
The Microsoft Database Research Group

David Lomet Roger Barga Surajit Chaudhuri Paul Larson
Vivek Narasayya

Microsoft Research
One Microsoft Way, Bldg. 9

Redmond, WA 98052
http://www.research.microsoft.com/research/db

1 Overview
1.1 History

Microsoft’s strategic interest in the database field dates
from 1993 and the efforts of David Vaskevitch, who is
now the Microsoft Vice President in charge of the database
and transaction processing product development groups.
David’s vision was that the world would need millions of
servers, and that this presented a wonderful opportunity to
a company like Microsoft that sells software in high vol-
ume and at low prices. Database systems played an impor-
tant role in Vaskevitch’s vision, and, indeed, in Microsoft’s
current product plans. David began looking for premier
database and transaction processing people in late 1993.

The scope of Vaskevitch’s efforts included a desire for
Microsoft to establish a database research group. Rick
Rashid, Microsoft Research Vice President, collaborated
with Vaskevitch in recruiting David Lomet from Digi-
tal’s Cambridge Research Lab to initiate the Microsoft
Database Research Group. Lomet joined Microsoft Re-
search in January of 1995. Hence, Microsoft’s Database
Research Group is now a little over three and a half years
old.

One person does not a group make. Recruiting efforts
continued. Surajit Chaudhuri, a researcher from HP Labs
joined the Database Group in February of 1996. Paul Lar-
son, a professor from the University of Waterloo joined in
May of that year. Vivek Narasayya was initially an intern
as a graduate student from the University of Washington in
the summer of 1996, officially joining the group in April of
1997. Roger Barga, the newest member of the group and a
new Oregon Graduate Institute Ph.D., joined in December,
1997.

1.2 Microsoft’s Research Environment

The Database Research Group benefits from attributes
of our Microsoft environment that contribute to the effec-
tiveness of research here. These apply to Microsoft Re-
search in general, not only to database research.

Research Ambiance:Microsoft Research, and specifi-
cally Rick Rashid, believes that one very significant
measure of the quality of our research efforts is pub-
lication of our results in the major conferences and
journals of our fields. This stimulates us to measure
our success against the best researchers in each area.
The other significant measure of our research is trans-
fer of technology to product groups, which focuses
our attention on industrially relevant problem areas.
Thus, professional impact and product relevance com-
bine to motivate high quality industrial research.

Geography: Essentially all of Microsoft product develop-
ment is located on a single campus in Redmond. This
means that Microsoft’s Redmond based researchers
are only about a five-minute walk from any develop-
ment team with which they are collaborating. This is
an enormous plus that greatly facilitates both consult-
ing activities and the transfer of research developed
technology.

Developers: Microsoft has highly skilled software devel-
opers who are almost uniformly a pleasure to work
with. In addition, they are very accepting of technol-
ogy that furthers the success of their products. This
product focus means that it is possible for the latest
in research technology to very quickly find a home
within Microsoft products. Having great developers
means that going from research prototype to delivered
product can happen at stunning speed.

Market Impact: Industrial researchers, like product de-
velopers, want their efforts to have impact. When a
research idea gets into a Microsoft product, it can im-
pact the way that millions of people use computers.
This is heady stuff that can result in tremendous job
satisfaction.



1.3 Database Research Activities
The challenge of industrial database research is to find

the technical areas that leverage research skills to produce
large leaps in technical capability. We deal with this with a
combination of research projects and consulting activity.
Research Projects

The high quality of the Microsoft product developers
makes choosing research projects particularly challenging.
It requires both identifying long range opportunities and
being able to deliver incremental progress on those chal-
lenges in a timely fashion- that is, a step ahead of our col-
leagues from the product groups. We have identified two
areas in which it is clear that there are major opportunities
with significant payoff if our efforts succeed. Both these
areas leverage our painstakingly acquired knowledge of the
areas and our research skills.

