
July 27, 2000 Page 1

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

An Empirical Study of the Robustness of Windows NT Applications Using
Random Testing

Abstract

Wereporton thethird in aseriesof studieson thereliability of
applicationprogramsin thefaceof randominput. In 1990and
1995,westudiedthereliability of UNIX applicationprograms,
bothcommandline andX-Window based(GUI). In this study,
we applyour testingtechniquesto applicationsrunningon the
WindowsNT operatingsystem.Ourtestingissimpleblack-box
randominput testing;by any measure,it is a crudetechnique,
but it seems to be effective at locating bugs in real programs.

We testedover 30 GUI-basedapplicationsby subjectingthem
to two kindsof randominput:(1) streamsof valid keyboardand
mouseeventsand(2) streamsof randomWin32 messages.We
havebuilt atool thathelpsautomatethetestingof WindowsNT
applications.With a few simple parameters,any application
can be tested.

Using our random testing techniques,our previous UNIX-
basedstudiesshowed that we could crasha wide variety of
command-lineand X-window basedapplicationson several
UNIX platforms. The test results are similar for NT-based
applications.Whensubjectedto randomvalid input thatcould
beproducedbyusingthemouseandkeyboard,wecrashed21%
of applicationsthat we testedandhungan additional24% of
applications.Whensubjectedto raw randomWin32messages,
we crashedor hung all the applicationsthat we tested.We
reportwhichapplicationsfailedunderwhichtests,andprovide
some analysis of the failures.

1 INTRODUCTION

We reporton the third in a seriesof studieson the reli-
ability of applicationprogramsin the faceof random
input. In 1990 and 1995, we studiedthe reliability of
UNIX commandline andX-Window based(GUI) appli-
cationprograms[8,9].In this study, we apply our tech-
niques to applicationsrunning on the Windows NT
operatingsystem.Our testing,called fuzz testing,uses
simple black-box randominput; no knowledge of the
application is used in generating the random input.

Our 1990studyevaluatedthereliability of standard
UNIX commandline utilities. It showedthat25-33%of
suchapplicationscrashedor hungwhenreadingrandom
input. The 1995 study evaluateda larger collection of

applicationsthan the first study, including somecom-
mon X-Window applications.This newer study found
failureratessimilar to theoriginalstudy. Specifically, up
to 40% of standard command line UNIX utilities
crashedor hungwhengiven randominput and25% of
theX-Window applicationstestedfailedto dealwith the
randominput. In our current(2000)study, we find simi-
lar results for applications running on Windows NT.

Our measureof reliability is a primitive andsimple
one.A programpassesthetestif it respondsto theinput
andis ableto exit normally; it fails if it crashes(termi-
natedabnormally)or hangs(stopsrespondingto input
within a reasonablelength of time). The application
doesnot have to respondsensiblyor accordingto any
formal specification.While the criterion is crude, it
offersa mechanismthat is easyto apply to any applica-
tion, and any causeof a crashor hangshouldnot be
ignored in any program.Simple fuzz testingdoesnot
replacemore extensive formal testingprocedures.But
curiously, our simple testing techniqueseemsto find
bugs that are not found by other techniques.

Our 1995 study of X-Window applicationspro-
videdthedirectionfor thecurrentstudy. To testX-Win-
dow applications,we interposedour testing program
betweenthe application(client) andthe X-window dis-
play server. This allowed us to have full control of the
input to any applicationprogram.We wereableto send
completelyrandommessagesto theapplicationandalso
to sendrandomstreamsof valid keyboardand mouse
events.In ourcurrentWindowsNT study, weareableto
accomplishthesamelevel of inputcontrolof anapplica-
tion by using the Windows NT event mechanisms
(described in Section2).

Subjecting an application to streamsof random
valid keyboardand mouseevents teststhe application
under conditions that it should definitely tolerate,as
they couldoccurin normaluseof thesoftware.Subject-
ing anapplicationto completelyrandom(often invalid)
input messagesis a testof the generalstrengthof error
checking.This might beconsideredanevaluationof the
software engineeringdiscipline, with respectto error
handling, used in producing the application.

Justin E. Forrester Barton P. Miller
{jforrest,bart}@cs.wisc.edu

Computer Sciences Department
University of Wisconsin

Madison, WI 53706-1685



July 27, 2000 Page 2

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

Five yearshave passedsinceour last study, during
which time Windows-basedapplicationshave clearly
cometo dominatethe desktopenvironment.Windows
NT (andnow Windows 2000)offers the full power of a
modern operating system, including virtual memory,
processes,file protection,andnetworking.Wefelt it was
time to do a comparablestudyof thereliability of appli-
cations in this environment.

Our current study has produced several main
results:

❏ 21% of the applicationsthat we testedon NT 4.0
crashed when presentedwith random,valid key-
board and mouseevents.Test resultsfor applica-
tions run on NT 5.0 (Windows 2000) were similar.

❏ An additional 24% of the applications that we
testedhung whenpresentedwith randomvalid key-
boardand mouseevents.Testsresultsfor applica-
tions run on NT 5.0 (Windows 2000) were similar.

