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1. Introduction

The connection between automata theory and logic dates back to the early sixties to the work of Biichi [8] and Elgot
[13], who showed that the finite automata and monadic second-order logic (interpreted over finite words) have the same
expressive power, and that the transformation from logical monadic second-order formulas to finite-state automata and
vice versa are effective. Later, the equivalence between finite-state automata and monadic second-order logic over infinite
words and trees were shown in the works of Biichi [9], McNaughton [18], and Rabin [23]. The next important step in the
connection between automata theory and logic was Pnueli’s work [22]. It was proposed to use temporal logic for reasoning
about continuously operating concurrent programs. In the eighties, temporal logic and fixed-point logic took the role of
specification languages and more efficient transformations from logic formulas to automata were found. This led to powerful
algorithms and software systems for the verification of finite-state programs (“model-checking”). The research on the
equivalence between automata theory and logic formalism also influenced language theory itself. For example, automata
classes were described in terms of logic.

The logical description of the computation models’ behavior also influenced complexity theory. In 1974, Fagin [ 14] gave
a characterization of nondeterministic polynomial time as the set of properties expressible in the second-order existential
logic. Later, Immerman [ 15] and Vardi [26] characterized polynomial time as the set of properties expressible in a first-order
inductive definition, which is defined by adding a least-point operator to the first-order logic. In the similar way, polynomial
space has also been characterized [16]. These results led to the development of a new field — Description complexity — a
subfield of computational complexity theory and mathematical logic, which seeks to characterize complexity classes by the
type of logic needed to express the language in them.

A mixture of techniques and results from automata theory, logic, and complexity was achieved in circuit complexity
theory, which studies the computational power of Boolean circuits, regarding restrictions in their size, depth, and types
of allowed gates. Natural families of circuits can be described by generalized models of finite state automata as well as by
appropriate systems of first-order logic.

A natural model of classical computing with finite memory is a finite-state automaton, likewise a quantum finite-state
automaton is a natural model of quantum computation. Different notations of quantum finite-state automata are used. The
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two most popular notations of quantum finite-state automata are quantum finite-state automata introduced by Moore and
Crutchfield [ 19] (measure-once quantum finite-state automata) and quantum finite-state automata introduced by Kondacs
and Watrous [17] (measure-many quantum finite-state automata). They have a seemingly small difference, in the first
definition a quantum finite-state automaton performs the measurement only at the end of the computation, but in the
second definition a quantum finite-state automaton performs the measurement at every step of the computation. Measure-
once quantum finite-state automata and measure-many quantum finite-state automata with bounded error recognize only
the subset of regular languages. Besides these two models of quantum finite-state automata there are also such models of
quantum finite-state automata as “enhanced” quantum finite-state automata [21], Latvian quantum finite-state automata
[2], 1-way quantum finite-state automata with control language [7], quantum finite-state automata with mixed states
(introduced by Aharonov, Kitaev and Nisan [1]) and quantum finite-state automata with quantum and classical states
(introduced by Ambainis and Watrous [6]) and others.

Quantum finite state automata have their strengths and weaknesses in comparison to their classical counterparts. The
strength of quantum finite state automata is in the fact that quantum finite state automata can be exponentially more
effective [4], but the main weakness is caused by necessity that a quantum process has to be reversible, that makes the most
of quantum finite state automata notations with bounded error unable to recognize all regular languages. And for many
notations of quantum finite state automata the problem to describe the class of the languages recognizable by the quantum
finite state automata is still open. As logic has had a large impact on computation theory, it seems to be useful to look at
the languages recognizable of quantum finite state automata in the terms of logic, as well as to look at the properties of
quantum finite automata in the terms of logic. Using logic, we might characterize language classes or subclasses recognized
by quantum finite state automata (especially for those notations of quantum finite state automata for whom the problem
to describe the class of recognizable languages is still open) or find out other properties of quantum finite state automata.
Logic properties could be useful tool for solving open issues in the quantum computation.

