July 27, 2000

Page 1

An Empirical Study of the Robustness of Windows NT Applications Using
Random Testing

Justin E. Forrester

Barton P. Miller

{jforrest,bart}@s.w sc. edu

Computer Sciences Department
University of Wisconsin
Madison, WI 53706-1685

Abstract

We reportonthethird in a seriesof studieson thereliability of
applicationprogramsin thefaceof randominput. In 1990and
1995,we studiedthereliability of UNIX applicationprograms,
bothcommandine andX-Window based GUI). In this study
we apply our testingtechniquedo applicationgunningon the
WindowsNT operatingsystemQurtestingis simpleblack-box
randominput testing;by ary measureit is a crudetechnique,
but it seems to be fefctive at locating bgs in real programs.

We testedover 30 GUI-basedapplicationsby subjectingthem
to two kindsof randominput: (1) stream®f valid keyboardand
mouseeventsand(2) streamf randomWin32 messagesiVe
have built atool thathelpsautomatehetestingof WindowsNT
applications.With a few simple parametersary application
can be tested.

Using our random testing techniques,our previous UNIX-
basedstudiesshaved that we could crasha wide variety of
command-lineand X-window basedapplicationson several
UNIX platforms. The test results are similar for NT-based
applicationsWhensubjectedo randomvalid input thatcould
beproducedy usingthemouseandkeyboard we crashe®1%
of applicationsthat we testedand hungan additional24% of
applicationsWhensubjectedo raw randomWin32 messages,
we crashedor hung all the applicationsthat we tested.We
reportwhich applicationsailedunderwhichtests,andprovide
some analysis of thaifures.

1 INTRODUCTION

We reporton thethird in a seriesof studieson the reli-
ability of applicationprogramsin the face of random
input. In 1990 and 1995, we studiedthe reliability of
UNIX commandine andX-Window based GUI) appli-
cation programs[8,9]In this study we apply our tech-
niguesto applicationsrunning on the Windows NT
operatingsystem.Our testing, called fuzz testing, uses
simple black-box randominput; no knowvledge of the
application is used in generating the random input.
Our 1990studyevaluatedthereliability of standard
UNIX commandine utilities. It shavedthat25-33%of
suchapplicationscrashedr hungwhenreadingrandom
input. The 1995 study evaluateda larger collection of

applicationsthan the first study including somecom-
mon X-Window applications.This newer study found
failureratessimilarto the original study Specifically up
to 40% of standardcommand line UNIX utilities
crashedor hungwhen given randominput and 25% of
the X-Window applicationgestedfailedto dealwith the
randominput. In our current(2000)study we find simi-
lar results for applications running onnilows NT.

Our measureof reliability is a primitive andsimple
one.A programpasseshetestif it respondgo theinput
andis ableto exit normally;it fails if it crashegtermi-
natedabnormally)or hangs(stopsrespondingto input
within a reasonabldength of time). The application
doesnot have to respondsensiblyor accordingto ary
formal specification.While the criterion is crude, it
offersa mechanisnthatis easyto applyto ary applica-
tion, and ary causeof a crashor hangshouldnot be
ignoredin ary program.Simple fuzz testing doesnot
replacemore extensive formal testing proceduresBut
curiously our simple testing techniqueseemsto find
bugs that are not found by other techniques.

Our 1995 study of X-Window applicationspro-
videdthe directionfor the currentstudy To testX-Win-
dow applications,we interposedour testing program
betweerthe application(client) andthe X-window dis-
play sener. This allowed usto have full control of the
inputto ary applicationprogram.We wereableto send
completelyrandommessage® the applicationandalso
to sendrandomstreamsof valid keyboardand mouse
events.In our currentWindows NT study we areableto
accomplisthesamdevel of input controlof anapplica-
tion by using the Windows NT event mechanisms
(described in Sectiop).

Subjecting an application to streamsof random
valid keyboard and mouseeventsteststhe application
under conditions that it should definitely tolerate, as
they could occurin normaluseof the software.Subject-
ing an applicationto completelyrandom(ofteninvalid)
input messagess a testof the generalstrengthof error
checking.This might be consideredan evaluationof the
software engineeringdiscipline, with respectto error
handling, used in producing the application.

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000

Five yearshave passedsinceour last study during
which time Windows-basedapplicationshave clearly
cometo dominatethe desktopernvironment. Windows
NT (andnow Windows 2000) offersthe full power of a
modern operating system, including virtual memory
processedile protection andnetworking. We felt it was
time to do a comparablestudyof thereliability of appli-
cations in this erironment.

Our current study has produced several main
results:

O 21% of the applicationsthat we testedon NT 4.0
crashed when presentedwith random, valid key-
board and mouseevents. Test resultsfor applica-
tions run on NT 5.0 (\Widows 2000) were similar

O An additional 24% of the applicationsthat we
testedhung whenpresentedvith randomvalid key-
boardand mouseevents. Testsresultsfor applica-
tions run on NT 5.0 (\Wdows 2000) were similar

O Upto100%of theapplicationghatwe testedfailed
(crashedor hung) when presentedvith completely
randominput streamsconsistingof randomwWin32
messages.

