Object Orientation Series:
Principles of OO Technology

AGENDA

Object technology is here to stay. Understanding software development in the '90s
requires at least a basic understanding of the principles and concepts of objects.
Imparting that understanding is the goal of this course.

Hello, I'm David Chappell of Chappell and Associates. In this course - Principles of OO
Technology - | want to start by giving a general introduction to the notion of objects.
What are objects? What does it mean to write software using object technology?

Then I'll spend quite a while talking about the key object concepts and talking about the
major ideas that underlie this approach to software development.

Then I'll talk about persistence, which means storing an object's data in some way. I'll
talk generally about object-oriented development, say a few things about what this
technology does, and about the development process. Then I'll talk about reuse, one of
the key benefits that is often touted - and often achieved - by object technology.

In this program we'll also hear from Marie Lenzi , Managing Director of Syrinx
Corporation and editor of Object Magazine.

APPROACHES

The Traditional Way

Think about how you build applications. Think about a traditional application. Typically,
what you have is a sharp separation between code and data. You have the code, the
actual instructions that you execute. As those instructions go along, as your program
executes, data is read in, perhaps from some database management system or a file or
something else.

As you march through your program, it reads in data appropriately and your program
accepts and processes that data. There is, conventionally, a sharp distinction between
the code and the data.

The OO Way

This distinction falls apart in the world of objects. With an application that is object-
oriented, we think about the application. In fact, we build the application from a set of
objects. Each object wraps together in one package, both code and data.

Our application is now viewed not in this wholly separate way of code and data. Instead
our application becomes a set of cooperating objects. Each object talks to its fellows to
get appropriate services. Each object encompasses both code and data.

CCI Course 960801 1
Copyright © 1998, Computer Channel, Inc. All rights reserved

Now if you're thinking, "Well, that data must still come from somewhere, from a
database or a file or something else," you're right. We'll come back to that point. It's
during execution that we visualize things as objects comprising code and data in one
unit.

Look at a particular object, and here's what they actually look like. Objects have, as I've
said, two major components. They have the data, also referred to as the object's state,
and the actual code for the object. The object's code defines its behavior. It defines
what the object can do. Typically, the object's code is broken up into some number of
methods.

Methods

Now method is really a jargon word. Method really is a high-tech, object-oriented word
for procedure or function or subroutine, in most cases. It doesn't always have to be, but
usually that's what a method really turns out to be.

So each object can be thought of as a combination of state and behavior, as data and
methods. Those two things wrapped together. The methods and object supports
determine what that object can do.

The data the object contains determines what data those methods can act upon,
typically.

Here's a simple example. Imagine an object representing a bank account, such as your
bank account. This object has data and methods like all objects. Imagine this simple
object has data like the name of the account owner and the balance of this account.

This object may have methods that allow a user of the object to credit a deposit or debit
a withdrawal or get the name of the account owner or set the name, change it. They can
perhaps query the balance and get the balance of this account object.

This example here illustrates the idea that objects contain data and they contain
methods. Typically those methods act upon the data.

In another example, this bank with account objects very likely may also have objects for
it's customers. So those objects will have different kinds of data and methods.

For example, the customer object might have data with the customer's name, the
customer's ID number and maybe some indication of the number of accounts this
customer has with the bank. The customer may, for example, have a savings account,
checking account and so on.

The methods then for this kind of object might allow a user of the object to do things like
add or delete a new account for this customer, get the customer name, ID number, and
the number of customer accounts.

CCI Course 960801 2
Copyright © 1998, Computer Channel, Inc. All rights reserved

The point here illustrates this idea that objects are a combination of data and methods
and that different kinds of objects will have different kinds of data and different kinds of
methods.

Key OO Benefits

All this doesn't seem, perhaps, like a breakthrough. But we'll see there is certainly more
to being object-oriented. But what we've seen so far allows us to talk about some of the
key benefits of object technology. And that's important.

If this were just some new and different technology, that wouldn't be interesting. What's
interesting is what this allows us to do.