❏ Up to 100%of theapplicationsthatwe testedfailed
(crashedor hung)whenpresentedwith completely
randominput streamsconsistingof randomWin32
messages.

❏ We noted (as a result of our completely random
input testing)that any applicationrunningon Win-
dows platforms is vulnerable to random input
streamsgeneratedby any otherapplicationrunning
on thesamesystem.Thisappearsto beaflaw in the
Win32 message interface.

❏ Our analysisof the two applicationsfor which we
have sourcecodeshows that thereappearsto be a
commoncarelessprogrammingidiom: receiving a
Win32 messageand unsafely using a pointer or
handle contained in the message.

The resultsof our studyaresignificantfor several
reasons.First,reliability is thefoundationof security[4];
our resultsoffer aninformalmeasureof thereliability of
commonly usedsoftware. Second,we exposeseveral
bugs that could be examinedwith othermore rigorous
testinganddebuggingtechniques,potentiallyenhancing
software producers’ability to ship bug free software.
Third, they exposethevulnerabilityof applicationsthat
usethe Windows interfaces.Finally, our resultsform a
quantitative startingpoint from which to judgetherela-
tive improvement in software robustness.

In the1990and1995studies,we hadaccessto the
sourcecodeof a large percentageof the programsthat
we tested, including applicationsrunning on several
vendors’ platforms and GNU and Linux applications.
As a result,in additionto causingtheprogramsto hang
or crash,we were able to debug most applicationsto
find thecauseof thecrash.Thesecauseswerethencate-
gorizedandreported.Theseresultswerealsopassedto

thesoftwarevendors/authorsin theform of specificbug
reports.In theWindowsenvironment,wehaveonly lim-
ited access(thusfar) to the sourcecodeof the applica-
tions. As a result, we have beenable to perform this
analysison only two applications:emacs,which has
public source code, and the open source version of
Netscape Communicator (Mozilla).

Section2 describesthe detailsof how we perform
randomtestingon Windows NT systems.Section3 dis-
cussesexperimentalmethodandSection4 presentsthe
resultsfrom thoseexperiments.Section5 offers some
analysisof theresultsandpresentsassociatedcommen-
tary. Related work is discussed in Section6.

2 RANDOM TESTING ON THE WINDOWS NT
PLATFORM

Ourgoalin usingrandomtestingis to stresstheapplica-
tion program.This testingrequiredus to simulateuser
input in theWindowsNT environment.Wefirst describe
the componentsof the kernel and applicationthat are
involved with processinguserinput. Next, we describe
how applicationprogramscanbetestedin this environ-
ment.

In the 1995studyof X-Window applications,ran-
dom userinput wasdeliveredto applicationsby insert-
ing randominput in the regular communicationstream
betweentheX-Window server andtheapplication.Two
types of random input were used: (1) random data
streamsand(2) randomstreamsof valid keyboardand
mouseevents.The testing using randomdata streams
sentcompletelyrandomdata(not necessarilyconform-
ing to the window systemprotocol) to an application.
While thiskind of input is unlikely undernormaloperat-
ing conditions,it providedsomeinsight into thelevel of
testingandrobustnessof anapplication.It is crucial for
aproperlyconstructedprogramto checkvaluesobtained
from system calls and library routines. The random
valid keyboard and mouseevent tests are essentially
testingan applicationas thougha monkey were at the
keyboard and mouse. Any user could generatethis
input, andany failure in thesecircumstancesrepresents
a bug that canbeencounteredduringnormaluseof the
application.

We usedthesamebasicprinciplesandcategoriesin
the Windows NT environment,but the architectureis
slightly different.Figure1 providesa simplifiedview of
the componentsusedto supportuserinput in the Win-
dows NT environment[10,11,12].

We useanexampleto explain therole of eachcom-
ponent in Figure1. Consider the case where a user
clicks on a link in a web browser. This actionsetsinto
motion the Windows NT user input architecture.The



July 27, 2000 Page 3

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

mouseclick first generatesa processorinterrupt. The
interruptis handledby theI/O Systemin thebaseof the
Windows NT kernel.The I/O Systemhandsthe mouse
interrupt to the mousedevice driver. The device driver
thencomputesthe parametersof the mouseclick, such
as which mousebutton hasbeenclicked, and addsan
eventto theSystemEventQueue(theeventqueueof the
Window Manager)by calling the mouse_event func-
tion. At this point, thedevice driver’s work is complete
and the interrupt has been successfully handled.

After beingplacedin theSystemEventQueue,the
mouse event awaits processingby the kernel’s Raw
Input Thread(RIT). TheRIT first convertsthe raw sys-
temeventto a Win32 message.A Win32 messageis the
genericmessagestructurethat is usedto provide appli-
cationswith input.TheRIT next deliversthenewly cre-
atedWin32 messageto theeventqueueassociatedwith
thewindow. In thecaseof themouseclick, theRIT will
createa Win32 messagewith the WM_LBUTTONDOWN

identifierandcurrentmousecoordinates,andthendeter-
mine that the targetwindow for themessageis theweb
browser. Once the RIT has determinedthat the web
browserwindow shouldreceive thismessage,it will call
thePostMessage function.This functionwill placethe
new Win32 messagein themessagequeuebelongingto
the application thread that created the browser window.