0 We noted (as a result of our completelyrandom
input testing)that any applicationrunningon Win-
dows platforms is vulnerable to random input
streamgeneratedy ary otherapplicationrunning
onthesamesystem.Thisappearso beaflaw in the
Win32 message intexte.

O Our analysisof the two applicationsfor which we
have sourcecodeshaows that thereappeardo be a
commoncarelesprogrammingidiom: receving a
Win32 messageand unsafely using a pointer or
handle contained in the message.

The resultsof our study are significantfor several
reasonskirst, reliability is thefoundationof security[4];
our resultsoffer aninformal measuref thereliability of
commonly used software. Second,we expose several
bugsthat could be examinedwith other more rigorous
testinganddeluggingtechniquespotentiallyenhancing
software producers’ability to ship bug free software.
Third, they exposethe vulnerability of applicationghat
usethe Windows interfaces.Finally, our resultsform a
guantitatve startingpoint from which to judgetherela-
tive improzement in softwre rolustness.

In the 1990and1995studieswe hadaccesgo the
sourcecodeof a large percentagef the programsthat
we tested, including applicationsrunning on several
vendors’ platforms and GNU and Linux applications.
As aresult,in additionto causingthe programsto hang
or crash,we were able to dehug most applicationsto
find the causeof the crash.Thesecausesverethencate-
gorizedandreported.Theseresultswerealso passedo

Page 2

the softwarevendors/authors theform of specificbug
reports.In the Windows environment,we have only lim-
ited accesgqthusfar) to the sourcecodeof the applica-
tions. As a result, we have beenable to perform this
analysison only two applications:emacs,which has
public source code, and the open source version of
Netscape Communicator (Mozilla).

Section2 describeghe detailsof how we perform
randomtestingon Windows NT systemsSection3 dis-
cussesxperimentalmethodand Section4 presentghe
resultsfrom those experiments.Section5 offers some
analysisof the resultsand presentassociate@éommen-
tary. Related wrk is discussed in Secti@h

2 RANDOM TESTING ON THE WINDOWS NT
PLATFORM

Ourgoalin usingrandomtestingis to stresgheapplica-
tion program.This testingrequiredus to simulateuser
inputin theWindows NT environment.We first describe
the componentsf the kernel and applicationthat are
involved with processinguserinput. Next, we describe
how applicationprogramscanbetestedin this erviron-

ment.

In the 1995 study of X-Window applicationsran-
dom userinput wasdeliveredto applicationsby insert-
ing randominput in the regular communicationstream
betweerthe X-Window sener andthe application.Two
types of random input were used: (1) random data
streamsand (2) randomstreamsof valid keyboardand
mouseevents. The testing using randomdata streams
sentcompletelyrandomdata(not necessarilyconform-
ing to the window systemprotocol) to an application.
While thiskind of inputis unlikely undernormaloperat-
ing conditions,it provided someinsightinto thelevel of
testingandrobustnesf anapplication.lt is crucial for
aproperlyconstructegrogramto checkvaluesobtained
from systemcalls and library routines. The random
valid keyboard and mouse event tests are essentially
testingan applicationasthougha monkey were at the
keyboard and mouse. Any user could generatethis
input, andary failure in thesecircumstancesepresents
a bug that canbe encounterediuring normaluseof the
application.

We usedthe samebasicprinciplesandcategoriesin
the Windows NT ervironment, but the architectureis
slightly different.Figure 1 providesa simplified view of
the componentasedto supportuserinput in the Win-
dows NT ewironment[10,11,12].

We useanexampleto explaintherole of eachcom-
ponentin Figurel. Considerthe casewhere a user
clicks on alink in a web browser This action setsinto
motion the Windows NT userinput architecture.The

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000

Page 3

Application Thread

Thread Message Queue

Application Program

system

avent System Event Queue

__

Device Driver

1/O System
A

Raw Input Thread (RIT)

Window Manager (Win32 USER)

Windows NT Kernel Mode

Keyboard/Mouse

Figure 1: Windows NT Architectural Componentsfor User Input

mouseclick first generatesa processolinterrupt. The
interruptis handledby the /O Systemin the baseof the
Windows NT kernel.The I/O Systemhandsthe mouse
interruptto the mousedevice driver. The device driver
thencomputeghe parameter®f the mouseclick, such
as which mousebutton hasbeenclicked, and addsan
eventto the SystemEventQueue(theeventqueueof the
Windowv Manager)by calling the nouse_event func-
tion. At this point, the device driver’s work is complete
and the interrupt has been successfully handled.

After beingplacedin the SystemEvent Queue the
mouse event awaits processingby the kernels Raw
Input Thread(RIT). The RIT first cornvertsthe raw sys-
temeventto aWin32 messageA Win32 messagés the
genericmessagestructurethatis usedto provide appli-
cationswith input. The RIT next deliversthe newly cre-
atedWin32 messageo the event queueassociateavith
thewindow. In the caseof the mouseclick, the RIT will
createa Win32 messagewith the Wv LBUTTONDOWN
identifierandcurrentmousecoordinatesandthendeter-
mine thatthe targetwindow for the messagés the web
browser Once the RIT has determinedthat the web
browserwindow shouldreceve this messaget will call
thePost Message function. This functionwill placethe
new Win32 messagén the messagegueuebelongingto
the application thread that created thens®er windav.

