Extensible Hypertext Markup Language) already
in this book, although you may not have realized it. For example, instead of the simple
HTML tag <br>, I’ve been using the XHTML <br /> version. But what’s the difference
between the two markup languages?

Well, not a lot at first glance, but XHTML improves on HTML by clearing up a lot of
little inconsistencies that make it hard to process. HTML requires a quite complex and
very lenient parser, whereas XHTML, which uses standard syntax more like XML (Ex-
tensible Markup Language), is very easily processed with quite a simple parser—a
parser being a piece of code that processes tags and commands and works out what
they mean.

158 | Chapter 7: Practical PHP



The Benefits of XHTML
Any program that can handle XML files can quickly process XHTML documents. As
more and more devices such as iPhones, BlackBerries, and Android and Windows
Phone devices (not to mention a plethora of new tablet devices) become web-enabled,
it is increasingly important to ensure that web content looks good on them as well as
on a PC or laptop’s web browser, and the tighter syntax required by XHTML is a big
factor in helping this cross-platform compatibility.

What is happening right now is that browser developers, in order to be able to provide
faster and more powerful programs, are trying to push web developers over to using
XHTML, and the time may eventually come when HTML is superseded by XHTML—
so it’s a good idea to start using it now.

XHTML Versions
The XHTML standard is constantly evolving, and there have been a few versions in
use, but for one reason or another XHTML 1.0 has ended up being the only version
that you need to understand.

While there have been other versions of XHTML (such as 1.1, 1.2, and 2.0) that have
reached proposal stages and even begun to be used, none of them has gained much
traction among web developers—that makes it all the more simple for you and me, as
there’s only one version to master.

What’s Different?
The following XHTML rules differentiate it from HTML:

• All tags must be closed by another tag. In cases in which there is no matching
closing tag, the tag must close itself using a space followed by the symbols / and
>. So, for example, a tag such as <input type='submit'> needs to be changed into
<input type='submit' />. In addition, all opening <p> tags now require a closing
</p> tag, too. And no, you can’t replace them with <p />.

• All tags must be correctly nested. Therefore, the string <b>My first name is
<i>Robin</b></i> is not allowed, because the opening <b> has been closed before
the <i>. The correct version is <b>My first name is <i>Robin</i></b>.

• All tag attributes must be enclosed in quotation marks. Instead of using tags such
as <form method=post action=post.php>, you should instead use <form
method='post' action='post.php'>. You can also use double quotes: <form
method="post" action="post.php">.

• The ampersand (&) character cannot be used on its own. For example, the string
“Batman & Robin” must be replaced with “Batman &amp; Robin”. This means
that URLs require modification, too: the HTML syntax <a href="index.php?

XHTML | 159



page=12&item=15"> should be replaced with <a href="index.php?
page=12&amp;item=15">.

• XHTML tags are case-sensitive and must be all in lowercase. Therefore, HTML
such as <BODY><DIV ID="heading"> must be changed to the following syntax:
<body><div id="heading">.

• Attributes cannot be minimized any more, so tags such as <option name="bill"
selected> now must be replaced with an assigned value: <option name="bill"
selected="selected">. All other attributes, such as checked and disabled, also need
changing to checked="checked", disabled="disabled", and so on.

• XHTML documents must start with a new XML declaration on the very first line,
like this: <?xml version="1.0" encoding="UTF-8"?>.

• The DOCTYPE declaration has been changed.

• The <html> tag now requires an xmlns attribute.

Let’s take a look at the XHTML 1.0–conforming document in Example 7-18.

Example 7-18. An example XML document

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
    <head>
        <meta http-equiv="Content-Type"
            content="text/html; charset=utf-8" />
        <title>XHTML 1.0 Document</title>
    </head>
    <body>
        <p>This is an example XHTML 1.0 document</p>
        <h1>This is a heading</h1>
        <p>This is some text</p>
    </body>
</html>

As previously discussed, the document begins with an XML declaration, followed by
the DOCTYPE declaration and the <html> tag with an xmlns attribute. From there on, it all
looks like straightforward HTML, except that the meta tag is closed properly with />.

HTML 4.01 Document Types
To tell the browser precisely how to handle a document, use the DOCTYPE declaration,
which defines the syntax that is allowed. HTML 4.01 supports three DTDs (document
type declarations), as can be seen in the following examples.

The strict DTD in Example 7-19 requires complete adherence to HTML 4.01 syntax.

160 | Chapter 7: Practical PHP



Example 7-19. The HTML 4.01 Strict DTD

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
    "http://www.w3.org/TR/html4/strict.dtd">

The loose DTD in Example 7-20 allows some older elements and deprecated attributes.
(The standards at http://w3.org/TR/xhtml1 explain which items are deprecated.)

Example 7-20. The HTML 4.01 Transitional DTD

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
    "http://www.w3.org/TR/html4/loose.dtd">

Finally, Example 7-21 signifies an HTML 4.01 document containing a frameset.

Example 7-21. The HTML 4.01 Frameset DTD

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
    "http://www.w3.org/TR/html4/frameset.dtd">

The HTML5 Document Type
For HTML5, using document types has become much simpler because there’s now just
one of them, as follows:

<!DOCTYPE html>

Just the simple word html is sufficient to tell the browser that your web page is designed
for HTML5. Further, because all the latest versions of most popular browsers have
supported most of the HTML5 specification since 2011 or so, this document type is
more and more likely to be the only one you need, unless you choose to cater for older
browsers.

XHTML 1.0 Document Types
You may well have come across one or more of the HTML document types before.
However, the syntax is slightly different when it comes to XHTML 1.0, as shown in
the following examples.

The strict DTD in Example 7-22 rules out the use of deprecated attributes and requires
code that is completely correct.

Example 7-22. The XHTML 1.0 Strict DTD

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

The transitional XHTML 1.0 DTD in Example 7-23 allows deprecated attributes and
is the most commonly used DTD.

XHTML | 161

http://w3.org/TR/xhtml1


Example 7-23. The XHTML 1.0 Transitional DTD

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Example 7-24 shows the only XHTML 1.0 DTD that supports framesets.

Example 7-24. The XHTML 1.0 Frameset DTD

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
    "http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML Validation
To validate your XHTML, visit the W3C validation site at http://validator.w3.org,
where you can validate a document by URL, by file upload, or by typing it in or copying
and pasting it into a web form. Before you code some PHP to create a web page, submit
a sample of the output that you want to create to the validation site. No matter how
carefully you code your XHTML, you will be surprised how many errors you’ve left in.

Whenever a document is not fully compatible with XHTML, you will be given helpful
messages explaining how you can correct it. Figure 7-3 shows that the document in
Example 7-18 successfully passes the XHTML 1.0 Strict validation test.

Figure 7-3. The document in Example 7-18, having passed validation

162 | Chapter 7: Practical PHP

http://validator.w3.org


You will find that your XHTML 1.0 documents are so close to HTML
that even if they are called up on a browser that is unaware of XHTML,
they should display correctly. The only potential problem is with the
<script> tag. To ensure compatibility, avoid using the <script
src="script.src" /> syntax and replace it with the following: <script
src="script.src"></script>.

This chapter represented another long journey in your task to master PHP. Now that
you have formatting, file handling, XHTML, and a lot of other important concepts
under your belt, the next chapter will introduce you to another major topic, MySQL.

Test Your Knowledge
1. Which printf conversion specifier would you use to display a floating-point

number?

2. What printf statement could be used to take the input string “Happy Birthday”
and output the string “**Happy”?

3. To send the output from printf to a variable instead of to a browser, what alter-
native function would you use?

4. How would you create a Unix timestamp for 7:11 AM on May 2, 2016?

5. Which file access mode would you use with fopen to open a file in write and read
mode, with the file truncated and the file pointer at the start?

6. What is the PHP command for deleting the file file.txt?

7. Which PHP function is used to read in an entire file in one go, even from across
the Web?

8. Which PHP system variable holds the details on uploaded files?

9. Which PHP function enables the running of system commands?

10. What is wrong with the following XHTML 1.0 tag: <input type=file name=file
size=10>?

See “Chapter 7 Answers” on page 507 in Appendix A for the answers to these
questions.

Test Your Knowledge | 163





CHAPTER 8

Introduction to MySQL

With well over ten million installations, MySQL is probably the most popular database
management system for web servers. Developed in the mid-1990s, it’s now a mature
technology that powers many of today’s most-visited Internet destinations.

One reason for its success must be the fact that, like PHP, it’s free to use. But it’s also
extremely powerful and exceptionally fast—it can run on even the most basic of hard-
ware, and it hardly puts a dent in system resources.

MySQL is also highly scalable, which means that it can grow with your website. In fact,
in a comparison of several databases by eWEEK, MySQL and Oracle tied for both best
performance and greatest scalability.

MySQL Basics
A database is a structured collection of records or data stored in a computer system
and organized in such a way that it can be searched quickly and information can be
retrieved rapidly.

The SQL in MySQL stands for Structured Query Language. This language is loosely
based on English and is also used on other databases, such as Oracle and Microsoft
SQL Server. It is designed to allow simple requests from a database via commands such
as:

SELECT title FROM publications WHERE author = 'Charles Dickens';

A MySQL database contains one or more tables, each of which contains records or
rows. Within these rows are various columns or fields that contain the data itself. Ta-
ble 8-1 shows the contents of an example database of five publications detailing the
author, title, type, and year of publication.

165



Table 8-1. Example of a simple database

Author Title Type Year

Mark Twain The Adventures of Tom Sawyer Fiction 1876

Jane Austen Pride and Prejudice Fiction 1811

Charles Darwin The Origin of Species Non-Fiction 1856

Charles Dickens The Old Curiosity Shop Fiction 1841

William Shakespeare Romeo and Juliet Play 1594

Each row in the table is the same as a row in a MySQL table, and each element within
a row is the same as a MySQL field.

To uniquely identify this database, I’ll refer to it as the publications database in the
examples that follow. And, as you will have observed, all these publications are con-
sidered to be classics of literature, so I’ll call the table within the database that holds
the details classics.

Summary of Database Terms
The main terms you need to acquaint yourself with for now are:

Database
The overall container for a collection of MySQL data.

Table
A subcontainer within a database that stores the actual data.

Row
A single record within a table, which may contain several fields.

Column
The name of a field within a row.

I should note that I’m not trying to reproduce the precise terminology used in academic
literature about relational databases, but just to provide simple, everyday terms to help
you quickly grasp basic concepts and get started with a database.

Accessing MySQL via the Command Line
There are three main ways in which you can interact with MySQL: using a command
line, via a web interface such as phpMyAdmin, and through a programming language
like PHP. We’ll start doing the third of these in Chapter 10, but for now, let’s look at
the first two.

166 | Chapter 8: Introduction to MySQL



Starting the Command-Line Interface
The following sections describe relevant instructions for Windows, OS X, and Linux.

Windows users

If you installed the Zend Server CE WAMP as explained in Chapter 2, you will be able
to access the MySQL executable from one of the following directories (the first on 32-
bit computers, and the second on 64-bit machines):

C:\Program Files\Zend\MySQL51\bin
C:\Program Files (x86)\Zend\MySQL51\bin

If you installed Zend Server CE in a place other than \Program Files (or
\Program Files (x86)), you will need to use that directory instead.

By default, the initial MySQL user will be root and will not have had a password set.
Seeing as this is a development server that only you should be able to access, we won’t
worry about creating one yet.

So, to enter MySQL’s command-line interface, select Start→Run and enter CMD into the
Run box, then press Return. This will call up a Windows Command prompt. From
there, enter one of the following (making any appropriate changes as just discussed):

"C:\Program Files\Zend\MySQL51\bin\mysql" -u root
"C:\Program Files (x86)\Zend\MySQL51\bin\mysql" -u root

Note the quotation marks surrounding the path and filename. These
are present because the name contains spaces, which the Command
prompt doesn’t correctly interpret; the quotation marks group the parts
of the filename into a single string for the Command program to
understand.

This command tells MySQL to log you in as the user root, without a password. You
will now be logged in to MySQL and can start entering commands. To be sure every-
thing is working as it should be, enter the following—the results should be similar to
Figure 8-1:

SHOW databases;

If this has not worked and you get an error, make sure that you have correctly installed
MySQL along with Zend Server CE (as described in Chapter 2). Otherwise, you are
ready to move on to the following section, “Using the Command-Line Inter-
face” on page 170.

Accessing MySQL via the Command Line | 167



OS X users

To proceed with this chapter, you should have installed Zend Server CE as detailed in
Chapter 2. You should also have the web server already running and the MySQL server
started.

To enter the MySQL command-line interface, start the Terminal program (which
should be available in Finder→Utilities). Then call up the MySQL program, which will
have been installed in the directory /usr/local/zend/mysql/bin.

By default, the initial MySQL user is root and it will have a password of root too. So,
to start the program, type the following:

/usr/local/zend/mysql/bin/mysql -u root

This command tells MySQL to log you in as the user root and not to request your
password. To verify that all is well, type in the following—Figure 8-2 should be the
result:

SHOW databases;

If you receive an error such as “Can’t connect to local MySQL server through socket,”
you haven’t started up the MySQL server, so make sure you followed the advice in
Chapter 2 about configuring MySQL to start when OS X starts.

You should now be ready to move on to the next section, “Using the Command-Line
Interface” on page 170.

Linux users

On a system running a Unix-like operating system such as Linux, you will almost cer-
tainly already have PHP and MySQL installed and running, and you will be able to

Figure 8-1. Accessing MySQL from a Windows Command prompt

168 | Chapter 8: Introduction to MySQL



enter the examples in the next section. But first, you should type the following to log
in to your MySQL system:

mysql -u root -p

This tells MySQL to log you in as the user root and to request your password. If you
have a password, enter it; otherwise, just press Return.

Once you are logged in, type the following to test the program—you should see some-
thing like Figure 8-3 in response:

SHOW databases;

Figure 8-3. Accessing MySQL using Linux

Figure 8-2. Accessing MySQL from the OS X Terminal program

Accessing MySQL via the Command Line | 169



If this procedure fails at any point, please refer to the section “Installing a LAMP on
Linux” on page 34 in Chapter 2 to ensure that you have MySQL properly installed.
Otherwise, you should now be ready to move on to the following section, “Using the
Command-Line Interface” on page 170.

MySQL on a remote server

If you are accessing MySQL on a remote server, you should telnet (or preferably, for
security, use SSH) into the remote machine, which will probably be a Linux/FreeBSD/
Unix type of box. Once in there, things may be a little different for you, depending on
how the system administrator has set up the server—especially if it’s a shared hosting
server. Therefore, you need to ensure that you have been given access to MySQL and
that you have your username and password. Armed with these, you can then type the
following, where username is the name supplied:

mysql -u username -p

Enter your password when prompted. You can then try the following command, which
should result in something like the screen grab in Figure 8-3:

SHOW databases;

There may be other databases already created, and the test database may not be there.

Bear in mind also that system administrators have ultimate control over everything and
that you can encounter some unexpected setups. For example, you may find that you
are required to preface all database names that you create with a unique identifying
string to ensure that you do not conflict with databases created by other users.

If you have any problems, have a word with your system administrator, who should be
able to sort them out. Let the sysadmin know that you need a username and password,
and request the ability to create new databases or, at a minimum, to have at least one
database created for you ready to use. You can then create all the tables you require
within that database.

Using the Command-Line Interface
From here on out, it makes no difference whether you are using Windows, OS X, or
Linux to access MySQL directly, as all the commands used (and errors you may receive)
are identical.

The semicolon

Let’s start with the basics. Did you notice the semicolon (;) at the end of the SHOW
databases; command that you typed? The semicolon is used by MySQL to separate or
end commands. If you forget to enter it, MySQL will issue a prompt and wait for you
to do so. The required semicolon was made part of the syntax to let you enter multiple-
line commands, which can be convenient, because some commands get quite long. It

170 | Chapter 8: Introduction to MySQL



also allows you to issue more than one command at a time by placing a semicolon after
each one. The interpreter gets them all in a batch when you press the Return key and
executes them in order.

It’s very common to receive a MySQL prompt instead of the results of
your command; it means that you forgot the final semicolon. Just enter
the semicolon, press the Return key, and you’ll get what you want.

There are six different prompts that MySQL may present you with (see Table 8-2), so
you will always know where you are during a multiline input.

Table 8-2. MySQL’s six command prompts

MySQL prompt Meaning

mysql> MySQL is ready and waiting for a command

-> Waiting for the next line of a command

'> Waiting for the next line of a string started with a single quote

"> Waiting for the next line of a string started with a double quote

`> Waiting for the next line of a string started with a backtick

/*> Waiting for the next line of a comment started with /*

Canceling a command

If you are partway through entering a command and decide you don’t wish to execute
it after all, whatever you do, don’t press Ctrl-C! That will close the program. Instead,
you can enter \c and press Return. Example 8-1 shows how to use this command.

Example 8-1. Canceling a line of input

meaningless gibberish to mysql \c

When you type in that line, MySQL will ignore everything you typed and issue a new
prompt. Without the \c, it would have displayed an error message. Be careful, though:
if you have opened a string or comment, you’ll need to close it before using the \c or
MySQL will think the \c is just part of the string. Example 8-2 shows the right way to
do this.

Example 8-2. Canceling input from inside a string

this is "meaningless gibberish to mysql" \c

Also note that using \c after a semicolon will not work, as it is then a new statement.

Accessing MySQL via the Command Line | 171



MySQL Commands
You’ve already seen the SHOW command, which lists tables, databases, and many other
items. The commands you’ll use most often are listed in Table 8-3.

Table 8-3. A selection of common MySQL commands

Command Parameter(s) Meaning

ALTER database, table Alter database or table

BACKUP table Back up table

\c  Cancel input

CREATE database, table Create database or table

DELETE Expression with table and row Delete row from table

DESCRIBE table Describe the table’s columns

DROP database, table Delete database or table

EXIT (Ctrl-C)  Exit

GRANT user details Change user privileges

HELP (\h, \?) item Display help on item

INSERT Expression with data Insert data

LOCK table(s) Lock table(s)

QUIT (\q)  Same as EXIT

RENAME table Rename table

SHOW Too many items to list List item’s details

SOURCE filename Execute commands from filename

STATUS (\s)  Display current status

TRUNCATE table Empty table

UNLOCK table(s) Unlock table(s)

UPDATE Expression with data Update an existing record

USE database Use database

I’ll cover most of these as we proceed, but first, you need to remember a couple of
points about MySQL commands:

• SQL commands and keywords are case-insensitive. CREATE, create, and CrEaTe all
mean the same thing. However, for the sake of clarity, the recommended style is
to use uppercase.

• Table names are case-insensitive on Windows, but case-sensitive on Linux and OS
X. So, for portability purposes, you should always choose a case and stick to it.
The recommended style is to use lowercase or mixed upper- and lowercase for table
names.

172 | Chapter 8: Introduction to MySQL



Creating a database

If you are working on a remote server and have only a single user account and access
to a single database that was created for you, move on to the next section: “Creating a
table” on page 174. Otherwise, get the ball rolling by issuing the following command
to create a new database called publications:

CREATE DATABASE publications;

A successful command will return a message that doesn’t mean much yet—“Query
OK, 1 row affected (0.00 sec)”—but will make sense soon. Now that you’ve created
the database, you want to work with it, so issue:

USE publications;

You should now see the message “Database changed.” You’re now set to proceed with
the following examples.

Creating users

Now that you’ve seen how easy it is to use MySQL, and created your first database, it’s
time to look at how you create users—you probably won’t want to grant your PHP
scripts root access to MySQL, as it could cause a real headache should you get hacked.

To create a user, issue the GRANT command, which takes the following form (don’t type
this in—it’s not an actual working command):

GRANT PRIVILEGES ON database.object TO 'username'@'hostname' IDENTIFIED BY 'password';

This should be pretty straightforward, with the possible exception of the data
base.object part. What this refers to is the database itself and the objects it contains,
such as tables (see Table 8-4).

Table 8-4. Example parameters for the GRANT command

Arguments Meaning

*.* All databases and all their objects

database.* Only the database called database and all its objects

database.object Only the database called database and its object called object

So, let’s create a user who can access just the new publications database and all its
objects, by entering the following (replacing the username jim and the password
mypasswd with ones of your choosing):

GRANT ALL ON publications.* TO 'jim'@'localhost' IDENTIFIED BY 'mypasswd';

What this does is allow the user jim@localhost full access to the publications database
using the password mypasswd. You can test whether this step has worked by entering
QUIT to exit and then rerunning MySQL the way you did before, but instead of entering
-u root -p, type -u jim -p, or whatever the username is that you created. See Table 8-5

Accessing MySQL via the Command Line | 173



for the correct command for your operating system, assuming you installed Zend Server
CE (as outlined in Chapter 2), but modify it as necessary if the mysql client is installed
in a different directory on your system.

Table 8-5. Starting MySQL and logging in as jim@localhost

OS Example command

Windows 32-bit "C:\Program Files\Zend\MySQL51\bin\mysql" -u jim -p

Windows 64-bit "C:\Program Files (x86)\Zend\MySQL51\bin\mysql" -u jim -p

OS X /usr/local/zend/mysql/bin/mysql -u jim -p

Linux mysql -u jim –p

All you have to do now is enter your password when prompted, and you will be logged
in. By the way, if you prefer, you can place your password immediately following the
-p (without any spaces) to avoid having to enter it when prompted. But this is consid-
ered poor practice, because if other people are logged in to your system, there may be
ways for them to look at the command you entered and find out your password.

You can grant only privileges that you already have, and you must also
have the privilege to issue GRANT commands. There are a whole range of
privileges you can choose to grant if you are not granting all privileges.
For further details, please visit the following site, which also covers the
REVOKE command, which can remove privileges once granted: http://ti
nyurl.com/mysqlgrant.

You also need to be aware that if you create a new user but do not specify
an IDENTIFIED BY clause, the user will have no password, a situation that
is very insecure and should be avoided.

Creating a table

At this point, you should now be logged in to MySQL with ALL privileges granted for
the database publications (or a database that was created for you)—you’re ready to
create your first table. Make sure that database is in use by typing the following (re-
placing publications with the name of your database if it is different):

USE publications;

Now enter the commands in Example 8-3 one line at a time.

Example 8-3. Creating a table called classics

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4)) ENGINE MyISAM;

174 | Chapter 8: Introduction to MySQL

http://tinyurl.com/mysqlgrant
http://tinyurl.com/mysqlgrant


You could also issue this command on a single line, like this:

CREATE TABLE classics (author VARCHAR(128), title VARCHAR(128), 
 type VARCHAR(16), year CHAR(4)) ENGINE MyISAM;

but MySQL queries can be long and complicated, so I recommend en-
tering one part of a query per line until you are comfortable with longer
ones.

MySQL should then issue the response “Query OK, 0 rows affected,” along with a note
of how long it took to execute the command. If you see an error message instead, check
your syntax carefully. Every parenthesis and comma counts, and typing errors are easy
to make. In case you are wondering, the ENGINE MyISAM tells MySQL the type of database
engine to use for this table.

To check whether your new table has been created, type:

DESCRIBE classics;

All being well, you will see the sequence of commands and responses shown in Exam-
ple 8-4, where you should particularly note the table format displayed.

Example 8-4. A MySQL session: creating and checking a new table

mysql> USE publications;
Database changed
mysql> CREATE TABLE classics (
    ->  author VARCHAR(128),
    ->  title VARCHAR(128),
    ->  type VARCHAR(16),
    ->  year CHAR(4)) ENGINE MyISAM;
Query OK, 0 rows affected (0.03 sec)

mysql> DESCRIBE classics;
+--------+--------------+------+-----+---------+-------+
| Field  | Type         | Null | Key | Default | Extra |
+--------+--------------+------+-----+---------+-------+
| author | varchar(128) | YES  |     | NULL    |       |
| title  | varchar(128) | YES  |     | NULL    |       |
| type   | varchar(16)  | YES  |     | NULL    |       |
| year   | char(4)      | YES  |     | NULL    |       |
+--------+--------------+------+-----+---------+-------+
4 rows in set (0.00 sec)

The DESCRIBE command is an invaluable debugging aid when you need to ensure that
you have correctly created a MySQL table. You can also use it to remind yourself about
a table’s field or column names and the types of data in each one. Let’s look at each of
the headings in detail:

Field
The name of each field or column within a table.

Accessing MySQL via the Command Line | 175



Type
The type of data being stored in the field.

Null
Whether the field is allowed to contain a value of NULL.

Key
MySQL supports keys or indexes, which are quick ways to look up and search for
data. The Key heading shows what type of key (if any) has been applied.

Default
The default value that will be assigned to the field if no value is specified when a
new row is created.

Extra
Additional information, such as whether a field is set to autoincrement.

Data Types
In Example 8-3, you may have noticed that three of the table’s fields were given the
data type VARCHAR, and one was given the type CHAR. The term VARCHAR stands for VARi-
able length CHARacter string and the command takes a numeric value that tells MySQL
the maximum length allowed for a string stored in this field.

This data type is very useful, as it allows MySQL to plan the size of a database and
perform lookups and searches more easily. The downside is that if you ever attempt to
assign a string value longer than the length allowed, it will be truncated to the maximum
length declared in the table definition.

The year field, however, has more predictable values, so instead of VARCHAR we use the
more efficient CHAR(4) data type. The parameter of 4 allows for four bytes of data,
supporting all years from –999 to 9999. You could, of course, just store two-digit values
for the year, but if your data is going to still be needed in the following century, or may
otherwise wrap around, it will have to be sanitized first—much like the “millennium
bug” that would have caused dates beginning on January 1, 2000, to be treated as 1900
on many of the world’s biggest computer installations.

The reason I didn’t use the YEAR data type in the classics table is because
it supports only the years 0000 and 1901 through 2155. This is because
MySQL stores the year in a single byte. This is done for reasons of effi-
ciency, but it means that only 256 years are available, and the publica-
tion years of the titles in the classics table are well before 1901.

Both CHAR and VARCHAR accept text strings and impose a limit on the size of the field.
The difference is that every string in a CHAR field has the specified size. If you put in a
smaller string, it is padded with spaces. A VARCHAR field does not pad the text; it lets the
size of the field vary to fit the text that is inserted. But VARCHAR requires a small amount

176 | Chapter 8: Introduction to MySQL



of overhead to keep track of the size of each value, so CHAR is slightly more efficient if
the sizes are similar in all records (whereas VARCHAR is more efficient if the sizes can vary
a lot and get large). In addition, the overhead causes access to VARCHAR data to be slightly
slower than to CHAR data.

The CHAR data type

Table 8-6 lists the CHAR data types. All these types offer a parameter that sets the max-
imum (or exact) length of the string allowed in the field. As the table shows, each type
also has a built-in maximum. Types of VARCHAR between 0 and 255 bytes in length incur
a storage overhead of 1 byte, or 2 bytes overhead if 256 bytes or more.

Table 8-6. MySQL’s CHAR data types

Data type Bytes used Examples

CHAR(n) Exactly n (<= 255) CHAR(5): “Hello” uses 5 bytes

CHAR(57): “New York” uses 57 bytes

VARCHAR(n) Up to n (<= 65535) VARCHAR(100): “Greetings” uses 9 bytes plus 1 byte overhead

VARCHAR(7): “Morning” uses 7 bytes plus 1 byte overhead

The BINARY data type

The BINARY data type is used for storing strings of full bytes that do not have an asso-
ciated character set (see Table 8-7). For example, you might use the BINARY data type
to store a GIF image.

Table 8-7. MySQL’s BINARY data types

Data type Bytes used Examples

BINARY(n) or BYTE(n) Exactly n (<= 255) As for CHAR, but contains binary data

VARBINARY( n ) Up to n (<= 65535) As for VARCHAR, but contains binary data

The TEXT and VARCHAR data types

The differences between TEXT and VARCHAR are small:

• Prior to version 5.0.3, MySQL removed leading and trailing spaces from VARCHAR
fields, and they could only be up to 256 bytes in length.

• TEXT fields cannot have default values.

• MySQL indexes only the first n characters of a TEXT column (you specify n when
you create the index).

What this means is that VARCHAR is the better and faster data type to use if you need to
search the entire contents of a field. If you will never search more than a certain number
of leading characters in a field, you should probably use a TEXT data type (see Table 8-8).

Accessing MySQL via the Command Line | 177



Table 8-8. MySQL’s TEXT data types

Data type Bytes used Attributes

TINYTEXT(n) Up to n (<= 255) Treated as a string with a character set

TEXT(n) Up to n (<= 65535) Treated as a string with a character set

MEDIUMTEXT(n) Up to n (<= 16777215) Treated as a string with a character set

LONGTEXT(n) Up to n (<= 4294967295) Treated as a string with a character set

The BLOB data type

The term BLOB stands for Binary Large OBject, and therefore, as you would think, the
BLOB data type is most useful for binary data in excess of 65,536 bytes in size. The main
other difference between the BLOB and BINARY data types is that BLOBs cannot have default
values (see Table 8-9).

Table 8-9. MySQL’s BLOB data types

Data type Bytes used Attributes

TINYBLOB(n) Up to n (<= 255) Treated as binary data—no character set

BLOB(n) Up to n (<= 65535) Treated as binary data—no character set

MEDIUMBLOB(n) Up to n (<= 16777215) Treated as binary data—no character set

LONGBLOB(n) Up to n (<= 4294967295) Treated as binary data—no character set

Numeric data types

MySQL supports various numeric data types, from a single byte up to double-precision
floating-point numbers. Although the most memory that a numeric field can use up is
eight bytes, you are well advised to choose the smallest data type that will adequately
handle the largest value you expect. This will help keep your databases small and
quickly accessible.

Table 8-10 lists the numeric data types supported by MySQL and the ranges of values
they can contain. In case you are not acquainted with the terms, a signed number is one
with a possible range from a minus value, through zero, to a positive value, and an
unsigned number has a value ranging from zero to some positive number. They can
both hold the same number of values—just picture a signed number as being shifted
halfway to the left so that half its values are negative and half are positive. Note that
floating-point values (of any precision) may only be signed.

178 | Chapter 8: Introduction to MySQL



Table 8-10. MySQL’s numeric data types

Data type
Bytes
used

Minimum value
(signed/unsigned)

Maximum value
(signed/unsigned)

TINYINT 1 −128

0

127

255

SMALLINT 2 −32768

0

32767

65535

MEDIUMINT 3 −8388608

0

8388607

16777215

INT or INTEGER

4 −2147483648

0

2147483647

4294967295

BIGINT 8 −9223372036854775808

0

9223372036854775807

18446744073709551615

FLOAT 4 −3.402823466E+38

(no unsigned)

3.402823466E+38

(no unsigned)

DOUBLE or REAL 8 −1.7976931348623157E+308

(no unsigned)

1.7976931348623157E+308

(no unsigned)

To specify whether a data type is signed or unsigned, use the UNSIGNED qualifier. The
following example creates a table called tablename with a field in it called fieldname of
the data type UNSIGNED INTEGER:

CREATE TABLE tablename (fieldname INT UNSIGNED);

When creating a numeric field, you can also pass an optional number as a parameter,
like this:

CREATE TABLE tablename (fieldname INT(4));

But you must remember that, unlike with BINARY and CHAR data types, this parameter
does not indicate the number of bytes of storage to use. It may seem counterintuitive,
but what the number actually represents is the display width of the data in the field
when it is retrieved. It is commonly used with the ZEROFILL qualifier, like this:

CREATE TABLE tablename (fieldname INT(4) ZEROFILL);

What this does is cause any numbers with a width of less than four characters to be
padded with one or more zeros, sufficient to make the display width of the field four
characters long. When a field is already of the specified width or greater, no padding
takes place.

Accessing MySQL via the Command Line | 179



DATE and TIME

The main remaining data types supported by MySQL relate to the date and time and
can be seen in Table 8-11.

Table 8-11. MySQL’s DATE and TIME data types

Data type Time/date format

DATETIME '0000-00-00 00:00:00'

DATE '0000-00-00'

TIMESTAMP '0000-00-00 00:00:00'

TIME '00:00:00'

YEAR 0000 (Only years 0000 and 1901 - 2155)

The DATETIME and TIMESTAMP data types display the same way. The main difference is
that TIMESTAMP has a very narrow range (the years 1970 through 2037), whereas DATE
TIME will hold just about any date you’re likely to specify, unless you’re interested in
ancient history or science fiction.

TIMESTAMP is useful, however, because you can let MySQL set the value for you. If you
don’t specify the value when adding a row, the current time is automatically inserted.
You can also have MySQL update a TIMESTAMP column each time you change a row.

The AUTO_INCREMENT data type

Sometimes you need to ensure that every row in your database is guaranteed to be
unique. You could do this in your program by carefully checking the data you enter
and making sure that there is at least one value that differs in any two rows, but this
approach is error-prone and works only in certain circumstances. In the classics table,
for instance, an author may appear multiple times. Likewise, the year of publication is
likely to be duplicated, and so on. It would be hard to guarantee that you have no
duplicate rows.

The general solution is to use an extra column just for this purpose. In a while, we’ll
look at using a publication’s ISBN (International Standard Book Number) to ensure
that the rows in the classics table are unique, but first I’d like to introduce the
AUTO_INCREMENT data type.

As its name implies, a column given this data type will set the value of its contents to
that of the column entry in the previously inserted row, plus 1. Example 8-5 shows how
to add a new column called id to the table classics with autoincrementing.

Example 8-5. Adding the autoincrementing column id

ALTER TABLE classics ADD id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY;

180 | Chapter 8: Introduction to MySQL



This is your introduction to the ALTER command, which is very similar to CREATE.
ALTER operates on an existing table, and can add, change, or delete columns. Our ex-
ample adds a column named id with the following characteristics:

INT UNSIGNED
Makes the column take an integer large enough for you to store more than four
billion records in the table.

NOT NULL
Ensures that every column has a value. Many programmers use NULL in a field to
indicate that the field doesn’t have a value, but that would allow duplicates, which
would violate the whole reason for this column’s existence. So, we disallow NULL
values.

AUTO_INCREMENT
Causes MySQL to set a unique value for this column in every row, as described
earlier. We don’t really have control over the value that this column will take in
each row, but we don’t care: all we care about is that we are guaranteed a unique
value.

KEY
An autoincrementing column is useful as a key, because you will tend to search for
rows based on this column. This concept will be explained in the section “In-
dexes” on page 185, a little further on in this chapter.

Each entry in the column id will now have a unique number, with the first starting at
1 and the others counting upwards from there. And whenever a new row is inserted,
its id column will automatically be given the next number in the sequence.

Rather than applying the column retroactively, you could have included it by issuing
the CREATE command in slightly different format. In that case, the command in Exam-
ple 8-3 would be replaced with Example 8-6. Check the final line in particular.

Example 8-6. Adding the autoincrementing id column at table creation

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 type VARCHAR(16),
 year CHAR(4),
 id INT UNSIGNED NOT NULL AUTO_INCREMENT KEY) ENGINE MyISAM;

If you wish to check whether the column has been added, use the following command
to view the table’s columns and data types:

DESCRIBE classics;

Now that we’ve finished with it, the id column is no longer needed, so if you created
it using Example 8-5, you should now remove the column using the command in
Example 8-7.

Accessing MySQL via the Command Line | 181



Example 8-7. Removing the id column

ALTER TABLE classics DROP id;

Adding data to a table

To add data to a table, use the INSERT command. Let’s see this in action by populating
the table classics with the data from Table 8-1, using one form of the INSERT command
repeatedly (Example 8-8).

Example 8-8. Populating the classics table

INSERT INTO classics(author, title, type, year)
 VALUES('Mark Twain','The Adventures of Tom Sawyer','Fiction','1876');
INSERT INTO classics(author, title, type, year)
 VALUES('Jane Austen','Pride and Prejudice','Fiction','1811');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Darwin','The Origin of Species','Non-Fiction','1856');
INSERT INTO classics(author, title, type, year)
 VALUES('Charles Dickens','The Old Curiosity Shop','Fiction','1841');
INSERT INTO classics(author, title, type, year)
 VALUES('William Shakespeare','Romeo and Juliet','Play','1594');

After every second line, you should see a “Query OK” message. Once all lines have
been entered, type the following command, which will display the table’s contents—
the result should look like Figure 8-4:

SELECT * FROM classics;

Figure 8-4. Populating the classics table and viewing its contents

Don’t worry about the SELECT command for now—we’ll come to it in the upcoming
section “Querying a MySQL Database” on page 191. Suffice it to say that as typed, it
will display all the data you just entered.

182 | Chapter 8: Introduction to MySQL



Let’s go back and look at how we used the INSERT command. The first part, INSERT INTO
classics, tells MySQL where to insert the following data. Then, within parentheses,
the four column names are listed—author, title, type, and year—all separated by
commas. This tells MySQL that these are the fields into which the data is to be inserted.

The second line of each INSERT command contains the keyword VALUES followed by
four strings within parentheses, separated by commas. This supplies MySQL with the
four values to be inserted into the four columns previously specified. (As always, my
choice of where to break the lines was arbitrary.)

Each item of data will be inserted into the corresponding column, in a one-to-one
correspondence. If you accidentally listed the columns in a different order from the
data, the data would go into the wrong columns. The number of columns must match
the number of data items.

Renaming a table

Renaming a table, like any other change to the structure or metainformation of a table,
is achieved via the ALTER command. So, for example, to change the name of the table
classics to pre1900, you would use the following command:

ALTER TABLE classics RENAME pre1900;

If you tried that command, you should rename the table back again by entering the
following, so that later examples in this chapter will work as printed:

ALTER TABLE pre1900 RENAME classics;

Changing the data type of a column

Changing a column’s data type also makes use of the ALTER command, this time in
conjunction with the MODIFY keyword. So, to change the data type of the column year
from CHAR(4) to SMALLINT (which requires only two bytes of storage and so will save
disk space), enter the following:

ALTER TABLE classics MODIFY year SMALLINT;

When you do this, if the data type conversion makes sense to MySQL, it will automat-
ically change the data while keeping its meaning. In this case, it will change each string
to a comparable integer, and so on, as the string is recognizable as referring to an integer.

Adding a new column

Let’s suppose that you have created a table and populated it with plenty of data, only
to discover you need an additional column. Not to worry. Here’s how to add the new
column pages, which will be used to store the number of pages in a publication:

ALTER TABLE classics ADD pages SMALLINT UNSIGNED;

Accessing MySQL via the Command Line | 183



This adds the new column with the name pages using the UNSIGNED SMALLINT data type,
sufficient to hold a value of up to 65,535—hopefully that’s more than enough for any
book ever published!

If you now ask MySQL to describe the updated table using the DESCRIBE command, as
follows, you will see the change has been made (see Figure 8-5):

DESCRIBE classics;

Figure 8-5. Adding the new pages column and viewing the table

Renaming a column

Looking again at Figure 8-5, you may decide that having a column named type can be
confusing, because that is the name used by MySQL to identify data types. Again, no
problem—let’s change its name to category, like this:

ALTER TABLE classics CHANGE type category VARCHAR(16);

Note the addition of VARCHAR(16) on the end of this command. That’s because the
CHANGE keyword requires the data type to be specified, even if you don’t intend to change
it, and VARCHAR(16) was the data type specified when that column was initially created
as type.

Removing a column

You may also decide, upon reflection, that the page count column pages isn’t actually
all that useful for this particular database, so here’s how to remove that column using
the DROP keyword:

ALTER TABLE classics DROP pages;

184 | Chapter 8: Introduction to MySQL



Remember that DROP is irreversible. You should always use it with cau-
tion, because you could delete entire tables (and even databases) with
it if you are not careful!

Deleting a table

Deleting a table is very easy indeed. But, because I don’t want you to have to reenter
all the data for the classics table, we won’t delete that one. Instead, let’s quickly create
a new table, verify its existence, and then delete it by typing in the commands in
Example 8-9. The result of these four commands should look like Figure 8-6.

Example 8-9. Creating, viewing, and deleting a table

CREATE TABLE disposable(trash INT);
DESCRIBE disposable;
DROP TABLE disposable;
SHOW tables;

Figure 8-6. Creating, viewing, and deleting a table

Indexes
As things stand, the table classics works, and MySQL won’t have any problem search-
ing it—until it grows to more than a couple of hundred rows, that is. At that point,
database accesses will get slower and slower with every new row added, because
MySQL has to search through every row whenever a query is issued. This is like search-
ing through every book in a library whenever you need to look something up.

Of course, you don’t have to search libraries that way, because they have either a card
index system or, most likely, a database of their own.

Indexes | 185



And the same goes for MySQL—at the expense of a slight overhead in memory and
disk space, you can create a “card index” for a table that MySQL will use to conduct
lightning-fast searches.

Creating an Index
The way to achieve fast searches is to add an index, either when creating a table or at
any time afterwards. But the decision is not so simple. For example, there are different
index types, such as a regular INDEX, PRIMARY KEY, and FULLTEXT. Also, you must decide
which columns require an index, a judgment that requires you to predict whether you
will be searching any of the data in those columns. Indexes can also get complicated,
because you can combine multiple columns in one index. And even when you’ve gotten
to grips with all of that, you still have the option of reducing index size by limiting the
amount of each column to be indexed.

If we imagine the searches that may be made on the classics table, it becomes apparent
that all of the columns may need to be searched. However, if the pages column created
in the earlier section “Adding a new column” on page 183 had not been deleted, it
would probably not have needed an index, as most people would be unlikely to search
for books by the number of pages they have. Anyway, go ahead and add an index to
each of the columns, using the commands in Example 8-10.

Example 8-10. Adding indexes to the classics table

ALTER TABLE classics ADD INDEX(author(20));
ALTER TABLE classics ADD INDEX(title(20));
ALTER TABLE classics ADD INDEX(category(4));
ALTER TABLE classics ADD INDEX(year);
DESCRIBE classics;

The first two commands create indexes on both the author and title columns, limiting
each index to only the first 20 characters. For instance, when MySQL indexes the fol-
lowing title:

The Adventures of Tom Sawyer

it will actually store in the index only the first 20 characters:

The Adventures of To

This is done to minimize the size of the index, and to optimize database access speed.
I chose the value 20 because it’s likely to be sufficient to ensure uniqueness for most
strings in these columns. If MySQL finds two indexes with the same contents, it will
have to waste time going to the table itself and checking the column that was indexed
to find out which rows really matched.

With the category column, currently only the first character is required to identify a
string as unique (F for Fiction, N for Non-Fiction, and P for Play), but I chose an index
of four characters to allow for future category types that may be unique only after four

186 | Chapter 8: Introduction to MySQL



characters. (You can also reindex this column later, when you have a more complete
set of categories.) And finally, I set no limit to the year column’s index, because it’s an
integer, not a string.

The results of issuing these commands (and a DESCRIBE command to confirm that they
worked) can be seen in Figure 8-7, which shows the key MUL for each column. This key
means that multiple occurrences of a value may occur within that column, which is
exactly what we want, as authors may appear many times, the same book title could
be used by multiple authors, and so on.

Figure 8-7. Adding indexes to the classics table

Using CREATE INDEX

An alternative to using ALTER TABLE to add an index is to use the CREATE INDEX command.
The two options are equivalent, except that CREATE INDEX cannot be used to create an
index of type PRIMARY KEY (see the section “Primary keys” on page 188 later in this
chapter). The format of this command can be seen in the second line of Example 8-11.

Example 8-11. These two commands are equivalent

ALTER TABLE classics ADD INDEX(author(20));
CREATE INDEX author ON classics (author(20));

Adding indexes when creating tables

You don’t have to wait until after creating a table to add indexes. In fact, doing so can
be time-consuming, as adding an index to a large table can take a very long time.
Therefore, let’s look at a command that creates the table classics with indexes already
in place.

Indexes | 187



Example 8-12 is a reworking of Example 8-3 in which the indexes are created at the
same time as the table. Note that to incorporate the modifications made in this chapter,
this version uses the new column name category instead of type and sets the data type
of year to SMALLINT instead of CHAR(4). If you want to try it out without first deleting
your current classics table, change the word classics in line 1 to something else, like
classics1, then drop classics1 after you have finished with it.

Example 8-12. Creating the table classics with indexes

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 INDEX(author(20)),
 INDEX(title(20)),
 INDEX(category(4)),
 INDEX(year)) ENGINE MyISAM;

Primary keys

So far you’ve created the table classics and ensured that MySQL can search it quickly
by adding indexes, but there’s still something missing. All the publications in the table
can be searched, but there is no single unique key for each publication to enable instant
accessing of a row. The importance of having a key with a unique value for each row
(known as the primary key) will become clear when we start to combine data from
different tables (see the section “Primary Keys: The Keys to Relational Databa-
ses” on page 210 in Chapter 9).

The earlier section “The AUTO_INCREMENT data type” on page 180 briefly intro-
duced the idea of a primary key when creating the autoincrementing column id, which
could have been used as a primary key for this table. However, I wanted to reserve that
task for a more appropriate column: the internationally recognized ISBN number.

So, let’s go ahead and create a new column for this key. Now, bearing in mind that
ISBN numbers are 13 characters long, you might think that the following command
would do the job:

ALTER TABLE classics ADD isbn CHAR(13) PRIMARY KEY;

But it doesn’t. If you try it, you’ll get the error “Duplicate entry” for key 1. The reason
is that the table is already populated with some data and this command is trying to add
a column with the value NULL to each row, which is not allowed, as all columns using
a primary key index must be unique. However, if there were no data already in the
table, this command would work just fine, as would adding the primary key index upon
table creation.

In our current situation, we have to be a bit sneaky and create the new column without
an index, populate it with data, and then add the index using the commands in Exam-
ple 8-13. Luckily, each of the years is unique in the current set of data, so we can use

188 | Chapter 8: Introduction to MySQL



the year column to identify each row for updating. Note that this example uses the
UPDATE and WHERE keywords, which are explained in more detail in the upcoming section
“Querying a MySQL Database” on page 191.

Example 8-13. Populating the isbn column with data and using a primary key

ALTER TABLE classics ADD isbn CHAR(13);
UPDATE classics SET isbn='9781598184891' WHERE year='1876';
UPDATE classics SET isbn='9780582506206' WHERE year='1811';
UPDATE classics SET isbn='9780517123201' WHERE year='1856';
UPDATE classics SET isbn='9780099533474' WHERE year='1841';
UPDATE classics SET isbn='9780192814968' WHERE year='1594';
ALTER TABLE classics ADD PRIMARY KEY(isbn);
DESCRIBE classics;

Once you have typed in these commands, the results should look like the screen grab
in Figure 8-8. Note that the keywords PRIMARY KEY replace the keyword INDEX in the
ALTER TABLE syntax (compare Example 8-10 and Example 8-13).

Figure 8-8. Adding a primary key to the classics table

To create a primary key when you created the table classics, you could have used the
commands in Example 8-14. Again, rename classics in line 1 to something else if you
wish to try this example for yourself, and then delete the test table afterwards.

Example 8-14. Creating the table classics with indexes

CREATE TABLE classics (
 author VARCHAR(128),
 title VARCHAR(128),
 category VARCHAR(16),
 year SMALLINT,
 isbn CHAR(13),
 INDEX(author(20)),

Indexes | 189



 INDEX(title(20)),
 INDEX(category(4)),
 INDEX(year),
 PRIMARY KEY (isbn)) ENGINE MyISAM;

Creating a FULLTEXT index

Unlike a regular index, a FULLTEXT index in MySQL allows super-fast searches of entire
columns of text. What it does is store every word in every data string in a special index
that you can search using “natural language,” in a similar manner to using a search
engine.

Actually, it’s not strictly true that MySQL stores all the words in a
FULLTEXT index, because it has a built-in list of more than 500 words that
it chooses to ignore because they are so common that they aren’t very
helpful when searching anyway. These words, called stopwords, include
the, as, is, of, and so on. The list helps MySQL run much more quickly
when performing a FULLTEXT search and keeps database sizes down.
Appendix C contains the full list of stopwords.

Here are some things that you should know about FULLTEXT indexes:

• FULLTEXT indexes can be used only with MyISAM tables, the type used by MySQL’s
default storage engine (MySQL supports at least 10 different storage engines). If
you need to convert a table to MyISAM, you can usually use the MySQL command
ALTER TABLE tablename ENGINE = MyISAM;.

• FULLTEXT indexes can be created for CHAR, VARCHAR, and TEXT columns only.

• A FULLTEXT index definition can be given in the CREATE TABLE statement when a
table is created, or added later using ALTER TABLE (or CREATE INDEX).

• For large data sets, it is much faster to load your data into a table that has no
FULLTEXT index and then create the index than it is to load data into a table that
has an existing FULLTEXT index.

To create a FULLTEXT index, apply it to one or more records as in Example 8-15, which
adds a FULLTEXT index to the pair of columns author and title in the table classics
(this index is in addition to the ones already created and does not affect them).

Example 8-15. Adding a FULLTEXT index to the table classics

ALTER TABLE classics ADD FULLTEXT(author,title);

You can now perform FULLTEXT searches across this pair of columns. This feature could
really come into its own if you could now add the entire text of these publications to
the database (particularly as they’re out of copyright protection), as they would be fully
searchable. See the section “MATCH...AGAINST” on page 196 for a description of
searches using FULLTEXT.

190 | Chapter 8: Introduction to MySQL



If you find that MySQL is running slower than you think it should be
when accessing your database, the problem is usually related to your
indexes. Either you don’t have an index where you need one, or the
indexes are not optimally designed. Tweaking a table’s indexes will
often solve such a problem. Performance is beyond the scope of this
book, but in Chapter 9 I’ll give you a few tips so you know what to look
for.

Querying a MySQL Database
So far we’ve created a MySQL database and tables, populated them with data, and
added indexes to make them fast to search. Now it’s time to look at how these searches
are performed, and the various commands and qualifiers available.

SELECT

As you saw in Figure 8-4, the SELECT command is used to extract data from a table. In
that section, I used its simplest form to select all the data and display it—something
you will never want to do on anything but the smallest tables, because the data will
scroll by at an unreadable pace. Let’s now examine SELECT in more detail.

The basic syntax is:

SELECT something FROM tablename;

The something can be an * (asterisk), as you saw before, to indicate “every column,” or
you can choose to select only certain columns. For instance, Example 8-16 shows how
to select just the author and title columns, and just the title and isbn. The result of
typing these commands can be seen in Figure 8-9.

Example 8-16. Two different SELECT statements

SELECT author,title FROM classics;
SELECT title,isbn FROM classics;

SELECT COUNT

Another option for the something parameter is COUNT, which can be used in many ways.
In Example 8-17, it displays the number of rows in the table by passing * as a parameter,
which means “all rows.” As you’d expect, the result returned is 5, as there are five
publications in the table.

Example 8-17. Counting rows

SELECT COUNT(*) FROM classics;

Indexes | 191



SELECT DISTINCT

This qualifier (and its synonym DISTINCTROW) allows you to weed out multiple entries
when they contain the same data. For instance, suppose that you want a list of all
authors in the table. If you select just the author column from a table containing multiple
books by the same author, you’ll normally see a long list with the same author names
over and over. But by adding the DISTINCT keyword, you can show each author just
once. Let’s test that out by adding another row that repeats one of our existing authors
(Example 8-18).

Example 8-18. Duplicating data

INSERT INTO classics(author, title, category, year, isbn)
 VALUES('Charles Dickens','Little Dorrit','Fiction','1857', '9780141439969');

Now that Charles Dickens appears twice in the table, we can compare the results of
using SELECT with and without the DISTINCT qualifier. Example 8-19 and Figure 8-10
show that the simple SELECT lists Dickens twice, and the command with the DISTINCT
qualifier shows him only once.

Example 8-19. With and without the DISTINCT qualifier

SELECT author FROM classics;
SELECT DISTINCT author FROM classics;

Figure 8-9. The output from two different SELECT statements

192 | Chapter 8: Introduction to MySQL



Figure 8-10. Selecting data with and without DISTINCT

DELETE

When you need to remove a row from a table, use the DELETE command. Its syntax is
similar to the SELECT command and allows you to narrow down the exact row or rows
to delete using qualifiers such as WHERE and LIMIT.

Now that you’ve seen the effects of the DISTINCT qualifier, if you typed in Exam-
ple 8-18, you should remove Little Dorrit by entering the commands in Example 8-20.

Example 8-20. Removing the new entry

DELETE FROM classics WHERE title='Little Dorrit';

This example issues a DELETE command for all rows whose title column contains the
string 'Little Dorrit'.

The WHERE keyword is very powerful, and it’s important to enter it correctly; an error
could lead a command to the wrong rows (or have no effect in cases where nothing
matches the WHERE clause). So now we’ll spend some time on that clause, which is the
heart and soul of SQL.

WHERE

The WHERE keyword enables you to narrow down queries by returning only those where
a certain expression is true. Example 8-20 returns only the rows where the title column
exactly matches the string 'Little Dorrit', using the equality operator =. Exam-
ple 8-21 shows a couple more examples of using WHERE with =.

Indexes | 193



Example 8-21. Using the WHERE keyword

SELECT author,title FROM classics WHERE author="Mark Twain";
SELECT author,title FROM classics WHERE isbn="9781598184891 ";

Given our current table, the two commands in Example 8-21 display the same results.
But we could easily add more books by Mark Twain, in which case the first line would
display all titles he wrote and the second line would continue (because we know the
ISBN is unique) to display only The Adventures of Tom Sawyer. In other words, searches
using a unique key are more predictable. You’ll see further evidence later of the value
of unique and primary keys.

You can also do pattern matching for your searches using the LIKE qualifier, which
allows searches on parts of strings. This qualifier should be used with a % character
before or after some text. When placed before a keyword % means “anything before,”
and after a keyword it means “anything after.” Example 8-22 performs three different
queries, one for the start of a string, one for the end, and one for anywhere in a string.
You can see the results of these commands in Figure 8-11.

Example 8-22. Using the LIKE qualifier

SELECT author,title FROM classics WHERE author LIKE "Charles%";
SELECT author,title FROM classics WHERE title LIKE "%Species";
SELECT author,title FROM classics WHERE title LIKE "%and%";

Figure 8-11. Using WHERE with the LIKE qualifier

The first command outputs the publications by both Charles Darwin and Charles
Dickens, because the LIKE qualifier was set to return anything matching the string
“Charles” followed by any other text. Then just The Origin of Species is returned, be-
cause it’s the only row whose column ends with the string “Species”. Lastly, both Pride
and Prejudice and Romeo and Juliet are returned, because they both matched the string
“and” anywhere in the column.

194 | Chapter 8: Introduction to MySQL



The % will also match if there is nothing in the position it occupies; in other words, it
can match an empty string.

LIMIT

The LIMIT qualifier enables you to choose how many rows to return in a query, and
where in the table to start returning them. When passed a single parameter, it tells
MySQL to start at the beginning of the results and just return the number of rows given
in that parameter. If you pass it two parameters, the first indicates the offset from the
start of the results where MySQL should start the display, and the second indicates
how many to return. You can think of the first parameter as saying, “Skip this number
of results at the start.”

Example 8-23 includes three commands. The first returns the first three rows from the
table. The second returns two rows starting at position 1 (skipping the first row). The
last command returns a single row starting at position 3 (skipping the first three rows).
Figure 8-12 shows the results of issuing these three commands.

Example 8-23. Limiting the number of results returned

SELECT author,title FROM classics LIMIT 3;
SELECT author,title FROM classics LIMIT 1,2;
SELECT author,title FROM classics LIMIT 3,1;

Figure 8-12. Restricting the rows returned with LIMIT

Be careful with the LIMIT keyword, because offsets start at 0, but the
number of rows to return starts at 1. So LIMIT 1,3 means return three
rows starting from the second row.

Indexes | 195



MATCH...AGAINST

The MATCH...AGAINST construct can be used on columns that have been given a FULL
TEXT index (see the earlier section “Creating a FULLTEXT index” on page 190). With
it, you can make natural-language searches as you would in an Internet search engine.
Unlike WHERE... = or WHERE...LIKE, MATCH...AGAINST lets you enter multiple words in
a search query and checks them against all words in the FULLTEXT columns. FULLTEXT
indexes are case-insensitive, so it makes no difference what case is used in your queries.

Assuming that you have added a FULLTEXT index to the author and title columns, enter
the three queries shown in Example 8-24. The first asks for any of these columns that
contain the word and to be returned. Because and is a stopword, MySQL will ignore it
and the query will always produce an empty set—no matter what is stored in the col-
umns. The second query asks for any rows that contain both of the words old and
shop anywhere in them, in any order, to be returned. And the last query applies the
same kind of search for the words tom and sawyer. The screen grab in Figure 8-13 shows
the results of these queries.

Example 8-24. Using MATCH…AGAINST on FULLTEXT indexes

SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('and');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('old shop');
SELECT author,title FROM classics
 WHERE MATCH(author,title) AGAINST('tom sawyer');

Figure 8-13. Using MATCH…AGAINST on a FULLTEXT index

MATCH…AGAINST…IN BOOLEAN MODE

If you wish to give your MATCH...AGAINST queries even more power, use Boolean mode.
This changes the effect of the standard FULLTEXT query so that it searches for any com-

196 | Chapter 8: Introduction to MySQL



bination of search words, instead of requiring all search words to be in the text. The
presence of a single word in a column causes the search to return the row.

Boolean mode also allows you to preface search words with a + or - sign to indicate
whether they must be included or excluded. If normal Boolean mode says, “Any of
these words will do,” a plus sign means, “This word must be present; otherwise, don’t
return the row.” A minus sign means, “This word must not be present; its presence
disqualifies the row from being returned.”

Example 8-25 illustrates Boolean mode through two queries. The first asks for all rows
containing the word charles and not the word species to be returned. The second uses
double quotes to request that all rows containing the exact phrase “origin of” be re-
turned. Figure 8-14 shows the results of these queries.

Example 8-25. Using MATCH…AGAINST…IN BOOLEAN MODE

SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('+charles -species' IN BOOLEAN MODE);
SELECT author,title FROM classics
 WHERE MATCH(author,title)
 AGAINST('"origin of"' IN BOOLEAN MODE);

Figure 8-14. Using MATCH…AGAINST…IN BOOLEAN MODE

As you would expect, the first request only returns The Old Curiosity Shop by Charles
Dickens; any rows containing the word species have been excluded, so Charles Darwin’s
publication is ignored.

Indexes | 197



There is something of interest to note in the second query: the stopword
of is part of the search string, but it is still used by the search because
the double quotation marks override stopwords.

UPDATE…SET

This construct allows you to update the contents of a field. If you wish to change the
contents of one or more fields, you need to first narrow in on just the field or fields to
be changed, in much the same way you use the SELECT command. Example 8-26 shows
the use of UPDATE...SET in two different ways. You can see a screen grab of the results
in Figure 8-15.

Example 8-26. Using UPDATE…SET

UPDATE classics SET author='Mark Twain (Samuel Langhorne Clemens)'
 WHERE author='Mark Twain';
UPDATE classics SET category='Classic Fiction'
 WHERE category='Fiction';

Figure 8-15. Updating columns in the classics table

In the first query, Mark Twain’s real name (Samuel Langhorne Clemens) was appended
to his pen name in parens, which affected only one row. The second query, however,
affected three rows, because it changed all occurrences of the word Fiction in the cate
gory column to the term Classic Fiction.

When performing an update you can also make use of the qualifiers you have already
seen, such as LIMIT, and the ORDER BY and GROUP BY keywords, discussed next.

198 | Chapter 8: Introduction to MySQL



ORDER BY

ORDER BY sorts returned results by one or more columns, in ascending or descending
order. Example 8-27 shows two such queries, the results of which can be seen in
Figure 8-16.

Example 8-27. Using ORDER BY

SELECT author,title FROM classics ORDER BY author;
SELECT author,title FROM classics ORDER BY title DESC;

Figure 8-16. Sorting the results of requests

As you can see, the first query returns the publications by author in ascending alpha-
betical order (the default), and the second returns them by title in descending order.

If you wanted to sort all the rows by author and then by descending year of publication
(to view the most recent first), you would issue the following query:

SELECT author,title,year FROM classics ORDER BY author,year DESC;

This shows that each ascending and descending qualifier applies to a single column.
The DESC keyword applies only to the preceding column, year. Because you allow
author to use the default sort order, it is sorted in ascending order. You could also have
explicitly specified ascending order for that column, with the same results:

SELECT author,title,year FROM classics ORDER BY author ASC,year DESC;

GROUP BY

In a similar fashion to ORDER BY, you can group results returned from queries using
GROUP BY, which is good for retrieving information about a group of data. For example,
if you want to know how many publications there are in each category in the clas
sics table, you can issue the following query:

Indexes | 199



SELECT category,COUNT(author) FROM classics GROUP BY category;

which returns the following output:

+-----------------+---------------+
| category        | COUNT(author) |
+-----------------+---------------+
| Classic Fiction |             3 |
| Non-Fiction     |             1 |
| Play            |             1 |
+-----------------+---------------+
3 rows in set (0.00 sec)

Joining Tables Together
It is quite normal to maintain multiple tables within a database, each holding a different
type of information. For example, consider the case of a customers table that needs to
be able to be cross-referenced with publications purchased from the classics table.
Enter the commands in Example 8-28 to create this new table and populate it with
three customers and their purchases. Figure 8-17 shows the result.

Example 8-28. Creating and populating the customers table

CREATE TABLE customers (
 name VARCHAR(128),
 isbn VARCHAR(13),
 PRIMARY KEY (isbn)) ENGINE MyISAM;
INSERT INTO customers(name,isbn)
 VALUES('Joe Bloggs','9780099533474');
INSERT INTO customers(name,isbn)
 VALUES('Mary Smith','9780582506206');
INSERT INTO customers(name,isbn)
 VALUES('Jack Wilson','9780517123201');
SELECT * FROM customers;

There’s also a shortcut for inserting multiple rows of data, as in Exam-
ple 8-28, in which you can replace the three separate INSERT INTO queries
with a single one listing the data to be inserted, separated by commas,
like this:

INSERT INTO customers(name,isbn) VALUES
('Joe Bloggs','9780099533474'),
('Mary Smith','9780582506206'),
('Jack Wilson','9780517123201');

Of course, in a proper table containing customers’ details there would also be addresses,
phone numbers, email addresses, and so on, but they aren’t necessary for this
explanation.

While creating the new table, you should have noticed that it has something in common
with the classics table: a column called isbn. Because it has the same meaning in both

200 | Chapter 8: Introduction to MySQL



tables (an ISBN refers to a book, and always the same book), we can use this column
to tie the two tables together into a single query, as in Example 8-29.

Example 8-29. Joining two tables into a single SELECT

SELECT name,author,title from customers,classics
 WHERE customers.isbn=classics.isbn;

The result of this operation is the following:

+-------------+-----------------+------------------------+
| name        | author          | title                  |
+-------------+-----------------+------------------------+
| Joe Bloggs  | Charles Dickens | The Old Curiosity Shop |
| Mary Smith  | Jane Austen     | Pride and Prejudice    |
| Jack Wilson | Charles Darwin  | The Origin of Species  |
+-------------+-----------------+------------------------+
3 rows in set (0.00 sec)

See how this query has neatly tied both tables together to show the publications from
the classics table purchased by the people in the customers table?

NATURAL JOIN

Using NATURAL JOIN, you can save yourself some typing and make queries a little clearer.
This kind of join takes two tables and automatically joins columns that have the same
name. So, to achieve the same results as from Example 8-29, you would enter:

SELECT name,author,title FROM customers NATURAL JOIN classics;

JOIN...ON

If you wish to specify the column on which to join two tables, use the JOIN...ON con-
struct, as follows, to achieve results identical to those of Example 8-29:

Figure 8-17. Creating the customers table

Indexes | 201



SELECT name,author,title FROM customers
 JOIN classics ON customers.isbn=classics.isbn;

Using AS

You can also save yourself some typing and improve query readability by creating aliases
using the AS keyword: follow a table name with AS and the alias to use. The following
code is also identical in action to Example 8-29:

SELECT name,author,title from
  customers AS cust, classics AS class WHERE cust.isbn=class.isbn;

The result of this operation is the following:

+-------------+-----------------+------------------------+
| name        | author          | title                  |
+-------------+-----------------+------------------------+
| Joe Bloggs  | Charles Dickens | The Old Curiosity Shop |
| Mary Smith  | Jane Austen     | Pride and Prejudice    |
| Jack Wilson | Charles Darwin  | The Origin of Species  |
+-------------+-----------------+------------------------+
3 rows in set (0.00 sec)

Aliases can be particularly useful when you have long queries that reference the same
table names many times.

Using Logical Operators
You can also use the logical operators AND, OR, and NOT in your MySQL WHERE queries to
further narrow down your selections. Example 8-30 shows one instance of each, but
you can mix and match them in any way you need.

Example 8-30. Using logical operators

SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author LIKE "%Darwin";
SELECT author,title FROM classics WHERE
 author LIKE "%Mark Twain%" OR author LIKE "%Samuel Langhorne Clemens%";
SELECT author,title FROM classics WHERE
 author LIKE "Charles%" AND author NOT LIKE "%Darwin";

I’ve chosen the first query because Charles Darwin might be listed in some rows by his
full name, Charles Robert Darwin. This query returns any publications for which the
value in the author column starts with Charles and ends with Darwin. The second query
searches for publications written using either Mark Twain’s pen name or his real name,
Samuel Langhorne Clemens. The third query returns publications written by authors
with the first name Charles but not the surname Darwin.

202 | Chapter 8: Introduction to MySQL



MySQL Functions
You might wonder why anyone would want to use MySQL functions, when PHP comes
with a whole bunch of powerful functions of its own. The answer is very simple: the
MySQL functions work on the data right there in the database. If you were to use PHP,
you would have to extract the raw data from MySQL, manipulate it, and then perform
the desired database query.

Using the functions built into MySQL substantially reduces the time needed for per-
forming complex queries, as well as their complexity. If you wish to learn more about
the available functions, you can visit the following URLs:

• String functions: http://tinyurl.com/mysqlstrfuncs

• Date and time functions: http://tinyurl.com/mysqldatefuncs

However, to get you started, Appendix D describes a subset of the most useful of these
functions.

Accessing MySQL via phpMyAdmin
Although to use MySQL it is essential to learn these main commands and how they
work, once you have learned them, it can be much quicker and simpler to use a program
such as phpMyAdmin to manage your databases and tables.

The following explanation assumes you have worked through the previous examples
in this chapter and have created the tables classics and customers in the database
publications. Please choose the section relevant to your operating system.

Windows Users
Ensure that you have Zend Server CE up and running so that the MySQL database is
ready, then type the following into the address bar of your browser:

http://localhost/phpMyAdmin

Your browser should now look like Figure 8-18, where you should enter a username
of zend (the default) and no password. You will then be presented with a screen similar
to Figure 8-19. You are now ready to proceed to the section “Using phpMyAd-
min” on page 205.

Accessing MySQL via phpMyAdmin | 203

http://tinyurl.com/mysqlstrfuncs
http://tinyurl.com/mysqldatefuncs


Figure 8-18. Logging in to phpMyAdmin

Figure 8-19. The phpMyAdmin main screen

204 | Chapter 8: Introduction to MySQL



OS X Users
Ensure that Zend Server CE is running and that the Apache and MySQL servers are
started, then type the following into your browser:

http://localhost:10081/phpmyadmin/

The number 10081 identifies the Zend server interface port and must
always be entered to call up the interface or any subparts, such as
phpMyAdmin.

You should see a screen similar to Figure 8-18, where you should enter a username of
zend (the default) and no password. Your browser should now look like Figure 8-19;
you are ready to proceed to the section “Using phpMyAdmin” on page 205.

Linux Users
If you have installed Zend Server CE with MySQL, you should be able to type the
following into your browser to start phpMyAdmin:

https://localhost:10082/phpMyAdmin

Your browser should now look like Figure 8-18. Enter the username zend (the default),
and you should see a screen similar to Figure 8-19. You can now proceed with the next
section.

Using phpMyAdmin
In the lefthand pane of the main phpMyAdmin screen, which should now appear in
your browser, click on the drop-down menu that says “(Databases)” and select the
database publications. This will open the database and display its two tables just be-
low. Click on the classics table, and you’ll see a host of information about it appear
in the righthand frame (see Figure 8-20).

From here you can perform all the main operations for your databases, such as creating
databases, adding tables, creating indexes, and much more. To read the supporting
documentation for phpMyAdmin, visit http://www.phpmyadmin.net/documentation/.

Accessing MySQL via phpMyAdmin | 205

http://www.phpmyadmin.net/documentation/


Figure 8-20. The table classics as viewed in phpMyAdmin

If you worked with me through the examples in this chapter, congratulations—it’s been
quite a long journey. You’ve come all the way from creating a MySQL database through
issuing complex queries that combine multiple tables, use Boolean operators, and lev-
erage MySQL’s various qualifiers.

In the next chapter, we’ll start looking at how to approach efficient database design,
advanced SQL techniques, and MySQL functions and transactions.

Test Your Knowledge
1. What is the purpose of the semicolon in MySQL queries?

2. Which command would you use to view the available databases or tables?

3. How would you create a new MySQL user on the local host called newuser with a
password of newpass and with access to everything in the database newdatabase?

4. How can you view the structure of a table?

5. What is the purpose of a MySQL index?

6. What benefit does a FULLTEXT index provide?

206 | Chapter 8: Introduction to MySQL



7. What is a stopword?

8. Both SELECT DISTINCT and GROUP BY cause the display to show only one output row
for each value in a column, even if multiple rows contain that value. What are the
main differences between SELECT DISTINCT and GROUP BY?

9. Using the SELECT...WHERE construct, how would you return only rows containing
the word Langhorne somewhere in the author column of the classics table used
in this chapter?

10. What needs to be defined in two tables to make it possible for you to join them
together?

See “Chapter 8 Answers” on page 508 in Appendix A for the answers to these
questions.

Test Your Knowledge | 207





CHAPTER 9

Mastering MySQL

Chapter 8 provided you with a good grounding in the practice of using relational da-
tabases with SQL. You’ve learned about creating databases and the tables that comprise
them, as well as inserting, looking up, changing, and deleting data.

With that knowledge under your belt, it’s time to look at how to design databases for
maximum speed and efficiency. For example, how do you decide what data to place in
which table? Well, over the years, a number of guidelines have been developed that—
if you follow them—ensure that your databases will be efficient and capable of scaling
as you feed them more and more data.

Database Design
It’s very important that you design a database correctly before you start to create it;
otherwise, you are almost certainly going to have to go back and change it by splitting
up some tables, merging others, and moving various columns about in order to achieve
sensible relationships that MySQL can use easily.

Sitting down with a sheet of paper and a pencil and writing down a selection of the
queries that you think you and your users are likely to ask is an excellent starting point.
In the case of an online bookstore’s database, some of the questions you write down
could be:

• How many authors, books, and customers are in the database?

• Which author wrote a certain book?

• Which books did a certain author write?

• What is the most expensive book?

• What is the best-selling book?

• Which books have not sold this year?

• Which books did a certain customer buy?

• Which books have been purchased along with the same other books?

209



Of course, there are many more queries that could be made on such a database, but
even this small sample will begin to give you insights into how to lay out your tables.
For example, books and ISBNs can probably be combined into one table, because they
are closely linked (we’ll examine some of the subtleties later). In contrast, books and
customers should be in separate tables, because their connection is very loose. A cus-
tomer can buy any book, and even multiple copies of a book, yet a book can be bought
by many customers and be ignored by still more potential customers.

When you plan to do a lot of searches on something, it can often benefit by having its
own table. And when couplings between things are loose, it’s best to put them in sep-
arate tables.

Taking into account those simple rules of thumb, we can guess we’ll need at least three
tables to accommodate all these queries:

authors
There will be lots of searches for authors, many of whom will have collaborated
on titles, and many of whom will be featured in collections. Listing all the infor-
mation about each author together, linked to that author, will produce optimal
results for searches—hence an authors table.

books
Many books appear in different editions. Sometimes they change publishers, and
sometimes they have the same titles as other, unrelated books. So, the links between
books and authors are complicated enough to call for a separate table for books.

customers
It’s even more clear why customers should get their own table, as they are free to
purchase any book by any author.

Primary Keys: The Keys to Relational Databases
Using the power of relational databases, we can define information for each author,
book, and customer in just one place. Obviously, what interests us is the links between
them, such as who wrote each book and who purchased it—but we can store that
information just by making links between the three tables. I’ll show you the basic prin-
ciples, and then it just takes practice for it to feel natural.

The magic involves giving every author a unique identifier. Do the same for every book
and for every customer. We saw the means of doing that in the previous chapter: the
primary key. For a book, it makes sense to use the ISBN, although you then have to
deal with multiple editions that have different ISBNs. For authors and customers, you
can just assign arbitrary keys, which the AUTO_INCREMENT feature described in the last
chapter makes easy.

210 | Chapter 9: Mastering MySQL



In short, every table will be designed around some object that you’re likely to search
for a lot—an author, book, or customer, in this case—and that object will have a pri-
mary key. Don’t choose a key that could possibly have the same value for different
objects. The ISBN is a rare case for which an industry has provided a primary key that
you can rely on to be unique for each product. Most of the time, you’ll create an arbitrary
key for this purpose, using AUTO_INCREMENT.

Normalization
The process of separating your data into tables and creating primary keys is called
normalization. Its main goal is to make sure each piece of information appears in the
database only once. Duplicating data is very inefficient, because it makes databases
larger than they need to be and therefore slows down access. More importantly, the
presence of duplicates creates a strong risk that you’ll update only one row of the du-
plicated data, creating inconsistencies and potentially causing serious errors.

If you list the titles of books in the authors table as well as the books table, for example,
and you have to correct a typographic error in a title, you’ll have to search through both
tables and make sure you make the same change every place the title is listed. It’s better
to keep the title in one place and use the ISBN in other places.

In the process of splitting a database into multiple tables, it is also important not to go
too far and create more tables than is necessary, which can also lead to inefficient design
and slower access.

Luckily, E.F. Codd, the inventor of the relational model, analyzed the concept of nor-
malization and split it into three separate schemas called First, Second, and Third Nor-
mal Form. If you modify a database to satisfy each of these forms in order, you will
ensure that your database is optimally balanced for fast access, and minimum memory
and disk space usage.

To see how the normalization process works, let’s start with the rather monstrous
database in Table 9-1, which shows a single table containing all of the author names,
book titles, and (fictional) customer details. You could consider it a first attempt at a
table intended to keep track of which customers have ordered which books. Obviously
this is an inefficient design, because data is duplicated all over the place (duplications
are highlighted), but it represents a starting point.

In the following three sections, we will examine this database design and you’ll see how
we can improve it by removing the various duplicate entries and splitting the single
table into multiple tables, each containing one type of data.

Normalization | 211



Table 9-1. A highly inefficient design for a database table

Author 1 Author 2 Title ISBN
Price
(USD)

Customer
name

Customer
address

Purch.
date

David Sklar Adam
Trachtenberg

PHP
Cookbook

0596101015 44.99 Emma
Brown

1565 Rainbow
Road, Los Angeles,
CA 90014

Mar 03
2009

Danny
Goodman

 Dynamic
HTML

0596527403 59.99 Darren
Ryder

4758 Emily
Drive,
Richmond, VA
23219

Dec 19
2008

Hugh E
Williams

David Lane PHP and
MySQL

0596005436 44.95 Earl B.
Thurston

862 Gregory Lane,
Frankfort, KY
40601

Jun 22
2009

David Sklar Adam
Trachtenberg

PHP
Cookbook

0596101015 44.99 Darren
Ryder

4758 Emily
Drive,
Richmond, VA
23219

Dec 19
2008

Rasmus
Lerdorf

Kevin Tatroe
& Peter
MacIntyre

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane,
Waltham, MA
02154

Jan 16
2009

First Normal Form
For a database to satisfy the First Normal Form, it must fulfill three requirements:

1. There should be no repeating columns containing the same kind of data.

2. All columns should contain a single value.

3. There should be a primary key to uniquely identify each row.

Looking at these requirements in order, you should notice straight away that the Author
1 and Author 2 columns constitute repeating data types. So, we already have a target
column for pulling into a separate table, as the repeated Author columns violate Rule 1.

