
qu
an

t-
ph

/9
80

50
06

 v
3

 1
1

Se
p

19
98

Quantum Oracle Interrogation:

Getting All Information for Almost Half the Price

Wim van Dam
Centre for Quantum Computation, University of Oxford

Clarendon Laboratory, Parks Road, Oxford OX1 3PU, U.K.∗

Quantum Computing and Advanced Systems Research, C.W.I.
P.O. Box 94079, NL–1090 GB, Amsterdam, The Netherlands

wim.van.dam@qubit.org

January 13, 1999

Abstract

Consider a quantum computer in combination with a binary oracle
of domain size N . It is shown how N/2 +

√
N calls to the oracle are

sufficient to guess the whole content of the oracle (being an N bit string)
with probability greater than 95%. This contrasts the power of classical
computers which would require N calls to achieve the same task. From
this result it follows that any function with theN bits of the oracle as input
can be calculated using N/2 +

√
N queries if we allow a small probability

of error. It is also shown that this error probability can be made arbitrary
small by using N/2 +O(

√
N) oracle queries.

In the second part of the article ‘approximate interrogation’ is con-
sidered. This is when only a certain fraction of the N oracle bits are
requested. Also for this scenario does the quantum algorithm outperform
the classical protocols. An example is given where a quantum procedure
with N/10 queries returns a string of which 80% of the bits are correct.
Any classical protocol would need 6N/10 queries to establish such a cor-
rectness ratio.

∗ c©1998 IEEE. Published in the Proceedings of FOCS’98, 8-11 November 1998 in Palo
Alto, CA. Personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for
resale or redistribution to servers or lists, or to reuse any copyrighted component of this
work in other works, must be obtained from the ieee. Contact: Manager, Copyrights and
Permissions/ieee Service Center/ 445 Hoes Lane/P.O.Box 1331 / Piscataway, NJ 08855-1331,
USA. Telephone: +Intl. 732-562-3966.

1

1 Introduction

Recent research [1, 6, 9] in quantum computation complexity has revealed sev-
eral lower bounds on the capability of quantum computers to outperform classi-
cal computers in the black-box setting. These results were proven by investigat-
ing the required amount of queries to a black-box or oracle (with a domain size
N) in order to decide some general property of this function. For example, if we
want to know the parity of the N black-box values with bounded error then it
is still necessary for a quantum computer to call the black-box N/2 times[1, 6].
It has also been shown that for the exact calculation of certain functions (the
bitwise or for example) all N calls are required[1].

This paper on the other hand, presents an upper bound on the number of
black-box queries that is necessary to compute any function over the N bits if
we allow a small probability of error. More specifically, it will be shown that
for every unknown oracle there is a potential speed-up of almost a factor of two
if we want to know everything there is to know about the oracle function. By
this the following is meant. If the domain of the oracle has size N , a classical
computer will have to apply N calls in order to know all N bits describing the
oracle. Here, it will be proven that a quantum computer can perform the same
task with high probability using only N/2+

√
N oracle calls. From this result it

follows immediately that any (not necessarily binary) function F on the domain
{0, 1}N can be calculated with a small two-sided error using only N/2 +

√
N

calls.
The factor–of–two gain can be increased by going to approximating interro-

gation procedures. If we do not longer require to know all of the N bits but
are instead already satisfied with a certain percentage of correct bits, then the
difference between classical and quantum computation becomes bigger than for
the above ‘exact interrogation’ case. An example of this is when we want to
guess the string such that we can expect 80% of the bits to be correct. A quan-
tum computer can do this with one-sixth of the queries that a classical computer
requires (N/10 versus 3N/5 calls). This also illustrates that the procedure de-
scribed here is not a ‘superdense coding–in–disguise’ which would only allow a
reduction by a factor of two[2].

