
User-level Resource-constrained Sandboxing

Fangzhe Chang, Ayal Itzkovitz, and Vijay Karamcheti
Department of Computer Science

Courant Institute of Mathematical Sciences
New York University

ffangzhe, ayali, vijaykg@cs.nyu.edu, http://cs.nyu.edu/pdsg

Abstract

The popularity of mobile and networked applications
has resulted in an increased demand for execution
“sandboxes”—environments that impose irrevocable re-
strictions on resource usage. Existing approaches rely
on kernel modification for enforcing quantitative restric-
tions (e.g., limiting CPU utilization of an application to
25%). However, the general applicability of such ap-
proaches is constrained by the difficulty of modifying
shrink-wrapped operating systems such as Windows NT.

This paper presents a user-level sandboxing approach for
enforcing quantitative restrictions on resource usage of
applications. Our approach actively monitors an appli-
cation’s interactions with the underlying system, proac-
tively controlling them to enforce the desired behavior.
Our approach leverages a core set of user-level mecha-
nisms that are available in most modern operating sys-
tems: fine-grained timers, monitoring infrastructure, de-
bugger processes, priority-based scheduling, and page-
based memory protection. We describe implementation
of a sandbox on Windows NT that imposes quantitative
restrictions on CPU, memory, and network usage. Our
results show that application usage of system resources
can be restricted to within 3% of desired limits with min-
imal run-time overhead.

1 Introduction

The increasing availability of network-based services
and the growing popularity of mobile computing
has resulted in an increased demand for execution
“sandboxes”—environments that support differentiated
service and impose irrevocable restrictions on resource
usage. For instance, the execution environment can en-
sure qualitative restrictions such as permitting an ap-
plication component to only access certain portions of
the file system (e.g., c:ntemp), and quantitative re-
strictions such as limiting the component to 20% of
CPU share. These qualitative and quantitative restric-
tions isolate the behavior of other activities on the sys-
tem from a potentially malicious application component,

and are desirable for the wider deployment of distributed
component-based applications.

Existing approaches for enforcing qualitative and
quantitative restrictions on resource usage rely on
kernel support [JLDB95, MST94], binary modifica-
tion [WLAG93], or active interception of the ap-
plication’s interactions with the operating system
(OS) [BG99, ET99, GWTB96]. The kernel approaches
are general-purpose but require extensive modifications
to OS structure, limiting their applicability for express-
ing flexible resource control policies. The remainder of
the approaches rely on deciding for each application in-
teraction with the underlying system whether or not to
permit this interaction to proceed; consequently, they
provide qualitative restrictions (such as whether or not a
file-reading operation should be allowed), but are unable
to handle most kinds of quantitative restrictions, particu-
larly since usage of some resources (e.g., the CPU) does
not require explicit application requests.

This paper presents a user-level sandboxing approach for
enforcing quantitative restrictions on application’s re-
source usage. Our approach actively monitors the appli-
cation’s interactions with the underlying system, proac-
tively controlling them to enforce the desired behavior.
Our strategy recognizes that application access to sys-
tem resources can be modeled as a sequence of requests
spread out over time. These requests can be either im-
plicit such as for a physical memory page, or explicit
such as for disk access.1 This observation provides two
alternatives for constraining resource utilization over a
time window: either control the resources available to
the application at the point of the request or control the
time interval between resource requests. In both cases
and for all kinds of resources, the specific control is in-
fluenced by the extent to which the application has ex-
ceeded or fallen behind a progress metric. The latter
represents an estimate of the resource consumption of
the application program.

1Those disk operations incurred by paging are also implicit.

Vijay Karamcheti
To appear in USENIX Windows Systems Symposium (previously USENIX-NT), August 2000.



For this approach, the primary challenge lies in accu-
rately estimating the progress metric and effecting nec-
essary control on resource requests with acceptable over-
head. It might appear that appropriate monitoring and
control would require extensive kernel involvement, re-
stricting their applicability. Fortunately, most modern
OSes provide a core set of user-level mechanisms that
can be used to construct the required support. Pres-
ence of fine-grained timers and monitoring infrastruc-
tures such as the Windows NT Performance Counters
and the UNIX /proc filesystem provides needed infor-
mation for building accurate progress models. Similarly,
fine-grained control can be effected using standard OS
mechanisms such as debugger processes, priority-based
scheduling, and page-based memory protection.

We describe the implementation of a sandbox using
the above strategy to impose quantitative restrictions on
three representative resources—CPU, memory, and net-
work on Windows NT (The same approach has also
been used to implement sandboxing on Linux). A de-
tailed evaluation shows that our implementation is able
to restrict resource usage of unmodified applications to
within 3% of the prescribed limits with minimal run-
time overhead. We also present a synthetic application
that demonstrates the flexibility of a user-level sandbox.
In this case, our approach permits application-specific
control at fine granularity—over differentiated thread
and socket groups.

The rest of this paper is organized as follows. Sec-
tion 2 describes background and related work. Section 3
presents the overall sandboxing strategy and discusses
its application for three example resource types: CPU,
memory, and network. The concrete implementation of
the sandbox on Windows NT is presented and evaluated
in Section 4. Section 5 highlights the flexibility of user-
level sandboxing, and we conclude in Section 6.

