Persistent Intelligent Names: Monikers

Overview

A moniker is simply an object that supports the IMoniker interface. IMoniker interface includes the IPersist�Stream interface; thus, monikers can be saved to and loaded from streams. The persis�tent form of a mon�i�ker contains the class identifier (CLSID) of its implementation which is used during the loading pro�c�ess, and so new kinds of monikers can be created transparently to clients.

The most basic operation in IMoniker interface is that of binding to the object to which it points, which is supported by IMoniker::BindTo�Ob�ject. This function takes as a parameter the interface identifier by which the caller wishes to talk to the ob�ject, runs whatever algorithm is necessary in order to locate the object, then returns a pointer of that in�ter�face type to the caller.� Each moniker class can store arbitrary data its persistent representation, and can run arbitrary code at binding time.

If there is an identifiable piece of per�sis�tent storage in which the object referenced by the moniker is stored, then IMon�i�ker�::�Bind�To�Stor�age can be used to gain access to it. Many objects have such identifiable storage, but some, such as the objects which are the ranges on a Microsoft Excel spread�sheet do not. (These ranges exist only as a part of Excel’s data structures; they are in effect a figment of Excel’s imagination and are only reified on demand for clients.)

In most cases, a particular moniker class is designed to be one step along the path to the information source in question. These pieces can be composed together to form a moniker which represents the com�plete path. For example, the moniker stored inside a chart that refers to its underlying data in a spreadsheet might be a composite moniker formed from three pieces:

�

Figure �seq figure�2�. Moniker in a chart referring to a spreadsheet from which it extracts data.

This composite is itself a moniker; it just happens to be a moniker which is a sequenced collection of other monikers. The composition here is generic in that it has no knowledge of the pieces involved other than that they are monikers.

Most monikers have a textual representation which is meaningful to the user; this can be retrieved with IMon�i�ker::GetDisplayName. The API function MkParseDisplayName goes the other direction: it can turn a textual display name into the appropriate moniker, though beware that in general this is operation is as ex�pen�sive as actually binding to the object.

Monikers can compare themselves to other monikers using IMoniker::IsEqual. A hash value useful for storing monikers in lookup tables is available through IMoniker::Hash. Monikers are not a total order or even a partial order; therefore, monikers cannot be stored in tables that rely on sorting for retrieval; use hashing instead (it is inappropriate to use the display name of a moniker for sorting, since the display name may not reflect the totality of internal state of the moniker).

The earliest time after which the object to which the moniker points is known not to have changed can be obtained with IMoniker::�Get�Time�OfLastChange. This is not necessarily the time of last change of the object; rather, it is the best cheaply available approximation thereto.

A moniker can be asked to re-write itself into another equivalent moniker by calling IMoniker::�Re��duce. This function returns a new moniker that will bind to the same object, but does so in a more efficient way. This capability has several uses:

�SYMBOL 183 \f "Symbol" \s 10 \h�	It enables the construction of user-defined macros or aliases as new kinds of moniker classes. When reduced, the moniker to which the macro evaluates is returned.

�SYMBOL 183 \f "Symbol" \s 10 \h�	It enables the construction of a kind of moniker which tracks data as it moves about. When reduced, the moniker of the data in its current location is returned.

�SYMBOL 183 \f "Symbol" \s 10 \h�	On file systems such as Macintosh System 7 which support an ID-based method of accessing files which is independent of file names, a File Moniker could be reduced to a moniker which con�tains one of these IDs.

Figure �seq figure EvaluationExample�3� shows a (somewhat con�trived) example of moniker reduction. It illustrates the reduction of a moniker which names the net income entry for this year’s report in the “Projects” directory of the current user’s home directory.

��Figure �seq figure�3�. Reduction of a moniker showing the objects connected to during reduction.

(Note that the particular classes of monikers used here are for illustrative purposes only.) As we can see, many monikers in this example are reduced to something completely different, and some bind to some�thing during their reduction, but some do not. For example, to reduce the alias “Home”, the reduction must access the infor�mation that “Home” was an alias for “\\server\share\fred”.

The process of moniker reduction may also be tied to a global table called the Running Object Table�xe "Running Object Table"�. The Running Object Table serves as the place where monikers in the process of binding look to see if they are already running or not.

Pointers to instances of IMoniker interface can be marshaled to other processes, just as any other inter�face pointer can. Many monikers are of the nature that they are immutable once created and that they maintain no object state outside themselves. Item Monikers are an example of a class of such monikers. These monikers, which can be replicated at will, will usually want to support custom marshaling (see IMarshal interface) so as to simply serialize themselves and de-serialize themselves in the destination con�text (see IPersistStream regarding serialization). This is referred to as marshaling an object by value.

IMoniker interface and Core Monikers�xe "IMoniker:definition"�

This section describes the details of IMoniker interface and related interfaces. In addition, it discusses the various kinds of monikers that are provide as part of every COM implementation.

Some moniker errors have associated with them some extended information. See IBindCtxt::Register�Ob�ject�Param for more details.

IMoniker interface

We’ll now look in detail at IMoniker interface its supporting functions and structures.

interface IMoniker : IPersistStream {

	HRESULT	BindToObject(pbc, pmkToLeft, iidResult, ppvResult);

	HRESULT	BindToStorage(pbc, pmkToLeft, iid, ppvObj);

	HRESULT	Reduce(pbc, dwReduceHowFar, ppmkToLeft, ppmkReduced);

	HRESULT	ComposeWith(pmkRight, fOnlyIfNotGeneric, ppmkComposite)

	HRESULT	Enum(fForward, ppenmMoniker);

	HRESULT	IsEqual(pmkOtherMoniker);

	HRESULT	Hash(pdwHash);

	HRESULT	IsRunning(pbc, pmkToLeft, pmkNewlyRunning);

	HRESULT	GetTimeOfLastChange(pbc, pmkToLeft, pfiletime);

	HRESULT	Inverse(ppmk);

	HRESULT	CommonPrefixWith(pmkOther, ppmkPrefix);

	HRESULT	RelativePathTo(pmkOther, ppmkRelPath);

	HRESULT	GetDisplayName(pbc, pmkToLeft, lplpszDisplayName);

	HRESULT	ParseDisplayName(pbc, pmkToLeft, lpszDisplayName, pcchEaten, ppmkOut);

	HRESULT	IsSystemMoniker(pdwMksys);

	};

HRESULT BindMoniker(pmk, reserved, iidResult, ppvResult);

HRESULT CreateBindCtx(reserved, ppbc);

HRESULT MkParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmk);

interface IParseDisplayName : IUnknown {

	HRESULT	ParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmkOut);

	};

HRESULT CreateGenericComposite(pmkFirst, pmkRest, ppmkComposite);	

HRESULT CreateFileMoniker(lpszPathName, ppmk);

HRESULT CreateItemMoniker(lpszDelim, lpszItem, ppmk);

HRESULT CreateAntiMoniker(ppmk);

HRESULT CreatePointerMoniker(punk, ppmk);

IMoniker::BindToObject�xe "IMoniker:functions:BindToObject"�

HRESULT IMoniker::BindToObject(pbc, pmkToLeft, iidResult, ppvResult)

This is the workhorse function in IMoniker interface. Locate and load the object semantically referred to by this moniker according to the interface indicated by iidResult and return the object through ppvResult. After this call has returned, the semantics of the returned interface, whatever they are, should be fully func�tion�al.

In general, each kind of moniker is designed to be used as one piece in a composite which gives the com�plete path to the object in question. In this composite, any given piece has a certain prefix of the composite to its left, and a certain suffix to its right. If IMoniker::BindToObject is invoked on the given piece, then most often the implementation of IMoniker::BindToObject will require certain services of the object indicated by the prefix to its left. Item monikers, for example, require IOleItemContainer interface of the object to their left; see below. The Item Moniker implementation of IMoniker::BindToObject recursively calls pmkToLeft->Bind�To�Ob�ject in order to obtain this interface. Other implementations of IMoniker::BindToObject might instead invoke pmkToLeft->BindToStorage if they need access not to the object itself, but to its persistent storage.

�

Figure �seq figure�4�. Interface calculus of moniker pieces

In situations where the caller of IMoniker::BindToObject does not have a moniker for the object on the left, but instead has the object itself, a Pointer Moniker can be used to wrap the object pointer so that the moniker may be bound.

In situations where the moniker in fact does not need services of the moniker to its left, yet one is provided by the caller nevertheless, no error should occur; the moniker should simply ignore the needless moniker to its left.

If the object indicated by the moniker does not exist, then the error MK_E_NOOBJECT is returned.

In general, binding a moniker can be quite a complicated process, since it may need to launch servers, open files, etc. This often may involve binding to other objects, and it is often the case that binding pieces of the composite to the right of the present piece will require the same other objects. In order to avoid load�ing the object, releasing it, then having it loaded again later, IMoniker::BindToObject can use the bind context passed through the pbc parameter in order to defer releasing the object until the binding process overall is complete. See IBindCtx::RegisterObjectBound for details.

The bind context also contains a deadline time by which the caller would like the binding process to com�plete, or fail with the error MK_E_EXCEEDEDDEADLINE if it cannot. This capability is not often used with IMoniker::BindToObject; it is more often used with other IMoniker functions such as IMoniker::GetTimeOfLast�Change. Nevertheless, IMoniker::BindToObject implementations should (heuristically) honor the request. See IBindCtx::�Get�Bind�Op�tions for details.

Usually, for most monikers, binding a second time will return the same running object as binding the first time, rather than reloading it again from passive backing store. This functionality is supported with the Running Object Table, which is described in detail later in this chapter. Basically, the Running Object Table is a lookup table keyed by a mon�i�ker whose values are pointers to the corresponding now-running object. As objects become running, the register themselves in this table. Implementations of IMoniker::BindToObject can use this table to shortcut the binding process if the object to which they point is already running. More precisely, if the passed pmkToLeft parameter is NULL (and this is not an error; that is, the moniker does not require something to its left), then the moniker should fully reduce itself, then look itself up in the Running Object Table and simply return the pointer to the object found there. If the pmkToLeft parameter is non-NULL, then it is the responsibility of the caller to handle this situation; the Bind�To�Ob�ject() implementation should not consult the Running Object Table.� The Running Object Table is access�ible from the bind context using IBind�Ctx::�GetRunningObjectTable, an implementation of IMoniker::BindToObject should not use GetRunningObjectTable().