2 Preliminaries

The setting for this article is as follows. We try to investigate the potential
differences between a quantum and a classical computer when both cases are
confronted with an oracle ω. The only thing known in advance about this ω
is that it is a binary-valued function with a domain of size N . The oracle can
therefore be described by an N -bit string: ~ω = ω1ω2 · · ·ωN ∈ {0, 1}N . The goal
for both computers is to obtain the whole string ~ω with high probability with as
few oracle calls to ω as possible. The phrase “with high probability” means that
the final answer of the algorithm should be exactly ~ω at least 95% of a time,
for any possible ω. Note that we are primarily concerned with the complexity

2

of the algorithm in terms of oracle calls, both the time and space requirements
of the algorithms are not considered when analysing the complexity differences.
The model of an oracle as it used here goes also under the name of black-box,
or database-query model.

The suggested quantum algorithm uses two procedures which are well-known
in quantum algorithm theory. For reasons of clarity those two procedures will
be explained in this section before the actual algorithm is described. We assume
that the reader is familiar with the basics of quantum computation[4, 5].

2.1 One-Call Phase Kickback Trick

Take an unknown function value f ∈ {0, 1}. We want to induce a phase (−1)f

while calling the function only once. This can be done in the following way (as
described by Cleve et al.[5]).

If we start in the state |Ψ〉(|0〉 − |1〉)/
√

2 and we add (modulo 2) the value
of f to the last bit, then the outcome will be

|Ψ〉 |0⊕ f〉 − |1⊕ f〉√
2

=


+|Ψ〉 |0〉−|1〉√

2
if f = 0,

−|Ψ〉 |0〉−|1〉√
2

if f = 1.
(1)

This correctly induces the phase (−1)f to the initial state.

2.2 Inner Product versus Hadamard Transform

The Hadamard transform H is the one-qubit rotation that maps |0〉 to the state
H|0〉 = (|0〉+ |1〉)/

√
2, and the state |1〉 to H|1〉 = (|0〉− |1〉)/

√
2. By the inner

product between two bit strings ~x and ~y, we mean the inner product modulo 2,
that is:

(~x, ~y) = (x1 · y1)⊕ · · · ⊕ (xN · yN) . (2)

This value can also be viewed as the parity of a subset of the bit string y1 · · ·yN .
This subset is described by the characteristic vector ~x and its size equals the
Hamming weight ‖~x‖ of the bit string x1 · · ·xN .

The Hadamard transform of a sequence of bits y1 · · · yN and the inner prod-
uct function are closely related to each other: for any ~y ∈ {0, 1}N it holds
that

H⊗N |~y〉 =
1√
2N

∑
~x∈{0,1}N

(−1)(~x,~y)|~x〉 . (3)

Because H is its own inverse, we can apply again a sequence of N Hadamard
transforms on the state in Equation 3 and thus obtain the original bit string
y1 · · · yN again:

H⊗N

 1√
2N

∑
~x∈{0,1}N

(−1)(~x,~y)|~x〉

 = |~y〉 . (4)

3

The above leads to the observation that if we want to know the string y1 · · ·yN ,
it is sufficient to have a superposition with phase values of the form (−1)(~x,~y),
for every ~x ∈ {0, 1}N . This is a well-known result in quantum computation and
has been used several times [3, 5, 8, 10] to underline the differences between
quantum and classical information processing.

3 The Quantum Algorithm

3.1 Outline of the Algorithm

The algorithm presented here is an approximation of the procedure described
in the Equations 3 and 4. Instead of calculating the phase values (−1)(~x,~ω)

for all ~x ∈ {0, 1}N , we will do this only for the strings x1 · · ·xN which do not
have a Hamming weight (the number of ones in a bit string) above a certain
threshold k. By doing so, we can reduce the number of necessary oracle calls
while obtaining an outcome which is still very close to the ‘perfect state’ as
shown in Equation 3 (but now for ~ω instead of ~y).