2 Background and Related Work
The problem of ensuring that application components
are guaranteed a required level of service and do not vi-
olate certain qualitative and quantitative restrictions on
resource usage has recently attracted a lot of attention.
Related approaches can be classified into two broad cat-
egories: kernel-level mechanisms and code transforma-
tion techniques.

Kernel-level mechanisms Real-time Mach supports
a Capacity Reserve abstraction [MST94] that guaran-
tees applications a predictable CPU share over pe-
riodic time interval. Rialto [JLDB95, JR99] intro-
duces CPU Reservation and Time Constraints, extend-
ing the NT kernel to support real-time applications.
Resource containers [BDM99] proposes a new UNIX

kernel model for accounting and scheduling resources,
which enables fine-grained and predictable resource al-
location. Eclipse [BGOS98] implements reservation-
domain scheduling of multiple resources (CPU, disk,
and physical memory). Resource Kernels [RJMO99]
guarantees an application’s timeliness requirements and
disk bandwidth using classified reservation schemes. All
these approaches require extensive modifications to OS
structure. Consequently, their applicability for imple-
menting flexible resource control policies is limited, par-
ticularly for shrink-wrapped OSes such as Windows NT.

In addition, primarily in the context of real-time oper-
ating systems, several scheduling algorithms have been
proposed for constraining/fair-sharing CPU resources
(e.g., Stride scheduling [WW95], Lottery schedul-
ing [WW94], SMART scheduler [NL97], and Start
Time Fair Queuing [GGV96]) and network resources
(e.g., Weighted Fair Queuing [DKS89] and Virtual
Clock [Zha91]). Implementing these algorithms in a
user-level scheduler on Windows NT is restricted be-
cause of the interference from OS-level scheduler.

Restricted versions of such mechanisms are also avail-
able in the form of job control mechanisms [Ric99] in
Windows 2000. The latter allows expression of con-
straints on resource limits for process groups (e.g., maxi-
mum total execution time). We complement the job con-
trol scheme using a flexible user-level approach, which
additionally provides support for constraining network
bandwidth and weighted fair-sharing of CPU resources.

Code transformation techniques provide a
user-level approach for imposing restrictions on re-
source usage. These techniques, which include
binary modification approaches (such as software
fault-isolation [WLAG93]) and API interception ap-
proaches (such as Janus [GWTB96], Mediating Con-
nectors [BG99], and Naccio [ET99]), all rely on mon-
itoring an application’s interactions with the underly-
ing OS. These techniques leverage OS mechanisms
such as system-call interception by a debugger pro-
cess [GWTB96], or application structuring mechanisms
such as DLL import-address-table rewriting [BG99,
HB99] to execute some checking code whenever the ap-
plication interacts with the OS. This code decides, for
relevant interactions, whether to allow, delay, or deny
the interaction from proceeding.2

Consequently, such approaches provide the necessary
hooks for enforcing qualitative restrictions (e.g., only
files in /tmp are readable), but have not been success-
fully employed for quantitative restrictions because us-

2Or, in some cases (e.g., Janus [GWTB96]), to modify the request
into a compliant form prior to allowing it to proceed.



1.0

0.5

0

1.0

0.5

0
2t0 t 2t0 t

1.0

0.5

0
2t0

1.0

0.5

0
t 2t0 t

(a) (b)

Figure 1. Desired effects on application execution time (x axis) under a resource-constrained sandbox that limits
CPU share (y axis) to 50% when the application contains (a) no wait states, and (b) wait states. In the latter case,
the sandbox should only cause the ready periods to get stretched out.

age of some resources (e.g., the CPU) does not require
explicit application requests. In this paper, we extend
these techniques to enforce quantitative restrictions over
resource usage, with a scheme built upon core monitor-
ing and control mechanisms that are a feature of most
modern OSes.

3 Enforcing Quantitative Restrictions

Our strategy manages the allocation of system resources
to an application by relying upon techniques for in-
strumenting the application, monitoring its progress,
and as necessary, controlling its progress of execution.
Progress metrics represent estimates of an application’s
resource consumption. Instrumenting (using tools such
as [BG99, HB99]) allows us to inject code into the ap-
plication and intercept its API calls on the fly. Since
some system resources such as CPU and memory can
be accessed without going through a high-level API call
that can be intercepted, we control the resources avail-
able to the application both at the point of the request
(e.g., when sending a message), and between resource
requests (e.g., between memory allocations). These
techniques leverage a core set of user-level mechanisms
that are provided by most modern OSes such as priority-
based process scheduling, page-based memory protec-
tion, and fine-grained timers.

In the rest of this section, we describe how this strategy
can be used to control application consumption of three
representative resources: CPU, memory, and network.
The goal of controlling resource consumption can be
twofold: to simply prevent an application from overus-
ing system resources and starving other applications, or
to provide a soft guarantee of and weighted fair sharing
of resources to the controlled applications. The latter
goal can create, for each application, a virtual execution
environment that simulates a physical machine with the
prescribed resource limitations. However, meeting this
goal requires that extra resources cannot be given to the
constrained application even if available. The techniques
described in the rest of this paper address this more gen-
eral goal.

3.1 CPU Resources

Here, the quantitative restriction is to ensure that the ap-
plication receives a stable, predictable processor share.
From the application’s perspective, it should appear as if
it were executing on a virtual processor of the equivalent
speed.