Argument	Type	Description

pbc	IBindCtx*	the bind context to be used for this binding operation.

pmkToLeft	IMoniker*	the moniker of the object to the left of this moniker.

iidResult	REFIID	the interface by which the caller wishes to connect to the ob�ject.

ppvResult	void**	on successful return, a pointer to the instantiated object is placed here, unless BINDFLAGS_JUSTTESTEXISTENCE was specified in the binding options, in which case NULL may be returned instead.

return value	HRESULT	S_OK, MK_E_NOOBJECT, STG_E_ACCESSDENIED, MK_E_EXCEED�ED�DEAD�LINE, MK_E_CONNECTMANUALLY, MK_E_INTERMEDIATE�IN�TER�FACE�NOTSUPPORTED, E_OUTOFMEMORY, E_NOINTERFACE

BindMoniker�xe "BindMoniker"�

HRESULT BindMoniker(pmk, reserved, iidResult, ppvResult)

Bind a moniker with the specified interface and return the result. This is strictly a helper function in that it uses no functionality which is not also available publicly. It has roughly the following implementation:

IBindCtx pbc;

CreateBindCtx(0, &pbc);

pmk->BindToObject(pbc, NULL, iidResult, ppvResult);

pbc->Release();

Argument	Type	Description

pmk	IMoniker*	the moniker which is to be bound.

reserved	DWORD	reserved for future use; must be zero.

iidResult	REFIID	the interface by which the caller wishes to connect to the ob�ject.

ppvResult	void**	on successful return, a pointer to the resulting object is placed here.

return value	HRESULT	S_OK, union of IMoniker::BindToObject() & CreateBindCtx() errors

IMoniker::BindToStorage�xe "IMoniker:functions:BindToStorage"�

HRESULT IMoniker::BindToStorage(pbc, pmkToLeft, iid, ppvObj)

Return access to the persistent storage of the receiver using the given interface, rather than access to the object itself, which is what IMoniker::BindToObject returns. Consider, for example, a moniker which re�fers to spread�sheet em�bed�ded in a word processing document, such as:

[c:\foo\bar.doc]File Moniker ° [summaryTable]Item Moniker

Calling IMoniker::BindToObject on this composite will enable us to talk to the spreadsheet; calling IMon�iker::BindToStorage will let us to talk to the IStorage instance in which it resides.

IMoniker::BindToStorage will most often be called during the right-to-left recursive process of IMoni�ker�::�BindToObject in�voked on a Generic Composite Moniker. Sometimes it is the case that monikers in the tail of the com�po�site don’t require access to the object on their left; they merely require access to its persistent storage. In effect, these monikers can be bound to without also binding to the objects of the monikers to their left, po�ten�tially a much more efficient operation.

Some objects do not have an independently identifiable piece of storage. These sorts of objects are really only a object-veneer on the internal state of their container. Examples include named cell ranges inside an Excel work�sheet, and fragments of a Windows Word document delimited by bookmarks. Attempting to call IMoniker::BindToStorage on a moniker which indicates one of these kinds of objects will fail with the error MK_E_NOSTORAGE.

Use of the bind context in IMoniker::BindToStorage is the same as in IMoniker::BindToObject.

Argument	Type	Description

pbc	IBindCtx*	the binding context for this binding operation.

iid	REFIID	the interface by which we wish to bind to this storage. Common interfaces passed here include IStorage, IStream, and ILockBytes.

ppvObj	void**	On successful return, a pointer to the instantiated storage is placed here, unless BINDFLAGS_JUSTTESTEXISTENCE was specified in the binding options, in which case NULL may be returned instead.

return value	HRESULT	S_OK, MK_E_NOSTORAGE, MK_E_EXCEEDEDDEADLINE, MK_E_CON�NECTMANUALLY, E_NOINTERFACE, MK_E_INTERMEDIATE�IN�TER�FACENOTSUPPORTED, STG_E_ACCESSDENIED

IMoniker::Reduce�xe "IMoniker:functions:Reduce"�

HRESULT IMoniker::Reduce(pbc, dwReduceHowFar, ppmkToLeft, ppmkReduced)

The reduction of monikers was reviewed and illustrated in the synopsis above; this is the function that actually carries it out. Return a more efficient or equally efficient moniker that refers to the same object as does this mon�iker. Many monikers, if not most, will simply reduce to themselves, since they cannot be re�written any further. A moniker which reduces to itself indicates this by returning itself through ppmk�Re�duced and the returning status code MK_S_REDUCED_TO_SELF. A moniker which reduces to nothing should return NULL, and should return the status code S_OK.

If the moniker does not reduce to itself, then this function does not reduce this moniker in-place; instead, it returns a new moniker.

The reduction of a moniker which is a composite of other monikers repeatedly reduces the pieces of which it is composed until they all reduce to themselves, then returns the composite of the reduced pieces. dwReduceHowFar controls the stopping point of the reduction process. It controls to what extent the re�duc�tion should be carried out. It has the following legal values.

typedef enum tagMKRREDUCE {

	MKRREDUCE_ONE			= 3<<16,

	MKRREDUCE_TOUSER			= 2<<16,

	MKRREDUCE_THROUGUSER	= 1<<16,

	MKRREDUCE_ALL 				= 0

	} MKRREDUCE�xe "MKRREDUCE"�;

These values have the following semantics.

Value		Description

MKRREDUCE_ONE�xe "MKRREDUCE_ONE"�	Perform only one step of reduction on this moniker. In general, the caller will have to have specific knowledge as to the particular kind of moniker in question in order to be able to usefully take advantage of this option.

MKRREDUCE_TOUSER�xe "MKRREDUCE_TOUSER"�	Reduce this moniker to the first point where it first is of the form where it represents something that the user conceptualizes as being the identity of a persistent object. For example, a file name would qualify, but a macro or an alias would not. If no such point exists, then this option should be treated as MKRREDUCE_ALL.

MKRREDUCE_THROUGUSER�xe "MKRREDUCE_THROUGHUSER"�	Reduce this moniker to the point where any further reduction would reduce it to a form which the user does not conceptualize as being the identity of a persistent object. Often, this is the same stage as MKRREDUCE_TOUSER.

MKRREDUCE_ALL	�xe "MKRREDUCE_ALL"�	Reduce the entire moniker, then, if needed reduce it again and again to the point where it reduces to simply itself.

When determining whether they have reduced themselves as far as requested, IMoniker::Reduce imple�men�tations should not compare for equality against dwReduceHowFar, as we wish to allow for the possi�bility that intermediate levels of reduction will be introduced in the future. Instead, IMoniker::Reduce imple�menta�tions should reduce themselves at least as far as is requested.

An important concept in the above is the idea of a moniker that the user thinks of as the name of a persist�ent object; a persistent identity. The intent is to provide the ability to programmatically reduce a moniker to canonical forms whose display names would be recognizable to the user. Paths in the file system, book�marks in word-processing documents, and range names in spreadsheets are all examples of user-identities. In contrast, neither a macro nor an alias encapsulated in a moniker, nor an inode-like file ID moniker are such identities.

The bind context parameter is used as in IMoniker::BindToObject. In particular, implementations of IMon�iker::Reduce should pay attention to the time deadline imposed by the caller and the reporting of the moniker of the object that, if it had been running, would have allowed the reduction to progress fur�ther. See IBindCtx below.

Argument	Type	Description

pbc	IBindCtx*	The bind context to use in this operation.

dwReduceHowFar	DWORD	Indicates to what degree this moniker should be reduced; see above.

ppmkToLeft	IMoniker**	On entry, the moniker which is the prefix of this one in the composite in which it is found. On exit, the pointer is either NULL or non-NULL. Non-NULL indicates that what was previously thought of as the prefix should be disregarded and the moniker returned through ppmkToLeft considered the prefix in its place (this is very rare). NULL indicates that the prefix should not be so replaced. Thus, most monikers will NULL out this parameter before returning.

ppmkReduced	IMoniker**	On exit, the reduced form of this moniker. Possibly NULL.

return value	HRESULT	S_OK, MK_S_REDUCED_TO_SELF, MK_E_EXCEEDED�DEADLINE.

IMoniker::ComposeWith�xe "IMoniker:functions:ComposeWith"�

HRESULT IMoniker::ComposeWith(pmkRight, fOnlyIfNotGeneric, ppmkComposite)

Return a new moniker which is a composite formed with this moniker on the left and pmkRight on the right. It is using this operation that the pieces of the path to an object are cobbled together to form the overall full path.

There are two distinct kinds of composite monikers: those that know nothing about their pieces other than that they are monikers, and those that know more. We have been terming the former a generic composite; we have seen several examples above. An example of the latter might be that of the result of composing a File Moniker containing a relative path on to the end of another File Moniker: the result could be a new File Moniker containing the complete path.� There is only a need for one implementation of a Generic Composite Moniker, and this has been provided; see CreateGenericComposite(). Non-generic composi�tion is useful for monikers that are capable of collapsing a path within a storage domain to a more effic�i�ent rep�resentation in a subsequent IMoniker::Reduce operation. None of the core monikers on Win32 are capable of this, but an implementation of File Moniker which could collapse down to a inode-like file ID might be an example of such a behavior.

Each moniker class in general will have a (possibly empty) set of other kinds of special monikers that can be com�posed onto the end of it in a non-generic way; the moniker class has some sort of intimate knowl�edge about the semantics of these special monikers, more than simply that they are monikers. Each IMoniker::Com�poseWith implementation will examine pmk�Right to see if it is such a special moniker for this imple�mentation. Often, it will ask pmkRight for its class, but other possibilities exist, such as using Query�Interface. A very common case of such special monikers are Anti Monikers.

If pmkRight is special, then the IMoniker::ComposeWith implementation does whatever is approp�riate for that special case. If it is not, then fOnlyIfNotGeneric controls what should occur. If fOnlyIfNotGeneric is true, then NULL should be passed back through ppmkComposite and the status MK_E_NEEDGENERIC re�turned; if fOnlyIfNot�Gen�eric is false, then a generic composite should be returned using Create��Gen�er�ic�Composite. Most callers of IMoniker::ComposeWith should set fOnlyIfNotGeneric to false.�

In any situation that pmkRight completely annihilates the receiver (i.e.: irrespective of fOnly�If�Not�Gener�ic), and so the resulting composite is empty, NULL should be passed back through ppmkComposite and the status S_OK returned.

The pieces of a moniker that have been composed together can be picked apart using IMoniker::Enum. On a generic composite, this enumerates the monikers contained within it. On other monikers, which par�tic�ular pieces are returned is implementation-defined.

Composition of monikers is an associative operation. That is, if A, B, and C are monikers, then

(A �SYMBOL 176 \f "Symbol"� B) �SYMBOL 176 \f "Symbol"� C

is always equal to

A �SYMBOL 176 \f "Symbol"� (B �SYMBOL 176 \f "Symbol"� C)

where �SYMBOL 176 \f "Symbol"� represents the composition operation. Each implementation of IMoniker::ComposeWith must main�tain this invariant.

Argument	Type	Description

pmkRight	IMoniker*	the moniker to compose onto the end of the receiver.

fOnlyIfNotGeneric	BOOL	controls what should be done in the case that the way for form a com�posite is to use a generic one.

ppmkComposite	IMoniker*	on exit, the resulting composite moniker. Possibly NULL.

return value	HRESULT	S_OK, MK_E_NEEDGENERIC

IMoniker::Enum�xe "IMoniker:functions:Enum"�

HRESULT IMoniker::Enum(fForward, ppenmMoniker)

Enumerate the monikers of which the receiver is logically a composite. On a generic composite, this enu�m�erates the pieces of which the composite is composed. On other monikers, the semantics of the pieces of which it is a composite are implementation-defined. For example, enumerating the pieces of a File Moniker might pick apart the internally stored path name into its components, even though they are not stored in�ternally as actual separate monikers. Many monikers have no discernible internal structure; they will simply pass back NULL instead of an enumerator.