A key benefit of object technology is that modeling problems as objects allows a much
better match with the real world. In general this lets users be much more involved in
creating solutions.

But you might say, "Well, wait, that's separation between code and data. That's a very
natural model. We're all used to that model.” And in fact we are. We've all written
software for years. We know that model.

But our users don't. Our users think about things in terms, for example, of accounts and
customers. They don't think in terms of separation of code from data. Modeling
problems as objects lets users get much more involved in the analysis and design of
those problems. This lets us create better software systems that better meet the needs
of those users. That's important. That's a benefit.

Objects can also allow creating better code. By organizing your code in this way, you
can produce code that is more maintainable and has fewer errors. We haven't yet seen
the characteristics of object technology that allow these benefits to occur. We'll see
them soon..

Finally, objects allow great potential for reuse, for creating a single object and reusing
that code in many different ways.

Drawbacks of the OO Way

These are only some of the - | believe - key benefits of object technology. It would be
unfair and unbalanced not to say a couple of things about the drawbacks as well.

The single biggest drawback of objects worth mentioning here is it could be complex. It
can require retraining. Objects affect everything. Moving to objects is not just a matter of
learning a new language or a new design technique It is all these and more. Moving to
objects is a major undertaking. It is not a simple thing.

For most organizations, however, the benefits of doing so have greatly outweighed the
drawbacks.

CCI Course 960801 3
Copyright © 1998, Computer Channel, Inc. All rights reserved

A Holistic Approach

MARIE LENZI: There are no applications that are better suited to object development or
procedural development. Everything was done in procedural technology up until now
because that's all we had. Everything looks like it fits in 80 column cards, whether it's a
relational table or not, because that's all we have had. We have had to stuff the problem
into our only solution space.

Now we have a broader, more flexible solution that offers us more dimensions. We have
to bring our collective mind back to what the problem space looked like before we
stuffed it into the 80-column-card mindset. Just about all applications are amenable to
object technology.

There's a more holistic approach to the development process that the industry has
embodied along with object technology. I'm not quite sure why or how that happened,
but it is definitely a benefit to the development process.

People are not just looking at yet another compiler or operating system or tool. They're
looking at the whole approach, at the meticulous definition of requirements, the
architectural design of systems, the measurement and achievement of success - as
opposed to just shoving in another piece of technology and letting it rip.

There's a lot that comes along with object technology and it's sort of coming along on
the coattails.

The quick fix isn't going to happen. The expectations of the technology come when you
look at it from a much broader perspective.

KEY OBJECT CONCEPTS

Classes & Instances

DAVID CHAPPELL: The first idea that's important to understand about object
technology is the distinction between classes and instances. A class is really a template
for a whole category of objects. An individual object is an instance of some class.

If I have two object instances of the same class, then those two objects will have the
same methods and they'll have the same kinds of data. They will not, however, typically
have the same values for that data.

The class defines the category. Each individual instance is an occurrence of that
category.

Here's an example. Earlier | described the account object. What | really showed you
earlier was the account class. Here are two examples of the account class, two
instances of objects of the account class.

CCI Course 960801 4
Copyright © 1998, Computer Channel, Inc. All rights reserved

The first one represents the bank account of, let's say, Pamela Anderson Lee. So for
the name field it says "Pamela” for the data. For the account balance it's got a hefty
figure. She's doing okay these days.

It has the methods we saw earlier: credit, debit, gethame, sethame, getbalance. The
same things that we saw when | showed you account earlier in the program.

The second instance of the account class is, let's say, for Mickey Dolenz. Mickey
Dolenz, you recall, was the drummer in the Monkees, the world's finest rock and roll
band. Mickey's not doing quite so well these days, so his account is somewhat smaller.
Actually | hope Mickey's doing better than this because | think he's a very talented guy.

Anyway, this account object, this instance, has the same methods as the one for
Pamela Anderson: credit, debit, gethame, setname, getbalance.