At this point, the applicationcanreceve and pro-
cess the message.The Win32 Application Program
Interface (API) providesthe Get Message function for
applicationsto retrieve messagethat have beenposted
to their messageueuesApplicationthreadshatcreate
windows generallyentera “messagdoop”. This loop
usually retrieves a messagegdoespreliminary process-
ing, anddispatcheshe messagéo a registeredcallback
function (sometime<alleda window procedure) thatis
definedto processinput for a specificwindow. In the
caseof the web browser example,the Win32 message
concerningthe mouseclick would be retrieved by the
applicationvia a call to Get Message and then dis-
patchedto the window procedurefor the web browser
window. The window procedurewould then examine
the parametersof the Wi LBUTTONDOWN messageto
determinghattheuserhadclickedtheleft mousebutton
at a given setof coordinatesn the window andthatthe
click had occurredweer the web link.

Given the above architecturejt is possibleto test
applications using both random events and random
Win32 messagesTesting with random events entails
inserting randomsystemeventsinto the systemevent
queue Randomsystemeventssimulateactualkeystroke
or mouseevents.They areaddedto the systemvia the
same mechanismthat the related device driver uses,

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000

Page 4

Application Thread

Thread Message Queue
Application Program

Random Win32
Messages

(for completely
random messages)

Random System |
Events
(for random valid
keyboard & mouse
events)

1/0O System

Device Driver

Raw Input Thread (RIT)

System Event Queue

Window Manager (Win32 USER)

Windows NT Kernel Mode

Keyboard/Mouse

Figure 2: Insertion of Random Input

namely the nouse_event and keybd_event func-
tions.

The secondrandom testing mechanisminvolves
sending random Win32 messagedo an application.
RandomWin32 messagesombine random but valid
message types with completely random contents
(parameters)Delivering thesemessagess possibleby
using the Win32 API function Post Message. The
Post Message function deliversa Win32 messagéo a
messagegueuecorrespondingo a selectedvindow and
returns.Notethatthereis similar functionto Post Mes-
sage, calledSendMessage, thatdeliversa Win32 mes-
sageand waits for the messagedo be processedully
beforereturning.Win32 messageareof afixedsizeand
format. Thesemessagebave threefields,a messageD
field andtwo integer parametersOur testingproduced
randomvaluesin eachof thesefields, constrainingthe
first field (messagdD) to the rangeof valid message
ID’s.

Figure2 shavs whereeachrandomtestingmecha-
nism fits into the WAdows NT user input architecture.

Notice in Figure2 that under both testing condi-
tions, thetametapplicationis unableto distinguishmes-
sagessent by our testing mechanismsfrom those
actuallysentby the system.This distinctionis essential
to create an authentic testveonment.

3 EXPERIMENTAL METHOD

We describethe applicationsthat we tested,the test
ernvironment,our new testingtool (calledfuzz), andthe
teststhat we performed.We thendiscusshow the data
was collected and analyzed.

3.1 Applications and Platform

We selecteda group of over 30 applicationprograms.
While we tried to selectapplicationghatwererepresen-
tative of a variety of computingtasks,the selectionwas
alsoinfluencedby whatsoftwarewascommonlyusedin
the ComputerSciencedDepartmentat the University of
Wisconsin.The softwareincludesword processorsi\Veb
browsers, presentatiorgraphicseditors, network utili-
ties, spreadsheetssoftwaredevelopmentervironments,
and others.In addition to functional variety we also
strove to test applicationsfrom a variety of vendors,
including both commercial and free sofire.

The operatingsystemon which we ran andtested
the applicationswasWindows NT 4.0 (build 1381, ser-
vice packb). To insurethat our resultsweretimely, we
testeda subsetf the applicationson the new Windows
2000 system(version 5.00.2195).For the 14 applica-
tions that we re-testedon Windows 2000, we obtained
similar resultsto thosetestedunderNT 4.0. The hard-

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000

ware platform usedfor testingwasa collectionof stan-
dard Intel Pentium Il PCs.

3.2 The Fuzz Testing Tool

The mechanismwe usedfor testingapplicationswas a
new tool, calledfuzz, thatwe built for applicationsrun-
ning on the Windows NT platform. Fuzz produces
repeatablesequencesf randominputanddeliversthem
as input to running applicationsvia the mechanisms
described in Sectio?. Its basic operation is as fole:

1. ObtaintheprocesdD of theapplicationto betested
(eitherby launchingthe applicationitself or by an
explicit command line parameter).

2. Determinethe main window of the target applica-

tion along with its desktop placement coordinates.

3. Using one of SendMessage, Post Message, or
keybd_event andmouse_event, deliver random
input to the running application.