IEnumMoniker is an enumerator that supports the enum�er�a�tion of items which are monikers. It is defined as:

typedef Enum<IMoniker*> IEnumMoniker�xe "IEnumMoniker"�;

which is shorthand for

interface IEnumMoniker : IUnknown {

	virtual	HRESULT	Next(ULONG celt, IMoniker* rgelt[], ULONG* pceltFetched);

	virtual	HRESULT	Skip(ULONG celt);

	virtual	HRESULT	Reset();

	virtual	HRESULT	Clone(IEnumMoniker** ppenm);

	};

Argument	Type	Description

fForward	BOOL	If true, then the enumeration should be done in the normal order. If false, then the order should be the reverse of the order enumerated by the normal order.

ppenmMoniker	IEnumMoniker**	On exit, the returned enumerator. May be NULL, signifying that there is nothing to enumerate.

return value	HRESULT	S_OK.

IMoniker::IsEqual�xe "IMoniker:functions:IsEqual"�

HRESULT IMoniker::IsEqual(pmkOtherMoniker)

The most important use of this function is in the implementation of the Running Object Table. As dis�cussed in detail later, this table has two distinct but closely related roles. First, using a moniker, entries in the Running Object Table indicate those objects which are presently now logically running and to which auto-link reconnections should be made. Second, for those objects which are actually running (have an object pointer), it provides a means given their moniker to actually connect to the appropriate running ob�ject.

The moniker implementation should not reduce itself before carrying out the compare operation.

Two monikers which can compare as equal in either order must hash to the same value; see IMoniker�::�Hash.

Argument	Type	Description

pmkOtherMoniker	IMoniker*	the other moniker with whom we would like to compare the receiver.

return value	HRESULT	S_OK, S_FALSE

IMoniker::Hash�xe "IMoniker:functions:Hash"�

HRESULT IMoniker::Hash(pdwHash)

Return a 32 bit integer associated with this moniker. This integer is useful for maintaining tables of mon�i�kers: the moniker can be hashed to determine a hash bucket in the table, then compared with IMoniker::IsEqual against all the monikers presently in that hash bucket.

It must always be the case that two monikers that compare as equal in either order hash to the same value. In effect, implementations of IMoniker::IsEqual() and IMoniker::Hash are inti�mate with one another; they must always be written together.

The value returned by IMoniker::Hash is invariant under marshaling: if a moniker is marshaled to a new context, then IMoniker::Hash invoked on the unmarshaled moniker in the new context must return the same value as IMoniker::Hash invoked on the original moniker. This is the only way that a global table of monikers such as the Running Object Table can be maintained in shared space, yet accessed from many processes. The obvious implementation technique this indicates is that IMoniker::Hash should not rely on the memory address of the moniker, but only its internal state.

Argument	Type	Description

pdwHash	DWORD*	the place in which to put the returned hash value.

return value	HRESULT	S_OK

IMoniker::IsRunning�xe "IMoniker:functions:IsRunning"�

HRESULT IMoniker::IsRunning(pbc, pmkToLeft, pmkNewlyRunning)

Answer as to whether this moniker is in fact running. As usual, the Running Object Table in whose context this question is to be answered is obtained by this moniker from the Bind context. pmkToLeft is the moniker to the left of this object in the generic composite in which it is found, if any.

If non-NULL, pmkNewly�Run�ning is the moniker which has most recently been added to the Running Object Table; the implementation of IMoniker::IsRunning can assume that without this object in the Running Object Table, that IMoniker::IsRunning would have reported that it was not running; thus, the only way that it can now be running is if this newly running moniker is in fact itself! This allows for some n2-to-n reductions in algorithms that use monikers. (If the moniker implementation chose to ignore pmkNewlyRunning, no harm would come: this moniker is in fact in the Running Object Table)

Implementations of this method in various kinds of moniker classes are roughly as follows:

Generic Composite Moniker

if (pmkToLeft != NULL)

	return (pmkToLeft->ComposeWith(this)) -> IsRunning(pbc, NULL, pmkNewlyRunning);

if (pmkNewlyRunning != NULL) {

	if (pmkNewlyRunning -> IsEqual(this) == NOERROR)

		return NOERROR;

	}

else if (pRunningObjectTable -> IsRunning(this) == NOERROR)

	return NOERROR;

// otherwise, forward it on to my last element.

return this->Last()->IsRunning(pbc, this->AllButLast(), pmkNewlyRunning)

Any moniker whose class does not do any wildcard matching

if (pmkToLeft == NULL) {

	if (pmkNewlyRunning != NULL)

		return pmkNewlyRunning -> IsEqual(this);

	else

		return pRunningObjectTable -> IsRunning(this);

	}

else

	return ResultFromScode(S_FALSE);	// If I was running, then Generic Composite would have caught it.

A moniker class which has a wild card entry which always matches any instance of the moniker class: if the wild card is present, then all instances of the moniker class to the right of the same other moniker (that is, with the same moniker to their left) are deemed to be running. Such a moniker class might be reasonably used, for example, to match all the addressable ranges in a given spreadsheet.

if (pmkToLeft == NULL) {

	if (pmkNewlyRunning != NULL)

		return pmkNewlyRunning->IsEqual(this) == NOERROR

			|| pmkNewlyRunning->IsEqual(my wild card moniker) == NOERROR;

	if (pRunningObjectTable -> IsRunning(this) == NOERROR)

		return NOERROR;

	return pRunningObjectTable -> IsRunning(my wild card moniker);

	}

else

	return pmkToLeft->ComposeWith(my wild card moniker) -> IsRunning(pbc, NULL, pmkNewlyRunning);

A moniker class which has a wild card entry which matches against some of the objects, but only the ones which are in fact actually currently running. We illustrate here specifically the behaviour of Item Monikers�xe "Item Moniker"�.

if (pmkToLeft == NULL) {

	if (pmkNewlyRunning != NULL) {

		if (pmkNewlyRunning->IsEqual(this) == NOERROR)

			return NOERROR;

		if (pmkNewlyRunning->IsEqual(my wild card moniker) != NOERROR)

			return ResultFromScode(S_FALSE);

		goto TestBind:

		}

	}

if (pmkToLeft->ComposeWith(my wild card moniker)->IsRunning(pbc, NULL, pmkNewlyRunning) != NOERROR)

	return ResultFromScode(S_FALSE);

TestBind:

// In general, connect to the container and ask whether the object is running. The use of

// IOleItemContainer here is Item Moniker-specific, but the theme is a general one.

IOleItemContainer *pcont;

pmkToLeft->BindToObject(pbc, NULL, IID_IOleItemContainer, &pcont);

return pcont->IsRunning(szItemString);

The arguments to this function are as follows:

Argument	Type	Description

pbc	IBindCtx*	the usual bind context

pmkToLeft	IMoniker*	the moniker to the left of this one in the composite in which it is found.

pmkNewlyRunning	IMoniker*	may be NULL. If non-NULL, then this is the moniker which has been most recently added to the Running Object Table. In this case, IMoniker::IsRunning implemen�tations may assume that without this moniker in the R.O.T. that IMoniker::IsRunning would return S_FALSE.

return value	HRESULT	S_OK, S_FALSE

IMoniker::GetTimeOfLastChange�xe "IMoniker:functions:GetTimeOfLastChange"�

HRESULT IMoniker::GetTimeOfLastChange(pbc, pmkToLeft, pfiletime)

Answer the earliest time after which the object pointed to by this moniker is known not to have changed.

The purpose of this function is to support the ability to determine whether higher-level objects based on monikers are up-to-date or not. An example of higher level objects are the link objects in OLE Compound Documents.

The returned time of change is reported using a FILETIME�xe "FILETIME"�. A FILETIME is a 64-bit value indicating a time in units of 100 nanoseconds, with an origin in 1601.� A resolution of 100 nanoseconds allows us to deal with very fast-changing data; allocating this many bits gives us a range of tens of thousands of years. It is not expected that most change times in objects will be actually be internally recorded with this precision and range; they only need be reported with such.

If the time of last change is unavailable, either because the deadline was exceeded or otherwise, then it is recommended that a FILETIME of {dwLowDateTime,dwHighDateTime} = {0xFFFFFFFF,0x7FFFFFFF} (note the 0x7 to avoid accidental unsigned / signed confusions) should be passed back. If the deadline was exceeded, then the status MK_E_EX�CEEDED�DEADLINE should be returned. If the time of change is unavailable, and would not be available no matter what deadline were used, then MK_E_UNAVAILABLE should be returned. Other�wise, S_OK should be returned.

If pmkToLeft is NULL, then this function should generally first check for a recorded change-time in the Running Object Table with IRunningOb�ject�Table::GetTimeOfLastChange before proceeding with other strat�egies. Moniker classes that support wildcards will have to take into consideration exactly what does get put in the Running Object Table and look for the appropriate thing; since Generic Composite Monikers know nothing of wild�cards, they may even need to do that in the non-NULL pmkToLeft case. See IMoni�ker::Is�Run�ning.

Argument	Type	Description

pbc	IBindCtx*	the binding context for this operation.

pmkToLeft	IMoniker*	the moniker to the left of this one in the composite in which it is found.

pfiletime	FILETIME*	the place in which the time of last change should be reported.

return value	HRESULT	S_OK, MK_E_EXCEEDEDDEADLINE, MK_E_UNAVAILABLE, MK_E_CONNECTMANUALLY

IMoniker::Inverse�xe "IMoniker:functions:Inverse"�

HRESULT IMoniker::Inverse(ppmk)

Answer a moniker that when composed onto the end of this moniker or one of similar structure will an�nihilate it; that is, will compose to nothing. IMoniker::Inverse will be needed in implementations of IMoniker::RelativePathTo, which are im�port�ant for supporting monikers that track information as it moves about.

This is the abstract generalization of the “..” operation in traditional file systems. For example a File Moniker which represented the path “a\b\c\d” would have as its inverse a moniker containing the path “..\..\..\..”, since “a\b\c\d” composed with “..\..\..\..” yields nothing.

Notice that an the inverse of a moniker does not annihilate just that particular moniker, but all monikers with a similar structure, where structure is of course interpreted with respect to the particular moniker. Thus, the inverse of a Generic Composite Moniker is the reverse composite of the inverse of its pieces. Monikers which are non-generic composites (such as File Monikers are presently implemented) will also have non-trivial inverses, as we just saw. How�ever, there will be many kinds of moniker whose inverse is trivial: the moniker adds one more piece to an existing structure; its inverse is merely a moniker that removes the last piece of the existing struc�ture. A moniker that when composed onto the end of a generic moniker removes the last piece is provided; see CreateAntiMoniker. Monikers with no internal structure can return one of these as their inverse.

Not all monikers have inverses. The inverse of an anti-moniker, for example, does not exist. Neither will the inverses of most monikers which are themselves inverses. It is conceivable that other monikers do not have inverses as well; a macro moniker might be an example. Monikers which have no inverse cannot have relative paths formed from things inside the objects they denote to things outside.