Constraining CPU usage of an application utilizes the
general strategy described earlier. The application is
sandboxed using a monitor process that either starts the
application or attaches to it at run time. The monitor pro-
cess periodically samples the underlying performance
monitoring infrastructure to estimate a progress metric.
In this case, progress can be defined as the portion of its
CPU requirement that has been satisfied over a period of
time. This metric can be calculated as the ratio of the
allocated CPU time to the total time this application has
been ready for execution in this period. However, al-
though most OSes provide the former information, they
do not yield much information on the latter. This is be-
cause few OS monitoring infrastructures distinguish (in
what gets recorded) between time periods where the pro-
cess is waiting for a system event and where it is ready
waiting for another process to yield the CPU. To model
the virtual processor behavior of an application with wait
times (see Figure 1 for a depiction of the desired behav-
ior), we use a heuristic to estimate the total time the ap-
plication is in a wait state. The heuristic periodically
checks the process state, and assumes that the process
has been in the same state for the entire time since the
previous check.

The actual CPU share allocated to the application is con-
trolled by periodically determining whether the granted
CPU share exceeds or falls behind the desired thresh-
old. The guiding principle is that if other applications
take up excessive CPU at the expense of the sandboxed
application, the monitor compensates by giving the ap-
plication a higher share of the CPU than what has been
requested. However, if the application’s CPU usage ex-
ceeds the prescribed processor share, the monitor would
reduce its CPU quantum for a while, until the average



utilization drops down to the requested level. While the
application is waiting for a system event (e.g., arrival of
a network message), it is waiting for resources other than
the CPU. Consequently, the time in a waiting state is not
included in estimating the CPU share and the application
would not get compensated for being in a wait state. For
this scheme to be effective, the lifetime of the applica-
tion needs to be larger than the period between sampling
points where the progress metric is recomputed.

3.2 Memory Resources

The quantitative restriction of interest here is the amount
of physical memory an application can use. The sandbox
would ensure that physical memory allocated to the ap-
plication does not exceed a prescribed threshold. Mon-
itoring the amount of physical memory allocated to an
application is straightforward. The monitoring infras-
tructure on all modern OSes provides this information
in the form of the process working set (resident set) size.
The progress metric is the application’s peak working
set size over a period. No control is necessary when the
progress is less than the threshold.

Exception handlerMonitor

Working Set Non-resident

remove (5)

Application
ac

ce
ss

 (2
)

access (1)

add (4)

faults (3)

User-level pager

Figure 2. A user-level strategy for controlling appli-
cation physical memory usage. The application has
normal access to pages in its working set (1). When it
accesses a non-resident page (2), a page fault is trig-
gered (3). The user-level pager adds this page to the
working set (4), and removes extra pages when work-
ing set size is above the threshold (5).

However, it is more involved to control the application
behavior in case the OS allocates more physical pages
than the threshold. The problem is that these resources
are allocated implicitly subject to the OS memory man-
agement policies. The basic idea is to have the monitor
act as a user-level pager on top of the OS-level pager,

relying on an OS-specific protocol for voluntarily relin-
quishing the surplus physical memory pages allocated
to the application (see Figure 2). Also, unlike the CPU
case where periodic monitoring and control of applica-
tion progress is required, here the monitoring and con-
trol can adapt itself to application behavior. The latter is
required only if the application physical memory usage
exceeds the prescribed threshold, which in turn can be
detected by exploiting OS support for user-level protec-
tion fault handlers.

3.3 Network Resources

Here, the quantitative restriction refers to the sending
or receiving bandwidth available to the application on
its network connections. Unlike CPU and memory re-
sources, application usage of network resources involves
an explicit API request. This permits the monitoring
code injected into the application to keep track of the
progress (i.e., amount of data sent/received over a time
window) and estimate the bandwidth available to the ap-
plication. Control is straightforward: if the application
is seen to exceed its bandwidth threshold, it can be made
compliant by just stretching out the data transmission or
reception over a longer time period (e.g., by using fine-
grained sleeps). The amount of delay is calculated so
that the bandwidth at the end-point is not above the pre-
scribed threshold.3

3.4 Other issues

Integrated and implicit resource usage Applications
do not access system resources in an isolated fashion.
For instance, accessing a non-resident virtual memory
page results in the triggering of an interrupt handler,
transfer of a page from disk, accompanied with optional
swapping out of a resident page and possible enlarge-
ment of the process working set size. To correctly han-
dle such coupled accesses to system resources, we need
to take into account effects such as increased CPU usage
due to OS activity triggered on behalf of the application
and additional disk usage because of reduced availability
of physical memory pages.

Our sandboxing strategy factors in the above effects by
appropriately defining the progress metric to reflect both
explicit and implicit resource usage. The overall re-
source usage is forced to adhere to the requested lim-
its by controlling the explicit requests. For example,
even though an application’s disk bandwidth usage due
to paging is not controllable at the user level, its aggre-
gate disk bandwidth usage can be reduced by controlling

3For clarity of description, we restrict our attention in this paper to
synchronous communication operations and also assume that the data
transmission rate in the network is not the bottleneck. The approach
needs to be refined slightly to handle situations where communication
operations are asynchronous.



explicit disk requests such as file read/write. As a last re-
sort, quantitative rate-based limits on resource usage can
be enforced by controlling allocation of CPU resources
to the application.