What's different is the actual values of the data, two instances of the same class. This is
an important distinction. It's an important thing to keep straight. The difference is
between class - which defines whole categories of objects - and instances - which are
actual examples of that class.

The Client

If I'm going to work with objects, and | don't use software, that means | am acting as the
client of these objects. For a client to work with objects, typically the client must first
create them. In most object-oriented languages, systems and so on, there is some
mechanism provided which lets the client create objects.

For example, the client may have some new operator that the client can use to create,
for instance, a new account or a new customer. The client, in this case, is creating
instances of those classes. By client here, | mean software. The client may, in fact, be
part of the same program or process as the objects, or it might be distinct, as in the
cross-in network.

So client, in general throughout this course, means whatever code is using these
objects. The client may, of course, itself be some other object.

The point here, however, is that clients typically must create actual object instances,
always of some class, before they can work with them.

Messages

Once a client has an object to work with, the client can invoke the object's methods.
Now, in the jargon of object technology, clients do this by sending what are called
messages to objects.

Here, for example, we see a client invoking the debit method in some instance of the
account class. The client does this by sending a message to the object.

CCI Course 960801 5
Copyright © 1998, Computer Channel, Inc. All rights reserved

Now message is really another jargon word. What actually happens here depends on
the object system in use. Very possibly what happens is a function call. It's just a
procedure call to invoke the method."

Alternatively, if the client and the object are across a network from each other, then it
may be that this message is a remote procedure call. But generically the way a client
invokes an object's method is referred to as "sending it a message.

OO CHARACTERISTICS

If I have classes, if | have instances, if | define my objects as having data and methods,
am | then object-oriented? The answer, in the minds of most, is no.

For most people, there is really more required to qualify as object-oriented. There are
three characteristics that most would argue are essential to be truly object-oriented.

Those characteristics are encapsulation, inheritance and polymorphism. | want to
explain all three starting with encapsulation.

Encapsulation

Encapsulation is a blindingly simple idea. All it means is that the object's data is
inaccessible to the object's clients except via the object's method. So for instance, if |
have my client who wants to access, let's say the account balance of some account
object instance, encapsulation says that the client can't read that data directly.

Instead the client must access, say, the debit method, by sending a message to the
object. The debit method then affects the balance in some way.

Similarly, the client might want to access the name in this account, so the client will
access the get-name method. This in turn pulls out the name from the object and sends
it back to the client. If the client tries to access the name directly, it won't work. The data
in the name is encapsulated. The client can't access it directly. This is a good thing.

This means that some kinds of errors that can occur by allowing direct access to data
are prohibited. They are prevented from occurring by the principle of encapsulation.
Now encapsulation really is just that: a principle. In practice, many object technologies
allow ways around the straightjacket of encapsulation. But, in general, it's viewed as
one of the three key characteristics of object technology.

Inheritance

The second characteristic is inheritance. Inheritance is a way to reuse something that
already exists. For example, suppose I've defined some class, some object class. |
wanted to find a new class. This new class may very likely have all the characteristics of
the old class and a few more besides.

With inheritance | can do this. | can define the new class as a child of its parent. The
new class will automatically inherit features from its parent, and perhaps add a few
things as well.

CCI Course 960801 6
Copyright © 1998, Computer Channel, Inc. All rights reserved

Inheritance is a very nice way, in some cases, to reuse existing objects. Recall that
word - reuse. A key benefit of object technology is reuse.

Inheritance is not the only way to reuse objects, but it is a very common way. It is one of
the three aspects that most would consider essential to qualifying as truly object-
oriented.

Here's an example. Think again about our account class. This class, you recall, defines
objects that have name and balance for their data and have credit, debit, getname,
sethame, getbalance for their methods.

Suppose | want to define another class called checking account. Suppose that checking
account ought to have all the data and all the methods of account, along with one more
of each.

Let's imagine that this checking account class has the facility that, if a user would
bounce a check, we will instead loan them money automatically. For this class, we can
have an extra piece of data called loan amount, and one more method called get loan
amount, which let's us query the object and learn how much is left to borrow. | don't
know about you, but I'd be lost without this feature in my account. It's a useful thing.