Self-tuning databases:TheAutoAdmin projectlong-term
goal is to make database systems self-administering
and self-tuning in all their dimensions. Initially,
the project is focusing on the physical database de-
sign problem (index and materialized view selection).
Surajit Chaudhuri, Paul Larson, and Vivek Narasayya
collaborate on the AutoAdmin project.

Robust applications: thePhoenix projectlong-term goal
is to improve application availability and error han-
dling robustness. Initially, the project is focusing on
exploiting database recovery techniques to enable ap-
plications to survive system crashes. David Lomet
and Roger Barga work on the Phoenix project.

Our research projects are described more fully in the
next two sections.
Consulting Activities

In addition to our research projects, members of the
Database Research Group also work directly with product
development groups on more immediate technical prob-
lems. We view this type of internal technical consulting
as an important part of our charter as an industrial research
group. Consulting keeps us close to the current product
activity and strengthens ties with the development teams.
It not only is helpful to the developers, but also keeps us
aware of and focused on real world problems.

As a research group, we are exposed constantly to the
activities and results produced by a wide range of research
groups throughout the world. Our consulting activities en-
able us to bring research results (our own and others) to
the attention of the product developers. Consulting activ-
ities have taken several forms, ranging from involvement
in exploring designs, through prototyping and evaluation
of potential solutions, all the way to contributing virtually
ready-to-ship code.

Our consulting activities have had a measurable impact
on several Microsoft products.

SQL Server: The SQL Server 7.0 release is a major en-
hancement to SQL Server. Large portions of the query
processing and storage engine components were re-
written with greatly increased functionality, perfor-
mance, extensibility, and modularization. Our re-
search consulting was particularly helpful in the query
optimizer for index usage, in the storage engine for
support of record level locking, and for improved
OLAP performance.

Windows NT: Windows NT is a modern and constantly
evolving operating system intended for both desktop
and server roles. Our consulting on its caching be-
havior and memory usage helped lead to important
performance gains.

Internet Systems: Servicing the Internet is a new and
highly important area, with substantial new systems
being built. These systems have caching and memory
usage that also were improved with the help of our
consulting.

2 The AutoAdmin Project
2.1 The Opportunity

More than ever before, database systems are being used
as integral components of a variety of enterprise and desk-
top applications. In order for such widespread use to be
cost-effective, it is important that the cost of ownership
of databases be low. Unfortunately, this is not true of to-
day’s commercial database systems. They require careful
database administration and tuning for good performance.
Furthermore, administration and system tuning are com-
plex tasks that require considerable expertise. Automating
and simplifying these tasks is crucial to making deploy-
ment of databases more affordable.

The AutoAdmin objective is to help develop a next
generation database system that adapts automatically and
gracefully to its environment. The vision is to have a sys-
tem that consistently delivers high performance with lit-
tle or no administration, regardless of changes in its load
and environment. Monitoring and feedback are key tech-
niques required to make a database management systems
self-tuning. This means gathering information while the
system is running and exploiting this information to ad-
just the system parameters to improve future performance.
The time horizon for tuning can vary greatly: from a few
milliseconds to days. An example of long term tuning is
determining an appropriate set of index structures. An ex-
ample with a shorter time horizon is the estimate of query
execution time when results of previous executions can be
exploited.



2.2 The Project

AutoAdmin is a long-term effort. In the short term, we
have focussed our research project efforts on automating
the task of picking an appropriate physical design for a
database. Specifically, we have concentrated on the prob-
lem of identifying appropriate indexes and materialized
views to optimize the performance of a database on a given
workload.

2.2.1 Selecting Indexes and Materialized Views
The index selection problem has been studied since the

early ’70s and the importance of the problem is well recog-
nized. Despite a long history of work in this area, there are
few research prototypes and commercial products that are
widely deployed. There are several difficulties in designing
a robust industrial strength index selection tool.

� Workloads consist of arbitrarily complex SQL state-
ments and change over time. This underscores the
need to ensure that workloads can be tracked and that
query complexities can be handled.

