I njecting Distributed Capabilitiesinto L egacy
Applications Through Cloning and Virtualization

Tom Boyd
Arizona State University
Computer Science and Engineering
TempeAZ, U.SA.

Abstract

Applications and operating systems can be augmented
with extra functionality by injecting additional mid-
dleware into the boundary layer between them, with-
out tampering with their binaries. Using this scheme,
we separate the physical resource bindings of the ap-
plication and replace it with virtual bindings. Thisis
called virtualization. We are developing a virtualizing
Operating System (vOS) residing on top of Windows
NT, that injects all applications with the virtualizing
software.

The vOS makes it possible to build communities of
systems that cooperate to run applications and share
resources completely non-intrusively while retaining
complete application binary compatibility.

In this paper, we describe a prototype system that
virtualizes the application’s window, making it possi-
ble to relocate the window to remote machines without
the application’s awareness. The prototype copies, or
clones a window of an application onto a display on a
remote machine and then, using API interception, ap-
plies the application semantics to the clone window in
terms of data and message flow.

The virtualization of the application‘s window is
one of the steps towards making all system resources
virtualizable and any application movable between
systems. This research is part of a larger project
called Computing Communities (CC) which is build-
ing large unions of distributed machines supporting
shared resource management using legacy applica-
tions.

Keywords. Distributed Operating Systems, Mid-
dleware, Process Migration, APl Interception,
Windows NT.

1. Introduction

Transparent support for distributed and mobile
applications in current computing architecturesis

L

Partha Dasgupta
Computer Science and Engineering
Arizona State University
TempeAZ, U.SA.

made difficult due to two maor infrastructura
challenges. The first challenge is the magnitude
of change required for enhancing or adding to any
of the system'’s capabilities. If the operating sys-
tem or runtime system is altered, the potential ex-
ists to create a system wide cascade of application
modifications, which becomes unavoidably ex-
pensive. Decision-makers are unlikely to embark
on massive system changes if there is little return
on the investment or if it is considered exces-
sively intrusive.

The second challenge to system augmentation
is the legacy nature of current systems and appli-
cations. As complexity has increased, the ability
to make fundamental changes to the system has
dramatically decreased. Changes and additional
functionality leads to adding newer APIs
(application programming interfaces). In recent
years, we have seen the proliferation of new, so-
called standard APIs, creating literally thousands
of APIs and variants and hampering innovation.
In addition, few, if any, applications are rewritten
to use the newer APIs, further impeding progress.

The solution to both challenges is through the
unobtrusive injection of new functionality into
existing systems. This approach requires no
changes to the operating system or the existing
application base, and yet endows the system with
additional functionality.

In this paper, we show how such injectable
functionality is achievable and how it is used to
create services that allow programs to become
mobile in a distributed environment. In addition,
we discuss our unobtrusive injection approach as
applicable to the Windows NT operating system
and its applications. We provide details of a pro-
totype software package we have implemented to

show feasibility through the techniques called
window cloning and API interception.

1.1 Computing Communities

Our research is part of a larger project called
“Computing Communities’ (or CC) [1]. The goal
of the CC project is to enable a group of com-
puters to act like a large community of systems,
which grows or shrinks based on dynamic re-
source requirements through the scheduling and
moving of processes, applications and resource
allocations between systems—all transparently.

The computers participating in the CC utilize
a standard operating system and run stock appli-
cations. The novelty of the CC approach isthat it
is non-intrusive, causing no application redesign,
re-coding or recompiling. Binary compatibility is
assured while adding new services and features
such as transparent distribution, global schedul-
ing, fault tolerance, and application adaptation.

The key technique to achieve such a system
is the creation of a “virtualizing Operating Sys-
tem” or vOS The main theme in the vOS is of
course “virtualization”, which is the decoupling
of the application process from its physical envi-
ronment. That is, a process runs on a “virtual
processor” with connections to a virtual screen
and virtual keyboard, using virtua files, virtua
network connections, and other virtual resources.
The vOS has the ability to change the connections
of the virtual resources to real resources at any
point in time, without support from the applica-
tion.

The vOS implements the functionality to vir-
tualize the resources by controlling the mapping
between the physical resources (seen by the oper-
ating system) and virtual handles (seen by the ap-
plication). In general, virtual handles represent
the software resources like file handles, graphics
handles and network handles (Figure 2). The ap-
plication uses the virtual handles as if they are OS
generated. When the application passes a virtual
handle to a system call, the vOS intercepts that
call and passes the actual physical handle to the
system call. This enables the applications to use
remote resources as though they are local and
change the mapping between the virtual handles
and physical handles dynamically. In essence,
the vOS provides a unified virtual machine inter-
face for the applications. This environment con-
sists of virtual CPU, virtual communication sub-

system, virtual user interface and virtual file sys-
tem. The vOS depends on a number of mecha
nisms to provide the required services. The
mechanisms used by the vOS include API inter-
cepting, mapping of virtual handles to physica
handles, GDI/file and network virtualization and
process migration.