As stated in Section 2.2, the value (~x, ~ω) corresponds to the parity of a
set of ωi bits, where this set is determined by the ones in the string x1 · · ·xN .
To calculate the parity we can perform a sequence of additions modulo 2 of
the relevant ωi values, where each ωi has to be (and can be) obtained by one
oracle call. It is therefore that the Hamming weight ‖~x‖ equals the ‘oracle call
complexity’ of the reversible procedure (for an arbitrary bit b ∈ {0, 1}):

|~x〉|b〉 ‖~x‖ oracle calls−→ |~x〉|b⊕ (~x, ~ω)〉 . (5)

The number of oracle calls will be reduced by the usage of a threshold number
k, such that we only compute the parity value (~x, ~ω) if the Hamming weight of
~x is less than or equal to k. The algorithm that performs this conditional parity
calculation is denoted by Ak and its behaviour is thus defined by:

Ak|~x〉|b〉 =
{
|~x〉|b⊕ (~x, ~ω)〉 if ‖~x‖ ≤ k,
|~x〉|b〉 if ‖~x‖ > k. (6)

It is important that this algorithm Ak requires at most k oracle calls for every
x1 · · ·xN . Because A is reversible and does not induce any undesired phase
changes, we can also apply it to a superposition of different ~x strings. This
brings us finally to the actual algorithm.

3.2 The Actual Algorithm

Prepare the state Ψk which is an equally weighted superposition of bit strings
of size N with Hamming weight ‖~x‖ less than or equal to k and an additional
qubit in the state (|0〉 − |1〉)/

√
2 attached to it:

|Ψk〉
|0〉 − |1〉√

2
=

1√
Mk


‖~x‖≤k∑

~x∈{0,1}N
|~x〉

 |0〉 − |1〉√
2

. (7)

4

Where Mk is the appropriate normalisation factor calculated by the number of
~x strings that have Hamming weight less than or equal to k:

Mk =
k∑
i=0

(
N
i

)
. (8)

Applying the above-described protocol Ak (Equation 6) to this state yields
(following Equation 1, and requiring k oracle calls):

Ak|Ψk〉
|0〉 − |1〉√

2
=

1√
Mk


‖~x‖≤k∑

~x∈{0,1}N
(−1)(~x,~ω)|~x〉

 |0〉 − |1〉√
2

. (9)

Here we see how the phases of the state Ak|Ψk〉 contain a part of the desired
information about ω1 · · ·ωN (like Equation 3 does for y1 · · · yN).

If we set k to its maximum k = N , then, applying an N -fold Hadamard to
the first N qubits of Ak|Ψ〉 would give us exactly the state |ω1 · · ·ωN〉. Whereas
the minimum value k = 0 leads to a state that does not reveal anything about
~ω. For all the other possible values of k between 0 and N , there will be the
situation that applying H⊗N to the ~x-register of Ak|Ψk〉 gives a state that is
close to |ω1 · · ·ωN〉, but not exactly. For a given N , this fidelity (statistical
correspondence) between the acquired state and ~ω depends on k: as k gets
bigger, the fidelity increases.

3.3 Analysis of the Algorithm

The N qubits that should give ω1 · · ·ωN after the H⊗N transformation, is de-
scribed by (see Equation 9):

|Ψ′k〉 =
1√
Mk

‖~x‖≤k∑
~x∈{0,1}N

(−1)(~x,~ω)|~x〉 . (10)

The probability that this state gives the correct string of ω-bits equals its fidelity
with the perfect state |Ψ′N〉:

Prob(Ak outputs ~ω) = |〈Ψ′k|Ψ′N 〉|
2 (11)

The signs of the amplitudes of |Ψ′k〉 and |Ψ′N 〉 will be the same for all registers ~x
with ‖~x‖ ≤ k, whereas for the other strings with ‖~x‖ > k the amplitudes of |Ψ′k〉
are zero. The fidelity between the two states can therefore be calculated in a
straightforward way, yielding for the correctness probability (using Equation 8):

Prob(Ak outputs ~ω) =
Mk

2N

=
1

2N

k∑
i=0

(
N
i

)
(12)

5

this equality shows the reason why the algorithm also works for values of k
around n/2+