Second, there are three authors listed for the final book, Programming PHP. In this
table that has been handled by making Kevin Tatroe and Peter MacIntyre share the
Author 2 column, which violates Rule 2—yet another reason to transfer the author
details to a separate table.

However, Rule 3 is satisfied, because the primary key of ISBN has already been created.

Table 9-2 shows the result of removing the Author columns from Table 9-1. Already it
looks a lot less cluttered, although there remain duplications that are highlighted.

212 | Chapter 9: Mastering MySQL



Table 9-2. The result of stripping the author columns from Table 9-1

Title ISBN
Price
(USD) Customer name Customer address Purchase date

PHP Cookbook 0596101015 44.99 Emma Brown 1565 Rainbow Road, Los
Angeles, CA 90014

Mar 03 2009

Dynamic HTML 0596527403 59.99 Darren Ryder 4758 Emily Drive, Richmond,
VA 23219

Dec 19 2008

PHP and MySQL 0596005436 44.95 Earl B. Thurston 862 Gregory Lane, Frankfort, KY
40601

Jun 22 2009

PHP Cookbook 0596101015 44.99 Darren Ryder 4758 Emily Drive, Richmond,
VA 23219

Dec 19 2008

Programming
PHP

0596006815 39.99 David Miller 3647 Cedar Lane, Waltham, MA
02154

Jan 16 2009

The new Authors table, shown in Table 9-3, is small and simple. It just lists the ISBN
of a title along with an author. If a title has more than one author, additional authors
get their own rows. At first you may feel ill at ease with this table, because you can’t
tell at a glance which author wrote which book. But don’t worry: MySQL can quickly
tell you. All you have to do is tell it which book you want information for, and MySQL
will use its ISBN to search the Authors table in a matter of milliseconds.

Table 9-3. The new Authors table

ISBN Author

0596101015 David Sklar

0596101015 Adam Trachtenberg

0596527403 Danny Goodman

0596005436 Hugh E Williams

0596005436 David Lane

0596006815 Rasmus Lerdorf

0596006815 Kevin Tatroe

0596006815 Peter MacIntyre

As I mentioned earlier, the ISBN will be the primary key for the Books table, when we
get around to creating that table. I mention that here in order to emphasize that the
ISBN is not, however, the primary key for the Authors table. In the real world, the
Authors table would deserve a primary key, too, so that each author would have a key
to uniquely identify him or her.

In the Authors table, the ISBN numbers will appear in a column that (for the purposes
of speeding up searches) we’ll probably make a key, but not the primary key. In fact,

Normalization | 213



it cannot be the primary key in this table, because it’s not unique: the same ISBN appears
multiple times whenever two or more authors have collaborated on a book.

Because we’ll use it to link authors to books in another table, this column is called a
foreign key.

Keys (also called indexes) have several purposes in MySQL. The funda-
mental reason for defining a key is to make searches faster. You’ve seen
examples in Chapter 8 in which keys are used in WHERE clauses for
searching. But a key can also be useful to uniquely identify an item.
Thus, a unique key is often used as a primary key in one table, and as a
foreign key to link rows in that table to rows in another table.

Second Normal Form
The First Normal Form deals with duplicate data (or redundancy) across multiple col-
umns. The Second Normal Form is all about redundancy across multiple rows. In order
to achieve Second Normal Form, your tables must already be in First Normal Form.
Once this has been done, Second Normal Form is achieved by identifying columns
whose data repeats in different places and removing them to their own tables.

Let’s look again at Table 9-2. Notice that Darren Ryder bought two books, and there-
fore his details are duplicated. This tells us that the customer columns (Customer
name and Customer address) need to be pulled into their own tables. Table 9-4 shows
the result of removing the two Customer columns from Table 9-2.

Table 9-4. The new Titles table

ISBN Title Price

0596101015 PHP Cookbook 44.99

0596527403 Dynamic HTML 59.99

0596005436 PHP and MySQL 44.95

0596006815 Programming PHP 39.99

As you can see, all that’s left in Table 9-4 are the ISBN, Title, and Price columns for
four unique books—this now constitutes an efficient and self-contained table that sat-
isfies the requirements of both the First and Second Normal Forms. Along the way,
we’ve managed to reduce the information in this table to data closely related to book
titles. The table could also include years of publication, page counts, numbers of re-
prints, and so on, as these details are also closely related. The only rule is that we can’t
put in any column that could have multiple values for a single book, because then we’d
have to list the same book in multiple rows, thus violating Second Normal Form. Re-
storing an Author column, for instance, would violate this normalization.

214 | Chapter 9: Mastering MySQL



However, looking at the extracted Customer columns, now in Table 9-5, we can see that
there’s still more normalization work to do, because Darren Ryder’s details are still
duplicated. It could also be argued that First Normal Form Rule 2 (all columns should
contain a single value) has not been properly complied with, because the addresses
really need to be broken into separate columns for Address, City, State, and Zip code.

Table 9-5. The Customer details from Table 9-2

ISBN Customer name Customer address Purchase date

0596101015 Emma Brown 1565 Rainbow Road, Los Angeles, CA 90014 Mar 03 2009

0596527403 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596005436 Earl B. Thurston 862 Gregory Lane, Frankfort, KY 40601 Jun 22 2009

0596101015 Darren Ryder 4758 Emily Drive, Richmond, VA 23219 Dec 19 2008

0596006815 David Miller 3647 Cedar Lane, Waltham, MA 02154 Jan 16 2009

What we have to do is split this table further to ensure that each customer’s details are
entered only once. Because the ISBN is not and cannot be used as a primary key to
identify customers (or authors), a new key must be created.

Table 9-6 shows the result of normalizing the Customers table into both First and Second
Normal Forms. Each customer now has a unique customer number called CustNo that
is the table’s primary key, and that will most likely have been created using AUTO_INCRE
MENT. All the parts of the customers’ addresses have also been separated into distinct
columns to make them easily searchable and updateable.

Table 9-6. The new Customers table

CustNo Name Address City State Zip

1 Emma Brown 1565 Rainbow Road Los Angeles CA 90014

2 Darren Ryder 4758 Emily Drive Richmond VA 23219

3 Earl B. Thurston 862 Gregory Lane Frankfort KY 40601

4 David Miller 3647 Cedar Lane Waltham MA 02154

At the same time, in order to normalize Table 9-6, it was necessary to remove the
information on customer purchases, because otherwise there would have been multiple
instances of customer details for each book purchased. Instead, the purchase data is
now placed in a new table called Purchases (see Table 9-7).

Table 9-7. The new Purchases table

CustNo ISBN Date

1 0596101015 Mar 03 2009

2 0596527403 Dec 19 2008

2 0596101015 Dec 19 2008

Normalization | 215



CustNo ISBN Date

3 0596005436 Jun 22 2009

4 0596006815 Jan 16 2009

Here, the CustNo column from Table 9-6 is reused as a key to tie the Customers and
Purchases tables together. Because the ISBN column is also repeated here, this table
can be linked with either of the Authors and Titles tables, too.

The CustNo column can be a useful key in the Purchases table, but it’s not a primary
key: a single customer can buy multiple books (and even multiple copies of one book).
In fact, the Purchases table has no primary key. That’s all right, because we don’t expect
to need to keep track of unique purchases. If one customer buys two copies of the same
book on the same day, we’ll just allow two rows with the same information. For easy
searching, we can define both CustNo and ISBN as keys—just not as primary keys.

There are now four tables, one more than the three we had initially
assumed would be needed. We arrived at this decision through the nor-
malization processes, by methodically following the First and Second
Normal Form rules, which made it plain that a fourth table called Pur
chases would also be required.

The tables we now have are: Authors (Table 9-3), Titles (Table 9-4), Customers (Ta-
ble 9-6), and Purchases (Table 9-7). Each table can be linked to any other using either
the CustNo or the ISBN keys.

For example, to see which books Darren Ryder has purchased, you can look him up in
Table 9-6, the Customers table, where you will see that his CustNo is 2. Armed with this
number, you can now go to Table 9-7, the Purchases table; looking at the ISBN column
here, you will see that he purchased titles 0596527403 and 0596101015 on December
19, 2008. This looks like a lot of trouble for a human, but it’s not so hard for MySQL.

To determine what these titles were, you can then refer to Table 9-4, the Titles table,
and see that the books he bought were Dynamic HTML and PHP Cookbook. Should
you wish to know the authors of these books, you could also use the ISBN numbers
you just looked up on Table 9-3, the Authors table, and you would see that ISBN
0596527403, Dynamic HTML, was written by Danny Goodman, and that ISBN
0596101015, PHP Cookbook, was written by David Sklar and Adam Trachtenberg.

Third Normal Form
Once you have a database that complies with both the First and Second Normal Forms,
it is in pretty good shape and you might not have to modify it any further. However, if
you wish to be very strict with your database, you can ensure that it adheres to the
Third Normal Form, which requires that data that is not directly dependent on the

216 | Chapter 9: Mastering MySQL



primary key but that is dependent on another value in the table should also be moved
into separate tables, according to the dependence.

For example, in Table 9-6, the Customers table, it could be argued that the State,
City, and Zip code keys are not directly related to each customer, because many other
people will have the same details in their addresses, too. However, they are directly
related to each other, in that the street Address relies on the City, and the City relies on
the State.

Therefore, to satisfy Third Normal Form for Table 9-6, you would need to split it into
Table 9-8, Table 9-9, Table 9-10, and Table 9-11.

Table 9-8. Third Normal Form Customers table

CustNo Name Address Zip

1 Emma Brown 1565 Rainbow Road 90014

2 Darren Ryder 4758 Emily Drive 23219

3 Earl B. Thurston 862 Gregory Lane 40601

4 David Miller 3647 Cedar Lane 02154

Table 9-9. Third Normal Form Zip codes table

Zip CityID

90014 1234

23219 5678

40601 4321

02154 8765

Table 9-10. Third Normal Form Cities table

CityID Name StateID

1234 Los Angeles 5

5678 Richmond 46

4321 Frankfort 17

8765 Waltham 21

Table 9-11. Third Normal Form States table

StateID Name Abbreviation

5 California CA

46 Virginia VA

17 Kentucky KY

21 Massachusetts MA

Normalization | 217



So, how would you use this set of four tables instead of the single Table 9-6? Well, you
would look up the Zip code in Table 9-8, then find the matching CityID in Table 9-9.
Given this information, you could then look up the city Name in Table 9-10 and then
also find the StateID, which you could use in Table 9-11 to look up the state’s Name.

Although using the Third Normal Form in this way may seem like overkill, it can have
advantages. For example, take a look at Table 9-11, where it has been possible to in-
clude both a state’s name and its two-letter abbreviation. Such a table could also contain
population details and other demographics, if you desired.

Table 9-10 could also contain even more localized demographics that
could be useful to you and/or your customers. By splitting up these
pieces of data, you can make it easier to maintain your database in the
future, should it be necessary to add additional columns.

Deciding whether to use the Third Normal Form can be tricky. Your evaluation should
rest on what additional data you may need to add at a later date. If you are absolutely
certain that the name and address of a customer is all that you will ever require, you
probably will want to leave out this final normalization stage.

On the other hand, suppose you are writing a database for a large organization such as
the U.S. Postal Service. What would you do if a city were to be renamed? With a table
such as Table 9-6, you would need to perform a global search and replace on every
instance of that city’s name. But if you had your database set up according to the Third
Normal Form, you would have to change only a single entry in Table 9-10 for the change
to be reflected throughout the entire database.

Therefore, I suggest that you ask yourself two questions to help you decide whether to
perform a Third Normal Form normalization on any table:

1. Is it likely that many new columns will need to be added to this table?

2. Could any of this table’s fields require a global update at any point?

If either of the answers is yes, you should probably consider performing this final stage
of normalization.

When Not to Use Normalization
Now that you know all about normalization, I’m going to tell you why you should
throw these rules out of the window on high-traffic sites. Now, I’m not saying you’ve
wasted your time reading the last several pages (you most definitely haven’t), but you
should never fully normalize your tables on sites that will cause MySQL to thrash.

You see, normalization requires spreading data across multiple tables, and this means
making multiple calls to MySQL for each query. On a very popular site, if you have
normalized tables, your database access will slow down considerably once you get

218 | Chapter 9: Mastering MySQL



above a few dozen concurrent users, because they will be creating hundreds of database
accesses between them. In fact, I would go so far as to say that you should denormal-
ize any commonly looked-up data as much as you can.

The reason is that if you have data duplicated across your tables, you can substantially
reduce the number of additional requests that need to be made, because most of the
data you want is available in each table. This means that you can simply add an extra
column to a query and that field will be available for all matching results, although (of
course) you will have to deal with the previously mentioned downsides, such as using
up large amounts of disk space and needing to ensure that you update every single
duplicate copy of your data when it needs modifying.

Multiple updates can be computerized, though. MySQL provides a feature called trig-
gers that make automatic changes to the database in response to changes you make.
(Triggers are, however, beyond the scope of this book.) Another way to propagate
redundant data is to set up a PHP program to run regularly and keep all copies in sync.
The program reads changes from a “master” table and updates all the others. (You’ll
see how to access MySQL from PHP in the next chapter.)

However, until you are very experienced with MySQL, I recommend you fully nor-
malize all your tables, as this will instill the habit and put you in good stead. Only when
you actually start to see MySQL logjams should you consider looking at
denormalization.

Relationships
MySQL is called a relational database management system because its tables store not
only data, but the relationships among the data. There are three categories of these
relationships.

One-to-One
A one-to-one relationship between two types of data is like a (traditional) marriage:
each item has a relationship to only one item of the other type. This is surprisingly rare.
For instance, an author can write multiple books, a book can have multiple authors,
and even an address can be associated with multiple customers. Perhaps the best ex-
ample in this chapter so far of a one-to-one relationship is the relationship between the
name of a state and its two-character abbreviation.

However, for the sake of argument, let’s assume that there can only ever be one cus-
tomer at any given address. In such a case, the Customers-Addresses relationship in
Figure 9-1 is a one-to-one relationship: only one customer lives at each address and
each address can have only one customer.

Usually, when two items have a one-to-one relationship, you just include them as col-
umns in the same table. There are two reasons for splitting them into separate tables:

Relationships | 219



• You want to be prepared in case the relationship changes later.

• The table has a lot of columns and you think that performance or maintenance
would be improved by splitting it.

Of course, when you come to build your own databases in the real world, you will have
to create one-to-many Customer-Address relationships (one address, many customers.)

One-to-Many
One-to-many (or many-to-one) relationships occur when one row in one table is linked
to many rows in another table. You have already seen how Table 9-8 would take on a
one-to-many relationship if multiple customers were allowed at the same address,
which is why it would have to be split up if that were the case.

So, looking at Table 9-8a within Figure 9-1, you can see that it shares a one-to-many
relationship with Table 9-7 because there is only one of each customer in Table 9-8a.
However, Table 9-7, the Purchases table, can (and does) contain more than one pur-
chase from a single customer. Therefore, one customer can have a relationship with
many purchases.

You can see these two tables alongside each other in Figure 9-2, where the dashed lines
joining rows in each table start from a single row in the lefthand table but can connect
to more than one row in the righthand table. This one-to-many relationship is also the
preferred scheme to use when describing a many-to-one relationship, in which case you
would swap the left and right tables to view them as a one-to-many relationship.

Many-to-Many
In a many-to-many relationship, many rows in one table are linked to many rows in
another table. To create this relationship, add a third table containing a column from
each of the other tables with which they can be connected. This third table contains
nothing else, as its sole purpose is to link up the other tables.

Figure 9-1. The Customers table, Table 9-8, split into two tables

220 | Chapter 9: Mastering MySQL



Table 9-12 is just such a table. It was extracted from Table 9-7, the Purchases table, but
omits the purchase date information. It contains a copy of the ISBN number of every
title sold, along with the customer number of each purchaser.

Table 9-12. An intermediary table

Customer ISBN

1 0596101015

2 0596527403

2 0596101015

3 0596005436

4 0596006815

With this intermediary table in place, you can traverse all the information in the data-
base through a series of relations. You can take an address as a starting point and find
out the authors of any books purchased by the customer living at that address.

For example, let’s suppose that you want to find out about purchases in the 23219 zip
code. Look up that zip code in Table 9-8b, and you’ll find that customer number 2 has
bought at least one item from the database. At this point, you can use Table 9-8a to
find out the customer’s name, or use the new intermediary Table 9-12 to see the book(s)
purchased.

From here, you will find that two titles were purchased, and you can follow them back
to Table 9-4 to find the titles and prices of these books, or to Table 9-3 to see who the
authors were.

If it seems to you that this is really combining multiple one-to-many relationships, then
you are absolutely correct. To illustrate, Figure 9-3 brings three tables together.

Follow any zip code in the lefthand table to the associated customer IDs. From there,
you can link to the middle table, which joins the left and right tables by linking customer

Figure 9-2. Illustrating a one-to-many relationship between two tables

Relationships | 221



IDs and ISBN numbers. Now all you have to do is follow an ISBN over to the righthand
table to see which book it relates to.

You can also use the intermediary table to work your way backward from book titles
to zip codes. The Titles table can tell you the ISBNs, which you can use in the middle
table to find the ID numbers of customers who bought the books; finally, the Custom
ers table matches the customer ID numbers to the customers’ zip codes.

Databases and Anonymity
An interesting aspect of using relations is that you can accumulate a lot of information
about some item—such as a customer—without actually knowing who that customer
is. In the previous example, note that we went from customers’ zip codes to customers’
purchases and back again, without finding out the customers’ names. Databases can
be used to track people, but they can also be used to help preserve people’s privacy
while still finding useful information.

Transactions
In some applications, it is vitally important that a sequence of queries runs in the correct
order and that every single query successfully completes. For example, suppose that
you are creating a sequence of queries to transfer funds from one bank account to
another. You would not want either of the following events to occur:

• You add the funds to the second account, but when you try to subtract them from
the first account the update fails, and now both accounts have the funds.

• You subtract the funds from the first bank account, but the update request to add
them to the second account fails, and the funds have now disappeared into thin air.

Figure 9-3. Creating a many-to-many relationship via a third table

222 | Chapter 9: Mastering MySQL



As you can see, not only is the order of queries important in this type of transaction,
but it is also vital that all parts of the transaction complete successfully. But how can
you ensure this happens, because surely after a query has occurred, it cannot be
undone? Do you have to keep track of all parts of a transaction and then undo them all
one at a time if any one fails? The answer is absolutely not, because MySQL comes with
powerful transaction handling features to cover just these types of eventualities.

In addition, transactions allow concurrent access to a database by many users or pro-
grams at the same time. MySQL handles this seamlessly, ensuring that all transactions
are queued up and that the users or programs take their turns and don’t tread on each
other’s toes.

Transaction Storage Engines
In order to be able to use MySQL’s transaction facility, you have to be using MySQL’s
InnoDB storage engine. This is easy to do, as it’s simply another parameter that you
use when creating a table. Go ahead and create a table of bank accounts by typing in
the commands in Example 9-1. (Remember that to do this you will need access to the
MySQL command line, and you must also have already selected a suitable database in
which to create this table.)

Example 9-1. Creating a transaction-ready table

CREATE TABLE accounts (
number INT, balance FLOAT, PRIMARY KEY(number)
) ENGINE InnoDB;
DESCRIBE accounts;

The final line of this example displays the contents of the new table so you can ensure
that it was created correctly. The output from it should look like this:

+---------+---------+------+-----+---------+-------+
| Field   | Type    | Null | Key | Default | Extra |
+---------+---------+------+-----+---------+-------+
| number  | int(11) | NO   | PRI | 0       |       |
| balance | float   | YES  |     | NULL    |       |
+---------+---------+------+-----+---------+-------+
2 rows in set (0.00 sec)

Now let’s create two rows within the table so that you can practice using transactions.
Type in the commands in Example 9-2.

Example 9-2. Populating the accounts table

INSERT INTO accounts(number, balance) VALUES(12345, 1025.50);
INSERT INTO accounts(number, balance) VALUES(67890, 140.00);
SELECT * FROM accounts;

Transactions | 223



The third line displays the contents of the table to confirm that the rows were inserted
correctly. The output should look like this:

+--------+---------+
| number | balance |
+--------+---------+
|  12345 |  1025.5 |
|  67890 |     140 |
+--------+---------+
2 rows in set (0.00 sec)

With this table created and prepopulated, you are now ready to start using transactions.

Using BEGIN
Transactions in MySQL start with either a BEGIN or a START TRANSACTION statement.
Type in the commands in Example 9-3 to send a transaction to MySQL.

Example 9-3. A MySQL transaction

BEGIN;
UPDATE accounts SET balance=balance+25.11 WHERE number=12345;
COMMIT;
SELECT * FROM accounts;

The result of this transaction is displayed by the final line, and should look like this:

+--------+---------+
| number | balance |
+--------+---------+
|  12345 | 1050.61 |
|  67890 |     140 |
+--------+---------+
2 rows in set (0.00 sec)

As you can see, the balance of account number 12345 was increased by 25.11 and is
now 1050.61. You may also have noticed the COMMIT command in Example 9-3, which
is explained next.

Using COMMIT
When you are satisfied that a series of queries in a transaction has successfully com-
pleted, issue a COMMIT command to commit all the changes to the database. Until a
COMMIT is received, all the changes you make are considered by MySQL to be merely
temporary. This feature gives you the opportunity to cancel a transaction by not sending
a COMMIT, but issuing a ROLLBACK command instead.

224 | Chapter 9: Mastering MySQL



Using ROLLBACK
Using the ROLLBACK command, you can tell MySQL to forget all the queries made since
the start of a transaction and to end the transaction. Check this out in action by entering
the funds transfer transaction in Example 9-4.

Example 9-4. A funds transfer transaction

BEGIN;
UPDATE accounts SET balance=balance-250 WHERE number=12345;
UPDATE accounts SET balance=balance+250 WHERE number=67890;
SELECT * FROM accounts;

Once you have entered these lines, you should see the following result:

+--------+---------+
| number | balance |
+--------+---------+
|  12345 |  800.61 |
|  67890 |     390 |
+--------+---------+
2 rows in set (0.00 sec)

The first bank account now has a value that is 250 less than before, and the second has
been incremented by 250—you have transferred a value of 250 between them. But let’s
assume that something went wrong and you wish to undo this transaction. All you have
to do is issue the commands in Example 9-5.

Example 9-5. Canceling a transaction using ROLLBACK

ROLLBACK;
SELECT * FROM accounts;

You should now see the following output, showing that the two accounts have had
their previous balances restored, due to the entire transaction being cancelled using the
ROLLBACK command:

+--------+---------+
| number | balance |
+--------+---------+
|  12345 | 1050.61 |
|  67890 |     140 |
+--------+---------+
2 rows in set (0.00 sec)

Using EXPLAIN
MySQL comes with a powerful tool for investigating how the queries you issue to it
are interpreted. Using EXPLAIN, you can get a snapshot of any query to find out whether
you could issue it in a better or more efficient way. Example 9-6 shows how to use it
with the accounts table you created earlier.

Using EXPLAIN | 225



Example 9-6. Using the EXPLAIN command

EXPLAIN SELECT * FROM accounts WHERE number='12345';

The results of this EXPLAIN command should look like the following:

+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
|id|select_type|table   |type |possible_keys|key    |key_len|ref  |rows|Extra|
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
| 1|SIMPLE     |accounts|const|PRIMARY      |PRIMARY|4      |const|   1|     |
+--+-----------+--------+-----+-------------+-------+-------+-----+----+-----+
1 row in set (0.00 sec)

The information that MySQL is giving you here is as follows:

select_type
The selection type is SIMPLE. If you were joining tables together, this would show
the join type.

table
The current table being queried is accounts.

type
The query type is const. From worst to best, the possible values can be: ALL, index,
range, ref, eq_ref, const, system, and NULL.

possible_keys
There is a possible PRIMARY key, which means that accessing should be fast.

key
The key actually used is PRIMARY. This is good.

key_len
The key length is 4. This is the number of bytes of the index that MySQL will use.

ref
The ref column displays which columns or constants are used with the key. In this
case, a constant key is being used.

rows
The number of rows that need to be searched by this query is 1. This is good.

Whenever you have a query that seems to be taking longer than you think it should to
execute, try using EXPLAIN to see where you can optimize it. You will discover which
keys, if any, are being used, their lengths, and so on, and will be able to adjust your
query or the design of your table(s) accordingly.

When you have finished experimenting with the temporary accounts
table, you may wish to remove it by entering the following command:

DROP TABLE accounts;

226 | Chapter 9: Mastering MySQL



Backing Up and Restoring
Whatever kind of data you are storing in your database, it must have some value to
you, even if it’s only the cost of the time required to reenter it should the hard disk fail.
Therefore, it’s important that you keep backups to protect your investment. Also, there
will be times when you have to migrate your database over to a new server; the best
way to do this is usually to back it up first. It is also important that you test your backups
from time to time to ensure that they are valid and will work if they need to be used.

Thankfully, backing up and restoring MySQL data is easy using the mysqldump
command.

Using mysqldump
With mysqldump, you can dump a database or collection of databases into one or more
files containing all the instructions necessary to recreate all your tables and repopulate
them with your data. It can also generate files in CSV (comma-separated values) and
other delimited text formats, or even in XML format. Its main drawback is that you
must make sure that no one writes to a table while you’re backing it up. There are
various ways to do this, but the easiest is to shut down the MySQL server before using
mysqldump and start it up again after mysqldump finishes.

Alternatively, you can lock the tables you are backing up before running mysqldump. To
lock tables for reading (as we want to read the data), from the MySQL command line
issue the command:

LOCK TABLES tablename1 READ, tablename2 READ ...

Then, to release the lock(s), enter:

UNLOCK TABLES;

By default, the output from mysqldump is simply printed out, but you can capture it in
a file through the > redirect symbol.

The basic format of the mysqldump command is:

mysqldump -u user -ppassword database

However, if you want to dump the contents of a database, you must make sure that
mysqldump is in your path, or that you specify its location as part of your command.
Table 9-13 shows the likely locations of the program for the different installations and
operating systems covered in Chapter 2. If you have a different installation, it may be
in a slightly different location.

Table 9-13. Likely locations of mysqldump for different installations

Operating system & program Likely folder location

Windows 32-bit Zend Server CE C:\Program Files\zend\MySQL51\bin

Windows 64-bit Zend Server CE C:\Program Files (x86)\zend\MySQL51\bin

Backing Up and Restoring | 227



Operating system & program Likely folder location

OS X Zend Server CE /usr/local/zend/mysql/bin

Linux Zend Server CE /usr/local/zend/mysql/bin

So, to dump the contents of the publications database that you created in Chapter 8
to the screen, enter mysqldump (or the full path if necessary) and the command in Ex-
ample 9-7.

Example 9-7. Dumping the publications database to the screen

mysqldump -u user -ppassword publications

Make sure that you replace user and password with the correct details for your instal-
lation of MySQL. If there is no password set for the user, you can omit that part of the
command, but the -u user part is mandatory—unless you have root access without a
password and are executing as root (not recommended). The result of issuing this
command will look something like the screen grab in Figure 9-4.

Figure 9-4. Dumping the publications database to the screen

Creating a Backup File
Now that you have mysqldump working and have verified that it outputs correctly to the
screen, you can send the backup data directly to a file using the > redirect symbol.
Assuming that you wish to call the backup file publications.sql, type in the command
in Example 9-8 (remembering to replace user and password with the correct details).

Example 9-8. Dumping the publications database to a file

mysqldump -u user -ppassword publications > publications.sql

228 | Chapter 9: Mastering MySQL



The command in Example 9-8 stores the backup file into the current
directory. If you need it to be saved elsewhere, you should insert a file
path before the filename. You must also ensure that the directory you
are backing up to has the right permissions set to allow the file to be
written.

If you echo the backup file to the screen or load it into a text editor, you will see that
it comprises sequences of SQL commands such as the following:

DROP TABLE IF EXISTS `classics`;
CREATE TABLE `classics` (
  `author` varchar(128) default NULL,
  `title` varchar(128) default NULL,
  `category` varchar(16) default NULL,
  `year` smallint(6) default NULL,
  `isbn` char(13) NOT NULL default '',
  PRIMARY KEY  (`isbn`),
  KEY `author` (`author`(20)),
  KEY `title` (`title`(20)),
  KEY `category` (`category`(4)),
  KEY `year` (`year`),
  FULLTEXT KEY `author_2` (`author`,`title`)
) ENGINE=MyISAM DEFAULT CHARSET=latin1;

This is smart code that can be used to restore a database from a backup even if it
currently exists, because it will first drop any tables that need to be recreated, thus
avoiding potential MySQL errors.

Backing up a single table

To back up only a single table from a database (such as the classics table from the
publications database), you should first lock the table from within the MySQL com-
mand line by issuing a command such as the following:

LOCK TABLES publications.classics READ;

This ensures that MySQL remains running for read purposes, but writes cannot be
made. Then, while keeping the MySQL command line open, use another terminal
window to issue the following command from the operating system command line:

mysqldump -u user -ppassword publications classics > classics.sql

You must now release the table lock by entering the following command from the
MySQL command line in the first terminal window, which unlocks all tables that have
been locked during the current session:

UNLOCK TABLES;

Backing Up and Restoring | 229



Backing up all tables

If you want to back up all your MySQL databases at once (including the system data-
bases, such as mysql), you can use a command such as the one in Example 9-9, which
will make it possible to restore an entire MySQL database installation. Remember to
use locking where required.

Example 9-9. Dumping all the MySQL databases to a file

mysqldump -u user -ppassword --all-databases > all_databases.sql

Of course, there’s a lot more than just a few lines of SQL code in backed-
up database files. I recommend that you take a few minutes to examine
a couple in order to familiarize yourself with the types of commands
that appear in backup files and how they work.

Restoring from a Backup File
To perform a restore from a file, call the mysql executable, passing it the file to restore
from using the < symbol. So, to recover an entire database that you dumped using the
--all-databases option, use a command such as that in Example 9-10.

Example 9-10. Restoring an entire set of databases

mysql -u user -ppassword < all_databases.sql

To restore a single database, use the -D option followed by the name of the database,
as in Example 9-11, where the publications database is being restored from the backup
made in Example 9-8.

Example 9-11. Restoring the publications database

mysql -u user -ppassword -D publications < publications.sql

To restore a single table to a database, use a command such as that in Example 9-12,
where just the classics table is being restored to the publications database.

Example 9-12. Restoring the classics table to the publications database

mysql -u user -ppassword -D publications < classics.sql

Dumping Data in CSV Format
As previously mentioned, the mysqldump program is very flexible and supports various
types of output, such as the CSV format. Example 9-13 shows how you can dump the
data from the classics and customers tables in the publications database to the files
classics.txt and customers.txt in the folder c:/temp. By default, on Zend Server CE the
user should be root and no password is used. On OS X or Linux systems, you should
modify the destination path to an existing folder.

230 | Chapter 9: Mastering MySQL



Example 9-13. Dumping data to CSV format files

mysqldump -u user -ppassword --no-create-info --tab=c:/temp
  --fields-terminated-by=',' publications

This command is quite long and is shown here wrapped over two lines, but you must
type it all in as a single line. The result is the following:

Mark Twain (Samuel Langhorne Clemens)','The Adventures of Tom Sawyer','Classic Fiction',
 '1876','9781598184891
Jane Austen','Pride and Prejudice','Classic Fiction','1811','9780582506206
Charles Darwin','The Origin of Species','Non-Fiction','1856','9780517123201
Charles Dickens','The Old Curiosity Shop','Classic Fiction','1841','9780099533474
William Shakespeare','Romeo and Juliet','Play','1594','9780192814968

Mary Smith','9780582506206
Jack Wilson','9780517123201

Planning Your Backups
The golden rule to backing up is to do so as often as you find practical. The more
valuable the data, the more often you should back it up, and the more copies you should
make. If your database gets updated at least once a day, you should really back it up
on a daily basis. If, on the other hand, it is not updated very often, you can probably
get by with backing up less frequently.

You should also consider making multiple backups and storing them in
different locations. If you have several servers, it is a simple matter to
copy your backups between them. You would also be well advised to
make physical backups of removable hard disks, thumb drives, CDs or
DVDs, and so on, and to keep these in separate locations—preferably
somewhere like a fireproof safe.

Once you’ve digested the contents of this chapter, you will be proficient in using both
PHP and MySQL; the next chapter will show you how to bring these two technologies
together.

Test Your Knowledge
1. What does the word relationship mean in reference to a relational database?

2. What is the term for the process of removing duplicate data and optimizing tables?

3. What are the three rules of the First Normal Form?

4. How can you make a table satisfy the Second Normal Form?

5. What do you put in a column to tie together two tables that contain items having
a one-to-many relationship?

Test Your Knowledge | 231



6. How can you create a database with a many-to-many relationship?

7. What commands initiate and end a MySQL transaction?

8. What feature does MySQL provide to enable you to examine how a query will work
in detail?

9. What command would you use to back up the database publications to a file called
publications.sql?

See “Chapter 9 Answers” on page 508 in Appendix A for the answers to these
questions.

232 | Chapter 9: Mastering MySQL



CHAPTER 10

Accessing MySQL Using PHP

If you worked through the previous chapters, you’ll be comfortable using both MySQL
and PHP. In this chapter, you will learn how to integrate the two by using PHP’s built-
in functions to access MySQL.

Querying a MySQL Database with PHP
The reason for using PHP as an interface to MySQL is to format the results of SQL
queries in a form visible in a web page. As long as you can log in to your MySQL
installation using your username and password, you can also do so from PHP. However,
instead of using MySQL’s command line to enter instructions and view output, you
will create query strings that are passed to MySQL. When MySQL returns its response,
it will come as a data structure that PHP can recognize instead of the formatted output
you see when you work on the command line. Further PHP commands can retrieve the
data and format it for the web page.

The Process
The process of using MySQL with PHP is:

1. Connect to MySQL.

2. Select the database to use.

3. Build a query string.

4. Perform the query.

5. Retrieve the results and output them to a web page.

6. Repeat Steps 3 through 5 until all desired data has been retrieved.

7. Disconnect from MySQL.

We’ll work through these sections in turn, but first it’s important to set up your login
details in a secure manner so people snooping around on your system have trouble
getting access to your database.

233



Creating a Login File
Most websites developed with PHP contain multiple program files that will require
access to MySQL and will therefore need your login and password details. So, it’s sen-
sible to create a single file to store these and then include that file wherever it’s needed.
Example 10-1 shows such a file, which I’ve called login.php. Type it in, replacing the
username and password values with the actual values you use for your MySQL database,
and save it to the web development directory you set up in Chapter 2. We’ll be making
use of the file shortly. The hostname localhost should work as long as you’re using a
MySQL database on your local system, and the database publications should work if
you’re typing in the examples we’ve used so far.

Example 10-1. The login.php file

<?php // login.php
$db_hostname = 'localhost';
$db_database = 'publications';
$db_username = 'username';
$db_password = 'password';
?>

The enclosing <?php and ?> tags are especially important for the login.php file in Ex-
ample 10-1, because they mean that the lines between can be interpreted only as PHP
code. If you were to leave them out and someone were to call up the file directly from
your website, it would display as text and reveal your secrets. However, with the tags
in place, all they will see is a blank page. The file will correctly include in your other
PHP files.

The $db_hostname variable will tell PHP which computer to use when connecting to a
database. This is required because you can access MySQL databases on any computer
connected to your PHP installation, and that potentially includes any host anywhere
on the Web. However, the examples in this chapter will be working on the local server,
so in place of specifying a domain such as mysql.myserver.com, you can just use the
word localhost (or the IP address 127.0.0.1).

The database we’ll be using, $db_database, is the one called publications, which you
probably created in Chapter 8. Alternatively, you can use the one you were provided
with by your server administrator (in which case you’ll have to modify login.php
accordingly).

The variables $db_username and $db_password should be set to the username and pass-
word that you have been using with MySQL.

Another benefit of keeping these login details in a single place is that
you can change your password as frequently as you like and there will
be only one file to update when you do, no matter how many PHP files
access MySQL.

234 | Chapter 10: Accessing MySQL Using PHP



Connecting to MySQL
Now that you have the login.php file saved, you can include it in any PHP files that will
need to access the database by using the require_once statement. This has been chosen
in preference to an include statement, as it will generate a fatal error if the file is not
found. And believe me, not finding the file containing the login details to your database
is a fatal error.

Also, using require_once instead of require means that the file will be read in only when
it has not previously been included, which prevents wasteful duplicate disk accesses.
Example 10-2 shows the code to use.

Example 10-2. Connecting to a MySQL server

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
?>

This example runs PHP’s mysql_connect function, which requires three parameters, the
hostname, username, and password of a MySQL server. Upon success it returns an
identifier to the server; otherwise, FALSE is returned. Notice that the second line uses an
if statement with the die function, which does what it sounds like and quits from PHP
with an error message if $db_server is not TRUE.

The die message explains that it was not possible to connect to the MySQL database,
and—to help identify why this happened—includes a call to the mysql_error function.
This function outputs the error text from the last called MySQL function.

The database server pointer $db_server will be used in some of the following examples
to identify the MySQL server to be queried. Using identifiers this way, it is possible to
connect to and access multiple MySQL servers from a single PHP program.

The die function is great for when you are developing PHP code, but of
course you will want more user-friendly error messages on a production
server. In this case, you won’t abort your PHP program, but rather will
format a message that will be displayed when the program exits nor-
mally, such as:

function mysql_fatal_error($msg)
{
    $msg2 = mysql_error();
    echo <<< _END
We are sorry, but it was not possible to complete
the requested task. The error message we got was:

    <p>$msg: $msg2</p>

Please click the back button on your browser
and try again. If you are still having problems,

Querying a MySQL Database with PHP | 235



please <a href="mailto:admin@server.com">email
our administrator</a>. Thank you.
_END;
}

Selecting a database

Having successfully connected to MySQL, you are now ready to select the database
that you will be using. Example 10-3 shows how to do this.

Example 10-3. Selecting a database

<?php
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());
?>

The command to select the database is mysql_select_db. Pass it the name of the data-
base you want and the server to which you connected. As with the previous example,
a die statement has been included to provide an error message and explanation, should
the selection fail—the only difference is that there is no need to retain the return value
from the mysql_select_db function, as it simply returns either TRUE or FALSE. Therefore,
the PHP or statement was used, which means, “If the previous command failed, do the
following.” Note that for the or to work, there must be no semicolon at the end of the
first line of code.

Building and executing a query

Sending a query to MySQL from PHP is as simple as issuing it using the mysql_query
function. Example 10-4 shows you how to use this function.

Example 10-4. Querying a database

<?php
$query = "SELECT * FROM classics";
$result = mysql_query($query);

if (!$result) die ("Database access failed: " . mysql_error());
?>

First, the variable $query is set to the query to be made. In this case it is asking to see
all rows in the table classics. Note that, unlike when using MySQL’s command line,
no semicolon is required at the tail of the query. This is because the mysql_query func-
tion is used to issue a complete query, and cannot be used to query by sending multiple
parts, one at a time. Therefore, MySQL knows the query is complete and doesn’t look
for a semicolon.

This function returns a result that we place in the variable $result. Having used MySQL
at the command line, you might think that the contents of $result will be the same as
the result returned from a command-line query, with horizontal and vertical lines, and

236 | Chapter 10: Accessing MySQL Using PHP



so on. However, this is not the case with the result returned to PHP. Instead, upon
success, $result will contain a resource that can be used to extract the results of the
query. You’ll see how to extract the data in the next section. Upon failure, $result
contains FALSE. So, the example finishes by checking $result. If it’s FALSE, it means that
there was an error and the die command is executed.

Fetching a result

Once you have a resource returned from the mysql_query function, you can use it to
retrieve the data you want. The simplest way to do this is to fetch the cells you want,
one at a time, using the mysql_result function. Example 10-5 combines and extends
the previous examples into a program that you can type in and run yourself to retrieve
the returned results. I suggest that you save it in the same folder as login.php and give
it the name query.php.

Example 10-5. Fetching results one cell at a time

<?php // query.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "SELECT * FROM classics";
$result = mysql_query($query);

if (!$result) die ("Database access failed: " . mysql_error());

$rows = mysql_num_rows($result);

for ($j = 0 ; $j < $rows ; ++$j)
{
    echo 'Author: '   . mysql_result($result,$j,'author')   . '<br />';
    echo 'Title: '    . mysql_result($result,$j,'title')    . '<br />';
    echo 'Category: ' . mysql_result($result,$j,'category') . '<br />';
    echo 'Year: '     . mysql_result($result,$j,'year')     . '<br />';
    echo 'ISBN: '     . mysql_result($result,$j,'isbn')     . '<br /><br />';
}
?>

The final 10 lines of code are the new ones, so let’s look at them. They start by setting
the variable $rows to the value returned by a call to mysql_num_rows. This function re-
ports the number of rows returned by a query.

Armed with the row count, we enter a for loop that extracts each cell of data from each
row using the mysql_result function. The parameters supplied to this function are the
resource $result, which was returned by mysql_query, the row number $j, and the name
of the column from which to extract the data.

Querying a MySQL Database with PHP | 237



The results from each call to mysql_result are then incorporated within echo statements
to display one field per line, with an additional line feed between rows. Figure 10-1
shows the result of running this program.

Figure 10-1. The output from the query.php program in Example 10-5

As you may recall, we populated the classics table with five rows in Chapter 8, and
indeed, five rows of data are returned by query.php. But, as it stands, this code is actually
extremely inefficient and slow, because a total of 25 calls are made to the function
mysql_result in order to retrieve all the data, a single cell at a time. Luckily, there is a
much better way of retrieving the data: getting a single row at a time using the
mysql_fetch_row function.

In Chapter 9, I talked about First, Second, and Third Normal Form. You
may have noticed that the classics table doesn’t satisfy these, because
both author and book details are included within the same table. That’s
because we created this table before encountering normalization. How-
ever, for the purposes of illustrating access to MySQL from PHP, reusing
this table avoids the hassle of typing in a new set of test data, so we’ll
stick with it for the time being.

238 | Chapter 10: Accessing MySQL Using PHP



Fetching a row

It was important to show how you can fetch a single cell of data from MySQL, but
fetching a row is a much more efficient method. Replace the for loop of query.php (in
Example 10-5) with the new loop in Example 10-6, and you will find that you get exactly
the same result that was displayed in Figure 10-1.

Example 10-6. Replacement for loop for fetching results one row at a time

<?php
for ($j = 0 ; $j < $rows ; ++$j)
{
    $row = mysql_fetch_row($result);
    echo 'Author: ' .     $row[0] . '<br />';
    echo 'Title: ' .      $row[1] . '<br />';
    echo 'Category: ' .   $row[2] . '<br />';
    echo 'Year: ' .       $row[3] . '<br />';
    echo 'ISBN: ' .       $row[4] . '<br /><br />';
}
?>

In this modified code, only one-fifth as many calls are made to a MySQL-calling func-
tion (a full 80 percent less), because each row is fetched in its entirety using the
mysql_fetch_row function. This returns a single row of data in an array, which is then
assigned to the variable $row.

All that’s necessary then is to reference each element of the array $row in turn (starting
at an offset of zero). $row[0] contains the author data, $row[1] the title, and so on,
because each column is placed in the array in the order in which it appears in the MySQL
table. Also, by using mysql_fetch_row instead of mysql_result, you use substantially
less PHP code and achieve much faster execution time, due to simply referencing each
item of data by offset rather than by name.

Closing a connection

When you have finished using a database, you should close the connection. This is
done by issuing the command in Example 10-7.

Example 10-7. Closing a MySQL server connection

<?php
mysql_close($db_server);
?>

We have to pass the identifier returned by mysql_connect back in Example 10-2, which
we stored in the variable $db_server.

Querying a MySQL Database with PHP | 239



All database connections are automatically closed when PHP exits, so
it doesn’t matter that the connection wasn’t closed in Example 10-5.
But in longer programs, where you may continually open and close da-
tabase connections, you are strongly advised to close each one as soon
as you are done accessing it.

A Practical Example
It’s time to write our first example of inserting data in and deleting it from a MySQL
table using PHP. I recommend that you type in Example 10-8 and save it to your web
development directory using the filename sqltest.php. You can see an example of the
program’s output in Figure 10-2.

Example 10-8 creates a standard HTML form. The following chapter
explains forms in detail, but in this chapter I take form handling for
granted and just deal with database interaction.

Example 10-8. Inserting and deleting using sqltest.php

<?php // sqltest.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);

if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());

mysql_select_db($db_database, $db_server)
    or die("Unable to select database: " . mysql_error());

if (isset($_POST['delete']) && isset($_POST['isbn']))
{
    $isbn  = get_post('isbn');
    $query = "DELETE FROM classics WHERE isbn='$isbn'";

    if (!mysql_query($query, $db_server))
          echo "DELETE failed: $query<br />" .
          mysql_error() . "<br /><br />";
}

if (isset($_POST['author']) &&
    isset($_POST['title']) &&
    isset($_POST['category']) &&
    isset($_POST['year']) &&
    isset($_POST['isbn']))
{
    $author   = get_post('author');
    $title    = get_post('title');
    $category = get_post('category');
    $year     = get_post('year');
    $isbn     = get_post('isbn');

240 | Chapter 10: Accessing MySQL Using PHP



    $query = "INSERT INTO classics VALUES" .
          "('$author', '$title', '$category', '$year', '$isbn')";

    if (!mysql_query($query, $db_server))
          echo "INSERT failed: $query<br />" .
          mysql_error() . "<br /><br />";
}

echo <<<_END
<form action="sqltest.php" method="post"><pre>
  Author <input type="text" name="author" />
   Title <input type="text" name="title" />
Category <input type="text" name="category" />
    Year <input type="text" name="year" />
    ISBN <input type="text" name="isbn" />
         <input type="submit" value="ADD RECORD" />
</pre></form>
_END;

$query = "SELECT * FROM classics";
$result = mysql_query($query);

if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

for ($j = 0 ; $j < $rows ; ++$j)
{
    $row = mysql_fetch_row($result);
    echo <<<_END
<pre>
  Author $row[0]
   Title $row[1]
Category $row[2]
    Year $row[3]
    ISBN $row[4]
</pre>
<form action="sqltest.php" method="post">
<input type="hidden" name="delete" value="yes" />
<input type="hidden" name="isbn" value="$row[4]" />
<input type="submit" value="DELETE RECORD" /></form>
_END;
}

mysql_close($db_server);

function get_post($var)
{
    return mysql_real_escape_string($_POST[$var]);
}
?>

At over 80 lines of code, this program may appear daunting, but don’t worry—you’ve
already covered some of it in Example 10-5, and what the code does is actually quite
simple.

A Practical Example | 241



It first checks for any inputs that may have been made and then either inserts new data
into the classics table of the publications database or deletes a row from it, according
to the input supplied. Regardless of whether there was input, the program then outputs
all the rows in the table to the browser. Let’s see how it works.

The first section of new code starts by using the isset function to check whether values
for all the fields have been posted to the program. Upon such confirmation, each of the
lines within the if statement calls the function get_post, which appears at the end of
the program. This function has one small but critical job: fetching the input from the
browser.

The $_POST Array
I mentioned in Chapter 3 that a browser sends user input through either a GET request
or a POST request. The POST request is usually preferred, and we use it here. The web
server bundles up all the user input (even if the form was filled out with a hundred
fields) and puts it into an array named $_POST.

$_POST is an associative array, which you encountered in Chapter 6. Depending on
whether a form has been set to use the POST or the GET method, either the $_POST or the

Figure 10-2. The output from Example 10-8, sqltest.php

242 | Chapter 10: Accessing MySQL Using PHP



$_GET associative array will be populated with the form data. They can both be read in
exactly the same way.

Each field has an element in the array named after that field. So, if a form contains a
field named isbn, the $_POST array will contain an element keyed by the word isbn. The
PHP program can read that field by referring to it by either $_POST['isbn'] or
$_POST["isbn"] (single and double quotes have the same effect in this case).

If the $_POST syntax still seems complex to you, rest assured that you can just use the
convention I’ve shown in Example 10-8, copy the user’s input to other variables, and
forget about $_POST after that. This is normal in PHP programs: they retrieve all the
fields from $_POST at the beginning of the program and then ignore it.

There is no reason to write to an element in the $_POST array. Its only
purpose is to communicate information from the browser to the pro-
gram, and you’re better off copying data to your own variables before
altering it.

So, back to the get_post function, which passes each item it retrieves through the
mysql_real_escape_string function to strip out any characters that a hacker may have
inserted in order to break into or alter your database.

Deleting a Record
Prior to checking whether new data has been posted, the program checks whether the
variable $_POST['delete'] has a value. If so, the user has clicked on the DELETE RE-
CORD button to erase a record. In this case, the value of $isbn will also have been
posted.

If $_POST['delete']) is not set and so there is no record to be deleted, $_POST['au
thor']) and other posted values are checked. If they have all been given values, then
$query is set to an INSERT INTO command, followed by the five values to be inserted.
The variable is then passed to mysql_query, which upon completion returns either
TRUE or FALSE. If FALSE is returned, an error message is displayed.

If $delete didn’t contain the word “yes,” the following else statement is executed.
$query is set to an INSERT INTO command, followed by the five values to be inserted.
The variable is then passed to mysql_query, which upon completion returns either
TRUE or FALSE. If FALSE is returned, an error message is displayed.

Displaying the Form
Next we get to the part of the code that displays the little form at the top of Fig-
ure 10-2. You should recall from previous chapters the echo <<<_END heredoc structure,
which outputs everything between the _END tags.

A Practical Example | 243



Instead of using the echo command, the program could drop out of PHP
using ?>, issue the HTML, and then reenter PHP processing with
<?php. Which style is used is a matter of programmer preference, but I
always recommend staying within PHP code, for two reasons:

• It makes it very clear when debugging (and also for other users)
that everything within a .php file is PHP code. Therefore, there is
no need to go hunting for dropouts to HTML.

• When you wish to include a PHP variable directly within HTML,
you can just type it in. If you had dropped back to HTML, you
would have had to temporarily reenter PHP processing, output the
variable, and then drop back out again.

The HTML form section simply sets the form’s action to sqltest.php. This means that
when the form is submitted, the contents of the form fields will be sent to the file
sqltest.php, which is the program itself. The form is also set up to send the fields as a
POST rather than a GET request. This is because GET requests are appended to the URL
being submitted to and can look messy in the browser. They also allow users to easily
modify submissions and try to hack your server. Therefore, whenever possible, you
should use POST submissions, which also have the benefit of hiding the posted data from
view.

Having output the form fields, the HTML displays a submit button with the name ADD
RECORD and closes the form. Note the <pre> and </pre> tags here, which have been
used to force a monospaced font and allow all the inputs to line up neatly. The carriage
returns at the end of each line are also output when inside <pre> tags.

Querying the Database
Next, the code returns to the familiar territory of Example 10-5: in the following four
lines of code, a query is sent to MySQL asking to see all the records in the classics
table. After that, $rows is set to a value representing the number of rows in the table
and a for loop is entered to display the contents of each row.

I have altered the next bit of code to simplify things. Instead of using the <br /> tags
for line feeds in Example 10-5, I have chosen to use a <pre> tag to line up the display
of each record in a pleasing manner.

After the display of each record, there is a second form that also posts to sqltest.php
(the program itself) but that contains two hidden fields: delete and isbn. The delete
field is set to "yes" and the isbn to the value held in $row[4], which is the ISBN for the
record. Then a submit button with the name DELETE RECORD is displayed and the
form is closed. A curly brace then completes the for loop, which will continue until all
records have been displayed.

244 | Chapter 10: Accessing MySQL Using PHP



Finally, you see the definition for the function get_post, which we’ve already looked
at. And that’s it—our first PHP program to manipulate a MySQL database. So, let’s
check out what it can do.

Running the Program
Once you have typed in the program (and corrected any typing errors), try entering the
following data into the various input fields to add a new record for the book Moby
Dick to the database:

Herman Melville
Moby Dick
Fiction
1851
9780199535729

When you have submitted this data using the ADD RECORD button, scroll down to
the bottom of the web page to see the new addition. It should look like Figure 10-3.

Figure 10-3. The result of adding Moby Dick to the database

Now let’s look at how deleting a record works by creating a dummy record. Try entering
just the number 1 in each of the five fields and clicking on the ADD RECORD button.

A Practical Example | 245



If you now scroll down, you’ll see a new record consisting just of 1s. Obviously this
record isn’t useful in this table, so now click on the DELETE RECORD button and
scroll down again to confirm that the record has been deleted.

Assuming that everything worked, you are now able to add and delete
records at will. Try doing this a few times, but leave the main records
in place (including the new one for Moby Dick), as we’ll be using them
later. You could also try adding the record with all 1s again a couple of
times and note the error message that you receive the second time, in-
dicating that there is already an ISBN with the number 1.

Practical MySQL
You are now ready to look at some practical techniques that you can use in PHP to
access a MySQL database, including tasks such as creating and dropping tables; in-
serting, updating, and deleting data; and protecting your database and website from
malicious users. Note that the following examples assume that you’ve created the
login.php program discussed earlier in this chapter.

Creating a Table
Let’s assume that you are working for a wildlife park and need to create a database to
hold details about all the types of cats it houses. You are told that there are nine
families of cats—Lion, Tiger, Jaguar, Leopard, Cougar, Cheetah, Lynx, Caracal, and
Domestic—so you’ll need a column for that. Then each cat has been given a name, so
that’s another column, and you also want to keep track of their ages, which is another.
Of course, you will probably need more columns later, perhaps to hold dietary re-
quirements, inoculations, and other details, but for now that’s enough to get going. A
unique identifier is also needed for each animal, so you also decide to create a column
for that, called id.

Example 10-9 shows the code you might use to create a MySQL table to hold this data,
with the main query assignment in bold text.

Example 10-9. Creating a table called cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "CREATE TABLE cats (
            id SMALLINT NOT NULL AUTO_INCREMENT,
            family VARCHAR(32) NOT NULL,
            name VARCHAR(32) NOT NULL,

246 | Chapter 10: Accessing MySQL Using PHP



            age TINYINT NOT NULL,
            PRIMARY KEY (id)
        )";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

As you can see, the MySQL query looks pretty similar to how you would type it in
directly to the command line, except that there is no trailing semicolon, as none is
needed when accessing MySQL from PHP.

Describing a Table
When you aren’t logged in to the MySQL command line, there’s a handy piece of code
that you can use to verify that a table has been created correctly from inside a browser.
It simply issues the query DESCRIBE tablename and then outputs an HTML table with
four headings: Column, Type, Null, and Key, underneath which all columns within the
table are shown. To use the code in Example 10-10 with other tables, simply replace
the name cats in the query with that of the new table.

Example 10-10. Describing the table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "DESCRIBE cats";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

echo "<table><tr> <th>Column</th> <th>Type</th>
      <th>Null</th> <th>Key</th> </tr>";

for ($j = 0 ; $j < $rows ; ++$j)
{
    $row = mysql_fetch_row($result);
    echo "<tr>";
    for ($k = 0 ; $k < 4 ; ++$k) echo "<td>$row[$k]</td>";
    echo "</tr>";
}

echo "</table>";
?>

The output from the program should look like this:

Practical MySQL | 247



Column Type        Null Key
id     smallint(6) NO   PRI
family varchar(32) NO
name   varchar(32) NO
age    tinyint(4)  NO

Dropping a Table
Dropping a table is very easy to do and is therefore very dangerous, so be careful.
Example 10-11 shows the code that you need. However, I don’t recommend that you
try it until you have been through the other examples, as it will drop the table cats and
you’ll have to recreate it using Example 10-9.

Example 10-11. Dropping the table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "DROP TABLE cats";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

Adding Data
Let’s add some data to the table using the code in Example 10-12.

Example 10-12. Adding data to the table cats

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "INSERT INTO cats VALUES(NULL, 'Lion', 'Leo', 4)";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

You may wish to add a couple more items of data by modifying $query as follows and
calling up the program in your browser again:

$query = "INSERT INTO cats VALUES(NULL, 'Cougar', 'Growler', 2)";
$query = "INSERT INTO cats VALUES(NULL, 'Cheetah', 'Charly', 3)";

248 | Chapter 10: Accessing MySQL Using PHP



By the way, notice the NULL value passed as the first parameter? This is done because
the id column is of the type AUTO_INCREMENT, so MySQL will decide what value to assign
according to the next available number in the sequence. Therefore, we simply pass a
NULL value, which will be ignored.

Of course, the most efficient way to populate MySQL with data is to
create an array and insert the data with a single query.

Retrieving Data
Now that you’ve inserted some data into the cats table, Example 10-13 shows how you
can check that this was done correctly.

Example 10-13. Retrieving rows from the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "SELECT * FROM cats";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

echo "<table><tr> <th>Id</th> <th>Family</th>
    <th>Name</th><th>Age</th></tr>";

for ($j = 0 ; $j < $rows ; ++$j)
{
    $row = mysql_fetch_row($result);
    echo "<tr>";
    for ($k = 0 ; $k < 4 ; ++$k) echo "<td>$row[$k]</td>";
    echo "</tr>";
}

echo "</table>";
?>

This code simply issues the MySQL query SELECT * FROM cats and then displays all the
rows returned. Its output is as follows:

Id Family  Name    Age
1  Lion    Leo     4
2  Cougar  Growler 2
3  Cheetah Charly  3

Practical MySQL | 249



Here you can see that the id column has correctly autoincremented.

Updating Data
Changing data that you have already inserted is also quite simple. Did you notice the
spelling of Charly for the cheetah’s name? Let’s correct that to Charlie, as in Exam-
ple 10-14.

Example 10-14. Renaming Charly the cheetah to Charlie

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "UPDATE cats SET name='Charlie' WHERE name='Charly'";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

If you run Example 10-13 again, you’ll see that it now outputs the following:

Id Family  Name    Age
1  Lion    Leo     4
2  Cougar  Growler 2
3  Cheetah Charlie 3

Deleting Data
Growler the cougar has been transferred to another zoo, so it’s time to remove him
from the database. Example 10-15 shows how to delete data from the table.

Example 10-15. Removing Growler the cougar from the cats table

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "DELETE FROM cats WHERE name='Growler'";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
?>

This uses a standard DELETE FROM query, and when you run Example 10-13, you can
see that the row has been removed by the following output:

250 | Chapter 10: Accessing MySQL Using PHP



Id Family  Name    Age
1  Lion    Leo     4
3  Cheetah Charlie 3

Using AUTO_INCREMENT
When using AUTO_INCREMENT, you cannot know what value has been given to a column
before a row is inserted. If you need to know it, you must ask MySQL afterwards using
the mysql_insert_id function. This need is common: for instance, when you process a
purchase, you might insert a new customer into a customers table and then refer to the
newly created CustId when inserting a purchase into the purchases table.

Example 10-12 can be rewritten as Example 10-16 to display this value after each insert.

Example 10-16. Adding data to the table cats and reporting the insertion ID

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";

$result = mysql_query($query);
echo "The Insert ID was: " . mysql_insert_id();
if (!$result) die ("Database access failed: " . mysql_error());
?>

The contents of the table should now look like the following (note how the previous
id value of 2 is not reused, as this could cause complications in some instances):

Id Family  Name    Age
1  Lion    Leo     4
3  Cheetah Charlie 3
4  Lynx    Stumpy  5

Using insert IDs

It’s very common to insert data in multiple tables: a book followed by its author, a
customer followed by an item purchased, and so on. When doing this with an autoin-
crement column, you will need to retain the insert ID returned for storing in the related
table.

For example, let’s assume that these cats can be “adopted” by the public as a means of
raising funds, and that when a new cat is stored in the cats table, we also want to create
a key to tie it to the animal’s adoptive owner. The code to do this is similar to that in
Example 10-16, except that the returned insert ID is stored in the variable $insertID
and is then used as part of the subsequent query:

Practical MySQL | 251



$query    = "INSERT INTO cats VALUES(NULL, 'Lynx', 'Stumpy', 5)";
$result   = mysql_query($query);
$insertID = mysql_insert_id();

$query    = "INSERT INTO owners VALUES($insertID, 'Ann', 'Smith')";
$result   = mysql_query($query);

Now the cat is connected to its “owner” through the cat’s unique ID, which was created
automatically by AUTO_INCREMENT.

Using locks

A completely safe procedure for linking tables through the insert ID is to use locks.
This can slow down response time a bit when there are many people submitting data
to the same table, but it can be worth it. The sequence is:

1. Lock the first table (e.g., cats).

2. Insert data into the first table.

3. Retrieve the unique ID from the first table through mysql_insert_id.

4. Unlock the first table.

5. Insert data into the second table.

The lock can safely be released before inserting data into the second table, because the
insert ID has been retrieved and is stored in a program variable. A transaction can also
be used instead of locking, as described in Chapter 9, but that slows down the MySQL
server even more.

Performing Additional Queries
Okay: that’s enough feline fun. To explore some slightly more complex queries, we
need to revert to using the customers and classics tables that you should have created
in Chapter 8. There will be two customers in the customers table; the classics table
holds the details of a few books. They also share a common column of ISBN numbers
called isbn that we can use to perform additional queries.

For example, to display each of the customers along with the titles and authors of the
books they have bought, you can use the code in Example 10-17.

Example 10-17. Performing a secondary query

<?php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "SELECT * FROM customers";

252 | Chapter 10: Accessing MySQL Using PHP



$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());
$rows = mysql_num_rows($result);

for ($j = 0 ; $j < $rows ; ++$j)
{
    $row = mysql_fetch_row($result);
    echo "$row[0] purchased ISBN $row[1]:<br />";

    $subquery = "SELECT * FROM classics WHERE isbn='$row[1]'";

    $subresult = mysql_query($subquery);
    if (!$subresult) die ("Database access failed: " . mysql_error());
    $subrow = mysql_fetch_row($subresult);
    echo "  '$subrow[1]' by $subrow[0]<br />";
}
?>

This program uses an initial query to the customers table to look up all the customers
and then, given the ISBN number of the books each customer has purchased, makes a
new query to the classics table to find out the title and author of each. The output
from this code should be as follows:

Mary Smith purchased ISBN 9780582506206:
    'Pride and Prejudice' by Jane Austen
Jack Wilson purchased ISBN 9780517123201:
    'The Origin of Species' by Charles Darwin

Of course, although it wouldn’t illustrate performing additional queries,
in this particular case you could also return the same information using
a NATURAL JOIN query (see Chapter 8), like this:

SELECT name,isbn,title,author FROM customers NATURAL JOIN classics;

Preventing SQL Injection
It may be hard to understand just how dangerous it is to pass unchecked user input to
MySQL. For example, suppose you have a simple piece of code to verify a user, and it
looks like this:

$user  = $_POST['user'];
$pass  = $_POST['pass'];
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

At first glance, you might think this code is perfectly fine. If the user enters values of
fredsmith and mypass for $user and $pass, the query string passed to MySQL will be as
follows:

SELECT * FROM users WHERE user='fredsmith' AND pass='mypass'

This is all well and good, but what if someone enters the following for $user (and doesn’t
enter anything for $pass)?

Practical MySQL | 253



admin' #

Let’s look at the string that would be sent to MySQL:

SELECT * FROM users WHERE user='admin' #' AND pass=''

Do you see the problem there (highlighted in bold)? In MySQL, the # symbol represents
the start of a comment. Therefore, the user will be logged in as admin (assuming there
is a user admin), without having to enter a password. In the following, the part of the
query that will be executed is shown in bold—the rest will be ignored:

SELECT * FROM users WHERE user='admin' #' AND pass=''

But you should count yourself very lucky if that’s all a malicious user does to you. At
least you might still be able to go into your application and undo any changes the user
makes as admin. But what about the case in which your application code removes a
user from the database? The code might look something like this:

$user  = $_POST['user'];
$pass  = $_POST['pass'];
$query = "DELETE FROM users WHERE user='$user' AND pass='$pass'";

Again, this looks quite normal at first glance, but what if someone entered the following
for $user?

anything' OR 1=1 #

MySQL would interpret this as the following (again highlighted in bold):

DELETE FROM users WHERE user='anything' OR 1=1 #' AND pass=''

Ouch—that SQL query will always be true, and therefore you’ve lost your whole
users database! So what can you do about this kind of attack?

Well, the first thing is not to rely on PHP’s built-in magic quotes, which automatically
escape any characters such as single and double quotes by prefacing them with a back-
slash (\). Why? Because this feature can be turned off. Many programmers do so in
order to put their own security code in place, so there is no guarantee that this hasn’t
happened on the server you are working on. In fact, the feature was deprecated as of
PHP 5.3.0 and is due for complete removal in version 6.

Instead, you should always use the function mysql_real_escape_string for all calls to
MySQL. Example 10-18 is a function you can use that will remove any magic quotes
added to a user-inputted string and then properly sanitize it for you.

Example 10-18. How to properly sanitize user input for MySQL

<?php
function mysql_fix_string($string)
{
    if (get_magic_quotes_gpc()) $string = stripslashes($string);
    return mysql_real_escape_string($string);
}
?>

254 | Chapter 10: Accessing MySQL Using PHP



The get_magic_quotes_gpc function returns TRUE if magic quotes are active. In that case,
any slashes that have been added to a string have to be removed or the function
mysql_real_escape_string could end up double-escaping some characters, creating
corrupted strings. Example 10-19 illustrates how you would incorporate mysql_fix
within your own code.

Example 10-19. How to safely access MySQL with user input

<?php
$user  = mysql_fix_string($_POST['user']);
$pass  = mysql_fix_string($_POST['pass']);
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

function mysql_fix_string($string)
{
    if (get_magic_quotes_gpc()) $string = stripslashes($string);
    return mysql_real_escape_string($string);
}
?>

Remember that you can use mysql_escape_string only when a MySQL
database is actively open; otherwise, an error will occur.

Using placeholders

Another way—this one virtually bulletproof—to prevent SQL injections is to use a
feature called placeholders. The idea is to predefine a query using ? characters where
the data will appear. Then, instead of calling a MySQL query directly, you call the
predefined one, passing the data to it. This has the effect of ensuring that every item of
data entered is inserted directly into the database and cannot be interpreted as a SQL
query. In other words, SQL injections become impossible.

The sequence of queries to execute when using MySQL’s command line could be like
that in Example 10-20.

Example 10-20. Using placeholders

PREPARE statement FROM "INSERT INTO classics VALUES(?,?,?,?,?)";

SET @author   = "Emily Brontë",
    @title    = "Wuthering Heights",
    @category = "Classic Fiction",
    @year     = "1847",
    @isbn     = "9780553212587";

EXECUTE statement USING @author,@title,@category,@year,@isbn;

DEALLOCATE PREPARE statement;

Practical MySQL | 255



The first command prepares a statement called statement for inserting data into the
classics table. As you can see, in place of values or variables for the data to insert, the
statement contains a series of ? characters. These are the placeholders.

The next five lines assign values to MySQL variables according to the data to be inserted.
Then the predefined statement is executed, passing these variables as parameters. Fi-
nally, the statement is removed, in order to return the resources it was using.

In PHP, the code for this procedure looks like Example 10-21 (assuming that you have
created login.php with the correct details to access the database).

Example 10-21. Using placeholders with PHP

<?php
require 'login.php';

$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = 'PREPARE statement FROM "INSERT INTO classics
    VALUES(?,?,?,?,?)"';
mysql_query($query);

$query = 'SET @author = "Emily Brontë",' .
         '@title = "Wuthering Heights",' .
         '@category = "Classic Fiction",' .
         '@year = "1847",' .
         '@isbn = "9780553212587"';
mysql_query($query);

$query = 'EXECUTE statement USING @author,@title,@category,@year,@isbn';
mysql_query($query);

$query = 'DEALLOCATE PREPARE statement';
mysql_query($query);
?>

Once you have prepared a statement, until you deallocate it, you can use it as often as
you wish. Such statements are commonly used within a loop to quickly insert data into
a database by assigning values to the MySQL variables and then executing the state-
ment. This approach is more efficient than creating the entire statement from scratch
on each pass through the loop.

Preventing HTML Injection
There’s another type of injection you need to concern yourself about—not for the safety
of your own websites, but for your users’ privacy and protection. That’s cross-site
scripting, also referred to as XSS.

256 | Chapter 10: Accessing MySQL Using PHP



This occurs when you allow HTML, or more often JavaScript code, to be input by a
user and then displayed back by your website. One place this is common is in a com-
ment form. What most often happens is that a malicious user will try to write code that
steals cookies from your site’s users, allowing him to discover username and password
pairs or other information. Even worse, the malicious user might launch an attack to
download a Trojan onto a user’s computer.

Preventing this is as simple as calling the htmlentities function, which strips out all
HTML markup codes and replaces them with a form that displays the characters, but
does not allow a browser to act on them. For example, consider the following HTML:

<script src='http://x.com/hack.js'> </script><script>hack();</script>

This code loads in a JavaScript program and then executes malicious functions. But if
it is first passed through htmlentities, it will be turned into the following, totally
harmless string:

&lt;script src='http://x.com/hack.js'&gt; &lt;/script&gt;&lt;script&gt;hack();
&lt;/script&gt;

So if you are ever going to display anything that your users enter, either immediately
or after first storing it in a database, you need to first sanitize it with htmlentities. To
do this, I recommend that you create a new function like the first one in Exam-
ple 10-22, which can sanitize for both SQL and XSS injections.

Example 10-22. Functions for preventing both SQL and XSS injection attacks

<?php
function mysql_entities_fix_string($string)
{
    return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
    if (get_magic_quotes_gpc()) $string = stripslashes($string);
    return mysql_real_escape_string($string);
}
?>

The mysql_entities_fix_string function first calls mysql_fix_string and then passes
the result through htmlentities before returning the fully sanitized string. Exam-
ple 10-23 shows your new “ultimate protection” version of Example 10-19.

Example 10-23. How to safely access MySQL and prevent XSS attacks

<?php
$user  = mysql_entities_fix_string($_POST['user']);
$pass  = mysql_entities_fix_string($_POST['pass']);
$query = "SELECT * FROM users WHERE user='$user' AND pass='$pass'";

function mysql_entities_fix_string($string)
{

Practical MySQL | 257



    return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
    if (get_magic_quotes_gpc()) $string = stripslashes($string);
    return mysql_real_escape_string($string);
}
?>

Now that you have learned how to integrate PHP with MySQL and avoid malicious
user input, the next chapter will further expand on the use of form handling, including
data validation, multiple values, pattern matching, and security.

Test Your Knowledge
1. What is the standard PHP function for connecting to a MySQL database?

2. When is the mysql_result function not optimal?

3. Give one reason why using the POST form method is usually better than GET.

4. How can you determine the most recently entered value of an AUTO_INCREMENT
column?

5. Which PHP function escapes a string, making it suitable for use with MySQL?

6. Which function can be used to prevent XSS injection attacks?

See “Chapter 10 Answers” on page 509 in Appendix A for the answers to these
questions.

258 | Chapter 10: Accessing MySQL Using PHP



CHAPTER 11

Form Handling

The main way that website users interact with PHP and MySQL is through the use of
HTML forms. These were introduced very early on in the development of the World
Wide Web—in 1993, even before the advent of ecommerce—and have remained a
mainstay ever since, due to their simplicity and ease of use.

Of course, enhancements have been made over the years to add extra functionality to
HTML form handling; this chapter will bring you up to speed on the state of the art
and show you the best ways to implement forms for good usability and security.

Building Forms
Handling forms is a multipart process. First a form is created, into which a user can
enter the required details. This data is then sent to the web server, where it is interpreted,
often with some error checking. If the PHP code identifies one or more fields that require
reentering, the form may be redisplayed with an error message. When the code is sat-
isfied with the accuracy of the input, it takes some action that usually involves the
database, such as entering details about a purchase.

To build a form, you must have at least the following elements:

• An opening <form> and closing </form> tag

• A submission type specifying either a GET or POST method

• One or more input fields

• The destination URL to which the form data is to be submitted

Example 11-1 shows a very simple form created using PHP. Type it in and save it as
formtest.php.

Example 11-1. formtest.php—a simple PHP form handler

<?php // formtest.php
echo <<<_END
<html>

259



    <head>
        <title>Form Test</title>
    </head>
    <body>
    <form method="post" action="formtest.php">
        What is your name?
        <input type="text" name="name" />
        <input type="submit" />
    </form>
    </body>
</html>
_END;
?>

The first thing to notice about this example is that, as you have already seen in this
book, rather than dropping in and out of PHP code, I generally use the echo
<<<_END..._END heredoc construct when multiline HTML must be output.

Inside this multiline output is some standard code for commencing an HTML docu-
ment, displaying its title, and starting the body of the document. This is followed by
the form, which is set to send its data using the POST method to the PHP program
formtest.php, which is the name of the program itself.

The rest of the program just closes all the items it opened: the form, the body of the
HTML document, and the PHP echo <<<_END statement. The result of opening this
program in a web browser can be seen in Figure 11-1.

Figure 11-1. The result of opening formtest.php in a web browser

Retrieving Submitted Data
Example 11-1 is only one part of the multipart form handling process. If you enter a
name and click on the Submit Query button, absolutely nothing will happen other than
the form being redisplayed. So, now it’s time to add some PHP code to process the data
submitted by the form.

Example 11-2 expands on the previous program to include data processing. Type it in
(or modify formtest.php by adding in the new lines), save it as formtest2.php, and try

260 | Chapter 11: Form Handling



the program for yourself. The result of running this program and entering a name can
be seen in Figure 11-2.

Example 11-2. Updated version of formtest.php

<?php // formtest2.php
if (isset($_POST['name'])) $name = $_POST['name'];
else $name = "(Not entered)";

echo <<<_END
<html>
    <head>
        <title>Form Test</title>
    </head>
    <body>
    Your name is: $name<br />
    <form method="post" action="formtest2.php">
        What is your name?
        <input type="text" name="name" />
        <input type="submit" />
    </form>
    </body>
</html>
_END;
?>

The only changes are a couple of lines at the start that check the $_POST associative array
for the field name submitted. The previous chapter introduced the $_POST associative
array, which contains an element for each field in an HTML form. In Example 11-2,
the input name used was name and the form method was POST, so element name of the
$_POST array contains the value in $_POST['name'].

The PHP isset function is used to test whether $_POST['name'] has been assigned a
value. If nothing was posted, the program assigns the value “(Not entered)”; otherwise,
it stores the value that was entered. Then a single line has been added after the
<body> statement to display that value, which is stored in $name.

Figure 11-2. formtest.php with data handling

Retrieving Submitted Data | 261



register_globals: An Old Solution Hangs On
Before security became such a big issue, the default behavior of PHP was to assign the
$_POST and $_GET arrays directly to PHP variables. For example, there would be no need
to use the instruction $name=$_POST['name'];, because $name would be given that value
automatically by PHP at the program start!

Initially (prior to version 4.2.0 of PHP), this seemed a very useful idea that saved a lot
of extra code writing, but this practice has now been discontinued and the feature is
disabled by default. Should you find register_globals enabled on a production web
server for which you are developing, you should urgently ask your server administrator
to disable it.

So why disable register_globals? It enables anyone to enter a GET input on the tail of
a URL, like this: http://myserver.com?override=1. If your code were ever to use the vari-
able $override and you forgot to initialize it (for example, through $override=0;), the
program could be compromised by such an exploit.

In fact, because many installations on the Web have this gaping hole, I advise you to
always initialize every variable you use, just in case your code will ever run on such a
system. Initialization is also good programming practice, because you can comment
each initialization to remind yourself and other programmers what a variable is for.

If you ever find yourself maintaining code that seems to assume values
for certain variables for no apparent reason, you can make an educated
guess that the programmer wrote the code using register_globals, and
that these values are intended to be extracted from a POST or GET. If so,
I recommend you rewrite the code to load these variables explicitly from
the correct $_POST or $_GET array.

Default Values
Sometimes it’s convenient to offer your site visitors a default value in a web form. For
example, suppose you put up a loan repayment calculator widget on a real estate web-
site. It could make sense to enter default values of, say, 25 years and 6 percent interest,
so that the user can simply type in either the principal sum to borrow or the amount
that she can afford to pay each month.