What we're doing here is reusing at least the definition of the account class. In some
cases, we may also get to reuse the actual code of the account class. Checking account
can then easily, simply, be built upon the existing account class. That's inheritance. It's
an easy and often very effective way to reuse existing classes and sometimes existing
code.

Polymorphism

The third of the three characteristics that most would argue are essential to be truly
object-oriented also has the most forbidding name. It's called polymorphism. What it
means, however, is really quite simple.

Polymorphism means that a client can send the same message to two different objects,
yet have each object run the appropriate method. This allows the client to treat objects
of different classes as if they were the same. This makes life much easier for those
clients.

The client does the same thing to each object, but each object behaves appropriately.

Here's a simple example. If | kiss my wife, she responds in a certain way. If | kiss a
stranger on the street, he or she responds differently, | would assume. This is
polymorphism. | am sending the same message to each object and each one is acting
appropriately.

CCI Course 960801 7
Copyright © 1998, Computer Channel, Inc. All rights reserved

Here is a more professional example of the same thing. Imagine | have a client who is
working with an instance of the account object and an instance of the checking account
object.

If the client sends a message to the account object that says debit a certain amount
from the account balance - clear a check, for example - then the account object will run
its debit method.

The account object's debit method can be very simple. All it has to do is make sure that
the current account balance is greater than or equal to the amount the client wants to
withdraw. If it is, the account object processes the withdrawal. Simple.

Suppose, however, that the client sends the same message to the checking account
object. It, too, might run it's debit method, but what it does is different. Recall that
checking accounts have this extra feature of automatically loaning the client money, if
required.

In this case, the debit method for checking account must check not just the balance, but
it must check that the sum of balance and loan amount are greater than or equal to the
amount the client wants to withdraw. If they are, it will process the withdrawal.

From the client's point of view, these two objects are the same. The client sends the
same message, debit. Each object in fact behaves differently, appropriate to the object
of its class. This is polymorphism.

That's it. You now know the key ideas and the key terms underlying object technology.

A QUICK OO REVIEW
A quick summary here.

Classes and instances. A class is a template for a whole category of objects and
instance is a certain example, a particular instance of that class.

When clients want to talk to objects, when they want to invoke their methods, they do so
by sending a message to the object. In practice this can mean a function call or
something else.

Objects typically exhibit these three characteristics: encapsulation, which means the
object's data is hidden from clients except via the methods; inheritance, which means
objects can be derived from existing objects and hence reuse their code, or at least their
definitions; and, polymorphism, which means that different classes of objects can
accept the same message and respond appropriately.

This allows clients to have a much simpler view of the world.

CCI Course 960801 8
Copyright © 1998, Computer Channel, Inc. All rights reserved

There aren't many ideas here and yet these few ideas - coupled with the basic notion of
an object, combination data and methods - have given rise to this whole technology, this
very useful technology that we think of as objects.

PERSISTENCE

Earlier in this program, | made a point of distinguishing between conventional
applications, which separate code and data, and object-oriented applications, which are
built from objects - combinations of code and data, methods and data.

Well, the obvious question is where does that data come from? In a conventional
application, you probably read the data from a database, for example, or afile. In object
application that's just as true.

While the object is running, data is in memory, of course. But while the object is not
running, that data must be stored somewhere.

In the jargon of objects, we say that those objects have persistence. They are persistent
objects. Persistence just means that we store an object's state - it's data - between
invocations of the object. Persistence is really a high-tech way of saying, "let's store
stuff on disk."

For example, suppose | have an application built from several objects and those objects
all have some data, like objects tend to do. At some point those objects must get their
data loaded into them.

If the objects, for example, represent bank accounts or bank customers, then the data
above those accounts and those customers is loaded from a database - for example - or
a flat file. That data is from persistent storage, i.e. from disk.

Very commonly today that data is really stored in a typical relational database system:
Oracle, SQL Server, DB-2. Pick your favorite.