� Modern query processing systems exploit indexes in
many more ways than were done in early relational
systems, e.g. index only queries, index intersections,
multi-column indexes. Hence, the design space is
very large, making efficient search of this space es-
sential.

� Query optimizers have specific characteristics that
make the plans that they generate rather idiosyncratic.
A particular physical design is not interesting unless
the optimizer exercises its features. This underscores
the need to ensure that the design tool is in step with
the optimizer.

To the best of our knowledge, none of the past work has
addressed these fundamental issues satisfactorily. Text-
book solutions to the physical database design problem that
take only semantic information such as uniqueness, ref-
erence constraints and rudimentary statistics to produce a
database design perform poorly because they ignore valu-
able workload information. The class of tools that adopt
an expert system like approach, like Rdb Expert, where
the knowledge of good designs are encoded as rules, suffer
from being disconnected from the query optimizer.

The AutoAdmin index selection technology that we
have developed required identifying and prototyping new
database server interfaces to permit the creation of hy-
pothetical indexes. The creation of a hypothetical in-
dex requires efficiently gathering statistics on columns of
the index. We exploit sampling techniques for this step
[CMN98]. Two component tools were implemented that
exploit these interfaces.

The index analysis utility [CN98] creates a set of hy-
pothetical indexes and analyzes their impact with respect
to varied workloads on the system. The analysis utility can
be exploited by a variety of client tools.

We leveraged the index analysis utility to develop an
index tuning wizard that iterates through the space of hy-
pothetical indexes efficiently to propose a set of indexes
appropriate for a given workload. Such a workload may
be derived from a customer benchmark or obtained by log-
ging the database server activity using available tools. For
each choice of a set of hypothetical indexes, it uses the
special database server interfaces to create the hypothet-
ical indexes and evaluate their potential for performance
enhancement with respect to the given workload. The in-
dex tuning wizard uses a novel search technique that filters
out spurious indexes in an early stage and exploits charac-
teristics of the relational query engine to reduce the cost
of selecting indexes. For example, it takes into account
index-only access. It also generates complex alternatives
(e.g., multi-column indexes) from good simpler alterna-
tives (e.g., single-column indexes) in a structured fashion.
Technical details of this wizard may be found in [CN97].

Despite the fact that the AutoAdmin project is relatively
young, we have been successful in impacting SQL Server.
Its next release (SQL Server 7.0) will feature our index tun-
ing wizard, which can be launched in a variety of ways to
select a set of appropriate indexes for a workload [CN98-
wp]. A workload may be provided externally or created
using the SQL Server profiler. The index tuning wizard
will be a significant contribution to the SQL Server focus
on ease of administration.

As the next step in automating the physical design, we
are currently expanding the physical design space to in-
clude selecting not only a set of indexes, but rather a set
of indexes as well as materialized views. Indeed, an index
can be seen as a very simple form of a materialized view:
a project-only view. Other types of materialized views, for
example, join views or aggregation views, have the poten-
tial to provide similar performance gains as indexes.

2.2.2 Query Processing with Materialized views
In order to extend the choice of physical design to ma-

terialized views, not only do we need to extend the index
selection framework to include materialized views, but we
also need to ensure that the query processing subsystem
can support materialized views. Specifically, it requires so-
lutions to the following two problems:

1. Query transformation:The query optimizer must be
able to rewrite queries to exploit materialized views
when it is beneficial to do so.

2. View maintenance:The system must automatically
update all affected materialized views whenever base



tables are updated.

So far, our work on materialized views has focused
on the query transformation problem. Most previous re-
search on query transformation has made several simpli-
fying assumptions: project-select-join queries and views
only, set semantics (as opposed to multiset semantics), no
knowledge about constraints like keys and foreign keys,
and computing the query from a single view. Currently we
have a running prototype system for query transformation.
that handles a broader class of queries and views (project-
select-join-group) with normal SQL semantics, exploits
knowledge about keys and foreign keys, and considers
transformations involving multiple views. SQL’s multiset
semantics adds a new dimension to the query transforma-
tion problem because we have to make sure not only that
we get all the required rows but also with the right dupli-
cation factor.