In this case, the HTML for those two values would be something like Example 11-3.

Example 11-3. Setting default values

<form method="post" action="calc.php"><pre>
      Loan Amount <input type="text" name="principle" />
Monthly Repayment <input type="text" name="monthly" />
  Number of Years <input type="text" name="years" value="25" />
    Interest Rate <input type="text" name="rate" value="6" />

262 | Chapter 11: Form Handling

http://myserver.com?override=1


                  <input type="submit" />
</pre></form>

If you wish to try this (and the other HTML code samples), type it in
and save it with a .html file extension, such as test.html, then load that
file into your browser.

Take a look at the third and fourth inputs. By populating the value parameter, you
display a default value in the field, which the users can then change if they wish. With
sensible default values you can often make your web forms more user-friendly by min-
imizing unnecessary typing. The result of the previous code looks like Figure 11-3. Of
course, this was created just to illustrate default values, and because the program
calc.php has not been written, the form will not do anything if submitted.

Figure 11-3. Using default values for selected form fields

Default values are also used for hidden fields if you want to pass extra information from
your web page to your program, in addition to what users enter. We’ll look at hidden
fields later in this chapter.

Input Types
HTML forms are very versatile and allow you to submit a wide range of different types
of inputs, ranging from text boxes and text areas to checkboxes, radio buttons, and
more.

Text boxes

Probably the type of input you will use most often is the text box. It accepts a wide
range of alphanumeric text and other characters in a single-line box. The general format
of a text box input is:

<input type="text" name="name" size="size" maxlength="length" value="value" />

Retrieving Submitted Data | 263



We’ve already covered the name and value parameters, but two more are introduced
here: size and maxlength. The size parameter specifies the width of the box, in char-
acters of the current font, as it should appear on the screen, and maxlength specifies the
maximum number of characters that a user is allowed to enter into the field.

The only required parameters are type, which tells the web browser what type of input
is to be expected, and name, for providing a name to the input that is then used to process
the field upon receipt of the submitted form.

Text areas

When you need to accept input of more than a single line of text, use a text area. This
is similar to a text box but, because it allows multiple lines, it has some different pa-
rameters. Its general format looks like this:

<textarea name="name" cols="width" rows="height" wrap="type">
</textarea>

The first thing to notice is that <textarea> has its own tag and is not a subtype of the
<input> tag. It therefore requires a closing </textarea> to end input.

Instead of a default parameter, if you have default text to display, you must put it before
the closing </textarea>, like this:

<textarea name="name" cols="width" rows="height" wrap="type">
This is some default text.
</textarea>

It will then be displayed and be editable by the user. To control the width and height,
use the cols and rows parameters. Both use the character spacing of the current font to
determine the size of the area. If you omit these values, a default input box will be
created that will vary in dimensions depending on the browser used, so you should
always define them to be certain about how your form will appear.

Lastly, you can control how the text entered into the box will wrap (and how any such
wrapping will be sent to the server) using the wrap parameter. Table 11-1 shows the
wrap types available. If you leave out the wrap parameter, soft wrapping is used.

Table 11-1. The wrap types available in a <textarea> input

Type Action

off Text does not wrap and lines appear exactly as the user types them.

soft Text wraps but is sent to the server as one long string without carriage returns and line feeds.

hard Text wraps and is sent to the server in wrapped format with soft returns and line feeds.

Checkboxes

When you want to offer a number of different options to a user, from which he can
select one or more items, checkboxes are the way to go. The format to use is:

264 | Chapter 11: Form Handling



<input type="checkbox" name="name" value="value" checked="checked" />

If you include the checked parameter, the box is already checked when the browser is
displayed (the string you assign to the parameter doesn’t matter; the parameter just has
to be present). If you don’t include the parameter, the box is shown unchecked. Here
is an example of an unchecked box:

I Agree <input type="checkbox" name="agree" />

If the user doesn’t check the box, no value will be submitted. But if he does, a value of
“on” will be submitted for the field named agree. If you prefer to have your own value
submitted instead of the word “on” (such as the number 1), you could use the following
syntax:

I Agree <input type="checkbox" name="agree" value="1" />

On the other hand, if you wish to offer a newsletter to your readers when submitting
a form, you might want to have the checkbox already checked as the default value:

Subscribe? <input type="checkbox" name="news" checked="checked" />

If you want to allow groups of items to be selected at one time, assign them all the same
name. However, be aware that only the last item checked will be submitted, unless you
pass an array as the name. For example, Example 11-4 allows the user to select her
favorite ice cream flavors (see Figure 11-4 for how it displays in a browser).

Example 11-4. Offering multiple checkbox choices

   Vanilla <input type="checkbox" name="ice" value="Vanilla" />
 Chocolate <input type="checkbox" name="ice" value="Chocolate" />
Strawberry <input type="checkbox" name="ice" value="Strawberry" />

Figure 11-4. Using checkboxes to make quick selections

If only one of the checkboxes is selected, such as the second one, only that item will be
submitted (the field named ice will be assigned the value "Chocolate"). But if two or
more are selected, only the last value will be submitted, with prior values being ignored.

If you want exclusive behavior—so that only one item can be submitted—you should
use radio buttons (see the next section). If, however, you want to allow multiple sub-
missions, you have to slightly alter the HTML, as shown in Example 11-5 (note the
addition of the square brackets, [], following the values of ice):

Retrieving Submitted Data | 265



Example 11-5. Submitting multiple values with an array

   Vanilla <input type="checkbox" name="ice[]" value="Vanilla" />
 Chocolate <input type="checkbox" name="ice[]" value="Chocolate" />
Strawberry <input type="checkbox" name="ice[]" value="Strawberry" />

Now when the form is submitted, if any of these items have been checked, an array
called ice will be submitted that contains any and all selected values. In each case, you
can extract either the single submitted value or the array of values to a variable, like this:

$ice = $_POST['ice'];

If the field ice has been posted as a single value, $ice will be a single string, such as
"Strawberry". But if ice was defined in the form as an array (like in Example 11-5),
$ice will be an array, and its number of elements will be the number of values submitted.
Table 11-2 shows the seven possible sets of values that could be submitted by this
HTML for one, two, or all three selections. In each case, an array of one, two, or three
items is created.

Table 11-2. The seven possible sets of values for the array $ice

One value submitted Two values submitted Three values submitted

$ice[0] => Vanilla

$ice[0] => Chocolate

$ice[0] => Strawberry

$ice[0] => Vanilla

$ice[1] => Chocolate

$ice[0] => Vanilla

$ice[1] => Strawberry

$ice[0] => Chocolate

$ice[1] => Strawberry

$ice[0] => Vanilla

$ice[1] => Chocolate

$ice[2] => Strawberry

If $ice is an array, the PHP code to display its contents is quite simple and might look
like this:

foreach($ice as $item) echo "$item<br />";

This uses the standard PHP foreach construct to iterate through the array $ice and pass
each element’s value into the variable $item, which is then displayed using the echo
command. The <br /> is just an HTML formatting device, to force a new line after each
flavor in the display.

By default, checkboxes are square.

Radio buttons

Radio buttons are named after the push-in preset buttons found on many older radios,
where any previously depressed button pops back up when another is pressed. They
are used when you want only a single value to be returned from a selection of two or

266 | Chapter 11: Form Handling



more options. All the buttons in a group must use the same name and, because only a
single value is returned, you do not have to pass an array.

For example, if your website offers a choice of delivery times for items purchased from
your store, you might use HTML like that in Example 11-6 (see Figure 11-5 to see how
it displays).

Example 11-6. Using radio buttons

8am-Noon<input type="radio" name="time" value="1" />|
Noon-4pm<input type="radio" name="time" value="2" checked="checked"/>|
 4pm-8pm<input type="radio" name="time" value="3" />

Figure 11-5. Selecting a single value with radio buttons

Here, the second option, Noon–4pm, has been selected by default. Providing a default
choice ensures that at least one delivery time will be selected, which users can change
to one of the other two options if they prefer. Had one of the items not been already
checked, the user might forget to select an option and no value would be submitted at
all for the delivery time.

By default, radio buttons are round.

Hidden fields

Sometime it is convenient to have hidden form fields so that you can keep track of the
state of form entry. For example, you might wish to know whether a form has already
been submitted. You can achieve this by adding some HTML such as the following to
your PHP code:

echo '<input type="hidden" name="submitted" value="yes" />'

This is a simple PHP echo statement that adds an input field to the HTML form. Let’s
assume the form was created outside the program and displayed to the user. The first
time the PHP program receives the input, this line of code has not run, so there will be
no field named submitted. The PHP program recreates the form, adding the input field.
Then, when the visitor resubmits the form, the PHP program receives it with the sub
mitted field set to "yes". The code can simply check whether the field is present:

if (isset($_POST['submitted']))
{...

Retrieving Submitted Data | 267



Hidden fields can also be useful for storing other details, such as a session ID string
that you might create to identify a user, and so on.

Never treat hidden fields as secure, because they are not. The HTML
containing them can easily be viewed using a browser’s view source
feature.

Select

The select tag lets you create a drop-down list of options, offering either single or
multiple selections. It conforms to the following syntax:

<select name="name" size="size" multiple="multiple">

The parameter size is the number of lines to display. Clicking on the display causes a
list to drop down showing all the options. If you use the multiple parameter, the user
can select multiple options from the list by pressing the Ctrl key when clicking. So, to
ask a user for his favorite vegetable from a choice of five, you might use HTML like
that in Example 11-7, which offers a single selection.

Example 11-7. Using select

Vegetables <select name="veg" size="1">
<option value="Peas">Peas</option>
<option value="Beans">Beans</option>
<option value="Carrots">Carrots</option>
<option value="Cabbage">Cabbage</option>
<option value="Broccoli">Broccoli</option>
</select>

This HTML offers five choices, with the first one, Peas, preselected (due to it being the
first item). Figure 11-6 shows the output where the list has been clicked on to drop it
down, and the option Carrots has been highlighted.

If you want to have a different default option offered first (such as Beans), use the
selected tag, like this:

<option selected="selected" value="Beans">Beans</option>

Figure 11-6. Creating a drop-down list with select

268 | Chapter 11: Form Handling



You can also allow for users to select more than one item, as in Example 11-8.

Example 11-8. Using select with the multiple parameter

Vegetables <select name="veg" size="5" multiple="multiple">
<option value="Peas">Peas</option>
<option value="Beans">Beans</option>
<option value="Carrots">Carrots</option>
<option value="Cabbage">Cabbage</option>
<option value="Broccoli">Broccoli</option>
</select>

This HTML is not very different; the only changes are that the size has been changed
to "5" and the parameter multiple has been added. But, as you can see from Fig-
ure 11-7, it is now possible to select more than one option by using the Ctrl key when
clicking.

Figure 11-7. Using a select with the multiple parameter

You can leave out the size parameter if you wish, and the output will be the same, but
with a larger list the drop-down box might take up too much screen space, so I rec-
ommend that you pick a suitable number of rows and stick with it. I also recommend
against multiple select boxes smaller than two rows in height—some browsers may not
correctly display the scroll bars needed to access it.

You can also use the selected tag within a multiple select and can, in fact, have more
than one option preselected if you wish.

Labels

You can provide an even better user experience by utilizing the <label> tag. With it,
you can surround a form element, making it selectable by clicking any visible part
contained between the opening and closing <label> tags.

For example, going back to the example of choosing a delivery time, you could allow
the user to click on the radio button itself and the associated text, like this:

<label>8am-Noon<input type="radio" name="time" value="1" /></label>

Retrieving Submitted Data | 269



The text will not be underlined like a hyperlink when you do this, but as the mouse
pointer passes over it it will change to an arrow instead of a text cursor, indicating that
the whole item is clickable.

The submit button

To match the type of form being submitted, you can change the text of the submit
button to anything you like by using the value parameter, like this:

<input type="submit" value="Search" />

You can also replace the standard text button with a graphic image of your choice,
using HTML such as this:

<input type="image" name="submit" src="image.gif" />

Sanitizing Input
Now we return to PHP programming. It can never be emphasized enough that handling
user data is a security minefield, and that it is essential to learn to treat all such data
with the utmost caution from the word go. It’s actually not that difficult to sanitize user
input from potential hacking attempts, and it must be done.

The first thing to remember is that regardless of what constraints you have placed in
an HTML form to limit the types and sizes of inputs, it is a trivial matter for a hacker
to use her browser’s view source feature to extract the form and modify it to provide
malicious input to your website.

Therefore, you must never trust any variable that you fetch from either the $_GET or
$_POST arrays until you have processed it. If you don’t, users may try to inject JavaScript
into the data to interfere with your site’s operation, or even attempt to add MySQL
commands to compromise your database.

Instead of just using code such as the following when reading in user input:

$variable = $_POST['user_input'];

you should also use one or more of the following lines of code. For example, to prevent
escape characters being injected into a string that will be presented to MySQL, you
should use the following (remembering that this function takes into account the current
character set of a MySQL connection, so it can be used only with an open connection):

$variable = mysql_real_escape_string($variable);

To get rid of unwanted slashes, such as those inserted using the (now deprecated)
magic_quotes_gpc directive, use:

$variable = stripslashes($variable);

And to remove any HTML from a string, use the following:

$variable = htmlentities($variable);

270 | Chapter 11: Form Handling



For example, this would change a string of interpretable HTML code like <b>hi</b>
into &lt;b&gt;hi&lt;/b&gt;, which displays as text and won’t be interpreted as HTML
tags.

Finally, if you wish to strip HTML entirely from an input, use the following:

$variable = strip_tags($variable);

In fact, until you know exactly what sanitization you require for a program, Exam-
ple 11-9 shows a pair of functions that bring all these checks together to provide a very
good level of security.

Example 11-9. The sanitizeString and sanitizeMySQL functions

<?php
function sanitizeString($var)
{
    if (get_magic_quotes_gpc()) $var = stripslashes($var);
    $var = htmlentities($var);
    $var = strip_tags($var);
    return $var;
}

function sanitizeMySQL($var)
{
    $var = mysql_real_escape_string($var);
    $var = sanitizeString($var);
    return $var;
}
?>

Add this code to the end of your PHP programs and you can then call it for each user
input to sanitize, like this:

$variable = sanitizeString($_POST['user_input']);

Or, when you have an open MySQL connection:

$variable = sanitizeMySQL($_POST['user_input']);

An Example Program
Let’s look at how a real-life PHP program integrates with an HTML form by creating
the program convert.php, listed in Example 11-10. Type it in as shown and try it for
yourself.

Example 11-10. A program to convert values between Fahrenheit and Celsius

<?php // convert.php
$f = $c = "";

if (isset($_POST['f'])) $f = sanitizeString($_POST['f']);
if (isset($_POST['c'])) $c = sanitizeString($_POST['c']);

An Example Program | 271



if ($f != '')
{
    $c = intval((5 / 9) * ($f - 32));
    $out = "$f °f equals $c °c";
}
elseif($c != '')
{
    $f = intval((9 / 5) * $c + 32);
    $out = "$c °c equals $f °f";
}
else $out = "";

echo <<<_END
<html><head><title>Temperature Converter</title>
</head><body><pre>
Enter either Fahrenheit or Celsius and click on Convert

<b>$out</b>
<form method="post" action="convert.php">
Fahrenheit <input type="text" name="f" size="7" />
   Celsius <input type="text" name="c" size="7" />
           <input type="submit" value="Convert" />
</form></pre></body></html>
_END;

function sanitizeString($var)
{
    $var = stripslashes($var);
    $var = htmlentities($var);
    $var = strip_tags($var);
    return $var;
}
?>

When you call up convert.php in a browser, the result should look something like the
screen grab in Figure 11-8.

Figure 11-8. The temperature conversion program in action

272 | Chapter 11: Form Handling



To break the program down, the first line initializes the variables $c and $f in case they
do not get posted to the program. The next two lines fetch the values of either the field
named f or the one named c, for an input Fahrenheit or Celsius value. If the user inputs
both, the Celsius is simply ignored and the Fahrenheit value is converted. As a security
measure, the new function sanitizeString from Example 11-9 is also used.

So, having submitted either values or empty strings in both $f and $c, the next portion
of code constitutes an if...elseif...else structure that first tests whether $f has a
value. If not, it checks $c; if $c does not have a value either, the variable $out is set to
the empty string (more on that in a moment).

If $f is found to have a value, the variable $c is assigned a simple mathematical expres-
sion that converts the value of $f from Fahrenheit to Celsius. The formula used is
Celsius = (5 / 9) * (Fahrenheit – 32). The variable $out is then set to a message string
explaining the conversion.

On the other hand, if $f is found not to have a value but $c does, a complementary
operation is performed to convert the value of $c from Celsius to Fahrenheit and assign
the result to $f. The formula used is Fahrenheit = (9 / 5) * Celsius + 32. As with the
previous section, the string $out is then set to contain a message about the conversion.

In both conversions, the PHP intval function is called to convert the result of the
conversion to an integer value. This isn’t necessary, but it looks better.

With all the arithmetic done, the program now outputs the HTML, which starts with
the basic head and title and then provides some introductory text before displaying the
value of $out. If no temperature conversion was made, $out will have a value of NULL
and nothing will be displayed, which is exactly what we want when the form hasn’t yet
been submitted. But if a conversion was made, $out contains the result, which is
displayed.

After this, we come to the form, which is set to submit using the POST method to the
file convert.php (the program itself). Within the form, there are two inputs for either a
Fahrenheit or Celsius value to be entered. A submit button with the text “Convert” is
then displayed, and the form is closed.

After outputting the HTML to close the document, we come finally to the function
sanitizeString from Example 11-9.

All the examples in this chapter have used the POST method to send form
data. I recommend this, as it’s the neatest and most secure method.
However, the forms can easily be changed to use the GET method, as
long as values are fetched from the $_GET array instead of the $_POST
array. Reasons to do this might include to make the result of a search
bookmarkable or directly linkable from another page.

An Example Program | 273



Test Your Knowledge
1. Form data can be submitted using either the POST or the GET method. Which asso-

ciative arrays are used to pass this data to PHP?

2. What is register_globals and why is using it a bad idea?

3. What is the difference between a text box and a text area?

4. If a form has to offer three choices to a user, each of which is mutually exclusive
(so that only one of the three can be selected), which input type would you use for
this, given a choice between checkboxes and radio buttons?

5. How can you submit a group of selections from a web form using a single field
name?

6. How can you submit a form field without displaying it in the browser?

7. Which HTML tag is used to encapsulate a form element and supporting text or
graphics, making the entire unit selectable with a mouse-click?

8. Which PHP function converts HTML into a format that can be displayed but will
not be interpreted as HTML by a browser?

See “Chapter 11 Answers” on page 510 in Appendix A for the answers to these
questions.

274 | Chapter 11: Form Handling



CHAPTER 12

Cookies, Sessions, and Authentication

As your web projects grow larger and more complicated, you will find an increasing
need to keep track of your users. Even if you aren’t offering logins and passwords, you
will still often need to store details about a user’s current session and possibly also
recognize users when they return to your site.

Several technologies support this kind of interaction, ranging from simple browser
cookies to session handling and HTTP authentication. Between them, they offer the
opportunity for you to configure your site to your users’ preferences and ensure a
smooth and enjoyable transition through it.

Using Cookies in PHP
A cookie is an item of data that a web server saves to your computer’s hard disk via a
web browser. It can contain almost any alphanumeric information (as long as it’s under
4 KB) and can be retrieved from your computer and returned to the server. Common
uses include session tracking, maintaining data across multiple visits, holding shopping
cart contents, storing login details, and more.

Because of their privacy implications, cookies can be read only from the issuing domain.
In other words, if a cookie is issued by, for example, http://www.oreilly.com, it can be
retrieved only by a web server using that domain. This prevents other websites from
gaining access to details they are not authorized to have.

Due to the way the Internet works, multiple elements on a web page can be embedded
from multiple domains, each of which can issue its own cookies. These are referred to
as third-party cookies. Most commonly, they are created by advertising companies in
order to track users across multiple websites.

Most browsers allow users to turn off cookies for either the current server’s domain,
third-party servers, or both. Fortunately, most people who disable cookies do so only
for third-party websites.

275

http://www.oreilly.com


Cookies are exchanged during the transfer of headers, before the actual HTML of a
web page is sent, and it is impossible to send a cookie once any HTML has been trans-
ferred. Therefore, careful planning of cookie usage is important. Figure 12-1 illustrates
a typical request and response dialog between a web browser and web server passing
cookies.

Figure 12-1. A browser/server request/response dialog with cookies

This exchange shows a browser receiving two pages:

1. The browser issues a request to retrieve the main page, index.html, at the website
http://www.webserver.com. The first header specifies the file and the second header
specifies the server.

2. When the web server at webserver.com receives this pair of headers, it returns some
of its own. The second header defines the type of content to be sent (text/html) and
the third one sends a cookie with the name name and the value value. Only then
are the contents of the web page transferred.

3. Once the browser has received the cookie, it will then return it with every future
request made to the issuing server until the cookie expires or is deleted. So, when
the browser requests the new page /news.html, it also returns the cookie name with
the value value.

4. Because the cookie has already been set, when the server receives the request to
send /news.html, it does not have to resend the cookie, but just returns the reques-
ted page.

276 | Chapter 12: Cookies, Sessions, and Authentication

http://www.webserver.com


Setting a Cookie
Setting a cookie in PHP is a simple matter. As long as no HTML has yet been transferred,
you can call the setcookie function, which has the following syntax (see Table 12-1):

setcookie(name, value, expire, path, domain, secure, httponly);

Table 12-1. The setcookie parameters

Parameter Description Example

name The name of the cookie. This is the name that your server will use to access the cookie on
subsequent browser requests.

username

value The value of the cookie, or the cookie’s contents. This can contain up to 4 KB of alphanumeric
text.

Hannah

expire (Optional) The Unix timestamp of the cookie’s expiration date. Generally, you will use
time() plus or minus a number of seconds. If not set, the cookie expires when the browser
closes.

time() +
2592000

path (Optional) The path of the cookie on the server. If this is a / (forward slash), the cookie is
available over the entire domain, such as http://www.webserver.com. If it is a subdirectory,
the cookie is available only within that subdirectory. The default is the current directory
that the cookie is being set in, and this is the setting you will normally use.

/

domain (Optional) The Internet domain of the cookie. If this is .webserver.com, the cookie is available
to all of webserver.com and its subdomains, such as www.webserver.com and im-
ages.webserver.com. If it is images.webserver.com, the cookie is available only to im-
ages.webserver.com and its subdomains, such as sub.images.webserver.com, but not, say,
to www.webserver.com.

.web
server.com

secure (Optional) Whether the cookie must use a secure connection (https://). If this value is
TRUE, the cookie can be transferred only across a secure connection. The default is FALSE.

FALSE

httponly (Optional; implemented since PHP version 5.2.0) Whether the cookie must use the HTTP
protocol. If this value is TRUE, scripting languages such as JavaScript cannot access the
cookie. (Not supported in all browsers.) The default is FALSE.

FALSE

So, to create a cookie with the name username and the value “Hannah” that is accessible
across the entire web server on the current domain, and will be removed from the
browser’s cache in seven days, use the following:

setcookie('username', 'Hannah', time() + 60 * 60 * 24 * 7, '/');

Accessing a Cookie
Reading the value of a cookie is as simple as accessing the $_COOKIE system array. For
example, if you wish to see whether the current browser has the cookie called user-
name already stored and, if so, to read its value, use the following:

if (isset($_COOKIE['username']))
    $username = $_COOKIE['username'];

Using Cookies in PHP | 277

http://www.webserver.com


Note that you can read a cookie back only after it has been sent to a web browser. This
means that when you issue a cookie, you cannot read it in again until the browser
reloads the page (or another with access to the cookie) from your website and passes
the cookie back to the server in the process.

Destroying a Cookie
To delete a cookie, you must issue it again and set a date in the past. It is important for
all parameters in your new setcookie call except the timestamp to be identical to the
parameters used when the cookie was first issued; otherwise, the deletion will fail.
Therefore, to delete the cookie created earlier, you would use the following:

setcookie('username', 'Hannah', time() - 2592000, '/');

As long as the time given is in the past, the cookie should be deleted. However, I have
used a time of 2,592,000 seconds (one month) in the past in this example, in case the
client computer’s date and time are not set correctly.

HTTP Authentication
HTTP authentication uses the web server to manage users and passwords for the ap-
plication. It’s adequate for most applications that ask users to log in, although some
applications have specialized needs or more stringent security requirements that call
for other techniques.

To use HTTP authentication, PHP sends a header request asking to start an authenti-
cation dialog with the browser. The server must have this feature turned on in order
for it to work, but because it’s so common, your server is very likely to offer the feature.

Although it is usually installed with Apache, HTTP authentication may
not necessarily be installed on the server you use. If when you attempt
to run these examples, you see an error message telling you that the
feature is not enabled, you must install the module, change the config-
uration file to load the module, or ask your system administrator to do
these fixes.

From the users’ point of view, when they enter your URL into the browser or visit via
a link, an “Authentication Required” prompt pops up requesting two fields: User Name
and Password (see Figure 12-2 for how this looks in Firefox).

The code to make this happen looks like Example 12-1.

Example 12-1. PHP authentication

<?php
if (isset($_SERVER['PHP_AUTH_USER']) &&
    isset($_SERVER['PHP_AUTH_PW']))

278 | Chapter 12: Cookies, Sessions, and Authentication



{
    echo "Welcome User: " . $_SERVER['PHP_AUTH_USER'] .
        " Password: " .     $_SERVER['PHP_AUTH_PW'];
}
else
{
    header('WWW-Authenticate: Basic realm="Restricted Section"');
    header('HTTP/1.0 401 Unauthorized');
    die("Please enter your username and password");
}
?>

The very first thing the program does is look for two particular values:
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW']. If they both exist, they rep-
resent the username and password entered by a user into an authentication prompt.

If either of the values does not exist, the user has not yet been authenticated and the
prompt in Figure 12-2 is displayed by issuing the following header, where “Basic realm”
is the name of the section that is protected and appears as part of the pop-up prompt:

WWW-Authenticate: Basic realm="Restricted Area"

If the user fills out the fields, the PHP program runs again from the top. But if the user
clicks on the Cancel button, the program proceeds to the following two lines, which
send the following header and an error message:

HTTP/1.0 401 Unauthorized

The die statement causes the text “Please enter your username and password” to be
displayed (see Figure 12-3).

Figure 12-2. An HTTP authentication login prompt

HTTP Authentication | 279



Once a user has been authenticated, you will not be able to get the
authentication dialog to pop up again unless the user closes and reopens
all browser windows, as the web browser will keep returning the same
username and password to PHP. You may need to close and reopen your
browser a few times as you work through this section and try out dif-
ferent things.

Now let’s check for a valid username and password. The code in Example 12-1 doesn’t
require much change to add this check: we just need to change the previous welcome
message code into a test for a correct username and password, followed by issuing a
welcome message. A failed authentication causes an error message to be sent (see
Example 12-2).

Example 12-2. PHP authentication with input checking

<?php
$username = 'admin';
$password = 'letmein';

if (isset($_SERVER['PHP_AUTH_USER']) &&
    isset($_SERVER['PHP_AUTH_PW']))
{
    if ($_SERVER['PHP_AUTH_USER'] == $username &&
        $_SERVER['PHP_AUTH_PW']   == $password)
        echo "You are now logged in";
    else die("Invalid username / password combination");
}
else
{
    header('WWW-Authenticate: Basic realm="Restricted Section"');
    header('HTTP/1.0 401 Unauthorized');
    die ("Please enter your username and password");
}
?>

Figure 12-3. The result of clicking on the Cancel button

280 | Chapter 12: Cookies, Sessions, and Authentication



Incidentally, take a look at the wording of the error message: “Invalid username / pass-
word combination.” It doesn’t say whether the username, the password, or both were
wrong—the less information you can give to a potential hacker, the better.

A mechanism is now in place to authenticate users, but only for a single username and
password. Also, the password appears in clear text within the PHP file, so if someone
managed to hack into your server, they would instantly know it. Let’s look at a better
way to handle usernames and passwords.

The security in modern browsers is getting stricter and has reached a
point where you may not easily be able to test HTTP authentication on
a local filesystem unless you alter your browser’s settings. This is to
protect you from potentially malicious files you may download from the
Internet (since local files generally pose greater security risks). Instead,
if you wish to write code that uses this type of authentication, this is one
instance where you may prefer to perform your testing on a remote
server using an Internet connection.

Storing Usernames and Passwords
Obviously MySQL is the natural way to store usernames and passwords. But again, we
don’t want to store the passwords as clear text, because our website could be compro-
mised if the database were accessed by a hacker. Instead, we’ll use a neat trick called a
one-way function.

This type of function is easy to use and converts a string of text into a seemingly random
string. Due to their one-way nature, such functions are virtually impossible to reverse,
so their output can safely be stored in a database—and anyone who steals it will be
none the wiser as to the passwords used.

The particular function we’ll use is called md5. You pass it a string to hash and it returns
a 32-character hexadecimal number. Use it like this:

$token = md5('mypassword');

That example happens to give $token the value:

34819d7beeabb9260a5c854bc85b3e44

Also available is the similar sha1 function, which is considered to be more secure; it has
a better algorithm and returns a 40-character hexadecimal number.

Salting
Unfortunately, md5 on its own is not enough to protect a database of passwords, because
it could still be susceptible to a brute force attack that uses another database of known
32-character hexadecimal md5 tokens. Such databases do exist, as a quick Google search
will verify.

HTTP Authentication | 281



Thankfully, though, we can put a spanner in the works of any such attempts by salt-
ing all the passwords before they are sent to md5. Salting is simply a matter of adding
some text that only we know about to each parameter to be encrypted, like this:

$token = md5('saltstringmypassword');

In this example, the text “saltstring” has been prepended to the password. Of course,
the more obscure you can make the salt, the better. I like to use salts such as this:

$token = md5('hqb%$tmypasswordcg*l');

Here, some random characters have been placed both before and after the password.
Given just the database, and without access to your PHP code, it should now be next
to impossible to work out the stored passwords.

With the tremendous rate at which computer processing speed is in-
creasing, MD5 strings are beginning to enter the realm of being poten-
tially crackable in a time frame of weeks (rather than years) for shorter
seed strings. This is the reason the SHA1 algorithm was developed—it
is much harder to crack than MD5 and returns a 40-character hexadec-
imal string.

To future-proof your code, you may wish to use the PHP sha1 function
in place of the md5 function. (If you store SHA1 values in MySQL, make
sure the field width is set to 40 characters.) Or, if you need some seri-
ously strong encryption, I recommend you investigate the PHP crypt
function using the CRYPT_BLOWFISH algorithm, described here: http://ti
nyurl.com/phpcrypt.

All you have to do when verifying someone’s login password is to add these same
random strings back in before and after it, and then check the resulting token from an
md5 call against the one stored in the database for that user.

Let’s create a MySQL table to hold some user details and add a couple of accounts.
Type in the program in Example 12-3 and save it as setupusers.php, then open it in your
browser.

Example 12-3. Creating a users table and adding two accounts

<?php // setupusers.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

$query = "CREATE TABLE users (
            forename VARCHAR(32) NOT NULL,
            surname  VARCHAR(32) NOT NULL,
            username VARCHAR(32) NOT NULL UNIQUE,
            password VARCHAR(32) NOT NULL

282 | Chapter 12: Cookies, Sessions, and Authentication

http://tinyurl.com/phpcrypt
http://tinyurl.com/phpcrypt


        )";

$result = mysql_query($query);
if (!$result) die ("Database access failed: " . mysql_error());

$salt1 = "qm&h*";
$salt2 = "pg!@";

$forename = 'Bill';
$surname  = 'Smith';
$username = 'bsmith';
$password = 'mysecret';
$token    = md5("$salt1$password$salt2");
add_user($forename, $surname, $username, $token);

$forename = 'Pauline';
$surname  = 'Jones';
$username = 'pjones';
$password = 'acrobat';
$token    = md5("$salt1$password$salt2");
add_user($forename, $surname, $username, $token);

function add_user($fn, $sn, $un, $pw)
{
    $query = "INSERT INTO users VALUES('$fn', '$sn', '$un', '$pw')";
    $result = mysql_query($query);
    if (!$result) die ("Database access failed: " . mysql_error());
}
?>

This program will create the table users within your publications database (or
whichever database you set up for the login.php file in Chapter 10). In this table, it will
create two users: Bill Smith and Pauline Jones. They have the usernames and passwords
bsmith/mysecret and pjones/acrobat, respectively.

Using the data in this table, we can now modify Example 12-2 to properly authenticate
users. Example 12-4 shows the code needed to do this. Type it in, save it as authenti-
cate.php, and call it up in your browser.

Example 12-4. PHP authentication using MySQL

<?php // authenticate.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

if (isset($_SERVER['PHP_AUTH_USER']) &&
    isset($_SERVER['PHP_AUTH_PW']))
{
    $un_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_USER']);
    $pw_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_PW']);

HTTP Authentication | 283



    $query = "SELECT * FROM users WHERE username='$un_temp'";
    $result = mysql_query($query);
    if (!$result) die("Database access failed: " . mysql_error());
    elseif (mysql_num_rows($result))
    {
        $row = mysql_fetch_row($result);
        $salt1 = "qm&h*";
        $salt2 = "pg!@";
        $token = md5("$salt1$pw_temp$salt2");

        if ($token == $row[3]) echo "$row[0] $row[1] :
            Hi $row[0], you are now logged in as '$row[2]'";
        else die("Invalid username/password combination");
    }
    else die("Invalid username/password combination");
}
else
{
    header('WWW-Authenticate: Basic realm="Restricted Section"');
    header('HTTP/1.0 401 Unauthorized');
    die ("Please enter your username and password");
}

function mysql_entities_fix_string($string)
{
    return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
    if (get_magic_quotes_gpc()) $string = stripslashes($string);
    return mysql_real_escape_string($string);
}
?>

As you might expect at this point in the book, some of the examples (such as this one)
are starting to get quite a bit longer. But don’t be put off. The final 10 lines are simply
a repeat of Example 10-22 from Chapter 10. They are there to sanitize the user input
—very important.

The only lines to really concern yourself with at this point (highlighted in boldface in
Example 12-4) start with the assigning of two variables, $un_temp and $pw_temp, using
the submitted username and password. Next, a query is issued to MySQL to look up
the user $un_temp and, if a result is returned, to assign the first row to $row. (Because
usernames are unique, there will be only one row.) Then the two salts are created in
$salt1 and $salt2, which are then added before and after the submitted password
$pw_temp. This string is then passed to the md5 function, which returns a 32-character
hexadecimal value in $token.

Now all that’s necessary is to check $token against the value stored in the database,
which happens to be in the fourth column—column 3, as we’re starting from an offset
of 0. So, $row[3] contains the previous token calculated for the salted password. If the

284 | Chapter 12: Cookies, Sessions, and Authentication



two match, a friendly welcome string is output, calling the user by his or her first name
(see Figure 12-4). Otherwise, an error message is displayed. As mentioned before, the
error message is the same regardless of whether such a username exists, as this provides
minimal information to potential hackers or password guessers.

Figure 12-4. Bill Smith has now been authenticated

You can try this out for yourself by calling up the program in your browser and entering
a username of “bsmith” and password of “mysecret” (or “pjones” and “acrobat”), the
values that were saved in the database by Example 12-3.

Using Sessions
Because your program can’t tell what variables were set in other programs—or even
what values the program itself set the previous time it ran—you’ll sometimes want to
track what your users are doing from one web page to another. You can do this by
setting hidden fields in a form, as seen in Chapter 10, and checking the value of the
fields after the form is submitted. However, PHP provides a much more powerful and
simpler solution, in the form of sessions. These are groups of variables that are stored
on the server but relate only to the current user. To ensure that the right variables are
applied to the right users, a cookie is saved in the users’ web browsers to uniquely
identify them.

This cookie has meaning only to the web server and cannot be used to ascertain any
information about a user. You might ask about those users who have their cookies
turned off. Well, that’s not a problem since PHP 4.2.0, because it will identify when
this is the case and place a cookie token in the GET portion of each URL request instead.
Either way, sessions provide a solid way of keeping track of your users.

Starting a Session
Starting a session requires calling the PHP function session_start before any HTML
has been output, similarly to how cookies are sent during header exchanges. Then, to
begin saving session variables, you just assign them as part of the $_SESSION array, like
this:

Using Sessions | 285



$_SESSION['variable'] = $value;

They can then be read back just as easily in later program runs, like this:

$variable = $_SESSION['variable'];

Now assume that you have an application that always needs access to the username,
password, forename, and surname of each user, as stored in the table users, which you
should have created a little earlier. Let’s further modify authenticate.php from Exam-
ple 12-4 to set up a session once a user has been authenticated.

Example 12-5 shows the changes needed. The only difference is the contents of the if
($token == $row[3]) section, which now starts by opening a session and saving these
four variables into it. Type this program in (or modify Example 12-4) and save it as
authenticate2.php. But don’t run it in your browser yet, as you will also need to create
a second program in a moment.

Example 12-5. Setting a session after successful authentication

<?php //authenticate2.php
require_once 'login.php';
$db_server = mysql_connect($db_hostname, $db_username, $db_password);
if (!$db_server) die("Unable to connect to MySQL: " . mysql_error());
mysql_select_db($db_database)
    or die("Unable to select database: " . mysql_error());

if (isset($_SERVER['PHP_AUTH_USER']) &&
    isset($_SERVER['PHP_AUTH_PW']))
{
    $un_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_USER']);
    $pw_temp = mysql_entities_fix_string($_SERVER['PHP_AUTH_PW']);

    $query = "SELECT * FROM users WHERE username='$un_temp'";
    $result = mysql_query($query);
    if (!$result) die("Database access failed: " . mysql_error());
    elseif (mysql_num_rows($result))
    {
        $row = mysql_fetch_row($result);
        $salt1 = "qm&h*";
        $salt2 = "pg!@";
        $token = md5("$salt1$pw_temp$salt2");

        if ($token == $row[3])
        {
            session_start();
            $_SESSION['username'] = $un_temp;
            $_SESSION['password'] = $pw_temp;
            $_SESSION['forename'] = $row[0];
            $_SESSION['surname']  = $row[1];
            echo "$row[0] $row[1] : Hi $row[0],
                you are now logged in as '$row[2]'";
            die ("<p><a href=continue.php>Click here to continue</a></p>");
        }
        else die("Invalid username/password combination");
    }

286 | Chapter 12: Cookies, Sessions, and Authentication



    else die("Invalid username/password combination");
}
else
{
    header('WWW-Authenticate: Basic realm="Restricted Section"');
    header('HTTP/1.0 401 Unauthorized');
    die ("Please enter your username and password");
}

function mysql_entities_fix_string($string)
{
    return htmlentities(mysql_fix_string($string));
}

function mysql_fix_string($string)
{
    if (get_magic_quotes_gpc()) $string = stripslashes($string);
    return mysql_real_escape_string($string);
}
?>

One other addition to the program is the “Click here to continue” link with a destina-
tion URL of continue.php. This will be used to illustrate how the session will transfer
to another program or PHP web page. So, create continue.php by typing in the program
in Example 12-6 and saving it.

Example 12-6. Retrieving session variables

<?php // continue.php
session_start();

if (isset($_SESSION['username']))
{
    $username = $_SESSION['username'];
    $password = $_SESSION['password'];
    $forename = $_SESSION['forename'];
    $surname  = $_SESSION['surname'];

    echo "Welcome back $forename.<br />
          Your full name is $forename $surname.<br />
          Your username is '$username'
          and your password is '$password'.";
}
else echo "Please <a href=authenticate2.php>click here</a> to log in.";
?>

Now you are ready to call up authenticate2.php into your browser, enter a username of
“bsmith” and password of “mysecret” (or “pjones” and “acrobat”) when prompted,
and click on the link to load in continue.php. When your browser calls it up, the result
should be something like Figure 12-5.

Sessions neatly confine to a single program the extensive code required to authenticate
and log in a user. Once a user has been authenticated and you have created a session,

Using Sessions | 287



your program code becomes very simple indeed. You need only call up ses
sion_start and look up any variables to which you need access from $_SESSION.

In Example 12-6, a quick test of whether $_SESSION['username'] has a value is enough
to let you know that the current user is authenticated, because session variables are
stored on the server (unlike cookies, which are stored on the web browser) and can
therefore be trusted.

If $_SESSION['username'] has not been assigned a value, no session is active, so the last
line of code in Example 12-6 directs users to the login page at authenticate2.php.

The continue.php program prints back the value of the user’s password
to show you how session variables work. In practice, you already know
that the user is logged in, so it should not be necessary to keep track of
(or display) any passwords, and doing so would be a security risk.

Ending a Session
When the time comes to end a session—usually when a user requests to log out from
your site—you can use the session_destroy function, as in Example 12-7. This example
provides a useful function for totally destroying a session, logging out a user, and un-
setting all session variables.

Example 12-7. A handy function to destroy a session and its data

<?php
function destroy_session_and_data()
{
    session_start();
    $_SESSION = array();
    if (session_id() != "" || isset($_COOKIE[session_name()]))
        setcookie(session_name(), '', time() - 2592000, '/');
    session_destroy();
}
?>

To see this in action, you could modify continue.php as in Example 12-8.

Figure 12-5. Maintaining user data with sessions

288 | Chapter 12: Cookies, Sessions, and Authentication



Example 12-8. Retrieving session variables, then destroying the session

<?php
session_start();

if (isset($_SESSION['username']))
{
    $username = $_SESSION['username'];
    $password = $_SESSION['password'];
    $forename = $_SESSION['forename'];
    $surname  = $_SESSION['surname'];

    destroy_session_and_data();

    echo "Welcome back $forename.<br />
          Your full name is $forename $surname.<br />
          Your username is '$username'
          and your password is '$password'.";

}
else echo "Please <a href=authenticate2.php>click here</a> to log in.";

function destroy_session_and_data()
{
    $_SESSION = array();
    if (session_id() != "" || isset($_COOKIE[session_name()]))
        setcookie(session_name(), '', time() - 2592000, '/');
    session_destroy();
}
?>

The first time you surf from authenticate2.php to continue.php, it will display all the
session variables. But, because of the call to destroy_session_and_data, if you then click
on your browser’s Reload button the session will have been destroyed and you’ll be
prompted to return to the login page.

Setting a timeout

There are other times when you might wish to close a user’s session yourself, such as
when the user has forgotten or neglected to log out and you wish the program to do it
on her behalf for her own security. The way to do this is to set the timeout after which
a logout will automatically occur if there has been no activity.

To do this, use the ini_set function as follows. This example sets the timeout to exactly
one day:

ini_set('session.gc_maxlifetime', 60 * 60 * 24);

If you wish to know what the current timeout period is, you can display it using the
following:

echo ini_get('session.gc_maxlifetime');

Using Sessions | 289



Session Security
Although I mentioned that once you had authenticated a user and set up a session you
could safely assume that the session variables were trustworthy, this isn’t exactly the
case. The reason is that it’s possible to use packet sniffing (sampling of data) to discover
session IDs passing across a network. Additionally, if the session ID is passed in the
GET part of a URL, it might appear in external site server logs. The only truly secure way
of preventing these from being discovered is to implement a Secure Sockets Layer (SSL)
and run HTTPS instead of HTTP web pages. That’s beyond the scope of this book,
although you may like to take a look at http://apache-ssl.org for details on setting up a
secure web server.

Preventing session hijacking

When SSL is not a possibility, you can further authenticate users by storing their IP
address along with their other details. Do this by adding a line such as the following
when you store a user’s session:

$_SESSION['ip'] = $_SERVER['REMOTE_ADDR'];

Then, as an extra check, whenever any page loads and a session is available, perform
the following check. It calls the function different_user if the stored IP address doesn’t
match the current one:

if ($_SESSION['ip'] != $_SERVER['REMOTE_ADDR']) different_user();

What code you place in your different_user function is up to you. I recommend that
you simply delete the current session and ask the user to log in again due to a technical
error. Don’t say any more than that, or you’re giving away information that is poten-
tially useful.

Of course, you need to be aware that users on the same proxy server, or sharing the
same IP address on a home or business network, will have the same IP address. Again,
if this is a problem for you, use SSL. You can also store a copy of the browser’s user
agent string (a string that developers put in their browsers to identify them by type and
version), which, due to the wide variety of browser types, versions, and computer plat-
forms, might help to distinguish users. Use the following to store the user agent:

$_SESSION['ua'] = $_SERVER['HTTP_USER_AGENT'];

And use this to compare the current agent string with the saved one:

if ($_SESSION['ua'] != $_SERVER['HTTP_USER_AGENT']) different_user();

Or, better still, combine the two checks like this and save the combination as an md5
hexadecimal string:

$_SESSION['check'] = md5($_SERVER['REMOTE_ADDR'] .
    $_SERVER['HTTP_USER_AGENT']);

Then use this to compare the current and stored strings:

290 | Chapter 12: Cookies, Sessions, and Authentication

http://apache-ssl.org


if ($_SESSION['check'] != md5($_SERVER['REMOTE_ADDR'] .
    $_SERVER['HTTP_USER_AGENT'])) different_user();

Preventing session fixation

Session fixation happens when a malicious user tries to present a session ID to the server
rather than letting the server create one. It can happen when a user takes advantage of
the ability to pass a session ID in the GET part of a URL, like this:

http://yourserver.com/authenticate.php?PHPSESSID=123456789

In this example, the made-up session ID of 123456789 is being passed to the server.
Now consider Example 12-9, which is susceptible to session fixation. To see how, type
it in and save it as sessiontest.php.

Example 12-9. A session susceptible to session fixation

<?php // sessiontest.php
session_start();

if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
else ++$_SESSION['count'];
echo $_SESSION['count'];
?>

Once saved, call it up in your browser using the following URL (prefacing it with the
correct pathname, such as http://localhost/web/):

sessiontest.php?PHPSESSID=1234

Press Reload a few times and you’ll see the counter increase. Now try browsing to:

sessiontest.php?PHPSESSID=5678

Press Reload a few times here and you should see it count up again from zero. Leave
the counter on a different number than the first URL and then go back to the first URL
and see how the number changes back. You have created two different sessions of your
own choosing here, and you could easily create as many as you needed.

The reason this approach is so dangerous is that a malicious attacker could try to dis-
tribute these types of URLs to unsuspecting users, and if any of them followed these
links, the attacker would be able to come back and take over any sessions that had not
been deleted or expired!

To prevent this, you can use the function session_regenerate_id to change the session
ID. This function keeps all current session variable values, but replaces the session ID
with a new one that an attacker cannot know.

Now, when you receive a request, you can check for a special session variable that you
arbitrarily invent. If it doesn’t exist, you know that this is a new session, so you simply
change the session ID and set the special session variable to note the change.

Using Sessions | 291



Example 12-10 shows what code to do this might look like using the session variable
initiated.

Example 12-10. Session regeneration

<?php
session_start();

if (!isset($_SESSION['initiated']))
{
    session_regenerate_id();
    $_SESSION['initiated'] = 1;
}

if (!isset($_SESSION['count'])) $_SESSION['count'] = 0;
else ++$_SESSION['count'];
echo $_SESSION['count'];
?>

This way, an attacker can come back to your site using any of the session IDs that he
generated, but none of them will call up another user’s session, as they will all have
been replaced with regenerated IDs. If you want to be ultra-paranoid, you can even
regenerate the session ID on each request.

Forcing cookie-only sessions

If you are prepared to require your users to enable cookies on your website, you can
use the ini_set function like this:

ini_set('session.use_only_cookies', 1);

With that setting, the ?PHPSESSID= trick will be completely ignored. If you use this
security measure, I also recommend you inform your users that your site requires
cookies, so they know what’s wrong if they don’t get the results they want.

Using a shared server

On a server shared with other accounts, you will not want to have all your session data
saved into the same directory as theirs. Instead, you should choose a directory to which
only your account has access (and that is not web-visible) to store your sessions, by
placing an ini_set call near the start of your program, like this:

ini_set('session.save_path', '/home/user/myaccount/sessions');

The configuration option will keep this new value only during the program’s execution,
and the original configuration will be restored at the program’s ending.

This sessions folder can fill up quickly; you may wish to periodically clear out older
sessions according to how busy your server gets. The more it’s used, the less time you
will want to keep a session stored.

292 | Chapter 12: Cookies, Sessions, and Authentication



Remember that your websites can and will be subject to hacking at-
tempts. There are automated bots running riot around the Internet try-
ing to find sites vulnerable to exploits. So, whatever you do, whenever
you are handling data that is not 100 percent generated within your own
program, you should always treat it with the utmost caution.

You should now have a very good grasp of both PHP and MySQL, so in the next chapter
it’s time to introduce the third major technology covered by this book, JavaScript.

Test Your Knowledge
1. Why must a cookie be transferred at the start of a program?

2. Which PHP function stores a cookie on a web browser?

3. How can you destroy a cookie?

4. Where are the username and password stored in a PHP program when using HTTP
authentication?

5. Why is the md5 function a powerful security measure?

6. What is meant by “salting” a string?

7. What is a PHP session?

8. How do you initiate a PHP session?

9. What is session hijacking?

10. What is session fixation?

See “Chapter 12 Answers” on page 510 in Appendix A for the answers to these
questions.

Test Your Knowledge | 293





CHAPTER 13

Exploring JavaScript

JavaScript brings a dynamic functionality to your websites. Every time you see some-
thing pop up when you mouse over an item in the browser, or see new text, colors, or
images appear on the page in front of your eyes, or grab an object on the page and drag
it to a new location—all those things are done through JavaScript. It offers effects that
are not otherwise possible, because it runs inside the browser and has direct access to
all the elements in a web document.

JavaScript first appeared in the Netscape Navigator browser in 1995, coinciding with
the addition of support for Java technology in the browser. Because of the initial in-
correct impression that JavaScript was a spin-off of Java, there has been some long-
term confusion over their relationship. However, the naming was just a marketing ploy
to help the new scripting language benefit from the popularity of the Java programming
language.

JavaScript gained new power when the HTML elements of the web page got a more
formal, structured definition in what is called the Document Object Model, or DOM.
The DOM makes it relatively easy to add a new paragraph or focus on a piece of text
and change it.

Because both JavaScript and PHP support much of the structured programming syntax
used by the C programming language, they look very similar to each other. They are
both fairly high-level languages, too; for instance, they are weakly typed, so it’s easy to
change a variable to a new type just by using it in a new context.

Now that you have learned PHP, you should find learning JavaScript even easier. And
you’ll be glad you did, because it’s at the heart of the Web 2.0 Ajax technology that
provides the fluid web frontends that savvy web users expect these days.

JavaScript and HTML Text
JavaScript is a client-side scripting language that runs entirely inside the web browser.
To call it up, you place your JavaScript code between opening <script> and closing

295



</script> HTML tags. A typical HTML 4.01 “Hello World” document using JavaScript
might look like Example 13-1.

Example 13-1. “Hello World” displayed using JavaScript

<html>
    <head><title>Hello World</title></head>
    <body>
        <script type="text/javascript">
            document.write("Hello World")
        </script>
        <noscript>
            Your browser doesn't support or has disabled JavaScript
        </noscript>
    </body>
</html>

You may have seen web pages that use the HTML tag <script lan
guage="javascript">, but that usage has now been deprecated. This ex-
ample uses the more recent and preferred <script type="text/java
script">.

Within the <script> tags is a single line of JavaScript code that uses the JavaScript
equivalent of the PHP echo or print commands, document.write. As you’d expect, it
simply outputs the supplied string to the current document, where it is displayed.

You may have also noticed that, unlike with PHP, there is no trailing semicolon (;).
This is because a newline serves the same purpose as a semicolon in JavaScript. How-
ever, if you wish to have more than one statement on a single line, you do need to place
a semicolon after each command except the last one. And of course, if you wish, you
can add a semicolon to the end of every statement and your JavaScript will work fine.

The other thing to note in this example is the <noscript> and </noscript> pair of tags.
These are used when you wish to offer alternative HTML to users whose browsers do
not support JavaScript or who have it disabled. The use of these tags is up to you—
they are not required—but you really ought to use them, because it’s usually not that
difficult to provide static HTML alternatives to the operations you provide using Java-
Script. That said, the remaining examples in this book will omit <noscript> tags, be-
cause we’re focusing on what you can do with JavaScript, not what you can do without
it.

When Example 13-1 is loaded, a web browser with JavaScript enabled will output the
following (see Figure 13-1):

Hello World

One with JavaScript disabled will display this (see Figure 13-2):

Your browser doesn't support or has disabled JavaScript

296 | Chapter 13: Exploring JavaScript



Using Scripts Within a Document Head
In addition to placing a script within the body of a document, you can put it in the
<head> section, which is the ideal place if you wish to execute a script when a page
loads. If you place critical code and functions there, you can also ensure that they are
ready to use immediately by any other script sections in the document that rely on them.

Another reason for placing a script in the document head is to enable JavaScript to write
things such as meta tags into the <head> section, because the location of your script is
the part of the document it writes to by default.

Older and Nonstandard Browsers
If you need to support browsers that do not offer scripting, you will need to use the
HTML comment tags (<!-- and -->) to prevent them from encountering script code
that they should not see. Example 13-2 shows how you add them to your script code.

Example 13-2. The “Hello World” example modified for non-JavaScript browsers

<html>
    <head><title>Hello World</title></head>
    <body>
        <script type="text/javascript"><!--
            document.write("Hello World")
            // --></script>
    </body>
</html>

Figure 13-1. JavaScript, enabled and working

Figure 13-2. JavaScript has been disabled

JavaScript and HTML Text | 297



Here, an opening HTML comment tag (<!--) has been added directly after the opening
<script ...> statement and a closing comment tag (// -->) directly before the script
is closed with </script>.

The double forward slash (//) is used by JavaScript to indicate that the rest of the line
is a comment. It is there so that browsers that do support JavaScript will ignore the
following -->, but non-JavaScript browsers will ignore the preceding // and act on the
--> closing the HTML comment.

Although the solution is a little convoluted, all you really need to remember is to use
the two following lines to enclose your JavaScript when you wish to support very old
or nonstandard browsers:

<script type="text/javascript"><!—
  (Your JavaScript goes here...)
// --></script>

However, the use of these comments is unnecessary for any browser released over the
past several years.

There are a couple of other scripting languages you should know about.
These include Microsoft’s VBScript, which is based on the Visual Basic
programming language, and Tcl, a rapid prototyping language. They
are called up in a similar way to JavaScript, except they use types of text/
vbscript and text/tcl, respectively. VBScript works only in Internet Ex-
plorer; use of it in other browsers requires a plug-in. Tcl always needs
a plug-in. So, both should be considered nonstandard and neither is
covered in this book.

Including JavaScript Files
In addition to writing JavaScript code directly in HTML documents, you can include
files of JavaScript code either from your website or from anywhere on the Internet. The
syntax for this is:

<script type="text/javascript" src="script.js"></script>

Or, to pull a file in from the Internet:

<script type="text/javascript" src="http://someserver.com/script.js">
</script>

As for the script files themselves, they must not include any <script> or </script> tags,
because they are unnecessary: the browser already knows that a JavaScript file is being
loaded. Putting them in the JavaScript files will cause an error.

Including script files is the preferred way for you to use third-party JavaScript files on
your website.

298 | Chapter 13: Exploring JavaScript



It is possible to leave out the type="text/javascript" parameter; all
modern browsers default to assuming that the script contains
JavaScript.

Debugging JavaScript Errors
When learning JavaScript, it’s important to be able to track typing or other coding
errors. Unlike PHP, which displays error messages in the browser, JavaScript error
messages are handled differently, and in a way that changes according to the browser
used. Table 13-1 lists how to access JavaScript error messages in each of the five most
commonly used browsers.

Table 13-1. Accessing JavaScript error messages in different browsers

Browser How to access JavaScript error messages

Apple Safari Safari does not have an Error Console enabled by default, but you can turn it on by selecting Sa-
fari→Preferences→Advanced and checking the “Show Develop menu in menu bar” box. Alternatively,
you may prefer to use the Firebug Lite JavaScript module, which many people find easier to use: <script
src='http://tinyurl.com/fblite'></script>.

Google Chrome Click the menu icon that looks like a page with a corner turned, then select Developer→JavaScript Console.
You can also use the shortcut Ctrl-Shift-J on a PC or Command-Shift-J on a Mac.

Microsoft Internet
Explorer

Select Tools→Internet Options→Advanced, then uncheck the “Disable script debugging” box and check
the “Display a notification about every script error” box.

Mozilla Firefox Select Tools→Error Console, or use the shortcut Ctrl-Shift-J on a PC or Command-Shift-J on a Mac.

Opera Select Tools→Advanced→Error Console.

OS X users: although I have shown a way for you to use an Error Console
with JavaScript in Safari, you may prefer to use Google Chrome (for
Intel OS X 10.5 or higher), which in my view offers much more func-
tionality for developers.

To try out whichever Error Console you are using, create a script with a small error.
Example 13-3 is much the same as Example 13-1, but the final double quotation mark
has been left off the end of the string “Hello World”—a common syntax error.

Example 13-3. A JavaScript “Hello World” script with an error

<html>
    <head><title>Hello World</title></head>
    <body>
        <script type="text/javascript">
            document.write("Hello World)
        </script>
    </body>
</html>

JavaScript and HTML Text | 299



Type in this example and save it as test.html, then call it up in your browser. It should
succeed in displaying only the title, not anything in the main browser window. Now
call up the Error Console in your browser, and you should see a message such as the
following (if using Firefox):

unterminated string literal
document.write("Hello World)
---------------^

Note the handy arrow pointing to the start of the incorrect part of code. You will also
be told that the offending code is at line 5.

In Microsoft Internet Explorer, the error message will look like this:

unterminated string constant

There’s no helpful arrow, but you are told that the problem is in line 5 at position 32.

Google Chrome will give this message:

Uncaught SyntaxError: Unexpected token ILLEGAL

You’ll be told that the error is in line 5, but not the exact location.

Opera will supply this message:

Syntax error while loading line 2 of inline script
expected statement
                    document.write("Hello World)
-------------------------------^

Note that Opera differs from the other browsers by reporting the error to be on line 2
of the inline script, rather than referring to the line number of the entire HTML file.
Also, Opera tries to point to the start of the problem, but gets only close to the first
double quote.

Two browsers do quite well at pinpointing the error, though: Firefox highlights the
opening double quote, which gives a big clue, and Internet Explorer says the error is at
position 32, which is exactly where the closing double quote should be placed (al-
though, because there’s no arrow pointing to this position, it’s necessary to count along
to find it).

So, as you can see, on the whole Firefox probably provides the easiest to read and most
accurate messages, and for that reason I would recommend it as the best browser for
debugging JavaScript.

However, as you will learn, there are some major compatibility issues with Microsoft
Internet Explorer, still the browser of choice for a significant portion of web surfers.
So, as a developer, you’ll need to test your programs with various versions of this
browser before you release them on a production server.

The Firebug plug-in for Firefox (http://getfirebug.com) is very popular among JavaScript
developers, and is also worth a look.

300 | Chapter 13: Exploring JavaScript

http://getfirebug.com


If you will be typing in the following code snippets to try them out, don’t
forget to surround them with <script> and </script> tags.

Using Comments
Due to their shared inheritance from the C programming language, PHP and JavaScript
share many similarities, one of which is commenting. First there’s the single-line com-
ment, which looks like this:

// This is a comment

This style uses a pair of forward slash characters (//) to inform JavaScript that every-
thing that follows on that line is to be ignored. And then we have multiline comments,
which look like this:

/* This is a section
   of multiline comments
   that will not be
   interpreted */

You start a multiline comment with the sequence /* and end it with */. Just remember
that you cannot nest multiline comments, so make sure that you don’t comment out
large sections of code that already contain multiline comments.

Semicolons
Unlike PHP, JavaScript generally does not require semicolons if you have only one
statement on a line. Therefore, the following is valid:

x += 10

However, when you wish to place more than one statement on a line, they must be
separated with semicolons, like this:

x += 10; y -= 5; z = 0

You can normally leave off the final semicolon, because the newline terminates the final
statement.

There are exceptions to the semicolon rule. If you write JavaScript
bookmarklets, or you end a statement with a variable or function ref-
erence and the first character of the next line is a left parenthesis or
bracket, you must remember to append a semicolon or the JavaScript
will fail. So, if in doubt, use a semicolon.

Semicolons | 301



Variables
No particular character identifies a variable in JavaScript, the way the dollar sign ($)
does in PHP. Instead, variables use the following naming rules:

• A variable may include only the letters a-z, A-Z, 0-9, the $ symbol, and the under-
score (_).

• No other characters, such as spaces or punctuation, are allowed in a variable name.

• The first character of a variable name can be only a-z, A-Z, $, or _ (no numbers).

• Names are case-sensitive. Count, count, and COUNT are all different variables.

• There is no set limit on variable name lengths.

And yes, you’re right, that is the $ there in that list. It is allowed by JavaScript and
may be the first character of a variable or function name. Although I don’t recommend
keeping the $s, this does mean that you can port a lot of PHP code to JavaScript quickly.

String Variables
JavaScript string variables should be enclosed in either single or double quotation
marks, like this:

greeting = "Hello there"
warning  = 'Be careful'

You may include a single quote within a double-quoted string or a double quote within
a single-quoted string, but a quote of the same type must be escaped using the backslash
character, like this:

greeting = "\"Hello there\" is a greeting"
warning  = '\'Be careful\' is a warning'

To read from a string variable, you can assign it to another one, like this:

newstring = oldstring

or you can use it in a function, like this:

status = "All systems are working"
document.write(status)

Numeric Variables
Creating a numeric variable is as simple as assigning a value, like these examples:

count       = 42
temperature = 98.4

Like strings, numeric variables can be read from and used in expressions and functions.

302 | Chapter 13: Exploring JavaScript



Arrays
JavaScript arrays are also very similar to those in PHP, in that an array can contain
string or numeric data, as well as other arrays. To assign values to an array, use the
following syntax (which in this case creates an array of strings):

toys = ['bat', 'ball', 'whistle', 'puzzle', 'doll']

To create a multidimensional array, nest smaller arrays within a larger one. So, to create
a two-dimensional array containing the colors of a single face of a scrambled Rubik’s
Cube (where the colors red, green, orange, yellow, blue, and white are represented by
their capitalized initial letters), you could use the following code:

face =
[
     ['R', 'G', 'Y'],
     ['W', 'R', 'O'],
     ['Y', 'W', 'G']
]

The previous example has been formatted to make it obvious what is going on, but it
could also be written like this:

face = [['R', 'G', 'Y'], ['W', 'R', 'O'], ['Y', 'W', 'G']]

or even like this:

top = ['R', 'G', 'Y']
mid = ['W', 'R', 'O']
bot = ['Y', 'W', 'G']

face = [top, mid, bot]

To access the element two down and three along in this matrix, you would use the
following (because array elements start at position zero):

document.write(face[1][2])

This statement will output the letter O for orange.

JavaScript arrays are powerful storage structures; Chapter 15 discusses
them in much greater depth.

Operators
Operators in JavaScript, as in PHP, can involve mathematics, changes to strings, and
comparison and logical operations (and, or, etc.). JavaScript mathematical operators
look a lot like plain arithmetic; for instance, the following statement outputs 15:

document.write(13 + 2)

Operators | 303



The following sections introduce the various operators.

Arithmetic Operators
Arithmetic operators are used to perform mathematics. You can use them for the main
four operations (addition, subtraction, multiplication, and division), as well as to find
the modulus (the remainder after a division) and to increment or decrement a value
(see Table 13-2).

Table 13-2. Arithmetic operators

Operator Description Example

+ Addition j + 12

- Subtraction j - 22

* Multiplication j * 7

/ Division j / 3.13

% Modulus (division remainder) j % 6

++ Increment ++ j

−− Decrement −− j

Assignment Operators
The assignment operators are used to assign values to variables. They start with the
very simple, =, and move on to +=, -= , and so on. The operator += adds the value on
the right side to the variable on the left, instead of totally replacing the value on the
left. Thus, if count starts with the value 6, the statement:

count += 1

sets count to 7, just like the more familiar assignment statement:

count = count + 1

Table 13-3 lists the various assignment operators available.

Table 13-3. Assignment operators

Operator Example Equivalent to

= j = 99 j = 99

+= j += 2 j = j + 2

+= j += ’string’ j = j + 'string'

-= j -= 12 j = j - 12

*= j *= 2 j = j * 2

/= j /= 6 j = j / 6

%= j %= 7 j = j % 7

304 | Chapter 13: Exploring JavaScript



Comparison Operators
Comparison operators are generally used inside a construct such as an if statement
where you need to compare two items. For example, you may wish to know whether
a variable you have been incrementing has reached a specific value, or whether another
variable is less than a set value, and so on (see Table 13-4).

Table 13-4. Comparison operators

Operator Description Example

== Is equal to j == 42

!= Is not equal to j != 17

> Is greater than j > 0

< Is less than j < 100

>= Is greater than or equal to j >= 23

<= Is less than or equal to j <= 13

=== Is equal to (and of the same type) j === 56

!== Is not equal to (and of the same type) j !== ’1’

Logical Operators
Unlike with PHP, JavaScript’s logical operators do not include and and or equivalents
to && and ||, and there is no xor operator. The available operators are listed in Ta-
ble 13-5.

Table 13-5. Logical operators

Operator Description Example

&& And j == 1 && k == 2

|| Or j < 100 || j > 0

! Not ! (j role="strong">== k)

Variable Incrementing and Decrementing
The following forms of post- and pre-incrementing and -decrementing you learned to
use in PHP are also supported by JavaScript:

++x
−−y
x += 22
y −= 3

Operators | 305



String Concatenation
JavaScript handles string concatenation slightly differently from PHP. Instead of
the . (period) operator, it uses the plus sign (+), like this:

document.write("You have " + messages + " messages.")

Assuming that the variable messages is set to the value 3, the output from this line of
code will be:

You have 3 messages.

Just as you can add a value to a numeric variable with the += operator, you can also
append one string to another the same way:

name =  "James"
name += " Dean"

Escaping Characters
Escape characters, which you’ve seen used to insert quotation marks in strings, can
also be used to insert various other special characters, such as tabs, newlines, and car-
riage returns. Here is an example using tabs to lay out a heading; it is included here
merely to illustrate escapes, because in web pages there are better ways to do layout:

heading = "Name\tAge\tLocation"

Table 13-6 details the escape characters available.

Table 13-6. JavaScript’s escape characters

Character Meaning

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Tab

\' Single quote (or apostrophe)

\" Double quote

\\ Backslash

\ XXX An octal number between 000 and 377 that represents the Latin-1 character equivalent (such as \251 for the ©
symbol)

\x XX A hexadecimal number between 00 and FF that represents the Latin-1 character equivalent (such as \xA9 for
the © symbol)

\u XXXX A hexadecimal number between 0000 and FFFF that represents the Unicode character equivalent (such as
\u00A9 for the © symbol)

306 | Chapter 13: Exploring JavaScript



Variable Typing
Like PHP, JavaScript is a very loosely typed language; the type of a variable is determined
only when a value is assigned and can change as the variable appears in different con-
texts. Usually, you don’t have to worry about the type; JavaScript figures out what you
want and just does it.

Take a look at Example 13-4, in which:

1. The variable n is assigned the string value '838102050', the next line prints out its
value, and the typeof operator is used to look up the type.

2. n is given the value returned when the numbers 12345 and 67890 are multiplied
together. This value is also 838102050, but it is a number, not a string. The type of
the variable is then looked up and displayed.

3. Some text is appended to the number n and the result is displayed.

Example 13-4. Setting a variable’s type by assignment

<script>
n = '838102050'        // Set 'n' to a string
document.write('n = ' + n + ', and is a ' + typeof n + '<br />')

n = 12345 * 67890;     // Set 'n' to a number
document.write('n = ' + n + ', and is a ' + typeof n + '<br />')

n += ' plus some text' // Change 'n' from a number to a string
document.write('n = ' + n + ', and is a ' + typeof n + '<br />')
</script>

The output from this script looks like:

n = 838102050, and is a string
n = 838102050, and is a number
n = 838102050 plus some text, and is a string

If there is ever any doubt about the type of a variable, or you need to ensure a variable
has a particular type, you can force it to that type using statements such as the following
(which respectively turn a string into a number and a number into a string):

n = "123"
n *= 1    // Convert 'n' into a number

n = 123
n += ""   // Convert 'n' into a string

Or, of course, you can always look up a variable’s type using the typeof operator.

Functions
As with PHP, JavaScript functions are used to separate out sections of code that perform
a particular task. To create a function, declare it in the manner shown in Example 13-5.

Functions | 307



Example 13-5. A simple function declaration

<script>
function product(a, b)
{
    return a*b
}
</script>

This function takes the two parameters passed, multiplies them together, and returns
the product.

Global Variables
Global variables are ones defined outside of any functions (or within functions, but
defined without the var keyword). They can be defined in the following ways:

    a = 123               // Global scope
var b = 456               // Global scope
if (a == 123) var c = 789 // Global scope

Regardless of whether you are using the var keyword, as long as a variable is defined
outside of a function, it is global in scope. This means that every part of a script can
have access to it.

Local Variables
Parameters passed to a function automatically have local scope. That is, they can be
referenced only from within that function. However, there is one exception. Arrays are
passed to a function by reference, so if you modify any elements in an array parameter,
the elements of the original array will be modified.

To define a local variable that has scope only within the current function and has not
been passed as a parameter, use the var keyword. Example 13-6 shows a function that
creates one variable with global scope and two with local scope.

Example 13-6. A function creating variables with global and local scope

<script>
function test()
{
        a = 123               // Global scope
    var b = 456               // Local scope
    if (a == 123) var c = 789 // Local scope
}
</script>

To test whether scope setting has worked in PHP, we can use the isset function. But
in JavaScript there is no such function, so Example 13-7 makes use of the typeof op-
erator, which returns the string “undefined” when a variable is not defined.

308 | Chapter 13: Exploring JavaScript



Example 13-7. Checking the scope of the variables defined in the function test

<script>
test()

if (typeof a != 'undefined') document.write('a = "' + a + '"<br />')
if (typeof b != 'undefined') document.write('b = "' + b + '"<br />')
if (typeof c != 'undefined') document.write('c = "' + c + '"<br />')

function test()
{
    a     = 123
    var b = 456

    if (a == 123) var c = 789
}
</script>

The output from this script is the following single line:

a = "123"

This shows that only the variable a was given global scope, which is exactly what we
would expect, given that we gave the variables b and c local scope by prefacing them
with the var keyword.

If your browser issues a warning about b being undefined, the warning is correct but
can be ignored.

The Document Object Model (DOM)
The designers of JavaScript were very smart. Rather than just creating yet another
scripting language (which would still have been a pretty good improvement at the time),
they had the vision to build it around the Document Object Model, or DOM. This
breaks down the parts of an HTML document into discrete objects, each with its own
properties and methods and each subject to JavaScript’s control.

JavaScript separates objects, properties, and methods using a period (one good reason
why + is the string concatenation operator in JavaScript, rather than the period). For
example, let’s consider a business card as an object we’ll call card. This object contains
properties such as a name, address, phone number, and so on. In the syntax of Java-
Script, these properties would look like this:

card.name
card.phone
card.address

Its methods are functions that retrieve, change, and otherwise act on the properties.
For instance, to invoke a method that displays the properties of object card, you might
use syntax such as:

card.display()

The Document Object Model (DOM) | 309



Have a look at some of the earlier examples in this chapter, where the statement docu
ment.write is used. Now that you understand how JavaScript is based around objects,
you will see that write is actually a method of the document object.

Within JavaScript, there is a hierarchy of parent and child objects. This is what is known
as the Document Object Model (see Figure 13-3).

Figure 13-3. Example of DOM object hierarchy

The figure uses HTML tags that you are already familiar with to illustrate the parent/
child relationship between the various objects in a document. For example, a URL
within a link is part of the body of an HTML document. In JavaScript, it is referenced
like this:

url = document.links.linkname.href

Notice how this follows the central column down. The first part, document, refers to the
<html> and <body> tags, links.linkname to the <a ...> tag, and href to the href=...
element.

Let’s turn this into some HTML and a script to read a link’s properties. Type in Ex-
ample 13-8 and save it as linktest.html, then call it up in your browser.

If you are using Microsoft Internet Explorer as your main development
browser, please just read through this section, then read the upcoming
section entitled “But It’s Not That Simple,” and then come back and try
the example with the getElementById modification discussed there.
Without it, this example will not work for you.

Example 13-8. Reading a link URL with JavaScript

<html>
    <head>
        <title>Link Test</title>
    </head>

310 | Chapter 13: Exploring JavaScript



    <body>
        <a id="mylink" href="http://mysite.com">Click me</a><br />
        <script>
            url = document.links.mylink.href
            document.write('The URL is ' + url)
        </script>
    </body>
</html>

Note the short form of the <script> tags, where I have omitted the parameter
type="text/JavaScript" to save you some typing. If you wish, just for the purposes of
testing this (and other examples), you could also omit everything outside of the
<script> and </script> tags. The output from this example is:

Click me
The URL is http://mysite.com

The second line of output comes from the document.write method. Notice how the
code follows the document tree down from document to links to mylink (the id given
to the link) to href (the URL destination value).

There is also a short form that works equally well, which starts with the value in the
id attribute: mylink.href. So, you can replace this:

url = document.links.mylink.href

with the following:

url = mylink.href

But It’s Not That Simple
If you tried Example 13-8 in Safari, Firefox, Opera, or Chrome, it will have worked just
great. But in Internet Explorer it will fail, because Microsoft’s implementation of Java-
Script, called JScript, has many subtle differences from the recognized standards. Wel-
come to the world of advanced web development!

So, what can we do about this? Well, in this case, instead of using the links child object
of the parent document object, which Internet Explorer balks at when used this way,
you have to replace it with a method to fetch the element by its id. Therefore, the
following line:

url = document.links.mylink.href

can be replaced with this one:

url = document.getElementById('mylink').href

And now the script will work in all major browsers. Incidentally, when you don’t have
to look up the element by id, the short form that follows will still work in Internet
Explorer, as well as the other browsers:

url = mylink.href

The Document Object Model (DOM) | 311



Another use for the $

As mentioned earlier, the $ symbol is allowed in JavaScript variable and function names.
Because of this, you may sometimes encounter some strange-looking code, like this:

url = $('mylink').href

Some enterprising programmers have decided that the getElementById function is so
prevalent in JavaScript that they have written a function to replace it called $, shown
in Example 13-9.

Example 13-9. A replacement function for the getElementById method

<script>
function $(id)
{
    return document.getElementById(id)
}
</script>

Therefore, as long as you have included the $ function in your code, syntax such as:

$('mylink').href

can replace code such as:

document.getElementById('mylink').href

Using the DOM
The links object is actually an array of URLs, so the mylink URL in Example 13-8 can
also be safely referred to on all browsers in the following way (because it’s the first, and
only, link):

url = document.links[0].href

If you want to know how many links there are in an entire document, you can query
the length property of the links object like this:

numlinks = document.links.length

You can therefore extract and display all links in a document like this:

for (j=0 ; j < document.links.length ; ++j)
    document.write(document.links[j].href + '<br />')

The length of something is a property of every array, and many objects as well. For
example, the number of items in your browser’s web history can be queried like this:

document.write(history.length)

However, to stop websites from snooping on your browsing history, the history object
stores only the number of sites in the array: you cannot read from or write to these
values. But you can replace the current page with one from the history, if you know
what position it has within the history. This can be very useful in cases in which you

312 | Chapter 13: Exploring JavaScript



know that certain pages in the history came from your site, or you simply wish to send
the browser back one or more pages, which is done with the go method of the his
tory object. For example, to send the browser back three pages, issue the following
command:

history.go(-3)

You can also use the following methods to move back or forward a page at a time:

history.back()
history.forward()

In a similar manner, you can replace the currently loaded URL with one of your choos-
ing, like this:

document.location.href = 'http://google.com'

Of course, there’s a whole lot more to the DOM than reading and modifying links. As
you progress through the following chapters on JavaScript, you’ll become quite familiar
with the DOM and how to access it.