Argument	Type	Description

ppmk	IMoniker**	the place to return the inverse moniker.

return value	HRESULT	S_OK, MK_E_NOINVERSE.

IMoniker::CommonPrefixWith�xe "IMoniker:functions:CommonPrefixWith"�

HRESULT IMoniker::CommonPrefixWith(pmkOther, ppmkPrefix)

Answer the longest common prefix that the receiver shares with the moniker pmkOther. This function�al�ity is useful in constructing relative paths, and for performing some of the calculus on monikers needed by the Edit / Links dialog in OLE Documents scenarios.

Argument	Type	Description

pmkOther	IMoniker*	the moniker with whom we are determine the common prefix.

ppmkPrefix	IMoniker*	the place to return the common prefix moniker. NULL is returned only in the case that the common prefix does not exist.

return value	HRESULT	MK_S_ME, indicating that the receiver as a whole is the common prefix. MK_S_HIM, indicating that pmkOther as a whole is the common prefix. MK_S_US, indicating that in fact the two monikers are equal. S_OK, indicating that the common prefix exists but is neither the receiver nor pmkOther. MK_S_NOPREFIX indicating that no common prefix exists.

MonikerCommonPrefixWith�xe "MonikerCommonPrefixWith"�

HRESULT MonikerCommonPrefixWith(pmkThis, pmkOther, ppmkPrefix)

This function is intended solely for the use of moniker implementors; clients of monikers “need not apply;” clients should instead compute the common prefix between two monikers by using

pmkSrc->CommonPrefixWith(pmkOther, ppmkPrefix);

Implementations of IMoniker::CommonPrefixWith necessarily call MonikerCommonPrefixWith as part of their internal processing. Such a method should first check to see if the other moniker is a type that it recognizes and handles specially. If not, it should call MonikerCommonPrefixWith, passing itself as pmkSrc and the other moniker as pmkDest. MonikerCommonPrefixWith will handle the generic com�p�osite cases correctly.

Argument	Type	Description

pmkThis	IMoniker*	the starting moniker for the computation of the relative path.

pmkOther	IMoniker*	the moniker to which a relative path should be taken.

ppmkPrefix	IMoniker**	May not be NULL. The place at which the moniker of pmkDest relative to pmkSrc is to be returned.

return value	HRESULT	S_OK, MK_S_HIM, MK_S_ME, MK_S_US, MK_S_NOPREFIX

IMoniker::RelativePathTo�xe "IMoniker:functions:RelativePathTo"�

HRESULT IMoniker::RelativePathTo(pmkOther, ppmkRelPath)

Answer a moniker that when composed onto the end of this one or one with a similar structure will yield pmkOther. Conceptually, implementations of this function usually work as follows: the longest prefix that the re�cei�ver and pmkOther have is common is determined. This breaks the receiver and pmkOther each into two parts, say (P,Tme) and (P,Thim) respectively, where P is the maximal common prefix. The correct relative path result is then �.

For any given implementation of this function, it is usually the case that the same pmkOther monikers are treated specially as would be in IMoniker::ComposeWith(). File Monikers, for example, might treat other File Monikers specially in both cases.

See also MonikerRelativePathTo().

Argument	Type	Description

pmkOther	IMoniker*	the moniker to which a relative path should be taken.

ppmkRelPath	IMoniker*	May not be NULL. The place at which the relative path is returned.

return value	HRESULT	MK_S_HIM, indicating that the only form of relative path is in fact just the other moniker, pmkOther. S_OK, indicating that a non-trivial relative path exists.

MonikerRelativePathTo�xe "MonikerRelativePathTo"�

HRESULT MonikerRelativePathTo(pmkSrc, pmkDest, ppmkRelPath, reserved)

This function is intended solely for the use of moniker implementors; clients of monikers “need not apply;” clients should instead compute the relative path between two monikers by using

pmkSrc->RelativePathTo(pmkDest, ppmkRelPath);

Implementations of IMoniker::RelativePathTo necessarily call Mon�i�ker�Rel�a�tive�Path�To as part of their internal processing. Such a method should first check to see if the other moniker is a type that it recognizes and handles specially. If not, it should call Mon�i�ker�Rel�a�tive�Path�To, passing itself as pmkSrc and the other moniker as pmkDest. Mon�i�ker�Rel�a�tive�Path�To will handle the generic com�p�osite cases correctly.

Argument	Type	Description

pmkSrc	IMoniker*	the starting moniker for the computation of the relative path.

pmkDest	IMoniker*	the moniker to which a relative path should be taken.

ppmkRelPath	IMoniker**	May not be NULL. The place at which the moniker of pmkDest relative to pmkSrc is to be returned.

reserved	BOOL	must be non-zero (NOTE!)

return value	HRESULT	S_OK, MK_S_HIM

IMoniker::GetDisplayName�xe "IMoniker:functions:GetDisplayName"�

HRESULT IMoniker::GetDisplayName(pbc, pmkToLeft, lplpszDisplayName)

Most monikers have a textual representation which is meaningful to a human being. This function re�turns the current display name for this moniker, or NULL if none exists.

Some display names may change over time as the object to which the moniker refers moves about in the con�text in which it lives. Formula references between two Microsoft Excel spreadsheets are an exa�mple of this type of changing reference. A formula referring to cell “R1C1” in another sheet may change to the refer to “R2C1” if a new row is inserted at the top of the second sheet: the reference still re�fers to the same actual cell, but now the cell has a different address in its sheet. This behavior leads to the general observation that obtaining the current display name of a moniker may have to access at least the storage of the object to which it refers, if not the object itself. Thus, it has the potential to be an expensive operation. As in other IMoniker func�tions, a bind con�text parameter is passed which includes a deadline within which the operation should complete, or fail with MK_E_EXCEEDEDDEADLINE if unable to do so.

A consequence of the possible unavailability of quick access to the display name of a moniker is that call�ers of this function most likely will want to cache the last successful result that they obtained, and use that if the current answer is inaccessible (this caching is the Microsoft Excel between-sheet behavior).

In the general case, the display name of a moniker is not unambiguous: there may be more than one moniker with the same display name, though in practice this will be rare. There is also no guarantee that a display name obtained from a moniker will parse back into that moniker in MkParseDisplayName, though failure to do so also will be rare. Display names should therefore be thought of as a merely a note or annotation on the moniker which aid a human being in distinguishing one moniker from another, rather than a completely equivalent representation of the moniker itself.

Notice that due to how display names are constructed in composites, a moniker which is a prefix of another necessarily has a display name which is a (string) prefix of the display name of the second moniker. The converse, however, does not necessarily hold.

A moniker which is designed to be used as part of a generic composite is responsible for including any preceding delimiter as part of its display name. Many such monikers take a parameter for this delimiter in their instance creation functions.

Argument	Type	Description

pbc	IBindCtx*	the bind context for this operation.

pmkToLeft	IMoniker*	the moniker to the left of this one in the composite in which it is found. Most monikers will not require this in IMoniker::GetDisplayName.

lplpszDisplayName	LPSTR*	on exit, the current display name for this moniker. NULL if the moniker does not have a display name or the deadline was exceeded.

return value	HRESULT	S_OK, MK_E_EXCEEDEDDEADLINE.

MkParseDisplayName�xe "MkParseDisplayName"��xe "parsing"�

HRESULT MkParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmk)

Recall from IMoniker::GetDisplayName that most monikers have a textual name which is meaningful to the user. The function MkParseDisplayName does the logical inverse operation: given a string, it returns a mon�iker of the object that the string denotes. This operation is known as parsing. A display name is parsed into a moniker; it is resolved into its component moniker parts.

If a syntax error occurs, than an indication of how much of the string was successfully parsed is returned in pcchEaten and NULL is returned through ppmk. Otherwise, the value returned through pcchEaten indi�cates the entire size of the display name.

Argument	Type	Description

pbc	IBindCtx*	the binding context in which to accumulate bound objects.

lpszDisplayName	LPSTR	the display name to be parsed.

pcchEaten	ULONG*	on exit the number of characters of the display name that was successfully parsed. Most useful on syntax error.

ppmk	IMoniker*	the resulting moniker.

return value	HRESULT	S_OK, MK_E_SYNTAX.

Parsing a display name may in some cases be as expensive as binding to the object that it denotes, since along the way various non-trivial name space managers (such as a spreadsheet application that can parse into ranges in its sheets) need to be connected to by the parsing mechanism to succeed. As might be expected, objects are not released by the parsing operation itself, but are instead handed over to the passed-in binding context (via IBindCtx::RegisterObjectBound). Thus, if the moniker resulting from the parse is immediately bound using this same binding con�text, redundant loading of objects is maximally avoided.

In many other cases, however, parsing a display name may be quite inexpensive since a single name-space manager may quickly return a moniker that will perform further expensive analysis on any acceptable name during IMoniker::BindToObject or other methods. An example of such an inexpensive parser is the Win32 implementation of a File Moniker. A theoretical example would be a naïve URL moniker which parsed from any valid URL strings (ie, “http:…”, “file:…”, etc) and only during binding took time to resolve against the Internet server, a potentially expensive operation.

An important use of MkParse�DisplayName worth noting lies in textual pro�gram�ming lang�uages which permit remote references as syn�tactic ele�ments. The expression language of a spread�sheet is a good example of such a language.

The parsing process is an inductive one, in that there is an initial step that gets the process going, fol�lowed by the repeated applica�tion of an inductive step. At any point after the beginning of the parse, a cer�tain prefix of lpsz�DisplayName has been parsed into a moniker, and a suffix of the display name remains not understood. This is illustra�ted in Figure �seq figure ParseMoniker�5�.

�

Figure �seq figure�5�. Intermediate stage in parsing a display name into a moniker.

The inductive step asks the moniker-so-far using IMoniker::ParseDisplayName to consume as much as it would like of the remaining suffix and return the corresponding moniker and the new suffix. The moniker is composed onto the end of the existing moniker-so-far, and the process repeats.

Implementations of IMoniker::ParseDisplayName vary in exactly where the knowledge of how to carry out the parsing is kept. Some monikers by their nature are only used in particular kinds of containers. It is likely that these monikers themselves have the knowledge of the legal display name syntax within the objects that they themselves denote, and so they can carry out the processes completely within IMoniker�::�Parse�DisplayName. The common case, however, is that the moniker-so-far is generic in the sense that is not specific to one kind of container, and thus cannot know the legal syntax for elements within the con�tain�er. File monikers are an example of these, as are Item Monikers. These monikers in general employ the following strategy to carry out parsing. First, the moniker connects to the class of object that it currently denotes, asking for IParseDisplayName interface. If that suc�ceeds, then it uses the obtained interface pointer to attempt to carry out the parse. If the class refuses to handle the parse, then the moniker binds to the object it denotes, asking again for IParseDisplayName interface. If this fails, then the parse is aborted.

The effect is that ultimately an object always gets to be in control of the syntax of elements contained inside of itself. It’s just that objects of a certain nature can carry out parsing more efficiently by having a moniker or their class do the parsing on their behalf.