Security concerns Given the user-level nature of our
solution, a concern might be that an application can es-
cape the sandboxing controls by bypassing our instru-
mented code. Currently we address this problem by
having an enforcer process periodically verify that an
application is adhering to its resource limits. The en-
forcer process terminates the offending process if it finds
that the latter’s resource consumption cannot be brought
down below prescribed thresholds. As part of our future
work, we are working on developing a finer granularity
scheme that prevents code modification once sandbox-
ing code is injected into the application, and addition-
ally ensures at run time that the sandboxing code is not
bypassed.

4 Implementation on Windows NT

This section discusses NT-specific issues and demon-
strates the control of CPU, memory, and network re-
sources with experiments. The implementation and per-
formance results below refer to NT 4.0, service pack 5,
running on Pentium II 450 MHz machines.

4.1 Constraining use of CPU resources

Monitoring progress The CPU monitor is attached as
a callback routine of the fine-grained multimedia timers,
and is triggered every 10ms with high accuracy using a
technique introduced in [Gri98]. Note that the schedul-
ing quantum on NT is at least 20ms for the workstation
installation and 120ms for the server installation. The
monitor obtains an application’s CPU usage in terms of
kernel time and user time through system API calls. The
kernel time refers to the time the application is execut-
ing in kernel mode. However, this statistic does not ac-
count for all OS activity performed on behalf of the ap-
plication. For instance, the overhead of memory pag-
ing is not included in per-process statistics, instead being
recorded in the per-processor statistic. As a heuristic, we
estimate the application’s portion of this non-accounted
kernel time by considering the ratio of the number of
application events triggering such kernel activity (e.g.,
page faults) to the overall system-wide number of such
events.

As described in Section 3, the monitor estimates process
wait time within a time window by checking the process
state and accumulating the time slots at which the pro-
cess is found waiting. Although NT allows examining
process state via its performance counter infrastructure,
this incurs high overhead (on the order of milliseconds).

Instead, we employ a heuristic that infers process state
based on thread contexts. We observe that a thread can
be in a wait state only when it is executing a function
inside the kernel. Recognizing that if the thread is not
blocked it is unlikely to stay at the same place in kernel
code, the heuristic checks the instruction pointer regis-
ter to see whether a trap instruction (int 2Eh) has just
been executed, and whether any general registers have
changed since the last check. If the same context is seen,
it regards the thread as being in a wait state, with the pro-
cess regarded as waiting if all of its threads are waiting.

Controlling progress Based on the progress metric,
the controlling code decides whether or not to schedule
the process in the next time slot. Although this decision
could be implemented using OS support for suspending
and resuming threads (which we use in our Linux im-
plementation), the latter incurs high overheads. Conse-
quently, we adopt a different strategy that relies on fine-
grained adjustment of application process priorities to
achieve the same result.

Our approach requires four priority classes (see Fig-
ure 3), two of which encode whether CPU resource are
available or unavailable to the application. The moni-
tor runs at the highest priority (level 4), and a special
compute-bound “hog” process runs at priority level 2. 4

An application process not making sufficient progress is
boosted to priority level 3, where it preempts the hog
process and occupies the CPU. A process that has ex-
ceeded its share is lowered to priority level 1, allowing
other processes (possibly running within their own sand-
boxes) or in their absence, the hog, to use the CPU. Note
that this scheme allows multiple sandboxes to coexist on
the same host.

Priority level CPU available CPU not available
4 Monitor Monitor
3 Application
2 Hog Hog
1 Application

Figure 3. Controlling application CPU availability by
changing process priorities.

Effectiveness of the sandbox Our experiments show
that this implementation enables stable control of CPU
resources in the 1% to 97% range. When the requested
share is above 97%, the measured allocation includes
perturbations from background load (the performance
monitor, system processes, and the sandboxing code).

4Hog runs at a very low priority and executes only when no other
normal applications are active, ensuring that even when CPU resources
are available, each application does not receive more than its pre-
scribed share.



The interference from sandboxing code consists of the
monitor overhead and bursty allocation of resources to
the hog process over long runs (this is an NT feature for
avoiding starvation). The overhead of adjusting the pri-
ority is negligible. To measure the overall costs of run-
ning an application within a sandbox, we compare the
wall-clock execution time of a synthetic CPU-intensive
application running within and outside of a sandbox. On
average, this application took 35.529 seconds to finish
when running alone, and took 36.064 seconds when run-
ning inside a sandbox prescribing a CPU share of 100%,
indicating an overhead of about 1.5%.

t1 t2 t3 t4 t5

10

30

50

Time

CPU

(a)

50

25

75

0
outside of sandbox inside sandbox (50% CPU) Time

CPU

(b)

Figure 4. (a) Weighted CPU sharing for multiple ap-
plications. (b) Constraining CPU share for applica-
tions with wait states.

Figure 4(a) is a snapshot of the performance monitor dis-
play showing three sandboxed applications running on
the same host. They start at times t1, t2, and t3, request-
ing 10%, 30%, and 50% of the CPU share, respectively.
With the total CPU load at 90%, all three applications
receive a steady CPU share until time t4, when we de-
liberately perturb the allocation by dragging a window.
This causes the total available CPU to decrease drasti-
cally (because of the kernel activity), and a sharp de-
crease in the immediate CPU shares available to each
application. However, this drop is compensated with ad-
ditional CPU resources once the system reacquires CPU
resources (end of window movement). These results in-
dicate that the sandbox can support accurate and stable
CPU sharing with resilient compensation.