Test Your Knowledge
1. Which tags do you use to enclose JavaScript code?

2. By default, to which part of a document will JavaScript code output?

3. How can you include JavaScript code from another source in your documents?

4. Which JavaScript function is the equivalent of echo or print in PHP?

5. How can you create a comment in JavaScript?

6. What is the JavaScript string concatenation operator?

7. Which keyword can you use within a JavaScript function to define a variable that
has local scope?

8. Give two cross-browser methods to display the URL assigned to the link with an
id of thislink.

9. Which two JavaScript commands will make the browser load the previous page in
its history array?

10. What JavaScript command would you use to replace the current document with
the main page at the http://www.oreilly.com website?

See “Chapter 13 Answers” on page 511 in Appendix A for the answers to these
questions.

Test Your Knowledge | 313

http://www.oreilly.com




CHAPTER 14

Expressions and Control Flow
in JavaScript

In the last chapter, I introduced the basics of JavaScript and the DOM. Now it’s time
to look at how to construct complex expressions in JavaScript and how to control the
program flow of your scripts using conditional statements.

Expressions
JavaScript expressions are very similar to those in PHP. As you learned in Chapter 4,
an expression is a combination of values, variables, operators, and functions that results
in a value; the result can be a number, a string, or a Boolean value (which evaluates to
either true or false).

Example 14-1 shows some simple expressions. For each line, it prints out a letter be-
tween a and d, followed by a colon and the result of the expressions (the <br /> tag is
there to create a line break and separate the output into four lines).

Example 14-1. Four simple Boolean expressions

<script>
document.write("a: " + (42 > 3) + "<br />")
document.write("b: " + (91 < 4) + "<br />")
document.write("c: " + (8 == 2) + "<br />")
document.write("d: " + (4 < 17) + "<br />")
</script>

The output from this code is as follows:

a: true
b: false
c: false
d: true

315



Notice that expressions a: and d: evaluate to true, but b: and c: evaluate to false.
Unlike PHP (which would print the number 1 and nothing, respectively), JavaScript
displays the actual strings “true” and “false”.

In JavaScript, when checking whether a value is true or false, all values evaluate to
true with the exception of the following, which evaluate to false: the string false itself,
0, −0, the empty string, null, undefined, and NaN (Not a Number, a computer engineering
concept for an illegal floating-point operation such as division by zero).

Note that I am referring to true and false in lowercase. This is because, unlike in PHP,
these values must be in lowercase in JavaScript. Therefore, only the first of the two
following statements will display, printing the lowercase word “true”—the second will
cause a “‘TRUE’ is not defined” error:

if (1 == true) document.write('true') // True
if (1 == TRUE) document.write('TRUE') // Will cause an error

Remember that any code snippets you wish to type in and try for yourself
in an HTML file need to be enclosed within <script> and </script> tags.

Literals and Variables
The simplest form of an expression is a literal, which means something that evaluates
to itself, such as the number 22 or the string “Press Enter”. An expression could also
be a variable, which evaluates to the value that has been assigned to it. These are both
types of expressions, because they return a value.

Example 14-2 shows five different literals, all of which return values, albeit of different
types.

Example 14-2. Five types of literals

<script>
myname = "Peter"
myage  = 24
document.write("a: " + 42     + "<br />") // Numeric literal
document.write("b: " + "Hi"   + "<br />") // String literal
document.write("c: " + true   + "<br />") // Constant literal
document.write("d: " + myname + "<br />") // Variable string literal
document.write("e: " + myage  + "<br />") // Variable numeric literal
</script>

And, as you’d expect, you see a return value from all of these in the following output:

a: 42
b: Hi
c: true
d: Peter
e: 24

316 | Chapter 14: Expressions and Control Flow in JavaScript



Operators let you create more complex expressions that evaluate to useful results.
When you combine assignment or control-flow constructs with expressions, the result
is a statement.

Example 14-3 shows one of each of these kinds of statement. The first assigns the result
of the expression 366 - day_number to the variable days_to_new_year, and the second
outputs a friendly message only if the expression days_to_new_year < 30 evaluates to
true.

Example 14-3. Two simple JavaScript statements

<script>
days_to_new_year = 366 - day_number;
if (days_to_new_year < 30) document.write("It's nearly New Year")
</script>

Operators
JavaScript offers a lot of powerful operators, ranging from arithmetic, string, and logical
operators to operators for assignment, comparison, and more (see Table 14-1).

Table 14-1. JavaScript operator types

Operator Used for Example

Arithmetic Basic mathematics a + b

Array Array manipulation a + b

Assignment Assigning values a = b + 23

Bitwise Manipulating bits within bytes 12 ^ 9

Comparison Comparing two values a < b

Increment/Decrement Adding or subtracting 1 a++

Logical Boolean comparison a && b

String Concatenation a + 'string'

Different types of operators take a different number of operands:

• Unary operators, such as incrementing ($a++) or negation (-$a), take a single
operand.

• Binary operators, which represent the bulk of JavaScript operators (including ad-
dition, subtraction, multiplication, and division), take two operands.

• There is one ternary operator, which takes the form x ? y : z. It’s a terse, single-
line if statement that chooses between two expressions, depending on the result
of a third one. This conditional operator takes three operands.

Operators | 317



Operator Precedence
Like PHP, JavaScript utilizes operator precedence, in which some operators in an ex-
pression are considered more important than others and are therefore evaluated first.
Table 14-2 lists JavaScript’s operators and their precedences.

Table 14-2. The precedence of JavaScript operators (high to low)

Operator(s) Type(s)

() [] . Parentheses, call, and member

++ −− Increment/decrement

+ − ~ ! Unary, bitwise, and logical

* / % Arithmetic

+ - Arithmetic and string

<< >> >>> Bitwise

< > <= >= Comparison

== != === !== Comparison

& ^ | Bitwise

&& Logical

|| Logical

? : Ternary

= += -= *= /= %= <<= >>= >>>= &= ^= |= Assignment

, Sequential evaluation

Associativity
Most JavaScript operators are processed in order from left to right in an equation, but
some operators require processing from right to left instead. The direction of processing
is called the operator’s associativity.

This associativity becomes important in cases where you do not explicitly force prece-
dence. For example, look at the following assignment operators, by which three vari-
ables are all set to the value 0:

level = score = time = 0

This multiple assignment is possible only because the rightmost part of the expression
is evaluated first and then processing continues in a right-to-left direction. Table 14-3
lists all the operators that have right-to-left associativity.

318 | Chapter 14: Expressions and Control Flow in JavaScript



Table 14-3. Operators with right-to-left associativity

Operator Description

New Create a new object

++ −− Increment and decrement

+ − ~ ! Unary and bitwise

? : Conditional

= *= /= %= += -= <<= >>= >>>= &= ^= |= Assignment

Relational Operators
Relational operators test two operands and return a Boolean result of either true or
false. There are three types of relational operators: equality, comparison, and logical
operators.

Equality operators

The equality operator is == (it should not be confused with the = assignment operator).
In Example 14-4, the first statement assigns a value and the second tests it for equality.
As it stands, nothing will be printed out, because month is assigned the string value
“July” and therefore the check for it having a value of “October” will fail.

Example 14-4. Assigning a value and testing for equality

<script>
month = "July"
if (month == "October") document.write("It's the Fall")
</script>

If the two operands of an equality expression are of different types, JavaScript will
convert them to whatever type makes best sense to it. For example, any strings com-
posed entirely of numbers will be converted to numbers whenever compared with a
number. In Example 14-5, a and b are two different values (one is a number and the
other is a string), and we would therefore normally expect neither of the if statements
to output a result.

Example 14-5. The equality and identity operators

<script>
a = 3.1415927
b = "3.1415927"
if (a == b) document.write("1")
if (a === b) document.write("2")
</script>

However, if you run the example, you will see that it outputs the number 1, which
means that the first if statement evaluated to true. This is because the string value of

Operators | 319



b was first temporarily converted to a number, and therefore both halves of the equation
had a numerical value of 3.1415927.

In contrast, the second if statement uses the identity operator, three equals signs in a
row, which prevents JavaScript from automatically converting types. a and b are there-
fore found to be different, so nothing is output.

As with forcing operator precedence, whenever you feel there may be doubt about how
JavaScript will convert operand types, you can use the identity operator to turn off this
behavior.

Comparison operators

Using comparison operators, you can test for more than just equality and inequality.
JavaScript also gives you > (is greater than), < (is less than), >= (is greater than or equal
to), and <= (is less than or equal to) to play with. Example 14-6 shows these operators
in use.

Example 14-6. The four comparison operators

<script>
a = 7; b = 11
if (a > b)  document.write("a is greater than b<br />")
if (a < b)  document.write("a is less than b<br />")
if (a >= b) document.write("a is greater than or equal to b<br />")
if (a <= b) document.write("a is less than or equal to b<br />")
</script>

In this example, where a is 7 and b is 11, the following is output (because 7 is less than
11, and also less than or equal to 11):

a is less than b
a is less than or equal to b

Logical operators

Logical operators produce true-or-false results, and are also known as Boolean opera-
tors. There are three of them in JavaScript (see Table 14-4).

Table 14-4. JavaScript’s logical operators

Logical operator Description

&& (and) true if both operands are true

|| (or) true if either operand is true

! (not) true if the operand is false or false if the operand is true

You can see how these can be used in Example 14-7, which outputs 0, 1, and true.

320 | Chapter 14: Expressions and Control Flow in JavaScript



Example 14-7. The logical operators in use

<script>
a = 1; b = 0
document.write((a && b) + "<br />")
document.write((a || b) + "<br />")
document.write((  !b  ) + "<br />")
</script>

The && statement requires both operands to be true to return a value of true, the ||
statement will be true if either value is true, and the third statement performs a NOT on
the value of b, turning it from 0 into a value of true.

The || operator can cause unintentional problems, because the second operand will
not be evaluated if the first is evaluated as true. In Example 14-8, the function get
next will never be called if finished has a value of 1.

Example 14-8. A statement using the || operator

<script>
if (finished == 1 || getnext() == 1) done = 1
</script>

If you need getnext to be called at each if statement, you should rewrite the code as
shown in Example 14-9.

Example 14-9. The if…OR statement modified to ensure calling of getnext

<script>
gn = getnext()
if (finished == 1 || gn == 1) done = 1;
</script>

In this case, the code in the function getnext will be executed and its return value stored
in gn before the if statement.

Table 14-5 shows all the possible variations of using the logical operators. You should
also note that !true equals false and !false equals true.

Table 14-5. All possible logical expressions

Inputs Operators and results

A b && ||

true true true true

true false false true

false true false true

false false false false

Operators | 321



The with Statement
The with statement is not one that you’ve seen in earlier chapters on PHP, because it’s
exclusive to JavaScript. With it (if you see what I mean), you can simplify some types
of JavaScript statements by reducing many references to an object to just one reference.
References to properties and methods within the with block are assumed to apply to
that object.

For example, take the code in Example 14-10, in which the document.write function
never references the variable string by name.

Example 14-10. Using the with statement

<script>
string = "The quick brown fox jumps over the lazy dog"

with (string)
{
    document.write("The string is " + length + " characters<br />")
    document.write("In upper case it's: " + toUpperCase())
}
</script>

Even though string is never directly referenced by document.write, this code still man-
ages to output the following:

The string is 43 characters
In upper case it's: THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

This is how the code works: the JavaScript interpreter recognizes that the length prop-
erty and toUpperCase method have to be applied to some object. Because they stand
alone, the interpreter assumes they apply to the string object that you specified in the
with statement.

Using onerror
Let’s look at a few more constructs not available in PHP. Using either the onerror event
or a combination of the try and catch keywords, you can catch JavaScript errors and
deal with them yourself.

Events are actions that can be detected by JavaScript. Every element on a web page has
certain events that can trigger JavaScript functions. For example, the onclick event of
a button element can be set to call a function and make it run whenever a user clicks
on the button.

Example 14-11 illustrates how to use the onerror event.

Example 14-11. A script employing the onerror event

<script>
onerror = errorHandler

322 | Chapter 14: Expressions and Control Flow in JavaScript



document.writ("Welcome to this website") // Deliberate error

function errorHandler(message, url, line)
{
    out  = "Sorry, an error was encountered.\n\n";
    out += "Error: " + message + "\n";
    out += "URL: "   + url + "\n";
    out += "Line: "  + line + "\n\n";
    out += "Click OK to continue.\n\n";
    alert(out);
    return true;
}
</script>

The first line of this script tells the error event to use the new errorHandler function in
the future. This function takes three parameters—a message, a url, and a line
number—and it’s a simple matter to display all these in an alert pop-up.

Then, to test the new function, a syntax error is deliberately placed in the code with a
call to document.writ instead of document.write (the final e is missing). Figure 14-1
shows the result of running this script in a browser. Using onerror this way can also be
quite useful during the debugging process.

Figure 14-1. Using the onerror event with an alert method pop-up

Using try...catch
The try and catch keywords are more standard and more flexible than the onerror
technique shown in the previous section. These keywords let you trap errors for a
selected section of code, rather than all scripts in a document. However, they do not
catch syntax errors, for which you need onerror.

Using try...catch | 323



The try...catch construct is supported by all major browsers and is handy when you
want to catch a certain condition that you are aware could occur in a specific part of
your code.

For example, in Chapter 17 we’ll be exploring Ajax techniques that make use of the
XMLHttpRequest object. Unfortunately, this isn’t available in the Internet Explorer
browser (although it is in all other major browsers). Therefore, to ensure compatibility
we should use try and catch to trap this case and do something else if the function is
not available. Example 14-12 shows how.

Example 14-12. Trapping an error with try and catch

<script>
try
{
    request = new XMLHTTPRequest()
}
catch(err)
{
    // Use a different method to create an XMLHttpRequest object
}
</script>

I won’t go into how we implement the missing object in Internet Explorer here, but
you can see how the system works. There’s also another keyword associated with try
and catch, called finally, that is always executed, regardless of whether or not an error
occurs in the try clause. To use it just add something like the following statements after
a catch statement:

finally
{
    alert("The 'try' clause was encountered")
}

Conditionals
Conditionals alter program flow. They enable you to ask questions about certain things
and respond to the answers you get in different ways. There are three types of non-
looping conditionals: the if statement, the switch statement, and the ? operator.

The if Statement
Several examples in this chapter have already made use of if statements. The code
within such a statement is executed only if the given expression evaluates to true.
Multiline if statements require curly braces around them, but as in PHP, you can omit
the braces for single statements. Therefore, the following statements are valid:

if (a > 100)
{
    b=2

324 | Chapter 14: Expressions and Control Flow in JavaScript



    document.write("a is greater than 100")
}

if (b == 10) document.write("b is equal to 10")

The else statement

When a condition has not been met, you can execute an alternative using an else
statement, like this:

if (a > 100)
{
    document.write("a is greater than 100")
}
else
{
    document.write("a is less than or equal to 100")
}

Unlike in PHP, there is no elseif statement, but that’s not a problem because you can
use an else followed by another if to form the equivalent of an elseif statement, like
this:

if (a > 100)
{
    document.write("a is greater than 100")
}
else if(a < 100)
{
    document.write("a is less than 100")
}
else
{
    document.write("a is equal to 100")
}

The else after the new if could equally be followed by another if statement, and so
on. Also, although I have shown braces in these statements, because each is a single
line the whole previous example could be written as follows:

if     (a > 100) document.write("a is greater than 100")
else if(a < 100) document.write("a is less than 100")
else document.write("a is equal to 100")

The switch statement
The switch statement is useful when one variable or the result of an expression can
have multiple values, for each of which you want to perform a different function.

For example, the following code takes the PHP menu system we put together in Chap-
ter 4 and converts it to JavaScript. It works by passing a single string to the main menu
code according to what the user requests. Let’s say the options are Home, About, News,

Conditionals | 325



Login, and Links, and we set the variable page to one of these according to the user’s
input.

The code for this written using if...else if... might look like Example 14-13.

Example 14-13. A multiline if…else if…statement

<script>
if      (page == "Home")    document.write("You selected Home")
else if (page == "About")   document.write("You selected About")
else if (page == "News")    document.write("You selected News")
else if (page == "Login")   document.write("You selected Login")
else if (page == "Links")   document.write("You selected Links")
</script>

But using a switch construct, the code could look like Example 14-14.

Example 14-14. A switch construct

<script>
switch (page)
{
    case "Home":  document.write("You selected Home")
        break
    case "About": document.write("You selected About")
        break
    case "News":  document.write("You selected News")
        break
    case "Login": document.write("You selected Login")
        break
    case "Links": document.write("You selected Links")
        break
}
</script>

The variable page is mentioned only once at the start of the switch statement. There-
after, the case command checks for matches. When one occurs, the matching condi-
tional statement is executed. Of course, a real program would have code here to display
or jump to a page, rather than simply telling the user what was selected.

Breaking out

As you can see in the Example 14-14, just as with PHP, the break command allows your
code to break out of the switch statement once a condition has been satisfied. Remem-
ber to include the break unless you want to continue executing the statements under
the next case.

Default action

When no condition is satisfied, you can specify a default action for a switch statement
using the default keyword. Example 14-15 shows a code snippet that could be inserted
into Example 14-14.

326 | Chapter 14: Expressions and Control Flow in JavaScript



Example 14-15. A default statement to add to Example 14-14

    default: document.write("Unrecognized selection")
            break

The ? Operator
The ternary operator (?), combined with the : character, provides a quick way of doing
if...else tests. You can write an expression to evaluate, then follow it with a ? symbol
and the code to execute if the expression is true. After that, place a : and the code to
execute if the expression evaluates to false.

Example 14-16 shows a ternary operator being used to print out whether the variable
a is less than or equal to 5; it prints something either way.

Example 14-16. Using the ternary operator

<script>
document.write(
   a <= 5 ?
   "a is less than or equal to 5" :
   "a is greater than 5"
   )
</script>

The statement has been broken up into several lines for clarity, but you would be more
likely to use such a statement on a single line, in this manner:

size = a <= 5 ? "short" : "long"

Looping
Again, you will find many close similarities between JavaScript and PHP when it comes
to looping. Both languages support while, do...while, and for loops.

while Loops
A JavaScript while loop first checks the value of an expression and starts executing the
statements within the loop only if that expression is true. If it is false, execution skips
over to the next JavaScript statement (if any).

Upon completing an iteration of the loop, the expression is again tested to see if it is
true; the process continues until such a time as the expression evaluates to false, or
execution is otherwise halted. Example 14-17 shows such a loop.

Example 14-17. A while loop

<script>
counter=0

while (counter < 5)

Looping | 327



{
    document.write("Counter: " + counter + "<br />")
    ++counter
}
</script>

This script outputs the following:

Counter: 0
Counter: 1
Counter: 2
Counter: 3
Counter: 4

If the variable counter were not incremented within the loop, it is quite
possible that some browsers could become unresponsive due to a never-
ending loop, and the page might not even be easy to terminate with
Escape or the Stop button. Be careful with your JavaScript loops.

do…while Loops
When you require a loop to iterate at least once before any tests are made, use a
do...while loop, which is similar to a while loop except that the test expression is
checked only after each iteration of the loop. So, to output the first seven results in the
seven times table, you could use code such as that in Example 14-18.

Example 14-18. A do…while loop

<script>
count = 1
do
{
    document.write(count + " times 7 is " + count * 7 + "<br />")
} while (++count <= 7)
</script>

As you might expect, this loop outputs the following:

1 times 7 is 7
2 times 7 is 14
3 times 7 is 21
4 times 7 is 28
5 times 7 is 35
6 times 7 is 42
7 times 7 is 49

for Loops
A for loop combines the best of all worlds into a single looping construct that allows
you to pass three parameters for each statement:

• An initialization expression

328 | Chapter 14: Expressions and Control Flow in JavaScript



• A condition expression

• A modification expression

These are separated by semicolons, like this: for (expr1 ; expr2 ; expr3). At the start
of the first iteration of the loop, the initialization expression is executed. In the case of
the code for the multiplication table for seven, count would be initialized to the value
1. Then, each time around the loop, the condition expression (in this case count <=
7) is tested, and the loop is entered only if the condition is true. Finally, at the end of
each iteration, the modification expression is executed. In the case of the seven times
table, the variable count is incremented. Example 14-19 shows what the code would
look like.

Example 14-19. Using a for loop

<script>
for (count = 1 ; count <= 7 ; ++count)
{
    document.write(count + "times 7 is " + count * 7 + "<br />");
}
</script>

As in PHP, you can assign multiple variables in the first parameter of a for loop by
separating them with commas, like this:

for (i = 1, j = 1 ; i < 10 ; i++)

Likewise, you can perform multiple modifications in the last parameter, like this:

for (i = 1 ; i < 10 ; i++, −−j)

Or you can do both at the same time:

for (i = 1, j = 1 ; i < 10 ; i++, −−j)

Breaking Out of a Loop
The break command, which you saw to be important inside a switch statement, is also
available within for loops. You might need to use this, for example, when searching
for a match of some kind. Once the match is found, you know that continuing to search
will only waste time and make your visitor wait. Example 14-20 shows how to use the
break command.

Example 14-20. Using the break command in a for loop

<script>
haystack = new Array()
haystack[17] = "Needle"

for (j = 0 ; j < 20 ; ++j)
{
    if (haystack[j] == "Needle")
    {

Looping | 329



        document.write("<br />- Found at location " + j)
        break
    }
    else document.write(j + ", ")
}
</script>

This script outputs the following:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
- Found at location 17

The continue Statement
Sometimes you don’t want to exit entirely from a loop, but instead wish to skip the
remaining statements just for this iteration of the loop. In such cases, you can use the
continue command. Example 14-21 shows this in use.

Example 14-21. Using the continue command in a for loop

<script>
haystack     = new Array()
haystack[4]  = "Needle"
haystack[11] = "Needle"
haystack[17] = "Needle"

for (j = 0 ; j < 20 ; ++j)
{
    if (haystack[j] == "Needle")
    {
        document.write("<br />- Found at location " + j + "<br />")
        continue
    }

    document.write(j + ", ")
}
</script>

Notice how the second document.write call does not have to be enclosed in an else
statement (which it did before), because the continue command will skip it if a match
has been found. The output from this script is as follows:

0, 1, 2, 3,
- Found at location 4
5, 6, 7, 8, 9, 10,
- Found at location 11
12, 13, 14, 14, 16,
- Found at location 17
18, 19,

330 | Chapter 14: Expressions and Control Flow in JavaScript



Explicit Casting
Unlike PHP, JavaScript has no explicit casting of types such as (int) or (float). Instead,
when you need a value to be of a certain type, use one of JavaScript’s built-in functions,
shown in Table 14-6.

Table 14-6. JavaScript’s type-changing functions

Change to type Function to use

Int, integer parseInt()

Bool, Boolean Boolean()

Float, double, real parseFloat()

String String()

Array split()

So, for example, to change a floating-point number to an integer, you could use code
such as the following (which displays the value 3):

n = 3.1415927
i = parseInt(n)
document.write(i)

Or you can use the compound form:

document.write(parseInt(3.1414927))

That’s it for control flow and expressions. The next chapter focuses on the use of func-
tions, objects, and arrays in JavaScript.

Test Your Knowledge
1. How are Boolean values handled differently by PHP and JavaScript?

2. What is the difference between unary, binary, and ternary operators?

3. What is the best way to force your own operator precedence?

4. When would you use the === (identity) operator?

5. What are the simplest two forms of expressions?

6. Name the three conditional statement types.

7. How do if and while statements interpret conditional expressions of different data
types?

8. Why is a for loop more powerful than a while loop?

9. What is the purpose of the with statement?

10. How can you let JavaScript deal gracefully with an error when it encounters one?

Test Your Knowledge | 331



See “Chapter 14 Answers” on page 511 in Appendix A for the answers to these
questions.

332 | Chapter 14: Expressions and Control Flow in JavaScript



CHAPTER 15

JavaScript Functions, Objects,
and Arrays

Just like PHP, JavaScript offers access to functions and objects. In fact, JavaScript is
actually based on objects, because—as you’ve seen—it has to access the DOM, which
makes every element of an HTML document available to manipulate as an object.

The usage and syntax are also quite similar to those of PHP, so you should feel right at
home as I take you through using functions and objects in JavaScript, as well as con-
ducting an in-depth exploration of array handling.

JavaScript Functions
In addition to having access to dozens of built-in functions (or methods) such as
write, which you have already seen being used in document.write, you can easily create
your own functions. Whenever you have a more complex piece of code that is likely to
be reused, you have a candidate for a function.

Defining a Function
The general syntax for a function is:

function function_name([parameter [, ...]])
{
    statements
}

The first line of the syntax indicates that:

• A definition starts with the word function.

• Following that is a name, which must start with a letter or underscore, followed
by any number of letters, digits, dollar signs, or underscores.

• The parentheses are required.

333



• One or more parameters, separated by commas, are optional (indicated by the
square brackets, which are not part of the function syntax).

Function names are case-sensitive, so all of the following strings refer to different func-
tions: getInput, GETINPUT, and getinput.

In JavaScript there is a general naming convention for functions: the first letter of each
word in a name is capitalized, with the exception of the very first letter of the name,
which is lowercase. Therefore, of the previous examples, getInput would be the pre-
ferred name used by most programmers. This convention is commonly referred to as
bumpyCaps or camelCase.

The opening curly brace starts the statements that will execute when you call the func-
tion; a matching curly brace must close it. These statements may include one or more
return statements, which force the function to cease execution and return to the calling
code. If a value is attached to the return statement, the calling code can retrieve it.

The arguments array

The arguments array is a member of every function. With it, you can determine the
number of variables passed to a function and what they are. Take the example of a
function called displayItems. Example 15-1 shows one way of writing it.

Example 15-1. Defining a function

<script>
displayItems("Dog", "Cat", "Pony", "Hamster", "Tortoise")

function displayItems(v1, v2, v3, v4, v5)
{
    document.write(v1 + "<br />")
    document.write(v2 + "<br />")
    document.write(v3 + "<br />")
    document.write(v4 + "<br />")
    document.write(v5 + "<br />")
}
</script>

When you call up this script in your browser, it will display the following:

Dog
Cat
Pony
Hamster
Tortoise

All of this is fine, but what if you wanted to pass more than five items to the function?
Also, reusing the document.write call multiple times instead of employing a loop is
wasteful programming. Luckily, the arguments array gives you the flexibility to handle
a variable number of arguments. Example 15-2 shows how you can use it to rewrite the
previous example in a much more efficient manner.

334 | Chapter 15: JavaScript Functions, Objects, and Arrays



Example 15-2. Modifying the function to use the arguments array

<script>
function displayItems()
{
    for (j = 0 ; j < displayItems.arguments.length ; ++j)
        document.write(displayItems.arguments[j] + "<br />")
}
</script>

Note the use of the length property, which you encountered in the previous chapter,
and also how the array displayItems.arguments is referenced using the variable j as an
offset into it. I also chose to keep the function short and sweet by not surrounding the
contents of the for loop with curly braces, as it contains only a single statement.

Using this technique, you now have a function that can take as many (or as few) argu-
ments as you like and act on each argument as you desire.

Returning a Value
Functions are not used just to display things. In fact, they are mostly used to perform
calculations or data manipulation and then return a result. The function fixNames in
Example 15-3 uses the arguments array (discussed in the previous section) to take a
series of strings passed to it and return them as a single string. The “fix” it performs is
to convert every character in the arguments to lowercase except for the first character
of each argument, which is set to a capital letter.

Example 15-3. Cleaning up a full name

<script>
document.write(fixNames("the", "DALLAS", "CowBoys"))

function fixNames()
{
    var s = ""

    for (j = 0 ; j < fixNames.arguments.length ; ++j)
        s += fixNames.arguments[j].charAt(0).toUpperCase() +
             fixNames.arguments[j].substr(1).toLowerCase() + " "

    return s.substr(0, s.length-1)
}
</script>

When called with the parameters "the", "DALLAS", and "CowBoys", for example, the
function returns the string The Dallas Cowboys. Let’s walk through the function.

The function first initializes the temporary (and local) variable s to the empty string.
Then a for loop iterates through each of the passed parameters, isolating the parame-
ter’s first character using the charAt method and converting it to uppercase with the

JavaScript Functions | 335



toUpperCase method. The various methods shown in this example are all built into
JavaScript and available by default.

Then the substr method is used to fetch the rest of each string, which is converted to
lowercase using the toLowerCase method. A fuller version of the substr method here
would specify how many characters are part of the substring as a second argument:

substr(1, (arguments[j].length) - 1 )

In other words, this substr method says, “Start with the character at position 1 (the
second character) and return the rest of the string (the length minus one).” As a nice
touch, though, the substr method assumes that you want the rest of the string if you
omit the second argument.

After the whole argument is converted to our desired case, a space character is added
to the end and the result is appended to the temporary variable s.

Finally, the substr method is used again to return the contents of the variable s. Because
we don’t want the final space, we use substr to return the string up to, but not including,
the final character.

This example is particularly interesting in that it illustrates the use of multiple properties
and methods in a single expression. For example:

fixNames.arguments[j].substr(1).toLowerCase()

You have to interpret the statement by mentally dividing it into parts at the periods.
JavaScript evaluates these elements of the statement from left to right, as follows:

1. Start with the name of the function itself: fixNames.

2. Extract element j from the array arguments representing fixNames arguments.

3. Invoke substr with a parameter of 1 to the extracted element. This passes all but
the first character to the next section of the expression.

4. Apply the method toLowerCase to the string that has been passed thus far.

This practice is often referred to as method chaining. So, for example, if the string
"mixedCASE" is passed to the example expression, it will go through the following
transformations:

mixedCase
ixedCase
ixedcase

One final reminder: the s variable created inside the function is local, and therefore
cannot be accessed outside the function. By returning s in the return statement, we
made its value available to the caller, which could store or use it any way it wanted.
But s itself disappears at the end of the function. Although we could make a function
operate on global variables (and sometimes that’s necessary), it’s much better to just
return the values you want to preserve and let JavaScript clean up all the other variables
used by the function.

336 | Chapter 15: JavaScript Functions, Objects, and Arrays



Returning an Array
In Example 15-3, the function returned only one parameter—but what if you need to
return multiple parameters? This can be done by returning an array, as in Example 15-4.

Example 15-4. Returning an array of values

<script>
words = fixNames("the", "DALLAS", "CowBoys")

for (j = 0 ; j < words.length ; ++j)
    document.write(words[j] + "<br />")

function fixNames()
{
    var s = new Array()

    for (j = 0 ; j < fixNames.arguments.length ; ++j)
        s[j] = fixNames.arguments[j].charAt(0).toUpperCase() +
               fixNames.arguments[j].substr(1).toLowerCase()

    return s
}
</script>

Here, the variable words is automatically defined as an array and populated with the
returned result of a call to the function fixNames. Then a for loop iterates through the
array and displays each member.

As for the fixNames function, it’s almost identical to Example 15-3, except that the
variable s is now an array. After each word has been processed it is stored as an element
of this array, which is returned by the return statement.

This function enables the extraction of individual parameters from its returned values,
like the following (the output from which is simply The Cowboys):

words = fixNames("the", "DALLAS", "CowBoys")
document.write(words[0] + " " + words[2])

JavaScript Objects
A JavaScript object is a step up from a variable, which can contain only one value at a
time, in that objects can contain multiple values and even functions. An object groups
data together with the functions needed to manipulate it.

Declaring a Class
When creating a script to use objects, you need to design a composite of data and code
called a class. Each new object based on this class is called an instance (or occurrence)

JavaScript Objects | 337



of that class. As you’ve already seen, the data associated with an object are called its
properties, while the functions it uses are called methods.

Let’s look at how to declare the class for an object called User that will contain details
about the current user. To create the class, just write a function named after the class.
This function can accept arguments (I’ll show later how it’s invoked) and can create
properties and methods for the objects in that class. The function is called a constructor.

Example 15-5 shows a constructor for the class User with three properties: forename,
username, and password. The class also defines the method showUser.

Example 15-5. Declaring the User class and its method

<script>
function User(forename, username, password)
{
    this.forename = forename
    this.username = username
    this.password = password

    this.showUser = function()
    {
        document.write("Forename: " + this.forename + "<br />")
        document.write("Username: " + this.username + "<br />")
        document.write("Password: " + this.password + "<br />")
    }
}
</script>

The function is different from other functions we’ve seen so far in two ways:

• It refers to an object named this. When the program creates an instance of User
by running this function, this refers to the instance being created. The same func-
tion can be called over and over with different arguments and will create a new
User each time, with different values for the properties forename and so on.

• A new function named showUser is created within the function. The syntax shown
here is new and rather complicated, but its purpose is to tie showUser to the User
class. Thus, showUser comes into being as a method of the User class.

The naming convention I have used is to keep all properties in lowercase and to use at
least one uppercase character in method names, following the bumpyCaps convention
mentioned earlier in the chapter.

Example 15-5 follows the recommended way to write a class constructor, which is to
include methods in the constructor function. However, you can also refer to functions
defined outside the constructor, as in Example 15-6.

Example 15-6. Separately defining a class and method

<script>
function User(forename, username, password)
{

338 | Chapter 15: JavaScript Functions, Objects, and Arrays



    this.forename = forename
    this.username = username
    this.password = password
    this.showUser = showUser
}

function showUser()
{
    document.write("Forename: " + this.forename + "<br />")
    document.write("Username: " + this.username + "<br />")
    document.write("Password: " + this.password + "<br />")
}
</script>

I show you this form because you are certain to encounter it when perusing other
programmers’ code.

Creating an Object
To create an instance of the class User, you can use a statement such as the following:

details = new User("Wolfgang", "w.a.mozart", "composer")

Or you can create an empty object, like this:

details = new User()

and then populate it later, like this:

details.forename = "Wolfgang"
details.username = "w.a.mozart"
details.password = "composer"

You can also add new properties to an object, like this:

details.greeting = "Hello"

You can verify that adding such new properties works with the following statement:

document.write(details.greeting)

Accessing Objects
To access an object, you can refer to its properties, as in the following two unrelated
example statements:

name = details.forename
if (details.username == "Admin") loginAsAdmin()

So, to access the showUser method of an object of class User, you would use the following
syntax, in which the object details has already been created and populated with data:

details.showUser()

Assuming the data supplied earlier, this code would display:

JavaScript Objects | 339



Forename: Wolfgang
Username: w.a.mozart
Password: composer

The prototype Keyword
The prototype keyword can save you a lot of memory. In the User class, every instance
will contain the three properties and the method. Therefore, if you have 1,000 of these
objects in memory, the method showUser will be replicated 1,000 times. However, be-
cause the method is identical in every case, you can specify that new objects should
refer to a single instance of the method instead of creating a copy of it. So, instead of
using the following in a class constructor:

this.showUser = function()

you could replace it with this:

User.prototype.showUser = function()

Example 15-7 shows what the new constructor would look like.

Example 15-7. Declaring a class using the prototype keyword for a method

<script>
function User(forename, username, password)
{
    this.forename = forename
    this.username = username
    this.password = password

    User.prototype.showUser = function()
    {
        document.write("Forename: " + this.forename + "<br />")
        document.write("Username: " + this.username + "<br />")
        document.write("Password: " + this.password + "<br />")
    }
}
</script>

This works because all functions have a prototype property, designed to hold properties
and methods that are not replicated in any objects created from a class. Instead, they
are passed to its objects by reference.

This means that you can add a prototype property or method at any time and all objects
(even those already created) will inherit it, as the following statements illustrate:

User.prototype.greeting = "Hello"
document.write(details.greeting)

The first statement adds the prototype property of greeting with a value of "Hello" to
the class User. In the second line, the object details, which has already been created,
correctly displays this new property.

You can also add to or modify methods in a class, as the following statements illustrate:

340 | Chapter 15: JavaScript Functions, Objects, and Arrays



User.prototype.showUser = function() { document.write("Name " +
this.forename + " User " + this.username + " Pass " + this.password) }
details.showUser()

You might add these lines to your script in a conditional statement (such as if), so they
run if user activities cause you to decide you need a different showUser method. After
these lines run, even if the object details has been created already, further calls to
details.showUser will run the new function. The old definition of showUser has been
erased.

Static methods and properties

When reading about PHP objects, you learned that classes can have static properties
and methods as well as properties and methods associated with a particular instance
of a class. JavaScript also supports static properties and methods, which you can con-
veniently store and retrieve from the class’s prototype. Thus, the following statements
set and read a static string from User:

User.prototype.greeting = "Hello"
document.write(User.prototype.greeting)

Extending JavaScript objects

The prototype keyword even lets you add functionality to a built-in object. For example,
suppose that you would like to add the ability to replace all spaces in a string with
nonbreaking spaces in order to prevent it from wrapping around. This can be done by
adding a prototype method to JavaScript’s default String object definition, like this:

String.prototype.nbsp =
    function() { return this.replace(/ /g, '&nbsp;') }

Here, the replace method is used with a regular expression (see Chapter 16) to find
and replace all single spaces with the string “&nbsp;”. If you then enter the following
command:

document.write("The quick brown fox".nbsp())

it will output the string “The&nbsp;quick&nbsp;brown&nbsp;fox”. And here’s a
method you can add that will trim leading and trailing spaces from a string (once again
using a regular expression):

String.prototype.trim =
    function() { return this.replace(/^\s+|\s+$/g, '') }

If you issue the following statement, the output will be the string “Please trim me” (with
the leading and trailing spaces removed):

document.write("  Please trim me    ".trim())

Breaking down the expression into its component parts, the two / characters mark the
start and end of the expression, and the final g specifies a global search. Inside the
expression, the ^\s+ part searches for one or more whitespace characters appearing at

JavaScript Objects | 341



the start of the search string, while the \s+$ part searches for one or more whitespace
characters at the end of the search string. The | character in the middle acts to separate
the alternatives.

The result is that when either of these expressions matches, the match is replaced with
the empty string, thus returning a trimmed version of the string without any leading or
trailing whitespace.

JavaScript Arrays
Array handling in JavaScript is very similar to PHP, although the syntax is a little dif-
ferent. Nevertheless, given all you have already learned about arrays, this section should
be relatively straightforward for you.

Numeric Arrays
To create a new array, use the following syntax:

arrayname = new Array()

Or you can use the shorthand form, as follows:

arrayname = []

Assigning element values

In PHP, you could add a new element to an array by simply assigning it without spec-
ifying the element offset, like this:

$arrayname[] = "Element 1";
$arrayname[] = "Element 2";

In JavaScript you use the push method to achieve the same thing, like this:

arrayname.push("Element 1")
arrayname.push("Element 2")

This allows you to keep adding items to an array without having to keep track of the
number of items. When you need to know how many elements are in an array, you can
use the length property, like this:

document.write(arrayname.length)

Alternatively, if you wish to keep track of the element locations yourself and place them
in specific locations, you can use syntax such as this:

arrayname[0] = "Element 1"
arrayname[1] = "Element 2"

Example 15-8 shows a simple script that creates an array, loads it with some values,
and then displays them.

342 | Chapter 15: JavaScript Functions, Objects, and Arrays



Example 15-8. Creating, building, and printing an array

<script>
numbers = []
numbers.push("One")
numbers.push("Two")
numbers.push("Three")

for (j = 0 ; j < numbers.length ; ++j)
    document.write("Element " + j + " = " + numbers[j] + "<br />")
</script>

The output from this script is:

Element 0 = One
Element 1 = Two
Element 2 = Three

Assignment using the Array keyword

You can also create an array together with some initial elements using the Array key-
word, like this:

numbers = Array("One", "Two", "Three")

There is nothing stopping you from adding more elements afterwards as well.

So now you have a couple of ways you can add items to an array, and one way of
referencing them. JavaScript offers many more, which I’ll get to shortly—but first we’ll
look at another type of array.

Associative Arrays
An associative array is one whose elements are referenced by name rather than by nu-
meric offset. To create an associative array, define a block of elements within curly
braces. For each element, place the key on the left and the contents on the right of a
colon (:). Example 15-9 shows how you might create an associative array to hold the
contents of the “balls” section of an online sports equipment retailer.

Example 15-9. Creating and displaying an associative array

<script>
balls = {"golf":    "Golf balls, 6",
         "tennis":  "Tennis balls, 3",
         "soccer":  "Soccer ball, 1",
         "ping":    "Ping Pong balls, 1 doz"}

for (ball in balls)
    document.write(ball + " = " + balls[ball] + "<br />")
</script>

To verify that the array has been created and populated correctly, I have used another
kind of for loop using the in keyword. This creates a new variable to use only within

JavaScript Arrays | 343



the array (ball in this example) and iterates through all elements of the array to the
right of the in keyword (balls in this example). The loop acts on each element of
balls, placing the key value into ball.

Using this key value stored in ball, you can also get the value of the current element of
balls. The result of calling up the example script in a browser is as follows:

golf = Golf balls, 6
tennis = Tennis balls, 3
soccer = Soccer ball, 1
ping = Ping Pong balls, 1 doz

To get a specific element of an associative array, you can specify a key explicitly, in the
following manner (in this case outputting the value “Soccer ball, 1”):

document.write(balls['soccer'])

Multidimensional Arrays
To create a multidimensional array in JavaScript, just place arrays inside other arrays.
For example, to create an array to hold the details of a two-dimensional checkerboard
(8×8 squares), you could use the code in Example 15-10.

Example 15-10. Creating a multidimensional numeric array

<script>
checkerboard = Array(
    Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
    Array('o', ' ', 'o', ' ', 'o', ' ', 'o', ' '),
    Array(' ', 'o', ' ', 'o', ' ', 'o', ' ', 'o'),
    Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
    Array(' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '),
    Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '),
    Array(' ', 'O', ' ', 'O', ' ', 'O', ' ', 'O'),
    Array('O', ' ', 'O', ' ', 'O', ' ', 'O', ' '))

document.write("<pre>")

for (j = 0 ; j < 8 ; ++j)
{
    for (k = 0 ; k < 8 ; ++k)
         document.write(checkerboard[j][k] + " ")
    document.write("<br />")
}

document.write("</pre>")
</script>

In this example, the lowercase letters represent black pieces and the uppercase white.
A pair of nested for loops walk through the array and display its contents.

The outer loop contains two statements, so curly braces enclose them. The inner loop
then processes each square in a row, outputting the character at location [j][k], fol-

344 | Chapter 15: JavaScript Functions, Objects, and Arrays



lowed by a space (to square up the printout). This loop contains a single statement, so
curly braces are not required to enclose it. The <pre> and </pre> tags ensure that the
output displays correctly, like this:

  o   o   o   o
o   o   o   o
  o   o   o   o

O   O   O   O
  O   O   O   O
O   O   O   O

You can also directly access any element within this array using square brackets, as
follows:

document.write(checkerboard[7][2])

This statement outputs the uppercase letter O, the eighth element down and the third
along—remember that array indexes start at 0, not 1.

Using Array Methods
Due to the power of arrays, JavaScript comes ready-made with a number of methods
for manipulating them and their data. Here is a selection of the most useful ones.

concat

The concat method concatenates two arrays, or a series of values with an array. For
example, the following code outputs “Banana,Grape,Carrot,Cabbage”:

fruit = ["Banana", "Grape"]
veg   = ["Carrot", "Cabbage"]
document.write(fruit.concat(veg))

You can specify multiple arrays as arguments, in which case concat adds all their ele-
ments in the order that the arrays are specified.

Here’s another way to use concat, This time plain values are concatenated with the
array pets, which outputs “Cat,Dog,Fish,Rabbit,Hamster”:

pets      = ["Cat", "Dog", "Fish"]
more_pets = pets.concat("Rabbit", "Hamster")
document.write(more_pets)

forEach (for non-IE browsers)

The forEach method in JavaScript is another way of achieving functionality similar to
the PHP foreach keyword, but only for browsers other than Internet Explorer. To use
it, you pass it the name of a function, which will be called for each element within the
array. Example 15-11 shows how.

JavaScript Arrays | 345



Example 15-11. Using the forEach method

<script>
pets = ["Cat", "Dog", "Rabbit", "Hamster"]
pets.forEach(output)

function output(element, index, array)
{
    document.write("Element at index " + index + " has the value " +
        element + "<br />")
}
</script>

In this case, the function passed to forEach is called output. It takes three parameters:
the element, its index, and the array. These can be used as required by your function.
In this example, just the element and index values are displayed using the function
document.write.

Once an array has been populated, the method is called up like this:

pets.forEach(output)

The output from which is:

Element at index 0 has the value Cat
Element at index 1 has the value Dog
Element at index 2 has the value Rabbit
Element at index 3 has the value Hamster

forEach (a cross-browser solution)

Of course, as often is its way, Microsoft chose not to support the forEach method, so
the previous example will work only on non–Internet Explorer browsers. Therefore,
until IE does support it, and to ensure cross-browser compatibility, you should use a
statement such as the following instead of pets.forEach(output):

for (j = 0 ; j < pets.length ; ++j) output(pets[j], j)

join

With the join method, you can convert all the values in an array to strings and then
join them together into one large string, placing an optional separator between them.
Example 15-12 shows three ways of using this method.

Example 15-12. Using the join method

<script>
pets = ["Cat", "Dog", "Rabbit", "Hamster"]
document.write(pets.join()      + "<br />")
document.write(pets.join(' ')   + "<br />")
document.write(pets.join(' : ') + "<br />")
</script>

346 | Chapter 15: JavaScript Functions, Objects, and Arrays



Without a parameter, join uses a comma to separate the elements; otherwise, the string
passed to join is inserted between each element. The output of Example 15-12 looks
like this:

Cat,Dog,Rabbit,Hamster
Cat Dog Rabbit Hamster
Cat : Dog : Rabbit : Hamster

push and pop

You already saw how the push method can be used to insert a value into an array. The
inverse method is pop. It deletes the most recently inserted element from an array and
returns it. Example 15-13 shows an example of its use.

Example 15-13. Using the push and pop methods

<script>
sports = ["Football", "Tennis", "Baseball"]
document.write("Start = "      + sports +  "<br />")
sports.push("Hockey")
document.write("After Push = " + sports +  "<br />")
removed = sports.pop()
document.write("After Pop = "  + sports +  "<br />")
document.write("Removed = "    + removed + "<br />")
</script>

The three main statements of this script are shown in bold type. The script first creates
an array called sports with three elements and then pushes a fourth element into the
array. After that it pops that element back off. In the process, the various current values
are displayed using document.write. The script outputs the following:

Start = Football,Tennis,Baseball
After Push = Football,Tennis,Baseball,Hockey
After Pop = Football,Tennis,Baseball
Removed = Hockey

The push and pop functions are useful in situations where you need to divert from some
activity to do another, then return, as in Example 15-14.

Example 15-14. Using push and pop inside and outside of a loop

<script>
numbers = []

for (j=0 ; j<3 ; ++j)
{
    numbers.push(j);
    document.write("Pushed " + j + "<br />")
}

// Perform some other activity here
document.write("<br />")

document.write("Popped " + numbers.pop() + "<br />")

JavaScript Arrays | 347



document.write("Popped " + numbers.pop() + "<br />")
document.write("Popped " + numbers.pop() + "<br />")
</script>

The output from this example is:

Pushed 0
Pushed 1
Pushed 2

Popped 2
Popped 1
Popped 0

Using reverse

The reverse method simply reverses the order of all elements in an array. Exam-
ple 15-15 shows this in action.

Example 15-15. Using the reverse method

<script>
sports = ["Football", "Tennis", "Baseball", "Hockey"]
sports.reverse()
document.write(sports)
</script>

The original array is modified and the output from this script is:

Hockey,Baseball,Tennis,Football

sort

With the sort method, you can place all the elements of an array in alphabetical or
other order, depending upon the parameters used. Example 15-16 shows four types of
sort.

Example 15-16. Using the sort method

<script>
// Alphabetical sort
sports = ["Football", "Tennis", "Baseball", "Hockey"]
sports.sort()
document.write(sports + "<br />")

// Reverse alphabetical sort
sports = ["Football", "Tennis", "Baseball", "Hockey"]
sports.sort().reverse()
document.write(sports + "<br />")

// Ascending numerical sort
numbers = [7, 23, 6, 74]
numbers.sort(function(a,b){return a - b})
document.write(numbers + "<br />")

348 | Chapter 15: JavaScript Functions, Objects, and Arrays



// Descending numerical sort
numbers = [7, 23, 6, 74]
numbers.sort(function(a,b){return b - a})
document.write(numbers + "<br />")
</script>

The first of the four example sections is the default sort method, alphabetical sort, while
the second uses the default sort and then applies the reverse method to get a reverse
alphabetical sort.

The third and fourth sections are a little more complicated, using a function to compare
the relationships between a and b. The function doesn’t have a name, because it’s used
just in the sort. You have already seen the function named function used to create an
anonymous function; we used it to define a method in a class (the showUser method).

Here, function creates an anonymous function meeting the needs of the sort method.
If the function returns a value less than zero, the sort assumes that a comes before b. If
the function returns a value greater than zero, the sort assumes that b comes before a.
If zero is returned the order of a and b is left unchanged as they are equal. The sort runs
this function across all the values in the array to determine their order.

By manipulating the value returned (a - b in contrast to b - a), the third and fourth
sections of Example 15-16 choose between an ascending numerical sort and a descending
numerical sort.

And, believe it or not, this represents the end of your introduction to JavaScript. You
should now have a core knowledge of three out of the four main technologies covered
in this book. The next chapter will look at some advanced techniques used across these
technologies, such as pattern matching and input validation.

Test Your Knowledge
1. Are JavaScript functions and variable names case-sensitive or case-insensitive?

2. How can you write a function that accepts and processes an unlimited number of
parameters?

3. Name a way to return multiple values from a function.

4. When defining a class, what keyword is used to refer to the current object?

5. Do all the methods of a class have to be defined within the class definition?

6. What keyword is used to create an object?

7. How can a property or method be made available to all objects in a class without
replicating the property or method within the object?

8. How can you create a multidimensional array?

9. What syntax is used to create an associative array?

10. Write a statement to sort an array of numbers in descending numerical order.

Test Your Knowledge | 349



See “Chapter 15 Answers” on page 512 in Appendix A for the answers to these
questions.

350 | Chapter 15: JavaScript Functions, Objects, and Arrays



CHAPTER 16

JavaScript and PHP Validation and
Error Handling

With your solid foundation in both PHP and JavaScript, it’s time to bring these tech-
nologies together. In this chapter, we’ll be looking at how to create web forms that are
as user-friendly as possible.

We’ll be using PHP to create the forms and JavaScript to perform client-side validation
to ensure that the data is as complete and correct as it can be before it is submitted.
Final validation of the input will then be made by a PHP program, which will, if nec-
essary, present the form again to the user for further modification.

In the process, this chapter will cover validation and regular expressions in both Java-
Script and PHP.

Validating User Input with JavaScript
JavaScript validation should be considered an assistance more to your users than to
your websites because, as I have already stressed many times, you cannot trust any data
submitted to your server, even if it has supposedly been validated with JavaScript. This
is because hackers can quite easily simulate your web forms and submit any data of
their choosing.

Another reason you cannot rely on JavaScript to perform all your input validation is
that some users disable JavaScript, or use browsers that don’t support it.

So, the best types of validation to do in JavaScript are checking that fields have content
if they are not to be left empty, ensuring that email addresses conform to the proper
format, and ensuring that values entered are within expected bounds.

351



The validate.html Document (Part One)
Let’s start with a general signup form, common on most sites that offer memberships
or registered users. The inputs being requested will be forename, surname, username,
password, age, and email address. Example 16-1 provides a good template for such a
form.

Example 16-1. A form with JavaScript validation (part one)

<html><head><title>An Example Form</title>
<style>.signup { border: 1px solid #999999;
    font: normal 14px helvetica; color:#444444; }</style>

<script>
function validate(form) {
    fail  = validateForename(form.forename.value)
    fail += validateSurname(form.surname.value)
    fail += validateUsername(form.username.value)
    fail += validatePassword(form.password.value)
    fail += validateAge(form.age.value)
    fail += validateEmail(form.email.value)
    if (fail == "") return true
    else { alert(fail); return false }
}
</script></head><body>

<table class="signup" border="0" cellpadding="2"
    cellspacing="5" bgcolor="#eeeeee">
<th colspan="2" align="center">Signup Form</th>
<form method="post" action="adduser.php"
    onSubmit="return validate(this)">
     <tr><td>Forename</td><td><input type="text" maxlength="32"
    name="forename" /></td>
</tr><tr><td>Surname</td><td><input type="text" maxlength="32"
    name="surname" /></td>
</tr><tr><td>Username</td><td><input type="text" maxlength="16"
    name="username" /></td>
</tr><tr><td>Password</td><td><input type="text" maxlength="12"
    name="password" /></td>
</tr><tr><td>Age</td><td><input type="text" maxlength="3"
    name="age" /></td>
</tr><tr><td>Email</td><td><input type="text" maxlength="64"
    name="email" /></td>
</tr><tr><td colspan="2" align="center">
    <input type="submit" value="Signup" /></td>
</tr></form></table>

As it stands, this form will display correctly but will not self-validate, because the main
validation functions have not yet been added. Even so, if you type it in and save it as
validate.html, when you call it up in your browser it will look like Figure 16-1.

352 | Chapter 16: JavaScript and PHP Validation and Error Handling



How it works

Let’s look at how this document is made up. The first three lines set up the document
and use a little CSS to make the form look a little less plain. The parts of the document
related to JavaScript come next and are shown in bold.

Between the <script> and </script> tags lies a single function called validate that itself
calls up six other functions to validate each of the form’s input fields. We’ll get to these
functions shortly. For now, I’ll just explain that they return either an empty string if a
field validates, or an error message if it fails. If there are any errors, the final line of the
script pops up an alert box to display them.

Upon passing validation, the validate function returns a value of true; otherwise, it
returns false. The return values from validate are important, because if it returns
false, the form is prevented from being submitted. This allows the user to close the
alert pop-up and make changes. If true is returned, no errors were encountered in the
form’s fields and so the form is allowed to be submitted.

The second part of this example features the HTML for the form, with each field and
its name placed within its own row of a table. This is pretty straightforward HTML,
with the exception of the onSubmit="return validate(this)" statement within the
opening <form> tag. Using onSubmit, you can cause a function of your choice to be called
when a form is submitted. That function can perform some checking and return a value
of either true or false to signify whether the form should be allowed to be submitted.

The this parameter is the current object (i.e., this form) and is passed to the validate
function just discussed. The validate function receives this parameter as the object
form.

Figure 16-1. The output from Example 16-1

Validating User Input with JavaScript | 353



As you can see, the only JavaScript used within the form’s HTML is the call to return
buried in the onSubmit attribute. Browsers with JavaScript disabled or not available will
simply ignore the onSubmit attribute, and the HTML will display just fine.

The validate.html Document (Part Two)
Now we come to Example 16-2, a set of six functions that do the actual form field
validation. I suggest that you type in all of this second part and append it to the first
half, which you should already have saved as validate.html. It’s fine to include multiple
<script> sections in a single HTML file, but if you prefer, you can incorporate the
additional code into the first <script> section from Example 16-1.

Example 16-2. Part two of the JavaScript validation form

<script>
function validateForename(field) {
    if (field == "") return "No Forename was entered.\n"
    return ""
}

function validateSurname(field) {
    if (field == "") return "No Surname was entered.\n"
    return ""
}

function validateUsername(field) {
    if (field == "") return "No Username was entered.\n"
    else if (field.length < 5)
        return "Usernames must be at least 5 characters.\n"
    else if (/[^a-zA-Z0-9_-]/.test(field))
        return "Only a-z, A-Z, 0-9, - and _ allowed in Usernames.\n"
    return ""
}

function validatePassword(field) {
    if (field == "") return "No Password was entered.\n"
    else if (field.length < 6)
        return "Passwords must be at least 6 characters.\n"
    else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
             !/[0-9]/.test(field))
        return "Passwords require one each of a-z, A-Z and 0-9.\n"
    return ""
}

function validateAge(field) {
    if (isNaN(field)) return "No Age was entered.\n"
    else if (field < 18 || field > 110)
        return "Age must be between 18 and 110.\n"
    return ""
}

function validateEmail(field) {
    if (field == "") return "No Email was entered.\n"

354 | Chapter 16: JavaScript and PHP Validation and Error Handling



        else if (!((field.indexOf(".") > 0) &&
                   (field.indexOf("@") > 0)) ||
                  /[^a-zA-Z0-9.@_-]/.test(field))
        return "The Email address is invalid.\n"
    return ""
}
</script></body></html>

We’ll go through each of these functions in turn, starting with validateForename, so
you can see how validation works.

Validating the forename

validateForename is quite a short function that accepts the parameter field, which is
the value of the forename passed to it by the validate function.

If this value is the empty string, an error message is returned; otherwise, an empty string
is returned to signify that no error was encountered.

If the user entered spaces in this field, it would be accepted by validateForename, even
though it’s empty for all intents and purposes. You can fix this by adding an extra
statement to trim whitespace from the field before checking whether it’s empty, use a
regular expression to make sure there’s something besides whitespace in the field, or
—as I do here—just let the user make the mistake and allow the PHP program to catch
it on the server.

Validating the surname

The validateSurname function is almost identical to validateForename in that an error
is returned only if the surname supplied was the empty string. I chose not to limit the
characters allowed in either of the name fields to allow for non-English and accented
characters, etc.

Validating the username

The validateUsername function is a little more interesting, because it has a more com-
plicated job. It has to allow through only the characters a-z, A-Z, 0-9, _ and -, and ensure
that usernames are at least five characters long.

The if...else statements commence by returning an error if field has not been filled
in. If it’s not the empty string but is less than five characters in length, another error
message is returned.

Then the JavaScript test function is called, passing a regular expression (which matches
any character that is not one of those allowed) to be matched against field (see the
section “Regular Expressions” on page 357 later in this chapter). If even one character
that isn’t one of the acceptable characters is encountered, the test function returns
true, and so validateUser returns an error string.

Validating User Input with JavaScript | 355



Validating the password

Similar techniques are used in the validatePassword function. First the function checks
whether field is empty, and an error is returned if it is. Next, an error message is
returned if the password is shorter than six characters.

One of the requirements we’re imposing on passwords is that they must have at least
one each of a lowercase, uppercase, and numerical character, so the test function is
called three times, once for each of these cases. If any one of them returns false, one
of the requirements was not met and so an error message is returned. Otherwise, the
empty string is returned to signify that the password was okay.

Validating the age

validateAge returns an error message if field is not a number (determined by a call to
the isNaN function), or if the age entered is lower than 18 or greater than 110. Your
applications may well have different or no age requirements. Again, upon successful
validation the empty string is returned.

Validating the email address

Lastly, and most complicatedly, the email address is validated with validateEmail. After
checking whether anything was actually entered, and returning an error message if it
wasn’t, the function calls the JavaScript indexOf function twice. The first time a check
is made to ensure there is a dot (.) somewhere in the field from the second character
onwards, and the second checks that an at sign (@) appears, again from the second
character onwards.

If those two checks are satisfied, the test function is called to see whether any disal-
lowed characters appear in the field. If any of these tests fail, an error message is re-
turned. The allowed characters in an email address are uppercase and lowercase letters,
numbers, and the _, -, ., and @ characters, as detailed in the regular expression passed
to the test method. If no errors are found, the empty string is returned to indicate
successful validation. On the last line, the script and document are closed.

Figure 16-2 shows the result of clicking on the Signup button without having completed
any fields.

Using a separate JavaScript file

Of course, because they are generic in construction and could apply to many types of
validations you might require, these six functions make ideal candidates for moving
out into a separate JavaScript file (remember to remove any <script> or </script>
tags!). You could name the file something like validate_functions.js and include it right
after the initial script section in Example 16-1, using the following statement:

<script src="validate_functions.js"></script>

356 | Chapter 16: JavaScript and PHP Validation and Error Handling



Regular Expressions
Let’s look a little more closely at the pattern matching we have been doing. This has
been achieved using regular expressions, which are supported by both JavaScript and
PHP. They make it possible to construct the most powerful of pattern-matching algo-
rithms within a single expression.

Matching Through Metacharacters
Every regular expression must be enclosed in slashes (/). Within these slashes, certain
characters have special meanings; they are called metacharacters. For instance, an as-
terisk (*) has a meaning similar to what you have seen if you use a shell or Windows
Command prompt (but not quite the same). An asterisk means, “The text you’re trying
to match may have any number of the preceding character—or none at all.”

For instance, let’s say you’re looking for the name “Le Guin” and know that someone
might spell it with or without a space. Because the text is laid out strangely (for instance,
someone may have inserted extra spaces to right-justify lines), you could have to search
for a line such as:

The   difficulty  of   classifying Le      Guin's    works

So you need to match “LeGuin,” as well as “Le” and “Guin” separated by any number
of spaces. The solution is to follow a space with an asterisk:

/Le *Guin/

There’s a lot more than the name “Le Guin” in the line, but that’s OK. As long as the
regular expression matches some part of the line, the test function returns a true value.

Figure 16-2. JavaScript form validation in action

Regular Expressions | 357



What if it’s important to make sure the line contains nothing but “Le Guin”? I’ll show
how to ensure that later.

Suppose that you know there is always at least one space. In that case, you could use
the plus sign (+), because it requires at least one of the preceding characters to be
present:

/Le +Guin/

Fuzzy Character Matching
The dot (.) is particularly useful, because it can match anything except a newline.
Suppose that you are looking for HTML tags, which start with < and end with >. A
simple way to do so is:

/<.*>/

The dot matches any character and the * expands it to match zero or more characters,
so this is saying, “Match anything that lies between < and >, even if there’s nothing.”
It will match <>, <em>, <br /> and so on. But if you don’t want to match the empty case,
<>, you should use the + sign instead of *, like this:

/<.+>/

The plus sign expands the dot to match one or more characters, saying, “Match any-
thing that lies between < and > as long as there’s at least one character between them.”
This will match <em> and </em>, <h1> and </h1>, and tags with attributes such as:

<a href="www.mozilla.org">

Unfortunately, the plus sign keeps on matching up to the last > on the line, so you might
end up with:

<h1><b>Introduction</b></h1>

A lot more than one tag! I’ll show a better solution later in this section.

If you use the dot on it’s own between the angle brackets, without fol-
lowing it with either a + or *, it matches a single character; this will match
<b> and <i> but not <em> or <textarea>.

If you want to match the dot character itself (.), you have to escape it by placing a
backslash (\) before it, because otherwise it’s a metacharacter and matches anything.
As an example, suppose you want to match the floating-point number 5.0. The regular
expression is:

/5\.0/

The backslash can escape any metacharacter, including another backslash (in case
you’re trying to match a backslash in text). However, to make things a bit confusing,

358 | Chapter 16: JavaScript and PHP Validation and Error Handling



you’ll see later how backslashes sometimes give the following character a special
meaning.

We just matched a floating-point number. But perhaps you want to match 5. as well
as 5.0, because both mean the same thing as a floating-point number. You also want
to match 5.00, 5.000, and so forth—any number of zeros is allowed. You can do this
by adding an asterisk, as you’ve seen:

/5\.0*/

Grouping Through Parentheses
Suppose you want to match powers of increments of units, such as kilo, mega, giga,
and tera. In other words, you want all the following to match:

1,000
1,000,000
1,000,000,000
1,000,000,000,000
...

The plus sign works here, too, but you need to group the string “,000” so the plus sign
matches the whole thing. The regular expression is:

/1(,000)+ /

The parentheses mean “treat this as a group when you apply something such as a plus
sign.” 1,00,000 and 1,000,00 won’t match, because the text must have a one followed
by one or more complete groups of a comma followed by three zeros.

The space after the + character indicates that the match must end when a space is
encountered. Without it, 1,000,00 would incorrectly match because only the first
1,000 would be taken into account, and the remaining ,00 would be ignored. Requiring
a space afterwards ensures matching will continue right through to the end of a number.

Character Classes
Sometimes you want to match something fuzzily, but not so broadly that you want to
use a dot. Fuzziness is the great strength of regular expressions: you can be as precise
or vague as you want.

One of the key features supporting fuzzy matching is the pair of square brackets, []. It
matches a single character, like a dot, but inside the brackets you put a list of things
that can match. If any of those characters appears, the text matches. For instance, if
you wanted to match both the American spelling “gray” and the British spelling “grey,”
you could specify:

/gr[ae]y/

Regular Expressions | 359



After the gr in the text you’re matching, there can be either an a or an e, but there must
be only one of them: whatever you put inside the brackets matches exactly one char-
acter. The group of characters inside the brackets is called a character class.

Indicating a range

Inside the brackets, you can use a hyphen (-) to indicate a range. One very common
task is matching a single digit, which you can do with a range as follows:

/[0-9]/

Digits are such a common item in regular expressions that a single character is provided
to represent them: \d. You can use it in the place of the bracketed regular expression
to match a digit:

/\d/

Negation

One other important feature of the square brackets is negation of a character class. You
can turn the whole character class on its head by placing a caret (^) after the opening
bracket. Here it means, “Match any characters except the following.” Let’s say you want
to find instances of “Yahoo” that lack the following exclamation point. (The name of
the company officially contains an exclamation point!) You could do this as follows:

/Yahoo[^!]/

The character class consists of a single character—an exclamation point—but it is in-
verted by the preceding ^. This is actually not a great solution to the problem—for
instance, it fails if “Yahoo” is at the end of the line, because then it’s not followed by
anything, whereas the brackets must match a character. A better solution involves neg-
ative look-ahead (matching something that is not followed by anything else), but that’s
beyond the scope of this book.

Some More Complicated Examples
With an understanding of character classes and negation, you’re ready now to see a
better solution to the problem of matching an HTML tag. This solution avoids going
past the end of a single tag, but still matches tags such as <em> and </em>, as well as tags
with attributes such as:

<a href="www.mozilla.org">

One solution is:

/<[^>]+>/

That regular expression may look like I just dropped my teacup on the keyboard, but
it is perfectly valid and very useful. Let’s break it apart. Figure 16-3 shows the various
elements, which I’ll describe one by one.

360 | Chapter 16: JavaScript and PHP Validation and Error Handling



The elements are:

/
Opening slash that indicates this is a regular expression.

<
Opening bracket of an HTML tag. This is matched exactly; it is not a
metacharacter.

[^>]
Character class. The embedded ^> means “match anything except a closing angle
bracket.”

+
Allows any number of characters to match the previous [^>], as long as there is at
least one of them.

>
Closing bracket of an HTML tag. This is matched exactly.

/
Closing slash that indicates the end of the regular expression.

Another solution to the problem of matching HTML tags is to use a
nongreedy operation. By default, pattern matching is greedy, returning
the longest match possible. Nongreedy matching finds the shortest pos-
sible match; its use is beyond the scope of this book, but there are more
details at http://tinyurl.com/aboutregex.

We are going to look now at one of the expressions from Example 16-1, which the
validateUsername function used:

/[^a-zA-Z0-9_]/

Figure 16-4 shows the various elements.

Let’s look at these elements in detail:

/
Opening slash that indicates this is a regular expression.

[
Opening bracket that starts a character class.

Figure 16-3. Breakdown of a typical regular expression

Regular Expressions | 361

http://tinyurl.com/aboutregex


^
Negation character: inverts everything else between the brackets.

a-z
Represents any lowercase letter.

A-Z
Represents any uppercase letter.

0-9
Represents any digit.

_
An underscore.

]
Closing bracket that ends a character class.

/
Closing slash that indicates the end of the regular expression.

There are two other important metacharacters. They “anchor” a regular expression by
requiring that it appear in a particular place. If a caret (^) appears at the beginning of
the regular expression, the expression has to appear at the beginning of a line of text—
otherwise, it doesn’t match. Similarly, if a dollar sign ($) appears at the end of the regular
expression, the expression has to appear at the end of a line of text.

It may be somewhat confusing that ^ can mean “negate the character
class” inside square brackets and “match the beginning of the line” if
it’s at the beginning of the regular expression. Unfortunately, the same
character is used for two different things, so take care when using it.

We’ll finish our exploration of regular expression basics by answering a question raised
earlier: suppose you want to make sure there is nothing extra on a line besides the
regular expression? What if you want a line that has “Le Guin” on it and nothing else?
We can do that by amending the earlier regular expression to anchor the two ends:

Figure 16-4. Breakdown of the validateUsername regular expression

362 | Chapter 16: JavaScript and PHP Validation and Error Handling



/^Le *Guin$/

Summary of Metacharacters
Table 16-1 shows the metacharacters available in regular expressions.

Table 16-1. Regular expression metacharacters

Metacharacter Description

/ Begins and ends the regular expression

. Matches any single character except the newline

element* Matches element zero or more times

element+ Matches element one or more times

element? Matches element zero or one times

[characters] Matches a character out of those contained within the brackets

[^characters] Matches a single character that is not contained within the brackets

(regex) Treats the regex as a group for counting or a following *, +, or ?

left|right Matches either left or right

[l-r] Matches a range of characters between l and r

^ Requires match to be at the string’s start

$ Requires match to be at the string’s end

\b Matches a word boundary

\B Matches where there is not a word boundary

\d Matches a single digit

\D Matches a single nondigit

\n Matches a newline character

\s Matches a whitespace character

\S Matches a nonwhitespace character

\t Matches a tab character

\w Matches a word character (a-z, A-Z, 0-9, and _)

\W Matches a nonword character (anything but a-z, A-Z, 0-9, and _)

\ x x (useful if x is a metacharacter, but you really want x)

{n} Matches exactly n times

{n,} Matches n times or more

{min,max} Matches at least min and at most max times

Provided with this table, and looking again at the expression /[^a-zA-Z0-9_]/, you can
see that it could easily be shortened to /[^\w]/ because the single metacharacter \w
(with a lowercase w) specifies the characters a-z, A-Z, 0-9, and _.

Regular Expressions | 363



In fact, we can be cleverer than that, because the metacharacter \W (with an uppercase
W) specifies all characters except for a-z, A-Z, 0-9, and _. Therefore, we could also drop
the ^ metacharacter and simply use /[\W]/ for the expression.

To give you more ideas of how this all works, Table 16-2 shows a range of expressions
and the patterns they match.

Table 16-2. Some example regular expressions

Example Matches

r The first r in The quick brown

rec[ei][ei]ve Either of receive or recieve (but also receeve or reciive)

rec[ei]{2}ve Either of receive or recieve (but also receeve or reciive)

rec(ei|ie)ve Either of receive or recieve (but not receeve or reciive)

cat The word cat in I like cats and dogs

cat|dog Either of the words cat or dog in I like cats and dogs

\. . (the \ is necessary because . is a metacharacter)

5\.0* 5., 5.0, 5.00, 5.000, etc.

[a-f] Any of the characters a, b, c, d, e, or f

cats$ Only the final cats in My cats are friendly cats

^my Only the first my in my cats are my pets

\d{2,3} Any two- or three-digit number (00 through 999)

7(,000)+ 7,000, 7,000,000, 7,000,000,000, 7,000,000,000,000, etc.

[\w]+ Any word of one or more characters

[\w]{5} Any five-letter word

General Modifiers
Some additional modifiers are available for regular expressions:

• /g enables “global” matching. When using a replace function, specify this modifier
to replace all matches, rather than only the first one.

• /i makes the regular expression match case-insensitive. As a result, instead of /[a-
zA-Z]/, you could specify /[a-z]/i or /[A-Z]/i.

• /m enables multiline mode, in which the caret (^) and dollar sign ($) match before
and after any newlines in the subject string. Normally, in a multiline string, ^
matches only at the start of the string and $ matches only at the end of the string.

For example, the expression /cats/g will match both occurrences of the word “cats”
in the sentence “I like cats and cats like me.” Similarly /dogs/gi will match both oc-
currences of the word “dogs” (“Dogs” and “dogs”) in the sentence “Dogs like other
dogs,” because you can use these specifiers together.

364 | Chapter 16: JavaScript and PHP Validation and Error Handling



Using Regular Expressions in JavaScript
In JavaScript you will use regular expressions mostly in two methods: test (which you
have already seen) and replace. Whereas test just tells you whether its argument
matches the regular expression, replace takes a second parameter: the string to replace
the text that matches. Like most functions, replace generates a new string as a return
value; it does not change the input.

To compare the two methods, the following statement just returns true to let us know
that the word “cats” appears at least once somewhere within the string:

document.write(/cats/i.test("Cats are fun. I like cats."))

But the following statement replaces both occurrences of the word “cats” with the word
“dogs,” printing the result. The search has to be global (/g) to find all occurrences, and
case-insensitive (/i) to find the capitalized “Cats”:

document.write("Cats are fun. I like cats.".replace(/cats/gi,"dogs"))

If you try out the statement, you’ll see a limitation of replace: because it replaces text
with exactly the string you tell it to use, the first word “Cats” is replaced by “dogs”
instead of “Dogs.”

Using Regular Expressions in PHP
The most common regular expression functions that you are likely to use in PHP are
preg_match, preg_match_all, and preg_replace.

To test whether the word “cats” appears anywhere within a string, in any combination
of upper- and lowercase, you could use preg_match like this:

$n = preg_match("/cats/i", "Cats are fun. I like cats.");

Because PHP uses 1 for TRUE and 0 for FALSE, the preceding statement sets $n to 1. The
first argument is the regular expression and the second is the text to match. But
preg_match is actually a good deal more powerful and complicated, because it takes a
third argument that shows what text matched:

$n = preg_match("/cats/i", "Cats are fun. I like cats.", $match);
echo "$n Matches: $match[0]";

The third argument is an array (here given the name $match). The function puts the text
that matches into the first element, so if the match is successful you can find the text
that matched in $match[0]. In this example, the output lets us know that the matched
text was capitalized:

1 Matches: Cats

If you wish to locate all matches, you use the preg_match_all function, like this:

$n = preg_match_all("/cats/i", "Cats are fun. I like cats.", $match);
echo "$n Matches: ";
for ($j=0 ; $j < $n ; ++$j) echo $match[0][$j]." ";

Regular Expressions | 365



As before, $match is passed to the function and the element $match[0] is assigned the
matches made, but this time as a subarray. To display the subarray, this example iterates
through it with a for loop.

When you want to replace part of a string, you can use preg_replace as shown here.
This example replaces all occurrences of the word “cats” with the word “dogs,” re-
gardless of case:

echo preg_replace("/cats/i", "dogs", "Cats are fun. I like cats.");

The subject of regular expressions is a large one, and entire books have
been written about it. If you would like further information, I suggest
the Wikipedia entry at http://tinyurl.com/wikiregex, or Jeffrey Friedl’s
excellent book Mastering Regular Expressions (O'Reilly, 2006).

Redisplaying a Form After PHP Validation
Okay, back to form validation. So far we’ve created the HTML document vali-
date.html, which will post through to the PHP program adduser.php, but only if Java-
Script validates the fields, or if JavaScript is disabled or unavailable.

So now it’s time to create adduser.php to receive the posted form, perform its own
validation, and then present the form again to the visitor if the validation fails. Exam-
ple 16-3 contains the code that you should type in and save.