Notice that since MkParseDisplayName knows nothing of the legal syntax of display names (with the exception of the initial parsing step; see below). It is of course beneficial to the user that display names in different contexts not have gratuitously different syntax. While there some rare situations which call for special purpose syntax, it is recommended that, unless there are compelling reasons to do otherwise, the syntax for display names should be the same as or similar to the native file system syntax; the aim is to build on user familiarity. Most important about this are the characters allowed for the delimiters used to separate the display name of one of the component monikers from the next. Unless through some special cir�cum�stances they have very good reason not to, all moniker imple�mentations should use inter-moniker delimiters from the character set:

\ / : ! [

Standardization in delimiters promotes usability. But more importantly, notice that the parsing algorithm has the characteristic that a given container consumes as much as it can of the string being parsed before passing the remainder on to the designated object inside themselves. If the delimiter expected of the next-to-be-generated mon�iker in fact forms (part of) a valid display name in the container, then the container’s parse will consume it!

Monikers and objects which have implementations on more than one platform (such as File Monikers) should always parse according to the syntax of the platform on which they are currently running. When asked for their display name, monikers should also show delimiters appropriate to the platform on which they are currently running, even if they were originally created on a different platform. In total, users will always deal with delimiters appropriate for the host platform.

The initial step of the parsing process is a bit tricky, in that it needs to somehow determine the initial moniker-so-far. MkParseDisplayName is omniscient with respect to the syntax with which the display name of a moniker may legally begin, and it uses this omniscience to choose the initial moniker.

The initial moniker is determined by trying the following strategies in order, using the first to succeed.

1.	All prefixes of lpszDisplayName that consist solely of valid file name characters are consulted as file monikers in the Running Object Table.

3.	The file system is consulted to check if a prefix of lpszDisplayName matches an existing file. Said file name may be drive absolute, drive relative, working-directory relative, or begin with an explicit network share name. This is a common case.

4.	If the initial character of lpszDisplayName is ‘@’, then the maximal string immediately fol�low�ing the ‘@’ which conforms to the legal ProgID syntax� is determined. This is converted to a CLSID with CLSIDFromProgID. An instance of this class is asked in turn for IParseDisplayName interface; the IParseDisplayName interface so found is then given the whole string (starting with the ‘@’) to continue parsing.

IMoniker::ParseDisplayName�xe "IMoniker:functions:ParseDisplayName"�

HRESULT IMoniker::ParseDisplayName(pbc, pmkToLeft, lpszDisplayName, pcchEaten, ppmkOut)

Given that the composite moniker (pmkToLeft �SYMBOL 176 \f "Symbol"� (the receiver)) is the moniker which has so far been parsed, parse as much of the remaining tail as is appropriate. In general, the maximal prefix of lpszDisplayName which is syntactically valid and which currently represents an existing object should be consumed.

The main loop of MkParseDisplayName finds the next piece moniker piece by calling this function on the moniker-so-far that it holds on to, passing NULL through pmkToLeft. In the case that the moniker-so-far is a generic composite, this is forwarded by that composite onto its last piece, passing the prefix of the composite to the left of the piece in pmkToLeft.

lpszDisplayName is the as-yet-to-be-parsed tail of the display name. This function is to consume as much of it as is appropriate for a name within the object identified by (pmkToLeft �SYMBOL 176 \f "Symbol"� (the receiver)) and re�turn the corre�sponding moniker.

Some moniker classes will be able to handle this parsing internally to themselves since they are designed to designate only certain kinds of objects. Others will need to bind to the object that they designate in or�der to accomplish the parsing process. As is usual, these objects should not be released by IMoniker::�Parse�DisplayName but instead should be transferred to the bind context for release at a later time.

If a syntax error occurs, then NULL should be returned through ppmkOut and MK_E_SYNTAX returned. In addition, the number of characters of the display name that were successfully parsed should be returned through pcchEaten.

Argument	Type	Description

pbc	IBindCtx*	the binding context in which to accumulate bound objects.

pmkToLeft	IMoniker*	the moniker to the left of this one in the so-far-parsed display name.

lpszDisplayName	LPSTR	the display name to be parsed.

pcchEaten	ULONG*	the number of characters of the input name that this parse consumed.

ppmkOut	IMoniker*	the resulting moniker.

return value	HRESULT	S_OK, MK_E_SYNTAX.

IMoniker::IsSystemMoniker�xe "IMoniker:functions:IsSystemMoniker"�

HRESULT IMoniker::IsSystemMoniker(pdwMksys)�

Answer as to whether this moniker is a type of moniker whose particular implementation semantics are conceptually important to the binding process. The values returned through pdwMksys are taken from the following enumeration:

typedef enum tagMKSYS {

	MKSYS_NONE = 0,

	MKSYS_GENERICCOMPOSITE = 1,

	MKSYS_FILEMONIKER = 2,

	MKSYS_ANTIMONIKER = 3,

	MKSYS_ITEMMONIKER = 4,

	MKSYS_POINTERMONIKER = 5,

	} MKSYS�xe "MKSYS"�;

All user implementations of this function must simply return MKSYS_NONE through pdwMksys. IMon�i�ker�::�GetClassID (see IPersist) can be used instead by non-system monikers to check for the presence of their own “special” moniker on the right in IMoniker::ComposeWith. Alternatively, use QueryInterface to test for the presence of your own private interface.

New values of this enumeration may be defined in the future; caller’s of this function should be aware of this fact and should therefore explicitly test against known return values that they care about (rather than, for example, assuming that if the returned value is not one of the values listed here then it’s the other).

The returned value is not a bitfield value; rather it is an integer.

Argument	Type	Description

pdwMksys	DWORD*	the place at which the result is to be returned. May not be NULL.

return value	HRESULT	S_OK

IParseDisplayName interface

IParseDisplayName::ParseDisplayName� XE "IParseDisplayName:functions:ParseDisplayName" �

HRESULT IParseDisplayName::ParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmkOut)

This is the single function in the IParseDisplayName interface:

interface IParseDisplayName : IUnknown {

	HRESULT	ParseDisplayName(pbc, lpszDisplayName, pcchEaten, ppmkOut);

	};

Its semantics and parameters are as described in IMoniker::ParseDisplayName.

IBindCtx interface

The bind context parameter passed to many of the IMoniker operations serves a few purposes.

Its primary purpose is to accumulate the set of objects that get bound during an operation but which should be re�leased when the operation is complete. This is particularly useful in generic composites: using the bind context in this way avoids binding an object, releasing it, only to have it bound again when the operation moves on to another piece of the composite.

Another purpose of the bind context is to pass a group of pa�rameters which do not change as an operation moves from one piece of a generic composite to another. These are the binding options, and are described below. Some of these binding options have a related re�turn value in certain error conditions; the bind con�text provides the means by which they can be returned.

The bind context is also the only means through which moniker operations should access contextual infor�ma�tion about their environment. There should be no direct calls in moniker implementations to API func�tions that query or set state in the environment; all such calls should instead funnel through the bind con�text. Doing this allows for future enhancements which can dynamically modify binding behavior. The predefined piece of contextual information that moniker operations need to access is the Running Object Table; monikers should always access this table indirectly though IBindCtx::GetRunning�Object�Table, rather than using the global function GetRunningObjectTable. IBindCtx interface allows for future extensions to the passed-in contextual information in the form the ability to maintain a string-keyed table of objects. See IBindCtx::RegisterObjectParam and related functions.

interface IBindCtx�xe "IBindCtx"� : IUnknown {

	virtual	HRESULT	RegisterObjectBound(punk);

	virtual	HRESULT	RevokeObjectBound(punk);

	virtual	HRESULT	ReleaseBoundObjects();

	virtual	HRESULT	SetBindOptions(pbindopts);

	virtual	HRESULT	GetBindOptions(pbindopts);

	virtual	HRESULT	GetRunningObjectTable(pprot);

	virtual	HRESULT	RegisterObjectParam(lpszKey, punk);

	virtual	HRESULT	GetObjectParam(lpszKey, ppunk);

	virtual	HRESULT	EnumObjectParam(ppenum);

	virtual	HRESULT	RevokeObjectParam(lpszKey);

	};

typedef struct {

	DWORD	cbStruct;				// the size in bytes of this structure. ie: sizeof(BINDOPTS).

	DWORD	grfFlags;

	DWORD	grfMode;

	DWORD	dwTickCountDeadline;

	} BINDOPTS;

HRESULT CreateBindCtx(reserved, ppbc);

IBindCtx::RegisterObjectBound�xe "IBindCtx:functions:RegisterObjectBound"�

HRESULT IBindCtx::RegisterObjectBound(punk)

Remember the passed object as one of the objects that has been bound during a moniker operation and which should be released when it is complete overall. Calling this function causes the binding context to create an additional reference to the passed-in object with AddRef; the caller is still required to Release its own copy of the pointer independently.

The effect of calling this function twice with the same object is cumulative, in that it will require two IBindCtx::RevokeObjectBound calls to completely remove the registration of the object within the binding context.

Argument	Type	Description

punk	IUnknown*	the object which is being registered as needing to be released.

return value	HRESULT	S_OK.

IBindCtx::RevokeObjectBound�xe "IBindCtx:functions:RevokeObjectBound"�

HRESULT IBindCtx::RevokeObjectBound(punk)

This function undoes the effect of IBindCtx::RegisterObjectBound: it removes the object from the set that will be released when the bind context in IBindCtx::ReleaseBoundObjects (actually removes one occurrence of it). This function is likely to be rarely called, but is included for completeness.

Argument	Type	Description

punk	IUnknown*	the object which no longer needs to be released.

return value	HRESULT	S_OK, MK_E_NOTBOUND, E_OUTOFMEMORY

IBindCtx::ReleaseBoundObjects�xe "IBindCtx:functions:ReleaseBoundObjects"�

HRESULT IBindCtx::ReleaseBoundObjects()

Releases all the objects currently registered with the bind context though IBindCtx::RegisterObjectBound.

This function is (conceptually) called by the implementation of IBindCtx::Release.

Argument	Type	Description

return value	HRESULT	S_OK

IBindCtx::SetBindOptions�xe "IBindCtx:functions:SetBindOptions"�

HRESULT IBindCtx::SetBindOptions(pbindopts)

Store in the bind context a block of parameters that will apply to later IMoniker operations using this bind context. Using block of parameters like this is just an alternative way to pass parameters to an operation. We distinguish the parameters we do for conveyance by this means because 1) they are common to most IMoniker operations, and 2) these parameters do not change as the operation moves from piece to piece of a generic composite.

Argument	Type	Description

pbindopts	BINDOPTS*	the block of parameters to set. These can later be retrieved with IBindCtx::Get�Bind�Options.

return value	HRESULT	S_OK, E_OUTOFMEMORY

BINDOPTS is defined as follows:

typedef struct tagBINDOPTS {

	DWORD	cbStruct;				// the size in bytes of this structure. ie: sizeof(BINDOPTS).