Fuzzis invoked from a commandline; it doesnot
usea GUI so that our interactionswith the tool do no
interfere with the testing of the applications.The first
versionof our Windows NT fuzz tool hada GUI inter-
facebut the useof the GUI for thetestingtool interfered
with the testing of the applications.As a result, we
changeduzz to operatefrom acommandine. Thefuzz
command has the folldng format:

fuzz [-ws] [-wp] [-v] [-i pid] [-n
#nmsgs] [-c] [-1] [-e seed] [-a appl cnd
l'ine]

Where - ws is randomWin32 messagesising Send-
Message, - wp is randomWin32 messagessingPost -
Message, and- v is randomvalid mouseandkeyboard

events. One of these three options must be specified.

The -i option is usedto starttestingan already-
runningapplicationwith the specifiedprocesdD, and-
a tells fuzz to launch the applicationitself. The -n
option controlsthe maximumnumberof messagethat
will be sentto the application,and- e allows the seed
for the random number generator to be set.

The -1 and- ¢ optionsprovide finer control of the
SendMessage and Post Message tests,but were not
usedin theteststhatwe reportin this paper Null param-
eters can be included in the tests with -1 and
WV COMVAND messagegcontrol activation messages
such as bitton clicks) can be included witt.

3.3TheTests

Ourtestsweredividedinto threecategyoriesaccordingto
thedifferentinputtechniqueglescribedn Section2. As
such, the application underwenta battery of random
tests that included the follang:

Page 5

« 500,000 random Win32 messagessent via the
SendMessage API call,

e 500,000 random Win32 messagessent via the
Post Message API call, and

e 25,000 random systemevents introducedvia the
nmouse_event andkeybd_event API calls.

Thefirst two casesusecompletelyrandominput andthe
third caseusesstreamsof valid keyboard and mouse
events.

The quantity of message$o sendwas determined
during preliminary testing. During that testing, it
appearedhatif theapplicationwasgoingto fail atall, it
would do so within the abore numberof messagesr
events.Eachof the threetestsdetailedabove was per-
formed with two distinct sequence®f random input
(with differentrandomseeds)andthreetesttrials were
conducedor eachapplicationandrandomsequencepr
atotal of 18 runsfor eachapplication.Thesamerandom
input streams were used for each application.

4 RESULTS

We first describethe basic successand failure results
obsened during our tests.We then provide analysisof
the causeof failuresfor two applicationsfor which we
have source code.

4.1 Quantitative Results

The outcomeof eachtestwas classifiedin oneof three
catagyories: the application crashed completely the
applicationhung (stoppedresponding) or the applica-
tion processedhe input andwe were ableto closethe
applicationvia normal applicationmechanismsSince
the cateyoriesaresimpleandfew, we wereableto cate-
gorize the succesr failure of an applicationthrough
simpleinspectionIn additionto the quantitatve results,
we reporton diagnosisof the causeof the crashedor
the two applications for which we kia source code.

Figure3 summarizeshe resultsof the experiments
for Windows NT 4.0 andFigure4 hasresultsfor a sub-
setof the applicationstestedon Windows 2000. If an
applicationfailedon ary of therunsin a particularcate-
gory (column), the resultis listed in the table. If the
applicationneithercrashedhor hung,it passedhetests
(and has no mark in the corresponding column).

The overall resultsof the testsshowv that a large
numberof applicationsfailed to deal reasonablywith
randominput. Overall, the failure ratesfor the Win32
messageestsweremuchgreaterthanthosefor the ran-
domvalid keyboardand mouseevent tests.This wasto
be expected sinceseveral Win32 messagdypesinclude
pointers as parameterswhich the applicationsappar-

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000 Page 6
Application Vendor SendM essage PostM essage Rang\(:gt\;‘alld
Access 97 Microsoft . . O
Access 2000 Microsoft . . O
Acrobat Reader 4.0 Adobe Systems . .

Calculator 4.0 Microsoft °

CD-Player 4.0 Microsoft . .

Codavarrior Pro 3.3 Metrowerks . . °
Command AntiNtus 4.54 Command Softare Systems| . .

Eudora Pro 3.0.5 Qualcomm)) O
Excel 97 Microsoft o o

Excel 2000 Microsoft . .

FrameMaler 5.5 Adobe Systems .

FreeCell 4.0 Microsoft ° °

Ghostscript 5.50 Aladdin Enterprises . .

Ghostviav 2.7 Ghostgum Softare Pty . .

GNU Emacs 20.3.1 Free Softvare Foundation . °

Internet Explorer 4.0 Microsoft . . °
Internet Explorer 5.0 Microsoft . .

Java Workshop 2.0a Sun Microsystems . O
Netscape Communicator 4.7| Netscape Communications . . °
NoteRad 4.0 Microsoft . .

Paint 4.0 Microsoft o °

Paint Shop Pro 5.03 Jasc Softare O

PowerPoint 97 Microsoft O O O
PaverPoint 2000 Microsoft O

Secure CR 2.4 Van Dyle Technologies . .

Solitaire 4.0 Microsoft .