√
n. for large n the binomial distribution approaches the Gaussian

distribution. The requirement that the correctness probability has some value
significantly greater than 1/2, translates into the requirement that k has to be
bigger than the average N/2 by some multiple of the standard deviation

√
N/2

of the Hamming weights over the set of bit strings {0, 1}N . Following this line
of reasoning, it can be shown that

Prob(AbN/2+
√
Nc outputs ~ω) > 0.95 (13)

for any value of N .
This proves that the following algorithm will give us the requested N oracle

values ω1 · · ·ωN with an error-rate of less than 5%, using only bN/2 +
√
Nc

queries to the oracle.

1. Initial state preparation: Prepare a register of N + 1 qubits in the
state ΨbN/2+

√
Nc(|0〉 − |1〉)

√
2 as in Equation 7.

2. Oracle calls: Apply the Ak procedure of Equation 6, for k = bN/2+
√
Nc

oracle queries.

3. Hadamard transformation: Perform N Hadamard transforms to the
first N qubits on the register (the state |Ψ′k〉 in Equation 10).

4. Final observation: Observe the same first N qubits in the standard
basis {|0〉, |1〉}. The outcome of this observation is our guess for the oracle
description ω1 · · ·ωN . This estimation of ω1 · · ·ωN will be correct for all
N bits with a probability greater than 95%.

An expected error-rate of significantly less than 5% can easily be obtained if we
increase the threshold k with a multiple of the ‘standard deviation’

√
N/2. The

standard approximations of the binomial distribution by the Gaussian distribu-
tion shows that for big N the error-probability goes to zero as the threshold
increases, according to the exponential relation:

Proberror(k = N/2 + λ
√
N) ≈ 1

2
− 1

2
Erf(
√

2λ)

= O
(

2−λ
2
)
. (14)

It is therefore that we can say that an arbitrary small error probability can be
achieved with only N/2 + O(

√
N) oracle calls.

3.4 Comparison with Classical Algorithms

Consider now a classical computer Bk that is allowed to query the oracle k times.
This implies that after the procedure N−k bits of ~ω will be still unknown. Hence

6

the probability of guessing the correct N -bit string ω1 · · ·ωN by any classical
algorithm is:

Prob(Bk outputs ~ω) ≤ 1
2N−k

. (15)

This shows, as expected, that a classical probabilistic computer needs all N
oracle calls to obtain ~ω with high probability. The space complexity of the
quantum and the classical algorithms is in both cases linear in N .

4 Approximate Interrogation

In this section we ask ourself what happens if we want to know only a certain
fraction of the N unknown bits. In other words: Given a threshold of k oracle-
queries, what is the maximum expected number of correct bits c that we can
obtain via an ‘approximate interrogation’ procedure if we assume ~ω to be totally
random?

4.1 Classical Approximate Interrogation

In the classical setting the analysis is again straightforward. If we query k out of
N bits, then we know k bits with certainty and we have to randomly guess the
other N − k bits of which we can expect 50% to be correct. The total number
of correct bits will therefore be

cclas
k =

N

2
+
k

2
. (16)

This shows a linear relation between k and c.

4.2 Quantum Approximate Interrogation

The quantum procedure for approximate interrogation will be the same algo-
rithm as we used in the first part of the article, but with a different initial state
Ψ. We now allow the amplitudes αj of Ψ to depend on the Hamming weight of
its basis states ~x. We therefore write for the initial state:

|Ψα
k 〉 =

k∑
j=0

αj ·
1√(
N
j

) ‖~x‖=j∑
~x∈{0,1}N

|~x〉 , (17)

with the normalisation restriction
∑
j α

2
j = 1.

After the preparation of this state Ψ, the algorithm is continued in the
same way as described in Section 3. The N bits outcome of this protocol will
correspond to a certain degree with the interrogated bit string ω1 · · ·ωN , where
this degree depends on k and the amplitudes αj.