	DWORD	grfFlags;

	DWORD	grfMode;

	DWORD	dwTickCountDeadline;

	} BINDOPTS�xe "BINDOPTS"�;

The members of this structure have the following meanings:

Member	Description

grfFlags	�A group of Boolean flags. Legal values that may be OR’d together are the taken from the enumeration BINDFLAGS; see below. Moniker implementations must ignore any set-bits in this field that they do not understand.

grfMode	�A group of flags that indicates the intended use that the caller has towards the object that he ultimately receives from the associated moniker binding operation. Constants for this member are taken from the STGM enumeration.

	When applied to the IMoniker::BindToObject operation, by far the most significant flag values are: STGM_READ, STGM_WRITE, and STGM_READWRITE. It is possible that some binding operations might make use of the other flags, particularly STGM_DELETEONRELEASE or STGM_CREATE, but such cases are quite esoteric.

	When applied to the IMoniker::BindToStorage operation, most STGM values are potentially useful here.

	The default value for grfMode is STGM_READWRITE | STGM_SHARE_EXCLUSIVE.

dwTickCountDeadline	�This is an indication of when the caller would like the operation to complete. Having this parameter allows the caller to approximately and heuristically bound the execution time of an oper�a�tion when it is more important that the operation perform quickly than it is that it per�form accurately. Most often, this capability is used with IMoniker::�Get�Time�Of�Last�Change, as was previously described, though it can be usefully applied to other operations as well.

	This 32-bit unsigned value is a time in milliseconds on the local clock maintained by the Get�Tick�Count function. A value of zero indicates “no deadline;” callers should therefore be careful not to pass to the bind context a value of zero that was coincidentally obtained from GetTickCount. Clock wrapping is also a problem. Thus, if the value in this variable is less than the current time by more than 231 milliseconds, then it should be interpreted as indicating a time in the future of its indicated value plus 232 milliseconds.

	Typical deadlines will allow for a few hundred milliseconds of execution. Each function should try to complete its operation by this time on the clock, or fail with the error MK_E_EXCEEDED�DEADLINE if it cannot do so in the time allotted. Functions are not required to be absolutely accurate in this regard, since it is al�most impossible to predict how execution might take (thus, callers cannot rely on the operation completing by the deadline), but operations which exceeded their deadline excessively will usually cause intolerable user delays in the operation of their callers. Thus, in practice, the use of deadlines is a heuristic which callers can impose on the execution of moniker operations.

	If a moniker operation ex�ceeds its deadline because a given object or objects that it uses are not running, and if one of these had been running, then the operation would have completed more of its execution, then the monikers of these objects should be recorded in the bind context using IBindCtx::RegisterObjectParam under the parameter names “ExceededDeadline”, “ExceededDeadline1”, “ExceededDeadline2”, etc.; use the first name in this series that is currently unused. This approach gives the caller some knowledge as to when to try the oper�a�tion again

The enumeration BINDFLAGS, which contains the legal values for the bit-field BINDOPTS::grfFlags, is defined as follows:

typedef enum tagBINDFLAGS {

	BINDFLAGS_MAYBOTHERUSER = 1,

	BINDFLAGS_JUSTTESTEXISTENCE = 2,

	} BINDFLAGS�xe "BINDFLAGS"�;

These flags have the following interpretation.

Value	Description

BINDFLAGS_MAYBOTHERUSER�If not present, then the operation to which the bind context containing this parameter is applied should not interact with the user in any way, such to ask for a password for a network volume that needs mounting. If present, then this sort of interaction is permitted. If prohibited from interacting with the user when it otherwise would like to, an operation may elect to use a different algorithm that does not require user interaction, or it may fail with the error MK_MUSTBOTH�ERUSER.

BINDFLAGS_JUSTTESTEXISTENCE�If present, indicates that the caller of the moniker operation to which this flag is being applied is not actually interested in having the operation carried out, but only in learning of the operation could have been carried out had this flag not been specified. For example, this flag give the caller the ability to express that he is only interested in finding out whether an object actually exists by using this flag in a IMoniker::BindToObject call. Moniker imple�mentations are free, however, to ignore this possible optimization and carry out the operation in full. Callers, therefore, need to be able to deal with both cases. See the individual routine descriptions for details of exactly what status is returned.

IBindCtx::GetBindOptions�xe "IBindCtx:functions:GetBindOptions"�

HRESULT IBindCtx::GetBindOptions(pbindopts)

Return the current binding options stored in this bind context. See IBindCtx::SetBindOpts for a descrip�tion of the semantics of each option.

Notice that the caller provides a BINDOPTS structure, which is filled in by this routine. It is the caller’s responsibility to fill in the cbStruct member correctly.

Argument	Type	Description

pbindOpts	BINDOPTS*	the structure of binding options which is to be filled in.

return value	HRESULT	S_OK, E_UNEXPECTED

IBindCtx::GetRunningObjectTable�xe "IBindCtx:functions:GetRunningObjectTable"�

HRESULT IBindCtx::GetRunningObjectTable(pprot)

Return access to the Running Object Table relevant to this binding process. Moniker implementations should get access to the Running Object Table using this function rather than the global API GetRunning�Object�Table. The appropriate Running Object Table is determined implicitly at the time the bind context is created.

Argument	Type	Description

pprot	IRunningObjectTable**	the place to return the running object table.

return value	HRESULT	S_OK, E_OUTOFMEMORY, E_UNEXPECTED

IBindCtx::RegisterObjectParam�xe "IBindCtx:functions:RegisterObjectParam"�

HRESULT IBindCtx::RegisterObjectParam(lpszKey, punk)

Register the given object pointer under the name lpszKey in the internally-maintained table of object poin�ters. The intent of this table is that it be used as an extensible means by which contextual information can be passed to the binding process. String keys are compared case-sensitive.

Like IBindCtx::RegisterObjectBound, this function creates an additional reference to the passed-in object using AddRef. The effect of calling this function a second time with the same lpszKey is to replace in the table the object passed-in the first time.

By convention, moniker implementers may freely use object parameters whose names begin with the string representation of the class id of the moniker implementation in question.

This facility is also used as means by which various errors can convey information back to the caller. Associated with certain error values are the following object parameters:

Error	Parameters

MK_E_EXCEEDEDDEADLINE	Parameters named “ExceededDeadline”, “ExceededDeadline1”, “ExceededDeadline2”, etc., if they exist, are monikers who appearance as running would make it reasonable for the caller to attempt the binding operation again.

E_CLASSNOTFOUND	The parameter named “ClassNotFound”, if present, is a moniker to the storage of the object whose class was not able to be loaded in the process of a moniker operation.

New moniker authors can freely use parameter names that begin with the string form of the CLSID of their moniker; see StringFromCLSID().

The arguments to this function are as follows:

Argument	Type	Description

lpszKey	LPSTR	the name under which the object is being registered.

punk	IUnknown*	the object being registered.

return value	HRESULT	S_OK, E_OUTOFMEMORY

IBindCtx::GetObjectParam�xe "IBindCtx:functions:GetObjectParam"�

HRESULT IBindCtx::GetObjectParam(lpszKey, ppunk)

Lookup the given key in the internally-maintained table of contextual object parameters and return the corresponding object, if one exists.

Argument	Type	Description

lpszKey	LPSTR	the key under which to look for an object.

ppunk	IUnknown**	The place to return the object interface pointer. NULL is returned on failure (along with S_FALSE).

return value	HRESULT	S_OK, S_FALSE

IBindCtx::EnumObjectParam�xe "IBindCtx:functions:EnumObjectParam"�

HRESULT IBindCtx::EnumObjectParam(ppenum)

Enumerate the strings which are the keys of the internally-maintained table of contextual object parameters.

Argument	Type	Description

ppenum	IEnumString**	the place to return the string enumerator. See Chapter 4 for a description of IEnumString.

return value	HRESULT	S_OK, E_OUTOFMEMORY

IBindCtx::RevokeObjectParam�xe "IBindCtx:functions:RevokeObjectParam"�

HRESULT IBindCtx::RevokeObjectParam(lpszKey)

Revoke the registration of the object currently found under this key in the internally-maintained table of contextual object parameters, if any such key is currently registered.

Argument	Type	Description

lpszKey	LPSTR	the key whose registration is to be revoked.

return value	HRESULT	S_OK, S_FALSE

CreateBindCtx�xe "CreateBindCtx"�

HRESULT CreateBindCtx(reserved, ppbc)

Allocate and initialize a new IBindCtx using a system-supplied implementation.

Argument	Type	Description

reserved	DWORD	reserved for future use; must be zero.

ppbc	IBindCtx*	the place in which to put the new BindCtx.

return value	HRESULT	S_OK, E_OUTOFMEMORY

Generic Composite Moniker class

Recall that in general monikers are a composite list made up of other pieces. All monikers which are a generic composite of other monikers are instances of Generic Composite Moniker class whose imple�men�ta�tion is provide with COM; there is no need for two Generic Composite Moniker classes.

The implementations of Generic Composite IMoniker�::�Reduce and Generic Composite IMoniker�::�Bind�To�Object are particularly important as they manage the interactions between the various elements of the composite, and as a consequence define the semantics of binding to the moniker as a whole.

Generic composite monikers of size zero or of size one are never exposed outside of internal Generic Composite Moniker� method implementations. From a client perspective, a Generic Composite Moniker always contains at least two elements.

CreateGenericComposite�xe "CreateGenericComposite"�

HRESULT CreateGenericComposite(pmkFirst, pmkRest, ppmkComposite)

Allocate and return a new composite moniker. pmkFirst and pmkRest are its first and trailing elements respectively. Either of pmkFirst and pmkRest may be a generic composite, or another kind of moniker. Generic com�po�sites get flattened into their component pieces before being put into the new composite. This function will be called by implementations of IMoniker::ComposeWith when they wish to carry out a generic compose operation.

Argument	Type	Description

pmkFirst	IMoniker*	the first element(s) in the new composite. May not be NULL.

pmkRest	IMoniker*	the trailing element(s) in the new composite. May not be NULL.

ppmkComposite	IMoniker*	through here is returned the new composite.

return value	HRESULT	S_OK, E_OUTOFMEMORY

Generic Composite Moniker–IMoniker::Reduce

Reduction of a generic composite conceptually reduces each of its pieces in a left-to-right fashion and builds up a composite of the result. If any of the pieces of the composite did not reduce to themselves (and thus, the generic composite overall did not reduce to itself), then this process is repeated.

An optimized implementation of this function might use a more complicated but equivalent algorithm that avoids unnecessarily re-reducing monikers that the composite already knows reduce to themselves.

Generic Composite Moniker–IMoniker::BindToObject

Binding to a generic composite works in a right-to-left manner. Conceptually, the generic composite merely forwards the bind request onto its last piece, along the way informing that piece of the moniker to its left in the composite. The last piece, if it needs to, recursively binds to the object to its left. In practice, binding to a generic composite itself has to handle the recursive call on the left-hand object, as was de�scribed in IMoniker::BindToObject.