Hence, it is possible to redirect the output of
the application from one display to another, or to
move the application from one machine to an-
other—without moving its screen or keyboard lo-
cation. This leads to a plethora of opportunities
aswell as an innovative systems management.

1.2 Window Cloning and Virtualization

This paper concentrates on the virtualization of
the application’s window to allow the movement
of its presentation location at runtime. This is
one of the key steps necessary in realizing the CC
system.

The window is a Graphical User Interface
normally bound to a specific instance of a system
and application. In our implementation of win-
dow virtualization, we focus on creating a clone
of an existing window then show that the cloneis
an active virtualized component by connecting
the application semantics to the cloned window.
An alternative method to window cloning uses a
form of “bit-scraping” (see section 3.1). We,
however, use the virtualization approach, which
is more flexible and applicable uniformly to all
resources, not just windows.

The rest of the paper is organized as follows.
Section 2 discusses the API interception tech-
nique, section 3 describes our approach to win-
dow virtualization, section 4 describes our proto-
type, section 5 describes the lessons learned and
section 6 provides details of related work.

2. API Interception M echanism

The Windows NT system provides a late binding
API architecture through Dynamic Link Libraries
(DLLs) [3]. Late binding creates the opportunity
to insert a middleware [4] component into the
system that can examine, modul ate or replace the
APl cadl [5]. The insertion of the middleware
component creates the API interception mecha-
nism.

API interception forms the basis for the injec-
tion of system functionality in CC. By inserting

code between the application’s API call and the
system API, new functionality isintroduced.

User Applications

User API Call

Interception Middleware

Syst API
Subsystem DLL ystem

‘ NTDLL.DLL ‘

User mode

Kernel mode

v

Executive API
Win32 USER
and GDI

SubSystems and Drivers

Figure 1: API Interception

In the Windows NT DLL scheme, when the
application is loaded, the API references are re-
solved to a table of addresses in the user space
called the Import Address Table (1AT), and filled
in a run time. The DLL contains a list of ex-
ported addresses used to populate the table. Us-
ing an indirect pointer, the application jumps to
the API entry point within the DLL. By modify-
ing the addresses contained in the IAT, the appli-
cation call is redirected to an alternate APl entry
point.

The new API code acts as a wrapper around
the existing application code and has access to all
of the data explicitly passed and returned by the
API call. New functionality is added through the
manipulation of the data in these calls and state
information is captured for subsequent usage.

The ISI Mediating Connectors toolkit auto-
mates the process of installing the API intercep-
tion applications [6]. To create the interception
code or wrapper, a DLL is developed containing
the new API calls. A text fileis created that de-
fines the Wrapper to APl mapping for the wrap-
per load routine. API calls are provided to explic-
itly load and install, uninstall and unload the
wrappers. Any system or user DLL is wrappable
using this approach.

2.1 HandleVirtualization
The Windows NT system is architected to use

handles as references to most every component
and resource of the system. The files, network

and communications, processes, threads, fibers,
events, windows, menus, submenus, edit buffers
are just a few of the resources that have handles
associated with them. These handles are unique
to each system and as such are not system inter-
changeable.

To virtualize applications and resources re-
quires creating and mapping new handles and re-
placing references within API calls between sys-
tems. Virtual handles allow each API to function
correctly on the local system as well as forming
the basis for abstracting resource from specific
system instances. Although handles are extract-
able during the system operation, they are best
captured and virtualized as they are created by
system calls.

Figure 2: Handle virtualization

Handles normally consist of a 32-bit value.
To aid in tracking and debugging, the handle is
encoded with an origination code. The code in-
cludes an identifier for the source machine, proc-
ess, thread and handle type. This information is
useful for tracing or debugging a migrated proc-
ess especially after several iterations.

3. Approachesto Window Cloning

Our objective is to clone the window of an appli-
cation onto a display located at a remote com-
puter, and to achieve this using virtualization.
This approach enables us to define and develop
the techniques required to virtualize additional re-
sources as we work toward creating a vOS sup-
porting the requirements of the CC design.