Figure 4(b) shows the execution of an application that

sleeps periodically, without sandboxing (left) and with
a sandboxed CPU share of 50% (right). The working
time with the sandbox is twice the amount on the left,
corresponding to the halved CPU resource. More im-
portantly, the sleep (wait) time is kept the same, consis-
tent with Figure 1 and verifying the effectiveness of our
state-checking heuristic.

4.2 Constraining use of memory resources

Monitoring progress An API call, GetProcess-
MemoryInfo, provides information about the resident
memory of a process. Unlike the CPU case, the sam-
pling of this information can be adapted to the rate at
which the application consumes memory resources. To
estimate the latter, we integrate the sampling with the
controlling scheme described below.

Controlling progress As described in Section 3, con-
trolling progress of memory resources requires the sand-
boxing code to relinquish surplus memory pages to the
OS. To do this, we rely on a convention in NT: pages
whose protection attributes are marked NoAccess are
collected by the swapper.

The same core OS mechanism, user-level protection
fault handlers, is used to decide both (a) when a page
must be relinquished, and (b) which page this must be.
Our scheme intercepts the memory allocation APIs (e.g.,
VirtualAlloc and HeapAlloc) to build up its own
representation of the process working set. When the al-
located pages exceed the desired working set size, the
extra pages are marked NoAccess. When such a page
is accessed, a protection fault is triggered: the sandbox
catches this fault and changes page protection to Read-
Write. Note that this might enlarge the working set
of the process, in which case a FIFO policy is used to
evict a page from the (sandbox-maintained view of the)
working set. The protection fault handler also provides
a natural place for sampling the actual working set size,
since a process’s consumption of memory is reflected by
the number of faults it incurs.

A few additional points need clarification. The imple-
mentation is simplified by not evicting pages contain-
ing executable code, so this limits the least amount of
memory that can be constrained. Eviction at the sand-
box level may or may not cause the page to be written to
disk although these pages are excluded from the process
working set; when the system has large amounts of free
memory, NT maintains some pages in a transition state
delaying writing them to disk. Note that with our design,
if the application is running within its memory limits, it
will not suffer from any runtime overhead (except that
of intercepting API calls). Beyond that point, the over-
heads are a function of process virtual memory locality



behavior.

1

5

9

13

17

21

1 5 9 13 17 21
Requested Memory (MB)

M
ea

su
re

d 
M

em
or

y 
(M

B
)

measured

ideal

(a)

0

100

200

300

400

500

600

700

800

5 6 7 8 9 10 11 12
Working set size (MB)

E
xe

cu
tio

n 
tim

e 
(s

ec
)

(b)

Figure 5. (a) Controlling the amount of physical
memory utilized by an application. (b) Execution time
as size of working set varies.

Effectiveness of the sandbox Our experiments show
that, on a 450 MHz Pentium II machine with 128MB
memory, this sandbox implementation can effectively
control actual physical memory usage from 1.5MB up
to around 100MB. The lower bound marks the minimal
memory consumption when the application is loaded, in-
cluding that by system DLLs.5 The upper bound approx-
imates the maximum amount of memory an application
can normally use in our system. The memory overhead
includes 64KB for the code injected into application ad-
dress space and 4 bytes for keeping track of each page in
the working set. The overhead of intercepting a memory
allocation call is measured as 1.07µs when the speci-
fied memory constraints are above the working set size
(thus no page fault is incurred). When the constraints are
below the required working set size, process memory lo-
cality behavior determines the overhead. However, be-
cause of our CPU accounting scheme, only this process’s
execution time is affected.

5To compare, a “Hello, world” program consumes about 500KB
memory and one that creates a TCP socket consumes 1MB memory.

Figure 5(a) shows the requested and measured physical
memory allocations for an application that has an initial
working set size of 1.5MB and allocates an additional
20MB of memory. The sandbox is configured to limit
available memory to various sizes ranging from 2MB to
21MB. As the figure shows, the measured memory allo-
cation of the application (read from the NT Performance
Monitor) is virtually identical to what was requested.

Figure 5(b) demonstrates the impact of the memory
sandbox on application execution time. The application
under study has a memory access pattern that produces
page faults linearly proportional to the non-resident por-
tion of its data set. In this case, the application starts
off with a working set size of 1.5MB and allocates an
additional 8MB. The sandbox enforces physical mem-
ory constraints between 5MB and 12MB. As the figure
shows, the execution time behavior of the application
can be divided into three regions with different slopes.
When the memory constraint is more than 9.5MB, all of
the accessed data can be loaded into physical memory
and there are no page faults. When the memory con-
straint is below 9.5MB, total execution time increases
linearly as the non-resident size increases, until the con-
straints reaches 6.25MB. In this region, page faults occur
as expected but the process pages are not written to disk.
When available memory is below 6.25MB, we observe
heavy disk activity. In this segment, the execution time
also varies approximately linearly, with the slope deter-
mined by disk access characteristics. These experiments
show that our sandboxing scheme does not produce any
anomalous page faulting behavior.

4.3 Constraining available network bandwidth

Monitoring and controlling progress As described
in Section 3, we intercept socket APIs (accept, connect,
send, and recv) to monitor and control available network
bandwidth.