We give a survey on results on connection between quantum finite automata and logic. At first, we give a brief
introduction to the logic, monoids and quantum finite-state automata. The third section contains the known results
in the connection between logic and measure-once quantum finite-state automata. The fourth section is dedicated to
the connection between first-order logic and measure-many quantum finite-state automata with respect to language
recognition and acceptance probability.

2. Preliminaries
2.1. Monoids and groups

A monoid is a set M with an associative binary operation * and an identity element. Let M, N be monoids. The mapping
¢ : M — N is a homomorphism iff:

o p(x*xnYy) = dX) *n A (Y)
o ¢(1y) = 1y.

Let M be a monoid, A be a finite alphabet, and ¢ : A* — M a homomorphism. Every subset N of M defines a subset of A*:
¢7'(N) := {w € A" | |[$() € N}

The language L € A* is accepted by M iff there isa N € M and a homomorphism ¢ : A* — M such that L = ¢~ '(N).
The syntactic monoid of a language L C A* is the quotient monoid M (L) = A*/ ~|, where ~/ is the syntactic congruence
over A* defined by

w ~; wiff Yu, v € A*(uwv € L < uw'v € L).

The syntactic morphism of L is the projection y; of A* onto M(L). A finite aperiodic monoid M is a monoid for which there is
n > 1 such that m"™! = m" holds for all m € M.

A group is a set G with a binary operation *, that satisfies the four properties of closure, associativity, the identity property,
and the inverse property. The commutator of group G elements g, h € G, denoted [g, h], is defined as [g, h] = g~ 'h~gh,
and for any two subgroups H, K < G we write [H, K] to denote the subgroup of G generated by all commutators [h, k] with
h € H and k € K. The derived subgroup of G is G’ = [G, G], and we write G©® = G, GY = (GV=DY, forj > 1. A group is said
to be solvable if G™ = 1 (the group consisting of just one element) for some value of m.

2.2. Logic and classical automata
Let A be a finite alphabet and let w = aja; ... a, be a word over the alphabet A. The corresponding word model for the

word w is represented by the relational structure

= (dom(w)s <, (QG)HEA)

where dom(w) = {1, 2, ..., n} is the set of the letters “positions” of w (the “domain” of w), < is the order relation on
dom(w), and Q; = {i € dom(w) | a; = a} (“position carries letter a”).
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We consider word models over the finite alphabet A. The corresponding first order language FO[ <] has variables x, y, . ..
ranging over positions in the word models, and is built from atomic formulas of the form

x=y,QX),x <y

by means of the connectives —, v, A, —, <> and quantifiers 3 and V. We may also use the successor relation S(x, y), which
can be expressed as first-order formulax < y A =3z(x < z A z < y). The notation ¢(x1, X, . . ., X;) indicates that in the
formula ¢ at most the variables x1, x5, . . ., X, are free, i.e. they are not in the scope of a quantifier. A sentence is a formula
with no free variables. If py, pa, . . ., pn are positions from dom(w) then (w, p1, p2, - - -, Pn) E @(x1, X2, ..., X,) means that
¢ is satisfied in the word model w when p1, ps, .. ., p, serve as an interpretation of x1, X, . . ., X;. The language defined by
the sentence ¢ is L(¢) = {w € A* | w = ¢}. Languages defined by such sentences are the first-order FO[ <] languages. For
example, the sentence Vx(Q,(x)) over the alphabet A = {a, b} defines the language containing all words having only letters
a.This language is a FO[ <] language. The classical equivalence result of the first-order logic is results by Schiitzenberger [24]:

Theorem 2.1. For a language L € A* the following are equivalent

(1) Lisstar-free (the smallest class that satisfies the following: all finite languages over A belong to star-free languages, if languages
Ly, L, are star-free then so are Ly - Ly, L1 U Ly, L1 N L, and L = A* \ L).

(2) Lis recognizable by a finite aperiodic monoid.

(3) Lis defined by a first-order formula.