The Windows NT system uses a graphics en-
gine to manage the mouse, keyboard and display.
The engine is notified at window creation what
components exist in the window, where they re-
side and what to tell the application when an ac-
tion such as a mouse movement or menu selec-
tion occurs. The application is given a first
chance opportunity to take an action on the event.
In this way the application interacts with the
Windows engine and through the use of a set of
APIs, the window and the data contained therein
are manipul ated.

3.1 Cloning By Means of Bit Scraping

There is a technique employed by commercial
applications such as NetMeeting to project aWin-
dow, from one physical system to another through
the use of a "bit-scraping” technique. Images are
formed as a set of bits in memory for display on
the monitor. The device drivers and adaptors
interpret the bits to build a final composite video
output image. Actions such as mouse movements
and menu selections cause bits to be changed at
the appropriate locations in the map so that the
next display of the bit map will appear to show an
image movement of the mouse or a menu
dropped down. By periodically copying or
"scraping” the bit map memory and sending some
or al of the bits to a proxy application on a re-
ceiving machine, the bits are windowed and dis-
played as if they are a resource local to the re-
mote machine.

In the bit-scraping scheme all the windows

Original System

f Wrappers

RegMPad

Y,

s
Clone <~

Inter-machine
Connection
Messages

operational semantics, even the low-level primi-
tives, remains within the origina machine's ap-
plications and the remote machine simply dis-
plays the bits. This approach is inefficient, re-
quires significant network traffic and makes the
program on the original machine immovable.

Since we are interested in the essence of
“freeing” the program from the physical machine,
we perform the same function by virtualizing the
window interface.

3.2 Cloningvia Virtualization

Through cloning of the window, we are able to
move the window's semantics with the clone.
Thus, much of the logic of displaying and updat-
ing the window is performed at the remote site
and is decoupled from the application’s original
host. A window’s state, location, dimension, con-
tent and low level context are readily accessible
through the NT API calls.

A running application is injected with a
“cloning procedure’ and the application's win-
dow information is collected and sent to a proxy
executing on a remote system. The proxy on the
remote system uses the collected data and recon-
structs an exact visual duplicate or clone of the
original window.

By connecting the cloning procedure to the
proxy, the message traffic generated by the local
mouse and keyboard flows between the proxy
and the original application. Since the proxy has
full control over the clone window (remote),
Window engine facilities such as the Multiple

W Cloning System

Cloned
Window

Filter in Proxy

External
Events

Windows
TR] Messages

Figure 3: The interactions between the clone procedure, proxy and Windows

Document Interface (MDI) can be used at the re-
mote site to perform standard control and editing
tasks.

Actions such as menu selection and file selec-
tion requests are intercepted by the cloning pro-
cedure and sent to the original application for in-
terpretation and action. APl calls generated by
the origina application are intercepted using
wrappers and the calls, where appropriate, are re-
directed to the proxy for API completion.

4. Prototyping with RegM Pad

We have built prototype software that clones
windows from a standard application. The testing
application used was RegMPad, an example text
editor available from the MSDN Library.
RegMPad edits text using the MDI (multiple
document interface) and hence has a sufficiently
complex variety of window behaviors and struc-
tures for our study. Access to RegMPad source
helped us to implement the cloning software—no
changes were made to RegMPad.

As described in Section 3.2, a running
RegMPad session is frozen by dynamically in-
jecting a cloning procedure into it. The cloning
procedure starts a new thread in the RegMPad
application. This new thread establishes commu-
nication with a proxy process and sends it profile
data for each of the windows and sub-windows
existing within the RegMPad session. The thread
then loads the APl wrappers to handle the API ac-
tions of the RegMPad process on the original sys-
tem.

At this stage, there are four entities to orches-
trate. The Windows engine on the cloning system
sends a stream of events to the proxy in response
to user actions. The proxy filters these events,
sends some of the messages to the RegMPad
process via the cloning procedure, and handles
some of the messages locally on the cloning sys-
tem. The cloning procedure sends some of the
windows messages to the RegMPad application
and the wrapper surrounding the RegMPad appli-
cation catches the results and sends them to the
proxy for display.

Determining which messages and calls to
process and where they should be processed re-
quired an extensive study of the messaging inter-
face, the MDI routines and the presentation tech-
niques used by Windows. Thiswas accomplished
by observing both the message traffic from the

Windows engine as well as the associated API
calls generated by the messages.

4.1 Prototype Components

The prototype system consists of 5 major devel-

oped components plus the RegMPad application.