At this point, the applicationcan receive and pro-
cess the message.The Win32 Application Program
Interface(API) provides the GetMessage function for
applicationsto retrieve messagesthat have beenposted
to their messagequeues.Applicationthreadsthatcreate
windows generallyentera “messageloop”. This loop
usually retrieves a message,doespreliminary process-
ing, anddispatchesthemessageto a registeredcallback
function (sometimescalleda window procedure) that is
definedto processinput for a specificwindow. In the
caseof the web browser example,the Win32 message
concerningthe mouseclick would be retrieved by the
application via a call to GetMessage and then dis-
patchedto the window procedurefor the web browser
window. The window procedurewould then examine
the parametersof the WM_LBUTTONDOWN messageto
determinethattheuserhadclickedtheleft mousebutton
at a givensetof coordinatesin thewindow andthat the
click had occurred over the web link.

Given the above architecture,it is possibleto test
applications using both random events and random
Win32 messages.Testing with random events entails
inserting randomsystemevents into the systemevent
queue.Randomsystemeventssimulateactualkeystroke
or mouseevents.They areaddedto the systemvia the
samemechanismthat the related device driver uses,

Figure 1: Windows NT Architectural Components for User Input

Windows NT Kernel Mode

Keyboard/Mouse

I/O System

Device Driver

Window Manager (Win32 USER)

Raw Input Thread (RIT)

system
event System Event Queue

Application Program

Application Thread

Win32
message Thread Message Queue



July 27, 2000 Page 4

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

namely the mouse_event and keybd_event func-
tions.

The secondrandom testing mechanisminvolves
sending random Win32 messagesto an application.
RandomWin32 messagescombine random but valid
message types with completely random contents
(parameters).Delivering thesemessagesis possibleby
using the Win32 API function PostMessage. The
PostMessage function deliversa Win32 messageto a
messagequeuecorrespondingto a selectedwindow and
returns.Notethat thereis similar functionto PostMes-

sage, calledSendMessage, thatdeliversa Win32 mes-
sageand waits for the messageto be processedfully
beforereturning.Win32messagesareof afixedsizeand
format.Thesemessageshave threefields,a messageID
field and two integer parameters.Our testingproduced
randomvaluesin eachof thesefields, constrainingthe
first field (messageID) to the rangeof valid message
ID’s.

Figure2 shows whereeachrandomtestingmecha-
nism fits into the Windows NT user input architecture.

Notice in Figure2 that under both testing condi-
tions,thetargetapplicationis unableto distinguishmes-
sages sent by our testing mechanismsfrom those
actuallysentby thesystem.This distinctionis essential
to create an authentic test environment.

3 EXPERIMENTAL METHOD

We describethe applicationsthat we tested,the test
environment,our new testingtool (called fuzz), andthe
teststhat we performed.We thendiscusshow the data
was collected and analyzed.

3.1 Applications and Platform

We selecteda group of over 30 applicationprograms.
While we tried to selectapplicationsthatwererepresen-
tative of a varietyof computingtasks,theselectionwas
alsoinfluencedby whatsoftwarewascommonlyusedin
theComputerSciencesDepartmentat theUniversityof
Wisconsin.Thesoftwareincludeswordprocessors,Web
browsers,presentationgraphicseditors,network utili-
ties,spreadsheets,softwaredevelopmentenvironments,
and others. In addition to functional variety, we also
strove to test applicationsfrom a variety of vendors,
including both commercial and free software.

The operatingsystemon which we ran and tested
theapplicationswasWindows NT 4.0 (build 1381,ser-
vice pack5). To insurethat our resultsweretimely, we
testeda subsetof theapplicationson thenew Windows
2000 system(version 5.00.2195).For the 14 applica-
tions that we re-testedon Windows 2000,we obtained
similar resultsto thosetestedunderNT 4.0. The hard-

Figure 2: Insertion of Random Input

Windows NT Kernel Mode

Keyboard/Mouse

I/O System

Device Driver

Window Manager (Win32 USER)

Raw Input Thread (RIT)

system
event System Event Queue

Application Program

Application Thread

Win32
message Thread Message Queue

Random System
Events

(for random valid
keyboard & mouse

events)

Random Win32
Messages

(for completely
random messages)



July 27, 2000 Page 5

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

wareplatformusedfor testingwasa collectionof stan-
dard Intel Pentium II PCs.

3.2 The Fuzz Testing Tool

The mechanismwe usedfor testingapplicationswasa
new tool, calledfuzz, thatwe built for applicationsrun-
ning on the Windows NT platform. Fuzz produces
repeatablesequencesof randominput anddeliversthem
as input to running applicationsvia the mechanisms
described in Section2. Its basic operation is as follows:

1. ObtaintheprocessID of theapplicationto betested
(eitherby launchingthe applicationitself or by an
explicit command line parameter).

2. Determinethe main window of the target applica-
tion along with its desktop placement coordinates.

3. Using one of SendMessage, PostMessage, or
keybd_event andmouse_event, deliver random
input to the running application.