We will consider a new quantifier 3™"x¢(x) that means ¢(x) is true for a number of x equal to nmodm. It is called a
modular quantifier [25]. Let us denote by MOD[ <] the class of languages defined by first-order atomic formulas (x = y,
Q.(x), x < y) by means of the connectives —, v, A, —, <> and the modular quantifier. An example of MOD[ <] is the
language containing all words that has even number of letter “a”s, the corresponding formula for this language is 3%°xQ, (x).
Let MOD[S, <] be a class of languages defined by first-order atomic formulas x = y, Q,(x), x < y, S(x, y) by means of the
connectives —, V, A, —, <> and the modular quantifier.

Theorem 2.2 ([25]). Let L C A* be a regular language, then L € MOD[<] if and only if the syntactic monoid of language L is a
solvable group.

A logical framework can also be extended with generalized quantifiers; they have been introduced by Mostowski [20].
One of such quantifiers is Lindstrom quantifier.

Definition 2.2.1. Consider a language L over the alphabet X' = (ay, a,, . . ., as). Let X be a k-tuple of variables (each ranging
from 1 to the input length n). In the following, we assume the lexical orderingon {1, 2, . .., n}¥, and we write X, X, .. ., Xk
for this sequence of the potential values taken on by x. Let ¢1(x), ¢2(X), ..., ¢s_1(x) be s-1 I'-formulas for some alphabet
I'. The

Qux[P1(%), 2(%), ..., Ps—1(X)]
holds on string @ = wyw, . . . wy, iff the word of length n* whose i-th letter (1 < i < n*)is
a  if o E ¢1(Xo),

a  ifo = —¢1(X) A d(X),
az  ifo = —¢1(Xi) A =2 (Xi) A d3(X),

O ifo =i (X) A ~da(X) A A e (X0,

belongs to L.

Consider alphabet ¥ = {0, 1} and a language L which is defined by regular expression(0, 1)*0(0, 1)*, then the formula
Q:(¢(x)) is equal to the classical first-order existential quantifier applied to some quantifier-free formula ¢ with free variable
x, i.e. Ix¢ (x). It is easy to see, that the formula will be true if there is at least one position of x for which ¢ (x) will be true.

2.3. Quantum finite automata

Definition 2.3.1. A measure-once quantum finite-state automaton (MO-QFA) is defined by a tuple as follows [19]
Amo—oma = (Q; X5 8; qo; Qace; Qrej)
where

(1) Qis afinite set of states,

(2) X is an input alphabet and I" = X U { §; $ } is working alphabet of Ayo_qra, and #f and $ are the left and the right
end-markers,

(3) qo € Q is ainitial state,

(4) Quee € Q and Q; € Q are sets of accepting and rejecting states (Qqec N Qrej = ¥),

(5) 8 is the transition function 6 : Q x I" x Q — Cjo 1}, which represents the amplitudes that follows from the state q to
the ¢’ after reading symbol .
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For all states q1, g2, ¢ € Q and symbols o € I', the function § must be unitary, thus the function satisfies the condition
/ 1 =
s o) = [0 28
q/

And it is assumed that an input word starts with the left end-marker and ends with the right end-marker.

The linear superposition of the automaton’s Ayo—qra States is represented by a n-dimensional complex unit vector, where
n = |Q|. The vector is denoted by |¢) = ZL «; |qi), where {|q;)} is the set orthonormal basis vectors corresponding to the
states of the automaton Ayjo—ga-

The transition function § is represented by a set of unitary matrices {V, },,, where V,, is the unitary transition of the
automaton Apo—qra after reading the symbol o and is defined by V,; (|q)) = Zq,eq 8(q,0,q) |q’>.

A computation of Ayg_qgra ON input o107 . . . 0,$ proceeds as follows. It starts in superposition |qo). Then a transformation
corresponding to the left end-marker f, the letters of the input word and the right end-marker $ are performed. After reading
the right end-marker $ the final superposition is observed with respect to Eq.. and E,j where Eq.c = span{|q) : ¢ € Qu} and

E.j = span{|q) : q € Qy;}. It means if the final superposition is yy = Zqieqm o |qi) + que%_ B ]qj) then the measure once

quantum finite-state automaton Ayo_qra accepts the input word with probability ) «; and rejects y_ 7.