Example 16-3. The adduser.php program

<?php // adduser.php

// Start with the PHP code

$forename = $surname = $username = $password = $age = $email = "";

if (isset($_POST['forename']))
    $forename = fix_string($_POST['forename']);
if (isset($_POST['surname']))
    $surname = fix_string($_POST['surname']);
if (isset($_POST['username']))
    $username = fix_string($_POST['username']);
if (isset($_POST['password']))
    $password = fix_string($_POST['password']);
if (isset($_POST['age']))
    $age = fix_string($_POST['age']);
if (isset($_POST['email']))
    $email = fix_string($_POST['email']);

$fail  = validate_forename($forename);
$fail .= validate_surname($surname);
$fail .= validate_username($username);
$fail .= validate_password($password);
$fail .= validate_age($age);

366 | Chapter 16: JavaScript and PHP Validation and Error Handling

http://tinyurl.com/wikiregex
http://oreilly.com/catalog/9780596528126


$fail .= validate_email($email);

echo "<html><head><title>An Example Form</title>";

if ($fail == "") {
    echo "</head><body>Form data successfully validated: $forename,
        $surname, $username, $password, $age, $email.</body></html>";

    // This is where you would enter the posted fields into a database

    exit;
}

// Now output the HTML and JavaScript code

echo <<<_END

<!-- The HTML section -->

<style>.signup { border: 1px solid #999999;
    font: normal 14px helvetica; color:#444444; }</style>
<script type="text/javascript">
function validate(form)
{
    fail  = validateForename(form.forename.value)
    fail += validateSurname(form.surname.value)
    fail += validateUsername(form.username.value)
    fail += validatePassword(form.password.value)
    fail += validateAge(form.age.value)
    fail += validateEmail(form.email.value)
    if (fail == "") return true
    else { alert(fail); return false }
}
</script></head><body>
<table class="signup" border="0" cellpadding="2"
    cellspacing="5" bgcolor="#eeeeee">
<th colspan="2" align="center">Signup Form</th>

<tr><td colspan="2">Sorry, the following errors were found<br />
in your form: <p><font color=red size=1><i>$fail</i></font></p>
</td></tr>

<form method="post" action="adduser.php"
    onSubmit="return validate(this)">
     <tr><td>Forename</td><td><input type="text" maxlength="32"
    name="forename" value="$forename" /></td>
</tr><tr><td>Surname</td><td><input type="text" maxlength="32"
    name="surname" value="$surname" /></td>
</tr><tr><td>Username</td><td><input type="text" maxlength="16"
    name="username" value="$username" /></td>
</tr><tr><td>Password</td><td><input type="text" maxlength="12"
    name="password" value="$password" /></td>
</tr><tr><td>Age</td><td><input type="text" maxlength="3"
    name="age" value="$age" /></td>
</tr><tr><td>Email</td><td><input type="text" maxlength="64"

Redisplaying a Form After PHP Validation | 367



    name="email" value="$email" /></td>
</tr><tr><td colspan="2" align="center">
    <input type="submit" value="Signup" /></td>
</tr></form></table>

<!-- The JavaScript section -->

<script type="text/javascript">
function validateForename(field) {
    if (field == "") return "No Forename was entered.\\n"
    return ""
}

function validateSurname(field) {
    if (field == "") return "No Surname was entered.\\n"
    return ""
}

function validateUsername(field) {
    if (field == "") return "No Username was entered.\\n"
    else if (field.length < 5)
        return "Usernames must be at least 5 characters.\\n"
    else if (/[^a-zA-Z0-9_-]/.test(field))
        return "Only a-z, A-Z, 0-9, - and _ allowed in Usernames.\\n"
    return ""
}

function validatePassword(field) {
    if (field == "") return "No Password was entered.\\n"
    else if (field.length < 6)
        return "Passwords must be at least 6 characters.\\n"
    else if (!/[a-z]/.test(field) || ! /[A-Z]/.test(field) ||
             ! /[0-9]/.test(field))
        return "Passwords require one each of a-z, A-Z and 0-9.\\n"
    return ""
}

function validateAge(field) {
    if (isNaN(field)) return "No Age was entered.\\n"
    else if (field < 18 || field > 110)
        return "Age must be between 18 and 110.\\n"
    return ""
}

function validateEmail(field) {
    if (field == "") return "No Email was entered.\\n"
        else if (!((field.indexOf(".") > 0) &&
                   (field.indexOf("@") > 0)) ||
                  /[^a-zA-Z0-9.@_-]/.test(field))
        return "The Email address is invalid.\\n"
    return ""
}
</script></body></html>
_END;

368 | Chapter 16: JavaScript and PHP Validation and Error Handling



// Finally, here are the PHP functions

function validate_forename($field) {
    if ($field == "") return "No Forename was entered<br />";
    return "";
}

function validate_surname($field) {
    if ($field == "") return "No Surname was entered<br />";
    return "";
}

function validate_username($field) {
    if ($field == "") return "No Username was entered<br />";
    else if (strlen($field) < 5)
        return "Usernames must be at least 5 characters<br />";
    else if (preg_match("/[^a-zA-Z0-9_-]/", $field))
        return "Only letters, numbers, - and _ in usernames<br />";
    return "";
}

function validate_password($field) {
    if ($field == "") return "No Password was entered<br />";
    else if (strlen($field) < 6)
        return "Passwords must be at least 6 characters<br />";
    else if ( !preg_match("/[a-z]/", $field) ||
              !preg_match("/[A-Z]/", $field) ||
              !preg_match("/[0-9]/", $field))
        return "Passwords require 1 each of a-z, A-Z and 0-9<br />";
    return "";
}

function validate_age($field) {
    if ($field == "") return "No Age was entered<br />";
    else if ($field < 18 || $field > 110)
        return "Age must be between 18 and 110<br />";
    return "";
}

function validate_email($field) {
    if ($field == "") return "No Email was entered<br />";
        else if (!((strpos($field, ".") > 0) &&
                   (strpos($field, "@") > 0)) ||
                    preg_match("/[^a-zA-Z0-9.@_-]/", $field))
        return "The Email address is invalid<br />";
    return "";
}

function fix_string($string) {
    if (get_magic_quotes_gpc()) $string = stripslashes($string);
    return htmlentities ($string);
}
?>

Redisplaying a Form After PHP Validation | 369



The result of submitting the form with JavaScript disabled (and two fields incorrectly
completed) can be seen in Figure 16-5.

Figure 16-5. The form as represented after PHP validation fails

I have put the PHP section of this code (and changes to the HTML section) in a bold
typeface so that you can more clearly see the difference between this and Exam-
ple 16-1 and Example 16-2.

If you browsed through this example (or, hopefully, typed it in or downloaded it from
the http://lpmj.net website), you’ll have seen that the PHP code is almost a clone of the
JavaScript code; the same regular expressions are used to validate each field in very
similar functions.

But there are a couple of things to note. First, the fix_string function (right at the end)
is used to sanitize each field and prevent any attempts at code injection from succeeding.

Also, you will see that the HTML from Example 16-1 has been repeated in the PHP
code within a <<<_END... _END; structure, displaying the form with the values that the
visitor entered the previous time. This is done by simply adding an extra value param-
eter to each <input> tag (such as value="$forename"). This courtesy is highly recom-
mended so that the user only has to edit only the previously entered values, and doesn’t
have to type in the fields all over again.

370 | Chapter 16: JavaScript and PHP Validation and Error Handling

http://lpmj.net


In the real world, you probably wouldn’t start with an HTML form such
as the one in Example 16-1. Instead, you’d be more likely to go straight
ahead and write the PHP program in Example 16-3, which incorporates
all the HTML. And, of course, you’d also need to make a minor tweak
for the case when it’s the first time the program is called up, to prevent
it displaying errors when all the fields are empty. You also might drop
the six JavaScript functions into their own .js file for separate inclusion.

Now that you’ve seen how to bring PHP, HTML, and JavaScript together, the next
chapter will introduce Ajax (Asynchronous JavaScript and XML), which uses JavaScript
calls to the server in the background to seamlessly update portions of a web page,
without having to resubmit the entire page to the web server.

Test Your Knowledge
1. What JavaScript method can you use to send a form for validation prior to sub-

mitting it?

2. What JavaScript method is used to match a string against a regular expression?

3. Write a regular expression to match any characters that are nonword characters,
as defined by regular expression syntax.

4. Write a regular expression to match either of the words “fox” or “fix.”

5. Write a regular expression to match any single word followed by any nonword
character.

6. Using regular expressions, write a JavaScript function to test whether the word
“fox” exists in the string “The quick brown fox”.

7. Using regular expressions, write a PHP function to replace all occurrences of the
word “the” in “The cow jumps over the moon” with the word “my.”

8. What HTML keyword is used to precomplete form fields with a value?

See “Chapter 16 Answers” on page 513 in Appendix A for the answers to these ques-
tions.

Test Your Knowledge | 371





CHAPTER 17

Using Ajax

The term “Ajax” was first coined in 2005; it originally stood for Asynchronous Java-
Script and XML, although that phrase has become a bit outdated. In simple terms, Ajax
is a web development technique that uses a set of methods built into JavaScript to
transfer data between the browser and a server in the background. An excellent example
of this technology is Google Maps (see Figure 17-1), in which new sections of a map
are downloaded from the server when needed, without requiring a page refresh.

Using Ajax not only substantially reduces the amount of data that must be sent back
and forth but also makes web pages seamlessly dynamic, allowing them to behave more
like self-contained applications. The results are a much improved user interface and
better responsiveness.

What Is Ajax?
The beginnings of Ajax as used today started with the release of Internet Explorer 5 in
1999, which introduced a new ActiveX object, XMLHttpRequest. ActiveX is Microsoft’s
technology for signing plug-ins that add additional software to the user’s computer.
Other browser developers later followed suit, but rather than using ActiveX, they all
implemented the feature as a native part of the JavaScript interpreter.

However, even before then, an early form of Ajax had already surfaced that used hidden
frames on a page that interacted with the server in the background. Chat rooms were
early adopters of this technology, using it to poll for and display new message posts
without requiring page reloads.

So, let’s see how to implement Ajax using JavaScript.

373



Using XMLHttpRequest
Due to the differences between browser implementations of XMLHttpRequest, it’s nec-
essary to create a special function in order to ensure that your code will work on all
major browsers.

To do this, you must understand the three ways of creating an XMLHttpRequest object:

• IE 5: request = new ActiveXObject("Microsoft.XMLHTTP")

• IE 6+: request = new ActiveXObject("Msxml2.XMLHTTP")

• All others: request = new XMLHttpRequest()

This is the case because Microsoft chose to implement a change with the release of
Internet Explorer 6, while all other browsers use a slightly different method. Therefore,
the code in Example 17-1 will work for all major browsers released over the last few
years.

Example 17-1. A cross-browser Ajax function

<script>
function ajaxRequest()

Figure 17-1. Google Maps is an excellent example of Ajax in action

374 | Chapter 17: Using Ajax



{
    try // Non-IE browser?
    {
        var request = new XMLHttpRequest()
    }
    catch(e1)
    {
          try // IE 6+?
          {
            request = new ActiveXObject("Msxml2.XMLHTTP")
          }
          catch(e2)
          {
               try // IE 5?
               {
                request = new ActiveXObject("Microsoft.XMLHTTP")
               }
               catch(e3) // There is no Ajax support
               {
                     request = false
               }
          }
    }
    return request
}
</script>

You may remember the introduction to error handling in the previous chapter, using
the try...catch construct. Example 17-1 is a perfect illustration of its utility: it uses the
try keyword to execute the non-IE Ajax command and, upon success, jumps on to the
final return statement, where the new object is returned. If, however, the command
fails, a catch traps the error and the subsequent command is executed. Again, upon
success, the new object is returned; otherwise, the final of the three commands is tried.
If that attempt fails, the browser doesn’t support Ajax and the request object is set to
false; otherwise, the object is returned. So there you have it—a cross-browser Ajax
request function that you may wish to add to your library of useful JavaScript functions.

Okay, so now you have a means of creating an XMLHttpRequest object, but what can
you do with these objects? Well, each one comes with a set of properties (variables)
and methods (functions), which are detailed in Table 17-1 and Table 17-2.

Table 17-1. An XMLHttpRequest object’s properties

Properties Description

onreadystate
change

Specifies an event handling function to be called whenever the readyState property of an object
changes.

readyState An integer property that reports on the status of a request. It can have any of these values: 0 =
Uninitialized, 1 = Loading, 2 = Loaded, 3 = Interactive, and 4 = Completed.

responseText The data returned by the server in text format.

responseXML The data returned by the server in XML format.

Using XMLHttpRequest | 375



Properties Description

status The HTTP status code returned by the server.

statusText The HTTP status text returned by the server.

Table 17-2. An XMLHttpRequest object’s methods

Methods Description

abort() Aborts the current request

getAllResponseHeaders() Returns all headers as a string

getResponseHeader(param) Returns the value of param as a string

open('method', 'url', 'asynch') Specifies the HTTP method to use (GET or POST), the target URL, and
whether the request should be handled asynchronously (true or false)

send(data) Sends data to the target server using the specified HTTP method

setRequestHeader('param', 'value') Sets a header with a parameter/value pair

These properties and methods give you control over what data you send to the server
and receive back, as well as a choice of send and receive methods. For example, you
can choose whether to request plain text (which could include HTML and other tags)
or data in XML format. You can also decide whether you wish to use the POST or GET
method to send to the server.

Let’s look at the POST method first by creating a very simple pair of documents: a com-
bination of HTML and JavaScript, and a PHP program to interact with it via Ajax.
Hopefully you’ll enjoy these examples, because they illustrate just what Web 2.0 and
Ajax are all about. With a few lines of JavaScript, they request a web document from
a third-party web server, which is then returned to the browser by your server and
placed within a section of the current document.

Implementing Ajax via POST Requests
Type in and save the code in Example 17-2 as urlpost.html, but don’t load it into your
browser yet.

Example 17-2. urlpost.html

<html><head><title>Ajax Example</title>
</head><body><center />
<h1>Loading a web page into a DIV</h1>
<div id='info'>This sentence will be replaced</div>
<script>

params = "url=oreilly.com"
request = new ajaxRequest()
request.open("POST", "urlpost.php", true)
request.setRequestHeader("Content-type", "application/x-www-form-urlencoded")

376 | Chapter 17: Using Ajax



request.setRequestHeader("Content-length", params.length)
request.setRequestHeader("Connection", "close")

request.onreadystatechange = function()
{
    if (this.readyState == 4)
    {
          if (this.status == 200)
          {
               if (this.responseText != null)
               {
                     document.getElementById('info').innerHTML =
                          this.responseText
               }
               else alert("Ajax error: No data received")
          }
          else alert( "Ajax error: " + this.statusText)
    }
}

request.send(params)

function ajaxRequest()
{
    try
    {
          var request = new XMLHttpRequest()
    }
    catch(e1)
    {
          try
          {
               request = new ActiveXObject("Msxml2.XMLHTTP")
          }
          catch(e2)
          {
               try
               {
                     request = new ActiveXObject("Microsoft.XMLHTTP")
               }
               catch(e3)
               {
                     request = false
               }
          }
    }
    return request
}
</script></body></html>

Let’s go through this document line by line, and look at what it does. The first three
lines simply set up an HTML document and display a heading. The next line creates a
<div> with the ID “info,” containing the text “This sentence will be replaced” by default.
Later on, the text returned from the Ajax call will be inserted here.

Implementing Ajax via POST Requests | 377



The next six lines are required for making an HTTP POST Ajax request. The first sets
the variable params to a parameter=value pair, which is what we’ll send to the server.
Then the Ajax object request is created. After this, the open method is called to set the
object to make a POST request to urlpost.php in asynchronous mode. The last three lines
in this group set up headers that are required for the receiving server to know that a
POST request is coming.

The readyState Property
Now we get to the nitty-gritty of an Ajax call, which all hangs on the readyState prop-
erty. The “asynchronous” aspect of Ajax allows the browser to keep accepting user
input and changing the screen, while our program sets the onreadystatechange property
to call a function of our choice each time readyState changes. In this case, a nameless
(or anonymous) inline function has been used, as opposed to a separate, named func-
tion. This type of function is known as a callback function, as it is called back each time
readyState changes.

The syntax to set up the callback function using an inline, anonymous function is as
follows:

request.onreadystatechange = function()
{
    if (this.readyState == 4)
    {
          // do something
    }
}

If you wish to use a separate, named function, the syntax is slightly different:

request.onreadystatechange = ajaxCallback

function ajaxCallback()
{
    if (this.readyState == 4)
    {
          // do something
    }
}

Looking at Table 17-1, you’ll see that readyState can have five different values. But
only one of them concerns us: the value 4, which represents a completed Ajax call.
Therefore, each time the new function gets called, it returns without doing anything
until readyState has a value of 4. When our function detects that value, it next inspects
the status of the call to ensure it has a value of 200, which means that the call succeeded.
If it’s not 200, an alert pop-up is displayed containing the error message contained in
statusText.

378 | Chapter 17: Using Ajax



You will notice that all of these object properties are referenced using
this.readyState, this.status, and so on, rather than the object’s cur-
rent name, request, as in request.readyState or request.status. This is
so that you can easily copy and paste the code and it will work with any
object name, because the this keyword always refers to the current
object.

So, having ascertained that the readyState is 4 and the status is 200, the responseText
value is tested to see whether it contains a value. If not, an error message is displayed
in an alert box. Otherwise, the inner HTML of the <div> is assigned the value of respon
seText, like this:

document.getElementById('info').innerHTML = this.responseText

What happens in this line is that the element “info” is referenced using the getElement
ByID method, and then its innerHTML property is assigned the value that was returned
by the Ajax call.

After all this setting up and preparation, the Ajax request is finally sent to the server
using the following command, which passes the parameters already defined in the
variable params:

request.send(params)

After that, all the preceding code is activated each time readyState changes.

The remainder of the document is the ajaxRequest method from Example 17-1, and
the closing script and HTML tags.

The Server Half of the Ajax Process
Now we get to the PHP half of the equation, which you can see in Example 17-3. Type
it in and save it as urlpost.php.

Example 17-3. urlpost.php

<?php // urlpost.php
if (isset($_POST['url'])) {
    echo file_get_contents("http://".SanitizeString($_POST['url']));
}

function SanitizeString($var) {
    $var = strip_tags($var);
    $var = htmlentities($var);
    return stripslashes($var);
}
?>

As you can see, this is short and sweet, and also makes use of the ever-important
SanitizeString function (which should always be used with posted data).

Implementing Ajax via POST Requests | 379



The program uses the file_get_contents PHP function to load in the web page at the
URL supplied to it in the POST variable $_POST['url']. The file_get_contents function
is versatile, in that it loads in the entire contents of a file or web page from either a local
or a remote server—it even takes into account moved pages and other redirects.

Once you have typed in the program, you are ready to call up urlpost.html in your web
browser. After a few seconds, you should see the contents of the http://www.oreilly
.com front page loaded into the <div> that we created for that purpose. It won’t be as
fast as directly loading the web page, because it is transferred twice—once to the server
and again from the server to your browser—but the result should look like Figure 17-2.

Figure 17-2. The oreilly.com front page loaded into a <div>

Not only have we succeeded in making an Ajax call and having a response returned
back to JavaScript, but we have also harnessed the power of PHP to enable the merging
in of a totally unrelated web object. Incidentally, if we had tried to find a way to fetch
the oreilly.com web page directly via Ajax (without recourse to the PHP server-side
module), we wouldn’t have succeeded, because there are security blocks preventing
cross-domain Ajax. So, this little example also illustrates a handy solution to a very
practical problem.

380 | Chapter 17: Using Ajax

http://www.oreilly.com
http://www.oreilly.com
http://oreilly.com
http://oreilly.com


Using GET Instead of POST
As with submitting any form data, you have the option of submitting your data in the
form of GET requests, and you will save a few lines of code if you do so. However, there
is a downside: some browsers may cache GET requests, whereas POST requests will never
be cached. You don’t want to cache requests, because the browser will just redisplay
what it got last time instead of going to the server for fresh input. The solution to this
is to use a workaround that adds a random parameter to each request, ensuring that
each URL requested is unique.

Example 17-4 shows how you would achieve the same result as with Example 17-2,
but using an Ajax GET request instead of POST.

Example 17-4. urlget.html

<html><head><title>Ajax GET Example</title>
</head><body><center />
<h1>Loading a web page into a DIV</h1>
<div id='info'>This sentence will be replaced</div>
<script>

nocache = "&nocache=" + Math.random() * 1000000
request = new ajaxRequest()
request.open("GET", "urlget.php?url=oreilly.com" + nocache, true)

request.onreadystatechange = function()
{
    if (this.readyState == 4)
    {
          if (this.status == 200)
          {
               if (this.responseText != null)
               {
                     document.getElementById('info').innerHTML = this.responseText
               }
               else alert("Ajax error: No data received")
          }
          else alert( "Ajax error: " + this.statusText)
    }
}

request.send(null)

function ajaxRequest()
{
    try
    {
          var request = new XMLHttpRequest()
    }
    catch(e1)
    {
          try
          {

Using GET Instead of POST | 381



               request = new ActiveXObject("Msxml2.XMLHTTP")
          }
          catch(e2)
          {
               try
               {
                     request = new ActiveXObject("Microsoft.XMLHTTP")
               }
               catch(e3)
               {
                     request = false
               }
          }
    }
    return request
}
</script></body></html>

The differences to note between the two documents are highlighted in bold, and are as
follows:

• It is not necessary to send headers for a GET request.

• The open method is called using a GET request, supplying a URL with a string com-
prising a ? symbol followed by the parameter/value pair url=oreilly.com.

• A second parameter/value pair is started using an & symbol, followed by setting the
value of the parameter nocache to a random value between zero and one million.
This is done to ensure that each URL requested is different, and therefore that no
requests will be cached.

• The call to send now contains only a parameter of null, as no parameters are being
passed via a POST request. Note that leaving out the parameter is not an option, as
it would result in an error.

To accompany this new document, it is necessary to modify the PHP program to re-
spond to a GET request, as in Example 17-5, urlget.php.

Example 17-5. urlget.php

<?php
if (isset($_GET['url'])) {
    echo file_get_contents("http://".sanitizeString($_GET['url']));
}

function sanitizeString($var) {
    $var = strip_tags($var);
    $var = htmlentities($var);
    return stripslashes($var);
}
?>

382 | Chapter 17: Using Ajax



All that’s different between this and Example 17-3 is that the references to $_POST have
been replaced with $_GET. The end result of calling up urlget.html in your browser is
identical to loading in urlpost.html.

Sending XML Requests
Although the objects we’ve been creating are called XMLHttpRequest objects, so far we
have made absolutely no use of XML. This is where the term “Ajax” is a bit of a mis-
nomer, because the technology actually allows you to request any type of textual data,
with XML being just one option. As you have seen, we have requested an entire HTML
document via Ajax, but we could equally have asked for a text page, a string or number,
or even spreadsheet data.

So, let’s modify the previous example document and PHP program to fetch some XML
data. To do this, take a look at the PHP program first: xmlget.php, shown in Exam-
ple 17-6.

Example 17-6. xmlget.php

<?php
if (isset($_GET['url'])) {
    header('Content-Type: text/xml');
    echo file_get_contents("http://".sanitizeString($_GET['url']));
}

function sanitizeString($var) {
    $var = strip_tags($var);
    $var = htmlentities($var);
    return stripslashes($var);
}
?>

This program has been very slightly modified (the changes are shown in bold) to first
output the correct XML header before returning a fetched document. No checking is
done here, as it is assumed the calling Ajax will request an actual XML document.

Now on to the HTML document, xmlget.html, shown in Example 17-7.

Example 17-7. xmlget.html

<html><head><title>Ajax XML Example</title>
</head><body>
<h2>Loading XML content into a DIV</h2>
<div id='info'>This sentence will be replaced</div>
<script>

nocache = "&nocache=" + Math.random() * 1000000
url     = "rss.news.yahoo.com/rss/topstories"
request = new ajaxRequest()
request.open("GET", "xmlget.php?url=" + url + nocache, true)
out = "";

Sending XML Requests | 383



request.onreadystatechange = function()
{
    if (this.readyState == 4)
    {
          if (this.status == 200)
          {
               if (this.responseXML != null)
               {
                     titles = this.responseXML.getElementsByTagName('title')

                     for (j = 0 ; j < titles.length ; ++j)
                     {
                          out += titles[j].childNodes[0].nodeValue + '<br />'
                     }
                     document.getElementById('info').innerHTML = out
               }
               else alert("Ajax error: No data received")
          }
          else alert( "Ajax error: " + this.statusText)
    }
}

request.send(null)

function ajaxRequest() {
    try
    {
          var request = new XMLHttpRequest()
    }
    catch(e1)
    {
          try
          {
               request = new ActiveXObject("Msxml2.XMLHTTP")
          }
          catch(e2)
          {
               try
               {
                     request = new ActiveXObject("Microsoft.XMLHTTP")
               }
               catch(e3)
               {
                     request = false
               }
          }
    }
    return request
}
</script></body></html>

Again, the differences have been highlighted in bold, so you can see that this code is
substantially similar to previous versions. The first difference is that the URL now being

384 | Chapter 17: Using Ajax



requested, rss.news.yahoo.com/rss/topstories, contains an XML document, the Yahoo!
News Top Stories feed.

The other big change is the use of the responseXML property, which replaces the respon
seText property. Whenever a server returns XML data, responseText will return a
null value, and responseXML will contain the XML returned instead.

However, responseXML doesn’t simply contain a string of XML text: it is actually a
complete XML document object that can be examined and parsed using DOM tree
methods and properties. This means it is accessible, for example, by the JavaScript
getElementsByTagName method.

About XML
An XML document will generally take the form of the RSS feed shown in Exam-
ple 17-8. However, the beauty of XML is that this type of structure can be stored in-
ternally in a DOM tree (see Figure 17-3) to make it quickly searchable.

Example 17-8. An XML document

<?xml version="1.0" encoding="UTF-8"?>
<rss version="2.0">
    <channel>
          <title>RSS Feed</title>
          <link>http://website.com</link>
          <description>website.com's RSS Feed</description>
          <pubDate>Mon, 16 May 2011 00:00:00 GMT</pubDate>
          <item>
               <title>Headline</title>
               <guid>http://website.com/headline</guid>
               <description>This is a headline</description>
          </item>
          <item>
               <title>Headline 2</title>
               <guid>http://website.com/headline2</guid>
               <description>The 2nd headline</description>
          </item>
    </channel>
</rss>

Therefore, using the getElementsByTagName method, you can quickly extract the values
associated with various tags without a lot of string searching. This is exactly what we
do in Example 17-7, where the following command is issued:

titles = this.responseXML.getElementsByTagName('title')

This single command has the effect of placing all the values of the “title” elements into
the array titles. From there, it is a simple matter to extract them with the following
expression (where j is the title to access):

titles[j].childNodes[0].nodeValue

Sending XML Requests | 385



All the titles are then appended to the string variable out and, once all have been pro-
cessed, the result is inserted into the empty <div> at the document start. When you call
up xmlget.html in your browser, the result will be something like Figure 17-4.

Figure 17-4. Fetching a Yahoo! XML news feed via Ajax

Figure 17-3. The DOM tree of Example 17-8

386 | Chapter 17: Using Ajax



As with all form data, you can use either the POST or the GET method
when requesting XML data—your choice will make little difference to
the result.

Why Use XML?
You may ask why you would use XML other than for fetching XML documents such
as RSS feeds. Well, the simple answer is that you don’t have to, but if you wish to pass
structured data back to your Ajax applications, it could be a real pain to send a simple,
unorganized jumble of text that would need complicated processing in JavaScript.

Instead, you can create an XML document and pass that back to the Ajax function,
which will automatically place it into a DOM tree as easily accessible as the HTML
DOM object with which you are now familiar.

Using Frameworks for Ajax
Now that you know how to code your own Ajax routines, you might like to investigate
some of the free frameworks that are available to make it even easier, and which offer
many more advanced features. In particular, I would suggest you check out jQuery,
which is probably the most commonly used framework.

You can download it (and get full documentation) from http://jquery.com, but do be
aware that there’s an initial steep learning curve as you have to familiarize yourself with
the $ function it provides, which is used extensively for accessing jQuery’s features.
That said, once you understand how jQuery works, you’ll find it can make your web
development much easier and quicker due to the large number of ready-made features
it offers.

Now that you’ve learned how Ajax works in raw form, in the next chapter we’ll look
at bringing CSS (Cascading Style Sheets) into our toolkit of web development
technologies.

Test Your Knowledge
1. Why is it necessary to write a function for creating new XMLHttpRequest objects?

2. What is the purpose of the try...catch construct?

3. How many properties and how many methods does an XMLHttpRequest object have?

4. How can you tell when an Ajax call has completed?

5. How do you know whether an Ajax call completed successfully?

6. What property of the XMLHttpRequest object returns an Ajax text response?

7. What property of the XMLHttpRequest object returns an Ajax XML response?

Test Your Knowledge | 387

http://jquery.com


8. How can you specify a callback function to handle Ajax responses?

9. What XMLHttpRequest method is used to initiate an Ajax request?

10. What are the main differences between an Ajax GET and POST request?

See “Chapter 17 Answers” on page 513 in Appendix A for the answers to these
questions.

388 | Chapter 17: Using Ajax



CHAPTER 18

Introduction to CSS

Using Cascading Style Sheets (CSS), you can apply styles to your web pages to make
them look exactly how you want. This works because CSS is connected to the Docu-
ment Object Model (DOM), which I explained in Chapter 13.

With CSS you can quickly and easily restyle any element. For example, if you don’t like
the default look of the <h1>, <h2>, and other heading tags, you can assign new styles to
override the default settings for the font family and size used, whether bold or italics
should be set, and many more properties, too.

One way you can add styling to a web page is by inserting the required statements into
the head of the page, between the <head> and </head> tags. So, to change the style of
the <h1> tag you might use the following code (I’ll explain the syntax later):

<style>
    h1 { color:red; font-size:3em; font-family:Arial; }
</style>

Within an HTML page this might look like Example 18-1, which, like all the examples
in this chapter, uses the standard HTML5 DOCTYPE declaration. The result is shown in
Figure 18-1.

Example 18-1. A simple HTML page

<!DOCTYPE html>
<html>
    <head>
        <title>Hello World</title>
        <style>
            h1 { color:red; font-size:3em; font-family:Arial; }
        </style>
    </head>
    <body>
        <h1>Hello there</h1>
    </body>
</html>

389



Importing a Style Sheet
When you wish to style a whole site, rather than a single page, a better way to manage
styles is to move them out of your web pages into separate files, called style sheets, and
then import the ones you need. This minimizes the amount of code that is duplicated
across your pages, aiding maintainability, and allows you to apply different style sheets
for different layouts (such as web and print) without changing the HTML. Such sepa-
ration of content from layout is a fundamental principle of design.

There are a couple of different ways this can be achieved, the first of which is by using
the CSS @import directive, like this:

<style>
    @import url('styles.css');
</style>

This statement tells the browser to fetch a style sheet with the name styles.css. The
@import command is quite flexible in that you can create style sheets that themselves
pull in other style sheets, and so on. Just make sure that there are no <style> or
</style> tags in any of your external style sheets, or they will not work.

Importing a Style Sheet from Within HTML
You can also include a style sheet with the HTML <link> tag, like this:

<link rel='stylesheet' type='text/css' href='styles.css' />

This has the exact same effect as the @import directive, except that <link> is an HTML-
only tag and is not a valid style directive, so it cannot be used from within one style
sheet to pull in another. It also cannot be placed within a pair of <style>...</style>
tags.

Figure 18-1. Styling a tag with the original style shown in the inset

390 | Chapter 18: Introduction to CSS



Just as you can use multiple @import directives within your CSS to include multiple
external style sheets, you can also use as many <link> elements as you like in your
HTML.

Embedded Style Settings
There’s also nothing stopping you from individually setting or overriding certain styles
for the current page on a case-by-case basis by inserting style declarations directly
within the HTML, like this (which results in italic, blue text within the tags):

<div style='font-style:italic; color:blue;'>Hello there</div>

But this should be reserved for only the most exceptional circumstances, as it violates
the principle of separation of content and layout.

Using IDs
A better solution for setting the style of an element is to assign an ID to it in the HTML,
like this:

<div id='iblue'>Hello there</div>

What this does is state that the contents of the <div> with the ID iblue should have
applied to it the style that is defined in the iblue style setting. The matching CSS state-
ment for this might look like the following:

#iblue { font-style:italic; color:blue; }

Note the use of the # symbol, which specifies that only the ID with the
name iblue should be styled with this statement.

Using Classes
If you would like to apply the same style to many elements, you do not have to give
each one a different ID because you can specify a class to manage them all, like this:

<div class='iblue'>Hello</div>

What this does is state that the style defined in the iblue class should be applied to the
contents of this element (and any others that use the class). Once a class is applied you
can use the following rule, either in the page header or within an external style sheet
for setting the styles for the class:

.iblue { font-style:italic; color:blue; }

Instead of using a # symbol, which is reserved for IDs, class statements are prefaced
with a . (period).

Embedded Style Settings | 391



CSS Rules
A CSS rule is a statement or series of statements that tells the web browser how to
render a certain element or elements on the page. Each statement in a CSS rule starts
with a selector, which is the element to which the rule will be applied. For example, in
the following assignment, h1 is the selector that is being given a font size 240 percent
larger than the default:

h1 { font-size:240%; }

All properties to be changed in rules must appear within the { and } symbols that follow
the selector. The part before the colon (font-size, in this example) is the property to
be changed, while the part after the colon is the value applied to it (240%, in this case).
Providing a value of 240% to the font-size property of the h1 selector ensures that the
contents of all <h1>...</h1> tags will be displayed at a font size that is 240 percent larger
than the default size.

Lastly comes a ; (semicolon) to end the statement. In this instance, because font-
size is the last property in the rule, the semicolon is not required (but it would be if
another assignment were to follow).

Using Semicolons
In CSS, semicolons are used to separate multiple CSS statements on the same line. But
if there is only one statement in a rule (or in an inline style setting within an HTML
tag), you can omit the semicolon, as you can for the final statement in a group.

However, to avoid hard-to-find CSS errors, you may prefer to always use a semicolon
after every CSS setting. You can then copy and paste them, and otherwise modify
properties, without worrying about removing semicolons where they aren’t strictly
necessary, or having to add them where they are required.

Multiple Assignments
You can create multiple style declarations in a couple of different ways. Firstly, you can
concatenate them on the same line, like this:

h1 { font-size:240%; color:blue; }

This adds a second assignment that changes the color of all <h1> headings to blue. You
can also place the assignments one per line, like the following:

h1 { font-size:240%;
color:blue; }

Or you can space the assignments out a little more, so that they line up below each
other in a column at the colons, like this:

h1 {
    font-size:240%;

392 | Chapter 18: Introduction to CSS



    color    :blue;
}

This way you can easily see where each new set of rules begins, because the selector is
always in the first column, and the assignments that follow are neatly lined up with all
property values starting at the same horizontal offset.

In the preceding examples, the final semicolon is unnecessary, but
should you ever want to concatenate any such groups of statements into
a single line it will be very quick to do with all the semicolons already
in place.

You can specify the same selector as many times as you want, and CSS will combine
all the properties. So, the previous example could also be specified as:

h1 { font-size: 240%; }
h1 { color    : blue; }

There is no right or wrong way to lay out your CSS, but I recommend
you at least try to keep each block of CSS consistent with itself, so that
it can easily be taken in at a glance.

What if you specified the same property to the same selector twice?

h1 { color    : red; }
h1 { color    : blue; }

The last value specified, in this case blue, would apply. In a single file, repeating the
same property for the same selector would be pointless, but such repetition happens
frequently in real-life web pages when multiple style sheets are applied. It’s one of the
valuable features of CSS, and is where the term cascading comes from.

Using Comments
It is a good idea to comment your CSS rules, even if you only describe the main groups
of statements rather than all or most of them. You can do this in two different ways.
You can place a comment within a pair of /* ... */ tags, like this:

/* This is a CSS comment */

Or you can extend a comment over many lines, like this:

/*
    A Multi-
    line
    comment
*/

CSS Rules | 393



When using multiline comments, you should be aware that you cannot
nest single-line (or any other) comments within them. Doing so can lead
to unpredictable errors.

Style Types
There are a number of different style types, ranging from the default styles set up by
your browser (and any user styles you may have applied in your browser to override its
defaults), through inline or embedded styles, to external style sheets. The styles defined
have a hierarchy of precedence, from low to high.

Default Styles
The styling with the lowest level of precedence is the default styling applied by a web
browser. These styles are created as a fallback for when a web page doesn’t have any
styles defined; they are intended to be a generic set of styles that will display reasonably
well in most instances.

Pre-CSS these were the only styles applied to a document, and only a handful of them
could be changed by a web page (such as font face, color, and size, plus a few element
sizing arguments).

User Styles
User-defined styles have the next-highest precedence; they are supported by most
modern browsers but are implemented differently by each. If you would like to learn
how to create your own default styles for browsing, use a search engine to enter your
browser name followed by “user styles” (for example, “Firefox user styles” or “IE user
styles”). Figure 18-2 shows a user style sheet being applied to Microsoft Internet
Explorer.

If a user style is assigned that has already been defined as a browser default, it will then
override the browser’s default setting. Any styles not defined in a user style sheet will
retain their default values as set up in the browser.

External Style Sheets
Styles assigned in an external style sheet will override any assigned either by the user
or by the browser. External style sheets are the recommended way to create your styles
because you can produce different style sheets for different purposes, such as styling
for general web use, for viewing on a mobile browser with a smaller screen, for printing
purposes, and so on. Just apply the one needed for each type of media when you create
the web page.

394 | Chapter 18: Introduction to CSS



Internal Styles
Internal styles, which you create within <style>...</style> tags, take precedence over
all the preceding style types and so can be used to override the styling in any external
style sheets loaded in at the same time. At this point, though, you are beginning to
break the separation between styling and content.

Inline Styles
Lastly, inline styles are where you assign a property directly to an element. They also
have the highest precedence of any style type, and are used like this:

<a href="http://google.com" style="color:green;">Visit Google</a>

In this example, the link specified will be displayed in green, regardless of any default
or other color settings applied by the browser or by any other style sheet, whether
directly to this link or generically for all links.

Figure 18-2. Applying a user style to Internet Explorer

Style Types | 395



When you use this type of styling you are breaking the separation be-
tween layout and content, and therefore it is recommended that you do
so only when you have a very good reason.

CSS Selectors
The means by which you access one or more elements on the page is called selection,
and as we saw earlier, the part of a CSS rule that does this is known as a selector. As
you might expect, there are many different varieties of selector.

The Type Selector
The type selector specifies the HTML element to style, such as <p> or <i>. For example,
the following rule will ensure that all text within <p>...</p> tags is fully justified:

p { text-align:justify; }

The Descendant Selector
Descendant selectors let you apply styles to elements that are contained within other
elements. For example, the following rule sets all text within <b>...</b> tags to red,
but only if they occur within <p>...</p> tags (like this: <p><b>Hello</b> there</p>):

p b { color:red; }

Descendant selectors can continue nesting indefinitely, so the following is a perfectly
valid rule to make bold text inside a list element of an unordered list appear in blue:

ul li b { color:blue; }

As a practical example, suppose you want to use a different numbering system than the
default for an ordered list that is nested within an unordered list. You can achieve this
in the following way, which will replace the default numbering (starting from 1) with
lowercase letters (starting from a):

<!DOCTYPE html>
<html>
    <head>
        <style>
            ul ol { list-style-type:lower-alpha; }
        </style>
    </head>
    <body>
        <ol>
            <li>One</li>
            <li>Two</li>
            <li>Three</li>
        </ol>
        <ul>
            <ol>

396 | Chapter 18: Introduction to CSS



                <li>One</li>
                <li>Two</li>
                <li>Three</li>
            </ol>
        </ul>
    </body>
</html>

The result of loading this HTML into a web browser is as follows—as you can see, the
<li> elements within the second <ol> section display differently than those in the first
ordered list:

1. One
2. Two
3. Three
   a. One
   b. Two
   c. Three

The Child Selector
The child selector is similar to the descendant selector but is more constraining about
when the style will be applied—it selects only those elements that are direct children
of another element. For example, the following code uses a descendant selector that
will change any bold text within a paragraph to red, even if the bold text is itself within
italics (like this: <p><i><b>Hello</b> there</i></p>):

p b { color:red; }

In this instance, the word “Hello” displays in red. However, when more specific be-
havior is required, a child selector can be used to narrow the scope of the selector. For
example, the following child selector will set bold text to red only if the element is a
direct child of a paragraph, and is not itself contained within another element:

p > b { color:red; }

Now the word “Hello” in the previous HTML example will not change color because
the <b> is not a direct child of the <p> tag.

For a practical example, suppose you wish to embolden only those <li> elements that
are direct children of <ol> elements. You can achieve this as follows, where the <li>
elements that are direct children of <ul> elements do not get emboldened:

<!DOCTYPE html>
<html>
    <head>
        <style>
            ol > li { font-weight:bold; }
        </style>
    </head>
    <body>
        <ol>
            <li>One</li>

CSS Selectors | 397



            <li>two</li>
            <li>Three</li>
            <ul>
                <li>One</li>
                <li>two</li>
                <li>Three</li>
            </ul>
        </ol>
    </body>
</html>

The result of loading this HTML into a browser will be as follows:

1. One
2. two
3. Three
   o One
   o two
   o Three

The Adjacent Sibling Selector
A sibling selector is similar to a child selector, except that rather than applying to parent
and child elements, it applies to elements that are at the same level and that follow one
directly after the other, with no other element between them (although text is allowed
between them).

It comprises two or more selectors with a + symbol between each, like this:

i + b {color: red; }

This will make any bold text display in the color red, but only when it immediately
follows an element in italics. For example, the text between <b> and </b> in the following
will be displayed in red:

<!DOCTYPE html>
<html>
    <head>
        <style>
            i + b {color: red; }
        </style>
    </head>
    <body>
        <div>This is text in a div.
            <i>Here is some italic text.</i>
            And back to the main text.
            <b>Now to bold text, which will display in red.</b>
        </div>
    </body>
</html>

398 | Chapter 18: Introduction to CSS



The ID Selector
If you give an element an ID (like this: <div id='mydiv'>), you can directly access it
from CSS in the following way, which changes all the text in the named element to italic:

#mydiv { font-style:italic; }

Reusing IDs

IDs can be used only once within a document, so only the first occurrence found will
receive the new property value assigned by a CSS rule. But in CSS you can directly
reference any IDs that have the same name, as long as they occur within different ele-
ment types, like this:

<div id='myid'>Hello</div> <span id='myid'>Hello</span>

Because IDs normally apply only to unique elements, the following rule will apply an
underline to only the first occurrence of myid:

#myid { text-decoration:underline; }

However, you can ensure that CSS applies the rule to both occurrences like this:

span#myid { text-decoration:underline; }
div#myid  { text-decoration:underline; }

Or, more succinctly, like this (see the section on grouping a little further on):

span#myid,#myid { text-decoration:underline; }

I don’t recommend using this form of selection—any JavaScript that
also must access these elements will not be able to easily do so because
the commonly used getElementById function will return only the first
occurrence. To reference any other instances, a program would have to
search through the whole list of elements in the document, which is a
trickier task to undertake. It’s generally better to always use unique ID
names.

The Class Selector
When there are a number of elements in a page that you want to share the same styling,
you can assign them all the same class name (like this: <span class='myclass'>) and
then create a single rule to modify all those elements at once, as in the following rule,
which creates a 10-pixel left margin offset for all elements using the class:

.myclass { margin-left:10px; }

In modern browsers, HTML elements may also use more than one class if you separate
them with spaces, like this: <span class='thisclass thatclass otherclass'>. Remem-
ber, though, that some very old browsers allow only a single class name in a class
argument.

CSS Selectors | 399



Narrowing class scope

You can narrow the scope of action of a class by specifying the types of elements to
which it should apply. For example, the following rule applies the setting only to para-
graphs that use the class main:

p.main { text-indent:30px; }

In this example, only paragraphs using the class main (like this: <p class="main">) will
receive the new property value. Any other element types that may try to use the class
(such as <div class="main">) will not be affected by this rule.

The Attribute Selector
Many HTML tags support attributes, and using this type of selector can save you from
having to use IDs and classes to refer to them. For example, you can directly reference
attributes in the following manner, which sets all elements with the attribute type="sub
mit" to a width of 100 pixels:

[type="submit"] { width:100px; }

If you wish to narrow down the scope of the selector to, for example, only form input
elements with that attribute type, you could use the following rule instead:

form input[type="submit"] { width:100px; }

Attribute selectors also work on IDs and classes, so, for example,
[class="classname"] works exactly like the class selector .classname
(except that the latter has a higher precedence). Likewise,
[id="idname"] is equivalent to using the ID selector #idname. The class
and ID selectors prefaced by # and . can therefore be viewed as short-
hand for attribute selectors, but with a higher precedence.

The Universal Selector
The * wildcard or universal selector matches any element, so the following rule will
make a complete mess of a document by giving a green border to all of its elements:

* { border:1px solid green; }

It’s unlikely that you will use the * on its own, but as part of a compound rule it can
be very powerful. For example, the following rule will apply the same styling as above,
but only to all paragraphs that are subelements of the element with the ID boxout, and
only as long as they are not direct children:

#boxout * p {border:1px solid green; }

Let’s look at what’s going on here. The first selector following #boxout is a * symbol,
so it refers to any element within the boxout object. The following p selector then nar-
rows down the selection focus by changing the selector to apply only to paragraphs (as

400 | Chapter 18: Introduction to CSS



defined by the p) that are subelements of elements returned by the * selector. Therefore,
this CSS rule performs the following actions (in which I use the terms “object” and
“element” interchangeably to refer to the same thing):

1. Find the object with the ID of boxout.

2. Find all subelements of the object returned in step 1.

3. Find all p subelements of the objects returned in step 2 and, since this is the final
selector in the group, also find all p sub- and sub-subelements (and so on) of the
objects returned in step 2.

4. Apply the styles within the { and } characters to the objects returned in step 3.

The net result of this is that the green border is applied only to paragraphs that are
grandchildren (or great-grandchildren, and so on) of the main element.

Selecting by Group
Using CSS it is possible to apply a rule to more than one element, class, or any other
type of selector at the same time by separating the selectors with commas. So, for ex-
ample, the following rule will place a dotted orange line underneath all paragraphs, the
element with the ID of idname, and all elements using the class classname:

p, #idname, .classname { border-bottom:1px dotted orange; }

Figure 18-3 shows various selectors in use, with the rules applied to them alongside.

Figure 18-3. Some HTML and the CSS rules used by it

CSS Selectors | 401



The CSS Cascade
One of the most fundamental things about CSS properties is that they cascade, which
is why the technology is called Cascading Style Sheets. But what does this mean?

Cascading is a method used to resolve potential conflicts between the various different
types of style sheet a browser supports, and apply them in order of precedence by who
created them, the method used to create the styles, and the types of properties selected.

Style Sheet Creators
There are three main types of style sheet supported by all modern browsers. In order
of precedence from high to low, they are:

1. Those created by a document’s author

2. Those created by the user

3. Those created by the browser

These three sets of style sheets are processed in reverse order. Firstly, the defaults in
the web browser are applied to the document. Without these defaults, web pages that
don’t use style sheets would look terrible. They include the font face, size, and color;
element spacing; table borders and spacing; and all the other reasonable standards a
user would expect.

Next, if the user has created any styles to use in preference to the standard ones, these
are applied, replacing any of the browser’s default styles that may conflict.

Lastly, any styles created by the current document’s author are applied, replacing any
that have been created either as browser defaults or by the user.

Style Sheet Methods
Style sheets can be created using three different methods. In order of precedence from
high to low, they are:

1. As inline styles

2. In an embedded style sheet

3. As an external style sheet

Again, these methods of style sheet creation are applied in reverse order of precedence.
Therefore, all external style sheets are processed first, and their styles are applied to the
document.

Next, any embedded styles (within <style>...</style> tags) are processed. Any that
conflict with external rules are given precedence and will override them.

402 | Chapter 18: Introduction to CSS



Lastly, any styles applied directly to an element as an inline style (such as <div
style="...">...</div>) are given the highest precedence, and override all previously
assigned properties.

Style Sheet Selectors
There are three different ways of selecting elements to be styled. Going from highest to
lowest order of precedence, they are:

1. Referencing by individual ID or attribute selector

2. Referencing in groups by class

3. Referencing by element tags (such as <p> or <b>)

Selectors are processed according to the number and types of elements affected by a
rule, which is a little different from the previous two methods for resolving conflicts.
This is because rules do not have to apply only to one type of selector at a time, but
may reference many different selectors.

Therefore, a method is needed to determine the precedence of rules that can contain
any combination of selectors. This is done by calculating the specificity of each rule by
ordering them from the widest to narrowest scope of action.

Calculating specificity

The specificity of a rule is calculated by creating three-part numbers based on the se-
lector types in the numbered list above. These compound numbers start off looking
like [0,0,0]. When processing a rule, each selector that references an ID increments
the first number by 1, so that the compound number would become [1,0,0].

Let’s look at the following rule. It has three ID references (#heading, #main, and
#menu), so the compound number becomes [3,0,0]:

#heading, #main, #menu,
.text, .quote, .boxout, .news, .comments,
p, blockquote {
    font-family:'Times New Roman';
    font-size  :14pt; }

Next, the number of selectors that reference a class is placed in the second part of the
compound number. In the current example there are five selectors in all
—.text, .quote, .boxout, .news, and .comments—so the number becomes [3,5,0].

Finally, all selectors that reference element tags are counted, and this number is placed
in the last part of the compound number. In our example there are two (p and block
quote), so the final compound number becomes [3,5,2], which is all that is needed to
compare this rule’s specificity with that of any another.

In cases where there are nine or fewer of each type in a compound number, you can
convert it directly to a decimal number, which in this case is 352. Rules with a lower

The CSS Cascade | 403



number than this will have lower precedence, and those with a higher number will have
greater precedence. Where two rules share the same value, the most recently applied
one wins.

Using a different number base

Where there are more than nine of a type in a compound number, you have to work
in a higher number base. For example, the compound number [11,7,19] doesn’t con-
vert to decimal by simply concatenating the three parts. Instead, you can convert the
number to a higher base, such as base 20 (or higher if there are more than 19 of any type).

To do this, multiply out the three parts and add the results like this, starting with the
rightmost number and working left:

          20 × 19 = 380
       20×20 ×  7 = 2800
    20×20×20 × 11 = 88000
 Total in decimal = 91180

If you need to use a higher base, replace the values of 20 on the left with the base you
are using. Then, once all the compound numbers of a set of rules are converted from
this base to decimal, it is easy to determine the specificity, and therefore the precedence,
of each.

Thankfully, the CSS processor handles all of this for you, but knowing how it works
will help you to properly construct rules and understand what precedence they will
have.

If all this precedence calculation sounds rather complicated, you’ll be
pleased to know that in most cases you can usually get by with a simple
rule of thumb: in general, the fewer elements that there are to be modi-
fied, and the more specific they are, the greater the precedence given to
the rule will be.

Some rules are more equal than others

Where two or more style rules are exactly equivalent in precedence, by default the most
recently processed rule will be the one that is applied. However, you can force a rule
to a higher precedence than other equivalent rules using the !important declaration,
like this:

p { color:#ff0000 !important; }

When you do this, all previous equivalent settings are overridden (even ones us-
ing !important), and any equivalent rules that are processed later will be ignored. So,
for example, the second of the two following rules would normally take precedence,
but because of the use of !important in the prior assignment, the second one is ignored:

p { color:#ff0000 !important; }
p { color:#ffff00 }

404 | Chapter 18: Introduction to CSS



User style sheets can be created for specifying default browser styles,
and they may use the !important declaration, in which case the user’s
style setting will take precedence over the same properties specified in
the current web page. However, on very old browsers using CSS1, this
feature isn’t supported.

The Difference Between <div> and <span>
Both <div> and <span> elements are types of containers, but with some different qual-
ities. By default, a <div> element has infinite width (at least to the browser edge), which
can be seen by applying a border to one, like this:

<div style="border:1px solid green;">Hello</div>

A <span> element, however, is only as wide as the text it contains. Therefore, the fol-
lowing line of HTML creates a border only around the word “Hello,” which does not
extend to the righthand edge of the browser:

<span style="border:1px solid green;">Hello</span>

Also, <span> elements follow text or other objects as they wrap around, and can there-
fore have a complicated border. For example, in Example 18-2, CSS has been used to
make the background of all <div> elements yellow, to make all <span> elements cyan,
and to add a border to both, before then creating a few example <span> and <div>
sections.

Example 18-2. <div> and <span> example

<!DOCTYPE html>
<html>
    <head>
        <title>Div and span example</title>
        <style>
           div,span { border :1px solid black; }
           div      { background-color:yellow; }
           span     { background-color:cyan;   }
        </style>
    </head>
    <body>
        <div>This text is within a div tag</div>
        This isn't. <div>And this is again.</div><br />

        <span>This text is inside a span tag.</span>
        This isn't. <span>And this is again.</span><br/><br />

        <div>This is a larger amount of text in a that wraps around
        to the next line of the browser</div><br />

        <span>This is a larger amount of text in a span that wraps around
        to the next line of the browser</span>
    </body>
</html>

The Difference Between <div> and <span> | 405



Figure 18-4 shows what this example looks like in a web browser. Although it appears
only in shades of gray in the print version of this book, the figure clearly shows how
<div> elements extend to the righthand edge of a browser and force following content
to appear at the start of the first available position below them.

Figure 18-4. A variety of elements of differing width

The figure also shows how <span> elements keep to themselves and only take up the
space required to hold their content, without forcing subsequent content to appear
below them.

For example, in the bottom two examples of the figure, you can see that when <div>
elements wrap around the screen edge they retain a rectangular shape, whereas
<span> elements simply follow the flow of the text (or other contents) they contain.

Since <div> tags can only be rectangular, they are better suited for con-
taining objects such as images, boxouts, quotations, and so on, while
<span> tags are best used for holding text or other attributes that are
placed one after another inline, and which should flow from left to right
(or right to left, in some languages).

Measurements
CSS supports an impressive range of different units of measurement, enabling you to
tailor your web pages precisely to specific values, or relative dimensions. The ones I
generally use (and believe you will also find the most useful) are pixels, points, ems,
and percent, but here’s the complete list:

406 | Chapter 18: Introduction to CSS



Pixels
The size of a pixel varies according to the dimensions and pixel depth of the user’s
monitor. One pixel equals the width/height of a single dot on the screen, so this
measurement is best suited to monitors. For example:

.classname { margin:5px; }

Points
A point is equivalent in size to 1/72 of an inch. The measurement comes from a
print design background and is best suited for that medium, but it is also commonly
used on monitors. For example:

.classname { font-size:14pt; }

Inches
An inch is the equivalent of 72 points and is also a measurement type best suited
for print. For example:

.classname { width:3in; }

Centimeters
Centimeters are another unit of measurement best suited for print. One centimeter
is a little over 28 points. For example:

.classname { height:2cm; }

Millimeters
A millimeter is 1/10th of a centimeter (or almost 3 points). Millimeters are another
measure best suited to print. For example:

.classname { font-size:5mm; }

Picas
A pica is another print typographic measurement, which is equivalent to 12 points.
For example:

.classname { font-size:1pc; }

Ems
An em is equal to the current font size and is therefore one of the more useful
measurements for CSS since it is used to describe relative dimensions. For example:

.classname { font-size:2em; }

Exs
An ex is also related to the current font size; it is equivalent to the height of a
lowercase letter x. This is a less-popular unit of measurement that is most often
used as a good approximation for helping to set the width of a box that will contain
some text. For example:

.classname { width:20ex; }

Measurements | 407



Percent
This unit is related to the em in that it is a relative rather than absolute unit of
measure. When used on a font, as with 1em, 100% equals the current font size.
When not relating to a font, this unit is relative to the size of the container of the
property being accessed. For example:

.classname { height:120%; }

Figure 18-5 shows each of these measurement types in turn being used to display text
in almost identical sizes.

Figure 18-5. Different measurements that display almost the same

Fonts and Typography
There are four main font properties that you can style using CSS: family, style, size,
and weight. Between them you can fine-tune the way text displays in your web pages
and/or when printed, and so on.

font-family
This property assigns the font to use. It also supports listing a variety of fonts in order
of preference from left to right, so that styling can fall back gracefully when the user

408 | Chapter 18: Introduction to CSS



doesn’t have the preferred font installed. For example, to set the default font for para-
graphs you might use a CSS rule such as this:

p { font-family:Verdana, Arial, Helvetica, sans-serif; }

Where a font name is made up of two or more words, you must enclose the name in
quotation marks, like this:

p { font-family:"Times New Roman", Georgia, serif; }

Because they should be available on virtually all web browsers and op-
erating systems, the safest font families to use on a web page are Arial,
Helvetica, Times New Roman, Times, Courier New, and Courier. The
Verdana, Georgia, Comic Sans MS, Trebuchet MS, Arial Black, and Im-
pact fonts are safe for Mac and PC use, but may not be installed on other
operating systems such as Linux. Other common but less-safe fonts are
Palatino, Garamond, Bookman, and Avant Garde. If you use one of the
less-safe fonts make sure you offer fallbacks of one or more safer fonts
in your CSS so that your web pages will degrade gracefully on browsers
without your preferred fonts.

Figure 18-6 shows these two sets of CSS rules being applied.

Figure 18-6. Selecting font families

font-style
With this property you can choose to display a font normally, in italics, or obliquely (a
similar effect to italics, usually used with sans-serif typefaces). The following rules cre-
ate three classes (normal, italic, and oblique) that can be applied to elements to create
these effects:

.normal  { font-style:normal;  }

.italic  { font-style:italic;  }

.oblique { font-style:oblique; }

Fonts and Typography | 409



font-size
As described in the earlier section on measurements, there are a large number of ways
you can change a font’s size, but these all boil down to two main types: fixed and
relative. A fixed setting looks like the following rule, which sets the default paragraph
font size to 14 points:

p { font-size:14pt; }

Alternatively, you may wish to work with the current default font size, using it to style
various types of text such as headings. In the following rules relative sizes of some
headers are defined, with the <h4> tag starting off 20 percent bigger than the default,
and with each greater size another 40 percent larger than the previous one:

h1 { font-size:240%; }
h2 { font-size:200%; }
h3 { font-size:160%; }
h4 { font-size:120%; }

Figure 18-7 shows a selection of font sizes in use.

Figure 18-7. Setting four heading sizes and the default paragraph size

font-weight
Using this property, you can specify the weight, or boldness, of a font. It supports a
number of values but the main ones you will use are likely to be normal and bold, like
this:

.bold { font-weight:bold; }

410 | Chapter 18: Introduction to CSS



Managing Text Styles
Regardless of the font in use, you can further modify the way text displays by altering
its decoration, spacing, and alignment. There is a crossover between the text and font
properties, though, in that effects such as italics or bold text are achieved via the font-
style and font-weight properties, while others, such as underlining, require the text-
decoration property.

Decoration
With the text-decoration property you can apply effects to text such as underline,
line-through, overline, and blink. The following rule creates a new class called over
that applies overlines to text (the weight of over, under, and through lines will match
that of the font):

.over { text-decoration:overline; }

In Figure 18-8 you can see a selection of font styles, weights, and decorations.

Figure 18-8. Examples of the styles and decoration rules available

Spacing
A number of different properties allow you to modify line, word, and letter spacing.
For example, the following rules change the line spacing for paragraphs by modifying
the line-height property to be 25 percent greater, set the word-spacing property to 30
pixels, and set the letter-spacing to 3 pixels:

p {
    line-height   :125%;

Managing Text Styles | 411



    word-spacing  :30px;
    letter-spacing:3px; }

Alignment
There are four types of text alignment available in CSS: left, right, center, and jus
tify. In the following rule, paragraph text is set to full justification:

p { text-align:justify; }

Transformation
There are four properties available for transforming text: none, capitalize, uppercase,
and lowercase. The following rule creates a class called upper that will ensure all text
is displayed in uppercase when it is used:

.upper { text-transform:uppercase; }

Indenting
Using the text-indent property, you can indent the first line of a block of text by a
specified amount. The following rule indents the first line of every paragraph by 20
pixels, although a different unit of measurement or a percent increase could also be
applied:

p { text-indent:20px; }

In Figure 18-9, the following rules have been applied to a section of text:

p {          line-height  :150%;
             word-spacing  :10px;
             letter-spacing:1px;       }
.justify   { text-align    :justify;   }
.uppercase { text-transform:uppercase; }
.indent    { text-indent   :20px;      }

CSS Colors
Colors can be applied to the foreground and background of text and objects using the
color and background-color properties (or by supplying a single argument to the back
ground property). The colors specified can be one of the named colors (such as red or
blue), colors created from hexadecimal RGB triplets (such as #ff0000 or #0000ff), or
colors created using the rgb CSS function.

The standard 16 color names as defined by the W3C (http://www.w3.org) standards
organization are: aqua, black, blue, fuchsia, gray, green, lime, maroon, navy, olive,
purple, red, silver, teal, white, and yellow. The following rule uses one of these names
to set the background color for an object with the ID of object:

412 | Chapter 18: Introduction to CSS

http://www.w3.org


#object { background-color:silver; }

In the rule below, the foreground color of text in all <div> elements is set to yellow
(because on a computer display, hexadecimal levels of ff red, plus ff green, plus 00
blue create the color yellow):

div { color:#ffff00; }

Or, if you don’t wish to work in hexadecimal, you can specify your color triplets using
the rgb function, as in the following rule, which changes the background color of the
current document to aqua:

body { background-color:rgb(0, 255, 255); }

If you prefer not to work in ranges of 256 levels per color, you can use
percentages in the rgb function instead, with values ranging from the
lowest (0) amount of a primary color through to the highest (100), like
this: rgb(58%, 95%, 74%). You can also use floating-point values for even
finer color control, like this: rgb(23.4%, 67.6%, 15.5%).

Short Color Strings
There is also a short form of the hex digit string in which only the first of each two-byte
pair is used for each color. For example, instead of assigning the color #fe4692 you can
instead use #f49, omitting the second hex digit from each pair, which equates to a color
value of #ff4499.

This results in almost the same color and is useful where exact colors are not required.
The difference between a six-digit and a three-digit string is that the former supports
sixteen million different colors, while the latter supports four thousand.

Figure 18-9. Indenting, uppercasing, and spacing rules being applied

CSS Colors | 413



Wherever you intend to use a color such as #883366, this is the direct equivalent of
#836 (since the repeated digits are implied by the shorter version), and you can use either
string to create the exact same color.

Gradients
In place of using a solid background color, you can choose to apply a gradient, which
will automatically flow from a given initial color to a final color of your choice. It is
best used in conjunction with a simple color rule so that browsers that don’t support
gradients will at least display a solid color.

Example 18-3 uses a rule to display an orange gradient (or simply plain orange on
nonsupporting browsers), as shown in the middle section of Figure 18-10.

Example 18-3. Creating a linear gradient

<!DOCTYPE html>
<html>
    <head>
        <title>Creating a linear gradient </title>
        <style>
            .orangegrad {
                background:orange;
                background:linear-gradient(top, #fb0, #f50);
                background:-moz-linear-gradient(top, #fb0, #f50);
                background:-webkit-linear-gradient(top, #fb0, #f50);
                background:-o-linear-gradient(top, #fb0, #f50);
                background:-ms-linear-gradient(top, #fb0, #f50); }
        </style>
    </head>
    <body>
        <div class='orangegrad'>Black text<br />
        on an orange<br />linear gradient</div>
    </body>
</html>

As shown in the preceding example, many CSS rules require browser-
specific prefixes such as -moz-, -webkit-, -o-, and -ms- (for, respectively,
Mozilla-based browsers such as Firefox; WebKit-based browsers such
as Apple Safari, Google Chrome, and the iOS and Android browsers;
and the Opera and Microsoft browsers). The website http://caniuse
.com lists the major CSS rules and attributes, and whether browser-
specific versions are required.

To create a gradient, choose where it will begin out of top, bottom, left, right, and
center (or any combination such as top left or center right), then enter the start and
end colors you require and apply either the linear-gradient or radial-gradient rule,
making sure you also supply rules for all browsers that you are targeting.

414 | Chapter 18: Introduction to CSS

http://caniuse.com
http://caniuse.com


You can also use more than just a start and end color, supplying what are termed stop
colors in between as additional arguments. For example, if five arguments are supplied,
each argument will control the color change over one-fifth of the area (according to its
location in the argument list).

Positioning Elements
Elements within a web page fall where they are placed in the document but can be
moved about by changing an element’s position property from the default of static
to one of absolute, relative, or fixed.

Absolute Positioning
An element with absolute positioning is removed from the document and any other
elements that are able to will flow into its released space. You can then position the
object anywhere you like within the document using the top, right, bottom, and left
properties. It will rest on top of (or behind) other elements.

So, for example, to move an object with the ID of object to the absolute location of
100 pixels down from the document start and 200 pixels in from the left, you would
apply the following rules to it (you can also use any of the other units of measurement
supported by CSS):

#object {
    position:absolute;
    top     :100px;
    left    :200px; }

Figure 18-10. A solid background color, a linear gradient, and a radial gradient

Positioning Elements | 415



Relative Positioning
Likewise, you can move the object relative to the location it would occupy in the normal
document flow. So, for example, to move object 10 pixels down and 10 pixels to the
right of its normal location, you would use the following rules:

#object {
    position:relative;
    top     :10px;
    left    :10px; }

Fixed Positioning
The final positioning property setting lets you move an object to an absolute location,
but only within the current browser viewport. Then, when the document is scrolled,
the object remains exactly where it has been placed, with the main document scrolling
beneath it—this is a great way to create dock bars and other similar devices. To fix the
object to the top-left corner of the browser window, you would use the following rules:

#object {
    position:fixed;
    top     :0px;
    left    :0px; }

Comparing Positioning Types
Example 18-4 illustrates how these different positioning values might be used.

Example 18-4. Applying different positioning values

<!DOCTYPE html>
<html>
    <head>
        <title>Positioning</title>
        <style>
            #object1 {
                position  :absolute;
                background:pink;
                width     :100px;
                height    :100px;
                top       :100px;
                left      :0px; }
            #object2 {
                position  :relative;
                background:lightgreen;
                width     :100px;
                height    :100px;
                top       :-8px;
                left      :110px; }
            #object3 {
                position  :fixed;
                background:yellow;

416 | Chapter 18: Introduction to CSS



                width     :100px;
                height    :100px;
                top       :100px;
                left      :236px; }
        </style>
    </head>
    <body>
        <br /><br /><br /><br /><br />
        <div id='object1'>Absolute Positioning</div>
        <div id='object2'>Relative Positioning</div>
        <div id='object3'>Fixed Positioning</div>
    </body>
</html>

In Figure 18-11, Example 18-4 has been loaded into a browser, and the browser has
been reduced in width and height so that it is necessary to scroll down to see all of the
web page. In the figure, the element with fixed positioning, which initially lined up
with the other two elements, has stayed put while the others have been scrolled up the
page, and it now appears offset below them.

Figure 18-11. Using different positioning values

If you type in this example (or download it from the companion website) and load it
in your browser, you will see that the element with fixed positioning remains in place
even through scrolling. You can also see that the element with absolute positioning is
located exactly at 100 pixels down, with zero horizontal offset, while the element with
relative positioning is actually moved up by 8 pixels and then offset from the left margin
by 110 pixels in order to line up alongside the first element.

Pseudoclasses
There are a number of selectors and classes that are used only within a style sheet and
that do not have any matching tags or attributes within HTML. Their task is to classify
elements using characteristics other than their names, attributes, or content—i.e.,
characteristics that cannot be deduced from the document tree. These include pseu-
doclasses such as first-line, first-child, and first-letter.

Pseudoclasses | 417



Pseudoclasses are separated from elements using a : (colon) character. For example,
to create a class called bigfirst for emphasizing the first letter of an element, you would
use a rule such as the following:

.bigfirst:first-letter {
    font-size:400%;
    float    :left; }

When the bigfirst class is applied to a text element the first letter will be displayed
much enlarged, with the remaining text shown at normal size neatly flowing around it
(due to the float property), as if the first letter were an image or other object. Other
pseudoclasses include hover, link, active, and visited. All of these are mostly useful
for applying to anchor elements, as in the following rules, which set the default color
of all links to blue, and that of links that have already been visited to light blue:

a:link    { color:blue;      }
a:visited { color:lightblue; }

The following pair of rules is interesting in that they use the hover pseudoclass so that
they are applied only when the mouse pointer is placed over the element. In this ex-
ample, they change the link to white text on a red background, providing a dynamic
effect you would normally expect only from using JavaScript code:

a:hover {
    color     :white;
    background:red; }

Here I have used the background property with a single argument, instead of the longer
background-color property.

The active pseudoclass is also dynamic in that it effects a change to a link during the
time between the mouse button being clicked and released, as with this rule, which
changes the link color to dark blue:

a:active { color:darkblue; }

Another interesting dynamic pseudoclass is focus, which is applied only when an ele-
ment is given focus by the user selecting it with the keyboard or mouse. The following
rule uses the universal selector to always place a mid-gray, dotted, 2-pixel border
around the currently focused object:

*:focus { border:2px dotted #888888; }

Example 18-5 displays two links and an input field, as shown in Figure 18-12. The first
link shows up as gray since it has already been visited in this browser, but the second
link has not and displays in blue. The Tab key has been pressed and the focus of input
is now the input field, so its background has changed to yellow. When either of the
links is clicked it will display in purple, and when hovered over it will show in red.

Example 18-5. Link and focus pseudoclasses

<!DOCTYPE html>
<html>

418 | Chapter 18: Introduction to CSS



    <head>
        <title>Pseudo classes</title>
        <style>
            a:link    { color:blue;        }
            a:visited { color:gray;        }
            a:hover   { color:red;         }
            a:active  { color:purple;      }
            *:focus   { background:yellow; }
        </style>
    </head>
    <body>
        <a href='http://google.com'>Link to Google'</a><br />
        <a href='nowhere'>Link to nowhere'</a><br />
        <input type='text' />
    </body>
</html>

Other pseudoclasses are also available, and you can get more information on them at
the following website: http://tinyurl.com/pseudoclasses.

Be careful when applying the focus pseudoclass to the universal selector,
*, as shown in this example—Internet Explorer takes an unfocussed
document as actually having focus applied to the entire web page, and
(in this instance) the whole page will turn yellow until the Tab key is
pressed or focus is otherwise applied to one of the page’s elements.

Pseudoelements
Pseudoelements are a means of adding content rather than style to an element. They
are enabled by placing a colon after an element type specifier, followed by a
pseudoelement. For example, to place some text before an element that uses the class
offer, you could use a rule such as this:

.offer:before { content='Special Offer! '; }

Figure 18-12. Pseudoclasses applied to a selection of elements

Pseudoelements | 419

http://tinyurl.com/pseudoclasses


Now any element using the class offer will have the string supplied to the content
property displayed before it. Likewise, you can use the :after pseudoelement to place
items after all links (for example), as with the following, which will follow all links on
a page with the link.gif image:

a:after { url(link.gif); }

Shorthand Rules
To save space, groups of related CSS properties can be concatenated into a single
shorthand assignment. For example, I have already used the shorthand for creating a
border a few times, as in the focus rule in the previous section:

*:focus { border:2px dotted #888888; }

This is actually a shorthand concatenation of the following rule set:

*:focus {
    border-width:2px;
    border-style:dotted;
    border-color:#ff8800; }

When using a shorthand rule you need only apply the properties up to the point where
you wish to change values. So you could use the following to set only a border’s width
and style, choosing not to set its color, too:

*:focus { border:2px dotted; }

The order in which the properties are placed in a shorthand rule can be
important, and misplacing them is a common way to get unexpected
results. Since there are far too many to detail in this chapter, if you wish
to use shorthand CSS you will need to look up the default properties
and their order of application using a CSS manual or search engine. To
get you started I recommend visiting the following website: http://tinyurl
.com/shcss.

The Box Model and Layout
The CSS properties affecting the layout of a page are based around the box model (see
Chapter 19 for more details), a nested set of properties surrounding an element. Vir-
tually all elements have (or can have) these properties, including the document body,
whose margin you can (for example) remove with the following rule:

body { margin:0px; }

The box model of an object starts at the outside, with the object’s margin. Inside this
there is the border, then there is padding between the border and the inner contents.
And finally there’s the object’s contents.

420 | Chapter 18: Introduction to CSS

http://tinyurl.com/shcss
http://tinyurl.com/shcss


Once you have the hang of the box model you will be well on your way to creating
professionally laid-out pages, since these properties alone will make up much of your
page styling.

Setting Margins
The margin is the outermost level of the box model. It separates elements from each
other and its use is quite smart. For example, assume you have chosen to give a number
of elements a default margin of 10 pixels around each. When placed on top of each
other this would create a gap of 20 pixels due to adding the border widths together.

To overcome this potential issue, when two elements with borders are positioned di-
rectly one above the other, only the larger of the two margins is used to separate them.
If both margins are the same width, just one of the widths is used. This way, you are
much more likely to get the result you want. But you should note that the margins of
absolutely positioned or inline elements do not collapse.

The margins of an element can be changed en masse with the margin property, or in-
dividually with margin-left, margin-top, margin-right, and margin-bottom. When set-
ting the margin property you can supply one, two, three, or four arguments, which have
the effects commented in the following rules:

/* Set all margins to 1 pixel */
margin:1px;

/* Set top and bottom to 1 pixel, and left and right to 2 */
margin:1px 2px;

/* Set top to 1 pixel, left and right to 2, and bottom to 3 */
margin:1px 2px 3px;

/* Set top to 1 pixel, right to 2, bottom to 3, and left to 4 */
margin:1px 2px 3px 4px;

Figure 18-13 shows Example 18-6 loaded into a browser, with the margin property rule
(highlighted in bold) applied to a square element that has been placed inside a
<table> element. The table has been given no dimensions so it will simply wrap as
closely around the inner <div> element as it can. As a consequence, there is a margin
of 10 pixels above it, 20 pixels to its right, 30 pixels below it, and 40 pixels to its left.

Example 18-6. How margins are applied

<!DOCTYPE html>
<html>
    <head>
        <title>Margins</title>
        <style>
            #object1 {
                background  :lightgreen;
                border-style:solid;
                border-width:1px;

The Box Model and Layout | 421



                font-family :Courier New;
                font-size   :9px;
                width       :100px;
                height      :100px;
                padding     :5px;
                margin      :10px 20px 30px 40px; }
        </style>
    </head>
    <body>
        <table border='1' cellpadding='0' cellspacing='0' bgcolor='cyan'>
            <tr>
                <td>
                    <div id='object1'>margin:<br />10px 20px 30px 40px;</div>
                </td>
            </tr>
        </table>
    </body>
</html>

Applying Borders
The border level of the box model is similar to the margin, except that there is no
collapsing. It is the next level as we move into the box model. The main properties used
to modify borders are border, border-left, border-top, border-right, and border-bot
tom. Each of these can have other subproperties added as suffixes, such as -color,
-style, and -width.

The four ways of accessing individual property settings used for the margin property
also apply with the border-width property, so all of the following are valid rules:

/* All borders */
border-width:1px;

/* Top/bottom and left/right */
border-width:1px 5px;

Figure 18-13. The outer table expands according to the margin widths

422 | Chapter 18: Introduction to CSS



/* Top, left/right, and bottom */
border-width:1px 5px 10px;

/* Top, right, bottom, and left */
border-width:1px 5px 10px 15px;

Figure 18-14 shows each of these rules applied in turn to a group of square elements.
In the first one you can clearly see that all borders have a width of 1 pixel. The second
element, however, has a top and bottom border width of 1 pixel, while its side borders
are each 5 pixels wide. The third element has a 1-pixel-wide top border, its side borders
are 5 pixels wide, and its bottom border is 10 pixels wide. The fourth element has a 1-
pixel top border, a 5-pixel right border, a 10-pixel bottom border, and a 15-pixel left
border.

Figure 18-14. Applying long- and shorthand border rule values

The final element, under the previous ones, doesn’t use the shorthand rules; instead,
it has each of the border widths set separately. As you can see, it takes a lot more typing
to achieve the same result.

Adjusting Padding
The deepest of the box model levels (other than the contents of an element) is the
padding, which is applied inside any borders and/or margins. The main properties used
to modify padding are padding, padding-left, padding-top, padding-right, and pad
ding-bottom.

The four ways of accessing individual property settings used for the margin and bor
der properties also apply with the padding property, so all of the following are valid
rules:

The Box Model and Layout | 423



/* All borders */
padding:1px;

/* Top/bottom and left/right */
padding:1px 2px;

/* Top, left/right, and bottom */
padding:1px 2px 3px;

/* Top, right, bottom, and left */
padding:1px 2px 3px 4px;

Figure 18-15 shows the padding rule (shown in bold) in Example 18-7 applied to some
text within a table cell (as defined by the rule display:table-cell;, which makes the
encapsulating <div> element display like a table cell), which has been given no dimen-
sions so it will simply wrap as closely around the text as it can. As a consequence, there
is padding of 10 pixels above the inner element, 20 pixels to its right, 30 pixels below
it, and 40 pixels to its left.