Now there's an obvious problem here. The problem is that objects think about things to
find abstractions in a certain way. Those abstractions don't exactly match the way in
which conventional database systems store data.

A relational system, for example, stores data in tables. What do tables have to do with
objects? Not a whole lot actually. You might store an object's data in a single row of a
table and load that when the object is created. Or you might do other things.

The point is that the mapping between objects and a running program and data in a
relational database is often imperfect. In some kinds of applications, the code that does
the mapping can be a large part of the effort in building the application as a whole.

One way around this is to use a different kind of database. Rather than storing the
object-persistent data in a flat file or a conventional relational database, why not store

CCI Course 960801 9
Copyright © 1998, Computer Channel, Inc. All rights reserved

the object's data in an object database system? The idea here is to have a database
system whose abstractions - whose approach to life, if you will - mirrors that of the
objects in our applications.

Plenty of vendors sell these today. There is an active market in object-database-
management systems. There is not, however, a terribly large market in this technology.
It's out there, but, to date anyway, object-database systems have been used primarily in
specialized applications.

Perhaps, as time goes on, as objects get more and more widely used, this will change.
We'll see. For now what you want to keep in mind here is that object databases really
are a way to do object persistence. They are not the only way, or even today the most
common way. But they are certainly a way that fits well with the general paradigm of
object technology.

THE FUTURE OF OBJECT DATABASES

MARIE LENZI: The future of object databases is not a technology problem. Itis a
marketing problem.

Interestingly enough you will find all of the database object leaders - that is the relational
databases - have a definite and sore case of object envy. They are all desperately trying
to impose object technology on their architectures. Some of them are going back and
rearchitecting, an incredibly expensive and possibly prohibitive effort.

But recognize that all of the relational databases are, in fact, trying to get object-oriented
in some fashion.

It looks like it will be a very difficult market for the object databases to address. | think
their best bet, at this point in time, for obtaining some strong presence in the
marketplace, is to go after distributed technology and web and intranet and Internet
environments, where no-bit databases have an entrenched position. | think that may be
their hope at this point in time.

Still it is not a technology problem. It is most definitely a marketing problem.

OBJECT-ORIENTED DEVELOPMENT

DAVID CHAPPELL: I've been talking for a while here about some of the narrowly
technical aspects of objects: inheritance, polymorphism, persistence. | want to pull back
a little bit and take a broader look now at what objects mean to the process of software
development, and | want to start by talking about object-oriented programming
languages.

Today, the most popular language in this space, by a wide margin, is C++. We also see
a reasonable number of Smalltalk users, and more and more people are using Java.
There are lots of others, but these three are the dominant players today.

CCI Course 960801 10
Copyright © 1998, Computer Channel, Inc. All rights reserved

It is very tempting, especially if you're a C programmer, to look at this and say, "Oh, well
if I learn C++, which just extends C, then I've learned objects.” It's easy to think that
moving to objects is nothing more than learning a new language. This is not correct.
Don't make this mistake.

As | hope you've seen - and you'll see throughout the rest of this program as well -
objects entail a much bigger change in your thinking than just learning a new language.
Should you choose to go to Smalltalk, for example, Smalltalk forces you to believe this
because it drops you right into an unfamiliar world that is purely object-oriented.

While using OO languages can be a very good thing to do, don't be confused. Don't
think that objects are just a new language. They are not.

To elaborate on this point, think about what happens when you design software. In the
conventional world, you have code, you have data. You organize your data. You
organize your code. All these things work together.

But if you're building an application from objects, now you have to think in terms of
objects. What this means is you must sit down and decide what classes you want to
have. You must decide how those classes relate to each other and how those classes
interact.

For example, in our simple bank illustration, we might have an account class and that
account class might be the parent class of two others called, let's say, checking account
and savings account.

These two classes inherit from account and thus automatically get many of it's features.
This same bank might also have a customer class and might - from that - define two
other classes that inherit from customer called say, commercial customer and individual
customer.