File Moniker class

A File Moniker can be thought of as a wrapper for a path name in the native file system. It’s implementa�tion of IMoniker::GetDisplayName, for example, is trivial: it just returns the path. When bound to, it de�termines the class of the file (using the API GetClassFile on Win32), makes sure that the appropriate class server is running, then asks it to open the file.

CreateFileMoniker�xe "CreateFileMoniker"�

HRESULT CreateFileMoniker(lpszPathName, ppmk)

Creates a moniker from the given path name. This path may be an absolute path or a relative path. In the latter case, the resulting moniker will need to be composed onto another File Moniker before it can be bound. In either case, it will often be the case that other monikers are composed onto the end of this moniker in order to access sub-pieces of the document stored in the file.

Argument	Type	Description

lpszPathName	LPSTR	the path name of the desired file.

ppmk	IMoniker*	the newly created moniker.

return value	HRESULT	S_OK, MK_E_SYNTAX, E_OUTOFMEMORY

File Moniker–IMoniker::BindToObject

The class of an object designated by a File Moniker is determined in a platform-specific way. Having found the correct class, File Moniker IMoniker::BindToObject will instantiate it using the interface IPer�sist�File::Load method.

File Moniker–IMoniker::BindToStorage

The Win32 implementation of File Moniker supports BindToStorage(..., IID_IStorage, ...) in the case that the designated file in fact a structured storage. Implementations may also choose to support IStream and ILock�Bytes.

File Moniker–IMoniker::GetDisplayName

File monikers render their display names according to the syntax of the platform on which they are cur�rently found. A File Moniker serialized on one platform then de-serialized on another will possibly have different display names on each platform.

File Moniker–IMoniker::ParseDisplayName

File monikers designate objects that live in files; however, they have no knowledge of the name space con�tained within that file. A File Moniker for the path “C:\FOO.XLS”, for example, knows how to connect to the spreadsheet that is the file, but it does not know anything of the syntax of range-address expression language of the sheet. Consequently, when asked to parse a display name, a File Moniker needs to del�e�gate this operation to the class object that it designates. For this purpose it uses the IParse�Dis�play�Name�xe "IParseDisplayName"� interface. If the class refuses to handle the parse, the parsing is delegated to the object.

Item Moniker class

Item� monikers provide a bridge from the generality of IMoniker interface to the simple and common situ�ation in which an object which is a container of other objects also provides a space of names for those objects. Examples include spreadsheet applications which contain “named ranges,” various word-processing applications which support “bookmarks.”

Item Moniker is a class, not a interface; that is, it is an implementation of IMoniker provided by COM library, not an interface that others implement. This implementa�tion supports IMoniker inter�face by converting IMoniker invocations into a series of calls on part of the interface IOleItemContainer. The implication is that many object implementers do not have to deal much with monikers: they can deal simply with “items” in a string form, then wrap them in an Item Moniker as needed to sup�port other interfaces.

A client creates an Item Moniker using CreateItemMoniker. When this new moniker is composed onto the end of a moniker that binds to an IOleItemContainer, the resulting composite moniker will bind to the ap�p�rop�riate contained object.

The following is the IOleItemContainer interface used by Item Monikers:

interface IOleItemContainer : IOleContainer {

	virtual	HRESULT	GetObject(lpszItem, dwSpeedNeeded, pbc, riid, ppvObject);

	virtual	HRESULT	GetObjectStorage(lpszItem, pbc, riid, ppvStorage);

	virtual	HRESULT	IsRunning(lpszItem);

	};

CreateItemMoniker�xe "CreateItemMoniker"�

HRESULT CreateItemMoniker(lpszDelim, lpszItem, ppmk)

Allocate and return a new Item Moniker. It is intended that the resulting moniker be then composed onto the end of a second moniker which binds to something that supports IOleItemContainer interface. The result�ing composite moniker when bound will ex�tract the object of the indicated name from within this con�tainer.

lpszItem is the item name which will be later passed to IOleItemContainer::GetObject. lpszDelim is simply an�other string that will prefix lpszItem in the display name of the Item Moniker.

See also IOleItemContainer::IsRunning.

Argument	Type	Description

lpszDelim	LPSTR	a string that will prefix lpszItem in the display name of this moniker. Often an exclamation mark: “!”. See also the discussion of syntax in MkParseDisplayName.

lpszItem	LPSTR	the item name to pass to IOleItemContainer::GetObject.

ppmk	IMoniker**	the place to put the new Item Moniker.

return code	HRESULT	S_OK, E_OUTOFMEMORY	

Item Moniker–IMoniker::BindToObject

Item monikers merely require IOleItemContainer interface of the object to their left, which they obtain by invoking IMoniker::BindToObject on the moniker of the object to their left. Once they have the container, they merely invoke IOleItemContainer::GetObject with the internally stored item name.

IOleItemContainer::GetObject�xe "IOleItemContainer:functions:GetObject"�

HRESULT IOleItemContainer::GetObject(lpszItem, dwSpeedNeeded, pbc, riid, ppvObject)

This method returns the object within this container specified by lpszItem.

dwSpeedNeeded is an indication of how willing the caller is to wait to get to the object. This value is set by the implementation of Item Moniker; the value it uses is derived from the dwTickCountDeadline parameter in the Bind Context that it receives. dwSpeedNeeded is one of the following values:

typedef enum tagBINDSPEED {

	BINDSPEED_INDEFINITE	= 1,	// the caller is willing to wait indefinitely

	BINDSPEED_MODERATE	= 2,	// the caller is willing to wait a moderate amount of time.

	BINDSPEED_IMMEDIATE	= 3,	// the caller is willing to wait only a very short time

	} BINDSPEED�xe "BINDSPEED"�;

If BINDSPEED_IMMEDIATE is specified, then the object should be returned only if it is already running or if it is a pseudo-object (an object internal to the item container, such as a cell-range in a spreadsheet or a char�acter-range in a word processor); other�wise, MK_E_EXCEEEDEDDEADLINE should be returned. BIND�SPEED�_MODERATE would include those things indicated by BINDSPEED_IMMEDIATE, plus, perhaps, those objects which are always running when the container is running and has them loaded: in this case, load (not load & run) the designated object, ask if it is running, and return it if so; otherwise, fail with MK_E_EXCEEEDED�DEAD�LINE as before. BIND�SPEED�_INDEFINITE indicates that time is of no concern to the caller.

The actual bind context parameter is also here passed in pbc for the use of more sophisticated containers. Less sophisticated containers can simply ignore this and look at dwSpeedNeeded instead. In effect, what the implementation of Item Moniker does is convert the deadline in the bind context into an appropriate dwSpeedNeeded, in the hope that the latter is easier to take a decision on for most containers.

Argument	Type	Description

lpszItem	LPSTR	the item in this container that should be bound to.

dwSpeedNeeded	DWORD	a value from the enumeration BINDSPEED. See above.

pbc	IBindCtx*	the actual deadline parameter involved in this binding operation. For the use of more sophisticated containers. Most can ignore this, and instead use dwSpeedNeeded.

riid	REFIID	the interface with which a connection to that object should be made.

ppvObject	void**	the bound-to object is returned here.

return value	HRESULT	S_OK, MK_E_EXCEEEDEDDEADLINE, MK_E_NOOBJECT, E_NOINTERFACE, E_OUTOFMEMORY

Item Moniker–IMoniker::BindToStorage

For storage binding, Item Monikers merely require IOleItemContainer interface of the object to their left. The implementation of Item Moniker IMoniker::BindToStorage binds to the object to its left using IOle�Item�Contain�er in�terface, then invokes IOleItemContainer::GetObjectStorage with the internally stored item name.

IOleItemContainer::GetObjectStorage�xe "IOleItemContainer:functions:GetObjectStorage"�

HRESULT IOleItemContainer::GetObjectStorage(lpszItem, pbc, riid, ppvStorage)

If lpszItem designates an item in this container that has an independently identifiable piece of storage (such as does an embedded object), then return access to that storage using the indicated interface.

pbc is the bind context as received by the Item Moniker IMoniker::BindToStorage call. Most container imple�men�ta�tions can simply ignore this value; it is passed for the benefit for more sophisticated contain�ers.

Argument	Type	Description

lpszItem	LPSTR	the item access to whose storage is being requested.

pbc	IBindCtx*	as in IOleItemContainer::GetObject. Can be ignored by most containers.

riid	REFIID	the interface by which the caller wishes to access that storage. Often IID_IStorage or IID_IStream are used.

ppvStorage	void**	the place to return the access to the storage

return value	HRESULT	S_OK, MK_E_EXCEEDEDDEADLINE, MK_E_NOOBJECT, E_OUTOFMEMORY, E_NOINTERFACE, MK_E_NOSTORAGE

IOleItemContainer::IsRunning�xe "IOleItemContainer:functions:IsRunning"�

HRESULT IOleItemContainer::IsRunning(lpszItem)

Answer whether the given item in this item container is in fact running or not. See IMoniker::IsRunning for a sketch of how this function is used in Item Monikers.

Argument	Type	Description

lpszItem	LPSTR	the item access to whose running status is being requested.

return value	HRESULT	S_OK, S_FALSE, MK_E_NOOBJECT

Item Moniker–IMoniker::ParseDisplayName

Item Moniker IMoniker::ParseDisplayName uses IParseDisplayName in the same way as a File Moniker does. Note that it requests this interface from a different object than the one that supplies the IOleItemContainer interface used in IMoniker::BindToObject, etc.: it asks for IOleItemContainer of the object designated by the moniker to its left, whereas it asks for IParseDisplayName of the object that it (the Item Moniker) designates.

Anti Moniker class

An Anti Moniker is a moniker that when composed onto the end of a generic composite moniker removes the last piece. Composing an Anti Moniker onto the end of another kind of moniker should, generally, anni�hil�ate the whole other moniker.

Being composed onto the end of another moniker is pretty much the only interesting thing one can do to an anti-moniker: they cannot be bound, their display name is useless, etc. They exist to support imple�men�ta��tions of IMoniker::Inverse; see that function for usage scenarios.

Moniker implementations that use Anti Monikers as inverses should check for Anti Monikers on the right in their imple�mentations of IMoniker::�ComposeWith and collapse down to nothing if so.

CreateAntiMoniker�xe "CreateAntiMoniker"�

HRESULT CreateAntiMoniker(ppmk)

Create and return a new anti-moniker.

Argument	Type	Description

ppmk	IMoniker**	the place to return the new anti-moniker

return value	HRESULT	S_OK, E_OUTOFMEMORY

Pointer Moniker class

A pointer moniker is a kind of moniker that wraps an existing object pointer in a moniker so that it may participate as a piece in the moniker binding process. Think of pointers as a referencing mechanism into the “active space:” a process’s memory. Most moniker implementations are by contrast references into “passive space:” the representation of an object on disk. Pointer monikers provide a means by which a a given use of a moniker can transparently reference either active or passive space.