Effectiveness of the sandbox The effectiveness of the
sandbox is evaluated on a pair of Pentium II (450 MHz)
machines connected to a 10/100 auto-sensing Fast Eth-
ernet hub. The application consists of a server and one or
more clients in a simple ping-pong communication pat-
tern. The peak bandwidth measured without the sandbox
is 9.7MBps, whereas the sandbox permits effective con-
trol of bandwidth over the range 1Bps to 8.8MBps. The
overhead of sandboxing due to API interception low-
ers the maximum achievable bandwidth by about 0.4%,
measured by comparing the case when the application is
running alone and the case when it is running inside the
sandbox with a bandwidth threshold that will never be
reached.

Figure 6(a) shows the perceived bandwidth (at both



1

10

100

1000

1 10 100 1000
Requested bandwidth (KBps)

M
ea

su
re

d 
ba

nd
w

id
th

 (
K

B
ps

)

Ideal

Server

Client
1000

3000

5000

7000

1000 3000 5000 7000
Requested bandwidth (KBps)

M
ea

su
re

d 
ba

nd
w

id
th

 (
K

B
ps

)

Ideal

Server

Client
1000

3000

5000

7000

1000 3000 5000 7000
Requested bandwidth (KBps)

M
ea

su
re

d 
ba

nd
w

id
th

 (
K

B
ps

)

Ideal

Server

Client

(a) (b) (c)

Figure 6. Measured bandwidth (a) for 1KB messages as requested bandwidth varies from 1KBps to 1000KBps,
(b) for 1KB messages as requested bandwidth varies from 1000KBps to 8000KBps, (c) for 10KB messages as
requested bandwidth varies from 1000KBps to 8000KBps.

server and client), measured by the application, as the
sandbox constrains network bandwidth from 1KBps to
1000KBps. In the figure, the server and client bandwidth
lines are virtually indistinguishable from each other and
within 1% of the requested limit. Figure 6(b) shows the
same measurement when bandwidth constraints are ap-
plied in the range 1000KBps to 8000KBps. When the
requested bandwidth is below 4000KBps, the sandbox
enforces the request with an error of at most 2%. How-
ever, error grows for higher bandwidths. For example, at
8000KBps, the sandbox can sustain a bandwidth at best
16% lower than requested. This is mainly due to the
inaccuracy of the fine-grained sleep at sub-millisecond
level on NT as well as the overhead of API interception.
Figure 6(c), using 10KB messages, shows that the sand-
box can be used to accurately sustain higher requested
bandwidth as long as the message size scales proportion-
ally. Here, the error between measured and requested
bandwidths is less than 2%.

4.4 Experience with NT implementation

We have used the sandbox for various kinds of applica-
tions, including Microsoft Windows Media Player and
Apple Quicktime Player for playing video streams in
presence of compute and memory-intensive background
processes. We can guarantee a smooth streaming video
(without perceptible frame loss) either by sandboxing
the background processes or by sandboxing the media
players with a high CPU share. Our experiments have
highlighted some limitations that we plan to address in
future work. When we play two media players at the
same time with one of them receiving a small CPU share,
we observe frame loss in the other player due to priority
inversion. The media player receiving the smaller share
holds on to a shared resource (e.g., the sound card) even
when it is not scheduled, causing the other player to drop
frames. This problem could be addressed by intercepting
the API calls used for acquiring such resources and in-
tegrating a priority inheritance mechanism into our pol-

icy for controlling CPU progress. In addition, our ex-
isting strategy cannot guarantee predictable resource al-
location for hard real-time applications. This limitation
can be fixed by using a real-time scheduling policy to
determine allocation of CPU resources, instead of the
current greedy policy.

4.5 Differences in Linux implementation

Linux provides support very similar to Windows NT
for instrumenting application binaries, and monitoring
and controlling resource consumption. For instance, li-
brary functions such as the sockets and memory alloca-
tion APIs, can be intercepted by preloading shared li-
braries. The mechanisms and performance of network
bandwidth control are identical across the Windows NT
and Linux platforms. However, there are small dif-
ferences in how CPU and memory resources are con-
strained under Linux.

Controlling CPU resource Adjusting scheduling pri-
orities requires superuser privilege on Linux. Therefore,
we use a scheme based on thread suspend/resume: the
sandbox sends an application a SIGSTOP signal to sus-
pend and a SIGCONT signal to resume its execution.

Controlling memory resource Linux provides a
setrlimit API for limiting the maximum amount of
physical memory a process can use. However, current
versions of the kernel (e.g., v2.2.12) do not enforce this
constraint. Consequently, we adopt a scheme identical
to the one on NT. However, unlike on NT, where an
implicit protocol (using NoAccess protection bits) be-
tween the OS and the application permits the former to
collect pages not required by the latter, no such proto-
col exists on Linux. The page protection bits can be set
as on NT, but the kernel swapper (kswapd), does not
check the page attributes to decide which page must be
swapped out.

We get around this problem somewhat inelegantly by



handling the swapping ourselves. First, we intercept
memory allocation functions (e.g., malloc) to make sure
that only the requested amount of physical memory is
kept valid; all other memory pages are protected to be
unavailable for access. When a page fault happens due
to invalid access, we pick another page (in FIFO or-
der) from the resident set (maintained by the sandboxing
code), save its contents to our own swap file, and take it
out of the resident set using the munmap mechanism in
Linux. Subsequently, an invalid access requires that the
saved contents be mapped back to the corresponding vir-
tual address.