7

In the appendix it is shown that the expected number of correct bits for the
quantum protocol will be

cquant
k =

N

2
+
k−1∑
j=0

αjαj+1

√
j + 1

√
N − j . (18)

For a given k we can thus optimise the α values such that ck will be as big as
possible. Two examples of such optimisations will be given below, both of them
showing an improvement over the classical algorithm.

4.3 Interrogation with One Quantum Query

If we allow the quantum computer to ask only one query to the oracle, then
Equation 18 is maximised by choosing α0 = α1 = 1/

√
2, thus giving for the

expected number of correct bits

cquant
1 =

N

2
+
√
N

2
. (19)

When we compare this with Equation 16. we see that a classical algorithm
would require k =

√
N queries to match the power of a single quantum query.

4.4 Interrogation with Many Queries

Let us assume that N is big (such that
√
N/N ≈ 0) and that k is a fraction of

N with 0 ≤ k/N ≤ 1/2. We can then define the amplitudes α according to

αj =

{
0 if 0 ≤ j ≤ k −

√
k

1
4√
k

if k −
√
k < j ≤ k (20)

This gives us for the expected ratio of correct bits

cquant
k/N

N
=

1
2

+
1

N
√
k

k−1∑
j=k−

√
k

√
j + 1

√
N − j

≈ 1
2

+

√
k

N

(
1− k

N

)
, (21)

whereas for 1/2 < k/N ≤ 1 we use the α amplitudes as if k = N/2 (with
ck/N ≈ N).

In the same setting, the classical fraction of correct bits will be

cclas
k/N

N
=

1
2

+
k

2N
. (22)

Again we see (Figure 1) that the quantum algorithm performs better than the
classical one, especially for the small values of k/N . As an example: If we allow
the quantum protocol N/10 queries, then we can expect 80% of the bits to be
correct. Any classical computer would need 6N/10 queries to obtain such a
ratio.

8

quantum interrogation:

classical interrogation:
correct

of

k/N

bits

fraction

0
0

1

1
fraction of queries

Approximate Interrogation for Big N:

c/N

Figure 1: Comparison of the interrogation effectiveness between classical and
quantum computers.

5 Conclusions

The model of quantum computation does not permit a general significant speed-
up of the existing classical algorithms. Instead, we have to investigate for each
different kind of problem whether there is a possible gain by using quantum
algorithms or not.

Here it has been shown that for every binary function ω with domain size
N , we can obtain the full description of the function with high probability while
querying ω only N/2 +

√
N times. A classical computer always requires N calls

to determine ω1 · · ·ωN with the same kind of success probability.
The lower bounds on parity (with bounded error) and or (with no allowed

error) for black-boxes[1, 6] show us that any quantum algorithm must use at
least N/2 calls to obtain ω with bounded error, and that the full N queries
are necessary to determine the string without error, respectively. The question
that remains therefore, is if the

√
N -term in the query complexity N/2 +

√
N

is necessary or can perhaps be reduced to the order of logN , for example.
The term ‘approximate interrogation’ was used for the scenario where we

are interested in obtaining a certain fraction of the N unknown bits. Again
we could see how a quantum procedure outperforms the possible classical algo-
rithms (Figure 1).

For all results in this article we assumed ω to be a random oracle without any
structure. Future research on quantum computational complexity could investi-
gate similar questions for structured oracles (the white-box model). This might
lead to results that widen the gap between classical and quantum computation
even further than we did here.

9

Acknowledgements

I would like to thank Harry Buhrman, Miklos Santha, Ronald de Wolf, Mike
Mosca, and Artur Ekert for useful conversations on this subject, and the latter
three also for their critical proofreading of earlier versions of this article.

This work was supported by the European TMR Research Network ERP-
4061PL95-1412, Hewlett-Packard, and the Institute for Logic, Language, and
Computation in Amsterdam.