Fuzz is invoked from a commandline; it doesnot
usea GUI so that our interactionswith the tool do no
interferewith the testingof the applications.The first
versionof our Windows NT fuzz tool hada GUI inter-
facebut theuseof theGUI for thetestingtool interfered
with the testing of the applications.As a result, we
changedfuzz to operatefrom a commandline. Thefuzz
command has the following format:

fuzz [-ws] [-wp] [-v] [-i pid] [-n
#msgs] [-c] [-l] [-e seed] [-a appl cmd
line]

Where -ws is randomWin32 messagesusing Send-

Message, -wp is randomWin32 messagesusingPost-
Message, and-v is randomvalid mouseandkeyboard
events. One of these three options must be specified.

The -i option is usedto start testingan already-
runningapplicationwith thespecifiedprocessID, and-
a tells fuzz to launch the application itself. The -n

option controlsthe maximumnumberof messagesthat
will be sentto the application,and-e allows the seed
for the random number generator to be set.

The-l and-c optionsprovide finer control of the
SendMessage and PostMessage tests,but were not
usedin theteststhatwereportin thispaper. Null param-
eters can be included in the tests with -l and
WM_COMMAND messages(control activation messages
such as button clicks) can be included with-c.

3.3 The Tests

Our testsweredividedinto threecategoriesaccordingto
thedifferentinput techniquesdescribedin Section2. As
such, the application underwenta battery of random
tests that included the following:

• 500,000 random Win32 messagessent via the
SendMessage API call,

• 500,000 random Win32 messagessent via the
PostMessage API call, and

• 25,000 random systemevents introducedvia the
mouse_event andkeybd_event API calls.

Thefirst two casesusecompletelyrandominputandthe
third caseusesstreamsof valid keyboard and mouse
events.

The quantity of messagesto sendwas determined
during preliminary testing. During that testing, it
appearedthatif theapplicationwasgoingto fail atall, it
would do so within the above numberof messagesor
events.Eachof the threetestsdetailedabove wasper-
formed with two distinct sequencesof random input
(with differentrandomseeds),andthreetesttrials were
conducedfor eachapplicationandrandomsequence,for
a totalof 18runsfor eachapplication.Thesamerandom
input streams were used for each application.

4 RESULTS

We first describethe basic successand failure results
observed during our tests.We thenprovide analysisof
the causeof failuresfor two applicationsfor which we
have source code.

4.1 Quantitative Results

The outcomeof eachtestwasclassifiedin oneof three
categories: the application crashed completely, the
applicationhung (stoppedresponding),or the applica-
tion processedthe input andwe wereable to closethe
applicationvia normal applicationmechanisms.Since
thecategoriesaresimpleandfew, we wereableto cate-
gorize the successor failure of an applicationthrough
simpleinspection.In additionto thequantitative results,
we reporton diagnosisof the causesof the crashesfor
the two applications for which we have source code.

Figure3 summarizesthe resultsof theexperiments
for Windows NT 4.0 andFigure4 hasresultsfor a sub-
set of the applicationstestedon Windows 2000. If an
applicationfailedon any of therunsin a particularcate-
gory (column), the result is listed in the table. If the
applicationneithercrashednor hung,it passedthe tests
(and has no mark in the corresponding column).

The overall resultsof the testsshow that a large
numberof applicationsfailed to deal reasonablywith
randominput. Overall, the failure ratesfor the Win32
messagetestsweremuchgreaterthanthosefor theran-
domvalid keyboardandmouseevent tests.This wasto
beexpected,sinceseveralWin32 messagetypesinclude
pointersas parameters,which the applicationsappar-



July 27, 2000 Page 6

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

ently de-referenceblindly. The NT 4.0 testsusing the
SendMessage API function produceda crashrate of
over72%,9%of theapplicationshung,andascant18%
successfullydealtwith therandominput.Thetestsusing
the PostMessage API function produceda slightly
highercrashrateof 90% anda hangrateof 6%. Only

one applicationwas able to successfullywithstandthe
PostMessage test.

The random valid keyboard and mouse event
results, while somewhat improved over the random
Win32 messagetest,produceda significantnumberof