Deciding what classes you ought to have, who should inherit from whom, what those
classes should do, what their methods should be and what is their data is not simple.
Doing this requires the participation typically of end users. It is they who understand the
business. It is they who know what kinds of customers and accounts or whatever you
actually need to make your software match their problem.

As | said earlier, this reality that objects better match the world of our users is one of the
big benefits of this technology. It allows those users to be more involved in the process
of building the systems that we'll use for them.

To allow this, to support this whole idea - to think about our problems in terms of objects
- there have been a number of methods created for object-oriented analysis and design.
Among the most well known are, lvar Jacobson's Objectory, the Object Modeling
Technique from Rumbaugh, Grady Booch's Method and there are lots more. In fact,
these three have been combining theirs into a unified method.

CCI Course 960801 11
Copyright © 1998, Computer Channel, Inc. All rights reserved

There are a number of ways to approach this problem of analysis and design. The key
point here is to remember that moving to objects means that you need to change how
you design, how you analyze, how you create your software solution.

The Waterfall Model

There's more. In conventional, traditional software development, people follow the
waterfall model. They start, for example, with requirements analysis. Once this is done,
it's passed on to software designers, who in turn pass the design to coders, who pass it
to testers, who pass it to users and so on. Each step is commonly completed before the
next one begins.

In this way, you can produce effective systems, as we know, but it tends to be
somewhat static, somewhat inflexible. In a world of objects, it is possible to practice a
much more iterative approach to development.

Iterative Development

With objects you can start by building the basic shell of what you're doing. You build a
prototype that has the key objects and methods of those objects implemented. You can
then experiment with that and build on that.

You can grow this, then, by adding more and more of your objects or building more and
more of the methods. Over time you can create the complete solution.

You no longer have to have these sharp boundaries between the phases. You can
instead have this more iterative process that grows more naturally out of your problem.

One of the drawbacks here, of course, is it can be hard to know when you're done, but
still you could figure this out.

Objects change everything. They don't just change the language you use. They change
analysis. They change design. They may very well change the way in which you create
all of your applications.

Deciding on the Right Tool
MARIE LENZI: Sometimes picking the right tool for the right job can be a little difficult.

One side of you wants to pick the coolest, the niftiest, the slickest tools. The other side -
the more practical side -will force you to look at the problem you are trying to solve.

But also, and equally as important, you look at the people who are going to be using
these tools to solve the defined problem.

They are of equal weight and importance. If the problem defines and demands a certain
set of tools, and you don't have the people who are able to wield those tools, then it is
imperative that you either bring those people up to speed on those tools and get them

CCI Course 960801 12
Copyright © 1998, Computer Channel, Inc. All rights reserved

some experience before they start working with those tools. Or get some people
involved in the problem- solution space who are experienced with those particular tools.

When | say tools, | don't necessarily mean things that you're banging on the machine. It
may be a design tool. It may be an architectural approach to systems development, as
well as a compiler or development environment that you plug into the machines. It is not
an easy problem to solve or differentiate.

REUSE TECHNIQUES

DAVID CHAPPELL: Earlier in this program, | said that one of the key benefits of object
technology is the potential for reuse.

Now sometimes reuse can be oversold. Reuse is, in fact, quite hard to achieve. The
barriers to reuse, while sometimes technical, are more often social and cultural and
personal.

Still it is worth talking about some of the key technologies that are used to make reuse
possible in the world of objects.

Class Libraries & Frameworks

A big idea is class libraries. A class library is just what the name suggests: it's a library
of classes. If you, for example, have written some number of objects in C++ that you
want to reuse at some later point, that might be useful for all sorts of applications and
not just your own, you might package those objects into a class library. The idea here is
that others can use your library and can perhaps inherit from the objects in it.

It's an effective way to reuse code in many situations. And today many people use -
especially in C++ - class libraries written by others.

Over time, as class libraries evolve, their creators often find ways for the objects in
those class libraries to interact, to use each other. The result is what is commonly
known as a framework.