The following provides a general description of

each of these developed components:

* InjectLibrary: Contains the mechanism for
overal system operation and control through
the user command and control interface win-
dow. It injects RegMPad with code, across the
process boundary, which loads the Migrate
code into the application space. It receives
window profile information from the Migrate
process, builds the window, acts as the default
class procedure for the newly instantiated clone
window, creates the window procedural threads
for the window commands and the forwarded
API requests.

» Migrate: Containsthe DLL code loaded by the
process injected from InjectLibrary. Once the
DLL executes, it establishes a communication
connection with the InjectLibrary then per-
forms the actions requested including wrapping
the application, capturing the clone window in-
formation, sending the information to InjectLi-
brary, migrating the window semantics and
API interceptions by way of two threads to In-
jectLibrary then destroying the window when
finished.

« ProcessConnector: Contains the ISl wrapper
logic in the form of aDLL. Itisloaded in the
RegMPad process space when Migrate makes
the wrap process request. It contains the func-
tion logic for 44 API calls identified specifi-
caly for the RegMPad application. These cals
work in conjunction with a shared set of mar-
shalling and unmarshalling routines to ex-
change the API calls datawith the InjectLibrary
cal handlers.

* BUSsw: Is a shared set of routines based on
named pipes that provides the basis for com-
munication between the system components. It
operates as a separate thread within the Inject-
Library and Migrate process spaces. BUSsw is
structured to operate as a companion set of cli-
ent/server applications.

* InjectLibrary Proxy: A specialized portion of
the InjectLibrary application that performs a

proxy operation for the full InjectLibrary when
operating across two systems. In normal op-
erational mode, InjectLibrary expects the proc-
ess to be on the same machine. The proxy
process acts as a remotely controlled version of
the InjectLibrary routine.

5. Satusand Experiences

The RegMPad application works well with our
procedures, proxy and wrappers. We are now ex-
tending the software to handle more events to en-
able it to work with any application (RegMPad
utilizes a subset of the Windows facilities). Inthe
process of building this prototype, we have
learned of several issues important to the building
of a general-purpose window virtualization tool.
These issues are described in the following sub-
sections.

5.1 Catch API Traffic Early

Our initial approach to collecting the target appli-
cation’s window state was to inject the target with
the state collector after the application had been
operational for some length of time. This ap-
proach has difficulty identifying certain types of
minor information because it is not readily avail-
able through the Windows API cals. Information
such as the placement of an element in amenu is
best captured as it is being created—hence the
application should be wrapped prior to running.

5.2 API Content

Blindly capturing and forwarding API calsisin-
sufficient. For example, Windows messages are
sent using a single APl call, SendMessage. This
single API interface contains a multitude of indi-
vidual requests and references that each needs to
be examined and marshaled. Decisions are made
by the cloning system whether to handle the re-
guest locally, remotely or not at all based on pol-
icy, state, as well as the new functionality re-
guirements. For example, the proxy should han-
dle mouse movements and window presentation.
Mouse menu selections most likely are destined
for the actual application. Grey areas include is-
sues such as where to perform file 1/O and are
candidates for policy decisions. It may be bene-
ficial to duplicate certain requests on both sys-
tems.

If file, application, window, network and key-
board/mouse resources are virtualized, then the

the careful choice of locality of reference and
functionality becomes very important.

5.3 API Reentrancy

NT Windows is not completely reentrant with re-
spect to window message handling within the en-
gine. For example, a cloned window processes a
request that is subsequently forwarded back to the
original program. The original program generates
an APl backflow reguest to the clone window
process. Since arequest is already pending in the
clone window it can potentially block the back-
flow API request. Careful reguest and release
procedures need to be implemented to prevent
thistype of backflow deadlock.

5.4 Multi-Interface Data Flow

There are at |east three separate inter process data
and message flow types requiring different types
of specialized support between systems:

» Command and control

* Proxy or “flow through”

* APl message traffic

Command and control are directed, priority
messages used by the controlling application to
manage the various process components such as
the injector and proxy setup and state changes.
Proxy messages represent a multi-sourced form
of data pipelining with an ordering requirement
between the injected and cloning systems but
with no data interpretation. APl message traffic
is also ordered traffic that requires marshaling
and unmarshalling with special handling or inter-
preting. Each of the message types normally re-
quires aresponse.

6. Related Work

There are a number of production and a few re-
search systems available today that provide for
the projection of windows over a network to dif-
ferent machines.