Telnet 5 for Wihdows MIT Kerberos Group .

Visual C++ 6.0 Microsoft . .
Winamp 2.5c Nullsoft O .

Word 97 Microsoft . . °
Word 2000 Microsoft ° . °
WordPad 4.0 Microsoft . . °
WS_FTP LE 4.50 Ipswitch . . 0
Percent Crashed 72.7% 90.9% 21.2%
Percent Hung 9.0% 6.0% 24.2%
Total Percent Failed 81.7% 96.9% 45.4%

Figure 3: Summary of Windows NT 4.0 Test Results
e = Crash, 0 = Hang.
Note that if an application both crashed and hung, only the crash is reported.

ently de-referenceblindly. The NT 4.0 testsusing the
SendMessage API function produceda crashrate of
over 72%,9% of theapplicationshung,anda scant18%
successfullydealtwith therandominput. Thetestsusing
the Post Message API function produceda slightly
higher crashrate of 90% and a hangrate of 6%. Only

one applicationwas able to successfullywithstandthe
Post Message test.

The random valid keyboard and mouse event
results, while somevhat improved over the random
Win32 messagéest, produceda significanthnumberof

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000 Page 7
Application Vendor SendM essage PostM essage Rang\(:(rennt\éalld
Access 97 Microsoft . .

Access 2000 Microsoft . . °
Codavarrior Pro 3.3 Metrowerks °

Excel 97 Microsoft . .

Excel 2000 Microsoft . .

Internet Explorer 5 Microsoft . .

Netscape Communicator 4.7| Netscape Communications . . °

Paint Shop Pro 5.03 Jasc Softare O
PaverPoint 97 Microsoft O
PaverPoint 2000 Microsoft O O

Secure CR 2.4 Van Dyle Technologies . .

Visual C++ 6.0 Microsoft . . °

Word 97 Microsoft ° . °

Word 2000 Microsoft . . °

Percent Crashed 71.4% 71.4% 42.9%
Percent Hung 14.3% 0.0% 21.4%
Total Percent Failed 85.7% 71.4% 64.3%

Figure 4: Summary of Windows 2000 Test Results
e = Crash, 0 = Hang.
Note that if an application both crashed and hung, only the crash is reported.

crashesFully 21% of the applicationscrashecand24%
hung,leaving only 55% of applicationghatwereableto
successfullydealwith the randomevents.This resultis
especially troublesomebecausethese random events
could be introducedby ary userof a Windows NT sys-
tem using only the mouse aneykoard.

The Windows 2000 tests have similar resultsto
thoseperformedon NT 4.0. We hadnot expectedto see
a significantdifferencebetweenthe two platforms,and
these results confirm thigmgectation.

4.2 Causes of Crashes

While sourcecode was not available to us for most
applicationswe did have accesgo the sourcecode of

two applications:the GNU Emacstext editor and the

open source version of Netscape Communicator
(Mozilla). We wereableto examinebothapplicationgo

determinethe causeof the crasheghat occurredduring

testing.

Emacs Crash Analysis

We examined the emacsapplication after it crashed
from the randomWin32 messagesThe causeof the
crashwas simple: castinga parameterof the Win32
messag¢o a pointerto a structureandthentrying to de-
referencehe pointerto access field of the structureln

the file w32fns.c, the message handler
(W32_wnd_proc) is a standardWin32 callback func-
tion. This callbackfunctiontriesto de-referencés third
parametefl par anm); notethatthereis noerrorchecking
or exception handling to protect this de-reference.

LRESULT CALLBACK
w32_wnd_proc (hwnd, nsg, wParam | Paran)
{

PO NT *pos;
pos = (PO NT *)I| Param

i f (TrackPopupMenu((HVENU) wPar am
flags, pos->x, pos->y, 0, hwnd,
NULL))

}

The pointerwasa randomvalue producedby fuzz, and

thereforewasinvalid; this de-referenceausedinaccess
violation. It is not uncommorto find failurescausecdy

usinganunsafepointer;our previous studiesfound such
casesandthesecasesare alsowell-documentedn the

literature [13]. From our inspectionof other crashes
(basedonly on the machinecode),it appearghat this

problemis the likely causeof mary of the random
Win32 message crashes.

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000

Mozlla Crash Analysis

We alsoexaminedthe opensourceversionof Netscape
CommunicatarcalledMozilla, afterit crashedrom the
randomWin32 messagesThe causeof the crashwas
similar to thatof theemacscrash.The crashoccurredn
file nsW ndow. cpp, function nsW ndow: : Process-
Message. This function is designedto respondto
Win32 messagepostedo theapplications windows. In
fashionsimilar to the GNU emacsexample,a parameter
of thefunction (I Par amin this case)is assumedo bea
valid windav handle.

nsW ndow* control =
(nsW ndow*) : : Get W ndowLong(
(HWND) | Par am GW._USERDATA) ;
if (control) {
cont rol - >Set UpFor Pai nt (
(HDC) wPar an ;

The value is passedas an agumentto the Get W n-

dowLong function, which is usedto accessapplication
specific information associatedvith a particular win-
dow. In this casethe parametewasarandomvaluepro-
duced by fuzz, so the Get W ndowLong function is
retrieving a value associatedwvith a randomwindow.
The applicationthen caststhe returnvalueto a pointer
and attemptsto de-referenceit, thereby causingthe
application to crash.