Taking into account knowledge about keys and foreign
keys turns out to be very important but also suprisingly
complex. Consider two tables, Orders and Customers,
where the Orders table contains a non-null foreign key
CustomerNo referencing the primary key of Customers.
Assume that we have a join view consisting of the (natural)
join of Orders and Customers and consider a query refer-
encing Orders only. Without knowledge about keys and
foreign keys, we would have to conclude that the query
cannot be computed from the join view. Taking into ac-
count just foreign keys, we can conclude that all required
rows exist in the view but not necessarily with the right du-
plication factor. To guarantee that the duplication factor is
correct, we have to take into account that the join is on a
key.

Key dependencies generate functional dependencies
that hold in the result of a query expression. These de-
rived functional dependencies play an important role when
deciding whether a group-by query can be computed from
a group-by view.

Combinatorial explosion rears its ugly head as soon as
one broadens the solution space to transformations that use
multiple views. The key problem here is to come up with
good heuristics for limiting the search without missing too
many good solutions. The heuristics in the current proto-
type work well on small databases but we don’t know how
well they scale to large databases with hundreds or even
thousands of tables and views.

References
CN97 Chaudhuri, S., Narasayya V. ”An Efficient, Cost-Driven

Index Selection Tool for Microsoft SQL Server.” Proceed-
ings of the 23rd VLDB Conference Athens, Greece, 1997,
pages 146-155.

CMN98 Chaudhuri S., Motwani R., Narasayya V. ”Random
Sampling for Histogram Construction: How much is

enough?” Proceedings of the ACM SIGMOD International
Conference on Management of Data, 1998.

CN98 Chaudhuri, S., Narasayya V. ”AutoAdmin ”What-If” In-
dex Analysis Utility.” Proceedings of the ACM SIGMOD
International Conference on Management of Data, 1998.

CN98-wp Chaudhuri S., Narasayya V. ”Index Tuning Wizard for
Microsoft SQL Server”. Microsoft White Paper.

3 The Phoenix Project
3.1 The Opportunity

Dealing with errors or exceptions is a very large part of
getting applications “right”. Such errors and exceptions
greatly increase the complexity of application program-
ming. However, failures are not only an application pro-
gramming problem but an operational and an availability
problem as well. The Phoenix project is an effort to de-
crease application programming complexity, increase the
availability of applications, and in many cases avoid the
operational task of coping with an error.
System Crashes

Database systems recover thedatabaseto the last com-
mitted transaction. Incomplete transactions are aborted.
While database state is recovered, the states of applica-
tions using the database, and their surrounding sessions are
”blown away” (erased). This behavior results in longerap-
plication outages. Our intent is to reduce this period of
unavailability by extending database recovery to include
session and application states. This will also enable state-
ful applications to survive failures and continue execution.
Logical Errors

Transactions abort for logical errors as well as crashes.
Aborting transactions in these cases means undoing back
to transaction start. In the future we would like to extend
database style recovery to support partial rollback as a re-
sult of application errors, where the rollback resets not only
database state (already supported by savepoints) but also
application state. This is compensation, of the multi-level
transaction form, that includes application state.

3.2 The Project
In Phoenix, we have focused first on application avail-

ability and persistence.
Redo Recovery Technology

We have explored technology that exploits new database
redo recovery technology [LT95] to enable applications to
persist across system crashes, i.e. to provide for the recov-
ery of application state as well as database state [L97,L98].
This permits applications to safely maintain state across
multiple transactions. While forms of program persistence
are not new, logging and checkpointing costs to realize per-
sistence have been high. The techniques developed within
Phoenix substantially reduce these normal execution costs



by enabling logical logging, which reduces logging costs.
These techniques exploit the database system’s cache man-
agement and recovery mechanisms. While there remains
an extra system cost for application persistence, it is much
lower than in the past. Phoenix continues the trend of ex-
pending system resources to conserve more expensive and
error-prone human resources.