Definition 2.3.2. A measure-many quantum finite-state automaton (MM-QFA) is defined by a 6-tuple as follows [17]
Aumv—ora = (Q; X5 8; qo; Qace; Qrej)

where

(1) Qs a finite set of states,

(2) ¥ isaninput alphabetand I' = X' U { #}; $ } is working alphabet of Ayn—qra, Where § and $(¢ X') are the left and the
right end-markers,

(3) 4 is the transition function § : Q x I" x Q — Cjo 1}, which represents the amplitudes that flow from the state q to the
state q’ after reading symbol o,

(4) qo € Q is the initial state,

(5) Quee € Q and Q € Q are sets of accepting and rejecting states (Qqec N Qrej = ¥).

The states in Qu¢ and Q; are halting states and the states in Qon = Q \ (Qqcc U Qrj) are non-halting states.
For all states q1, q2, ¢ € Q and symbols o € I, the function § must be unitary. And it is assumed that an input word
starts with the left end-marker and ends with the right end-marker.

The linear superposition of the automaton’s Ay —qra states is also represented by a n-dimensional complex unit vector,
where n = |Q|. The vector is denoted by |¢) = Z?:l «; |qi), where {|q;)} is the set orthonormal basis vectors corresponding
to the states of the automaton Ay —qm and the transition function § is represented by a set of unitary matrices {Vy}, ¢,
where V,, is the unitary transition of the automaton Ay_qrs after reading the symbol o and is defined by V, (] q)) =
Zq’eQ 5((], o, q/) | q/>

A computation of the automaton Apy_gm on the input word foq0,...0, $ proceeds as follows. It starts in the
superposition |qo), then a transition corresponding to the current input letter is performed. After every transition, the
automaton A measures its state with respect to the observable Eq.c @ Erj @ Enon Where Eqec = span{lq) : q € Quech
E.j = span{lq) : q € Qgj} and Epon = span{lq) : q € Quon}. If the observed state of the automaton Ayn—qra iS in Ege
subspace, then it accepts the input; if the observed state of Ay —qra is in Erej subspace, then it rejects the input, otherwise the
computation continues. After every measurement, the superposition collapses to the measured subspace. A measurement
is represented by a diagonal zero-one projection matrices Py, Prej and Ppon Which projects the vector onto Eqc, Erej and Epgp.

Since the automaton Ayy—qra can have a non-zero probability of halting, it is useful to keep a track of the cumulative
accepting and rejecting probabilities. Therefore, the state of the automaton Ay —qra is represented by a triple (¢, pacc, Prej)-
where py and p; are the cumulative probabilities of accepting and rejecting. The transition of Aym—gra On reading the
symbol o is denoted by (Puon [¢') , Pacc + ||Pacc®’ “2  Prej + || Prej’ | %), where ¢’ = V, .

A measure-once quantum finite-state automaton A; = (Q1; X'; 61; q1; Quecy s Qrej;) With n states can be easily simulated
by a measure-many quantum finite-state automaton A, = (Qu; X'; 82; q1; Qucey; Qrejp)» Where Q. = {qu, ..., Gan}, states
q1, - - -, qn are non-halting states, the state g,.; is accepting if the state g; of the automaton A; is accepting, otherwise
dn+i € Qrejy, the transition function §, is defined as follows:

o V5, (lq)) = Vi,(Ig) forq € {q1, ..., g} and o € T U {1}
o V2, (I9)) = |g) forq € {gn+1, ..., qan} and o € X U {tf}
L4 V2$(|Q>) = an+j€[lZn+1v..,q2n} S(q’ $’ qj+n) |qj+n> if

)

Vig(19) = Xy eq, 8(a. 5. 9 |qj) for g € {q1. ..., au}-

Definition 2.3.3. A quantum finite-state automaton A is said to accept (recognize) language L with a probability p if it accepts
every word in L with a probability at least p, and rejects every word not in L with a probability at least p.
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Definition 2.3.4. A quantum finite state automaton A is said to accept a language L with isolated cut-point X if forallx € L
the probability of A accepting x is greater than X and for all x ¢ L the probability of A accepting x is at most A.