Example 18-7. Applying padding

<!DOCTYPE html>
<html>
    <head>
        <title>Padding</title>
        <style>
            #object1 {
                border-style:solid;
                border-width:1px;
                background  :orange;
                color       :darkred;
                font-face   :Arial;
                font-size   :12px;
                text-align  :justify;
                display     :table-cell;
                width       :148px;
                padding     :10px 20px 30px 40px; }
        </style>
    </head>
    <body>
        <div id='object1'>To be, or not to be that is
        the question: Whether 'tis Nobler in the mind
        to suffer The Slings and Arrows of outrageous
        Fortune, Or to take Arms against a Sea of
        troubles, And by opposing end them.</div>
    </body>
</html>

Object Contents
Deep within the box model, at its center, lies an element that can be styled in all the
ways discussed previously in this chapter, and which can (and usually will) contain

424 | Chapter 18: Introduction to CSS



further subelements, which in turn may contain sub-subelements, and so on, each with
its own styling and box model settings.

Now that you know the basics, in the following chapter we’ll take a look at more
advanced CSS, including how to apply transition effects such as movement and rota-
tions, along with a number of other goodies new in CSS3.

Test Your Knowledge
1. Which directive do you use to import one style sheet into another (or into the

<style> section of some HTML)?

2. What HTML tag can you use to import a style sheet into a document?

3. Which HTML tag attribute is used to directly embed a style into an element?

4. What is the difference between a CSS ID and a CSS class?

5. Which characters are used to prefix a) IDs and b) class names in a CSS rule?

6. In CSS rules, what is the purpose of the semicolon?

7. How can you add a comment to a style sheet?

8. Which character is used by CSS to represent “any element”?

9. How can you select a group of different elements and/or element types in CSS?

10. How can you make one CSS rule of a pair with equal precedence have greater
precedence over the other one?

See “Chapter 18 Answers” on page 514 in Appendix A for the answers to these
questions.

Figure 18-15. Applying different padding values to an object

Test Your Knowledge | 425





CHAPTER 19

Advanced CSS with CSS3

The first implementation of CSS was initially drawn up in 1996, was released in 1999,
and as of 2001 was supported by all browser releases. The standard for this version,
CSS1, was revised again in 2008. Developers began work on the second specification,
CSS2, in 1998; its standard was eventually completed in 2007 and then revised again
in 2009.

Development of the CSS3 specification commenced in 2001, with features still being
proposed as recently as 2009. The development process is likely to continue for some
time before a final recommendation for CSS3 is approved. And even though CSS3 isn’t
yet complete, people are already beginning to put forward suggestions for CSS4.

In this chapter I’ll take you through the CSS3 features that have already been generally
adopted by the major browsers. Some of these features provide functionality that hith-
erto could be provided only with JavaScript.

I recommend using CSS3 to implement dynamic features where you can, instead of
JavaScript—the CSS will probably be very highly optimized (and therefore very fast),
and it's one less thing for you to maintain across new browsers and browser versions.

Attribute Selectors
In the previous chapter I detailed the various CSS attribute selectors, which I will now
quickly recap. Selectors are used in CSS to match HTML elements, and there are 10
different types, as detailed in Table 19-1.

Table 19-1. CSS selectors, pseudoclasses, and pseudoelements

Selector type Example

Universal selector * { color:#555; }

Type selectors b { color:red; }

Class selectors .classname { color:blue; }

ID selectors #idname { background:cyan; }

427



Selector type Example

Descendant selectors span em { color:green; }

Child selectors div > em { background:lime; }

Adjacent sibling selectors i + b { color:gray; }

Attribute selectors a[href='info.htm'] { color:red; }

Pseudoclasses a:hover { font-weight:bold; }

Pseudoelements p:first-letter { font-size:300%; }

The CSS3 designers decided that most of these selectors work just fine the way they
are, but three enhancements have been made so that you can more easily match ele-
ments based on the contents of their attributes.

Matching Parts of Strings
In CSS2 you can use a selector such as a[href='info.htm'] to match the string
'info.htm' when found in an href attribute, but there’s no way to match only a portion
of a string. However, CSS3 comes to the rescue with three new operators: ^, $, and *.
If one of these directly precedes the = symbol, you can match the start, end, or any part
of a string, respectively.

The ^ operator

For example, the following will match any href attribute whose value begins with the
string 'http://website':

a[href^='http://website']

Therefore, the following element will match:

<a href='http://website.com'>

But this will not:

<a href='http://mywebsite.com'>

The $ operator

To match only at the end of a string, you can use a selector such as the following, which
will match any img tag whose src attribute ends with '.png':

img[src$='.png']

For example, the following will match:

<img src='photo.png' />

But this will not:

<img src='snapshot.jpg' />

428 | Chapter 19: Advanced CSS with CSS3



The * operator

To match a substring anywhere in the attribute, you can use a selector such as the
following, which will find any links on a page that have the string 'google' anywhere
within them:

a[href*='google']

For example, this HTML segment will match:

<a href='http://google.com'>

while this segment will not:

<a href='http://gmail.com'>

The box-sizing Property
The W3C box model specifies that the width and height of an object should refer only
to the dimensions of an element’s content, ignoring any padding or border. But some
web designers have expressed a desire to specify dimensions that refer to an entire
element, including any padding and border.

To provide this feature, CSS3 lets you choose the box model you wish to use with the
box-sizing property. For example, to use the total width and height of an object in-
cluding padding and borders, you would use this declaration:

box-sizing:border-box;

Or, to have an object’s width and height refer only to its content, you would use this
declaration (the default):

box-sizing:content-box;

WebKit and Mozilla-based browsers (such as Safari and Firefox, re-
spectively) require their own prefixes to this declaration (-webkit- and
-moz-), as detailed at the website http://caniuse.com.

CSS3 Backgrounds
CSS3 provides two new properties, background-clip and background-origin, that you
can use to specify where a background should start within an element, and how to clip
the background so that it doesn’t appear in parts of the box model where you don’t
want it to.

To accomplish these tasks, both properties support the following values:

border-box
Refers to the outer edge of the border.

CSS3 Backgrounds | 429

http://caniuse.com


padding-box
Refers to the outer edge of the padding area.

content-box
Refers to the outer edge of the content area.

The background-clip Property
This property specifies whether the background should be ignored (clipped) if it ap-
pears within either the border or the padding area of an element. For example, the
following declaration states that the background may display in all parts of an element,
all the way to the outer edge of the border:

background-clip:border-box;

If you don’t want the background to appear within the border area of an element, you
can restrict it to only the section of the element inside the outer edge of its padding
area, like this:

background-clip:padding-box;

Or, to restrict the background to display only within the content area of an element,
you would use this declaration:

background-clip:content-box;

Figure 19-1 shows three rows of elements displayed in the Safari web browser: the first
row uses border-box for the background-clip property, the second uses padding-box,
and the third uses content-box.

In the first row, the inner box (an image file that has been loaded into the top left of
the element, with repeating disabled) is allowed to display anywhere in the element.
You can also clearly see it displayed in the border area of the first box because the border
style has been set to dotted.

In the second row neither the background image nor the background shading displays
in the border area, because they have been clipped to the padding area with a back
ground-clip property value of padding-box.

Finally, in the third row, both the background shading and the image have been clipped
to display only within the inner content area of each element (shown inside a light-
colored dotted box), using a background-clip property value of content-box.

The background-origin Property
With this property you can also specify where you would like a background image to
be located by indicating where the top-left corner of the image should start. For exam-
ple, the following declaration states that the background image’s origin is to be the top-
left corner of the outer edge of the border:

background-origin:border-box;

430 | Chapter 19: Advanced CSS with CSS3



To set the origin of an image to the top-left outer corner of the padding area, you would
use this declaration:

background-origin:padding-box;

And to set the origin of an image to the top-left corner of an element’s inner content
section, you would use this declaration:

background-origin:content-box;

Looking again at Figure 19-1, in each row the first box uses a background-origin prop-
erty of border-box, the second uses padding-box, and the third uses content-box. Con-
sequently, in each row the smaller inner box displays at the top left of the border in the

Figure 19-1. Different ways of combining CSS3 background properties

CSS3 Backgrounds | 431



first box, the top left of the padding in the second, and the top left of the content in the
third box.

The only differences to note between the rows, with regard to the origins
of the inner box in Figure 19-1, are that in rows two and three the inner
box is clipped to the padding and content areas respectively, and there-
fore outside these areas no portion of the box is displayed.

The background-size Property
In the same way that you can specify the width and height of an image when used in
the <img /> tag, you can now also do the same for background images on the latest
versions of all browsers.

You apply the property as follows (where ww is the width and hh is the height):

background-size:wwpx hhpx;

If you prefer, you can use only one argument, and both dimensions will be set to that
value. Also, if you apply this property to a block-level element such as a <div> (rather
than one that is inline, such as a <span>), you can specify the width and/or height as a
percentage, instead of a fixed value.

Using the auto value

If you wish to scale only one dimension of a background image and have the other one
scale automatically to retain the same proportions, you can use the value auto for the
other dimension, like this:

background-size:100px auto;

This sets the width to 100 pixels and the height to a value proportionate to the increase
or decrease in width.

Different browsers may require different versions of the various back-
ground property names, so please refer to the website http://caniuse
.com when using them to ensure you are applying all the versions re-
quired for the browsers you are targeting.

Multiple Backgrounds
With CSS3 you can now attach multiple backgrounds to an element, each of which can
use the previously discussed CSS3 background properties. Figure 19-2 shows an ex-
ample of this. In it, eight different images have been assigned to the background, to
create the four corners and four edges of the certificate border.

432 | Chapter 19: Advanced CSS with CSS3

http://caniuse.com
http://caniuse.com


To display multiple background images in a single CSS declaration, separate them with
commas. Example 19-1 shows the HTML and CSS that was used to create the back-
ground in Figure 19-2.

Example 19-1. Using multiple images in a background

<!DOCTYPE html>
<html>
    <head>
        <title>CSS3 Multiple Backgrounds Example</title>
        <style>
            .border {
                font-family:'Times New Roman';
                font-style :italic;
                font-size  :170%;

Figure 19-2. A background created with multiple images

CSS3 Backgrounds | 433



                text-align :center;
                padding    :60px;
                width      :350px;
                height     :500px;
                background :url('b1.gif') top    left  no-repeat,
                            url('b2.gif') top    right no-repeat,
                            url('b3.gif') bottom left  no-repeat,
                            url('b4.gif') bottom right no-repeat,
                            url('ba.gif') top          repeat-x,
                            url('bb.gif') left         repeat-y,
                            url('bc.gif') right        repeat-y,
                            url('bd.gif') bottom       repeat-x }
        </style>
    </head>
    <body>
        <div class='border'>
            <h1>Swimming Certificate</h1>
            <h2>Awarded To:</h2>
            <h3>__________________</h3>
            <h2>Date:</h2>
            <h3>___/___/_____</h3>
        </div>
    </body>
</html>

Looking at the CSS section, the first four lines of the background declaration place the
corner images into the four corners of the element, and the final four place the edge
images, which are handled last because the order of priority for background images
goes from high to low. In other words, where they overlap, additional background
images will appear behind already placed images. If the GIFs were listed in the reverse
order, the repeating edge images would display on top of the corners, which would be
incorrect.

Using this CSS you can resize the containing element to any dimensions
and the border will always correctly resize to fit, which is much easier
than using tables or multiple elements for the same effect.

CSS3 Borders
CSS3 also brings a lot more flexibility to the way borders can be presented, by allowing
you to independently change the colors of all four border edges, to display images for
the edges and corners, to provide a radius value for applying rounded corners to bor-
ders, and to place box shadows underneath elements.

The border-color Property
There are two ways you can apply colors to a border. Firstly, you can pass a single color
to the property, as follows:

434 | Chapter 19: Advanced CSS with CSS3



border-color:#888;

This declaration sets all the borders of an element to mid-gray. You can also set border
colors individually, like this (which sets the border colors to various shades of gray):

border-top-color   :#000;
border-left-color  :#444;
border-right-color :#888;
border-bottom-color:#ccc;

Or you can set all the colors individually with a single declaration, as follows:

border-color:#f00 #0f0 #880 #00f;

This declaration sets the top border color to #f00, the right one to #0f0, the bottom one
to #880, and the left one to #00f (red, green, orange, and blue, respectively). You can
also use color names for the arguments, as discussed in the previous chapter.

The border-radius Property
Prior to CSS3, talented web developers came up with numerous different tweaks and
fixes in order to achieve rounded borders, generally using <table> or <div> tags.

But now adding rounded borders to an element is really simple, and it works on the
latest versions of all major browsers, as shown in Figure 19-3, in which a 10-pixel border
is displayed in different ways. The HTML for this can be seen in Example 19-2.

Example 19-2. The border-radius property

<!DOCTYPE html>
<html>
    <head>
        <title>CSS3 Border Radius Examples</title>
        <style>
            .box {
                margin-bottom:10px;
                font-family  :'Courier New', monospace;
                font-size    :12pt;
                text-align   :center;
                padding      :10px;
                width        :380px;
                height       :75px;
                border       :10px solid #006; }
             .b1 {
                -moz-border-radius   :40px;
                -webkit-border-radius:40px;
                border-radius        :40px; }
             .b2 {
                -moz-border-radius   :40px 40px 20px 20px;
                -webkit-border-radius:40px 40px 20px 20px;
                border-radius        :40px 40px 20px 20px; }
             .b3 {
                -moz-border-radius-topleft        :20px;
                -moz-border-radius-topright       :40px;

CSS3 Borders | 435



                -moz-border-radius-bottomleft     :60px;
                -moz-border-radius-bottomright    :80px;
                -webkit-border-top-left-radius    :20px;
                -webkit-border-top-right-radius   :40px;
                -webkit-border-bottom-left-radius :60px;
                -webkit-border-bottom-right-radius:80px;
                border-top-left-radius            :20px;
                border-top-right-radius           :40px;
                border-bottom-left-radius         :60px;
                border-bottom-right-radius        :80px; }
             .b4 {
                -moz-border-radius-topleft        :40px 20px;
                -moz-border-radius-topright       :40px 20px;
                -moz-border-radius-bottomleft     :20px 40px;
                -moz-border-radius-bottomright    :20px 40px;
                -webkit-border-top-left-radius    :40px 20px;
                -webkit-border-top-right-radius   :40px 20px;
                -webkit-border-bottom-left-radius :20px 40px;
                -webkit-border-bottom-right-radius:20px 40px;
                border-top-left-radius            :40px 20px;
                border-top-right-radius           :40px 20px;
                border-bottom-left-radius         :20px 40px;
                border-bottom-right-radius        :20px 40px; }
        </style>
    </head>
    <body>
        <div class='box b1'>
            border-radius:40px;
        </div>

        <div class='box b2'>
            border-radius:40px 40px 20px 20px;
        </div>

        <div class='box b3'>
            border-top-left-radius &nbsp;&nbsp;&nbsp;:20px;<br/>
            border-top-right-radius &nbsp;&nbsp;:40px;<br />
            border-bottom-left-radius :60px;<br />
            border-bottom-right-radius:80px;
        </div>

        <div class='box b4'>
            border-top-left-radius &nbsp;&nbsp;&nbsp;:40px 20px;<br />
            border-top-right-radius &nbsp;&nbsp;:40px 20px;<br />
            border-bottom-left-radius :20px 40px;<br />
            border-bottom-right-radius:20px 40px;
        </div>
    </body>
</html>

So, for example, to create a rounded border with a radius of 20 pixels, you could simply
use the following declaration:

border-radius:20px;

436 | Chapter 19: Advanced CSS with CSS3



Although most browsers will work fine with border radius properties
(including IE), some current (and many older) versions of the major
browsers use different property names, and if you wish to support them
all you will need to also include the relevant browser-specific prefixes
for them, such as -moz- and -webkit-. To ensure that the preceding ex-
ample works in all browsers, I have included all the required prefixes.

You can specify a separate radius for each of the four corners (applied in a clockwise
direction starting from the top-left corner), like this:

border-radius:10px 20px 30px 40px;

If you prefer, you can also address each corner of an element individually, like this:

border-top-left-radius    :20px;
border-top-right-radius   :40px;
border-bottom-left-radius :60px;
border-bottom-right-radius:80px;

Figure 19-3. Mixing and matching various border radius properties

CSS3 Borders | 437



And, when referencing individual corners you can supply two arguments to choose a
different vertical and horizontal radius (giving more interesting and subtle borders),
like this:

border-top-left-radius    :40px 20px;
border-top-right-radius   :40px 20px;
border-bottom-left-radius :20px 40px;
border-bottom-right-radius:20px 40px;

The first argument is the horizontal and the second is the vertical radius.

Box Shadows
To apply a box shadow, specify a horizontal and vertical offset from the object, the
amount of blurring to add to the shadow, and the color to use, like this:

box-shadow:15px 15px 10px #888;

The two instances of 15px specify (in order) the horizontal and vertical offset from the
element, and these values can be negative, zero, or positive. The 10px specifies the
amount of blurring (about a quarter of a centimeter on the average display), with smaller
values resulting in less blurring, and the #888 is the color for the shadow, which can be
any valid color value (see “CSS Colors” on page 412 in Chapter 18). The result of this
declaration can be seen in Figure 19-4.

Figure 19-4. A box shadow displayed under an element

You must use the -webkit- and -moz- prefixes to this property for Web-
Kit- and Mozilla-based browsers.

438 | Chapter 19: Advanced CSS with CSS3



Element Overflow
In CSS2, you can determine what to do when one element is too large to be fully con-
tained by its parent by setting the overflow property to hidden, visible, scroll, or
auto. But with CSS3 you can now separately apply these values in the horizontal or
vertical directions, too, as with these example declarations:

overflow-x:hidden;
overflow-x:visible;
overflow-y:auto;
overflow-y:scroll;

Multicolumn Layout
Multiple columns has long been one of the features most requested by web developers,
and this has finally been realized in CSS3, with Internet Explorer 10 being the last major
browser to adopt it.

Now, flowing text over multiple columns is as easy as specifying the number of columns
and then (optionally) choosing the spacing between them and the type of dividing line
(if any), as shown in Figure 19-5 (created using the code in Example 19-3).

Figure 19-5. Flowing text in multiple columns

Example 19-3. Using CSS to create multiple columns

<!DOCTYPE html>
<html>
    <head>
        <title>Multiple Columns</title>
        <style>
            .columns {
                text-align          :justify;

Multicolumn Layout | 439



                font-size           :16pt;
                -moz-column-count   :3;
                -moz-column-gap     :1em;
                -moz-column-rule    :1px solid black;
                -webkit-column-count:3;
                -webkit-column-gap  :1em;
                -webkit-column-rule :1px solid black;
                column-count        :3;
                column-gap          :1em;
                column-rule         :1px solid black; }
        </style>
    </head>
    <body>
        <div class='columns'>
            Now is the winter of our discontent
            Made glorious summer by this sun of York;
            And all the clouds that lour'd upon our house
            In the deep bosom of the ocean buried.
            Now are our brows bound with victorious wreaths;
            Our bruised arms hung up for monuments;
            Our stern alarums changed to merry meetings,
            Our dreadful marches to delightful measures.
            Grim-visaged war hath smooth'd his wrinkled front;
            And now, instead of mounting barded steeds
            To fright the souls of fearful adversaries,
            He capers nimbly in a lady's chamber
            To the lascivious pleasing of a lute.
        </div>
    </body>
</html>

Within the .columns class, the first two lines simply tell the browser to right-justify the
text and set it to a font size of 16pt. These declarations aren’t needed for multiple
columns, but they improve the text display. The remaining lines set up the element so
that, within it, text will flow over three columns, with a gap of 1em between the columns
and a single-pixel border down the middle of each gap.

In this example, Mozilla- and WebKit-based browsers require browser-
specific prefixes to the declarations.

Colors and Opacity
The ways you can define colors have been greatly expanded with CSS3: you can now
also use CSS functions to apply colors in the common formats RGB (red, green, and
blue), RGBA (red, green, blue, and alpha), HSL (hue, saturation, and luminance), and
HSLA (hue, saturation, luminance, and alpha). The alpha value specifies a color’s
transparency, which allows elements underneath to show through.

440 | Chapter 19: Advanced CSS with CSS3



HSL Colors
To define a color with the hsl function, you must first choose a value for the hue
between 0 and 359 from a color wheel. Any higher color numbers simply wrap around
to the beginning again, so the value of 0 is red, and so are the values 360 and 720.

In a color wheel, the primary colors of red, green, and blue are separated by 120 degrees,
so that pure red is 0, green is 120, and blue is 240. The numbers between these values
represent shades comprising different proportions of the primary colors on either side.

Next you need the saturation level, which is a value between 0 and 100 percent. This
specifies how washed out or vibrant a color will appear. The saturation values com-
mence in the center of the wheel with a mid-gray color (a saturation of 0 percent) and
then become more and more vivid as they progress toward the outer edge (a saturation
of 100 percent).

All that’s left then is for you to decide how bright you want the color to be, by choosing
a luminance value of between 0 and 100 percent. A value of 50% for the luminance
gives the fullest, brightest color, and decreasing the value (down to a minimum of 0%)
results in making it darker until it displays as black. Increasing the value (up to a max-
imum of 100%) results in it getting lighter until it shows as white. You can visualize
this as if you are mixing levels of either black or white into the color.

Therefore, for example, to choose a fully saturated yellow color with standard bright-
ness, you would use a declaration such as this:

color:hsl(60, 100%, 50%);

Or, for a darker blue color, you might use a declaration such as:

color:hsl(240, 100%, 40%);

You can also use this (and all other CSS color functions) with any property that expects
a color, such as background-color and so on.

HSLA Colors
To provide even further control over how colors will appear, you can use the hsla
function, supplying it with a fourth (or alpha) level for a color, which is a floating-point
value between 0 and 1. A value of 0 specifies that the color is totally transparent, while
1 means it is fully opaque.

Here’s how you would choose a fully saturated yellow color with standard brightness
and 30 percent opacity:

color:hsla(60, 100%, 50%, 0.3);

Or, for a fully saturated but lighter blue color with 82 percent opacity, you might use
this declaration:

color:hsla(240, 100%, 60%, 0.82);

Colors and Opacity | 441



RGB Colors
You will probably be more familiar with using the RGB system of selecting a color, as
it’s similar to using the #nnnnnn and #nnn color formats. For example, to apply a yellow
color to a property you can use either of the following declarations (the first supporting
sixteen million colors, and the second four thousand):

color:#ffff00;
color:#ff0;

You can also use the CSS rgb function to achieve the same result, but you use decimal
numbers instead of hexadecimal (where 255 decimal is ff hexadecimal):

color:rgb(255, 255, 0);

But even better than that, you don’t even have to think in amounts of up to 256 any-
more, because you can specify percentage values, like this:

color:rgb(100%, 100%, 0);

In fact, you can now get very close to a desired color by simply thinking about its
primary colors. For example, green and blue make cyan, so to create a color close to
cyan, but with more blue in it than green, you could make a good first guess at 0% red,
40% green, and 60% blue, and try a declaration such as this:

color:rgb(0%, 60%, 40%);

RGBA Colors
Like the hsla function, the rgba function supports a fourth (alpha) argument, so you
can, for example, apply the previous cyan-like color with an opacity of 40 percent by
using a declaration such as this:

color:rgba(0%, 60%, 40%, 0.4);

The opacity Property
The opacity property provides the same alpha control as the hsla and rgba functions,
but lets you modify an object’s opacity (or transparency, if you prefer) separately from
its color.

To use it, apply a declaration such as the following to an element (which in this example
sets the opacity to 25 percent—or 75 percent transparent):

opacity:0.25;

WebKit- and Mozilla-based browsers require browser-specific prefixes
to this property. Also, for backward compatibility with releases of In-
ternet Explorer prior to version 9, you should add the following decla-
ration (in which the opacity value is multiplied by 100):

filter:alpha(opacity='25');

442 | Chapter 19: Advanced CSS with CSS3



Text Effects
A number of new effects can now be applied to text with the help of CSS3, including
text shadows, text overlapping, and word wrapping.

The text-shadow Property
This property is similar to the box-shadow property and takes the same set of arguments:
a horizontal and vertical offset, an amount for the blurring, and the color to use. For
example, the following declaration offsets the shadow by 3 pixels both horizontally and
vertically, and displays the shadow in dark gray, with a blurring of 4 pixels:

text-shadow:3px 3px 4px #444;

The result of this declaration looks like Figure 19-6; it works in recent versions of all
major browsers (but not IE9 or lower).

Figure 19-6. Applying a shadow to text

The text-overflow Property
When using any of the CSS overflow properties with a value of hidden, you can also
use the text-overflow property to place an ellipsis (three dots) just before the cutoff to
indicate that some text has been truncated, like this:

text-overflow:ellipsis;

Without this property, when the text “To be, or not to be. That is the question.” is
truncated, the result will look like Figure 19-7, but with the declaration applied the
result is like Figure 19-8.

Figure 19-7. The text is automatically truncated

Figure 19-8. Instead of being cut off, the text trails off using an ellipsis

Text Effects | 443



For this to work, three things are required:

1. The element should have an overflow property that is not visible, such as over
flow:hidden.

2. The element must have the white-space:nowrap property set to constrain the text.

3. The width of the element must be less than that of the text to truncate.

The word-wrap Property
When you have a really long word that is wider than the element containing it, it will
either overflow or be truncated. But as an alternative to using the text-overflow prop-
erty and truncating the text, you can use the word-wrap property with a value of break-
word to wrap long lines, like this:

word-wrap:break-word;

For example, in Figure 19-9 the word “Honorificabilitudinitatibus” is too wide for the
containing box (whose righthand edge is shown as a solid vertical line between the
letters t and a), and because no overflow properties have been applied, it has overflowed
its bounds.

Figure 19-9. The word is too wide for its container and has overflowed

But in Figure 19-10 the word-wrap property of the element has been assigned a value of
break-word, and so the word has neatly wrapped around to the next line.

Figure 19-10. The word now wraps at the righthand edge

Web Fonts
The use of CSS3 web fonts vastly increases the typography available to web designers
by allowing fonts to be loaded in and displayed from across the Web, not just from the
user’s computer. To achieve this, declare a web font using the @font-face property, like
this:

444 | Chapter 19: Advanced CSS with CSS3



@font-face
{
  font-family:FontName;
  src:url('FontName.otf');
}

The url function requires a value containing the path or URL of a font. On most
browsers you can use either TrueType (.ttf ) or OpenType (.otf ) fonts, but Internet
Explorer restricts you to TrueType fonts that have been converted to EOT (.eot).

To tell the browser the type of font, you can use the format function, like this (for
OpenType fonts):

@font-face
{
  font-family:FontName;
  src:url('FontName.otf') format('opentype');
}

or this (for TrueType fonts):

@font-face
{
  font-family:FontName;
  src:url('FontName.ttf') format('truetype');
}

However, because Internet Explorer accepts only EOT fonts, it ignores @font-face
declarations that contain the format function.

Google Web Fonts
One of the best ways to use web fonts is to load them in for free from Google’s servers.
To find out more about this, check out the Google web fonts website (at http://google
.com/webfonts; see Figure 19-11), where you can get access to more than 500 font fam-
ilies, and counting!

To show you how easy using one of these fonts is, here’s how you load one in using an
HTML <link> tag:

<link href='http://fonts.googleapis.com/css?family=Lobster' />

Then to use such a font, just apply it in a CSS declaration like this:

h1 { font-family:'Lobster', arial, serif; }

Transformations
Using transformations you can skew, rotate, stretch, and squash elements in any of up
to three dimensions (yes, 3D is supported, but only in WebKit-based browsers for now).
This makes it easy to create great effects by stepping out of the uniform rectangular

Transformations | 445

http://google.com/webfonts
http://google.com/webfonts


layout of <div> and other elements, because now they can be shown at a variety of
angles and in many different forms.

To perform a transformation, use the transform property (which unfortunately has
browser-specific prefixes for Mozilla, WebKit, Opera, and Microsoft browsers, so once
again you’ll need to refer to the website http://caniuse.com).

You can apply various properties to the transform property, starting with the value
none, which resets an object to a nontransformed state:

transform:none;

You can supply a variety of one or more of the following functions to the transform
property:

matrix
Transforms an object by applying a matrix of values to it.

translate
Moves an element’s origin.

Figure 19-11. It’s easy to include Google’s web fonts

446 | Chapter 19: Advanced CSS with CSS3

http://caniuse.com


scale
Scales an object.

rotate
Rotates an object.

skew
Skews an object.

There are also single versions of many of these functions, such as translateX, scaleY,
and so on.

WebKit-based browsers (such as Apple Safari, iOS, Google Chrome,
and Android) support 3D transformations as well, but I will not cover
those here because IE, Opera, and Mozilla-based browsers do not yet
provide this feature—hopefully these browsers will catch up soon,
though.

So, for example, to rotate an element clockwise by 45 degrees, you could apply this
declaration to it:

transform:rotate(45deg);

At the same time, you could enlarge the same object, as in the following declaration,
which enlarges its width by 1.5 times and its height by 2 times and then performs the
rotation:

transform:scale(1.5, 2) rotate(45deg);

Figure 19-12 shows an object before the transformations are applied, and then
afterwards.

Figure 19-12. An object before and after transformation

Transformations | 447



Transitions
Also appearing on all the latest versions of the major browsers (including Internet Ex-
plorer 10, but not lower versions) is a dynamic new feature called transitions. These
specify an animation effect that you want to occur when an element is transformed,
and the browser will automatically take care of all the in-between frames for you.

There are four properties you should supply in order to set up a transition, as follows:

transition-property       :property;
transition-duration       :time;
transition-delay          :time;
transition-timing-function:type;

You must preface these properties with the relevant browser prefixes for
Mozilla, WebKit, Opera, and Microsoft browsers.

Properties to Transition
Transitions have properties such as height, border-color, and so on. Specify the prop-
erties you want to change in the CSS property named transition-property (here the
word “property” is used by different tools to mean different things). You can include
multiple properties by separating them with commas, like this:

transition-property:width, height, opacity;

Or, if you want absolutely everything about an element to transition (including colors),
use the value all, like this:

transition-property:all;

Transition Duration
The transition-duration property requires a value of zero seconds or greater. The
following declaration specifies that the transition should take 1.25 seconds to complete:

transition-duration:1.25s;

Transition Delay
If the transition-delay property is given a value greater than zero seconds (the default),
it introduces a delay between the initial display of the element and the beginning of the
transition. The following starts the transition after a 0.1-second delay:

transition-delay:0.1s;

If the transition-delay property is given a value of less than zero seconds (in other
words, a negative value), the transition will execute the moment the property is

448 | Chapter 19: Advanced CSS with CSS3



changed, but will appear to have begun execution at the specified offset, so it is partway
through its cycle.

Transition Timing
The transition-timing-function property requires one of the following values:

ease
Start slowly, get faster, then end slowly.

linear
Transition at constant speed.

ease-in
Start slowly, then go quickly until finished.

ease-out
Start quickly, stay fast until near the end, then end slowly.

ease-in-out
Start slowly, go fast, then end slowly.

Using any of the values with the word ease ensures that the transition looks extra fluid
and natural, unlike a linear transition that somehow seems more mechanical. And if
these aren’t sufficiently varied for you, you can also create your own transitions using
the cubic-bezier function.

For example, the following are the declarations used to create the preceding five tran-
sition types, illustrating how you can easily create your own:

transition-timing-function:cubic-bezier(0.25, 0.1, 0.25, 1);
transition-timing-function:cubic-bezier(0,    0,   1,    1);
transition-timing-function:cubic-bezier(0.42, 0,   1,    1);
transition-timing-function:cubic-bezier(0,    0,   0.58, 1);
transition-timing-function:cubic-bezier(0.42, 0,   0.58, 1);

Shorthand Syntax
You may find it easier to use the shorthand version of this property and include all the
values in a single declaration like the following, which will transition all properties in
a linear fashion, over a period of .3 seconds, after an initial (optional) delay of .2 sec-
onds:

transition:all .3s linear .2s;

Doing so will save you the trouble of entering many very similar declarations, partic-
ularly if you are supporting all the major browser prefixes.

Example 19-4 illustrates how you might use transitions and transformations together.
The CSS creates a square, orange element with some text in it, and a hover pseudoclass
specifying that when the mouse pointer passes over the object it should rotate by 180
degrees and change from orange to yellow (see Figure 19-13).

Transitions | 449



Example 19-4. A CSS rotate example

<!DOCTYPE html>
<html>
    <head>
        <title>CSS Rotate Example</title>
        <style>
            #square {
                position          :absolute;
                top               :50px;
                left              :50px;
                width             :100px;
                height            :100px;
                padding           :2px;
                text-align        :center;
                border-width      :1px;
                border-style      :solid;
                background        :orange;
                transition        :all .8s ease-in-out;
                -moz-transition   :all .8s ease-in-out;
                -webkit-transition:all .8s ease-in-out;
                -o-transition     :all .8s ease-in-out;
                -ms-transition    :all .8s ease-in-out; }
            #square:hover {
                background        :yellow;
                -moz-transform    :rotate(180deg);
                -webkit-transform :rotate(180deg);
                -o-transform      :rotate(180deg);
                -ms-transform     :rotate(180deg);
                transform         :rotate(180deg); }
        </style>
    </head>
    <body>
        <div id='square'>
            Square shape<br />
            created using<br />
            a simple div<br />
            element with<br />
            a 1px border
        </div>
    </body>
</html>

450 | Chapter 19: Advanced CSS with CSS3



Figure 19-13. The object rotates and changes color when hovered over

The sample code caters to all the different browsers by providing browser-specific ver-
sions of the declarations. On all the latest browsers (including IE10 or higher) the object
will rotate clockwise when hovered over, while slowly changing from orange to yellow.

CSS transitions are smart in that when they are canceled they smoothly return to their
original value. So if you move the mouse away before the transition has completed, it
will instantly reverse and start transitioning back to its initial state.

You should now have a very good idea of what CSS has to offer you, and how to get it
to achieve the effects you desire. In the following chapter, we’ll take CSS one step further
by interacting dynamically with DOM properties using JavaScript.

Test Your Knowledge
1. What do the CSS3 operators ^, $, and * do?

2. What property do you use to specify the size of a background image?

3. With which property can you specify the radius of a border?

4. How can you flow text over multiple columns?

5. Name the four functions with which you can specify CSS colors.

6. How would you create a gray text shadow under some text, offset diagonally to
the bottom right by 5 pixels, with a blurring of 3 pixels?

7. How can you indicate with an ellipsis that text is truncated?

8. How can you include a Google web font in a web page?

Test Your Knowledge | 451



9. What CSS declaration would you use to rotate an object by 90 degrees?

10. How do you set up a transition on an object so that when any of its properties are
changed, the change will transition immediately in a linear fashion over the course
of half a second?

See “Chapter 19 Answers” on page 515 in Appendix A for the answers to these
questions.

452 | Chapter 19: Advanced CSS with CSS3



CHAPTER 20

Accessing CSS from JavaScript

With a good understanding of the Document Object Model (DOM) and CSS now under
your belt, you’ll learn in this chapter how to access both of these directly from Java-
Script, enabling you to create highly dynamic and responsive websites.

I’ll also show you how to use interrupts so that you can create animations or provide
any code that must continue running in the background of a web page, such as a clock,
and I’ll explain how you can add new elements to or remove existing ones from the
DOM so that you don’t have to precreate elements in HTML just in case JavaScript
may need to access them later.

Revisiting the getElementById Function
In Chapter 13, I mentioned the common usage of the $ character as a function name
to provide easier access to the getElementById function. In fact, major frameworks such
as jQuery use this new $ function, and substantially extend its functionality.

I would like to provide you with an enhanced version of this function too, so that you
can handle DOM elements and CSS styles quickly and efficiently. However, to avoid
conflicting with frameworks that use the $ character. I’ll simply use the uppercase O as
the function name, since it’s the first letter of the word Object, which is what will be
returned when the function is called (the object represented by the ID passed to the
function).

The O Function
Here’s what the bare-bones O function looks like:

function O(obj)
{
    return document.getElementById(obj)
}

453



This alone saves 22 characters of typing each time it is called, but I’ve chosen to extend
the function a little by allowing either an ID or an object to be passed to this function,
as shown in the complete version of the function in Example 20-1.

Example 20-1. The O function

function O(obj)
{
    if (typeof obj == 'object') return obj
    else return document.getElementById(obj)
}

If an object is passed to the function, it just returns that object back again. Otherwise,
it assumes that an ID has been passed and returns the object to which the ID refers.

But why on earth would I want to add this first statement, which simply returns the
object passed to it?

The S Function
The answer to this question becomes clear when you look at a partner function called
S that I provide to give you easy access to the style (or CSS) properties of an object, as
shown in Example 20-2.

Example 20-2. The S function

function S(obj)
{
    return O(obj).style
}

The S in this function name is the first letter of Style, and the function performs the task
of returning the style property (or subobject) of the element referred to. Because the
embedded O function accepts either an ID or an object, you can pass either an ID or an
object to S as well.

Let’s look at what’s going on here by taking a <div> element with the ID of myobj and
setting its text color to green, like this:

<div id='myobj'>Some text</div>

<script>
    O('myobj').style.color = 'green'
</script>

The preceding code will do the job, but it’s much simpler to call the new S function,
like this:

S('myobj').color = 'green'

Now consider the case in which the object returned by calling O is stored in, for example,
an object called fred, like this:

454 | Chapter 20: Accessing CSS from JavaScript



fred = O('myobj')

Because of the way the S function works, we can still call it to change the text color to
green, like this:

S(fred).color = 'green'

What this means is that whether you wish to access an object directly or via its ID, you
can do so by passing it to either the O or S function as required. Just remember that
when you pass an object (rather than an ID) you must not place the object’s name in
quotation marks.

The C Function
So far I’ve provided you with two simple functions that make it easy for you to access
any element on a web page, and any style property of an element. Sometimes, though,
you will want to access more than one element at a time. You can do this by assigning
a CSS class name to each such element, as in these examples, which both employ the
class myclass:

<div class='myclass'>Div contents</a>
<p class='myclass'>Paragraph contents</p>

If you want to access all elements on a page that use a particular class, you can use the
C function (for the first letter of Class) shown in Example 20-3 to return an array con-
taining all the objects that match the class name provided.

Example 20-3. The C function

function C(name)
{
    var elements = document.getElementsByTagName('*')
    var objects  = []

    for (var i = 0 ; i < elements.length ; ++i)
        if (elements[i].className == name)
            objects.push(elements[i])

    return objects
}

Let’s break this down. First, the argument name contains the class name for which you
are trying to retrieve objects. Then, inside the function, a new object called elements is
created that contains all the elements in the document, as returned by a call to getEle
mentsByTagName with an argument of '*', which means “find all elements”:

var elements = document.getElementsByTagName('*')

Then a new array called objects is created, into which all the matching objects found
will be placed:

var objects = []

Revisiting the getElementById Function | 455



Next, a for loop iterates through all the elements in the elements object using the vari-
able i as the index:

for (var i = 0 ; i < elements.length ; ++i)

Each time around the loop, if an element’s className property is the same as the string
value passed in the argument name, the object is pushed onto the objects array:

if (elements[i].className == name)
    objects.push(elements[i])

Finally, once the loop has completed, the objects array will contain all the elements in
the document that use the class name in name, so it is returned by the function:

return objects

Using the C function

To use this function, simply call it as follows, saving the returned array so that you can
access each of the elements individually as required or (more likely to be the case)
altogether via a loop:

myarray = C('myclass')

Now you can do whatever you like with the objects returned, such as (for example)
setting their textDecoration properties to 'underline', as follows:

for (i = 0 ; i < myarray.length ; ++i)
    S(myarray[i]).textDecoration = 'underline'

This code iterates through the objects in myarray[] and uses the S function to reference
each one’s style property, setting textDecoration to 'underline'.

Including the Functions
I use the O and S functions in examples for the remainder of this chapter, as they make
the code shorter and easier to follow. Therefore, I have saved them in the file OSC.js
(along with the C function, as I think you’ll find it extremely useful) in the Chap-
ter 20 folder of the accompanying archive of examples, freely downloadable from the
http://lpmj.net website.

They can be included in any web page using the following statement—preferably in its
<head> section, anywhere before any script that relies on calling these functions:

<script src='OSC.js'></script>

The contents of OSC.js are shown in Example 20-4.

Example 20-4. The OSC.js file

function O(obj)
{
    if (typeof obj == 'object') return obj
    else return document.getElementById(obj)

456 | Chapter 20: Accessing CSS from JavaScript

http://lpmj.net


}

function S(obj)
{
    return O(obj).style
}

function C(name)
{
    var elements = document.getElementsByTagName('*')
    var objects  = []

    for (var i = 0 ; i < elements.length ; ++i)
        if (elements[i].className == name)
            objects.push(elements[i])

    return objects
}

Accessing CSS Properties from JavaScript
The textDecoration property I used in an earlier example represents a CSS property
that is normally hyphenated, like this: text-decoration. But since JavaScript reserves
the hyphen character for use as a mathematical operator, whenever you access a hy-
phenated CSS property you must omit the hyphen and set the character immediately
following it to uppercase.

Another example of this is the font-size property, which is referenced in JavaScript as
fontSize when placed after a period operator, like this:

myobject.fontSize = '16pt'

An alternative to this is to be more long-winded and use the setAttribute function,
which does support (and in fact requires) standard CSS property names, like this:

myobject.setAttribute('font-size', '16pt')

Some versions of Microsoft Internet Explorer are picky in certain in-
stances about using the JavaScript-style CSS property names when ap-
plying the browser-specific -ms--prefixed versions of the rules. If you
encounter this, use the setAttribute function and you should be all
right.

Some Common Properties
Using JavaScript you can modify any property of any element in a web document, in a
similar manner to using CSS. I have already shown you how to access CSS properties,
using either the JavaScript short form or the setAttribute function (to use exact CSS
property names). Therefore, I won’t bore you by detailing all of these hundreds of

Accessing CSS Properties from JavaScript | 457



properties. Rather, I’d like to show you how to access just a few of the CSS properties
as an overview of some of the things you can do.

First let’s look at modifying a few CSS properties from JavaScript using Exam-
ple 20-5, which first loads in the three earlier functions, then creates a <div> element,
and finally issues JavaScript statements within a <script> section of HTML, to modify
various attributes of the <div> (see Figure 20-1).

Example 20-5. Accessing CSS properties from JavaScript

<html>
    <head>
        <title>Accessing CSS Properties</title>
        <script src='OSC.js'></script>
    </head>
    <body>
        <div id='object'>Div Object</div>

        <script>
             S('object').border     = 'solid 1px red'
             S('object').width      = '100px'
             S('object').height     = '100px'
             S('object').background = '#eee'
             S('object').color      = 'blue'
             S('object').fontSize   = '15pt'
             S('object').fontFamily = 'Helvetica'
             S('object').fontStyle  = 'italic'
        </script>
    </body>
</html>

Figure 20-1. Modifying styles from JavaScript

You gain nothing by modifying properties like this, because you could just as easily
have included some CSS directly, but shortly we’ll be modifying properties in response
to user interaction—and then the real power of combining JavaScript and CSS will
come through.

458 | Chapter 20: Accessing CSS from JavaScript



Other Properties
JavaScript also opens up access to a very wide range of other properties, such as the
width and height of the browser and of any pop-up or in-browser windows or frames,
and handy information such as the parent window (if there is one) and the history of
URLs visited this session.

All these properties are accessed from the window object via the period operator (for
example, window.name). Table 20-1 lists them all, along with descriptions of each.

Many of these properties can be invaluable when targeting mobile
phones and tablet devices, as they will tell you exactly how much screen
space you have to work with, the type of browser being used, and so on.

Table 20-1. Common window properties

Property Description

closed Returns a Boolean value indicating whether or not a window has been closed

defaultStatus Sets or returns the default text in the status bar of a window

document Returns the document object for the window

frames Returns an array of all the frames and iframes in the window

history Returns the history object for the window

innerHeight Sets or returns the inner height of a window’s content area

innerWidth Sets or returns the inner width of a window’s content area

length Returns the number of frames and iframes in a window

location Returns the location object for the window

name Sets or returns the name of a window

navigator Returns the navigator object for the window

opener Returns a reference to the window that created the window

outerHeight Sets or returns the outer height of a window, including tool and scroll bars

outerWidth Sets or returns the outer width of a window, including tool and scroll bars

pageXOffset Returns the number of pixels the document has been scrolled horizontally from the left of the window

pageYOffset Returns the number of pixels the document has been scrolled vertically from the top of the window

parent Returns the parent window of a window

screen Returns the screen object for the window

screenLeft Returns the x coordinate of the window relative to the screen in all recent browsers except Mozilla Firefox
(for which you should use screenX)

screenTop Returns the y coordinate of the window relative to the screen in all recent browsers except Mozilla Firefox
(for which you should use screenY)

Accessing CSS Properties from JavaScript | 459



Property Description

screenX Returns the x coordinate of the window relative to the screen in all recent browsers except Opera, which
returns incorrect values; supported in versions of IE prior to 9

screenY Returns the y coordinate of the window relative to the screen in all recent browsers except Opera, which
returns incorrect values; supported in versions of IE prior to 9

self Returns the current window

status Sets or returns the text in the status bar of a window

top Returns the top browser window

There are a few points to note about some of these properties:

• The defaultStatus and status properties can be set only if users have modified
their browsers to allow it (very unlikely).

• The history object cannot be read from (so you cannot see where your visitors
have been surfing), but it supports the length property to determine how long the
history is, and the back, forward, and go methods to navigate to specific pages in
the history.

• When you need to know how much space there is available in a current window
of the web browser, just read the values in window.innerHeight and window.inner
Width. I often use these values for centering in-browser pop-up alert or confirm
dialog windows.

• The screen object supports the read-only properties availHeight, availWidth,
colorDepth, height, pixelDepth, and width, and is therefore great for determining
information about the user’s display.

These few items of information will get you started and give you some ideas about many
new and interesting things you can do with JavaScript. Of course, there are far more
properties and methods available than can be covered in this chapter, but now that you
know how to access and use properties all you need is a resource listing them all. I
recommend you check out the following URL as a good initial place to start: http://
tinyurl.com/domproperties.

Inline JavaScript
Using <script> tags isn’t the only way you can execute JavaScript statements—you can
also access JavaScript from within HTML tags, which makes for great dynamic
interactivity.

For example, to add a quick effect when the mouse pointer passes over an object, you
can use code such as that in the <img /> tag in Example 20-6, which displays an apple
by default, but replaces it with an orange when the mouse passes over (and restores the
apple when the mouse leaves).

460 | Chapter 20: Accessing CSS from JavaScript

http://tinyurl.com/domproperties
http://tinyurl.com/domproperties


Example 20-6. Using inline JavaScript

<html>
    <head>
        <title>Inline JavaScript</title>
    </head>
    <body>
        <img src='apple.png'
             onmouseover="this.src='orange.png'"
             onmouseout="this.src='apple.png'" />
    </body>
</html>

The this Keyword
In the preceding example you see the this keyword in use. It tells the JavaScript to
operate on the calling object, namely the <img /> tag. You can see the result in Fig-
ure 20-2, where the mouse pointer is yet to pass over the apple.

Figure 20-2. Inline mouse hover JavaScript example

When supplied from an inline JavaScript call, the this keyword repre-
sents the calling object. When used in class methods, the this keyword
represents an object to which the method applies.

Attaching Events to Objects in a Script
The preceding code is the equivalent of providing an ID to the <img /> tag and then
attaching the actions to the tag’s mouse events, like in Example 20-7.

Inline JavaScript | 461



Example 20-7. Noninline JavaScript

<html>
    <head>
        <title>Noninline JavaScript</title>
        <script src='OSC.js'></script>
    </head>
    <body>
        <img id='object' src='apple.png' />

        <script>
            O('object').onmouseover = function() { this.src = 'orange.png' }
            O('object').onmouseout  = function() { this.src = 'apple.png'  }
        </script>
    </body>
</html>

This code applies the ID of object to the <img /> tag in the HTML section, then proceeds
to manipulate it separately in the JavaScript section by attaching anonymous functions
to each event.

Attaching to Other Events
Whether you’re using inline or separate JavaScript, there are several events to which
you can attach actions, enabling a wealth of additional features that you can provide
for your users. Table 20-2 lists these events, and details when they will be triggered.

Table 20-2. Events and when they are triggered

Event Occurs

onabort When an image’s loading is stopped before completion

onblur When an element loses focus

onchange When any part of a form has changed

onclick When an object is clicked

ondblclick When an object is double-clicked

onerror When a JavaScript error is encountered

onfocus When an element gets focus

onkeydown When a key is being pressed (including Shift, Alt, Ctrl, and Esc)

onkeypress When a key is being pressed (not including Shift, Alt, Ctrl, and Esc)

onkeyup When a key is released

onload When an object has loaded

onmousedown When the mouse button is pressed over an element

onmousemove When the mouse is moved over an element

onmouseout When the mouse leaves an element

onmouseover When the mouse passes over an element from outside it

462 | Chapter 20: Accessing CSS from JavaScript



Event Occurs

onmouseup When the mouse button is released

onsubmit When a form is submitted

onreset When a form is reset

onresize When the browser is resized

onscroll When the document is scrolled

onselect When some text is selected

onunload When a document is removed

Make sure you attach events to objects that make sense. For example,
an object that is not a form will not respond to the onsubmit event.

Adding New Elements
With JavaScript, you are not limited to manipulating the elements and objects supplied
to a document in its HTML. In fact, you can create objects at will by inserting them
into the DOM.

For example, suppose you need a new <div> element. Example 20-8 shows one way
you can add it to the web page.

Example 20-8. Inserting an element into the DOM

<html>
    <head>
        <title>Adding Elements</title>
        <script src='OSC.js'></script>
    </head>
    <body>
        This is a document with only this text in it.<br /><br />

        <script>
            alert('Click OK to add an element')

            newdiv    = document.createElement('div')
            newdiv.id = 'NewDiv'
            document.body.appendChild(newdiv)

            S(newdiv).border = 'solid 1px red'
            S(newdiv).width  = '100px'
            S(newdiv).height = '100px'
            newdiv.innerHTML = "I'm a new object inserted in the DOM"
            tmp              = newdiv.offsetTop

            alert('Click OK to remove the element')
            newdiv.parentNode.removeChild(newdiv)
        </script>

Adding New Elements | 463



    </body>
</html>

First the new element is created with createElement, then the appendChild function is
called and the element gets inserted into the DOM. After this, various properties are
assigned to the element, including some text for its inner HTML. And then, to make
sure the new element is instantly revealed, its offsetTop property is read into the
throwaway variable tmp. This forces a DOM refresh and makes the element display in
any browser that might otherwise delay before doing so—particularly Internet Ex-
plorer. Figure 20-3 shows the result.

Figure 20-3. Inserting a new element into the DOM

This new element is exactly the same as if it had been included in the original HTML,
and has all the same properties and methods available.

I sometimes use the technique of creating new elements when I want to
create in-browser pop-up windows, because it doesn’t rely on there be-
ing a spare <div> element available in the DOM.

Removing Elements
You can also remove elements from the DOM, including ones that you didn’t insert
using JavaScript—it’s even easier than adding an element. It works like this, assuming
the element to remove is in the object element:

element.parentNode.removeChild(element)

464 | Chapter 20: Accessing CSS from JavaScript



This code accesses the element’s parentNode object so that it can remove the element
from that node. Then it calls the removeChild method on that object, passing the object
to be removed. However, to ensure the DOM instantly refreshes on all browsers, you
may prefer to replace the preceding single statement with something like the following:

pnode = element.parentNode
pnode.removeChild(element)
tmp   = pnode.offsetTop

Here, the first statement places a copy of element.parentNode (the parent element of
the object) in pnode, which (after the child element is removed in the second line) has
its offsetTop property read into the throwaway variable tmp, thus ensuring that the
DOM is fully refreshed.

Alternatives to Adding and Removing Elements
Inserting an element is intended for adding a totally new object into a web page. If,
however, all you intend to do is hide and reveal objects according to an onmouseover or
other event, don’t forget that there are a couple of CSS properties you can use for this
purpose, without taking such drastic measures as creating and deleting DOM elements.

For example, when you want to make an element invisible but leave it in place (and
with all the elements surrounding it remaining in their positions), you can simply set
the object’s visibility property to 'hidden', like this:

myobject.visibility = 'hidden'

And to redisplay the object you can use the following:

myobject.visibility = 'visible'

You can also collapse elements down to occupy zero width and height (with all the
objects around it filling in the freed up space), like this:

myobject.display = 'none'

To then restore an element to its original dimensions, you would use the following:

myobject.display = 'block'

And, of course, there’s always the innerHTML property, with which you can change the
HTML applied to an element. For example:

mylement.innerHTML = '<b>Replacement HTML</b>'

You can also use the O function I outlined earlier, like this:

O('someid').innerHTML = 'New contents'

And you can make an element appear to disappear like this:

O('someid').innerHTML = ''

Adding New Elements | 465



Don’t forget all the other useful CSS properties you can access from
JavaScript. For example, you can use the opacity property to set the
visibility of an object to somewhere between visible and invisible, and
you can change the width and height properties of an object to resize it.
And, of course, using the position property with values of 'absolute',
'static', or 'relative', you can even locate an object anywhere in (or
outside) the browser window that you like.

Using Interrupts
JavaScript provides access to interrupts, a method by which you can ask the browser
to call your code after a set period of time, or even to keep calling it at specified intervals.
This gives you a means of handling background tasks such as Ajax communications,
or even things like animating web elements.

There are two types of interrupt, setTimeout and setInterval, which have accompa-
nying clearTimeout and clearInterval functions for turning them off again.

Using setTimeout
When you call setTimeout, you pass it some JavaScript code or the name of a function,
and a value in milliseconds representing how long to wait before the code should be
executed, like this:

setTimeout(dothis, 5000)

Your dothis function might look like this:

function dothis()
{
    alert('This is your wakeup alert!');
}

In case you are wondering, you cannot simply specify alert() (with
parens) as a function to be called by setTimeout, because the function
would be executed immediately. Only when you provide a function
name without argument parentheses (for example, alert) can you safely
pass the function name, so that its code will be executed only when the
timeout occurs.

Passing a string

When you need to provide an argument to a function, you can also pass a string value
to the setTimeout function, which will not be executed until the correct time. For
example:

setTimeout("alert('Hello!')", 5000)

466 | Chapter 20: Accessing CSS from JavaScript



In fact, you can provide as many lines of JavaScript code as you like, if you place a
semicolon after each statement:

setTimeout("document.write('Starting'); alert('Hello!')", 5000)

Repeating timeouts

One technique some programmers use to provide repeating interrupts with setTime
out is to call the setTimeout function from the code called by it, as in the following
example, which will initiate a never-ending loop of alert windows:

setTimeout(dothis, 5000)

function dothis()
{
    setTimeout(dothis, 5000)
    alert('I am annoying!')
}

Now the alert will pop up every five seconds.

Canceling a Timeout
Once a timeout has been set up, you can cancel it if you previously saved the value
returned from the initial call to setTimeout, like this:

handle = setTimeout(dothis, 5000)

Armed with the value in handle, you can now cancel the interrupt at any point up until
its due time, like this:

clearTimeout(handle)

When you do this, the interrupt is completely forgotten, and the code assigned to it
will not get executed.

Using setInterval
An easier way to set up regular interrupts is to use the setInterval function. It works
in just the same way, except that having popped up after the interval you specify in
milliseconds, it will do so again after that interval again passes, and so on forever, unless
you cancel it.

Example 20-9 uses this function to display a simple clock in the browser, as shown in
Figure 20-4.

Example 20-9. A clock created using interrupts

<html>
    <head>
        <title>Using setInterval</title>
        <script src='OSC.js'></script>
    </head>

Using Interrupts | 467



    <body>
        The time is: <span id='time'>00:00:00</span><br />

        <script>
            setInterval("showtime(O('time'))", 1000)

            function showtime(object)
            {
                var date = new Date()
                object.innerHTML = date.toTimeString().substr(0,8)
            }
        </script>
    </body>
</html>

Every time ShowTime is called, it sets the object date to the current date and time with
a call to Date:

var date = new Date()

Then the innerHTML property of the object passed to showtime (namely, object) is set to
the current time in hours, minutes, and seconds, as determined by a call to toTime
String. This returns a string such as “09:57:17 UTC+0530”, which is then truncated
to just the first eight characters with a call to the substr function:

object.innerHTML = date.toTimeString().substr(0,8)

Using the function

To use this function, you first have to create an object whose innerHTML property will
be used for displaying the time, like this HTML:

The time is: <span id='time'>00:00:00</span>

Then, from a <script> section of code, a call is placed to the setInterval function, like
this:

setInterval("showtime(O('time'))", 1000)

This call passes a string to setInterval containing the following statement, which is
set to execute once a second (every 1,000 milliseconds):

showtime(O('time'))

Figure 20-4. Maintaining the correct time with interrupts

468 | Chapter 20: Accessing CSS from JavaScript



In the rare situation where somebody disables JavaScript in her browser (which people
sometimes do for security reasons), your JavaScript will not run and the user will see
the original 00:00:00.

Canceling an interval

To stop a repeating interval, when you first set up the interval with a call to
setInterval, you must ensure you make a note of the interval’s handle, like this:

handle = setInterval("showtime(O('time'))", 1000)

Now you can stop the clock at any time by issuing the following call:

clearInterval(handle)

You can even set up a timer to stop the clock after a certain amount of time, like this:

setTimeout("clearInterval(handle)", 10000)

This statement will issue an interrupt in 10 seconds (10,000 milliseconds) that will clear
the repeating intervals.

Using Interrupts for Animation
By combining a few CSS properties with a repeating interrupt, you can produce all
manner of animations and effects.

For example, the code in Example 20-10 moves a square shape across the top of the
browser window, all the time ballooning up in size, as shown in Figure 20-5. Then,
when LEFT is reset to 0, the animation starts all over again.

Example 20-10. A simple animation

<html>
    <head>
        <title>Simple Animation</title>
        <script src='OSC.js'></script>
        <style>
            #box {
            position  :absolute;
            background:orange;
            border    :1px solid red; }
        </style>
    </head>
    <body>
        <div id='box'></div>

        <script>
            SIZE = LEFT = 0

            setInterval(animate, 30)

            function animate()
            {

Using Interrupts | 469



                 SIZE += 10
                 LEFT += 3
                 if (SIZE == 200) SIZE = 0
                 if (LEFT == 600) LEFT = 0

                 S('box').width  = SIZE + 'px'
                 S('box').height = SIZE + 'px'
                 S('box').left   = LEFT + 'px'
            }
        </script>
    </body>
</html>

In the <head> of the document, the box object is set to a background color of 'orange'
with a border value of '1px solid red', and its position property is set to absolute so
that it is allowed to be moved around in the browser window.

Then, in the animate function, the global variables SIZE and LEFT are continuously up-
dated and then applied to the width, height, and left style attributes of the box object
(adding 'px' after each to specify that the values are in pixels), thus animating it at a
frequency of once every 30 milliseconds. This gives a rate of 33.33 frames per second
(1000 / 30 milliseconds).

This completes your introduction to all the topics covered in this book, and you are
well on the way to becoming a seasoned web developer. But before I finish, in the final
chapter I want to bring everything I’ve introduced together into a single project, so that
you can see in practice how all the technologies integrate with each other.

Figure 20-5. This object slides in from the left while changing size

470 | Chapter 20: Accessing CSS from JavaScript



Test Your Knowledge
1. What are the O, S, and C functions provided to do?

2. Provide two ways to modify a CSS attribute of an object.

3. Which properties provide the width and height available in a browser window?

4. How can you make something happen when the mouse pointer passes over and
then out of an object?

5. Which JavaScript function creates new elements, and which appends them to the
DOM?

6. How can you make an element a) invisible and b) collapse to zero dimensions?

7. Which function creates a single event at a future time?

8. Which function sets up repeating events at set intervals?

9. How can you release an element from its location in a web page to enable it to be
moved around?

10. What delay between events should you set (in milliseconds) to achieve an anima-
tion rate of 50 frames per second?

See “Chapter 20 Answers” on page 515 in Appendix A for the answers to these
questions.

Test Your Knowledge | 471





CHAPTER 21

Bringing It All Together

Now that you’ve reached the end of your journey into learning the hows, whys, and
wherefores of dynamic web programming, I want to leave you with a real example that
you can sink your teeth into. In fact, it’s a collection of examples, because I’ve put
together a simple social networking project comprising all the main features you’d
expect from such a site.

Across the various files, there are examples of MySQL table creation and database
access, CSS style sheets, file inclusion, session control, DOM access, Ajax calls, event
and error handling, file uploading, image manipulation, and a whole lot more.

Each example file is complete and self-contained, yet works with all the others to build
a fully functional social networking site, even including a style sheet you can modify to
completely change the look and feel of the project. Being small and light, the end prod-
uct is particularly usable on mobile platforms such as a smartphone or tablet, but will
run equally well on a full-sized desktop computer.

I leave it up to you to take any pieces of code you think you can use and expand on
them for your own purposes. Perhaps you may even wish to build on these files to create
a social networking site of your own.

Designing a Social Networking Site
Before writing any code, I sat down and came up with a list of things that I decided
were essential to such a site. These included:

• A signup process

• A login form

• A logout facility

• Session control

• User profiles with uploaded thumbnails

• A member directory

473



• Adding members as friends

• Public and private messaging between members

• How to style the project

I decided to name the project Robin’s Nest, but you have to modify only one line of
code (in functions.php) to change this to a name of your choice.

On the Website
All the examples in this chapter can be found on the book’s companion website, located
at http://lpmj.net. You can download the examples to your computer by clicking on the
“The Examples” link. This will download an archive file called 2nd_edition_exam-
ples.zip, which you should extract to a suitable location on your computer.

Of particular interest to this chapter, within the ZIP file there’s a folder called
robinsnest, in which all the following examples have been saved using the correct file-
names required by this sample application. So, you can easily copy them all to your
web development folder to try them out.

functions.php
Let’s jump right into the project, starting with Example 21-1, functions.php, the include
file of main functions. This file contains a little more than just the functions, though,
because I have added the database login details here instead of using yet another sep-
arate file.

The first half-dozen lines of code define the host, database name, username, and pass-
word of the database to use. It doesn’t matter what you call the database, as long as it
already exists (see Chapter 8 for how to create a new database). Also make sure to
correctly assign a MySQL username and password to $dbuser and $dbpass. With correct
values, the subsequent two lines will open a connection to MySQL and select the da-
tabase. The last of the initial instructions sets the name of the social networking site by
assigning the value “Robin’s Nest” to the variable $appname. If you want to change the
name, here’s the place to do so.

The Functions
The project uses five main functions:

createTable
Checks whether a table already exists and, if not, creates it.

queryMysql
Issues a query to MySQL, outputting an error message if it fails.

474 | Chapter 21: Bringing It All Together

http://lpmj.net


destroySession
Destroys a PHP session and clears its data to log users out.

sanitizeString
Removes potentially malicious code or tags from user input.

showProfile
Displays a user’s image and “about me” message, if he has one.

All of these should be obvious in their action to you by now, with the possible exception
of showProfile, which looks for an image of the name <user>.jpg (where <user> is the
username of the current user) and, if found, displays it. It also displays any “about me”
text the user may have saved.

I have ensured that error handling is in place for all the functions that need it, so that
they can catch any typographical or other errors you may introduce and generate error
messages. However, if you use any of this code on a production server, you will probably
want to provide your own error-handling routines to make the code more user friendly.

Type in Example 21-1 and save it as functions.php (or download it from the companion
website), and you’ll be ready to move on to the next section.

Example 21-1. functions.php

<?php // functions.php
$dbhost  = 'localhost';    // Unlikely to require changing
$dbname  = 'anexistingdb'; // Modify these...
$dbuser  = 'robinsnest';   // ...variables according
$dbpass  = 'apassword';    // ...to your installation
$appname = "Robin's Nest"; // ...and preference

mysql_connect($dbhost, $dbuser, $dbpass) or die(mysql_error());
mysql_select_db($dbname) or die(mysql_error());

function createTable($name, $query)
{
    queryMysql("CREATE TABLE IF NOT EXISTS $name($query)");
    echo "Table '$name' created or already exists.<br />";
}

function queryMysql($query)
{
    $result = mysql_query($query) or die(mysql_error());
     return $result;
}

function destroySession()
{
    $_SESSION=array();

    if (session_id() != "" || isset($_COOKIE[session_name()]))
        setcookie(session_name(), '', time()-2592000, '/');

    session_destroy();

functions.php | 475



}

function sanitizeString($var)
{
    $var = strip_tags($var);
    $var = htmlentities($var);
    $var = stripslashes($var);
    return mysql_real_escape_string($var);
}

function showProfile($user)
{
    if (file_exists("$user.jpg"))
        echo "<img src='$user.jpg' align='left' />";

    $result = queryMysql("SELECT * FROM profiles WHERE user='$user'");

    if (mysql_num_rows($result))
    {
        $row = mysql_fetch_row($result);
        echo stripslashes($row[1]) . "<br clear='left' /><br/>";
    }
}
?>

header.php
For uniformity, each page of the project needs to have access to the same set of features.
Therefore, I placed these things in header.php (Example 21-2). This is the file that is
actually included by the other files, and it, in turn, includes functions.php. This means
that only a single include is required in each file.

header.php starts by calling the function session_start. As you’ll recall from Chap-
ter 12, this sets up a session that will remember certain values we want stored across
different PHP files. Then the document type is set and the JavaScript O, S, and C func-
tions from Chapter 20 are pulled in from the file osc.js.

With the session started, the program then checks whether the session variable
'user' is currently assigned a value. If so, a user has logged in and the variable $logge
din is set to TRUE.

Based on the value of $loggedin, an if block displays one of two sets of menus. The
nonlogged-in set simply offers options of Home, Sign up, and Log in, whereas the log-
ged-in version offers full access to the project’s features. Additionally, if a user is logged
in, her username is appended in brackets to the page title and placed after the main
heading. We can freely refer to $user wherever we want to put in the name, because if
the user is not logged in, that variable is empty and will have no effect on the output.

476 | Chapter 21: Bringing It All Together



The styling applied to this file is in the file styles.css (detailed at the end of this chapter);
among other things, it creates a wide heading with a colored background and turns the
links in the lists to rounded buttons.

Example 21-2. header.php

<?php // header.php
session_start();
echo "<!DOCTYPE html>\n<html><head><script src='OSC.js'></script>";
include 'functions.php';

$userstr = ' (Guest)';

if (isset($_SESSION['user']))
{
    $user     = $_SESSION['user'];
    $loggedin = TRUE;
    $userstr  = " ($user)";
}
else $loggedin = FALSE;

echo "<title>$appname$userstr</title><link rel='stylesheet'" .
     "href='styles.css' type='text/css' />" .
     "</head><body><div class='appname'>$appname$userstr</div>";

if ($loggedin)
{
    echo "<br ><ul class='menu'>" .
         "<li><a href='members.php?view=$user'>Home</a></li>" .
         "<li><a href='members.php'>Members</a></li>" .
         "<li><a href='friends.php'>Friends</a></li>".
         "<li><a href='messages.php'>Messages</a></li>" .
         "<li><a href='profile.php'>Edit Profile</a></li>" .
         "<li><a href='logout.php'>Log out</a></li></ul><br />";
}
else
{
    echo ("<br /><ul class='menu'>" .
         "<li><a href='index.php'>Home</a></li>" .
         "<li><a href='signup.php'>Sign up</a></li>" .
         "<li><a href='login.php'>Log in</a></li></ul><br />" .
         "<span class='info'>&#8658; You must be logged in to " .
         "view this page.</span><br /><br />");
}
?>

Using the <br /> tag, as in the preceding example, is a quick and dirty
way of creating spacing in page layout. In this instance it works well,
but generally you will probably want to use CSS margins to fine-tune
the spacing around elements.

header.php | 477



setup.php
With the pair of included files written, it’s now time to set up the MySQL tables they
will use. This is done with Example 21-3, setup.php, which you should type in and load
into your browser before calling up any other files—otherwise, you’ll get numerous
MySQL errors.

The tables created are kept short and sweet, and have the following names and columns:

• members: username user (indexed), password pass

• messages: ID id (indexed), author auth (indexed), recipient recip, message type
pm, message message

• friends: username user (indexed), friend’s username friend

• profiles: username user (indexed), “about me” text

Because the function createTable first checks whether a table already exists, this pro-
gram can be safely called multiple times without generating any errors.

It is very likely that you will need to add many more columns to these tables if you
choose to expand on this project. If so, you may need to issue a MySQL DROP TABLE
command before recreating a table.

Example 21-3. setup.php

<html><head><title>Setting up database</title></head><body>

<h3>Setting up...</h3>

<?php // setup.php
include_once 'functions.php';

createTable('members',
            'user VARCHAR(16),
            pass VARCHAR(16),
            INDEX(user(6))');

createTable('messages',
            'id INT UNSIGNED AUTO_INCREMENT PRIMARY KEY,
            auth VARCHAR(16),
            recip VARCHAR(16),
            pm CHAR(1),
            time INT UNSIGNED,
            message VARCHAR(4096),
            INDEX(auth(6)),
            INDEX(recip(6))');

createTable('friends',
            'user VARCHAR(16),
            friend VARCHAR(16),
            INDEX(user(6)),
            INDEX(friend(6))');

478 | Chapter 21: Bringing It All Together



createTable('profiles',
            'user VARCHAR(16),
            text VARCHAR(4096),
            INDEX(user(6))');
?>

<br />...done.
</body></html>

index.php
This file is a trivial one, but it’s necessary nonetheless to give the project a home page.
All it does is display a simple welcome message. In a finished application, this would
be where you sell the virtues of your site to encourage signups.

Seeing as all the MySQL tables have been created and the include files saved, you can
now load Example 21-4, index.php, into your browser to get your first peek at the new
application. It should look like Figure 21-1.

Example 21-4. index.php

<?php // index.php
include_once 'header.php';

echo "<br /><span class='main'>Welcome to Robin's Nest,";

if ($loggedin) echo " $user, you are logged in.";
else           echo ' please sign up and/or log in to join in.';

?>

</span><br /><br /></body></html>

signup.php
Now we need a module to enable users to join the new network: that’s Exam-
ple 21-5, signup.php. This is a slightly longer program, but you’ve seen all its parts
before.

Let’s start by looking at the end block of HTML. This is a simple form that allows a
username and password to be entered. But note the use of the empty <span> given the
id of 'info'. This will be the destination of the Ajax call in this program that checks
whether a desired username is available. See Chapter 17 for a complete description of
how this works.

signup.php | 479



Checking for Username Availability
Now go back to the program start, and you’ll see a block of JavaScript that starts with
the function checkUser. This is called by the JavaScript onBlur event when focus is
removed from the username field of the form. First it sets the contents of the <span> I
mentioned (with the id of 'info') to an empty string, which clears it in case it previously
had a value.

Next a request is made to the program checkuser.php, which reports whether the user-
name user is available. The returned result of the Ajax call, a friendly message, is then
placed in the 'info' span.

After the JavaScript section comes some PHP code that you should recognize from the
discussion of form validation in Chapter 16. This section also uses the sanitize
String function to remove potentially malicious characters before looking up the user-
name in the database and, if it’s not already taken, inserting the new username $user
and password $pass.

Upon successfully signing up, the user is then prompted to log in. A more fluid response
at this point might be to automatically log in a newly created user, but as I don’t want
to overly complicate the code, I have kept the signup and login modules separate from
each other. I’m sure you can easily implement this if you want to.

This file uses the CSS class fieldname to arrange the form fields, aligning them neatly
under each other in columns. When loaded into a browser (and in conjunction with
checkuser.php, shown later) this program will look like Figure 21-2, where you can see
that the Ajax call has identified that the username Robin is available. If you would like
the password field to show only asterisks, change its type from text to password.

Figure 21-1. The main page of the site

480 | Chapter 21: Bringing It All Together



Example 21-5. signup.php

<?php // signup.php
include_once 'header.php';

echo <<<_END
<script>
function checkUser(user)
{
    if (user.value == '')
    {
        O('info').innerHTML = ''
        return
    }

    params  = "user=" + user.value
    request = new ajaxRequest()
    request.open("POST", "checkuser.php", true)
    request.setRequestHeader("Content-type", "application/x-www-form-urlencoded")
    request.setRequestHeader("Content-length", params.length)
    request.setRequestHeader("Connection", "close")

    request.onreadystatechange = function()
    {
        if (this.readyState == 4)
            if (this.status == 200)
                if (this.responseText != null)
                    O('info').innerHTML = this.responseText
    }
    request.send(params)
}

function ajaxRequest()
{
    try { var request = new XMLHttpRequest() }
    catch(e1) {
        try { request = new ActiveXObject("Msxml2.XMLHTTP") }
        catch(e2) {
            try { request = new ActiveXObject("Microsoft.XMLHTTP") }
            catch(e3) {
                request = false
    }   }   }
    return request
}
</script>
<div class='main'><h3>Please enter your details to sign up</h3>
_END;

$error = $user = $pass = "";
if (isset($_SESSION['user'])) destroySession();

if (isset($_POST['user']))
{
    $user = sanitizeString($_POST['user']);
    $pass = sanitizeString($_POST['pass']);

signup.php | 481



    if ($user == "" || $pass == "")
        $error = "Not all fields were entered<br /><br />";
    else
    {
        if (mysql_num_rows(queryMysql("SELECT * FROM members WHERE user='$user'")))
            $error = "That username already exists<br /><br />";
        else
            {
            queryMysql("INSERT INTO members VALUES('$user', '$pass')");
            die("<h4>Account created</h4>Please Log in.<br /><br />");
        }
    }
}

echo <<<_END
<form method='post' action='signup.php'>$error
<span class='fieldname'>Username</span>
<input type='text' maxlength='16' name='user' value='$user'
    onBlur='checkUser(this)'/><span id='info'></span><br />
<span class='fieldname'>Password</span>
<input type='text' maxlength='16' name='pass'
    value='$pass' /><br />
_END;
?>

<span class='fieldname'>&nbsp;</span>
<input type='submit' value='Sign up' />
</form></div><br /></body></html>

On a production server, I wouldn’t recommend storing user passwords
in the clear as I’ve done here (for reasons of space and simplicity). In-
stead, you should salt them and store them as MD5 or other one-way
hash strings. See Chapter 12 for more details on how to do this.

checkuser.php
To go with signup.php, Example 21-6 presents checkuser.php, the program that looks
up a username in the database and returns a string indicating whether or not it has
already been taken.

Because it relies on the functions sanitizeString and queryMysql, the program first
includes the file functions.php. Then, if the $_POST variable 'user' has a value, the func-
tion looks it up in the database and, depending on whether it already exists as a user-
name, outputs either “Sorry, this username is taken” or “This username is available.”
Just checking the function mysql_num_rows against the result is sufficient for this, as it
will return 0 if it is not found, or 1 if it is.

The HTML entities &#x2718; and &#x2714; are also used to preface the string with either
a cross or a check mark.

482 | Chapter 21: Bringing It All Together



Example 21-6. checkuser.php

<?php // checkuser.php
include_once 'functions.php';

if (isset($_POST['user']))
{
    $user = sanitizeString($_POST['user']);

    if (mysql_num_rows(queryMysql("SELECT * FROM members
        WHERE user='$user'")))
        echo  "<span class='taken'>&nbsp;&#x2718; " .
              "Sorry, this username is taken</span>";
    else echo "<span class='available'>&nbsp;&#x2714; ".
              "This username is available</span>";
}
?>

login.php
With users now able to sign up to the site, Example 21-7, login.php, provides the code
needed to let them log in. Like the signup page, it features a simple HTML form and
some basic error checking, as well as using sanitizeString before querying the MySQL
database.