Application Vendor SendMessage PostMessage
Random Valid

Events

Access 97 Microsoft ● ● ❍

Access 2000 Microsoft ● ● ❍

Acrobat Reader 4.0 Adobe Systems ● ●

Calculator 4.0 Microsoft ●

CD-Player 4.0 Microsoft ● ●

Codewarrior Pro 3.3 Metrowerks ● ● ●

Command AntiVirus 4.54 Command Software Systems ● ●

Eudora Pro 3.0.5 Qualcomm ● ● ❍

Excel 97 Microsoft ● ●

Excel 2000 Microsoft ● ●

FrameMaker 5.5 Adobe Systems ●

FreeCell 4.0 Microsoft ● ●

Ghostscript 5.50 Aladdin Enterprises ● ●

Ghostview 2.7 Ghostgum Software Pty ● ●

GNU Emacs 20.3.1 Free Software Foundation ● ●

Internet Explorer 4.0 Microsoft ● ● ●

Internet Explorer 5.0 Microsoft ● ●

Java Workshop 2.0a Sun Microsystems ● ❍

Netscape Communicator 4.7 Netscape Communications ● ● ●

NotePad 4.0 Microsoft ● ●

Paint 4.0 Microsoft ● ●

Paint Shop Pro 5.03 Jasc Software ❍

PowerPoint 97 Microsoft ❍ ❍ ❍

PowerPoint 2000 Microsoft ❍ ❍

Secure CRT 2.4 Van Dyke Technologies ● ● ❍

Solitaire 4.0 Microsoft ●

Telnet 5 for Windows MIT Kerberos Group ●

Visual C++ 6.0 Microsoft ● ● ●

Winamp 2.5c Nullsoft ❍ ●

Word 97 Microsoft ● ● ●

Word 2000 Microsoft ● ● ●

WordPad 4.0 Microsoft ● ● ●

WS_FTP LE 4.50 Ipswitch ● ● ❍

Percent Crashed 72.7% 90.9% 21.2%

Percent Hung 9.0% 6.0% 24.2%

Total Percent Failed 81.7% 96.9% 45.4%

Figure 3: Summary of Windows NT 4.0 Test Results
● = Crash, ❍ = Hang.

Note that if an application both crashed and hung, only the crash is reported.



July 27, 2000 Page 7

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

crashes.Fully 21%of theapplicationscrashedand24%
hung,leaving only 55%of applicationsthatwereableto
successfullydealwith the randomevents.This result is
especially troublesomebecausethese random events
couldbe introducedby any userof a Windows NT sys-
tem using only the mouse and keyboard.

The Windows 2000 tests have similar results to
thoseperformedon NT 4.0.We hadnot expectedto see
a significantdifferencebetweenthe two platforms,and
these results confirm this expectation.

4.2 Causes of Crashes

While sourcecode was not available to us for most
applications,we did have accessto the sourcecodeof
two applications:the GNU Emacstext editor and the
open source version of Netscape Communicator
(Mozilla). We wereableto examinebothapplicationsto
determinethecauseof thecrashesthat occurredduring
testing.

Emacs Crash Analysis

We examined the emacsapplication after it crashed
from the randomWin32 messages.The causeof the
crash was simple: casting a parameterof the Win32
messageto apointerto astructureandthentrying to de-
referencethepointerto accessa field of thestructure.In

the file w32fns.c, the message handler
(w32_wnd_proc) is a standardWin32 callback func-
tion. Thiscallbackfunctiontriesto de-referenceits third
parameter(lparam); notethatthereis noerrorchecking
or exception handling to protect this de-reference.

LRESULT CALLBACK
w32_wnd_proc (hwnd, msg, wParam, lParam)
{

. . .
POINT *pos;
pos = (POINT *)lParam;
. . .
if (TrackPopupMenu((HMENU)wParam,

flags, pos->x, pos->y, 0, hwnd,
NULL))
. . .

}

The pointerwasa randomvalueproducedby fuzz, and
thereforewasinvalid; thisde-referencecausedanaccess
violation. It is not uncommonto find failurescausedby
usinganunsafepointer;ourpreviousstudiesfoundsuch
cases,andthesecasesarealsowell-documentedin the
literature [13]. From our inspectionof other crashes
(basedonly on the machinecode),it appearsthat this
problem is the likely causeof many of the random
Win32 message crashes.

Application Vendor SendMessage PostMessage
Random Valid

Events

Access 97 Microsoft ● ●

Access 2000 Microsoft ● ● ●

Codewarrior Pro 3.3 Metrowerks ●

Excel 97 Microsoft ● ●

Excel 2000 Microsoft ● ●

Internet Explorer 5 Microsoft ● ●

Netscape Communicator 4.7 Netscape Communications ● ● ●

Paint Shop Pro 5.03 Jasc Software ❍

PowerPoint 97 Microsoft ❍ ❍

PowerPoint 2000 Microsoft ❍ ❍

Secure CRT 2.4 Van Dyke Technologies ● ●

Visual C++ 6.0 Microsoft ● ● ●

Word 97 Microsoft ● ● ●

Word 2000 Microsoft ● ● ●

Percent Crashed 71.4% 71.4% 42.9%

Percent Hung 14.3% 0.0% 21.4%

Total Percent Failed 85.7% 71.4% 64.3%

Figure 4: Summary of Windows 2000 Test Results
● = Crash, ❍ = Hang.

Note that if an application both crashed and hung, only the crash is reported.



July 27, 2000 Page 8

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

Mozilla Crash Analysis

We alsoexaminedthe opensourceversionof Netscape
Communicator, calledMozilla, after it crashedfrom the
randomWin32 messages.The causeof the crashwas
similar to thatof theemacscrash.Thecrashoccurredin
file nsWindow.cpp, function nsWindow::Process-

Message. This function is designed to respond to
Win32messagespostedto theapplication’swindows.In
fashionsimilar to theGNU emacsexample,a parameter
of thefunction(lParam in this case)is assumedto bea
valid window handle.

. . .

nsWindow* control =
(nsWindow*)::GetWindowLong(

(HWND)lParam, GWL_USERDATA);
if (control) {

control->SetUpForPaint(
(HDC)wParam);

. . .