Now the framework is not very well defined. It means lots of different things. What |
mean here - and | would submit as a very common meaning for this word - is a bunch of
objects that all work together to provide some cohesive organized services.
Frameworks are objects that generally are oriented towards some certain problem
domain.

The idea here is to exploit the synergy that can emerge from a group of objects all built
to work with one another. The idea is to make the whole greater than the sum of the
parts.

Class libraries and frameworks are all well and good for object reuse. However, class
libraries and frameworks both tend to have linkages to a certain language. Commonly
for example, if | have objects in C++, | can reuse those objects only in other C++

CCI Course 960801 13
Copyright © 1998, Computer Channel, Inc. All rights reserved

programs. It would be great if | had some way to use objects in a different language
once they're written in C++.

It would also be great if | had a way to distribute objects as binaries, not as source code.
Class libraries are often sent out as source code.

Components

Both these problems, and more, are addressed by components. Now once again, the
notion of component is very ill- defined. People use this word in a variety of ways. What
| mean here are objects that allow cross-language reuse and binary distribution.

The notion is that with components | can create solutions, like assembling a puzzle. |
can glue together discreet binary chunks of code, without regard for the language
they're written in, to create my final solution.

There are, today, two leading architectures for building components. The first, and the
most widely used, is Microsoft's Component Object Model, Microsoft's COM. COM
underlies Microsoft's ActiveX and OLE technologies and is used extensively in Windows
and Windows NT applications and also in those operating systems themselves.

The second technology in this area is IBM's SOM, the System Object Model. SOM
underlies OpenDoc, a competitor, in some ways, to some parts of OLE. SOM also
provides a way to create binary reusable components. Both of these technologies
address the same set of problems and both have their adherents today.

The Distributed Environment

One more thing. If I'm going to reuse objects, or, for that matter, if I'm going to use
objects at all, who says that those objects must exist on the same machine as the
client? They don't have to. Why can't | access the services, the methods, of objects
across the network somewhere?

There are today two leading technologies competing for dominance in this area as well.
The first is from the Object Management Group, OMG. It's called CORBA, the Common
Object Request Broker Architecture.

The second is an offshoot, an extension to Microsoft's COM, and it's called Distributed
COM, or more commonly DCOM. CORBA and DCOM address similar problems. Both
allow clients to invoke an object's methods across a network.

In fact, technically, the two have a great deal in common. However, unsurprisingly they
are promoted by different organizations, who are, of course, competitors. Both of these
technologies appear to have a role to play today. We'll see what happens in the future.
We'll see if one wins out over the other. Today CORBA and DCOM are both powerful
forces in this market.

CCI Course 960801 14
Copyright © 1998, Computer Channel, Inc. All rights reserved

Reuse happens in all sorts of ways. In a simple model, reuse happens just through
inheritance. In a more complex environment, reuse happens from class libraries or
frameworks or components or, perhaps, distribution. Reuse is important however it
happens, and it is one of the benefits that people have achieved from object technology.

Component Technology & Reuse

MARIE LENZI: Component technology is a higher level of abstraction of reuse. So in
order to achieve it, you're going to have to encompass all of the previously defined
requirements for reuse - the broader perspective on development than just looking at
the compilers and small technology - small-parts reuse.

Now going hand in hand with that are issues of scale. Component technology
essentially is focused on a larger scale of reuse than just reusable parts. So keep in
mind, when we go after that component technology that the scale is an incredible issue.
True return on investment from component technology is going to be perceived at the
business bottom line, not at the reuse of a button or a box or a window.

Reuse Is an Attitude

Reuse has been the biggest marketing mechanism and hype of object technology.
However, reuse is not a technical problem. Primarily, reuse is an attitude. Reuse, too,
has many dimensions. The least of which, in fact, is technology. Yes, we need
technological elements to manage and control all the small components, but in order to
achieve the small components, we need to look back at that holistic approach to
development that | talked about earlier.