6.1 Commercial Applications

NetMeeting from Microsoft provides application
projection between multiple PCs over a network.
The window is captured at the GDI level using a
special standards based driver. pcAnywhere, from
Symantec Corporation, Carbon Copy 32 from
Compag and CoSession Remote 32 from Artisoft
Corp provides access and control of aremote PC.
The window image is captured at the GDI layer

and projected using a custom driver. Citrix Sys-
tem’'s MetaFrame provides application server
software for the Microsoft NT Server, Terminal
Server Edition. It supports multiple applications
executing on a single server with window projec-
tion to a variety of thin clients using a standards
based driver. All the above systems use some
form of bit scraping employing device drivers
embedded in the kernel. This is different from
our approach, in both design and implementa-
tion—we do not use kernel drivers.

6.2 Detours

Detours [7] from Microsoft Research is an API
interception application library that uses DLL de-
layed binding in conjunction with APl preamble
rewriting to intercept and redirect application
calls. The redirected Win32 function call is
routed through the detour code where it still has
access to the original function through a trampo-
line function. Rewriting application code creates
several potential security, portability and com-
patibility issues, so this approach is not used in
the vOS implementation.

6.3 COP

COP [8], a collaboration between Microsoft Re-
search and the University of Rochester, has a
similar design goal as our research. It is MFC
oriented, building and wrapping components
around the Win32 API and using a COM interface
for intersystem communication. It uses Detours
for API interception.

7. Conclusions

Through the understanding of the elements, is-
sues and techniques involved with virtualizing a
Windows NT Graphical User Interface, the initial
steps towards creating a virtualizing Operating
System have been taken. We have determined
that it is possible to inject functionality between
the application and the operating system unobtru-
sively, thus opening the door to the addition of
new behavior and capabilities.

8. References

[1] Partha Dasgupta, Vijay Karamcheti and Zvi
Kedem, Transparent Distribution Middleware
for General Purpose Computations, Interna-
tional Conference on Parallel and Distributed

Processing Techniques and Applications
(PDPTA’99), June 1999.

[2] Michadl B. Jones, Interposition Agents:
Transparently Interposing User Code at the
System Interface, Proceedings of the 14™
Symposium on Operating Systems Principles,
pp. 80-93, ACM Press, December 1993.

[3] David A. Solomon, Inside Windows NT, Sec-
ond Edition, Microsoft Press, 1998.

[4] Philip A. Bernstein, Middleware: A Model for
Distributed System Services, Communica-
tions of the ACM, 39(2), February 1996.

[5] Eric M. Doshofy, Nenad Medvidovic, Rich-
ard N. Taylor, Using Off-The-Shelf Middle-
ware to Implement Connectors in Distributed
Software Architectures, Proceedings of the
1999 International Conference on Software
Engineering, May 1999.

[6] Robert Balzer, Mediating Connectors, Pro-
ceedings of the 19" IEEE International Con-
ference on Distributed Computing Systems
Workshop, 1994, ISBN 0-262-57104-8.

[7] Galen Hunt and Doug Brubacher, Detours:
Binary Interception of Win32 Functions, Pro-
ceedings of the 3¥ USENIX Windows NT
Symposium, July 1999.

[8] Robert J. Stets, Galen C. Hunt, Michael L.
Scott, Component-based APIs: A Versioning
and Distributed Resource Solution, IEEE
Computer, 32(7), July 1999.

[9] Jeffrey Richter, Advanced Windows, Third
Edition, Microsoft Press, 1997.

! This research is partialy supported by grants from
DARPA/Rome Labs (F30602-99-1-0517), Intel, and
Microsoft, and is part of the “Computing Communi-
ties’ project, a joint effort between Arizona State Uni-
versity and New York University.

Soonsor Acknowledgment: Effort sponsored by the
Defense Advanced Research Projects Agency and
AFRL/Rome, Air Force Materiel Command, USAF,
under agreement number F30602-99-1-0517. The U.S.
Government is authorized to reproduce and distribute
reprints for governmental purposes notwithstanding
any copyright annotation thereon.

Soonsor Disclaimer: The views and conclusions con-
tained herein are those of the authors and should not
be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied,
of the Defense Advanced Research Projects Agency,
AFRL/Rome, or the U.S. Government.

	Introduction
	Computing Communities
	Window Cloning and Virtualization

	API Interception Mechanism
	Handle Virtualization

	Approaches to Window Cloning
	Cloning By Means of Bit Scraping
	Cloning via Virtualization

	Prototyping with RegMPad
	Prototype Components

	Status and Experiences
	Catch API Traffic Early
	API Content
	API Reentrancy
	Multi-Interface Data Flow

	Related Work
	Commercial Applications
	Detours
	COP

	Conclusions
	References