The value is passedas an argument to the GetWin-

dowLong function, which is usedto accessapplication
specific information associatedwith a particular win-
dow. In thiscase,theparameterwasarandomvaluepro-
duced by fuzz, so the GetWindowLong function is
retrieving a value associatedwith a randomwindow.
The applicationthencaststhe returnvalueto a pointer
and attemptsto de-referenceit, thereby causing the
application to crash.

5 ANALYSIS AND CONCLUSIONS

The goal of this studywasto provide a first look at the
generalreliability of a variety of applicationprograms
running on Windows NT. We hope that this study
inspiresthe productionof more robust code.We first
discussthe resultsfrom the previous sectionthen pro-
vide some editorial discussion.

The tests of random valid keyboard and mouse
eventsprovide thebestsenseof therelative reliability of
applicationprograms.Thesetestssimulatedonly ran-
dom keystrokes,mousemovements,and mousebutton
clicks. Since theseevents could be causedby a user,
they areof immediateconcern.Theresultsof thesetests
show that many commonly-useddesktopapplications
are not as reliable as one might hope.

Theteststhatproducedthegreatestfailureratesare
the randomWin32 messagetests.In the normalcourse
of events, thesemessagesare producedby the kernel
and sent to an application program. It is unlikely
(thoughnot impossible)thatthekernelwouldsendmes-
sageswith invalid values.Still, thesetestsareinteresting
for two reasons.First, they demonstratethevulnerability
of this interface. Any application program can send

messagesto any other application program.There is
nothingin theWin32 interfacethatprovidesany typeof
protection.Modern operationsystemsshould provide
moredurablefirewalls. Second,theseresultspoint to a
needfor moredisciplinein softwaredesign.Major inter-
faces between application software componentsand
betweentheapplicationandtheoperatingsystemshould
contain thorough checks of return values and result
parameters.Our inspectionof crashesandthediagnosis
of the sourcecodeshows the blind de-referencingof a
pointer to be dangerous.A simpleaction,suchaspro-
tecting the de-referencewith an exceptionhandler(by
using the Windows NT StructuredExceptionHandling
facility, for example),couldmakeaqualitative improve-
ment in reliability.

As a sidenote,many of thoseapplicationsthat did
detecttheerrordid not provide theuserwith reasonable
or pleasantchoices.Theseapplicationsdid not follow
with an opportunity to save pendingchangesmadeto
the currentdocumentor otheropenfiles. Doing a best-
effort saveof thecurrentwork (in anew copy of theuser
file) might give the usersomehopeof recovering lost
work. Also, none of the applicationsthat we tested
saved the user from seeinga dialog pertainingto the
causeof thecrashthatcontainedthememoryaddressof
the instructionthat causedthe fault, alongwith a hexa-
decimalmemorydump.To theaverageapplicationuser,
this dialog is cryptic andmysterious,andonly servesto
confuse them.

Our final pieceof analysisconcernsoperatingsys-
temcrashes.Occasionally, duringour UNIX study, tests
resultedin OScrashes.During this Windows NT study,
theoperatingsystemremainedsolidanddid notcrashas
a result of testing. We should note, however, that an
earlyversionof thefuzz tool for WindowsNT did result
in occasionalOScrashes.Thetool containeda bug that
generatedmouseeventsonly in thetop left cornerof the
screen.For somereason,theseeventswould occasion-
ally crashWindowsNT 4.0,althoughnot in a repeatable
fashion.

Theseresultsseemto inspirecommentssuchas“Of
course!Everyoneknows theseapplicationsare flaky.”
But it is importantto validatesuchanecdotalintuitions.
Theseresultsalsoprovide a concretebasisfor compar-
ing applications and for tracking future (we hope)
improvements.

Our resultsalso leadto observationsaboutcurrent
software testingmethodology. While randomtestingis
far from elegant,it doesbring to thesurfaceapplication
errors,as evidencedby the numerouscrashesencoun-
teredduringthestudy. While someof thebugsthatpro-
ducedthesecrashesmay have beenlow priority for the
softwaremakersdueto the extremesituationsin which



July 27, 2000 Page 9

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

they occur, a simpleapproachto help find bugsshould
certainly not be overlooked.

The lack of generalaccessto applicationsource
codepreventedus from makinga moredetailedreport
of the causesof program failures. GNU Emacsand
Mozilla weretheonly applicationsthatwe wereableto
diagnose.This limited diagnosiswas useful in that it
exposesa trend in poor handlingof pointersin event
records.In our 1990 and 1995 studies,we were given
reasonableaccessto application source code by the
almostall the UNIX vendors.As a result,we provided
bug fixes, in addition to our bug reports.Today’s soft-
ware market makes this accessto application source
code more difficult. In some extreme cases(as with
databasesystems,not testedin this study),even the act
of reportingbugs or performancedatais forbiddenby
thelicenceagreements[1] (andthevendorsaggressively
pursue this restriction). While vendors righteously
defendsuchpractices,we believe this works counterto
producing reliable systems.