We need a model. We need a plan. We need a process and we need people who are
willing to work, to achieve reusable components. You don't just cobble up a reusable
component. It takes at least four or five hits on a component before it is, in fact,
reusable across a larger dimension. It takes work and understanding, and it takes a
cooperative effort of the development organization along with the business organization
to achieve the reusable components.

Little buttons, windows, screens are all very well and good, and they will provide you
some level of reuse. But not a real productive level. You need to look at larger
componentry to get a real return on investment with reusable technology.

IN REVIEW

What are the two key parts of an object? Methods and data.

What's the difference between a class and an instance? A class is a template defining
a general category of objects. An instance is a certain occurrence of a class.

What are the three typical characteristics of an object oriented technology? Inheritance,
polymorphism, encapsulation.

CCI Course 960801 15
Copyright © 1998, Computer Channel, Inc. All rights reserved

What term is used to describe storing an object's data on a stable storage medium such
as a disc drive? Persistence.

What is the most widely used object oriented programming language? C++.

THE EDUCATION PROCESS

MARIE LENZI: | have had one customer, when | walked into their office, who looked at
me and said, "Marie, these people have not been trained in 30 years. Literally."

For whatever reason, our industry has a tendency to shun learning - painfully. And this
is one industry where it is probably most imperative because it is constantly changing
and advancing and some of this stuff we're making up as we go along.

Whether it be object technology, client/server, distributed computing, a new word
processor, it is imperative that we focus more as an industry on this whole education
process.

ADVICE

| think some of the best advice | can give is fairly simple advice - that is balancing reality
with expectations.

The notion of "without a line of code" or "painless technology" is not a reality. We've
been developing systems long enough to know that that kind of push-the-button magic
IS not going to happen.

The notion of going back and not only looking at the tools, but looking at the whole
development environment and the development process, and, in fact, the relationship
with the user community is also highly recommended. Look at a broader picture and
improve your whole development effort, and you will recognize that this is not only
applicable to object technology, but to any new technologies that you're going to be
moving into your organization.

SUMMARY

DAVID CHAPPELL: So how important are objects? This is a heck of a time to ask.
You've just watched the course, but the answer to the question is they are pretty darn
important. It is possible today to build applications that don't use object technology. It's
guite common, in fact.

It probably won't be in the future. It turns out that we are seeing object technology
infiltrating the tools that we use. The tools we use to build applications, more and more,
have at least some of the features of objects. The result is object technology is getting
hard to avoid. The reasons for this are, as we've said throughout this program, objects
provide a better way to model many problems.

Object technology can produce more reliable, more reusable software, and the result of
this is that object technology is going mainstream.

CCI Course 960801 16
Copyright © 1998, Computer Channel, Inc. All rights reserved

A final cautionary note, this is not a panacea. This is not the longed for silver bullet that
will solve all development problems. It is not. There's a steep learning curve here.

Nonetheless, the benefits of objects have outweighed the drawbacks for many, many
people, and perhaps, they will for you as well.

I'm David Chappell. Thanks for watching.

CCI Course 960801

17
Copyright © 1998, Computer Channel, Inc.

All rights reserved

	AGENDA
	APPROACHES
	The Traditional Way
	The OO Way
	Methods
	Key OO Benefits
	Drawbacks of the OO Way
	A Holistic Approach

	KEY OBJECT CONCEPTS
	Classes & Instances
	The Client
	Messages

	OO CHARACTERISTICS
	Encapsulation
	Inheritance
	Polymorphism

	A QUICK OO REVIEW
	PERSISTENCE
	THE FUTURE OF OBJECT DATABASES
	OBJECT-ORIENTED DEVELOPMENT
	The Waterfall Model
	Iterative Development
	Deciding on the Right Tool

	REUSE TECHNIQUES
	Class Libraries & Frameworks
	Components
	The Distributed Environment
	Component Technology & Reuse
	Reuse Is an Attitude

	IN REVIEW
	THE EDUCATION PROCESS
	ADVICE
	SUMMARY