5 ANALYSIS AND CONCLUSIONS

The goal of this studywasto provide a first look at the
generalreliability of a variety of applicationprograms
running on Windows NT. We hope that this study
inspiresthe productionof more robust code. We first
discussthe resultsfrom the previous sectionthen pro-
vide some editorial discussion.

The tests of random valid keyboard and mouse
eventsprovide the bestsenseof therelative reliability of
applicationprograms.Thesetests simulatedonly ran-
dom keystrokes, mousemovements,and mousebutton
clicks. Since theseevents could be causedby a user
they areof immediateconcern.Theresultsof thesetests
shav that mary commonly-useddesktopapplications
are not as reliable as one might hope.

Theteststhatproducedhe greatestailure ratesare
the randomWin32 messagéests.In the normalcourse
of events,thesemessagesre producedby the kernel
and sent to an application program. It is unlikely
(thoughnotimpossible}thatthe kernelwould sendmes-
sageawith invalid values Still, thesetestsareinteresting
for two reasonsFirst, they demonstratéhevulnerability
of this interface. Any application program can send

Page 8

messagedo ary other application program. There is
nothingin the Win32 interfacethatprovidesary type of
protection. Modern operationsystemsshould provide
more durablefirewalls. Secondtheseresultspoint to a
needfor moredisciplinein softwaredesign.Major inter-
faces between application software componentsand
betweertheapplicationandthe operatingsystemshould
contain thorough checks of return values and result
parametersOur inspectionof crasheandthe diagnosis
of the sourcecode shaws the blind de-referencingf a
pointerto be dangerousA simple action, suchas pro-
tecting the de-referencavith an exceptionhandler(by
usingthe Windows NT StructuredExceptionHandling
facility, for example),could make a qualitatve improve-
ment in reliability

As a sidenote, mary of thoseapplicationsthat did
detectthe errordid not provide the userwith reasonable
or pleasantchoices.Theseapplicationsdid not follow
with an opportunityto save pendingchangesmadeto
the currentdocumentor otheropenfiles. Doing a best-
effort save of thecurrentwork (in anew copy of theuser
file) might give the usersomehopeof recovering lost
work. Also, none of the applicationsthat we tested
saved the userfrom seeinga dialog pertainingto the
causeof the crashthatcontainedhe memoryaddresof
the instructionthat causedhe fault, alongwith a hexa-
decimalmemorydump.To the averageapplicationuser
this dialogis cryptic andmysteriousandonly senesto
confuse them.

Our final pieceof analysisconcernsoperatingsys-
temcrashesOccasionallyduringour UNIX study tests
resultedin OS crashesDuring this Windows NT study
theoperatingsystenremainedsolid anddid notcrashas
a result of testing. We should note, however, that an
earlyversionof thefuzztool for Windows NT did result
in occasionalDS crashesThetool containeda bug that
generateanouseeventsonly in thetop left cornerof the
screen.For somereason theseeventswould occasion-
ally crashwindows NT 4.0,althoughnotin arepeatable
fashion.

Theseresultsseento inspirecommentsuchas”Of
course! Everyoneknows theseapplicationsare flaky.”
But it is importantto validatesuchanecdotalntuitions.
Theseresultsalsoprovide a concretebasisfor compar-
ing applicationsand for tracking future (we hope)
improvements.

Our resultsalsoleadto obsenationsaboutcurrent
software testingmethodology While randomtestingis
far from elegant, it doesbring to the surfaceapplication
errors,as evidencedby the numerouscrashessncoun-
teredduringthe study While someof the bugsthatpro-
ducedthesecrashesnay have beenlow priority for the
software makersdueto the extremesituationsin which

Appearsin the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000

they occur a simpleapproachto help find bugs should
certainly not be werlooked.

The lack of generalaccessto applicationsource
code preventedus from making a more detailedreport
of the causesof program failures. GNU Emacsand
Mozilla werethe only applicationghatwe wereableto
diagnose.This limited diagnosiswas useful in that it
exposesa trend in poor handling of pointersin event
records.In our 1990 and 1995 studies,we were given
reasonableaccessto application source code by the
almostall the UNIX vendors.As a result,we provided
bug fixes in additionto our bug reports.Todays soft-
ware market makes this accessto application source
code more difficult. In some extreme cases(as with
databaseystemsnot testedin this study),even the act
of reportingbugs or performancedatais forbiddenby
thelicenceagreementgl] (andthevendorsaggressiely
pursue this restriction). While vendors righteously
defendsuchpracticeswe believe this works counterto
producing reliable systems.