Will the resultspresentedin this papermake a dif-
ference?Many of the bugs found in our 1990 UNIX
studywerestill presentin 1995.Our 1995studyfound
that applicationsbasedon opensourcehad betterreli-
ability thanthoseof thecommercialvendors.Following
that study, we noteda subsequentoverall improvement
in softwarereliability (by our measure).But, aslong as
vendorsand, more importantly, purchasersvalue fea-
turesover reliability, our hopefor morereliableapplica-
tions remains muted.

Opportunity for more analysis remains in this
project. Our goals include

1. Full testingof the applicationson Windows 2000:
This goal is not hardto achieve, andwe anticipate
having the full results shortly.

2. Explanationof the randomWin32 messageresults:
We were surprised that the PostMessage and
SendMessage resultsdiffered.Thisdifferencemay
be causedby the synchronousvs. asynchronous
natureof PostMessage andSendMessage, or the
priority differencebetweenthesetwo typesof mes-
sages(or otherreasonsthatwe have not identified).
We arecurrentlyexploring the reasonsfor this dif-
ference.

3. Explanationof the Windows NT 4.0 vs. Windows
2000 results:Given that we test identical versions
of the applicationson Windows NT 4.0 and Win-
dows 2000, our initial guesswas that the results
would beidentical.Thedifferencescouldbedueto
severalreasons,includingtiming, sizeof thescreen,
or system dependentDLLs. We are currently
exploring the reasons for this difference.

6 RELATED WORK

Randomtestinghasbeenusedfor many years.In some
ways,it is lookeduponasprimitive by thetestingcom-
munity. In his bookon softwaretesting[7],Meyerssays
that randomlygeneratedinput testcasesare“at best,an
inefficient and ad hoc approachto testing”. While the
type of testingthat we usemay be ad hoc, we do seem
to beableto find bugsin realprograms.Ourview is that
randomtestingis onetool (andaneasyoneto use)in a
larger software testing toolkit.

An earlypaperon randomtestingwaspublishedby
DuranandNtafos[3]. In that study, test inputsarecho-
senat randomfrom a predefinedsetof testcases.The
authorsfoundthatrandomtestingfaredwell whencom-
pared to the standardpartition testing practice.They
were able to track down subtlebugs easily that would
otherwisebe hard to discover using traditional tech-
niques.They foundrandomtestingto bea costeffective
testingstrategy for many programs,and identifiedran-
domtestingasa mechanismby which to obtainreliabil-
ity estimates.Our techniqueis both moreprimitive and
easierto usethan the type of randomtestingusedby
Duran and Ntafos; we cannotuseprogrammerknowl-
edgeto direct the tests,but do not requiretheconstruc-
tion of test cases.

Two papershave beenpublishedby Ghoshet al on
random black-box testing of applicationsrunning on
Windows NT[5,6]. Thesestudiesareextensionsof our
earlier1990and1995Fuzzstudies[8,9].In theNT stud-
ies, the authorstestedseveral standardcommand-line
utilities. The Windows NT utilities fared much better
their UNIX counterparts,scoring less than 1% failure
rate.This studyis interesting,but sincethey only tested
a few applications(attrib, chkdsk, comp, expand, fc,
find, help, label,andreplace)andmostcommonlyused
Windows applicationsare basedon graphicinterfaces,
we felt a need for more extensive testing.

Randomtestinghasalsobeenusedto testtheUNIX
systemcall interface. The “crashme” utility[2] effec-
tively exercisesthis interface, and is actively used in
Linux kernel developments.

SOURCE CODE

The sourceandbinary codefor the fuzz tools for Win-
dows NT is available from our Web page at:
ftp://grilled.cs.wisc.edu/fuzz.

ACKNOWLEDGMENTS

We thank SusanHazlett for her help with running the
initial fuzz testson Windows NT, andJohnGardnerJr.
for helping with the initial evaluationof the Fuzz NT



July 27, 2000 Page 10

Appears in the 4th USENIX Windows System Symposium, August 2000, Seattle

tool. We alsothankPhilip Roth for his careful reading
of draftsof this paper.Microsoft helpedusin this study
by providing a pre-releaseversionof Windows 2000.
The paperreferees,and especiallyJim Gray, provided
great feedback during the review process.

This work is supportedin part by Departmentof
Energy GrantDE-FG02-93ER25176,NSFgrantsCDA-
9623632 and EIA-9870684, and DARPA contract
N66001-97-C-8532.TheU.S.Governmentis authorized
to reproduceand distribute reprints for Governmental
purposes notwithstanding any copyright notation
thereon.

REFERENCES

[1] M. Carey, D. DeWitt, and J. Naughton, “The 007
Benchmark”, 1993 ACM SIGMOD International
Conferenceon Managementof Data, May 26-28,1993,
Washington, D.C. pp. 12-21.

[2] G.J. Carrette, “CRASHME: Random Input Testing”,
http://people.delphi.com/gjc/crashme.html,
1996.

[3] J.W. DuranandS.C.Ntafos,“An Evaluationof Random
Testing”, IEEE Transactionson SoftwareEngineering
SE-10, 4, July 1984, pp. 438-444.

[4] S. Garfinkel and G. Spafford, Practical UNIX &
Internet Security, O’Reilly & Associates, 1996.