References

[1] R. Beals, H. Buhrman, R. Cleve, M. Mosca, and R. de Wolf. Quantum lower
bounds by polynomials. In Proceedings of the 39th Annual Symposium on
Foundations of Computer Science (FOCS’98). IEEE, 1998. Also as preprint
on the quant-ph archive, no. 9802049.

[2] C. Bennett and S. Wiesner. Communication via one- and two-particle oper-
ators on Einstein-Podolsky-Rosen states. Physical Review Letters, 69:2881–
2884, 1992.

[3] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM Journal
on Computing, 26(5):1411–1473, 1997.

[4] A. Berthiaume. Quantum computation. In A. L. Selman, editor, Complexity
Theory Retrospective, In Honor of Juris Hartmanis on the Occasion of His
Sixtieth Birthday, July 5, 1988, volume 2. Springer-Verlag, 1997.

[5] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum algorithms
revisited. Proceedings of the Royal Society of London A, 454:339–354, 1998.
Also as preprint on the quant-ph archive, no. 9708016.

[6] E. Farhi, J. Goldston, S. Gutmann, and M. Sipser. A limit on the speed of
quantum computation in determining parity, 1998. Preprint on the quant-
ph archive, no. 9802045.

[7] I. Gradshteyn and I. Ryzhik. Table of Integrals, Series, and Products.
Academic Press, corrected and enlarged edition, 1965. Equalities 0.151.

[8] L. Grover. Quantum computers can search arbitrarily large databases by
a single query. Physical Review Letters, 79(23):4709–4712, Dec. 1997. Also
as preprint on the quant-ph archive, no. 9706005.

[9] A. Nayak and F. Wu. On the quantum black-box complexity of approxi-
mating the mean and the median, 1998. Preprint on the quant-ph archive,
no. 9804066.

[10] B. Terhal and J. Smolin. Single quantum querying of a database. Physical
Review A, 58(3):1822–1826, Sept. 1998. Also as preprint on the quant-ph
archive, no. 9705041.

10

A Appendix: The Expected Number of Correct
Bits for the Quantum Algorithm

In this appendix we will calculate how many bits we can expect to be correct for
the quantum interrogation procedure with the initial state Ψ of Equation 17.
We do this by assuming that the unknown bit string consists of zeros only:
~ω = 0 · · ·0. The expected number of correct bits for the algorithm equals
therefore the expected number of zeros of the observed output string ~y. Because
we can make the assumption ~ω = ~0 without loss of generality, we can then
afterwards conclude that this number will the expected number of correct bits
for any ~ω.

The inner-product between ~x and ~ω will be zero for every ~x, hence applying
Ak to Ψ will not change the initial state:

Ak|Ψα
k 〉 =

k∑
j=0

αj ·
1√(
N
j

) ‖~x‖=j∑
~x∈{0,1}N

|~x〉 . (23)

After this Ak, we perform the N Hadamard transforms on all N qubits, yielding
a new state:

H⊗NAk|Ψα
k 〉 =

k∑
j=0

αj√(
N
j

) ‖~x‖=j∑
~x∈{0,1}N

H⊗N |~x〉

=
1√
2N

∑
~y∈{0,1}N

k∑
j=0

αj√(
N
j

) ‖~x‖=j∑
~x∈{0,1}N

(−1)(~y,~x)|~y〉 (24)

Because the above state is invariant under permutation, the probability of ob-
serving a certain string ~y depends only on its Hamming weight ‖~y‖. This, in
combination with some other known equalities[7] and mathematical techniques,
enables us to express the expected number of zeros by

#zeros(H⊗NAk|Ψα
k 〉) =

N∑
t=0

t ·
(
N
t

)
|〈0t1N−t|H⊗NAk|Ψα

k 〉|
2

=
N

2
+
k−1∑
j=0

αjαj+1

√
j + 1

√
N − j . (25)

We can therefore conclude that the expected number ck of correctly guessed
bits for the quantum protocol will be (for given k and αj):

cquant
k =

N

2
+
k−1∑
j=0

αjαj+1

√
j + 1

√
N − j . (26)

11