Will theresultspresentedn this papermake a dif-
ference?Many of the bugs found in our 1990 UNIX
studywerestill presentn 1995.0Our 1995 studyfound
that applicationsbasedon opensourcehad betterreli-
ability thanthoseof the commercialvendors Following
that study we noteda subsequentverall improvement
in softwarereliability (by our measure)But, aslong as
vendorsand, more importantly purchasersvalue fea-
turesover reliability, our hopefor morereliableapplica-
tions remains muted.

Opportunity for more analysis remains in this
project. Our goals include

1. Full testingof the applicationson Windows 2000:
This goalis not hardto achiere, andwe anticipate
having the full results shortly

2. Explanationof the randomWin32 messageesults:
We were surprisedthat the Post Message and
SendMessage resultsdiffered.This differencemay
be causedby the synchronousvs. asynchronous
natureof Post Message andSendMessage, or the
priority differencebetweerthesetwo typesof mes-
sageqor otherreasonghatwe have notidentified).
We arecurrently exploring the reasondor this dif-
ference.

3. Explanationof the Windows NT 4.0 vs. Windows
2000 results:Given that we testidentical versions
of the applicationson Windows NT 4.0 and Win-
dows 2000, our initial guesswas that the results
would beidentical. The differencesould be dueto
severalreasonsincludingtiming, sizeof thescreen,
or system dependentDLLs. We are currently
exploring the reasons for this tifence.

Page 9

6 RELATED WORK

Randomtestinghasbeenusedfor mary years.In some
ways, it is looked uponasprimitive by the testingcom-
munity. In his book on softwaretesting[7],Meyerssays
thatrandomlygeneratednput testcasesare“at best,an
inefficient and ad hoc approachto testing”. While the
type of testingthat we usemay be ad hoc we do seem
to beableto find bugsin realprogramsOur view is that
randomtestingis onetool (andan easyoneto use)in a
larger softvare testing toolkit.

An early paperon randomtestingwaspublishedby
DuranandNtafos[3]. In that study testinputsare cho-
senat randomfrom a predefinedset of testcasesThe
authorsfoundthatrandomtestingfaredwell whencom-
paredto the standardpartition testing practice. They
were ableto track down subtle bugs easily that would
otherwise be hard to discover using traditional tech-
nigues.They foundrandomtestingto be a costeffective
testingstratgy for mary programs,andidentified ran-
domtestingasa mechanisnby which to obtainreliabil-
ity estimatesOur techniques both more primitive and
easierto usethan the type of randomtesting usedby
Duran and Ntafos; we cannotuse programmerknowl-
edgeto directthetests,but do not requirethe construc-
tion of test cases.

Two papershave beenpublishedby Ghoshet al on
random black-box testing of applicationsrunning on
Windows NT[5,6]. Thesestudiesare extensionsof our
earlier1990and1995Fuzzstudies[8,9]In the NT stud-
ies, the authorstestedsereral standardcommand-line
utilities. The Windows NT utilities fared much better
their UNIX counterpartsscoringlessthan 1% failure
rate. This studyis interesting but sincethey only tested
a few applications(attrib, chkdsk, comp, expand, fc,
find, help, label,andreplace)andmostcommonlyused
Windows applicationsare basedon graphicinterfaces,
we felt a need for morextensie testing.

Randomtestinghasalsobeenusedto testthe UNIX
systemcall interface. The “crashme” utility[2] effec-
tively exercisesthis interface, and is actively usedin
Linux kernel deelopments.

SOURCE CODE

The sourceandbinary codefor the fuzz tools for Win-
dowvs NT is available from our Web page at:
ftp://grilled.cs.w sc.edu/fuzz.

ACKNOWLEDGMENTS

We thank SusanHazlettfor her help with running the
initial fuzz testson Windows NT, andJohnGardnerJr.
for helping with the initial evaluationof the Fuzz NT

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

July 27, 2000

tool. We alsothankPhilip Roth for his carefulreading
of draftsof this paper.Microsoft helpedusin this study
by providing a pre-releaseversion of Windows 2000.
The paperrefereesand especiallyJim Gray, provided
great feedback during the review process.

This work is supportedin part by Departmentof
Enegy GrantDE-FG02-93ER25178\SF grantsCDA-
9623632 and EIA-9870684, and DARPA contract
N66001-97-C-8532TheU.S.Governments authorized
to reproduceand distribute reprints for Governmental
purposes notwithstanding ary copyright notation
thereon.

REFERENCES

[1] M. Carey, D. DeWitt, and J. Naughton, “The 007
Benchmark”, 1993 ACM SIGMOD International
Conferenceon Managemenbf Data, May 26-28,1993,
Washington, D.C. pp. 12-21.

[2] G.J. Carrette,“CRASHME: Random Input Testing”,
http:// peopl e. del phi.coni gjc/crashme. htm,
1996.

[3] J.W.DuranandS.C.Ntafos,“An Evaluationof Random
Testing”, IEEE Transactionson SoftwareEngineering
SE-10, 4, July 1984, pp. 438-444.

[4] S. Garfinkel and G. Spafford, Practical UNIX &
Internet Security, O'Reilly & Associates, 1996.