[5] A. Ghosh, V. Shah, and M. Schmid, “Testing the
Robustness of Windows NT Software”, 1998
International Symposium on Software Reliability
Engineering (ISSRE’98), Paderborn, Germany,
November 1998.

[6] A. Ghosh,V. Shah,andM. Schmid,“An Approachfor
Analyzing the Robustnessof Windows NT Software”,
21stNational InformationSystemsSecurityConference,
Crystal City, VA, October 1998.

[7] G. Meyers, The Art of Software Testing, Wiley
Publishing, New York, 1979.

[8] B. P.Miller, D. Koski,C.P.Lee,V. Maganty,R.Murthy,
A. Natarajan, J. Steidl, “Fuzz Revisited: A Re-
examinationof the Reliability of UNIX Utilities and
Services”, University of Wisconsin-Madison,1995.
Appears(in Germantranslation)as“EmpirischeStudie
zur Zuverlasskeit von UNIX-Utilities: Nichts dazu
Gerlernt”,iX, September 1995.
ftp://grilled.cs.wisc.edu/technical_papers

/fuzz-revisted.ps.

[9] B. P. Miller, L. Fredriksen,B. So,“An EmpiricalStudy
of theReliability of UNIX Utilities”, Communicationsof
the ACM 33, 12, December1990, pp. 32-44. Also
appears in German translation as “Fatale
Fehlerträchtigkeit: Eine Empirische Studie zur
Zuverlassigkeitvon UNIX-Utilities”, iX (March 1991).

ftp://grilled.cs.wisc.edu/technical_papers

/fuzz.ps.

[10] C. Petzold,Programming Windows, 5th ed.,Microsoft
Press, Redmond, WA, 1999.

[11] J. Richter, Advanced Windows, 3rd ed., Microsoft
Press, Redmond, WA, 1997.

[12] D. Solomon,Inside Windows NT, 2nd ed., Microsoft
Press, Redmond, WA, 1998.

[13] J.A. WhittakerandA. Jorgensen,“Why SoftwareFails”,
TechnicalReport, FloridaInstituteof Technology,1999,
http://se.fit.edu/papers/SwFails.pdf.


	An Empirical Study of the Robustness of Windows NT Applications Using Random Testing ��
	Abstract
	1 Introduction
	2 Random Testing on the Windows NT Platform
	Figure�1: Windows NT Architectural Components for User Input
	Figure�2: Insertion of Random Input

	3 Experimental Method
	3.1 Applications and Platform
	3.2 The Fuzz Testing Tool
	1. Obtain the process ID of the application to be tested (either by launching the application its...
	2. Determine the main window of the target application along with its desktop placement coordinates.
	3. Using one of SendMessage, PostMessage, or keybd_event and mouse_event, deliver random input to...

	3.3 The Tests

	4 Results
	4.1 Quantitative Results
	Figure�3: Summary of Windows NT 4.0 Test Results l = Crash, m = Hang. Note that if an application...
	Figure�4: Summary of Windows 2000 Test Results l = Crash, m = Hang. Note that if an application b...

	4.2 Causes of Crashes
	Emacs Crash Analysis
	Mozilla Crash Analysis

	5 Analysis and Conclusions
	1. Full testing of the applications on Windows 2000: This goal is not hard to achieve, and we ant...
	2. Explanation of the random Win32 message results: We were surprised that the PostMessage and Se...
	3. Explanation of the Windows NT 4.0 vs. Windows 2000 results: Given that we test identical versi...

	6 Related Work
	Source Code
	Acknowledgments
	References
	[1] M. Carey, D. DeWitt, and J. Naughton, “The 007 Benchmark”, 1993 ACM SIGMOD International Conf...
	[2] G.J. Carrette, “CRASHME: Random Input Testing”, http://people.delphi.com/gjc/crashme.html, 1996.
	[3] J. W. Duran and S.C. Ntafos, “An Evaluation of Random Testing”, IEEE Transactions on Software...
	[4] S. Garfinkel and G. Spafford, Practical UNIX & Internet Security, O’Reilly & Associates, 1996.
	[5] A. Ghosh, V. Shah, and M. Schmid, “Testing the Robustness of Windows NT Software”, 1998 Inter...
	[6] A. Ghosh, V. Shah, and M. Schmid, “An Approach for Analyzing the Robustness of Windows NT Sof...
	[7] G. Meyers, The Art of Software Testing, Wiley Publishing, New York, 1979.
	[8] B. P. Miller, D. Koski, C. P. Lee, V. Maganty, R. Murthy, A. Natarajan, J. Steidl, “Fuzz Revi...
	[9] B. P. Miller, L. Fredriksen, B. So, “An Empirical Study of the Reliability of UNIX Utilities”...
	[10] C. Petzold, Programming Windows, 5th ed., Microsoft Press, Redmond, WA, 1999.
	[11] J. Richter, Advanced Windows, 3rd ed., Microsoft Press, Redmond, WA, 1997.
	[12] D. Solomon, Inside Windows NT, 2nd ed., Microsoft Press, Redmond, WA, 1998.
	[13] J. A. Whittaker and A. Jorgensen, “Why Software Fails”, Technical Report, Florida Institute ...