Definition 2.3.5. A quantum finite-state automaton A is said to accept a language L with bounded error if there exists an
€ > 0 such that for all x € L the probability of A accepting x is greater than A + € and for all x ¢ L the probability of A
accepting x is less than A — e.

3. Measure-once quantum finite-state automata and logic

In this section, the known results in the connection between measure-once quantum finite-state automata and logic
have been studied. The most popular notations of quantum finite-state automata with bounded error recognize only regular
languages but not all regular languages. The logical description of these language classes should be weaker than monadic
second-order logic described by Biichi, which follows from the theorem of Biichi. The first intention was to study “natural”
subclasses of MSO. The most "natural” subclass of monadic second-order logic is FO[<]. In [10], the following theorem has
been proved:

Theorem 3.1. If a language in alphabet X can be recognized by a measure-once quantum finite automaton and it is FO[<]
definable, then it is trivial, i.e. an empty language or X*.

Afterwards, the connection between modular logic and measure-once quantum finite-state automata was observed. If we
consider languages in a single letter alphabet, it is easy to see that all such languages accepted by a measure-once quantum
finite-state automaton can be defined by modular logic. But it is not true for larger alphabets, in fact, there exist languages
that can be recognized by measure-once quantum finite-state automata, but cannot be defined by modular logic and there
are also languages that cannot be recognized by measure-once quantum finite automata, but are definable by modular logic.
In [11], the formulas, for which it is possible to construct a measure-once quantum finite-state automaton recognizing the
language defined by the formula, are defined.

MO-QFA recognizable languages could not be described by using these “natural” subclasses of MSO, so less standard
logic should be considered, one of extensions could be the use of generalized quantifiers. Using Lindstrém quantifier, the
following theorem has been proved:

Theorem 3.2 ([10]). Alanguage can be recognized by a measure-once quantum finite automaton if and only if this language can
be described by Lindstrém quantifier formula corresponding to the group languages (languages recognized by deterministic finite
reversible automata) using atomic formulas Qg (x).

4. Measure-many quantum finite-state automata and logic

4.1. Measure-many quantum finite-state automata and FO[ <]

In [12], the formulas, for which it is possible to construct a measure-many quantum finite-state automaton recognizing
the language defined by the formula, are defined. But in this subsection, we study the connection between accepting
probabilities of quantum finite-state automata and FO[<] considering accepting probability of automata. From the fact
that intersection of languages recognized by measure-once quantum finite-state automata and languages defined by FO[ <]
follows that there are languages recognized by measure-many quantum finite-state automata which cannot be defined by
FO[<]. However there are FO[ <] languages recognized by measure-many quantum finite-state automata with probability 1.

Let us look at the language class L, which contains all languages defined by the following rules:

(1) g e X, {may...aqxX*} €L,k eN
(2) lle € L1 and Lj S Ll,then Li € Ll,L,' @) Lj € L] and Li ﬂLj S Ll.

These languages can be defined by the FO[<] formula. FO[ <] formula describing the language can be constructed as
follows:

(1) VX1, %, ..., xe(first(x1) — Qg (X1) A S(x1,X%2) — Qo (X2) A S(X2,X%3) — -+ — Qg (K1) A S(Xe—1, X)) —>
Qak (Xl<){/\la5t(xl<)}*)

(2) if ¢; defines language L; € L; and ¢; recognizes the language L; € L, then —¢; recognizes L, ¢ v ¢i-LiUL; € Ly, and
(bi/\¢j-LiﬂLj € L.

Lemma 4.1. The languages in L, can be recognized by a measure-many quantum finite-state automaton with probability 1.

Proof. Let us look at the language L; € L; to construct the measure-many quantum finite-state automaton for the language
L;, we need to represent the language L; in the tree view. The representation tree is constructed in the following way:

e The representation tree for the language {aa, . .. ai}. The representation tree has k 4 2 levels. The edges of the tree are
labeled with the letters from the alphabet XU$. The nodes of the representation tree are colored in three colors - white,
gray, and black. White and gray nodes are leaves. Each black node has | X| 4+ 1 children, one outgoing edge for each letter.
The parent node of the tree is black, and it is the first level of the tree. A node of level 1 < j < k+ 1 is colored black if the
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ingoing edge is labeled with a;_; and white otherwise. A node of level k + 2 is colored gray if the ingoing edge is labeled
with $ and white otherwise.