Figure 21-2. The signup page

login.php | 483



The main thing to note here is that, upon successful verification of the username and
password, the session variables 'user' and 'pass' are given the username and password
values. As long as the current session remains active these variables will be accessible
by all the programs in the project, allowing them to automatically provide access to
logged-in users.

You may be interested in the use of the die function upon successfully logging in. This
is there because it combines an echo and an exit command in one, thus saving a line
of code. For styling, this file (like most of the others) applies the class main to indent
the content from the lefthand edge.

When you call up this program in your browser, it should look like Figure 21-3. Note
how the <input /> type of password has been used here to mask the password with
asterisks to prevent it from being viewed by anyone looking over the user’s shoulder.

Example 21-7. login.php

<?php // login.php
include_once 'header.php';
echo "<div class='main'><h3>Please enter your details to log in</h3>";
$error = $user = $pass = "";

if (isset($_POST['user']))
{
    $user = sanitizeString($_POST['user']);
    $pass = sanitizeString($_POST['pass']);

    if ($user == "" || $pass == "")
    {
        $error = "Not all fields were entered<br />";
    }
    else
    {
        $query = "SELECT user,pass FROM members
            WHERE user='$user' AND pass='$pass'";

        if (mysql_num_rows(queryMysql($query)) == 0)
        {
            $error = "<span class='error'>Username/Password
                      invalid</span><br /><br />";
        }
        else
        {
            $_SESSION['user'] = $user;
            $_SESSION['pass'] = $pass;
            die("You are now logged in. Please <a href='members.php?view=$user'>" .
                "click here</a> to continue.<br /><br />");
        }
    }
}

echo <<<_END
<form method='post' action='login.php'>$error

484 | Chapter 21: Bringing It All Together



<span class='fieldname'>Username</span><input type='text'
    maxlength='16' name='user' value='$user' /><br />
<span class='fieldname'>Password</span><input type='password'
    maxlength='16' name='pass' value='$pass' />
_END;
?>

<br />
<span class='fieldname'>&nbsp;</span>
<input type='submit' value='Login' />
</form><br /></div></body></html>

profile.php
One of the first things that new users may want to do after signing up and logging in
is to create a profile, which can be done via Example 21-8, profile.php. I think you’ll
find some interesting code here, such as routines to upload, resize, and sharpen images.

Let’s start by looking at the main HTML at the end of the code. This is like the forms
you’ve just seen, but this time it has the parameter enctype='multipart/form-data'.
This allows you to send more than one type of data at a time, enabling the posting of
an image as well as some text. There’s also an <input /> type of file, which creates a
browse button that a user can press to select a file to be uploaded.

Figure 21-3. The login page

profile.php | 485



When the form is submitted, the code at the start of the program is executed. The first
thing it does is ensure that a user is logged in before allowing program execution to
proceed. Only then is the page heading displayed.

Adding the “About Me” Text
Next, the POST variable 'text' is checked to see whether some text was posted to the
program. If so, it is sanitized and all long whitespace sequences (including returns and
line feeds) are replaced with single spaces. This function incorporates a double security
check, ensuring that the user actually exists in the database and that no attempted
hacking can succeed before inserting this text into the database, where it will become
the user’s “about me” details.

If no text was posted, the database is queried to see whether any already exists in order
to prepopulate the textarea for the user to edit it.

Adding a Profile Image
Next we move on to the section where the $_FILES system variable is checked to see
whether an image has been uploaded. If so, a string variable called $saveto is created,
based on the user’s username followed by the extension .jpg. For example, if the user-
name is Jill, $saveto will have the value Jill.jpg. This is the file where the uploaded image
will be saved for use in the user’s profile.

Following this, the uploaded image type is examined; it is accepted only if it is a JPEG,
PNG, or GIF image. If the image is not of an allowed type, the flag $typeok is set to
FALSE, preventing the final section of image upload code from being processed. But if
the image is accepted, the variable $src is populated with the uploaded image using
one of the imagecreatefrom functions, according to the image type uploaded. The image
is now in a raw format that PHP can process.

Processing the Image
First, the image’s dimensions are stored in $w and $h using the following statement,
which is a quick way of assigning values from an array to separate variables:

list($w, $h) = getimagesize($saveto);

Then, using the value of $max (which is set to 100), new dimensions are calculated that
will result in a new image of the same ratio, but with no dimension greater than 100
pixels. This results in giving the variables $tw and $th the new values needed. If you
want smaller or larger thumbnails, simply change the value of $max accordingly.

Next, the function imagecreatetruecolor is called to create a new, blank canvas $tw
wide and $th high in $tmp. Then imagecopyresampled is called to resample the image
from $src, to the new $tmp. Sometimes resampling images can result in a slightly blurred

486 | Chapter 21: Bringing It All Together



copy, so the next piece of code uses the imageconvolution function to sharpen up the
image a bit.

Finally the image is saved as a JPEG file in the location defined by the variable
$saveto, after which both the original and the resized image canvases are removed from
memory using the imagedestroy function, returning the memory that was used.

Displaying the Current Profile
Last but not least, so that the user can see what the current profile looks like before
editing it, the showProfile function from functions.php is called prior to outputting the
form HTML. If no profile exists yet, nothing will be displayed.

When a profile image is displayed, CSS is applied to it to provide a border, a shadow,
and a margin to its right, to separate the profile text from the image.

The result of loading Example 21-8 into a browser is shown in Figure 21-4, where you
can see that the textarea has been prepopulated with the “about me” text.

Example 21-8. profile.php

<?php // profile.php
include_once 'header.php';

if (!$loggedin) die();

echo "<div class='main'><h3>Your Profile</h3>";

if (isset($_POST['text']))
{
    $text = sanitizeString($_POST['text']);
    $text = preg_replace('/\s\s+/', ' ', $text);

    if (mysql_num_rows(queryMysql("SELECT * FROM profiles WHERE user='$user'")))
         queryMysql("UPDATE profiles SET text='$text' where user='$user'");
    else queryMysql("INSERT INTO profiles VALUES('$user', '$text')");
}
else
{
    $result = queryMysql("SELECT * FROM profiles WHERE user='$user'");

    if (mysql_num_rows($result))
    {
        $row  = mysql_fetch_row($result);
        $text = stripslashes($row[1]);
    }
    else $text = "";
}

$text = stripslashes(preg_replace('/\s\s+/', ' ', $text));

if (isset($_FILES['image']['name']))
{

profile.php | 487



    $saveto = "$user.jpg";
    move_uploaded_file($_FILES['image']['tmp_name'], $saveto);
    $typeok = TRUE;

    switch($_FILES['image']['type'])
    {
        case "image/gif":   $src = imagecreatefromgif($saveto); break;
        case "image/jpeg":  // Allow both regular and progressive jpegs
        case "image/pjpeg": $src = imagecreatefromjpeg($saveto); break;
        case "image/png":   $src = imagecreatefrompng($saveto); break;
        default:            $typeok = FALSE; break;
    }

    if ($typeok)
    {
        list($w, $h) = getimagesize($saveto);

        $max = 100;
        $tw  = $w;
        $th  = $h;

        if ($w > $h && $max < $w)
        {
            $th = $max / $w * $h;
            $tw = $max;
        }
        elseif ($h > $w && $max < $h)
        {
            $tw = $max / $h * $w;
            $th = $max;
        }
        elseif ($max < $w)
        {
            $tw = $th = $max;
        }

        $tmp = imagecreatetruecolor($tw, $th);
        imagecopyresampled($tmp, $src, 0, 0, 0, 0, $tw, $th, $w, $h);
        imageconvolution($tmp, array(array(−1, −1, −1),
            array(−1, 16, −1), array(−1, −1, −1)), 8, 0);
        imagejpeg($tmp, $saveto);
        imagedestroy($tmp);
        imagedestroy($src);
    }
}

showProfile($user);

echo <<<_END
<form method='post' action='profile.php' enctype='multipart/form-data'>
<h3>Enter or edit your details and/or upload an image</h3>
<textarea name='text' cols='50' rows='3'>$text</textarea><br />
_END;
?>

488 | Chapter 21: Bringing It All Together



Image: <input type='file' name='image' size='14' maxlength='32' />
<input type='submit' value='Save Profile' />
</form></div><br /></body></html>

members.php
Using Example 21-9, members.php, your users will be able to find other members and
choose to add them as friends (or drop them if they are already friends). This program
has two modes. The first shows a user’s profile, and the second lists all members and
their relationships to you.

Figure 21-4. Editing a user profile

members.php | 489



Viewing a User’s Profile
In the first mode a test is made for the GET variable 'view'. If it exists, a user wants to
view someone’s profile; the program does that using the showProfile function, along
with providing a couple of links to the user’s friends and messages.

Adding and Dropping Friends
After that the two GET variables, 'add' and 'remove', are tested. If one or the other has
a value, it will be the username of a user to either add or drop as a friend. This is achieved
by looking up the user in the MySQL friends table and either inserting a friend’s user-
name or removing it from the table.

Of course, every posted variable is first passed through sanitizeString to ensure it is
safe to use with MySQL.

Listing All Members
The final section of code issues a SQL query to list all usernames. The code places the
number returned in the variable $num before outputting the page heading.

A for loop then iterates through each and every member, fetching their details and then
looking them up in the friends table to see if they are either being followed by or are
a follower of the user. Anyone who is both a follower and a followee is classed as a
mutual friend.

The variable $t1 is nonzero when the user is following another member, and $t2 is
nonzero when another member is following the user. Depending on these values, text
is displayed after each username showing that user’s relationship (if any) to the current
user.

Icons are also displayed to show the relationships. A double-pointed arrow means that
the users are mutual friends, a left-pointing arrow indicates the user is following another
member, and a right-pointing arrow indicates that another member is following the
user.

Finally, depending on whether the user is following another member, a link is provided
to either add or drop that member as a friend.

When you call up Example 21-9 in a browser, it will look like Figure 21-5. See how the
user is invited to “follow” a nonfollowing member, but if the member is already fol-
lowing the user, a “recip” link to reciprocate the friendship is offered. In the case of a
member the user is already following, the user can select “drop” to end the following.

490 | Chapter 21: Bringing It All Together



Example 21-9. members.php

<?php // members.php
include_once 'header.php';

if (!$loggedin) die();

echo "<div class='main'>";

if (isset($_GET['view']))
{
    $view = sanitizeString($_GET['view']);

    if ($view == $user) $name = "Your";
    else                $name = "$view's";

    echo "<h3>$name Profile</h3>";
    showProfile($view);
    echo "<a class='button' href='messages.php?view=$view'>" .
         "View $name messages</a><br /><br />";
    die("</div></body></html>");
}

if (isset($_GET['add']))
{
    $add = sanitizeString($_GET['add']);

    if (!mysql_num_rows(queryMysql("SELECT * FROM friends
        WHERE user='$add' AND friend='$user'")))
        queryMysql("INSERT INTO friends VALUES ('$add', '$user')");
}
elseif (isset($_GET['remove']))
{
    $remove = sanitizeString($_GET['remove']);
    queryMysql("DELETE FROM friends WHERE user='$remove' AND friend='$user'");
}

$result = queryMysql("SELECT user FROM members ORDER BY user");
$num    = mysql_num_rows($result);

echo "<h3>Other Members</h3><ul>";

for ($j = 0 ; $j < $num ; ++$j)
{
    $row = mysql_fetch_row($result);
    if ($row[0] == $user) continue;

    echo "<li><a href='members.php?view=$row[0]'>$row[0]</a>";
    $follow = "follow";

    $t1 = mysql_num_rows(queryMysql("SELECT * FROM friends
        WHERE user='$row[0]' AND friend='$user'"));
    $t2 = mysql_num_rows(queryMysql("SELECT * FROM friends
        WHERE user='$user' AND friend='$row[0]'"));

    if (($t1 + $t2) > 1) echo " &harr; is a mutual friend";

members.php | 491



    elseif ($t1)         echo " &larr; you are following";
    elseif ($t2)       { echo " &rarr; is following you";
                          $follow = "recip"; }

    if (!$t1) echo " [<a href='members.php?add=".$row[0]    . "'>$follow</a>]";
    else      echo " [<a href='members.php?remove=".$row[0] . "'>drop</a>]";
}
?>

<br /></div></body></html>

On a production server, there could be thousands or even hundreds of
thousands of users, so you would probably substantially modify this
program to include support for searching the “about me” text, paging
of the output a screen at a time, and so on.

friends.php
The module that shows a user’s friends and followers is Example 21-10, friends.php.
This interrogates the friends table just like the members.php program, but only for a
single user. It then shows all of that user’s mutual friends and followers, along with the
people he is following.

Figure 21-5. Using the members module

492 | Chapter 21: Bringing It All Together



All the followers are saved into an array called $followers and all the people being
followed are placed in an array called $following. Then a neat piece of code is used to
extract all those that are both following and followed by the user, like this:

$mutual = array_intersect($followers, $following);

The array_intersect function extracts all members common to both arrays and returns
a new array containing only those people. This array is then stored in $mutual. Now
it’s possible to use the array_diff function for each of the $followers and $following
arrays to keep only those people who are not mutual friends, like this:

$followers = array_diff($followers, $mutual);
$following = array_diff($following, $mutual);

This results in the array $mutual containing only mutual friends, $followers containing
only followers (and no mutual friends), and $following containing only people being
followed (and no mutual friends).

Armed with these arrays, it’s a simple matter to separately display each category of
members, as can be seen in Figure 21-6. The PHP sizeof function returns the number
of elements in an array; here I use it just to trigger code when the size is nonzero (that
is, when friends of that type exist). Note how, by using the variables $name1, $name2,
and $name3 in the relevant places, the code can tell when you (the user) are looking at
your own friends list, so the site displays the words Your and You are, instead of simply
displaying the username. The commented line can be uncommented if you wish to
display the user’s profile information on this screen.

Example 21-10. friends.php

<?php // friends.php
include_once 'header.php';

if (!$loggedin) die();

if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
else                      $view = $user;

if ($view == $user)
{
    $name1 = $name2 = "Your";
    $name3 =          "You are";
}
else
{
    $name1 = "<a href='members.php?view=$view'>$view</a>'s";
    $name2 = "$view's";
    $name3 = "$view is";
}

echo "<div class='main'>";

// Uncomment this line if you wish the user's profile to show here
// showProfile($view);

friends.php | 493



$followers = array();
$following = array();

$result = queryMysql("SELECT * FROM friends WHERE user='$view'");
$num    = mysql_num_rows($result);

for ($j = 0 ; $j < $num ; ++$j)
{
    $row           = mysql_fetch_row($result);
    $followers[$j] = $row[1];
}

$result = queryMysql("SELECT * FROM friends WHERE friend='$view'");
$num    = mysql_num_rows($result);

for ($j = 0 ; $j < $num ; ++$j)
{
    $row           = mysql_fetch_row($result);
    $following[$j] = $row[0];
}

$mutual    = array_intersect($followers, $following);
$followers = array_diff($followers, $mutual);
$following = array_diff($following, $mutual);
$friends   = FALSE;

if (sizeof($mutual))
{
    echo "<span class='subhead'>$name2 mutual friends</span><ul>";
    foreach($mutual as $friend)
        echo "<li><a href='members.php?view=$friend'>$friend</a>";
    echo "</ul>";
    $friends = TRUE;
}

if (sizeof($followers))
{
    echo "< span class='subhead'>$name2 followers</span><ul>";
    foreach($followers as $friend)
        echo "<li><a href='members.php?view=$friend'>$friend</a>";
    echo "</ul>";
    $friends = TRUE;
}

if (sizeof($following))
{
    echo "< span class='subhead'>$name3 following</span><ul>";
    foreach($following as $friend)
        echo "<li><a href='members.php?view=$friend'>$friend</a>";
    echo "</ul>";
    $friends = TRUE;
}

if (!$friends) echo "<br />You don't have any friends yet.<br /><br />";

494 | Chapter 21: Bringing It All Together



echo "<a class='button' href='messages.php?view=$view'>" .
     "View $name2 messages</a>";
?>

</div><br /></body></html>

Figure 21-6. Displaying a user’s friends and followers

messages.php
The last of the main modules is Example 21-11, messages.php. The program starts by
checking whether a message has been posted in the POST variable 'text'. If so, it is
inserted into the messages table. At the same time, the value of 'pm' is also stored. This
indicates whether a message is private or public: a 0 represents a public message and
1 is private.

Next, the user’s profile and a form for entering a message are displayed, along with
radio buttons to choose between sending a private or public message. After this, all the
messages are shown: if they are public, all users can see them, but private messages are
visible only to the sender and recipient. This is all handled by a couple of queries to the

messages.php | 495



MySQL database. Additionally, when a message is private, it is introduced by the word
“whispered” and shown in italic.

Finally, the program displays a couple of links to refresh the messages (in case another
user has posted one in the meantime) and to view the user’s friends. The trick using
the variables $name1 and $name2 is again used so that when a user views his own profile
the word Your is displayed instead of the username.

You can see the result of viewing this program with a browser in Figure 21-7. Note how
users viewing their own messages are provided with links to erase any they don’t want
to preserve.

Example 21-11. messages.php

<?php // messages.php
include_once 'header.php';

if (!$loggedin) die();

if (isset($_GET['view'])) $view = sanitizeString($_GET['view']);
else                      $view = $user;

if (isset($_POST['text']))
{
    $text = sanitizeString($_POST['text']);

    if ($text != "")
    {
        $pm   = substr(sanitizeString($_POST['pm']),0,1);
        $time = time();
        queryMysql("INSERT INTO messages VALUES(NULL, '$user',
            '$view', '$pm', $time, '$text')");
    }
}

if ($view != "")
{
    if ($view == $user) $name1 = $name2 = "Your";
    else
    {
        $name1 = "<a href='members.php?view=$view'>$view</a>'s";
        $name2 = "$view's";
    }

    echo "<div class='main'><h3>$name1 Messages</h3>";
    showProfile($view);

    echo <<<_END
<form method='post' action='messages.php?view=$view'>
Type here to leave a message:<br />
<textarea name='text' cols='40' rows='3'></textarea><br />
Public<input type='radio' name='pm' value='0' checked='checked' />
Private<input type='radio' name='pm' value='1' />
<input type='submit' value='Post Message' /></form><br />

496 | Chapter 21: Bringing It All Together



_END;

    if (isset($_GET['erase']))
    {
        $erase = sanitizeString($_GET['erase']);
        queryMysql("DELETE FROM messages WHERE id=$erase AND recip='$user'");
    }

    $query  = "SELECT * FROM messages WHERE recip='$view' ORDER BY time DESC";
    $result = queryMysql($query);
    $num    = mysql_num_rows($result);

    for ($j = 0 ; $j < $num ; ++$j)
    {
        $row = mysql_fetch_row($result);

        if ($row[3] == 0 || $row[1] == $user || $row[2] == $user)
        {
            echo date('M jS \'y g:ia:', $row[4]);
            echo " <a href='messages.php?view=$row[1]'>$row[1]</a> ";

            if ($row[3] == 0)
                 echo "wrote: &quot;$row[5]&quot; ";
            else echo "whispered: <span class='whisper'>" .
                      "&quot;$row[5]&quot;</span> ";

            if ($row[2] == $user)
                echo "[<a href='messages.php?view=$view" .
                               "&erase=$row[0]'>erase</a>]";

            echo "<br />";
        }
    }
}

if (!$num) echo "<br /><span class='info'>No messages yet</span><br /><br />";

echo "<br /><a class='button' href='messages.php?view=$view'>Refresh messages</a>".
     "<a class='button' href='friends.php?view=$view'>View $name2 friends</a>";?>

</div><br /></body></html>

logout.php
The final ingredient in our social networking recipe is Example 21-12, logout.php, the
logout page that closes a session and deletes any associated data and cookies. The result
of calling up this program can be seen in Figure 21-8, where the user is now asked to
click on a link that will take that user to the un-logged-in home page and remove the
logged-in links from the top of the screen. Of course, you could write a JavaScript or
PHP redirect to do this (probably a good idea if you wish to keep logging out looking
clean).

logout.php | 497



Example 21-12. logout.php

<?php // logout.php
include_once 'header.php';

if (isset($_SESSION['user']))
{
    destroySession();
    echo "<div class='main'>You have been logged out. Please " .
         "<a href='index.php'>click here</a> to refresh the screen.";
}
else echo "<div class='main'><br />" .
          "You cannot log out because you are not logged in";
?>

<br /><br /></div></body></html>

Figure 21-7. The messaging module

498 | Chapter 21: Bringing It All Together



styles.css
The style sheet used for this project is shown in Example 21-13. There are a number
of sets of declarations, as follows:

*
Sets the default font family and size for the project using the universal selector.

body
Sets the width of the project window, centers it horizontally, specifies a background
color, and gives it a border.

html
Sets the background color of the HTML section.

img
Gives all images a border, a shadow, and a righthand margin.

li a, and .button
Remove underlines from hyperlinks in all <a> tags that are within a <li> element,
and all elements employing the button class.

li:ahover and .button:hover
Set the color in which <li> elements and the button class should display text when
hovered over.

.appname
Sets the properties for the heading (which uses the appname class), including cen-
tering, background and text colors, the font family and size, and the padding.

.fieldname
Sets the width of elements using the fieldname class by first floating them.

Figure 21-8. The logout page

styles.css | 499



.main
Applies an indent to elements that use it.

.info
Used for displaying important information: sets a background and foreground text
color, applies a border and padding, and indents elements that employ it.

.menu li, and .button
Ensure that all <li> elements and the button class display inline, have padding
applied, and have a border, a background and foreground text color, a right margin,
rounded borders, and a shadow (resulting in a button effect).

.subhead
Emphasizes sections of text.

.taken, .available, .error, and .whisper
Set the colors and font styles to be used for displaying different types of
information.

Example 21-13. The project’s style sheet

/* styles.css */

* {
    font-family:verdana,sans-serif;
    font-size  :14pt; }

body {
    width     :700px;
    position  :relative;
    margin    :7px auto;
    background:#f8f8f8;
    border    :1px solid #888; }

html {
    background:#fff }

img {
    border            :1px solid black;
    margin-right      :15px;
    -moz-box-shadow   :2px 2px 2px #888;
    -webkit-box-shadow:2px 2px 2px #888;
    box-shadow        :2px 2px 2px #888; }

li a, .button {
    text-decoration:none; }

li a:hover, .button:hover {
    color:green; }

.appname {
    text-align :center;
    background :#eb8;
    color      :#40d;
    font-family:helvetica;

500 | Chapter 21: Bringing It All Together



    font-size  :20pt;
    padding    :4px; }

.fieldname {
    float:left;
    width:120px; }

.main {
    margin-left:40px; }

.info {
    background :lightgreen;
    color      :blue;
    border     :1px solid green;
    padding    :5px 10px;
    margin-left:40px; }

.menu li, .button {
    display           :inline;
    padding           :4px 6px;
    border            :1px solid #777;
    background        :#ddd;
    color             :#d04;
    margin-right      :8px;
    border-radius     :5px;
    -moz-box-shadow   :2px 2px 2px #888;
    -webkit-box-shadow:2px 2px 2px #888;
    box-shadow        :2px 2px 2px #888; }

.subhead {
    font-weight:bold; }

.taken, .error {
    color:red; }

.available {
    color:green; }

.whisper {
    font-style:italic;
    color     :#006600; }

And that, as they say, is that. If you write anything based on this code, or any other
examples in this book, or have gained in any other way from it, then I’m glad to have
been of help, and thank you for reading this book.

But before you go out and try out your newly learned skills on the Web at large, please
take a browse through the appendixes that follow, as there’s a lot of additional infor-
mation there that you should find useful.

styles.css | 501





APPENDIX A

Solutions to the Chapter Questions

Chapter 1 Answers
1. The four components required to create a fully dynamic web page are a web server

(such as Apache), a server-side scripting language (PHP), a database (MySQL), and
a client-side scripting language (JavaScript).

2. HTML stands for HyperText Markup Language: it is used to create the web page
itself, including text and markup commands.

3. Like nearly all database engines, MySQL accepts commands in Structured Query
Language (SQL). SQL is the way that every user (including a PHP program) com-
municates with MySQL.

4. PHP runs on the server, whereas JavaScript runs on the client. PHP can commu-
nicate with the database to store and retrieve data, but it can’t alter the user’s web
page quickly and dynamically. JavaScript has the opposite benefits and drawbacks.

5. CSS stands for Cascading Style Sheets: styling and layout rules applied to the ele-
ments in an HTML document.

6. Some open source technologies are maintained by companies that accept bug re-
ports and fix the errors like any software company. But open source software also
depends on a community, so your bug report may be handled by any user who
understands the code well enough. You may someday fix bugs in an open source
tool yourself.

Chapter 2 Answers
1. WAMP stands for “Windows, Apache, MySQL, and PHP,” while the M in MAMP

stands for Mac instead of Windows and the L in LAMP stands for Linux. They all
refer to a complete solution for hosting dynamic web pages.

503



2. Both 127.0.0.1 and http://localhost are ways of referring to the local computer.
When a WAMP or MAMP is properly configured, you can type either into a
browser’s address bar to call up the default page on the local server.

3. FTP stands for File Transfer Protocol. An FTP program is used to transfer files back
and forth between a client and a server.

4. It is necessary to FTP files to a remote server in order to update them, which can
substantially increase development time if this action is carried out many times in
a session.

5. Dedicated program editors are smart and can highlight problems in your code
before you even run it.

Chapter 3 Answers
1. The tag used to start PHP interpreting code is <?php ... ?>, which can be shortened

to <? ... ?>.

2. You can use // for a single-line comment or /* ... */ to span multiple lines.

3. All PHP statements must end with a semicolon (;).

4. With the exception of constants, all PHP variables must begin with $.

5. A variable holds a value that can be a string, a number, or other data.

6. $variable = 1 is an assignment statement, whereas $variable == 1 is a comparison
operator. Use $variable = 1 to set the value of $variable. Use $variable == 1 to
find out later in the program whether $variable equals 1. If you mistakenly use
$variable = 1 where you meant to do a comparison, it will do two things you
probably don’t want: set $variable to 1 and return a true value all the time, no
matter what its previous value was.

7. A hyphen is reserved for the subtraction operators. A construct like $current-
user would be harder to interpret if hyphens were also allowed in variable names
and, in any case, would lead programs to be ambiguous.

8. Variable names are case-sensitive. $This_Variable is not the same as $this_vari
able.

9. You cannot use spaces in variable names, as this would confuse the PHP parser.
Instead, try using the _ (underscore).

10. To convert one variable type to another, reference it and PHP will automatically
convert it for you.

11. There is no difference between ++$j and $j++ unless the value of $j is being tested,
assigned to another variable, or passed as a parameter to a function. In such cases,
++$j increments $j before the test or other operation is performed, whereas $j++
performs the operation and then increments $j.

504 | Appendix A: Solutions to the Chapter Questions



12. Generally, the operators && and and are interchangeable except where precedence
is important, in which case && has a high precedence while and has a low one.

13. You can use multiple lines within quotation marks or the <<< _END ... _END con-
struct to create a multiline echo or assignment.

14. You cannot redefine constants because, by definition, once defined they retain their
value until the program terminates.

15. You can use \' or \" to escape a single or double quote.

16. The echo and print commands are similar, except that print is a PHP function and
takes a single argument while echo is a construct that can take multiple arguments.

17. The purpose of functions is to separate discrete sections of code into their own,
self-contained sections that can be referenced by a single function name.

18. You can make a variable accessible to all parts of a PHP program by declaring it as
global.

19. If you generate data within a function, you can convey the data to the rest of the
program by returning a value or modifying a global variable.

20. When you combine a string with a number, the result is another string.

Chapter 4 Answers
1. In PHP, TRUE represents the value 1 and FALSE represents NULL, which can be thought

of as “nothing” and is output as the empty string.

2. The simplest forms of expressions are literals (such as numbers and strings) and
variables, which simply evaluate to themselves.

3. The difference between unary, binary, and ternary operators is the number of
operands each requires (one, two, and three, respectively).

4. The best way to force your own operator precedence is to place parentheses around
subexpressions to which you wish to give high precedence.

5. Operator associativity refers to the direction of processing (left to right or right to
left).

6. You use the identity operator when you wish to bypass PHP’s automatic operand
type changing (also called type casting).

7. The three conditional statement types are if, switch, and the ? operator.

8. To skip the current iteration of a loop and move on to the next one, use a con
tinue statement.

9. Loops using for statements are more powerful than while loops because they sup-
port two additional parameters to control the loop handling.

10. Most conditional expressions in if and while statements are literal (or Boolean)
and therefore trigger execution when they evaluate to TRUE. Numeric expressions
trigger execution when they evaluate to a nonzero value. String expressions trigger

Chapter 4 Answers | 505



execution when they evaluate to a nonempty string. A NULL value is evaluated as
false and therefore does not trigger execution.

Chapter 5 Answers
1. Using functions avoids the need to copy or rewrite similar code sections many times

over by combining sets of statements together so that they can be called by a simple
name.

2. By default, a function can return a single value. But by utilizing arrays, references,
and global variables, any number of values can be returned.

3. When you reference a variable by name, such as by assigning its value to another
variable or by passing its value to a function, its value is copied. The original does
not change when the copy is changed. But if you reference a variable, only a pointer
(or reference) to its value is used, so that a single value is referenced by more than
one name. Changing the value of the reference will change the original as well.

4. Scope refers to which parts of a program can access a variable. For example, a
variable of global scope can be accessed by all parts of a PHP program.

5. To incorporate one file within another, you can use the include or require direc-
tives, or their safer variants, include_once and require_once.

6. A function is a set of statements referenced by a name that can receive and return
values. An object may contain zero, one, or many functions (which are then called
methods) as well as variables (which are called properties), all combined in a single
unit.

7. To create a new object in PHP, use the new keyword like this: $object = new Class.

8. To create a subclass, use the extends keyword with syntax such as this: class Sub
class extends Parentclass.

9. To call a piece of initializing code when an object is created, create a constructor
method called __construct within the class and place your code there.

10. Explicitly declaring properties within a class is unnecessary, as they will be im-
plicitly declared upon first use. However, it is considered good practice as it helps
with code readability and debugging, and is especially useful to other people who
may have to maintain your code.

Chapter 6 Answers
1. A numeric array can be indexed numerically using numbers or numeric variables.

An associative array uses alphanumeric identifiers to index elements.

2. The main benefit of the array keyword is that it enables you to assign several values
at a time to an array without repeating the array name.

506 | Appendix A: Solutions to the Chapter Questions



3. Both the each function and the foreach...as loop construct return elements from
an array; both start at the beginning and increment a pointer to make sure the next
element is returned each time, and both return FALSE when the end of the array is
reached. The difference is that the each function returns just a single element, so
it is usually wrapped in a loop. The foreach...as construct is already a loop, exe-
cuting repeatedly until the array is exhausted or you explicitly break out of the loop.

4. To create a multidimensional array, you need to assign additional arrays to ele-
ments of the main array.

5. You can use the count function to count the number of elements in an array.

6. The purpose of the explode function is to extract sections from a string that are
separated by an identifier, such as extracting words separated by spaces within a
sentence.

7. To reset PHP’s internal pointer into an array back to the first element, call the
reset function.

Chapter 7 Answers
1. The conversion specifier you would use to display a floating-point number is %f.

2. To take the input string “Happy Birthday” and output the string “**Happy”, you
could use a printf statement such as printf("%'*7.5s", "Happy Birthday");.

3. To send the output from printf to a variable instead of to a browser, you would
use sprintf instead.

4. To create a Unix timestamp for 7:11 AM on May 2, 2016, you could use the com-
mand $timestamp = mktime(7, 11, 0, 5, 2, 2016);.

5. You would use the w+ file access mode with fopen to open a file in write and read
mode, with the file truncated and the file pointer at the start.

6. The PHP command for deleting the file file.txt is unlink('file.txt');.

7. The PHP function file_get_contents is used to read in an entire file in one go. It
will also read a file from across the Internet if provided with a URL.

8. The PHP associative array $_FILES contains the details about uploaded files.

9. The PHP exec function enables the running of system commands.

10. In XHTML 1.0, the tag <input type=file name=file size=10> should be replaced
with the following syntax: <input type="file" name="file" size="10" />. All pa-
rameters must be quoted, and tags without closing tags must be self-closed
using />.

Chapter 7 Answers | 507



Chapter 8 Answers
1. The semicolon is used by MySQL to separate or end commands. If you forget to

enter it, MySQL will issue a prompt and wait for you to enter it.

2. To see the available databases, type SHOW databases;. To see tables within a data-
base that you are using, type SHOW tables;. (These commands are case-insensitive.)

3. To create this new user, use the GRANT command like this:

GRANT ALL ON newdatabase.* TO 'newuser' IDENTIFIED BY 'newpassword';

4. To view the structure of a table, type DESCRIBE tablename;.

5. The purpose of a MySQL index is to substantially decrease database access times
by maintaining indexes of one or more key columns, which can then be quickly
searched to locate rows within a table.

6. A FULLTEXT index enables natural-language queries to find keywords, wherever they
are in the FULLTEXT column(s), in much the same way as using a search engine.

7. A stopword is a word that is so common that it is considered not worth including
in a FULLTEXT index or using in searches. However, it does participate in a search
when it is part of a larger string bounded by double quotes.

8. SELECT DISTINCT essentially affects only the display, choosing a single row and
eliminating all the duplicates. GROUP BY does not eliminate rows, but combines all
the rows that have the same value in the column. Therefore, GROUP BY is useful for
performing operations such as COUNT on groups of rows. SELECT DISTINCT is not
useful for that purpose.

9. To return only those rows containing the word Langhorne somewhere in the col-
umn author of the table classics, use a command such as:

SELECT * FROM classics WHERE author LIKE "%Langhorne%";

10. When joining two tables together, they must share at least one common column
such as an ID number or, as in the case of the classics and customers tables, the
isbn column.

Chapter 9 Answers
1. The term relationship refers to the connection between two pieces of data that have

some association, such as a book and its author, or a book and the customer who
bought the book. A relational database such as MySQL specializes in storing and
retrieving such relations.

2. The process of removing duplicate data and optimizing tables is called
normalization.

508 | Appendix A: Solutions to the Chapter Questions



3. The three rules of First Normal Form are: (1) there should be no repeating columns
containing the same kind of data, (2) all columns should contain a single value,
and (3) there should be a primary key to uniquely identify each row.

4. To satisfy Second Normal Form, columns whose data repeats across multiple rows
should be removed to their own tables.

5. In a one-to-many relationship, the primary key from the table on the “one” side
must be added as a separate column (a foreign key) to the table on the “many” side.

6. To create a database with a many-to-many relationship, you create an intermediary
table containing keys from two other tables. The other tables can then reference
each other via the third.

7. To initiate a MySQL transaction, use either the BEGIN or the START TRANSACTION
command. To terminate a transaction and cancel all actions, issue a ROLLBACK com-
mand. To terminate a transaction and commit all actions, issue a COMMIT command.

8. To examine how a query will work in detail, you can use the EXPLAIN command.

9. To back up the database publications to a file called publications.sql, you would
use a command such as:

mysqldump -u user -ppassword publications > publications.sql

Chapter 10 Answers
1. The standard MySQL function used for connecting to a MySQL database is

mysql_connect.

2. The mysql_result function is not optimal when more than one cell is being re-
quested, because it fetches only a single cell from a database and therefore has to
be called multiple times, whereas mysql_fetch_row will fetch an entire row.

3. The POST form method is generally better than GET because the fields are posted
directly, rather than appending them to the URL. This has several advantages,
particularly in removing the possibility to enter spoof data at the browser’s address
bar. (It is not a complete defense against spoofing, however.)

4. To determine the last-entered value of an AUTO_INCREMENT column, use the
mysql_insert_id function.

5. The PHP function that escapes a string, making it suitable for use with MySQL, is
mysql_real_escape_string.

6. Cross-site scripting injection attacks can be prevented using the htmlentities
function.

Chapter 10 Answers | 509



Chapter 11 Answers
1. The associative arrays used to pass submitted form data to PHP are $_GET for the

GET method and $_POST for the POST method.

2. The register_globals setting was the default in versions of PHP prior to 4.2.0. It
was not a good idea because it automatically assigned submitted form field data
to PHP variables, thus opening up a security hole for potential hackers, who could
attempt to break into PHP code by initializing variables to values of their choice.

3. The difference between a text box and a text area is that although they both accept
text for form input, a text box is a single line, whereas a text area can be multiple
lines and includes word wrapping.

4. To offer three mutually exclusive choices in a web form, you should use radio
buttons, because checkboxes allow multiple selections.

5. You can submit a group of selections from a web form using a single field name by
using an array name with square brackets, such as choices[], instead of a regular
field name. Each value is then placed into the array, whose length will be the num-
ber of elements submitted.

6. To submit a form field without the user seeing it, place it in a hidden field using
the parameter type="hidden".

7. You can encapsulate a form element and supporting text or graphics, making the
entire unit selectable with a mouse-click, by using the <label> and </label> tags.

8. To convert HTML into a format that can be displayed but will not be interpreted
as HTML by a browser, use the PHP htmlentities function.

Chapter 12 Answers
1. Cookies should be transferred before a web page’s HTML because they are sent as

part of the headers.

2. To store a cookie on a web browser, use the set_cookie function.

3. To destroy a cookie, reissue it with set_cookie but set its expiration date to some-
time in the past.

4. Using HTTP authentication, both the username and password are stored in
$_SERVER['PHP_AUTH_USER'] and $_SERVER['PHP_AUTH_PW'].

5. The md5 function is a powerful security measure because it is a one-way function
that converts a string to a 32-character hexadecimal number that cannot be con-
verted back, and is therefore almost uncrackable.

6. When a string is salted, extra characters (known only by the programmer) are
added to it before md5 conversion. This makes it nearly impossible for a brute-force
dictionary attack to succeed.

7. A PHP session is a group of variables unique to the current user.

510 | Appendix A: Solutions to the Chapter Questions



8. To initiate a PHP session, use the session_start function.

9. Session hijacking is where a hacker somehow discovers an existing session ID and
attempts to take it over.

10. Session fixation is the attempt to force your own session ID onto a server rather
than letting it create its own.

Chapter 13 Answers
1. To enclose JavaScript code, you use <script> and </script> tags.

2. By default, JavaScript code will output to the part of the document in which it
resides. If it’s in the head it will output to the head; if the body, then the body.

3. You can include JavaScript code from other sources in your documents by either
copying and pasting them or, more commonly, including them as part of a <script
src='filename.js'> tag.

4. The equivalent of the echo and print commands used in PHP is the JavaScript
document.write function (or method).

5. To create a comment in JavaScript, preface it with // for a single-line comment or
surround it with /* and */ for a multiline comment.

6. The JavaScript string concatenation operator is the + symbol.

7. Within a JavaScript function, you can define a variable that has local scope by
preceding it with the var keyword upon first assignment.

8. To display the URL assigned to the link with an ID of thislink in all main browsers,
you can use the two following commands:

document.write(document.getElementById('thislink').href)
document.write(thislink.href)

9. The commands to change to the previous page in the browser’s history array are:

history.back()
history.go(-1)

10. To replace the current document with the main page at the oreilly.com website,
you could use the following command:

document.location.href = 'http://oreilly.com'

Chapter 14 Answers
1. The most noticeable difference between Boolean values in PHP and JavaScript is

that PHP recognizes the keywords TRUE, true, FALSE, and false, whereas only
true and false are supported in JavaScript. Additionally, in PHP, TRUE has a value
of 1 and FALSE is NULL; in JavaScript they are represented by true and false, which
can be returned as string values.

Chapter 14 Answers | 511



2. The difference between unary, binary, and ternary operators is the number of
operands each requires (one, two, and three, respectively).

3. The best way to force your own operator precedence is to surround the parts of an
expression to be evaluated first with parentheses.

4. You use the identity operator when you wish to bypass JavaScript’s automatic
operand type changing.

5. The simplest forms of expressions are literals (such as numbers and strings) and
variables, which simply evaluate to themselves.

6. The three conditional statement types are if, switch, and the ? operator.

7. Most conditional expressions in if and while statements are literal or Boolean and
therefore trigger execution when they evaluate to TRUE. Numeric expressions trigger
execution when they evaluate to a nonzero value. String expressions trigger exe-
cution when they evaluate to a nonempty string. A NULL value is evaluated as false
and therefore does not trigger execution.

8. Loops using for statements are more powerful than while loops because they sup-
port two additional parameters to control loop handling.

9. The with statement takes an object as its parameter. Using it, you specify an object
once; then, for each statement within the with block, that object is assumed.

10. To handle errors gracefully use the try function, which will pass any error en-
countered to a matching catch function, where you can process the error or provide
alternate code. You can also attach code to the onerror event.

Chapter 15 Answers
1. JavaScript function and variable names are case-sensitive. The variables Count,

count, and COUNT are all different.

2. To write a function that accepts and processes an unlimited number of parameters,
access the parameters through the arguments array, which is a member of all
functions.

3. One way to return multiple values from a function is to place them all inside an
array and return the array.

4. When defining a class, use the this keyword to refer to the current object.

5. The methods of a class do not have to be defined within a class definition. If a
method is defined outside the constructor, the method name must be assigned to
the this object within the class definition.

6. New objects are created using the new keyword.

7. A property or method can be made available to all objects in a class without rep-
licating the property or method within the object by using the prototype keyword

512 | Appendix A: Solutions to the Chapter Questions



to create a single instance, which is then passed by reference to all the objects in
the class.

8. To create a multidimensional array, place subarrays inside the main array.

9. The syntax you would use to create an associative array is key : value, within curly
braces, as in the following:

assocarray = {"forename" : "Paul", "surname" : "McCartney", "group" : "Beatles"}

10. A statement to sort an array of numbers into descending numerical order would
look like this:

numbers.sort(function(a,b){return b - a})

Chapter 16 Answers
1. You can send a form for validation prior to submitting it by adding the JavaScript

onSubmit method to the <form> tag. Make sure that your function returns true if
the form is to be submitted and false otherwise.

2. To match a string against a regular expression in JavaScript, use the test method.

3. Regular expressions to match characters not in a word could be any of /[^\w]/, /
[\W]/, /[^a-zA-Z0-9_]/, and so on.

4. A regular expression to match either of the words “fox” or “fix” could be /f[oi]x/.

5. A regular expression to match any single word followed by any nonword character
could be /\w+\W/g.

6. A JavaScript function using regular expressions to test whether the word “fox”
exists in the string “The quick brown fox” could be:

document.write(/fox/.test("The quick brown fox"))

7. A PHP function using a regular expression to replace all occurrences of the word
“the” in “The cow jumps over the moon” with the word “my” could be:

$s=preg_replace("/the/i", "my", "The cow jumps over the moon");

8. The HTML keyword used to precomplete form fields with a value is the value
keyword, which is placed within an <input> tag and takes the form value="value".

Chapter 17 Answers
1. It’s necessary to write a function for creating new XMLHTTPRequest objects because

Microsoft browsers use two different methods of creating them, while all other
major browsers use a third. By writing a function to test the browser in use, you
can ensure that your code will work on all major browsers.

2. The purpose of the try...catch construct is to set an error trap for the code inside
the try statement. If the code causes an error, the catch section will be executed
instead of a general error being issued.

Chapter 17 Answers | 513



3. An XMLHTTPRequest object has six properties and six methods (see Tables 17-1 and
17-2).

4. You can tell that an Ajax call has completed when the readyState property of an
object has a value of 4.

5. When an Ajax call successfully completes, the object’s status property will have a
value of 200.

6. The responseText property of an XMLHTTPRequest object contains the value returned
by a successful Ajax call.

7. The responseXML property of an XMLHTTPRequest object contains a DOM tree created
from the XML returned by a successful Ajax call.

8. To specify a callback function to handle Ajax responses, assign the function name
to the XMLHTTPRequest object’s onreadystatechange property. You can also use an
unnamed, inline function.

9. To initiate an Ajax request, an XMLHTTPRequest object’s send method is called.

10. The main differences between Ajax GET and POST requests are that GET requests
append the data to the URL, while POST requests instead pass the data as a param-
eter of the send method and require the correct form headers to be sent first.

Chapter 18 Answers
1. To import one style sheet into another you use the @import directive, like this:

@import url('styles.css');.

2. To import a stylesheet into a document, you can use the HTML <link /> tag, like
this: <link rel='stylesheet' type='text/css' href='styles.css' />.

3. To directly embed a style into an element, use the style attribute, like this: <div
style='color:blue;'>.

4. The difference between a CSS ID and a CSS class is that an ID is applied to only a
single element, whereas a class can be applied to many elements.

5. In a CSS declaration, ID names are prefixed with a # character and class names
with a . character, as in #myid and .myclass.

6. In CSS the semicolon is used as a separator between declarations.

7. To add a comment to a stylesheet, you enclose it between /* and */ opening and
closing comment markers.

8. In CSS you can match any element using the * universal selector.

9. To select a group of different elements and/or element types in CSS, you place a
comma between each element, ID, class, etc.

10. To make one CSS declaration of a pair with equal precedence have greater prece-
dence over the other one, you append the !important declaration to it, like this: p
{ color:#ff0000 !important; }.

514 | Appendix A: Solutions to the Chapter Questions



Chapter 19 Answers
1. The CSS3 operators ^, $, and * respectively match the start, end, or any portion of

a string.

2. The property you use to specify the size of a background image is background-
size, like this: background-size:800px 600px;.

3. You can specify the radius of a border using the border-radius property, like this:
border-radius:20px;.

4. To flow text over multiple columns, you use the column-count, column-gap, and
column-rule properties or their browser-specific variants, like this: column-count:
3; column-gap:1em; column-rule:1px solid black;.

5. The four functions with which you can specify CSS colors are hsl, hsla, rgb, and
rgba. For example: color:rgba(0%,60%,40%,0.4);.

6. To create a gray text shadow under some text, offset diagonally to the bottom right
by 5 pixels, with a blurring of 3 pixels, you would use this declaration: text-shadow:
5px 5px 3px #888;.

7. You can indicate with an ellipsis that text is truncated using this declaration: text-
overflow:ellipsis;.

8. To include a Google web font in a web page, first select it from http://google.com/
webfonts. Then, assuming, for example, you chose “Lobster,” you include it in a
<link> tag, like this: <link href='http://fonts.googleapis.com/css?family=Lob
ster' />. You must also refer to the font in a CSS declaration such as this: h1
{ font-family:'Lobster', arial, serif; }.

9. The CSS declaration you would use to rotate an object by 90 degrees is trans
form:rotate(90deg);.

10. To set up a transition on an object so that when any of its properties are changed
the change will transition immediately in a linear fashion over the course of half a
second, you would use this declaration: transition:all .5s linear;.

Chapter 20 Answers
1. The O function returns an object by its ID, the S function returns the style property

of an object, and the C function returns an array of all objects that access a given
class.

2. You can modify a CSS attribute of an object using the setAttribute function, like
this: myobject.setAttribute('font-size', '16pt'). You can also (usually) modify
an attribute directly, using slightly modified property names where required, like
this: myobject.fontSize = '16pt'. (Recall that JavaScript reserves the hyphen char-
acter for use as a mathematical operator, so when accessing a hyphenated CSS

Chapter 20 Answers | 515

http://google.com/webfonts
http://google.com/webfonts


property you must omit the hyphen and set the character that followed it to
uppercase.)

3. The properties that provide the width and height available in a browser window
are window.innerHeight and window.innerWidth.

4. To make something happen when the mouse pointer passes over and out of an
object, attach the code that does this to the onmouseover and onmouseout events.

5. To create a new element, implement code such as elem = document.createEle
ment('span'), and to add the new element to the DOM, use code such as docu
ment.body.appendChild(elem).

6. To make an element invisible, set its visibility property to 'hidden' (use 'visi
ble' to restore it again). To collapse an element’s dimensions to zero, set its dis
play property to 'none' (use 'block' to restore it).

7. To set a single event at a future time, call the setTimeout function, passing it the
code or function name to execute and the time delay in milliseconds.

8. To set up repeating events at regular intervals, use the setInterval function, pass-
ing it the code or function name to execute and the time delay between repeats, in
milliseconds.

9. To release an element from its location in a web page and enable it to be moved
around, set its position property to 'relative', 'absolute', or 'fixed'. To restore
it to its original place, set the property to 'static'.

10. To achieve an animation rate of 50 frames per second, you should set a delay
between interrupts of 20 milliseconds. To calculate this value, divide 1,000 milli-
seconds by the desired frame rate.

516 | Appendix A: Solutions to the Chapter Questions



APPENDIX B

Online Resources

This appendix lists useful websites where you can get material used in this book, and
other resources that will enhance your web programs.

PHP Resource Sites
• http://codewalkers.com

• http://developer.yahoo.com/php/

• http://easyphp.org

• http://forums.devshed.com

• http://free-php.net

• http://hotscripts.com/category/php/

• http://htmlgoodies.com/beyond/php/

• http://php.net

• http://php.resourceindex.com

• http://php-editors.com

• http://phpbuilder.com

• http://phpfreaks.com

• http://phpunit.de

• http://w3schools.com/php/

• http://zend.com

MySQL Resource Sites
• http://code.google.com/edu/tools101/mysql.html

• http://launchpad.net/mysql/

• http://mysql.com

517

http://codewalkers.com
http://developer.yahoo.com/php/
http://easyphp.org
http://forums.devshed.com
http://free-php.net
http://hotscripts.com/category/php/
http://htmlgoodies.com/beyond/php/
http://php.net
http://php.resourceindex.com
http://php-editors.com
http://phpbuilder.com
http://phpfreaks.com
http://phpunit.de
http://w3schools.com/php/
http://zend.com
http://code.google.com/edu/tools101/mysql.html
http://launchpad.net/mysql/
http://mysql.com


• http://php.net/mysql

• http://planetmysql.org

• http://sun.com/software/products/mysql/

• http://sun.com/systems/solutions/mysql/resources.jsp

• http://w3schools.com/PHP/php_mysql_intro.asp

JavaScript Resource Sites
• http://developer.mozilla.org/en/JavaScript

• http://dynamicdrive.com

• http://javascript.about.com

• http://javascript.internet.com

• http://javascript.com

• http://javascriptkit.com

• http://w3schools.com/JS/

• http://www.webreference.com/js/

Ajax Resource Sites
• http://ajax.asp.net

• http://ajaxian.com

• http://ajaxmatters.com

• http://developer.mozilla.org/en/AJAX

• http://developer.yahoo.com/yui/

• http://dojotoolkit.org

• http://jquery.com

• http://mochikit.com

• http://mootools.net

• http://openjs.com

• http://prototypejs.org

• http://sourceforge.net/projects/clean-ajax

• http://w3schools.com/Ajax/

518 | Appendix B: Online Resources

http://php.net/mysql
http://planetmysql.org
http://sun.com/software/products/mysql/
http://sun.com/systems/solutions/mysql/resources.jsp
http://w3schools.com/PHP/php_mysql_intro.asp
http://developer.mozilla.org/en/JavaScript
http://dynamicdrive.com
http://javascript.about.com
http://javascript.internet.com
http://javascript.com
http://javascriptkit.com
http://w3schools.com/JS/
http://www.webreference.com/js/
http://ajax.asp.net
http://ajaxian.com
http://ajaxmatters.com
http://developer.mozilla.org/en/AJAX
http://developer.yahoo.com/yui/
http://dojotoolkit.org
http://jquery.com
http://mochikit.com
http://mootools.net
http://openjs.com
http://prototypejs.org
http://sourceforge.net/projects/clean-ajax
http://w3schools.com/Ajax/


Miscellaneous Resource Sites
• http://apachefriends.org

• http://easyphp.org

• http://eclipse.org

• http://editra.org

• http://fireftp.mozdev.org

• http://sourceforge.net/projects/glossword/

• http://mamp.info/en/

• http://pear.php.net

• http://programmingforums.org

• http://putty.org

• http://smarty.net

• http://wampserver.com/en/

O’Reilly Resource Sites
• http://onlamp.com

• http://onlamp.com/php/

• http://onlamp.com/onlamp/general/mysql.csp

• http://oreilly.com/ajax/

• http://oreilly.com/javascript/

• http://oreilly.com/mysql/

• http://oreilly.com/php/

• http://oreillynet.com/javascript/

O’Reilly Resource Sites | 519

http://apachefriends.org
http://easyphp.org
http://eclipse.org
http://editra.org
http://fireftp.mozdev.org
http://sourceforge.net/projects/glossword/
http://mamp.info/en/
http://pear.php.net
http://programmingforums.org
http://putty.org
http://smarty.net
http://wampserver.com/en/
http://onlamp.com
http://onlamp.com/php/
http://onlamp.com/onlamp/general/mysql.csp
http://oreilly.com/ajax/
http://oreilly.com/javascript/
http://oreilly.com/mysql/
http://oreilly.com/php/
http://oreillynet.com/javascript/




APPENDIX C

MySQL’s FULLTEXT Stopwords

This appendix contains the more than 500 stopwords referred to in the section “Using
a FULLTEXT index” in Chapter 8. Stopwords are words that are considered so com-
mon as to not be worth searching for, or storing, in a FULLTEXT index. Theoretically,
ignoring these words makes little difference to the results of most FULLTEXT searches,
but makes MySQL databases considerably smaller and more efficient. The words are
shown here in lowercase but apply to uppercase and mixed-case versions, too:

A
a’s, able, about, above, according, accordingly, across, actually, after, afterwards,
again, against, ain’t, all, allow, allows, almost, alone, along, already, also, al-
though, always, am, among, amongst, an, and, another, any, anybody, anyhow,
anyone, anything, anyway, anyways, anywhere, apart, appear, appreciate, appro-
priate, are, aren’t, around, as, aside, ask, asking, associated, at, available, away,
awfully

B
be, became, because, become, becomes, becoming, been, before, beforehand, be-
hind, being, believe, below, beside, besides, best, better, between, beyond, both, brief,
but, by

C
c’mon, c’s, came, can, can’t, cannot, cant, cause, causes, certain, certainly, changes,
clearly, co, com, come, comes, concerning, consequently, consider, considering, con-
tain, containing, contains, corresponding, could, couldn’t, course, currently

D
definitely, described, despite, did, didn’t, different, do, does, doesn’t, doing, don’t,
done, down, downwards, during

E
each, edu, eg, eight, either, else, elsewhere, enough, entirely, especially, et, etc, even,
ever, every, everybody, everyone, everything, everywhere, ex, exactly, example,
except

521



F
far, few, fifth, first, five, followed, following, follows, for, former, formerly, forth,
four, from, further, furthermore

G
get, gets, getting, given, gives, go, goes, going, gone, got, gotten, greetings

H
had, hadn’t, happens, hardly, has, hasn’t, have, haven’t, having, he, he’s, hello, help,
hence, her, here, here’s, hereafter, hereby, herein, hereupon, hers, herself, hi, him,
himself, his, hither, hopefully, how, howbeit, however

I
i’d, i’ll, i’m, i’ve, ie, if, ignored, immediate, in, inasmuch, inc, indeed, indicate, indi-
cated, indicates, inner, insofar, instead, into, inward, is, isn’t, it, it’d, it’ll, it’s, its, itself

J
just

K
keep, keeps, kept, know, known, knows

L
last, lately, later, latter, latterly, least, less, lest, let, let’s, like, liked, likely, little, look,
looking, looks, ltd

M
mainly, many, may, maybe, me, mean, meanwhile, merely, might, more, more-
over, most, mostly, much, must, my, myself

N
name, namely, nd, near, nearly, necessary, need, needs, neither, never, neverthe-
less, new, next, nine, no, nobody, non, none, noone, nor, normally, not, nothing,
novel, now, nowhere

O
obviously, of, off, often, oh, ok, okay, old, on, once, one, ones, only, onto, or, other,
others, otherwise, ought, our, ours, ourselves, out, outside, over, overall, own

P
particular, particularly, per, perhaps, placed, please, plus, possible, presumably,
probably, provides

Q
que, quite, qv

R
rather, rd, re, really, reasonably, regarding, regardless, regards, relatively, respec-
tively, right

S
said, same, saw, say, saying, says, second, secondly, see, seeing, seem, seemed, seem-
ing, seems, seen, self, selves, sensible, sent, serious, seriously, seven, several, shall,

522 | Appendix C: MySQL’s FULLTEXT Stopwords



she, should, shouldn’t, since, six, so, some, somebody, somehow, someone, some-
thing, sometime, sometimes, somewhat, somewhere, soon, sorry, specified, specify,
specifying, still, sub, such, sup, sure

T
t’s, take, taken, tell, tends, th, than, thank, thanks, thanx, that, that’s, thats, the,
their, theirs, them, themselves, then, thence, there, there’s, thereafter, thereby, there-
fore, therein, theres, thereupon, these, they, they’d, they’ll, they’re, they’ve, think,
third, this, thorough, thoroughly, those, though, three, through, throughout, thru,
thus, to, together, too, took, toward, towards, tried, tries, truly, try, trying, twice, two

U
un, under, unfortunately, unless, unlikely, until, unto, up, upon, us, use, used, use-
ful, uses, using, usually

V
value, various, very, via, viz, vs

W
want, wants, was, wasn’t, way, we, we’d, we’ll, we’re, we’ve, welcome, well, went,
were, weren’t, what, what’s, whatever, when, whence, whenever, where, where’s,
whereafter, whereas, whereby, wherein, whereupon, wherever, whether, which,
while, whither, who, who’s, whoever, whole, whom, whose, why, will, willing, wish,
with, within, without, won’t, wonder, would, wouldn’t

Y
yes, yet, you, you’d, you’ll, you’re, you’ve, your, yours, yourself, yourselves

Z
zero

MySQL’s FULLTEXT Stopwords | 523





APPENDIX D

MySQL Functions

By having functions built into MySQL, the speed of performing complex queries is
substantially reduced, as is their complexity. If you wish to learn more about the avail-
able functions, you can visit the following URLs:

• String functions: http://dev.mysql.com/doc/refman/5.0/en/string-functions.html

• Date and time functions: http://dev.mysql.com/doc/refman/5.0/en/date-and-time
-functions.html

But, for easy reference, here are some of the most commonly used MySQL functions.

String Functions

CONCAT()
CONCAT(str1, str2, ...)

Returns the result of concatenating str1, str2, and any other parameters (or NULL if any ar-
gument is NULL). If any of the arguments are binary, then the result is a binary string; otherwise,
the result is a nonbinary string. This code returns the string “MySQL”:

SELECT CONCAT('My', 'S', 'QL');

CONCAT_WS()
CONCAT_WS(separator, str1, str2, ...)

Works in the same way as CONCAT, except it inserts a separator between the items being con-
catenated. If the separator is NULL the result will be NULL, but NULL values can be used as other
arguments, which will then be skipped. This code returns the string “Truman,Harry,S”:

SELECT CONCAT_WS(',' 'Truman', 'Harry', 'S');

525

http://dev.mysql.com/doc/refman/5.0/en/string-functions.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html


LEFT()
LEFT(str, len)

Returns the leftmost len characters from the string str (or NULL if any argument is NULL). The
following code returns the string “Chris”:

SELECT LEFT('Christopher Columbus', '5');

RIGHT()
RIGHT(str, len)

Returns the rightmost len characters from the string str (or NULL if any argument is NULL).
This code returns the string “Columbus”:

SELECT RIGHT('Christopher Columbus', '8');

MID()
MID(str, pos, len)

Returns up to len characters from the string str starting at position pos. If len is omitted, then
all characters up to the end of the string are returned. You may use a negative value for pos,
in which case it represents the character pos places from the end of the string. The first position
in the string is 1. This code returns the string “stop”:

SELECT MID('Christopher Columbus', '6', '4');

LENGTH()
LENGTH(str)

Returns the length in bytes of the string str. Note that multibyte characters count as multiple
bytes. If you need to know the actual number of characters in a string, use the CHAR_LENGTH
function. This code returns the value 15:

SELECT LENGTH('Mark Zuckerberg');

LPAD()
LPAD(str, len, padstr)

Returns the string str padded to a length of len characters by prepending the string with
padstr characters. If str is longer than len, the string returned will be truncated to len char-
acters. This code:

SELECT LPAD('January', '8', ' ');
SELECT LPAD('February', '8', ' ');

526 | Appendix D: MySQL Functions



SELECT LPAD('March', '8', ' ');
SELECT LPAD('April', '8', ' ');
SELECT LPAD('May', '8', ' ');

returns the following strings:

 January
February
   March
   April
     May

Notice how all the strings have been padded to be eight characters long.

RPAD
This is the same as the LPAD function except that the padding takes place on the right of the
returned string. This code returns the string “Hi!!!”:

SELECT RPAD('Hi', '5', '!');

LOCATE()
LOCATE(substr, str, pos)

Returns the position of the first occurrence of substr in the string str. If the parameter pos is
passed, the search begins at position pos. If substr is not found in str, a value of 0 is returned.
This code returns the values 5 and 11, because the first function call returns the first encounter
of the word “unit,” while the second one only starts to search at the seventh character, and
so returns the second instance:

SELECT LOCATE('unit', 'Community unit');
SELECT LOCATE('unit', 'Community unit' 7);

LOWER()
LOWER(str)

This is the inverse of UPPER. Returns the string str with all the characters changed to lowercase.
This code returns the string “queen elizabeth ii”:

SELECT LOWER('Queen Elizabeth II');

UPPER()
UPPER(str)

This is the inverse of LOWER. It returns the string str with all the characters changed to upper-
case. This code returns the string “I CAN’T HELP SHOUTING”:

String Functions | 527



SELECT UPPER('I can't help shouting');

QUOTE()
QUOTE(str)

Returns a quoted string that can be used as a properly escaped value in a SQL statement. The
returned string is enclosed in single quotes with all instances of single quotes, backslashes,
the ASCII NUL character, and Ctrl-Z preceded by a backslash. If the argument str is NULL, the
return value is the word NULL without enclosing quotes. The example code returns the fol-
lowing string:

'I\'m hungry'

Note how the ' symbol has been replaced with \'.

SELECT QUOTE("I'm hungry");

REPEAT()
REPEAT(str, count)

Returns a string comprising count copies of the string str. If count is less than 1, an empty
string is returned. If either parameter is NULL, then NULL is returned. This code returns the
strings “Ho Ho Ho” and “Merry Christmas”:

SELECT REPEAT('Ho', 3), 'Merry Christmas';

REPLACE()
REPLACE(str, from, to)

Returns the string str with all occurrences of the string from replaced with the string to. The
search and replace is case-sensitive when searching for from. This code returns the string
“Cheeseburger and Soda”:

SELECT REPLACE('Cheeseburger and Fries', 'Fries', 'Soda');

TRIM()
TRIM([specifier remove FROM] str)

Returns the string str with all prefixes or suffixes removed. The specifier can be one of BOTH,
LEADING, or TRAILING. If no specifier is supplied, then BOTH is assumed. The remove string is
optional; if it is omitted, spaces are removed. This code returns the strings “No Padding” and
“Hello__”:

SELECT TRIM('   No Padding   ');
SELECT TRIM(LEADING '_' FROM '__Hello__');

528 | Appendix D: MySQL Functions



LTRIM() and RTRIM()
LTRIM(str) and RTRIM(str)

The function LTRIM returns the string str with any leading spaces removed, while the function
RTRIM performs the same action on the string’s tail. This code returns the strings “No Padding”
and “No Padding”:

SELECT LTRIM('   No Padding   ');
SELECT RTRIM('   No Padding   ');

Date Functions
Dates are an important part of most databases. The date has to be recorded whenever
financial transactions take place, expiry dates of credit cards need to be noted for repeat
billing purposes, and so on. So, as you might expect, MySQL comes with a wide variety
of functions to make handling dates a breeze.

CURDATE()
Returns the current date in YYYY-MM-DD or YYYMMDD format, depending on whether
the function is used in a numeric or string context. On the date May 2, 2016, the following
code will return the values 2016-05-02 and 20160502:

SELECT CURDATE();
SELECT CURDATE() + 0;

DATE()
DATE(expr)

Extracts the date part of the date or a DATETIME expression expr. This code returns the value
“1961-05-02”:

SELECT DATE('1961-05-02 14:56:23');

DATE_ADD()
DATE_ADD(date, INTERVAL expr unit)

Returns the result of adding the expression expr using the units unit to the date. The date
argument is the starting date or DATETIME value, and expr may start with a - symbol for negative
intervals. Table D-1 shows the interval types supported and the expected expr values. Note
the examples in this table that show where it is necessary to surround the expr value with
quotes for MySQL to interpret them correctly (although, if you are ever in doubt, adding the
quotes will always work).

Date Functions | 529



Table D-1. Expected expr values

Type Expected expr value Example

MICROSECOND MICROSECONDS 111111

SECOND SECONDS 11

MINUTE MINUTES 11

HOUR HOURS 11

DAY DAYS 11

WEEK WEEKS 11

MONTH MONTHS 11

QUARTER QUARTERS 1

YEAR YEARS 11

SECOND_MICROSECOND 'SECONDS.MICROSECONDS' 11.22

MINUTE_MICROSECOND 'MINUTES.MICROSECONDS' 11.22

MINUTE_SECOND 'MINUTES:SECONDS' '11:22'

HOUR_MICROSECOND 'HOURS.MICROSECONDS' 11.22

HOUR_SECOND 'HOURS:MINUTES:SECONDS' '11:22:33'

HOUR_MINUTE 'HOURS:MINUTES' '11:22'

DAY_MICROSECOND 'DAYS.MICROSECONDS' 11.22

DAY_SECOND 'DAYS HOURS:MINUTES:SECONDS' '11 22:33:44'

DAY_MINUTE 'DAYS HOURS:MINUTES' '11 22:33'

DAY_HOUR 'DAYS HOURS' '11 22'

YEAR_MONTH 'YEARS-MONTHS' '11-2'

You can also use the DATE_SUB function to subtract date intervals. However, it’s not actually
necessary for you to use the DATE_ADD or DATE_SUB functions, as you can use date arithmetic
directly in MySQL. This code:

SELECT DATE_ADD('1975-01-01', INTERVAL 77 DAY);
SELECT DATE_SUB('1982-07-04', INTERVAL '3-11' YEAR_MONTH);
SELECT '2016-12-31 23:59:59' + INTERVAL 1 SECOND;
SELECT '2000-01-01' - INTERVAL 1 SECOND;

returns the following values:

1975-03-19
1978-08-04
2017-01-01 00:00:00
1999-12-31 23:59:59

Notice how the last two commands use date arithmetic directly without recourse to functions.

530 | Appendix D: MySQL Functions



DATE_FORMAT()
DATE_FORMAT(date, format)

Returns the date value formatted according to the format string. Table D-2 shows the specifiers
that can be used in the format string. Note that the % character is required before each specifier,
as shown. This code returns the given date and time as “Wednesday May 4th 2016 03:02 AM”:

SELECT DATE_FORMAT('2016-05-04 03:02:01', '%W %M %D %Y %h:%i %p');

Table D-2. DATE_FORMAT specifiers

Specifier Description

%a Abbreviated weekday name (Sun–Sat)

%b Abbreviated month name (Jan–Dec)

%c Month, numeric (0–12)

%D Day of the month with English suffix (0th, 1st, 2nd, 3rd, ...)

%d Day of the month, numeric (00–31)

%e Day of the month, numeric (0–31)

%f Microseconds (000000–999999)

%H Hour (00–23)

%h Hour (01–12)

%I Hour (01–12)

%i Minutes, numeric (00–59)

%j Day of year (001–366)

%k Hour (0–23)

%l Hour (1–12)

%M Month name (January–December)

%m Month, numeric (00–12)

%p AM or PM

%r Time, 12-hour (hh:mm:ss followed by AM or PM)

%S Seconds (00–59)

%s Seconds (00–59)

%T Time, 24-hour (hh:mm:ss)

%U Week (00–53), where Sunday is the first day of the week

%u Week (00–53), where Monday is the first day of the week

%V Week (01–53), where Sunday is the first day of the week; used with %X

%v Week (01–53), where Monday is the first day of the week; used with %x

%W Weekday name (Sunday–Saturday)

%w Day of the week (0=Sunday–6=Saturday)

Date Functions | 531



Specifier Description

%X Year for the week where Sunday is the first day of the week, numeric, four digits; used with %V

%x Year for the week where Monday is the first day of the week, numeric, four digits; used with %v

%Y Year, numeric, four digits

%y Year, numeric, two digits

%% A literal % character

DAY()
DAY(date)

Returns the day of the month for date, in the range 1 to 31 or 0 for dates that have a zero day
part, such as “0000-00-00” or “2016-00-00.” You can also use the function DAYOFMONTH to
return the same value. This code returns the value 3:

SELECT DAY('2016-02-03');

DAYNAME()
DAYNAME(date)

Returns the name of the weekday for the date. This code returns the string “Saturday”:

SELECT DAYNAME('2016-02-03');

DAYOFWEEK()
DAYOFWEEK(date)

Returns the weekday index for date, from 1 for Sunday through 7 for Saturday. This code
returns the value 7:

SELECT DAYOFWEEK('2016-02-03');

DAYOFYEAR()
DAYOFYEAR(date)

Returns the day of the year for date, in the range 1 to 366. This code returns the value 34:

SELECT DAYOFYEAR('2016-02-03');

LAST_DAY()
LAST_DAY(date)

532 | Appendix D: MySQL Functions



Returns the last day of the month for the given DATETIME value date. If the argument is invalid,
it returns NULL. This code:

SELECT LAST_DAY('2016-02-03');
SELECT LAST_DAY('2016-03-11');
SELECT LAST_DAY('2016-04-26');

returns the following values:

2016-02-29
2016-03-31
2016-04-30

As you’d expect, it correctly returns the 28th day of February, the 31st of March, and the 30th
of April 2011.

MAKEDATE()
MAKEDATE(year, dayofyear)

Returns the date for the given year and dayofyear values. If dayofyear is zero, the result is
NULL. This code returns the date “2016-09-30”:

SELECT MAKEDATE(2016,274);

MONTH()
MONTH(date)

Returns the month for date, in the range 1 through 12 for January through December. Dates
that have a zero month part, such as “0000-00-00” or “2016-00-00,” return zero. This code
returns the value 7:

SELECT MONTH('2016-07-11');

MONTHNAME()
MONTHNAME(date)

Returns the full name of the month for date. This code returns the string “July”:

SELECT MONTHNAME('2016-07-11');

SYSDATE()
Returns the current date and time as a value in either YYY-MM-DD HH:MM:SS or
YYYMMDDHHMMSS format, depending on whether the function is used in a string or nu-
meric context. The function NOW works in a similar manner, except that it returns the time and
date only at the start of the current statement, whereas SYSDATE returns the time and date at

Date Functions | 533



the exact moment the function itself is called. On December 19, 2016, this code will return
the values 2016-12-19 19:11:13 and 20161219191113:

SELECT SYSDATE();
SELECT SYSDATE() + 0;

YEAR()
YEAR(date)

Returns the year for date in the range 1000 to 9999, or 0 for the zero date. This code returns
the value 1999:

SELECT YEAR('1999-08-07');

WEEK()
WEEK(date [, mode])

Returns the week number for date. If passed the optional mode parameter, the week number
returned will be modified according to Table D-3. You can also use the function WEEKOF
YEAR, which is equivalent to using the WEEK function with a mode of 3. This code returns the
week number 14:

SELECT WEEK('2016-04-04', 1);

Table D-3. The modes supported by the WEEK function

Mode First day of week Range Where week 1 is the first week ...

0 Sunday 0–53 with a Sunday in this year

1 Monday 0–53 with more than three days this year

2 Sunday 1–53 with a Sunday in this year

3 Monday 1–53 with more than three days this year

4 Sunday 0–53 with more than three days this year

5 Monday 0–53 with a Monday in this year

6 Sunday 1–53 with more than three days this year

7 Monday 1–53 with a Monday in this year

WEEKDAY()
WEEKDAY(date)

Returns the weekday index for date, where 0=Monday through 6=Sunday. This code returns
the value 1:

SELECT WEEKDAY('2016-04-04');

534 | Appendix D: MySQL Functions



Time Functions
Sometimes you need to work with the time, rather than the date, and MySQL provides
plenty of functions for you to do so.