Because this work exploits the database system’s recov-
ery mechanism, our approach requires the database system
to wrap an application to capture its interactions with other
system components and log its state changes. Hence, our
focus has been on database applications, particularly those
that are close to the database system. This permits simple
robust applications such as database stored procedures.

With further extension, robust client/server database ap-
plications can be provided as well [LW98]. Further evo-
lution of these techniques should enable the masking of
system failures involving application subcomponents from
higher level components in a more distributed environ-
ment, such as distributed transaction processing or work-
flow.

ODBC Persistent Sessions Prototype
Our initial systems effort avoids the difficulty involved

with making substantial changes to the internals of the
database recovery system by focusing on ODBC session
availability. The term ODBC stands for ”open database
connectivity” – a technology based on an ANSI/ISO stan-
dard that allows applications to access multiple third-party
databases. ODBC exploits a general-purpose call level in-
terface (CLI) that uses SQL as its standard for accessing
data. Our goal is to provide persistent server sessions to
client systems that support ODBC, sessions that can sur-
vive a system crash without the client application being
aware of the outage, except perhaps for timing considera-
tions.

When a client application requests information from a
database, the request goes to an ODBC driver, which is
a database system specific program that actually accesses
the database. The ODBC driver translates the request so
that the database server can recognize and respond to it.
The server provides the requested data to the ODBC driver,
which then translates the data into a form the ODBC client
application will recognize.

To provide ODBC session availability, we have intro-
duced a generic Phoenix ODBC driver, one that will work
with any database. Our Phoenix driver interceptseveryap-
plication interaction with the database system by means of
ODBC, as only these interactions can change ODBC ses-
sion state. It essentially wraps itself around any database
specific ODBC driver. The Phoenix driver intercepts appli-
cation requests going to the database server, logging state-
ments that alter session context, and carefully rewriting se-

lected SQL statements to force the creation of persistent
database tables that capture application state. It then passes
the request on to the native ODBC driver. Replies are re-
turned from the server to the native ODBC driver. The
Phoenix ODBC driver intercepts the native ODBC driver
responses to the client application, variously caching, fil-
tering, and reshaping the result set, and synchronizing with
the application state materialized on the database server.

When the Phoenix driver detects that the database server
has failed, it periodically probes for the status of the server.
Once the server has recovered, the Phoenix driver reestab-
lishes a connection to the database system, then issues a
series of calls to the database server in order to reinstall
ODBC session context and verify that all application state
that was materialized on the server was recovered by the
database’s recovery mechanisms. The Phoenix driver will
identify the application’s last completed request, ask the
database to re-send the result set if necessary, and reissue
any incomplete or interrupted requests.

When using our generic Phoenix ODBC driver, an ap-
plication programmer does not need to deal directly with
server failures. Indeed, a user of the application, end user
or other software, may not even be aware that a server crash
has occurred, except for some delay. Moreover, all the
logic for recovering an ODBC session is localized in the
Phoenix driver and can be used by any application to en-
hance ODBC session availability, without having to mod-
ify the application program, the database specific ODBC
driver, or the database server.

References
LT95 Lomet, D. and Tuttle, M. Redo Recovery after System

Crashes. VLDB Conference (Sept. 1995) Zurich, Switzer-
land 457-468.

L97 Lomet, D.B. Application Recovery: Advances toward an
Elusive Goal. Workshop on High Performance Transaction
Systems (HPTS97) Asilomar, CA (September, 1997)

L98 Lomet, D.B. Persistent Applications Using Generalized
Redo Recovery. International Conference on Data Engi-
neering, Orlando, FL (Feb. 1998) 154-163.

LW98 Lomet, D.B. and Weikum, G. Efficient Transparent Ap-
plication Recovery in Client-Server Information Systems.
ACM SIGMOD Conference, Seattle, WA (June 1998)(best
paper award).