Representation tree for {a a;...ax} Representation tree for {aqa,...a; X"}

# ‘1(1) ,/Ial 7 aé/:al

# ‘1(2) ,/Iaz 7 aé /:ﬂz

#o #o
# ag—;/WkJ # aé‘)‘}/Wkd
a ak_,/za,H # ak_,/:a,H
a af ,/:ak # a? ,/Iak

7& $O'/¢$ o e

O o

e The representation tree for the language {a,a, . . . a, X*}. The representation tree has k + 1 levels. The edges of the tree are
labeled with the letters from the alphabet X'U$. The nodes of the representation tree are painted in three colors - white,
gray, and black. White and gray nodes are leaves. Each black node has | ¥'| + 1 children, one outgoing edge for each letter.
The parent node of the tree is black, and it is the first level of the tree. A node of level 1 < j < k is colored black if the
ingoing edge is labeled with g;_; and white otherwise. A node of level k 4- 1 is colored gray if the ingoing edge is labeled
with a, and white otherwise.

e For L; the L; tree gray nodes are colored white and the white nodes in gray.

o The tree of L; U L; is a union of the trees for L; and ;. If the edge with label a from the level k to k + 1 in one of the trees
goes to white leaf, then the subtree of the other tree is chosen in the final tree, if the leaf in the one of the trees is gray,
then the final tree will have this edge.

e The tree of L; N L; is intersection of the trees for L; and L;. If the edge with label a from the level k to k + 1 in one of the
trees goes to white leaf, then the final tree will have this edge, if the leaf in the one of the trees is gray, then the subtree
of the other tree is chosen in the final tree.

The measure-many quantum finite-state automaton accepting the language L; with probability 1 is the automaton
A = (Q; X;6; qo; Qq; Qr), where Q = {qo, q1, . .., qn}, Where n is the count of nodes in the representation tree of L;. Q,
contains the states which correspond to nodes colored in gray, Q, contains the states which correspond to nodes colored
white. The transition functions are defined by the representation tree. The edge (i, j, a;) defines the transition |q;) = ]qj) for
letter a;. As each node has exactly one ingoing edge, the transition function of the automaton is unitary. O

From the above lemma follows:

Theorem 4.1. FO[ <] languages contains languages which can be recognized by a measure-many quantum finite-state automaton
with probability 1.

Let us look at the languages that can be recognized by MM-QFA with accepting probability 1 and which cannot be
recognized by measure-once quantum finite-state automata. Currently we have shown a specific class of languages which
can be recognized by MM-QFA with probability 1 and which are FO[ <] definable. Naturally, a question arises:

e Are there other FO[ <] languages which can be recognized by MM-QFA with probability 1, but are not in the language
class L1?

The answer to which is yes, for example, a language ab*a can be recognized by MM-QFA with probability 1 and it is FO[ <]
definable. Another question for further investigation is:

e Is it possible to give a characteristics of the languages which can be recognized by measure-many quantum finite-state
automata with probability 1, but which cannot be recognized by measure-once quantum finite-state automata and are
not FO[ <] definable? It is clear that such languages exist, for example, a®*b where K € Z.

But now let us look at the other issue - can we present FO[ <] languages which cannot be recognized by a measure-many
quantum finite-state automaton with probability 1? FO[ <] languages contain such languages which can only be recognized
by a measure-many quantum finite automaton with probability less than 1. One of examples is the language a*b*.

Theorem 4.2. There is no such probability p greater than % for which the following holds:

e any measure-many quantum finite automaton accepts FO[ <] languages (recognized by MM-QFA) at least with probability p.
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Proof. Let us assume that it is possible to provide such probability p. We can express p as % + L It is possible to find such

nso that! > J% At the same time it is known [3], that language L, ( L, is defined as ajajaj . . . a;;) cannot be recognized

with probability greater then % + J% We obtained a contradiction which means that such p does not exist. O

4.2. Measure-many quantum finite-state automata and modular logic

In this section, we consider the connection between accepting probabilities of quantum finite automata and the modular
logic. At first, let us look at the languages in MOD[ <].