CURTIME()
Returns the current time as a value in the format HH:MM::SS or HHMMSS.uuuuuu, de-
pending on whether the function is used in a string or numeric context. The value is expressed
using the current time zone. When the current time is 11:56:23, this code returns the values
11:56:23 and 11:56:23.000000:

SELECT CURTIME() + 0;

HOUR()
HOUR(time)

Returns the hour for time. This code returns the value 11:

SELECT HOUR('11:56:23');

MINUTE()
MINUTE(time)

Returns the minute for time. This code returns the value 56:

SELECT MINUTE('11:56:23');

SECOND()
SECOND(time)

Returns the second for time. This code returns the value 23:

SELECT SECOND('11:56:23');

MAKETIME()
MAKETIME(hour, minute, second)

Returns a time value calculated from the hour, minute, and second arguments. This code re-
turns the time 11:56:23:

SELECT MAKETIME(11, 56, 23);

Time Functions | 535



TIMEDIFF()
TIMEDIFF(expr1, expr2)

Returns the difference between expr1 and expr2 (expr1 - expr2) as a time value. Both expr1
and expr2 must be TIME or DATETIME expressions of the same type. This code returns the value
01:37:38:

SELECT TIMEDIFF('2000-01-01 01:02:03', '1999-12-31 23:24:25');

UNIX_TIMESTAMP()
UNIX_TIMESTAMP([date])

If called without the optional date argument, this function returns the number of seconds
since 1970-01-01 00:00:00 UTC as an unsigned integer. If the date parameter is passed, then
the value returned is the number of seconds elapsed from the 1970 start date to the given date.
This code will return the value 946684800 (the number of seconds up to the start of the current
millennium) followed by a TIMESTAMP representing the current Unix time at the moment you
run it:

SELECT UNIX_TIMESTAMP('2000-01-01');
SELECT UNIX_TIMESTAMP();

FROM_UNIXTIME()
FROM_UNIXTIME(unix_timestamp [, format])

Returns the unix_timestamp parameter as a string in either YYY-MM-DD, HH:MM:SS, or
YYYMMDDHHMMSS.uuuuuu format, depending on whether the function is used in a string
or numeric context. If the optional format parameter is provided, the result is formatted ac-
cording to the specifiers in Table 8-11. This code returns the strings “2000-01-01 00:00:00”
and “Saturday January 1st 2000 12:00 AM”:

SELECT FROM_UNIXTIME(946684800);
SELECT FROM_UNIXTIME(946684800, '%W %M %D %Y %h:%i %p');

536 | Appendix D: MySQL Functions



Index

Symbols
! (exclamation mark)

!= (not equal to) operator in JavaScript,
305

!= (not equal to) operator in PHP, 51, 73
!== (not identical) operator in JavaScript,

305
!== (not identical) operator in PHP, 73
!important declaration in CSS rules, 404
inequality and not identical operators, 76
logical NOT operator in JavaScript, 305,

320
logical NOT operator in PHP, 52, 73, 77,

92
associativity, 74

" " (quotation marks, double)
enclosing JavaScript strings, 302
escaping in JavaScript, 306
in PHP strings, 55

escaping characters in, 55
multiple lines between quotes, 55

# (hash mark or pound sign), prefacing element
IDs in CSS, 391

$ (dollar sign)
$( ) function in JavaScript, 312, 453
$this variable in PHP, 113
$_GET and $_POST arrays in PHP, 133
end-of-line matching in regular expressions,

362
end-of-string matching in CSS3, 428
preceding PHP variable names, 45

$_POST and GET arrays (PHP)
$_POST array, 242

% (percent sign)

%= (modulus and assignment) operator, 51,
73, 304

conversion specifier for printf( ) function,
137

modulus operator, 50, 73, 304
percent measurements in CSS, 408

& (ampersand)
&& (logical AND) operator in JavaScript,

305, 320
&& (logical AND) operator in PHP, 52, 73
&= (bitwise and assignment) operator, 73
bitwise (and reference) operator in PHP, 73

passing a reference, 102
XHTML rule about, 160

' ' (quotation marks, single)
enclosing JavaScript strings, 302
escaping in JavaScript, 306
in PHP strings, 54

escaped characters in, 55
( ) (parentheses)

forcing operator precedence in PHP, 73
grouping in regular expressions, 359
in functions, 98
precedence in JavaScript, 318
precedence in PHP, 73

* (asterisk)
*= (multiplication and assignment)

operator, 51, 73, 304
matching any substring in CSS3, 429
matching zero or more characters in regular

expressions, 358
multiplication operator, 50, 73, 304
universal selector in CSS, 400

+ (plus sign)

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

537



++ (increment) operator in JavaScript, 304,
305, 318

++ (increment) operator in PHP, 50, 53, 73,
88

+= (addition and assignment) operator, 51,
53, 73, 304

+= (string concatenation) operator in
JavaScript, 306

addition operator, 50, 73, 304, 318
regular expression metacharacter, 358
string concatenation operator in JavaScript,

306
- (hyphen), indicating ranges in regular

expression character classes, 360
- (minus sign)

-- (decrement) operator in JavaScript, 304,
305, 318

-- (decrement) operator in PHP, 50, 53, 73
-= (subtraction and assignment) operator,

51, 53, 73, 304
subtraction operator, 50, 73, 304, 318

-> (object) operator in PHP, 113
. (period)

.= (string concatenation and assignment)
operator in PHP, 51, 54, 73

matching any character in regular
expressions, 358

member operator in JavaScript, 318, 339
prefacing class statements in CSS, 391
separating objects, properties, and methods

in JavaScript, 309
string concatenation operator in PHP, 54,

73
/ (slash)

/* */ indicating CSS comments, 393
/* */, enclosing multi-line comments in PHP,

44
/* and */ in multiline JavaScript comments,

301
// denoting single-line comments in PHP,

44
//, indicating JavaScript comments, 298
/= (division and assignment) operator, 51,

73, 304
division operator, 50, 73, 304
enclosing regular expressions, 357

: (colon)
:: (double colon) operator in PHP, 117

replacing first curly brace in PHP switch
statement, 85

; (semicolon)
ending JavaScript statements, 296, 301
ending MySQL commands, 171
ending statements in PHP, 45
separating for loop parameters in PHP, 90
separating parameters in JavaScript for

loops, 329
using in CSS rules, 392

< > (angle brackets)
< (less than) operator, 51, 73, 76, 305, 320
< > (not equal to) operator, 73
<!— and —> in HTML comments, 297
<< (bitwise left shift) operator, 73
<<< (heredoc) operator in PHP, 56
<<= (bitwise left shift and assignment)

operator, 73
<= (less than or equal to) operator, 51, 73,

76, 305, 320
> (greater than) operator, 51, 73, 76, 305,

320
>= (greater than or equal to) operator, 51,

73, 76, 305, 320
>> (bitwise right shift) operator, 73
>>= (bitwise right shift and assignment)

operator, 73
<? ?> tags, calling PHP parser, 42
<?php ?> tags, 5, 42

multiline echo statement between, 56
= (equals sign)

== (equal to) operator in JavaScript, 305,
319

== (equal to) operator in PHP, 51, 75
precedence, 73
using in if statement, 53

=== (identity) operator in JavaScript, 305,
319

=== (identity) operator in PHP, 73, 76
=> operator in PHP, 126
assignment operator, 51, 73, 75, 304

? (question mark)
? : (ternary) operators, 72, 73, 85, 317, 327
placeholders in MySQL query string, 255

@ (at sign)
@import directive (CSS), 390
error control operator in PHP, 74

[ ] (square brackets)
accessing array elements in JavaScript, 303

538 | Index



accessing array elements in PHP, 130, 131
array operator, 265
enclosing character classes in regular

expressions, 359
member operator in JavaScript, 318

\ (backslash)
escaping regular expression metacharacters,

358
escaping special characters in PHP strings,

55
\\ (double backslash), escaping backslash in

JavaScript, 306
\\ (double backslash), escaping backslash in

PHP strings, 55
^ (caret)

beginning-of-line matching in regular
expressions, 362

beginning-of-string matching in CSS3, 428
bitwise xor operator in PHP, 73
negating a character class in regular

expressions, 360
^= (bitwise xor and assignment) operator in

PHP, 73
_ (underscore)

in PHP array variable names, 50
__ (double underscore) beginning PHP

method names, 113
{ } (curly braces)

in do...while loops in PHP, 89
in for loops in PHP, 90
in if . . . else statements in PHP, 80
in if . . . elseif . . . else statement in PHP, 82
in if statements in PHP, 80
in PHP switch statements

alternative syntax, 85
in switch statements in PHP, 84
in while loops in PHP, 87

| (bar or pipe character)
bitwise OR operator in PHP, 73
|| (logical OR) operator in JavaScript, 305,

320
|| (logical OR) operator in PHP, 52, 73

~ (tilde)
bitwise NOT operator in PHP, 74

A
<a> (anchor) tags

inline styles in, 395
absolute positioning, 415

active pseudoclass, 418
ActiveX, 5, 373
adjacent sibling selectors, 398
Ajax, 373–388

implementing via GET requests, 381–383
implementing via POST requests, 376–380

readyState property, 378
server half of Ajax process, 379

resource sites, 518
sending XML requests, 383–387
use by Gmail to check username availability,

10
using frameworks for, 387
using XMLHttpRequest, 374

alignment of text, 412
alpha, 440

HSLA colors, 441
RGBA colors, 442

ALTER command (MySQL), 172, 181
ALTER TABLE ADD FULLTEXT

command, 190
ALTER TABLE ADD INDEX command,

186
ALTER TABLE CHANGE command, 184
ALTER TABLE DROP command, 184
ALTER TABLE MODIFY command, 183
ALTER TABLE RENAME command, 183

AND operator, 52
(see also & (ampersand), under Symbols)
in PHP, 52, 73, 77
using in MySQL, 202

animation, using interrupts, 469–470
anonymity and databases, 222
answers to chapter questions, 503–516
Apache web servers, 9

installing for WAMP on Windows, 18
WAMP, MAMP, and LAMP setups for

development server, 14
appendChild( ) function (JavaScript), 464
arguments array, JavaScript functions, 334
arithmetic operators

in JavaScript, 304, 318
in PHP, 50, 71, 73

Array keyword (JavaScript), assigning values to
numeric array elements, 343

arrays
JavaScript, 303, 342–349

arguments array in functions, 334
associative arrays, 343

Index | 539



concat( ) method, 345
forEach( ) method, 345
functions returning an array, 337
join( ) method, 346
multidimensional arrays, 344
numeric arrays, 342
push( ) and pop( ) methods, 347
reverse( ) method, 348
sort( ) method, 348

PHP, 48, 123–136
assignment using array keyword, 126
associative arrays, 125
compact( ) function, 134
count( ) function, 131
end( ) function, 135
explode( ) function, 132
extract( ) function, 133
is_array( ) function, 131
multidimensional arrays, 128–131
multiple checkbox choices, 265
numerically indexed, 123
reset( ) function, 135
shuffle( ) function, 132
sort( ) function, 132
two-dimensional, 49
using foreach...as loop with, 126

PHP functions returning, 101
array_diff( ) function (PHP), 493
array_intersect( ) function (PHP), 493
AS keyword (MySQL), 202
as keyword (PHP), 127
assignment

array items in PHP, using array keyword,
126

element values in JavaScript numeric arrays,
342

multiline string assignment in PHP, 56
setting JavaScript variable type, 307
variables in PHP, 53–55

assignment operators
in JavaScript, 304, 318
in PHP, 51, 53, 73

associative arrays
in JavaScript, 343
in PHP, 125

multidimensional, 129
using foreach...as loop with, 127
walking through, using list and each

functions, 127

associativity (operator), 74, 318
attribute selectors, 400, 427–429

matching parts of strings in CSS3, 428
authentication, HTTP, 278–285

salting passwords, 281–285
storing usernames and passwords, 281

AUTO_INCREMENT type (MySQL), 180,
251

B
\b (backspace) character in JavaScript, 306
background-clip property (CSS3), 430
background-color property (CSS), 412
background-origin property (CSS)3, 430
background-size property (CSS3), 432
backgrounds, multiple, in CSS3, 432
BACKUP command (MySQL), 172
backups and restores in MySQL, 227–231

creating backup file, 228
backing up all tables, 230
backing up single table, 229

dumping data in CSV format, 230
planning backups, 231
restoring from backup file, 230
using mysqldump, 227

BEGIN statement, using for transactions in
MySQL, 224

Berners-Lee, Tim, 1
BIGINT type (MySQL), 178
Binary Large OBject (see BLOB data types)
binary operators, 72, 317
BINARY type (MySQL), 177
bitwise operators

in JavaScript, 318
in PHP, 71, 73

blinking text, 411
BLOB data types (MySQL), 178
boldness of a font, 410
bookmarklets in JavaScript, 301
Boolean expressions

in JavaScript, 315
in PHP, 70

Boolean values, 69
border-box value

background-clip property, 429
background-origin property, 430

borders
applying using CSS box model, 422
in CSS3, 434–438

540 | Index



border-color property, 434
border-radius property, 435–438

bottom property, 415
box model (CSS), 420–425

borders, 422
margins, 421
object contents, 425
padding, 423

box-shadow property (CSS3), 438
box-sizing property (CSS), 429
break commands

breaking out of loops in PHP, 91
in JavaScript loops, 329
in JavaScript switch statements, 326
in PHP switch statements, 84

brightness of colors, 441
browsers

background property names, different
versions of, 432

forEach( ) method (JavaScript arrays), 345
HTTP authentication, 278
JavaScript disabled in, 296
prefixes for, required by CSS rules, 414
style sheets created by, 402
transformations, 3D, support for, 447
user agent string, 290
user-defined styles, applying to, 394

C
\c (cancel Input) command (MySQL), 171,

172
C( ) function, 455, 476

including, 456
using, 456

callback functions, 378
capitalization of text, 412
carriage returns

\r character in JavaScript, 306
\r character in PHP strings, 55

Cascading Style Sheets (see CSS)
case commands

in JavaScript switch statement, 326
in PHP switch statement, 84

case-insensitivity
function names in PHP, 100

case-sensitivity
filenames and, 145
XHTML tags, 160

casting

explicit casting in JavaScript, 331
implicit and explicit casting in PHP, 93

centimeters, measurements in CSS, 407
CERN particle physics laboratory, 1
CGI (Common Gateway Interface), 5
chapter questions, answers to, 503–516
CHAR type (MySQL), 176
character classes in regular expressions, 359
charAt( ) method (JavaScript), 336
checkboxes, 264
checkdate( ) function (PHP), 144
checkuser.php (social networking site

example), 482
child selectors, 397
Chrome

JavaScript error messages, accessing, 299
class selectors, 399
classes

accessing all elements on a page in a
particular class, 455

declaring in JavaScript
using prototype keyword for a method,

340
declaring in PHP, 108, 338
defined, 97, 107
PHP

declaring properties within, 114
defining constants within, 115
static properties and methods, 117

className property (JavaScript), 456
clearInterval( ) function (JavaScript), 469
clearTimeout( ) function (JavaScript), 467
client/server computing, request/response

sequence, 2
clock, creating using interrupts, 467
cloning objects in PHP, 111
closing tags, XHTML, 159
code examples from this book, 474
color property (CSS), 412
colors

applying using CSS, 412
gradients, 414
short color strings, 413

border-color property in CSS3, 434
and opacity in CSS3, 440–443

HSL colors, 441
HSLA colors, 441
opacity property, 442
RGB colors, 442

Index | 541



RGBA colors, 442
setting in HTML using printf( ) function in

PHP, 138
columns, 165

adding to MySQL database table, 183
autoincrementing, adding to database table,

180
changing data type in MySQL database,

183
multicolumn layout in CSS3, 439–440
removing in MySQL, 184
renaming in MySQL, 184

comma-separated values format (see CSV
format)

command line
accessing MySQL via, 166–170
using MySQL command-line interface, 170

commands, MySQL, 171–176
canceling, 171
creating a database, 173
creating a table, 174
creating users, 173
selection of common commands, 172

comments
CSS, 393
HTML, 297
JavaScript, 298, 301
in PHP, 44

COMMIT command (MySQL), 224
compact( ) function (PHP), 134
comparison operators

in JavaScript, 305, 318, 320
in PHP, 51, 76

concat( ) method (JavaScript arrays), 345
concatenating strings

in JavaScript, 306
in PHP, 54

conditionals
in JavaScript, 324–327

? : (ternary) operators, 327
if statement, 324
switch statement, 325

in PHP, 79
else statement, 80
if statement, 79
switch statement, 82–85
ternary operators (? :), 85

constants, PHP, 58
declaring within classes, 115

predefined, 59
constructors

in JavaScript, 338, 340
in PHP, 112

subclass constructors, 120
constructs, 98
content types, Internet media, 154
content-box value

background-clip property, 430
background-origin property, 431

continue statements
in JavaScript loops, 330
in PHP, 92

$_COOKIE system array, 277
cookies, 275–278

accessing in PHP, 277
destroying using PHP, 278
forcing cookie-only sessions, 292
setting in PHP, 277

copy( ) function (PHP), 147
count( ) function (PHP), using with arrays,

131
CREATE command (MySQL), 172

CREATE ALTER command, 181
CREATE DATABASE command, 173
CREATE INDEX command, 187
CREATE TABLE command, 174, 246

adding indexes, 188, 189
createElement( ) function (JavaScript), 464
createTable( ) function (PHP), 474, 478
cross-site scripting, 256
crypt( ) function (PHP), 282
CRYPT_BLOWFISH algorithm, 282
CSS (Cascading Style Sheets), 9, 389–425

accessing from JavaScript, 453–471
accessing CSS properties, 457–460
adding and removing elements, 463–

466
getElementById( ) function, enhancing,

453–457
inline JavaScript, 460–463
using interrupts, 466–470

advanced CSS with CSS3, 427–452
attribute selectors, 427–429
backgrounds, 429–434
borders, 434–438
box shadows, 438
box-sizing property, 429
colors and opacity, 440–443

542 | Index



element overflow, 439
multicolumn layout, 439–440
text effects, 443–444
transformations, 446
transitions, 448–451
web fonts, 444

box model and layout, 420–425
the cascade, 402
colors, 412
difference between div and span elements,

405–406
embedded style settings, 391
fieldname class, use in social networking site

signup page, 480
fonts and typography, styling, 408–411
importing a style sheet, 390
managing text styles, 411–412
measurements, 406
positioning elements, 415–417
pseudoclasses, 417–419
pseudoelements, 419
rules, 392–394
selectors, 396–402
shorthand rules, 420
social networking site (example), styles.css,

499–501
style types, 394
working with JavaScript, PHP, and MySQL

to produce dynamic web content,
10

CSV (comma-separated values) format
dumping MySQL data in, 230
MySQL data generated by mysqldump,

227
cubic-bezier( ) function (CSS), 449

D
\d (digit), matching in regular expressions,

360
data types

cast types in PHP, 93
JavaScript variables, 307
MySQL, 176–182

AUTO_INCREMENT type, 180
BINARY, 177
BLOB data types, 178
changing for a column, 183
CHAR, 177
DATE and TIME types, 180

numeric types, 178
TEXT and VARCHAR, 177
TEXT types, 177

PHP strings, 54
variable typing in PHP, 58

database engines, 175
databases

creating in MySQL, 173
defined, 165
designing, 209
summary of database terms, 166

date and time functions (PHP), 141–145
checkdate( ) function, 144
date constants, 144

DATE type (MySQL), 180
date( ) function (PHP), 6, 61, 142

format specifiers, 142
dates and time

functions for, in MySQL, 203
MySQL's DATE and TIME data types, 180
setting date object to current date and time,

468
DATETIME type (MySQL), 180
declarations

classes in JavaScript, 338
functions in PHP, 61
in CSS rules, 392
properties in PHP class, 115

decoration of text, 411
decrementing variables

in JavaScript, 317
operator associativity, 318
operator precedence, 318

in PHP, 53, 305
default statement for JavaScript switch

statements, 326
default statement for PHP switch statement,

85
default styles (CSS), 394
default values, setting for form input, 262
DELETE command (MySQL), 172

deleting a record, 243
deleting data using PHP, 250
WHERE and LIMIT qualifiers, 193

denormalization of data, 219
derived classes, 107
DESC keyword (MySQL commands), 199
descendant selectors, 396

Index | 543



DESCRIBE command (MySQL), 172, 175,
184

checking creation of index, 187
describing a table, 247

destroySession( ) function (PHP), 475
destroy_session_and_data( ) function (PHP),

289
destructors in PHP 5, 113
development server, setting up, 13–39

installing a LAMP on Linux, 34
installing a MAMP on Mac OS X, 29–34

configuring MySQL, 31
testing the installation, 33

installing a WAMP on Windows, 14–29
alternative WAMPs, 29
testing the installation, 26–29

using a program editor, 37
using an IDE, 38–39
WAMP, MAMP, or LAMP, 14
working remotely, 35–36

logging in, 35
using FTP, 35

die( ) function (PHP), 235, 237
different_user( ) function (PHP), 290
dir system command (Windows), 157
display property (CSS), 465
DISTINCT qualifier, MySQL SELECT

command, 192
<div> and <span> elements, differences in,

405–406
division-by-zero error, trapping using continue

statement in PHP, 92
DNS (Domain Name System), 3
do...while loops

in JavaScript, 328
in PHP, 89

DOCTYPE declarations
HTML 4.01 DTDs, 160
HTML5, 161, 389
XHTML, 160
XHTML 1.0, 161

document object, write( ) method, 310
DOM (Document Object Model)

adding new elements using JavaScript, 463
CSS properties as alternatives to adding/

removing elements, 465
DOM tree of XML document, 385
removing elements using JavaScript, 464
working with in JavaScript, 309–313

DOUBLE (or REAL) type (MySQL), 178
DROP command (MySQL), 172, 184

DROP TABLE command, 185, 226, 248
DTDs (see DOCTYPE declarations)
dynamic web content, 1

client/server request/response sequence, 3
PHP, MySQL, JavaScript, and CSS working

together for, 10

E
each( ) function (PHP), 127
ease timing function, 449
ease-in timing function, 449
ease-in-out timing function, 449
ease-out timing function, 449
EasyPHP, 29
echo command (PHP), print command versus,

60
echo statements in PHP, 125

echo <<<_END…_END, 243, 260
multiline echo statement, 153
multiline string echo statement, 55
results from MySQL database query within,

238
Editra, 37
element overflow in CSS3, 439
elements

inserting into the DOM with JavaScript,
463

removing from DOM using JavaScript, 464
else statements

in JavaScript, 325
in PHP, 80

closing if . . . else or if . . . elseif . . . else
statement, 82

using ternary operator (? :) instead of,
85

elseif statements in PHP, 82
JavaScript equivalent, 325

ems (measurement in CSS), 407
encapsulation, 107
_END..._END; tags in heredoc construct in

PHP, 56
end( ) function (PHP), 135
endswitch command in PHP switch statement,

85
entities, HTML

converting PHP suberglobals to, 66

544 | Index



prefacing string with cross or check mark,
482

equality operators, 75, 305
in JavaScript, 319
precedence, 73

errorHandler( ) function (JavaScript), 323
errors

onerror event in JavaScript, 322
trapping in JavaScript with try...catch

construct, 323
escape characters, injection into strings

submitted to MySQL, preventing in
PHP, 270

escapeshellcmd( ) function (PHP), 158
escaping characters

in JavaScript strings, 306
in PHP strings, 55

events in JavaScript, 322
attaching events to objects in a script, 461
attaching to other events, 462

examples from this book, 474
exclusive OR operator (XOR) in PHP, 53
exec( ) function (PHP), 157
EXIT command (MySQL), 172
EXPLAIN command (MySQL), 225
explicit casting

in JavaScript, 331
in PHP, 93

explode( ) function (PHP), 132
expressions

in JavaScript, 315–317
literals and variables, 316

in PHP, 69–71
literals and variables, 70
statements, 71

exs (CSS measurement), 407
extending JavaScript objects, 341
extends operator (PHP), 118
external style sheets, 394
extract( ) function (PHP), 133

F
\f (form feed) character in JavaScript, 306
FALSE and TRUE values, 69
false and true values (JavaScript), 315
fclose( ) function (PHP), 146
fgets( ) function (PHP), 146, 147
fieldname class (CSS), 480
file handle, 146

file pointer, 149
files

file handling with PHP, 145–157
checking if file exists, 145
copying files, 147
creating a file, 145
deleting a file, 148
locking files for multiple access, 150
moving a file, 148
reading an entire file, 151
reading from files, 147
updating files, 149
uploading files, 152–157

including and requiring in PHP, 104
$_FILES array, 153

content of, 154
FileZilla, 36
file_exists( ) function (PHP), 145
file_get_contents( ) function (PHP), 151, 380
final methods (PHP), 120
Firebug plug-in for Firefox, 300
Firefox

FireFTP, 36
HTTP authentication login prompt, 278
JavaScript error messages, accessing, 299

First, Second, and Third Normal Form, 211
First Normal Form, 212
Second Normal Form, 214
Third Normal Form, 217

first-letter pseudoclass, 417
fixed positioning, 416
FLOAT type (MySQL), 178
flock( ) function (PHP), 150
focus pseudoclass, 418
font families, safest to use on web pages, 409
font-face property (CSS), 444
font-family property (CSS), 409
font-size property (CSS), 392, 410

fontSize property in JavaScript, 457
font-style property (CSS), 409
font-weight property (CSS), 410
fonts, web fonts in CSS3, 444
fopen( ) function (PHP), 145, 149

supported modes, 146
for loops

in JavaScript, 328
breaking out of, 329
continue statement, 330

in PHP, 89

Index | 545



breaking out of, 91
while loops versus, 90

forEach( ) method (JavaScript arrays), 345
cross-browser solution, 346

foreach...as loop in PHP, 126
foreign key, 214
<form> and </form> tags, 259
format( ) function (CSS), 445
forms, 259–274

creating using PHP, 259
displaying form to add data to MySQL

database, 243
PHP program integrating with (example),

271–273
processing submitted data using PHP, 260–

271
default values, 262
input types, 263–270
register_globals function, 262
sanitizing input, 270

redisplaying after PHP validation, 366–371
uploading file from, to web server, 152
validating user input with JavaScript, 351–

357
validation of data using PHP, 155

Frameset DTD
HTML 4.01, 161
XHTML 1.0, 162

fread( ) function (PHP), 146, 147
friends (social networking site example)

adding and dropping friends, 490
friends.php, 492–495

fseek( ) function (PHP), 149
FTP, using for file transfer to and from web

server, 35
FULLTEXT indexes (MySQL)

creating for database table, 190
stopwords, 521
using MATCH...AGAINST construct on,

196
functions

defined, 97
JavaScript, 307, 333–337

defining, 333
prototype property, 340
returning a value, 335
returning an array, 337

MySQL, 203, 525–536
PHP, 61, 98–104

defining, 99
passing by reference, 102
returning a value, 100
returning an array, 101

function_exists( ) function (PHP), 106
fwrite( ) function (PHP), 92, 146

G
/g (global) matching in regular expressions,

364
$_GET and $_POST arrays, 133

variables obtained from, security problems
with, 270

GET and POST requests (HTTP), 242
implementing Ajax via GET requests, 381–

383
implementing Ajax via POST requests, 376–

380
getElementById( ) function (JavaScript), 399,

453–457
enhancing

C( ) function, 455
including O( ), S( ), and C( ) functions,

456
O( ) function, 453
O( ), S( ), and C( ) functions, 476
S( ) function, 454

getElementsByTagName( ) function
(JavaScript), 455

getnext( ) function (JavaScript), 321
get_post( ) function (PHP), 245
global variables, 104

in JavaScript, 308
in PHP, 63
PHP functions returning values in global

variables, 103
Glossword WAMP, 29
Gmail

use of Ajax to check username availability,
10

Google
web fonts, 445

Google Maps, Ajax in action, 373
gradients, 414
GRANT command (MySQL), 172, 173

example parameters for, 173
IDENTIFIED BY clause, 174

GROUP BY clause (MySQL commands), 199
group, selecting by (in CSS), 401

546 | Index



grouping in regular expressions, 359

H
<head> tags

CSS styling for web pages within, 389
JavaScript scripts within, 297

header.php file (social networking site
example), 476–478

headings, setting font size for, 410
HELP (\h \?) command (MySQL), 172
heredoc operator (<<<) in PHP, 56
hexadecimal RGB colors, 412
hidden fields in forms, 267
history object (JavaScript), 313, 460
hover pseudoclass (CSS), 418, 449
HSL colors, 441
HSLA colors, 441
HTML, 1

changing dynamically using PHP, 6
DTDs supported in HTML 4.01, 160
including CSS style sheet within, 390
incorporating PHP in, 41–43
JavaScript and, 296

browsers not supporting scripting, 297
debugging JavaScript errors, 299
including JavaScript files, 298
using scripts within document head,

297
removing from form input using PHP, 270
styling elements with CSS, 9
XHTML versus, 158, 159

HTML injection, preventing in MySQL, 256
<html> tags, xmlns attribute (in XHTML),

160
HTML5 DOCTYPE declaration, 161
htmlentities( ) function (PHP), 66, 257, 270
HTTP, 1

defined, 2
request/response procedure, 2

HTTP authentication, 278–285
salting passwords, 281
storing usernames and passwords, 281

HTTPS, 290
hue, 441
Hyper Text Markup Language (see HTML)
Hyper Text Transfer Protocol (see HTTP)
hyperlinks, 1

I
/i (case-insensitive) matching in regular

expressions, 364
ID selectors, 399
identity operator (===), 73, 76, 305, 319
IDEs (integrated development environments),

38–39
IDs, assigning to HTML elements, 391
if statements

in JavaScript, 324
else statement, 325

in PHP, 79
problems caused by OR operator, 78
using operators, 53
using ternary operator (? :) instead of,

85
if...else if... statement, 326
if...elseif...else structure (PHP), 273
images

adding image to profile on social networking
site, 486

multiple images in background, 432
processing profile image for social

networking site, 486
uploading using PHP, 152

<img> and </img> tags, inline JavaScript in,
460

implicit casting in PHP, 93
!important declaration, CSS rules, 404
importing a style sheet, 390
in keyword (JavaScript), 344
inches (CSS measurement), 407
include statements in PHP, 104

using include_once, 105
incrementing variables

in JavaScript, 305
operator precedence, 318

in PHP, 53, 88
indenting text, 412
index.php file (social networking site example),

479
indexes

array, 123, 125, 345, 346
assigning values to, 126

MySQL database tables, 185–191, 214
creating an index, 186
using MATCH...AGAINST construct

with FULLTEXT indexes, 196
inequality operator (!=), 76

Index | 547



inheritance, 107
in PHP classes, 118–121

final methods, 120
parent operator, 119
subclass constructors, 120

ini_set( ) function (PHP), 289, 292
inline JavaScript, 460–463

attaching actions to events, 462
this keyword, 461

inline styles, 395
innerHTML property, 465

using to display the time, 468
InnoDB storage engine, 223
<input> tags

submit type attribute (XHTML), 159
type attribute, 263–270

input, checking in PHP for HTTP
authentication, 280

input, forms
sanitizing, 270
types of, 263–270

checkboxes, 264
hidden fields, 267
labels, 269
radio buttons, 267
select, 268
submit button, 270
text areas, 264
text boxes, 263

validating using JavaScript, 351–357
INSERT command (MySQL), 7, 172

INSERT INTO command, 182
inserting data into table using PHP, 248

insertion IDs, 251
closing, 251

instance of a class, 107
creating in PHP, 108

INT (or INTEGER) type (MySQL), 178
integrated development environments (IDEs),

38–39
interfaces, 107
internal styles, 395
Internet Explorer

focus pseudoclass applied to universal
selector, 419

fonts, 445
JavaScript error messages, accessing, 299
JavaScript-style CSS property names, 457

Microsoft implementation of JavaScript
(JScript), 311

user-defined style, applying to, 394
XMLHttpRequest object, 324, 374

Internet media content types, 154
interrupts, 466–470

canceling a timeout, 467
using for animation, 469
using setInterval( ) function, 467–469

canceling an interval, 469
using setTimeout( ) function, 466

passing a string, 466
repeating timeouts, 467

intervals, setting and clearing for interrupts,
467–469

intval( ) function (PHP), 273
is_array( ) function (PHP), 131
italics, 409

J
JavaScript, 295–313

accessing CSS from, 453–471
accessing CSS properties, 457–460
adding and removing elements, 463
getElementById( ) function, enhancing,

453–457
inline JavaScript, 460–463
using interrupts, 466–470

Ajax (see Ajax)
and HTML text

browsers not supporting JavaScript, 297
debugging JavaScript errors, 299
including JavaScript files, 298
using scripts within a document head,

297
arrays, 342–349
benefits of using, 5, 7
comments, 301
conditionals, 324–327
DOM (Document Object Model) and, 309–

313
explicit casting in, 331
expressions, 315–317
functions, 307, 333–337
getElementById( ) function, enhancing

O( ), S( ), and C( ) functions, 476
and HTML text, 296
looping in, 327
objects, 337–342

548 | Index



onBlur event, 480
onerror event, 322
operators, 303–307, 317–322
regular expressions, 357–366

using, 365
resource sites, 518
try...catch construct, 323
validating user input with, 351–357
variables, 302–303

global, 308
typing, 307

with statement, 322
working with PHP, MySQL, and CSS to

produce dynamic web content,
10

join( ) method (JavaScript arrays), 346
JOIN...ON construct (MySQL), 201
joining tables in MySQL, 200

JOIN...ON construct, 201
using AS keyword, 202
using NATURAL JOIN, 201

jQuery, 387
JScript, 311

K
keys, 125

in MySQL, 214

L
labels on forms, 269
LAMPs (Linux, Apache, MySQL, and PHP),

14
installing a LAMP on Linux, 34

layout
using CSS box model, 420–425

adjusting padding, 423
applying borders, 422
object contents, 425
setting margins, 421

left property, 415
letter-spacing property (CSS), 411
LIKE qualifier (MySQL commands), 194
LIMIT qualifier (MySQL commands), 195
line-height property (CSS), 411
line-through text, 411
linear gradients, 414
linear timing function, 449
link pseudoclass, 418

and focus pseudoclass, 418
links

including style sheet within HTML using
<link> tags, 390

URL within link in body of HTML
document, referencing in
JavaScript, 310

links object (JavaScript), 312
Linux

accessing MySQL via command line, 169
accessing MySQL via phpMyAdmin, 205
starting MySQL and logging in, 174
system calls using PHP, 157

Linux, Apache, MySQL, and PHP (see LAMPs)
list( ) function (PHP), 127
literals

in JavaScript, 316
in PHP, 70

local variables, 104
in JavaScript, 308
in PHP, 62

LOCK command (MySQL), 172
locking database tables, 252
logical operators

in JavaScript, 305, 318, 320
all possible logical expressions, 321

in PHP, 52, 77
all possible logical expressions, 78

using in MySQL queries, 202
logins

creating PHP login file for MySQL, 234
login.php (social networking site example),

483–485
MySQL, 174

logout.php (social networking site example),
497

LONGBLOB type (MySQL), 178
longdate( ) function (PHP), 61
LONGTEXT type (MySQL), 177
looping

in JavaScript, 327–331
breaking out of loops, 329
continue statement, 330
do...while loops, 328
for loops, 328
while loops, 327

in PHP, 87–92
breaking out of loops, 91
continue statement, 92

Index | 549



do...while loops, 89
for loops, 89
foreach...as loop, 126
while loops, 87

lowercase text, 412
ls system command, 157
luminance, 441

M
/m (multiline) mode in regular expression

matching, 364
Mac OS X

accessing MySQL via command line, 168
accessing MySQL via phpMyAdmin, 205
starting MySQL and logging in, 174
system calls using PHP, 157

Mac, Apache, MySQL, and PHP (see MAMPs)
magic quotes (PHP), 254
MAMPs (Mac, Apache, MySQL, and PHP), 14

installing a MAMP on Mac OS X, 29–34
configuring MySQL, 31
testing the installation, 33

many-to-many relationships in data, 220
margin property (CSS), 421
margins, setting using CSS box model, 421
MATCH...AGAINST construct (MySQL), 196

IN BOOLEAN MODE, 197
matrix( ) function (CSS), 446
md5( ) function (PHP), 281, 284
measurements in CSS, 406
MEDIUMBLOB type (MySQL), 178
MEDIUMINT type (MySQL), 178
MEDIUMTEXT type (MySQL), 177
members.php (social networking site example),

489–492
adding and dropping friends, 490
listing all members, 490–492
viewing user's profile, 490

messages.php (social networking site example),
495–497

metacharacters in regular expressions, 357
summary of, 363

method chaining, 336
methods, 97

defined, 107, 338
final methods in PHP, 120
JavaScript, 309

defining for a class, 338
naming convention, 338

static methods, 341
using prototype keyword for a method,

340
scope in PHP 5, 116
static methods in PHP, 117
writing in PHP, 113

static methods in PHP 5, 114
Microsoft, 446

(see also Internet Explorer; Windows)
ActiveX, 373
browsers, browser prefix for, 414
browsers, prefix for, 446
VBScript, 298

millimeters, measurements in CSS, 407
miscellaneous resource sites, 519
Mizilla-based browsers, browser prefix, 442
mktime( ) function (PHP), 142
mobile devices, XHTML and, 159
MODIFY keyword (MySQL), 183
mouse hover inline JavaScript example, 460
move_uploaded_file( ) function (PHP), 153
Mozilla-based browsers, browser prefix, 414,

438, 440, 446
multidimensional arrays

in JavaScript, 303, 344
in PHP, 128–131

multipart/form-data content type, 153
multiple-line commands in PHP, 55
MyISAM database tables, 190
MySQL, 165–207

accessing via command line, 166–185
data types, 176–182
joining tables together, 200
MySQL commands, 172–176
querying a database, 191–200
starting command-line interface, 167–

170
using command-line interface, 170
using logical operators, 202

accessing via phpMyAdmin, 203–206
backing up and restoring, 227–231
benefits of, 5
configuring in MAMP installation, 31

ensuring MySQL starts on booting, 33
creating users table and adding accounts

using PHP, 282
database basics, 165
database design, 209

550 | Index



database for social networking site logins
(example), 474

database terms, 166
friends table (social networking site

example), 490, 492
FULLTEXT indexes, stopwords, 521
functions, 203, 525–536
indexes, 185–191
inserting and deleting data using PHP, 240–

246
$_POST array, 242
deleting a record, 243
displaying form, 243
querying the database, 244

messages table (social networking site
example), 495

normalization, 211–219
First Normal Form, 212
Second Normal Form, 214
Third Normal Form, 217

PHP authentication using, 283
practical techniques in PHP for accessing,

246–258
adding data, 248
creating a table, 246
deleting data, 250
describing a table, 247
dropping a table, 248
performing additional queries, 252
preventing HTML injection, 256
preventing SQL injection, 253–256
retrieving data, 249
updating data, 250
using AUTO_INCREMENT, 251

querying a database with PHP, 233–240
building and executing a query, 236
closing a connection, 239
connecting to MySQL, 235
creating a login file, 234
fetching a result, 237
fetching a row, 239
selecting a database, 236

relationships among the data, 219–222
resource sites, 517
tables for social networking site (example),

setting up, 478–479
transactions, 222–227
using, 6

working with PHP, JavaScript, and CSS to
produce dynamic web content,
10

mysql executable, 230
mysqldump command, 227

dumping data in CSV format, 230
mysql_close( ) function (PHP), 239
mysql_connect( ) function (PHP), 235
mysql_error( ) function (PHP), 235
mysql_fetch_row( ) function (PHP), 238
mysql_insert_id( ) function, 251
mysql_query( ) function (PHP), 236
mysql_real_escape_string( ) function (PHP),

243, 254, 270
mysql_result function (PHP), 237
mysql_select_db( ) function (PHP), 236

N
NaN (Not a Number), 316
NATURAL JOIN clause (MySQL commands),

201
negation of character class in regular

expressions, 360
new keyword in PHP, creating an object, 109
new operator in PHP, 74
newlines

\n character in JavaScript, 306
\n character in PHP strings, 55, 140

normalization, 211–219
First Normal Form, 212
Second Normal Form, 214
Third Normal Form, 217
when not to use, 218

<noscript> and </noscript> tags, 296
NOT operator

in PHP, 52, 74, 77
using in MySQL, 202

NULL values
in JavaScript, 316
in PHP, 70, 77

numbers
conversion to and from strings in PHP, 58
numeric data types, MySQL, 178
numeric variables in JavaScript, 302
numeric variables in PHP, 47

numeric arrays
in JavaScript, 342

multidimensional, 344
in PHP, 123

Index | 551



using foreach...as loop with, 127

O
O'Reilly resource sites, 519
O( ) function, 453, 465, 476

including, 456
object-oriented programming (OOP), 106
objects

defined, 97
JavaScript, 309, 337–342

accessing, 339
attaching events to, 461
creating, 339
declaring a class, 338
prototype keyword, 340–342

O( ) function, enhancing getElementById( )
function, 453

PHP, 106–121
accessing, 109
constructors, 112
creating, 109
declaring a class, 108
declaring properties, 114
inheritance, 118–121
scope in PHP 5, 116
terminology associated with, 107
writing methods for, 113

offsetTop property (JavaScript), 464
one-to-many relationships in data, 220
one-to-one relationships in data, 219
one-way functions, 281
onerror event (JavaScript), 322
onreadystatechange property,

XMLHttpRequest object, 378
onSubmit attribute (HTML forms), 353
OOP (see object-oriented programming)
opacity

HSLA colors, 441
opacity property in CSS, 466
opacity property in CSS3, 442
RGBA colors, 442

open source software, 10
open( ) method, XMLHttpRequest object, 376
OpenType fonts, 445
Opera

browser prefix, 414, 446
JavaScript error messages, accessing, 299

operating systems
system calls using PHP, 157

operators
combining with expressions to create

statements, 71
in JavaScript, 303–307

arithmetic operators, 304
assignment operators, 304
associativity, 318
comparison operators, 305
incrementing and decrementing

variables, 305
logical operators, 305
precedence of, 318
relational operators, 319–322
string concatenation, 306
types of operators, 317–322

in PHP, 50–53, 71–79
arithmetic operators, 50
assignment operators, 51
associativity, 74
comparison operators, 51
logical operators, 52
precedence of, 72
relational operators, 75–79

OR operator
in PHP, 52, 73, 77
using in MySQL, 202

ORDER BY clause (MySQL commands), 199
overflow properties in CSS

overflow property, 439
text-overflow, 443

overlining text, 411

P
p (paragraph) elements, changing default

indentation using CSS style rules, 9
packet sniffing, 290
padding

adjusting using CSS box model, 423
printf( ) function output in PHP, 139

string padding, 140
padding-box value

background-clip property, 430
background-origin property, 431

paragraphs, setting default font size for, 410
parent operator (PHP), 119
passwords

checking validity of, 280
entering for HTTP authentication, 278
masking from view, 484

552 | Index



storing, 281
validating using JavaScript, 356

percent measurements in CSS, 408
Perl, 5
PHP, 41–67

Ajax process, server half of, 379
arrays, 123–136
basic syntax, 45
benefits of, 5
casting, implicit and explicit, 93
checkuser.php (social networking site

example), 482
comments, 44
conditionals, 79–86
constants, 58
cookies, 275–278
date and time functions, 141–145
in dynamic web pages, 3
dynamic linking with, 94
echo and print commands, difference

between, 60
examples from this book, 43
expressions, 69–71

literals and variables, 70
file handling, 145–157
form handling

building forms, 259
example program, 271–273
retrieving submitted data, 260–271, 260

friends.php (social networking site
example), 492–495

functions, 61, 97–104
functions for social networking site

(example), 474–476
header.php file for social networking site

(example), 476–478
HTTP authentication, 278–285
IDEs (integrated development

environments), 39
including and requiring files, 104
incorporating within HTML, 41–43
index.php file (social networking site

example), 479
inserting and deleting data in MySQL

database, 240–246
$_POST array, 242
deleting a record, 243
displaying the form, 243
querying the database, 244

running the program, 245
login.php (social networking site example),

483–485
logout.php (social networking site

example), 497
looping in, 87–92
members.php (social networking site

example), 489–492
messages.php (social networking site

example), 495–497
multiple-line commands, 55
objects, 106–121
operators, 50–53, 71–79

arithmetic, 50
assignment, 51
associativity, 74
comparison, 51
logical, 52
precedence of, 72
relational, 75–79

practical MySQL, 246–258
adding data, 248
creating a table, 246
deleting data, 250
describing a table, 247
dropping a table, 248
performing additional queries, 252
preventing HTML injection, 256
preventing SQL injection, 253–256
retrieving data, 249
updating data, 250
using AUTO_INCREMENT, 251

printf( ) function, 137–141
profile.php (social networking site

example), 485–489
querying MySQL databases, 233–240

building and executing a query, 236
closing a connection, 239
connecting to MySQL, 235
creating login file, 234
fetching a result, 237
fetching a row, 239
selecting a database, 236

regular expressions, using in, 365
resource sites, 517
sending XML requests, 383
sessions, 285–293
setup.php file (social networking site

example), 478–479

Index | 553



signup.php file (social networking site
(example), 479–482

sprintf( ) function, 141
system calls, 157
validation of form data, redisplaying form

after, 366–371
variable assignment, 53
variable scope, 62–66

global variables, 63
local variables, 62
static variables, 64
superglobal variables, 65

variable typing, 58
variables, 46–50

arrays, 48
naming, 50
numeric, 47
string, 46

version compatibility, 106
working with MySQL, JavaScript, and CSS

to produce dynamic web content,
10

XHTML, 158–163
phpDesigner IDE, 38
phpinfo( ) function, 98
phpMyAdmin, accessing MySQL via, 203–206
picas (CSS measurements), 407
pixels (CSS measurements), 407
placeholders, using to prevent SQL injection,

255
points (CSS measurements), 407
pop( ) method (JavaScript arrays), 347
position property (CSS), 415, 466
positioning elements with CSS, 415–417

absolute positioning, 415
comparing positioning types, 416
fixed positioning, 416
relative positioning, 416

$_POST and $_GET arrays (PHP)
assigned directly to PHP variables, 262

<pre> and </pre> tags, 130, 131
preg_match( ) function (PHP), 365
preg_match_all( ) function (PHP), 365
preg_replace( ) function (PHP), 156
primary keys, 188, 210
print command (PHP), echo command versus,

60
print( ) function (PHP), 98
printf( ) function (PHP), 137–141

conversion specifier components, 139
conversion specifiers, 137
precision setting for displayed result, 139

print_r( ) function (PHP), 109, 124
private keyword (PHP 5), 116
profiles (social networking site example), 485–

489
adding "About Me" text, 486
adding image to profile, 486
displaying current profile, 487–489
viewing a user's profile from members page,

490
program editors, 37
prompts, MySQL command line, 171
properties

accessing CSS properties from JavaScript,
457–460

other properties, 459
some common properties, 458

converting CSS properties to JavaScript,
457

CSS, 392
alternatives to adding and removing

DOM elements, 465
declaring in PHP, 114
defined, 107, 338
defining for a class, 108
in JavaScript, 309

adding to an object, 339
defining for a class, 338
naming convention, 338
static properties, 341
using prototype keyword for, 340

scope in PHP 5, 116
static properties in PHP, 117

protected keyword (PHP 5), 116
prototype keyword (JavaScript), 340–342
pseudoclasses (CSS), 417–419, 427

website for further information, 419
pseudoelements (CSS), 419, 427
pseudofunctions, 98
public keyword (PHP), 108, 116
push( ) method (JavaScript arrays), 342, 347
PuTTY, 35

Q
querying a MySQL database, 191–200

DELETE command, 193
GROUP BY, using to group data, 199

554 | Index



LIMIT qualifier, 195
MATCH...AGAINST construct, using IN

BOOLEAN MODE, 197
MATCH...AGAINST construct, using on

FULLTEXT indexes, 196
ORDER BY, using to sort results, 199
SELECT command, 191
SELECT COUNT command, 191
SELECT DISTINCT command, 192
UPDATE...SET construct, 198
using PHP, 233–240, 244

building and executing a query, 236
closing MySQL server connection, 239
connecting to MySQL, 235
fetching a result, 237
fetching a row, 239
selecting a database, 236

WHERE keyword, 193
queryMysql( ) function (PHP), 474, 482
QUIT (\q) command (MySQL), 172
quotation marks

enclosing tag attributes in XHTML, 159
magic quotes feature in PHP, 254

R
\r (carriage return) character in JavaScript,

306
radial gradients, 414
radio buttons, 265

using for form input, 267
ranges in regular expression character classes,

360
readyState property, XMLHttpRequest object,

378–379
records, 165
reference books for further information, xviii
references

& operator in PHP, 73
passing by reference in PHP, 102

register_globals( ) function (PHP), 262
regular expressions, 357–366

character classes, 359
examples of, 364
fuzzy character matching, 358
general modifiers, 364
grouping, using parentheses, 359
matching through metacharacters, 357
metacharacters, summary of, 363
more complicated examples of, 360

using in JavaScript, 341, 365
using in PHP, 365

relational database management systems, 219
relational databases, primary keys, 210
relational operators

in JavaScript, 319–322
comparison operators, 320
equality operators, 319
logical operators, 320

in PHP, 75–79
comparison operators, 76
equality operators, 75
logical operators, 77

relationships in database data, 219–222
databases and anonymity, 222
many-to-many, 220
one-to-many, 220
one-to-one, 219

relative positioning, 416
remote server

accessing MySQL on, 170
using for development, 35–36

removeChild( ) method (JavaScript), 465
RENAME command (MySQL), 172, 183
rename( ) function (PHP), 148
require and require_once statements in PHP,

105
reset( ) function (PHP), 135
resource sites, 517
responseText property (XMLHttpRequest),

379
responseXML property (XMLHttpRequest),

385
restoring MySQL data from backup file, 230
return statement, JavaScript functions, 336
reverse( ) method (JavaScript arrays), 348
RGB colors, 412, 442
rgb( ) function (CSS), 412
right property, 415
ROLLBACK command, canceling transactions

in MySQL, 225
root user, MySQL, 167
rotate( ) function (CSS), 447
rounded borders, using border-radius property

in CSS3, 435–438
rows, 165

fetching a row from MySQL database query
in PHP, 239

rules (CSS), 392–394

Index | 555



calculating specificity of, 403
multiple assignments of, 392
precedence or importance of, 404
shorthand rules, 420
using comments, 393
using semicolons in, 392

S
S( ) function, 454, 476

including, 456
Safari

JavaScript error messages, accessing, 299
salting passwords, 281–285
SanitizeString( ) function, 379
sanitizeString( ) function (PHP), 475, 482
sanitizing form input, 270
saturation, 441
scale( ) function (CSS), 447
screen object, read-only properties, 460
<script> and </script> tags

and included JavaScript files, 298
JavaScript code in, 296
XHTML 1.0 documents, 163

Secure Sockets Layer (SSL), 290
security

in modern browsers, 281
session, 290–293

<select> and </select> tags, form input with,
268

SELECT command (MySQL)
SELECT * FROM command, 249
SELECT COUNT command, 191
SELECT DISTINCT command, 192
SELECT FROM command, 191
using GROUP BY with, 199
using LIMIT qualifier with, 195
using ORDER BY with, 199
using WHERE keyword with, 193
using WHERE keyword with LIKE qualifier,

194
selectors (CSS), 396–402, 427

processing of style sheet selectors, 403–405
self keyword (PHP), 116

ensuring code calls method from current
class, 119

server-side scripting, 5
$_SESSION array (PHP), 285
sessions, 285–293

ending, 288

retrieving session variables using PHP, 287
security, 290–293

preventing session fixation, 291
preventing session hijacking, 290

session_regenerate_id( ) function (PHP), 291
session_start( ) function (PHP), 285
setAttribute( ) function (JavaScript), 457
setcookie( ) function (PHP), 277

destroying a cookie, 278
setInterval( ) function (JavaScript), 467–469
setTimeout( ) function (JavaScript), 466, 469

passing a string to, 466
repeating timeouts, 467

setup.php file (social networking site example),
478–479

sha1( ) function (PHP), 282
shadows

box shadows in CSS3, 438
text shadow in CSS3, 443

SHOW command (MySQL), 167, 172
showProfile( ) function (PHP), 475
shuffle( ) function (PHP), 132
signed numbers, 178
signup.php (social networking site example),

479–482
sizeof( ) function (PHP), 493
skew( ) function (CSS), 447
SMALLINT type (MySQL), 178
smartphones, XHTML and, 159
social networking site (example)

checkuser.php, 482
designing a site, 473
friends.php, 492–495
functions.php, 474–476
header.php, 476–478
index.php, 479
login.php, 483–485
logout.php, 497
members.php, 489–492
messages.php, 495–497
profile.php, 485–489
setup.php, 478–479
signup.php, 479–482
styles.css, 499–501

sort( ) function (PHP), 132
sort( ) method (JavaScript arrays), 348
SOURCE command (MySQL), 172
spacing of text, 411

556 | Index



<span> and <div> elements, differences in,
405–406

specificity of CSS rule, calculating, 403
sprintf( ) function (PHP), 141
SQL (Structured Query Language), 7, 165
SQL injection, preventing, 253–256
SSH, using for remote access to server, 35
SSL (Secure Sockets Layer), 290
statements

in JavaScript, 317
with statement, 322

in PHP, 71
static properties and methods

JavaScript, 341
PHP, 117
static methods in PHP 5, 114

static variables, 104
in PHP, 64

allowed and disallowed declarations, 65
STATUS (\s) command (MySQL), 172
status property, XMLHttpRequest object, 378
statusText property, XMLHttpRequest object,

378
stopwords, 196, 521
Strict DTD

HTML 4.01, 160
XHTML 1.0, 161

string variables (PHP), 46
strings

functions for, in MySQL, 203
JavaScript, 302

concatenation, 306
matching parts of strings in CSS3, 428
PHP

concatenation, 54
conversion to and from numbers, 58
exploding into an array, 132
functions for, 98
padding strings in printf( ) output, 140
types, 54

strip_tags( ) function (PHP), 271
strtolower( ) function (PHP), 157
Structured Query Language (see MySQL; SQL)
<style> and </style> tags, 9, 389

importing a style sheet, 390
internal styles in, 395

style sheets, 390
(see also CSS)
different creators of, 402

methods of creating, 402
resolving potential conflicts between, 402

styles
modifying CSS styles from JavaScript, 458
S( ) function, accessing style or CSS

properties of an object, 454
styles.css (social networking site example),

499–501
subclasses, 107

PHP, calling parent constructors, 120
submit buttons on forms, 270
substr( ) function (JavaScript), 336, 468
substr( ) function in PHP, 58
superclass, 107
superglobal variables (PHP), 65

security and, 66
switch statements

in JavaScript, 325
default action, 326

in PHP, 82–85
system calls in PHP, 157

T
tables, 165

creating in MySQL database, 174
creating in MySQL using PHP, 246
deleting in MySQL, 185
describing MySQL table using PHP, 247
dropping MySQL table using PHP, 248
joining in MySQL, 200
joining together in MySQL, 200
renaming database table, 183

tabs
\t character in JavaScript, 306
\t character in PHP, 130
\t character in PHP strings, 55

Telnet, 35
Terminal program (Mac OS X), accessing

MySQL from, 168
ternary operators (? :), 72, 317

in JavaScript, 327
using instead of if and else statements in

PHP, 85
text

color, setting in CSS, 412
effects in CSS3, 443–444

text-overflow property, 443
text-shadow property, 443
word-wrap property, 444

Index | 557



managing styles with CSS, 411–412
MySQL's TEXT data types, 177

text areas, 264
text boxes, 263
TEXT type (MySQL), 177
<textarea> and </textarea> tags, 264
textDecoration property (JavaScript), 456
this keyword (JavaScript), 338, 353, 461
$this variable in PHP, 113
TIME type (MySQL), 180
time( ) function (PHP), 61, 141
timeouts, setting for sessions, 289
TIMESTAMP type (MySQL), 180
timestamps, creating in PHP, 142
TINYBLOB type (MySQL), 178
TINYINT type (MySQL), 178
TINYTEXT type (MySQL), 177
tinyurl.com web address shortening service,

29
toLowerCase( ) method (JavaScript), 336
top, right, bottom, and left properties, 415
toTimeString( ) function (JavaScript), 468
toUpperCase( ) method (JavaScript), 336
transactions, 222–227

canceling using ROLLBACK command,
225

storage engines, 223
using BEGIN statement, 224
using COMMIT command, 224
using EXPLAIN command, 225

transform property (CSS), 446
transformations, 446

using with transitions, 449
transforming text, 412
transition-property (CSS), 448
transition-timing-function property, 449
Transitional DTD

HTML 4.01, 161
XHTML 1.0, 161

transitions, 448–451
delay, 448
duration, 448
properties to transition, 448
shorthand syntax, transition property, 449
timing, 449
using with transformations, 449

translate( ) function (CSS), 446
triggers, 219
TRUE and FALSE values, 69

true and false values (JavaScript), 315
TrueType fonts, 445
TRUNCATE command (MySQL), 172
try...catch construct (JavaScript), 323, 375
type selectors, 396
typedef operator (JavaScript), 308
typeof operator (JavaScript), 307

checking scope of variables, 308

U
unary operators, 72, 317
undefined values (JavaScript), 316
units of measurement in CSS, 406
universal selector, 400, 418

focus pseudoclass and, 419
Unix

system calls using PHP, 157
unlink( ) function (PHP), 148
UNLOCK command (MySQL), 172
unsigned numbers, 178
UPDATE command (MySQL), 172

updating data using PHP, 250
UPDATE...SET construct (MySQL), 198
uploading files using PHP, 152–157
uppercase text, 412
url( ) function (CSS), 445
URLs

reading link URL with JavaScript, 310
USE command (MySQL), 172
user agent string, 290
user sessions (see sessions)
user styles (CSS), 394
usernames

checking availability of, 482
checking for availability, 480–482
checking validity of, 280
entering for HTTP authentication, 278
storing, 281
validating using JavaScript, 355

users, creating in MySQL, 173

V
validateUsername( ) function (JavaScript),

breakdown of regular expression,
361

validation
form data using JavaScript, 351–357
form data using PHP, 155

558 | Index



redisplaying form after PHP validation, 366–
371

XHTML, 162
values, 125
VALUES keyword (MySQL), 183
var keyword in JavaScript, 308
VARBINARY type (MySQL), 177
VARCHAR type (MySQL), 176

differences from TEXT type, 177
variable substitution, 55
variables

in expressions, 70
JavaScript, 302–303

arrays, 303
assigning values to, 304
expressions in, 316
global variables, 308
incrementing and decrementing, 305
local variables, 308
numeric, 302
strings, 302
typing, 307

PHP, 46–50
$ (dollar sign) preceding names of, 45
arrays, 48
assignment, 53
initializing for security reasons, 262
naming, rules for, 50
numeric variables, 47
returning global variables from

functions, 103
scope, 62–66, 104
string variables, 46
turning key/value pairs from array into

variable, 133
typing, 58

VBScript, 298
versions

PHP version compatibility, 106
XHTML, 159

visibility property (CSS), 465
visited pseudoclass, 418

W
W3C (World Wide Web Consortium)

standard colors, 412
validation site for XHTML, 162

WAMPs (Windows, Apache, MySQL, and
PHP), 14

alternative, 29
installing a WAMP server on Windows, 14–

26
testing WAMP server installation, 26–29

WAMPServer, 29
web browsers, 1

browsing history, 313
JavaScript error messages, accessing, 299
older and nonstandard, not supporting

JavaScript, 297
web fonts, 444

Google web fonts, 445
web page and website for this book, xx
web servers, 1

Apache, 9
uploading files to, 152

WebKit-based browsers, browser prefix, 438,
440, 442, 446

Webkit-based browsers, prefix, 414
website for this book, code examples, 474
weight, or boldness, of a font, 410
WHERE keyword (MySQL), 193

using LIKE qualifier with, 194
using logical operators in WHERE clause,

202
while loops

in JavaScript, 327
in PHP, 87, 128

for loops versus, 90
wildcard or universal selector (*), 400
window object (JavaScript)

innerHeight and innerWidth properties,
460

properties, 459
Windows

accessing MySQL via command-line, 167
accessing MySQL via phpMyAdmin, 203
starting MySQL and logging in, 174
system class using PHP, 157

Windows, Apache, MySQL, and PHP (see
WAMPs)

with statement (JavaScript), 322
word-spacing property (CSS), 411
word-wrap property (CSS3), 444
WordPress blogging platform, 94
wrap types available in <textarea> input, 264

X
XAMPP, 29

Index | 559



XHTML (Extensible Hypertext Markup
Language), 158–163

benefits of, 159
differences from HTML, 159
HTML 4.01 document types, 160
HTML5 document type, 161
validation, 162
versions, 159
XHTML 1.0 document types, 161

XML
example XML document, 160
general form of documents (example), 385
reasons for using, 387

XMLHttpRequest objects, 373–376
creating, methods for, 374
methods, 376
properties, 375
readyState property, 378–379
responseXML property, 385
sending XML requests, 383–387

XOR operator
in PHP, 73, 77

XOR operator in PHP, 52
XSS (cross-site scripting), 256

Y
YEAR type (MySQL), 180

Z
Zend Server

installing on Linux, 35
installing on Mac OS X, 29–34

configuring MySQL, 31
testing installation, 33

installing on Windows, 14–29
testing installation, 26–29

Zend Server CE
installed on Windows, accessing MySQL

executable, 167
Zend Server Free Edition

administration screen, 25
installing, 15

end user license agreement, 21
selecting Development option, 22

setting password, 24

560 | Index



About the Author
Robin Nixon has worked with and written about computers since the early 1980s (his
first computer was a Tandy TRS 80 Model 1 with a massive 4KB of RAM!). One of the
websites he developed presented the world’s first radio station licensed by the music
copyright holders. In order to enable people to continue to surf while listening, Robin
also developed the first known pop-up windows. He has also worked full time for one
of Britain’s main IT magazine publishers, where he held several roles, including edito-
rial, promotions, and cover disc editing, and is the author of more than 16 books.

Colophon
The animals on the cover of Learning PHP, MySQL, JavaScript, and CSS are sugar
gliders (Petaurus breviceps). Sugar gliders are small, gray-furred creatures that grow to
an adult length of six to seven-and-a-half inches. Their tails, which are distinguished
by a black tip, are usually as long as their bodies. Membranes extend between their
wrists and ankles and provide an aerodynamic surface that helps them glide between
trees.

Sugar gliders are native to Australia and Tasmania. They prefer to live in the hollow
parts of eucalyptus and other types of large trees with several other adult sugar gliders
and their own children.

Though sugar gliders reside in groups and defend their territory together, they don’t
always live in harmony. One male will assert his dominance by marking the group’s
territory with his saliva and then by marking all group members with a distinctive scent
produced from his forehead and chest glands. This ensures that members of the group
will know when an outsider approaches; group members will fight off any sugar glider
not bearing their scent. However, a sugar glider group will welcome and mark an out-
sider if one of their adult males dies (the group will typically replace a deceased adult
female with their one of their own female offspring).

Sugar gliders make popular pets because of their inquisitive, playful natures, and be-
cause many think they are cute. But there are disadvantages to keeping sugar gliders as
pets: as they are exotic animals, sugar gliders need specialized, complicated diets con-
sisting of items such as crickets, a variety of fruits and vegetables, and mealworms;
healthy housing requires a cage or space no less than the size of an aviary; their dis-
tinctive scents can be bothersome to humans; as they are nocturnal creatures, they will
bark, hiss, run, and glide all night long; it’s not uncommon for them to extricate their
bowels while playing or eating; and in some states and countries, it is illegal to own
sugar gliders as household pets.

The cover image is from Dover’s Animals. The cover font is Adobe ITC Garamond. The
text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code
font is LucasFont’s TheSansMonoCondensed.




	Table of Contents
	Preface
	Audience
	Assumptions This Book Makes
	Organization of This Book
	Supporting Books
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments
	Content Updates
	April 12, 2013


	Chapter 1. Introduction to Dynamic Web Content
	HTTP and HTML: Berners-Lee’s Basics
	The Request/Response Procedure

	The Benefits of PHP, MySQL, JavaScript, and CSS
	Using PHP
	Using MySQL
	Using JavaScript
	Using CSS

	The Apache Web Server
	About Open Source
	Bringing It All Together
	Test Your Knowledge

	Chapter 2. Setting Up a Development Server
	What Is a WAMP, MAMP, or LAMP?
	Installing a WAMP on Windows
	Testing the Installation
	Alternative WAMPs

	Installing a MAMP on Mac OS X
	Configuring MySQL
	Ensuring MySQL starts on booting

	Testing the Installation

	Installing a LAMP on Linux
	Working Remotely
	Logging In
	Using FTP

	Using a Program Editor
	Using an IDE
	Questions

	Chapter 3. Introduction to PHP
	Incorporating PHP Within HTML
	Calling the PHP Parser

	This Book’s Examples
	The Structure of PHP
	Using Comments
	Basic Syntax
	Semicolons
	The $ symbol

	Understanding Variables
	String variables
	Numeric variables
	Arrays
	Two-dimensional arrays
	Variable naming rules

	Operators
	Arithmetic operators
	Assignment operators
	Comparison operators
	Logical operators

	Variable Assignment
	Variable incrementing and decrementing
	String concatenation
	String types
	Escaping characters

	Multiple-Line Commands
	Variable Typing
	Constants
	Predefined constants

	The Difference Between the echo and print Commands
	Functions
	Variable Scope
	Local variables
	Global variables
	Static variables
	Superglobal variables
	Superglobals and security


	Test Your Knowledge

	Chapter 4. Expressions and Control Flow in PHP
	Expressions
	Literals and Variables

	Operators
	Operator Precedence
	Associativity
	Relational Operators
	Equality operators
	Comparison operators
	Logical operators


	Conditionals
	The if Statement
	The else Statement
	The elseif Statement
	The switch Statement
	Breaking out
	Default action
	Alternative syntax

	The ? Operator

	Looping
	while Loops
	do…while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Implicit and Explicit Casting
	PHP Dynamic Linking
	Dynamic Linking in Action

	Test Your Knowledge

	Chapter 5. PHP Functions and Objects
	PHP Functions
	Defining a Function
	Returning a Value
	Returning an Array
	Passing by Reference
	Returning Global Variables
	Recap of Variable Scope

	Including and Requiring Files
	The include Statement
	Using include_once
	Using require and require_once

	PHP Version Compatibility
	PHP Objects
	Terminology
	Declaring a Class
	Creating an Object
	Accessing Objects
	Cloning objects

	Constructors
	PHP 5 destructors

	Writing Methods
	Static methods in PHP 5

	Declaring Properties
	Declaring Constants
	Property and Method Scope in PHP 5
	Static properties and methods

	Inheritance
	The parent operator
	Subclass constructors
	Final methods


	Test Your Knowledge

	Chapter 6. PHP Arrays
	Basic Access
	Numerically Indexed Arrays
	Associative Arrays
	Assignment Using the array Keyword

	The foreach...as Loop
	Multidimensional Arrays
	Using Array Functions
	is_array
	count
	sort
	shuffle
	explode
	extract
	compact
	reset
	end

	Test Your Knowledge

	Chapter 7. Practical PHP
	Using printf
	Precision Setting
	String Padding
	Using sprintf

	Date and Time Functions
	Date Constants
	Using checkdate

	File Handling
	Checking Whether a File Exists
	Creating a File
	Reading from Files
	Copying Files
	Moving a File
	Deleting a File
	Updating Files
	Locking Files for Multiple Accesses
	Reading an Entire File
	Uploading Files
	Using $_FILES
	Validation


	System Calls
	XHTML
	The Benefits of XHTML
	XHTML Versions
	What’s Different?
	HTML 4.01 Document Types
	The HTML5 Document Type
	XHTML 1.0 Document Types
	XHTML Validation

	Test Your Knowledge

	Chapter 8. Introduction to MySQL
	MySQL Basics
	Summary of Database Terms
	Accessing MySQL via the Command Line
	Starting the Command-Line Interface
	Windows users
	OS X users
	Linux users
	MySQL on a remote server

	Using the Command-Line Interface
	The semicolon
	Canceling a command

	MySQL Commands
	Creating a database
	Creating users
	Creating a table

	Data Types
	The CHAR data type
	The BINARY data type
	The TEXT and VARCHAR data types
	The BLOB data type
	Numeric data types
	DATE and TIME
	The AUTO_INCREMENT data type
	Adding data to a table
	Renaming a table
	Changing the data type of a column
	Adding a new column
	Renaming a column
	Removing a column
	Deleting a table


	Indexes
	Creating an Index
	Using CREATE INDEX
	Adding indexes when creating tables
	Primary keys
	Creating a FULLTEXT index

	Querying a MySQL Database
	SELECT
	SELECT COUNT
	SELECT DISTINCT
	DELETE
	WHERE
	LIMIT
	MATCH...AGAINST
	MATCH…AGAINST…IN BOOLEAN MODE
	UPDATE…SET
	ORDER BY
	GROUP BY

	Joining Tables Together
	NATURAL JOIN
	JOIN...ON
	Using AS

	Using Logical Operators

	MySQL Functions
	Accessing MySQL via phpMyAdmin
	Windows Users
	OS X Users
	Linux Users
	Using phpMyAdmin

	Test Your Knowledge

	Chapter 9. Mastering MySQL
	Database Design
	Primary Keys: The Keys to Relational Databases

	Normalization
	First Normal Form
	Second Normal Form
	Third Normal Form
	When Not to Use Normalization

	Relationships
	One-to-One
	One-to-Many
	Many-to-Many
	Databases and Anonymity

	Transactions
	Transaction Storage Engines
	Using BEGIN
	Using COMMIT
	Using ROLLBACK

	Using EXPLAIN
	Backing Up and Restoring
	Using mysqldump
	Creating a Backup File
	Backing up a single table
	Backing up all tables

	Restoring from a Backup File
	Dumping Data in CSV Format
	Planning Your Backups

	Test Your Knowledge

	Chapter 10. Accessing MySQL Using PHP
	Querying a MySQL Database with PHP
	The Process
	Creating a Login File
	Connecting to MySQL
	Selecting a database
	Building and executing a query
	Fetching a result
	Fetching a row
	Closing a connection


	A Practical Example
	The $_POST Array
	Deleting a Record
	Displaying the Form
	Querying the Database
	Running the Program

	Practical MySQL
	Creating a Table
	Describing a Table
	Dropping a Table
	Adding Data
	Retrieving Data
	Updating Data
	Deleting Data
	Using AUTO_INCREMENT
	Using insert IDs
	Using locks

	Performing Additional Queries
	Preventing SQL Injection
	Using placeholders

	Preventing HTML Injection

	Test Your Knowledge

	Chapter 11. Form Handling
	Building Forms
	Retrieving Submitted Data
	register_globals: An Old Solution Hangs On
	Default Values
	Input Types
	Text boxes
	Text areas
	Checkboxes
	Radio buttons
	Hidden fields
	Select
	Labels
	The submit button

	Sanitizing Input

	An Example Program
	Test Your Knowledge

	Chapter 12. Cookies, Sessions, and Authentication
	Using Cookies in PHP
	Setting a Cookie
	Accessing a Cookie
	Destroying a Cookie

	HTTP Authentication
	Storing Usernames and Passwords
	Salting

	Using Sessions
	Starting a Session
	Ending a Session
	Setting a timeout

	Session Security
	Preventing session hijacking
	Preventing session fixation
	Forcing cookie-only sessions
	Using a shared server


	Test Your Knowledge

	Chapter 13. Exploring JavaScript
	JavaScript and HTML Text
	Using Scripts Within a Document Head
	Older and Nonstandard Browsers
	Including JavaScript Files
	Debugging JavaScript Errors

	Using Comments
	Semicolons
	Variables
	String Variables
	Numeric Variables
	Arrays

	Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Variable Incrementing and Decrementing
	String Concatenation
	Escaping Characters

	Variable Typing
	Functions
	Global Variables
	Local Variables

	The Document Object Model (DOM)
	But It’s Not That Simple
	Another use for the $

	Using the DOM

	Test Your Knowledge

	Chapter 14. Expressions and Control Flow in
  JavaScript
	Expressions
	Literals and Variables

	Operators
	Operator Precedence
	Associativity
	Relational Operators
	Equality operators
	Comparison operators
	Logical operators


	The with Statement
	Using onerror
	Using try...catch
	Conditionals
	The if Statement
	The else statement

	The switch statement
	Breaking out
	Default action

	The ? Operator

	Looping
	while Loops
	do…while Loops
	for Loops
	Breaking Out of a Loop
	The continue Statement

	Explicit Casting
	Test Your Knowledge

	Chapter 15. JavaScript Functions, Objects, and
  Arrays
	JavaScript Functions
	Defining a Function
	The arguments array

	Returning a Value
	Returning an Array

	JavaScript Objects
	Declaring a Class
	Creating an Object
	Accessing Objects
	The prototype Keyword
	Static methods and properties
	Extending JavaScript objects


	JavaScript Arrays
	Numeric Arrays
	Assigning element values
	Assignment using the Array keyword

	Associative Arrays
	Multidimensional Arrays
	Using Array Methods
	concat
	forEach (for non-IE browsers)
	forEach (a cross-browser solution)
	join
	push and pop
	Using reverse
	sort


	Test Your Knowledge

	Chapter 16. JavaScript and PHP Validation and Error Handling
	Validating User Input with JavaScript
	The validate.html Document (Part One)
	How it works

	The validate.html Document (Part Two)
	Validating the forename
	Validating the surname
	Validating the username
	Validating the password
	Validating the age
	Validating the email address
	Using a separate JavaScript file


	Regular Expressions
	Matching Through Metacharacters
	Fuzzy Character Matching
	Grouping Through Parentheses
	Character Classes
	Indicating a range
	Negation

	Some More Complicated Examples
	Summary of Metacharacters
	General Modifiers
	Using Regular Expressions in JavaScript
	Using Regular Expressions in PHP

	Redisplaying a Form After PHP Validation
	Test Your Knowledge

	Chapter 17. Using Ajax
	What Is Ajax?
	Using XMLHttpRequest
	Implementing Ajax via POST Requests
	The readyState Property
	The Server Half of the Ajax Process

	Using GET Instead of POST
	Sending XML Requests
	About XML
	Why Use XML?

	Using Frameworks for Ajax
	Test Your Knowledge

	Chapter 18. Introduction to CSS
	Importing a Style Sheet
	Importing a Style Sheet from Within HTML

	Embedded Style Settings
	Using IDs
	Using Classes

	CSS Rules
	Using Semicolons
	Multiple Assignments
	Using Comments

	Style Types
	Default Styles
	User Styles
	External Style Sheets
	Internal Styles
	Inline Styles

	CSS Selectors
	The Type Selector
	The Descendant Selector
	The Child Selector
	The Adjacent Sibling Selector
	The ID Selector
	Reusing IDs

	The Class Selector
	Narrowing class scope

	The Attribute Selector
	The Universal Selector
	Selecting by Group

	The CSS Cascade
	Style Sheet Creators
	Style Sheet Methods
	Style Sheet Selectors
	Calculating specificity
	Using a different number base
	Some rules are more equal than others


	The Difference Between <div> and <span>
	Measurements
	Fonts and Typography
	font-family
	font-style
	font-size
	font-weight

	Managing Text Styles
	Decoration
	Spacing
	Alignment
	Transformation
	Indenting

	CSS Colors
	Short Color Strings
	Gradients

	Positioning Elements
	Absolute Positioning
	Relative Positioning
	Fixed Positioning
	Comparing Positioning Types

	Pseudoclasses
	Pseudoelements
	Shorthand Rules
	The Box Model and Layout
	Setting Margins
	Applying Borders
	Adjusting Padding
	Object Contents

	Test Your Knowledge

	Chapter 19. Advanced CSS with CSS3
	Attribute Selectors
	Matching Parts of Strings
	The ^ operator
	The $ operator
	The * operator


	The box-sizing Property
	CSS3 Backgrounds
	The background-clip Property
	The background-origin Property
	The background-size Property
	Using the auto value

	Multiple Backgrounds

	CSS3 Borders
	The border-color Property
	The border-radius Property

	Box Shadows
	Element Overflow
	Multicolumn Layout
	Colors and Opacity
	HSL Colors
	HSLA Colors
	RGB Colors
	RGBA Colors
	The opacity Property

	Text Effects
	The text-shadow Property
	The text-overflow Property
	The word-wrap Property

	Web Fonts
	Google Web Fonts

	Transformations
	Transitions
	Properties to Transition
	Transition Duration
	Transition Delay
	Transition Timing
	Shorthand Syntax

	Test Your Knowledge

	Chapter 20. Accessing CSS from JavaScript
	Revisiting the getElementById Function
	The O Function
	The S Function
	The C Function
	Using the C function

	Including the Functions

	Accessing CSS Properties from JavaScript
	Some Common Properties
	Other Properties

	Inline JavaScript
	The this Keyword
	Attaching Events to Objects in a Script
	Attaching to Other Events

	Adding New Elements
	Removing Elements
	Alternatives to Adding and Removing Elements

	Using Interrupts
	Using setTimeout
	Passing a string
	Repeating timeouts

	Canceling a Timeout
	Using setInterval
	Using the function
	Canceling an interval

	Using Interrupts for Animation

	Test Your Knowledge

	Chapter 21. Bringing It All Together
	Designing a Social Networking Site
	On the Website
	functions.php
	The Functions

	header.php
	setup.php
	index.php
	signup.php
	Checking for Username Availability

	checkuser.php
	login.php
	profile.php
	Adding the “About Me” Text
	Adding a Profile Image
	Processing the Image
	Displaying the Current Profile

	members.php
	Viewing a User’s Profile
	Adding and Dropping Friends
	Listing All Members

	friends.php
	messages.php
	logout.php
	styles.css

	Appendix A. Solutions to the Chapter Questions
	Chapter 1 Answers
	Chapter 2 Answers
	Chapter 3 Answers
	Chapter 4 Answers
	Chapter 5 Answers
	Chapter 6 Answers
	Chapter 7 Answers
	Chapter 8 Answers
	Chapter 9 Answers
	Chapter 10 Answers
	Chapter 11 Answers
	Chapter 12 Answers
	Chapter 13 Answers
	Chapter 14 Answers
	Chapter 15 Answers
	Chapter 16 Answers
	Chapter 17 Answers
	Chapter 18 Answers
	Chapter 19 Answers
	Chapter 20 Answers

	Appendix B. Online Resources
	PHP Resource Sites
	MySQL Resource Sites
	JavaScript Resource Sites
	Ajax Resource Sites
	Miscellaneous Resource Sites
	O’Reilly Resource Sites

	Appendix C. MySQL’s FULLTEXT Stopwords
	Appendix D. MySQL Functions
	String Functions
	CONCAT()
	CONCAT_WS()
	LEFT()
	RIGHT()
	MID()
	LENGTH()
	LPAD()
	RPAD
	LOCATE()
	LOWER()
	UPPER()
	QUOTE()
	REPEAT()
	REPLACE()
	TRIM()
	LTRIM() and RTRIM()

	Date Functions
	CURDATE()
	DATE()
	DATE_ADD()
	DATE_FORMAT()
	DAY()
	DAYNAME()
	DAYOFWEEK()
	DAYOFYEAR()
	LAST_DAY()
	MAKEDATE()
	MONTH()
	MONTHNAME()
	SYSDATE()
	YEAR()
	WEEK()
	WEEKDAY()

	Time Functions
	CURTIME()
	HOUR()
	MINUTE()
	SECOND()
	MAKETIME()
	TIMEDIFF()
	UNIX_TIMESTAMP()
	FROM_UNIXTIME()


	Index