Implementations of functions in IMoniker interface for Pointer Monikers work roughly as follows. IMoniker::Bind�To��Ob�ject turns into a QueryInterface on the pointer; IMoniker::BindToStorage returns MK_E_NOSTORAGE; IMoniker::Re�duce() reduces the moniker to itself; IMoniker::ComposeWith always does a generic composition; IMoniker::Enum re�turns NULL; IMoniker::IsSystemMoniker returns MKSYS_PTR; IMoniker::IsEqual() uses the identity test paradigm on poin�ters after first checking that the other moniker for the right class; IMoniker::Hash returns a constant; IMoniker::Get�Time�Of�Last�Change returns MK_E_UNAVAIL�ABLE; IMoniker::Inverse returns an anti-moniker; IMoniker::Rela�tive�PathTo re�turns the other moniker; IMoniker::GetDisplayName re�turns NULL; and IMoniker::ParseDisplayName() binds to the punk poin�ter using IParseDisplayName interface and works from there.

Instances of this kind of moniker refuse to be serialized; that is, IPersistStream::Save will return an er�ror. These monikers can, however, be marshaled to a different process; internally, this marshals and unmarshals the pointer using the standard paradigm for marshaling interface pointers: CoMarshalInterface and CoUnmarshalInterface.

CreatePointerMoniker�xe "CreatePointerMoniker"�

HRESULT CreatePointerMoniker(punk, ppmk)

Wrap a pointer in a Pointer Moniker so that it can be presented to interfaces that require monikers for generality, but specific uses of which can usefully deal with a moniker which cannot be saved to backing store.

Argument	Type	Description

punk	IUnknown*	the pointer that we are wrapping up in a moniker.

ppmk	IMoniker**	the returned Pointer Moniker.

return value	HRESULT	S_OK, E_OUTOFMEMORY

Running Object Table�xe "running object table"�

In general when binding to an object we want to open it if it is currently passive, but if not, then we want to connect to the running instance. To take an example from Compound Documents, a link to a Lotus 123 for Windows spreadsheet, for example, when first bound to should open the spreadsheet, but a second bind should connect to the already-open copy. The key technical piece that supports this type of functionality is the Running Object Table.

The Running Object Table is a globally accessible table on each workstation. It keeps track of the objects that are currently running on that workstation so that if an attempt is made to bind to one a connection to the currently run�ning instance can be made instead of loading the object a second time. The table conceptually is a series of tuples, each of the form:

(pmkObjectName, pvObject)

The first element is the moniker that if bound should connect to the running object. The second element is the object that is publicized as being available, the object that is running. In the process of binding, mon�ikers being bound with nothing to their left consult the pmkObjectName entries in the Running Ob�ject Table to see if the object that they (the moniker being bound) indicate is already running.

Access to the Running Object Table is obtained with the function GetRunningObjectTable. This returns an object with the interface IRunningObjectTable (note as described earlier, however, that moniker imple�mentations should not use this API, but should instead access the Running Object Table from the bind context they are passed).

interface IRunningObjectTable : IUnknown {

	HRESULT	Register(reserved, pUnkObject, pmkObjectName, pdwRegister);

	HRESULT	Revoke(dwRegister);

	HRESULT	IsRunning(pmkObjectName);

	HRESULT	GetObject(pmkObjectName, ppunkObject);

	HRESULT	NoteChangeTime(dwRegister, pfiletime);

	HRESULT	GetTimeOfLastChange(pmkObjectName, pfiletime);

	HRESULT	EnumRunning(ppenumMoniker);

	};

SCODE	GetRunningObjectTable(reserved, pprot);

GetRunningObjectTable�xe "GetRunningObjectTable"�

HRESULT GetRunningObjectTable(reserved, pprot)

Return a pointer to the Running Object Table for the caller’s context.

Argument	Type	Description

reserved	DWORD	reserved for future use; must be zero.

pprot	IRunningObjectTable**	the place to return the running object table.

return value	HRESULT	S_OK

IRunningObjectTable::Register�xe "IRunningObjectTable:functions:Register"�

HRESULT IRunningObjectTable::Register(reserved, pUnkObject, pmkObjectName, pdwRegister)

Register the fact that the object pUnkObject has just entered the running state and that if the moniker pmkObjectName is bound to, then this object should be used as the result of the bind (with an appropriate QueryInterface).

The moniker pmkObjectName should be fully reduced before registration. See IMoniker::Reduce for a more complete discussion. If an object goes by more than one fully reduced moniker, then it should regis�ter itself under all such monikers. Here, “fully reduced” means reduced to the state MKRREDUCE_�THROUG�USER.

Registering a second object under the same moniker sets up a second independent registration, though MK_S_MONIKERALREADYREGISTERED is returned instead of S_OK. This is done without regard to the value of pUnkObject in the second registration; thus, registering the exact same (pmkObjectName, pUnk�Object) pair a second time will set up a second registration. It is not intended that multiple registration under the same moniker be a common occurrence, as which registration actually gets used in various situa�tions is non-deter�min�istic.

The arguments to this function are as follows:

Argument	Type	Description

reserved	DWORD	reserved for future use; must be zero.

pUnkObject	IUnknown*	the object which has just entered the running state.

pmkObjectName	IMoniker*	the moniker which would bind to the newly running object.

pdwRegister	DWORD*	a place to return a value by which this registration can later be revoked. May not be NULL. Zero will never be returned as a valid registration value; that is, on exit, *pdwRegister is never NULL.

return value	HRESULT	S_OK, MK_S_MONIKERALREADYREGISTERED

IRunningObjectTable::Revoke�xe "IRunningObjectTable:functions:Revoke"�

HRESULT IRunningObjectTable::Revoke(dwRegister)

Undo the registration done in IRunningObjectTable::Register, presumably because the object is about to cease to be running. Revoking an object that is not registered as running returns the status code E_INVALIDARG. Whenever any of the conditions that cause an object to register itself as running cease to be true, the object should revoke its registration(s). In particular, objects should be sure to extant registrations of themselves from the Running Object Table as part of their release process.

Argument	Type	Description

dwRegister	DWORD	a value previously returned from IRunningObjectTable::Register.

return value	HRESULT	S_OK, E_INVALIDARG.

IRunningObjectTable::IsRunning�xe "IRunningObjectTable:functions:IsRunning"�

HRESULT IRunningObjectTable::IsRunning(pmkObjectName)

This function should, in general, only be called by implementations of IMoniker::IsRunning; clients of moni�kers should invoke this on their monikers, rather than asking the Running Object Table directly.

Inquire by looking up in this Running Object Table as to whether an object with this moniker is cur�r�ently registered as running. Success or failure is indicated using the return codes S_OK or S_FALSE. The Running Object Table compares monikers by sending IMoniker::IsEqual to the monikers already in the table with moniker on the right as an argument.

Argument	Type	Description

pmkObjectName	IMoniker*	the moniker that we want to see is running

return value	HRESULT	S_OK, S_FALSE.

IRunningObjectTable::GetObject�xe "IRunningObjectTable:functions:GetObject"�

HRESULT IRunningObjectTable::GetObject(pmkObjectName, ppunkObject)

If the object designated by pmkObject name is registered as actually running, then return the object so registered. The R.O.T. compares monikers by sending IMoniker::IsEqual to the monikers already in the table with moniker on the right as an argument.

This is the function moniker implementations should use to test if they are already running (and get the pointer to the object if so).

Argument	Type	Description

pmkObjectName	IMoniker*	the moniker in whom interest is being expressed.

ppunkObject	IUnknown**	the place to return the pointer to the object. A returned value of NULL indicates that the object is not registered.

return value	HRESULT	S_OK, MK_E_UNAVAILABLE

IRunningObjectTable::NoteChangeTime

HRESULT IRunningObjectTable::NoteChangeTime(dwRegister, pfiletime)

Make a note of the time that a particular object has changed in order that IMoniker::GetTimeOfLast�Change can report an appropriate change time. This time so registered is retrievable with IRunning�Ob�ject�Table::GetTimeOfLastChange. Objects should call this as part of their data change notification process.

Argument	Type	Description

dwRegister	DWORD	the token previously returned from IRunningObjectTable::Register. The moniker whose change time is noted is the one specified in pmkObjectName in that call.

pfiletime	FILETIME*	on entry, the time at which the object has changed.

return value	HRESULT	S_OK, E_INVALIDARG

IRunningObjectTable::GetTimeOfLastChange

HRESULT IRunningObjectTable::GetTimeOfLastChange(pmkObjectName, pfiletime)

As with IMoniker::IsRunning, this function should, in general, only be called by implementations of IMoniker::GetTimeOfLastChange; clients of moni�kers should invoke this on their monikers, rather than asking the Running Object Table directly.

Look up this moniker in the running object table and report the time of change recorded for it if same is present. The Running Object Table compares monikers by sending IMoniker::IsEqual to the monikers already in the table with moniker on the right as an argument. Implementations of IMoniker::GetTimeOfLastChange, when in�voked with pmkToLeft == NULL, will want to call this function as the first thing they do.

Argument	Type	Description

pmkObjectName	IMoniker*	the moniker in which we are interested in the time of change.

pfiletime	FILETIME*	on exit, the place at which the time of change is returned.

return value	HRESULT	S_OK, MK_E_UNAVAILABLE

IRunningObjectTable::EnumRunning�xe "IRunningObjectTable:functions:EnumRunning"�

HRESULT IRunningObjectTable::EnumRunning(ppenumMoniker)

Enumerates the objects currently registered as running. The returned enumerator is of type IEnum�Mon�i�ker, which enumerates monikers.

typedef Enum<IMoniker*>		IEnumMoniker�xe "IEnumMoniker"�;

The monikers which have been passed to IRunningObjectTable::Register() are enumerated.

Argument	Type	Description

ppenumMoniker	IEnumMoniker**	the place at which to return the enumerator.

return value	HRESULT	S_OK, E_OUTOFMEMORY

� 	This function also takes some parameters that provide contextual information to the binding process which we shall get to in a moment.

� The reason behind this rule lies in the fact that in order to look in the Running Object Table, we need the whole moniker in its fully reduced form. If the current moniker is but a piece of a generic composite, then it has to be the composite’s responsibility for doing the reduction; the moniker cannot do it correctly do it by itself.

� In fact, the Win32 implementation of File Monikers does have this behavior. An alternative to the non-generic composition implementation described here is that the elements in a path are each separate monikers which are then generically composed together.

� fOnlyIfNotGeneric is set by recursive ComposeWith() calls from the implementation of Generic Composite Moniker � ComposeWith().

� The definition of FILETIME was taken from the Microsoft Windows–32 specification.

� Letters, numbers, or periods; must not begin with a number. See the appendix.

� This function is a member of IMoniker interface rather than an independent API function in order that future revisions of this function can be correctly correlated with revisions to system moniker classes.

� TITLE * MERGEFORMAT �Chapter 11. Monikers�		� SUBJECT * MERGEFORMAT �The COM Specification�

� SUBJECT * MERGEFORMAT �The COM Specification�		� TITLE * MERGEFORMAT �Chapter 11. Monikers�

Copyright © 1995 Microsoft Corporation	Page: �page �30�	DRAFT

All Rights Reserved

DRAFT	Page: �page �1�	Copyright © 1995 Microsoft Corporation

		 All Rights Reserved