Theorem 4.3. Languages in the language class MOD[ <] can be recognized by a measure-many quantum finite-state automaton
with probability 1.

Proof. Let us suppose that it is false, that there is a language L in the language class MOD[ <] and it cannot be recognized
with a measure-many quantum finite-state automaton with probability 1. From the Theorem 2.2 follows a monoid M
(¢ + Z* - M,L = ¢~ '(N)) recognizing the language L is a solvable group. We can construct a finite automaton A
recognizing the language from the monoid M. The automaton A is defined as (M, X, 1y, §, N), where 6(m, o) = m *x ¢(o).
If the finite automaton A is reversible then we can construct a measure-many quantum finite-state automaton recognizing
the language with probability 1. As L cannot be recognized by MM-QFA with probability 1, then A must not be reversible.
It means, the automaton A has a state j, a letter a and transactions §(iy, o) = jand §(iy, 0) = j (i; # i2). As the monoid
M is a group, it has the inverse property (every element of the set M has an inverse element). Let us consider the following
equations:

i1%p(0) xp(0) " =jxp(0) =iy x (o) * p(0) ",
hxly=jxp0) ' =ixly,ij=j*xd(0) ' =1i,.

We obtained that i; is equal to i, which is a contradiction. If a language is in the language class MOD[ <] then it can be
recognized with a measure-many quantum finite-state automaton with probability 1. O

It has been proved that languages in the language class MOD[ <] can be recognized by MM-QFA with probability 1, but
are there languages which can be recognized by MM-QFA with probability 1 and which do not belong to the language class
MOD[<]?

Lemma 4.2. MOD[<] does not contain all languages recognizable by measure-many quantum finite-state automata with
probability 1.

Proof. Let us consider the language class L,, which contains all languages defined by the following rules:

(N aeX {amay...aq¢} €l keN
(2) ifL; € L, and Lj € Ly, thenL; U Lj e€lyandL; N Lj € L.

The language class MOD[ <] does not contain languages in L,. It can be easily proved that such languages can be recognized
by measure-many quantum finite-state automata with probability 1 and syntactic monoids of these languages do not form
a group. It means that the language class MOD[ <] does not contain these languages. O

Now we extend the language class MOD[ <] by FO[ <] formula S(x, y) (MODIS, <]).

Lemma 4.3. Languages in the language class MOD[S, <] defined by the formula of the form 3™™x(Qa(x) A S(x, ) A Qp(¥))
cannot be recognized by a measure-many quantum finite-state automaton.

Proof. The minimal deterministic finite state automaton (DFA) recognizing the language is displayed in the Fig. 1. The
automaton is minimal DFA as we need to remember n fragments of ab, that means we have 2n states. As the minimal

DFA contains forbidden constructions [5] (an automaton has the following transitions g; = q;, q = g;, and q; EN g;) the
language cannot be recognized by a measure-many quantum finite-state automaton. O

It is still an open question if a language L € MOD[S, <] — MOD[ <] can be recognized by a measure-many quantum finite-
state automaton. If a language in L € MODIS, <] — MOD[<] can be described by the formula of the form 3™™x(Q,(x) A
S(x,y) A Qp(y)) or it can be expressed using Boolean operations between these formulas then the language L cannot be
recognized by a measure-many quantum finite-state automaton.

5. Future research

The obtained results in the connection between quantum finite-state automata and logic is just a small step in the
initiated research. There are different kinds of logic which could be considered, for example, temporal logic or logic with
more complex quantifiers. Besides we have observed the two most popular notations of the quantum finite-state automata,
but there are also others.

Currently, there is ongoing research where quantum finite-state automata are considered from the temporal logic view
point and the connection between logic and the quantum finite-state automata with mixed states is studied.
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Fig. 1. The deterministic finite state automaton recognizing language defined by 3™™x(Q,(x) A S(x,¥) A Qy(¥)).
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