[5] A. Ghosh, V. Shah, and M. Schmid, “Testing the
Robustness of Windows NT Software”, 1998
International Symposium on Software Reliability
Engineering (ISSRE'98) Paderborn, Germany,
November 1998.

[6] A. Ghosh,V. Shah,andM. Schmid,“An Approachfor
Analyzing the Robustnes®f Windows NT Software”,
21stNational InformationSystem$&ecurityConference
Crystal City, VA, October 1998.

[71 G. Meyers, The Art of Software Testing, Wiley
Publishing, New York, 1979.

[8] B.P.Miller, D.Koski,C.P.Lee,V. Maganty,R. Murthy,
A. Natarajan, J. Steidl, “Fuzz Revisited: A Re-
examinationof the Reliability of UNIX Utilities and
Services”, University of Wisconsin-Madison,1995.
Appears(in Germantranslation)as“Empirische Studie
zur Zuverlasskeitvon UNIX-Utilities: Nichts dazu
Gerlernt”,iX, September 1995.
ftp://grilled.cs.w sc.edu/technical _papers
/fuzz-revisted. ps.

[9] B. P.Miller, L. FredriksenB. So,“An Empirical Study
of theReliability of UNIX Utilities”, Communicationsf
the ACM 33, 12, December1990, pp. 32-44. Also
appears in German translation as “Fatale
Fehlertrachtigkeit: Eine Empirische Studie zur
Zuverlassigkeitvon UNIX-Utilities”, iX (March 1991).

(10]
(11]
(12]

(13]

Page 10

ftp://grilled.cs.w sc.edu/technical _papers
[fuzz. ps.

C. Petzold,Programming Windows, 5th ed.,Microsoft
Press, Redmond, WA, 1999.

J. Richter, Advanced Windows, 3rd ed., Microsoft
Press, Redmond, WA, 1997.

D. Solomon,Inside Windows NT, 2nd ed., Microsoft
Press, Redmond, WA, 1998.

J.A. WhittakerandA. JorgenserfWhy SoftwareFails”,
TechnicalReport FloridaInstituteof Technology, 1999,
http://se.fit.edu/ papers/ Swrail s. pdf.

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

	An Empirical Study of the Robustness of Windows NT Applications Using Random Testing ��
	Abstract
	1 Introduction
	2 Random Testing on the Windows NT Platform
	Figure�1: Windows NT Architectural Components for User Input
	Figure�2: Insertion of Random Input

	3 Experimental Method
	3.1 Applications and Platform
	3.2 The Fuzz Testing Tool
	1. Obtain the process ID of the application to be tested (either by launching the application its...
	2. Determine the main window of the target application along with its desktop placement coordinates.
	3. Using one of SendMessage, PostMessage, or keybd_event and mouse_event, deliver random input to...

	3.3 The Tests

	4 Results
	4.1 Quantitative Results
	Figure�3: Summary of Windows NT 4.0 Test Results l = Crash, m = Hang. Note that if an application...
	Figure�4: Summary of Windows 2000 Test Results l = Crash, m = Hang. Note that if an application b...

	4.2 Causes of Crashes
	Emacs Crash Analysis
	Mozilla Crash Analysis

	5 Analysis and Conclusions
	1. Full testing of the applications on Windows 2000: This goal is not hard to achieve, and we ant...
	2. Explanation of the random Win32 message results: We were surprised that the PostMessage and Se...
	3. Explanation of the Windows NT 4.0 vs. Windows 2000 results: Given that we test identical versi...

	6 Related Work
	Source Code
	Acknowledgments
	References
	[1] M. Carey, D. DeWitt, and J. Naughton, “The 007 Benchmark”, 1993 ACM SIGMOD International Conf...
	[2] G.J. Carrette, “CRASHME: Random Input Testing”, http://people.delphi.com/gjc/crashme.html, 1996.
	[3] J. W. Duran and S.C. Ntafos, “An Evaluation of Random Testing”, IEEE Transactions on Software...
	[4] S. Garfinkel and G. Spafford, Practical UNIX & Internet Security, O’Reilly & Associates, 1996.
	[5] A. Ghosh, V. Shah, and M. Schmid, “Testing the Robustness of Windows NT Software”, 1998 Inter...
	[6] A. Ghosh, V. Shah, and M. Schmid, “An Approach for Analyzing the Robustness of Windows NT Sof...
	[7] G. Meyers, The Art of Software Testing, Wiley Publishing, New York, 1979.
	[8] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, J. Steidl, “Fuzz Revi...
	[9] B. P. Miller, L. Fredriksen, B. So, “An Empirical Study of the Reliability of UNIX Utilities”...
	[10] C. Petzold, Programming Windows, 5th ed., Microsoft Press, Redmond, WA, 1999.
	[11] J. Richter, Advanced Windows, 3rd ed., Microsoft Press, Redmond, WA, 1997.
	[12] D. Solomon, Inside Windows NT, 2nd ed., Microsoft Press, Redmond, WA, 1998.
	[13] J. A. Whittaker and A. Jorgensen, “Why Software Fails”, Technical Report, Florida Institute ...