5 Extensibility of User-level Sandboxing

This paper has described a general, user-level strategy
for building sandbox environments that has been tested
on both Windows NT and Linux. It is interesting to
observe that modern OSes provide sufficient support to
permit implementation of quantitative constraints at the
user level. The shared library support enables intercep-
tion of system APIs; the monitoring infrastructure makes
possible acquiring of almost all necessary information;
the priority-based scheduling, debugger processes, and
signal handling mechanisms allow the adjustment of an
application’s CPU usage; the memory protection and
memory-mapped file mechanisms permits control of the
amount of physical memory available to an application.
Finally, the socket interface gives direct control of net-
work activities. Most resources in an operating system
can benefit from some combination of these techniques.

In fact, user-level approaches provide more flexibil-
ity in deciding the granularity, the policies, and mon-
itoring/controlling mechanisms available for enforcing
sandbox constraints. We demonstrate this extensibility
by customizing our process-level sandbox implementa-
tion on Windows NT to limiting resource usage at the
level of thread and socket groups, instead of the default
process granularity assumed in Section 3. The required
modifications were simple, just involving changes in the
progress expressions used in the monitoring code and
some specialization of the controlling code.

Controlling CPU usage of thread groups Figure 7
shows a snapshot of the system CPU usage (as measured
by the NT Performance Monitor) for an application with
two groups of threads, each of which is constrained to
a total CPU share of 40%. The application itself con-
sists of three threads which start at different times. Ini-
tially, the first thread starts as a member of thread group
one and takes up a 40% CPU share. The second thread
starts after ten seconds and joins thread group two. It
also gets 40% of the CPU share, the total capacity of
this thread group. After another ten seconds, the third

40

10

0

20

30

Time

CPU

Thread group 1

Thread group 2

Figure 7. Control of CPU usage at the level of thread
groups.

thread joins thread group two. The allocation for the
second thread group adjusts: the third thread gets a 30%
CPU share and the second thread receives a 10% CPU
share, keeping the total CPU share of this thread group
at 40%. Note that the CPU share of the first thread group
is not affected, and that we are able to control CPU
usage of thread groups as accurately as at the process
level. Currently, the resource allocation to threads in the
same group is arbitrary and not controlled. However,
one could set up a general hierarchical resource sharing
structure, attesting to the extensibility of the user-level
solution.

Controlling bandwidth of socket groups Figure 8
shows the effect of restricting network bandwidth at the
level of socket groups, where the total bandwidth of a
socket group is constrained. The application used in
the experiment consists of one server instance and three
client instances. The server spawns a new thread for
each client, using a new socket (connection). The com-
munication pattern is a simple ping-pong pattern be-
tween the clients and the server.

Figure 8(a) shows the performance of server threads
when the bandwidth constraint is enforced at the pro-
cess level. The total network bandwidth is restricted
to 6MBps. The clients and server exchange 100,000
4KB-sized messages. The figure shows the number of
messages sent by the server to each client as time pro-
gresses. The first client starts about the same time as the
server and gets the total bandwidth of 6MBps (as indi-
cated by the slope). The second client starts after one
minute, sharing the same network constraint. Therefore,
the bandwidth becomes 3MBps each. The communica-
tion is kept at this rate for another minute until the third
client joins. This makes all three of them transmit at a
lower rate (2MBps). As a result, the first client takes
more than 400 seconds to complete its transmission, due
to the interference from the other two clients.

Figure 8(b) shows the case where the first client needs



0

20000

40000

60000

80000

100000

0 50 100 150 200 250 300 350 400

Time (sec)

N
um

be
r 

of
 m

es
sa

ge
s

 Socket 1

 Socket 2

 Socket 3

(a)

0

20000

40000

60000

80000

100000

0 50 100 150 200
Time (sec)

N
um

be
r 

of
 m

es
sa

ge
s

 Socket 1

 Socket 2

 Socket 3

(b)

Figure 8. Control of network bandwidth (a) at process
level, (b) at socket group level.

to receive a better and guaranteed level of service. Two
socket groups are used, with the network bandwidth of
the first constrained to 4MBps and that of the second
group to 2MBps. Clients start at the same times as be-
fore. However, the performance of the first client is
not influenced by the arrival of the other two clients.
Only the two later clients share the same bandwidth con-
straint. In consequence, the first client takes only 200
seconds to finish its interactions.

These experiments demonstrate that user-level sand-
boxing techniques can be used to create flexible,
application-specific predictable execution environments
for application components of various granularity. As a
large-scale application of such mechanisms, we have ex-
ploited these advantages in other work [CK00] to create
a cluster-based testbed that can be used to model execu-
tion behavior of distributed applications under various
scenarios of dynamic and heterogeneous resource avail-
ability.

6 Conclusion and Future Work
This paper describes the construction of a user-level
resource-constrained sandbox, which exploits widely
available OS features to impose quantitative restrictions

on an application’s resource usage. It evaluates a con-
crete implementation of the sandbox on Windows NT,
using three representative resource types as examples:
CPU, memory, and network. Our evaluation shows that
the user-level sandboxing approach can achieve accurate
quantitative restrictions on resource usage with minimal
run-time overhead, and can be easily extended to support
application-specific constraining policies.

In future work, we plan to develop a security architecture
that ensures sandbox compliance from malicious appli-
cations at a finer granularity and address problems aris-
ing from priority inversion and the absence of real-time
scheduling.

Acknowledgments
We would like to thank Zvi Kedem, who suggested us-
ing different priority levels to efficiently control a sand-
boxed process’ CPU usage, and Anatoly Akkerman and
Arash Baratloo for their help with implementing the
sandbox on Linux. We also thank Lionell Griffith for
giving us his implementation of fine-grained timers on
Windows NT. This research was sponsored by the De-
fense Advanced Research Projects Agency under agree-
ment numbers F30602-96-1-0320, F30602-99-1-0157,
and N66001-00-1-8920; by the National Science Foun-
dation under CAREER award number CCR-9876128;
and Microsoft. The U.S. Government is authorized to
reproduce and distribute reprints for Government pur-
poses notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those
of the authors and should not be interpreted as neces-
sarily representing the official policies or endorsements,
either expressed or implied, of the Defense Advanced
Research Projects Agency, Rome Laboratory, SPAWAR
SYSCEN, or the U.S. Government.

References

[BDM99] G. Banga, P. Druschel, and J. Mogul. Re-
source containers: A new facility for re-
source management in server systems. In
Proc. of 3rd USENIX Symposium on Oper-
ating Systems Design and Implementation
(OSDI), Feb. 1999.

[BG99] R. Balzer and N. Goldman. Mediating
connectors. In ICDCS Workshop on Elec-
tronic Commerce and Web-based Applica-
tions, 1999.

[BGOS98] J. Bruno, E. Gabber, B. Ozden, and A. Sil-
berschatz. The Eclipse operating system:
Providing quality of service via reservation



domains. In Proc. of USENIX 1998 Annual
Technical Conference, Jun. 1998.

[CK00] F. Chang and V. Karamcheti. Automatic
configuration and run-time adaptation of
distributed applications. In Ninth IEEE
Intl. Symposium on High Performance Dis-
tributed Computing, 2000.

[DKS89] A. Demers, S. Keshav, and S. Shenkar.
Analysis and simulation of a fair queueing
algorithm. In Proc. SIGCOMM ’89 Sympo-
sium, Sep. 1989.

[ET99] D. Evans and A. Twyman. Flexible policy-
directed code safety. In IEEE Symposium
on Security and Privacy, 1999.

[GGV96] P. Goyal, X. Guo, and H. Vin. A hierar-
chical CPU scheuler for multimedia operat-
ing systems. In Proc. of 2nd Symposium on
Operating Systems Design and Implemen-
tation, 1996.

[Gri98] L. Griffith. Precision NT event timing. Win-
dows Developer’s Journal, Jul. 1998.

[GWTB96] I. Goldberg, D. Wagner, R. Thomas, and
E. Brewer. A secure environment for un-
trusted helper applications. In Proc. of 6th
USENIX Security Symposium, Jul. 1996.

[HB99] G. Hunt and D. Brubacher. Detours: Binary
interception of Win32 functions. In Proc. of
3rd USENIX Windows NT Symposium, Jul.
1999.

[JLDB95] M. Jones, P. Leach, R. Draves, and J. Bar-
rera. Modular real-time resource manage-
ment in the Rialto operating system. In
Proc. of 5th Workshop on Hot Topics in Op-
erating Systems, May 1995.

[JR99] M. Jones and J. Regehr. CPU reserva-
tions and time constraints: Implementation
experience on windows NT. In Proc. of
3rd USENIX Windows NT Symposium, Jul.
1999.

[MST94] C. Mercer, S. Savage, and H. Tokuda. Pro-
cessor capacity reserves: Operating system
support for multimedia applications. In
Proc. of IEEE International Conference on
Multimedia Computing and Systems, May
1994.

[NL97] J. Nieh and M. Lam. The design, im-
plementation & evaluation of SMART: A

scheduler for multimedia applications. In
Proc. of 16th ACM Symposium on Operat-
ing System Principles, Oct. 1997.

[Ric99] J. Richter. Make your windows 2000 pro-
cesses play nice together with job kernel
object. In Microsoft Systems Journal, Mar.
1999.

[RJMO99] R. Rajkumar, K. Juvva, A. Molano, and
S. Oikawa. Resource kernels: A resource-
centric approach to real-time systems. In
Proc. of SPIE/ACM Conference on Mul-
timedia Computing and Networking), Jan.
1999.

[WLAG93] R. Wahbe, S. Lucco, T. Anderson, and
S. Graham. Efficient software-based fault
isolation. In 14th ACM Symposium on Op-
erating Systems Principles, 1993.

[WW94] C. Waldspurger and W. Weihl. Lottery
scheduling: Flexible proportional-share re-
source management. In Proc. of 1st Sym-
posium on Operating Systems Design and
Implementation, Nov. 1994.

[WW95] C. Waldspurger and W. Weihl. Stride
scheduling: Deterministic proportional-
share resource mangement. Techni-
cal Report Technical Memorandum
MIT/LCS/TM-528, MIT Laboratory for
Computer Science, Jun. 1995.

[Zha91] L. Zhang. Virtual clock: A new traffic
control algorithm for packet switched net-
works. In Proc. ACM Trans. on Computer
Systems, May 1991.




