
PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

NAME
printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf − formatted output conversion

SYNOPSIS
#include <stdio.h>

int printf(const char * format, ...);
int fprintf(FILE * stream, const char * format, ...);
int sprintf(char * str, const char * format, ...);
int snprintf(char * str, size_t size, const char * format, ...);

#include <stdarg.h>

int vprintf(const char * format, va_list ap);
int vfprintf(FILE * stream, const char * format, va_list ap);
int vsprintf(char * str, const char * format, va_list ap);
int vsnprintf(char * str, size_t size, const char * format, va_list ap);

Feature Test Macro Requirements for glibc (seefeature_test_macros(7)):

snprintf (), vsnprintf ():
_BSD_SOURCE || _XOPEN_SOURCE >= 500 || _ISOC99_SOURCE ||
_POSIX_C_SOURCE >= 200112L;
or cc -std=c99

DESCRIPTION
The functions in theprintf () family produce output according to aformat as described below. The func-
tions printf () and vprintf () write output tostdout, the standard output stream;fprintf () and vfprintf ()
write output to the given outputstream; sprintf (), snprintf (), vsprintf () andvsnprintf () write to the char-
acter stringstr.

The functionssnprintf () andvsnprintf () write at mostsizebytes (including the terminating null byte ('\0'))
to str.

The functionsvprintf (), vfprintf (), vsprintf (), vsnprintf () are equivalent to the functionsprintf (),
fprintf (), sprintf (), snprintf (), respectively, except that they are called with ava_list instead of a variable
number of arguments. Thesefunctions do not call theva_endmacro. Becausethey inv oke the va_arg
macro, the value ofap is undefined after the call. Seestdarg(3).

These eight functions write the output under the control of aformat string that specifies how subsequent
arguments (or arguments accessed via the variable-length argument facilities ofstdarg(3)) are converted for
output.

C99 and POSIX.1-2001 specify that the results are undefined if a call tosprintf (), snprintf (), vsprintf (), or
vsnprintf () would cause copying to take place between objects that overlap (e.g., if the target string array
and one of the supplied input arguments refer to the same buffer). SeeNOTES.

Return value
Upon successful return, these functions return the number of characters printed (excluding the null byte
used to end output to strings).

The functionssnprintf () andvsnprintf () do not write more thansizebytes (including the terminating null
byte ('\0')). If the output was truncated due to this limit then the return value is the number of characters
(excluding the terminating null byte) which would have been written to the final string if enough space had
been available. Thus,a return value ofsizeor more means that the output was truncated. (See also below
under NOTES.)

If an output error is encountered, a negative value is returned.

GNU 2013-03-05 1

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

Format of the format string
The format string is a character string, beginning and ending in its initial shift state, if any. The format
string is composed of zero or more directives: ordinary characters (not%), which are copied unchanged to
the output stream; and conversion specifications, each of which results in fetching zero or more subsequent
arguments. Eachconversion specification is introduced by the character% , and ends with aconversion
specifier. In between there may be (in this order) zero or moreflags, an optional minimumfield width, an
optional precisionand an optionallength modifier.

The arguments must correspond properly (after type promotion) with the conversion specifier. By default,
the arguments are used in the order given, where each '*' and each conversion specifier asks for the next
argument (and it is an error if insufficiently many arguments are given). Onecan also specify explicitly
which argument is taken, at each place where an argument is required, by writing "%m$" instead of '%' and
"*m$" instead of '*', where the decimal integer m denotes the position in the argument list of the desired
argument, indexed starting from 1. Thus,

printf("%*d", width, num);

and

printf("%2$*1$d", width, num);

are equivalent. Thesecond style allows repeated references to the same argument. TheC99 standard does
not include the style using '$', which comes from the Single UNIX Specification.If the style using '$' is
used, it must be used throughout for all conversions taking an argument and all width and precision argu-
ments, but it may be mixed with "%%" formats which do not consume an argument. Theremay be no gaps
in the numbers of arguments specified using '$'; for example, if arguments 1 and 3 are specified, argument 2
must also be specified somewhere in the format string.

For some numeric conversions a radix character ("decimal point") or thousands’ grouping character is used.
The actual character used depends on theLC_NUMERIC part of the locale. The POSIX locale uses '.' as
radix character, and does not have a grouping character. Thus,

printf("%'.2f", 1234567.89);

results in "1234567.89" in the POSIX locale, in "1234567,89" in the nl_NL locale, and in "1.234.567,89" in
the da_DK locale.

The flag characters
The character % is followed by zero or more of the following flags:

The value should be converted to an "alternate form".For o conversions, the first character of the
output string is made zero (by prefixing a 0 if it was not zero already).For x andX conversions, a
nonzero result has the string "0x" (or "0X" forX conversions) prepended to it.For a, A, e, E, f, F,
g, and G conversions, the result will always contain a decimal point, even if no digits follow it
(normally, a decimal point appears in the results of those conversions only if a digit follows). For
g andG conversions, trailing zeros are not removed from the result as they would otherwise be.
For other conversions, the result is undefined.

0 The value should be zero padded.For d, i, o, u, x, X, a, A, e, E, f, F, g, and G conversions, the
converted value is padded on the left with zeros rather than blanks. If the0 and − flags both
appear, the 0 flag is ignored. If a precision is given with a numeric conversion (d, i, o, u, x, and
X), the0 flag is ignored.For other conversions, the behavior is undefined.

− The converted value is to be left adjusted on the field boundary. (The default is right justification.)
Except forn conversions, the converted value is padded on the right with blanks, rather than on the
left with blanks or zeros. A− overrides a0 if both are given.

GNU 2013-03-05 2

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

' ' (a space) A blank should be left before a positive number (or empty string) produced by a signed
conversion.

+ A sign (+ or −) should always be placed before a number produced by a signed conversion. By
default a sign is used only for negative numbers. A+ overrides a space if both are used.

The five flag characters above are defined in the C standard.The SUSv2 specifies one further flag charac-
ter.

' For decimal conversion (i, d, u, f, F, g, G) the output is to be grouped with thousands’ grouping
characters if the locale information indicates any. Note that many versions ofgcc(1) cannot parse
this option and will issue a warning. SUSv2does not include%'F.

glibc 2.2 adds one further flag character.

I For decimal integer conversion (i, d, u) the output uses the locale’s alternative output digits, if any.
For example, since glibc 2.2.3 this will give Arabic-Indic digits in the Persian ("fa_IR") locale.

The field width
An optional decimal digit string (with nonzero first digit) specifying a minimum field width.If the con-
verted value has fewer characters than the field width, it will be padded with spaces on the left (or right, if
the left-adjustment flag has been given). Insteadof a decimal digit string one may write "*" or "*m$" (for
some decimal integer m) to specify that the field width is given in the next argument, or in them-th argu-
ment, respectively, which must be of typeint. A negative field width is taken as a '−' flag followed by a
positive field width. In no case does a nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is expanded to contain the conversion result.

The precision
An optional precision, in the form of a period ('.')followed by an optional decimal digit string. Instead of a
decimal digit string one may write "*" or "*m$" (for some decimal integer m) to specify that the precision
is given in the next argument, or in the m-th argument, respectively, which must be of typeint. If the preci-
sion is given as just '.', or the precision is negative, the precision is taken to be zero. This gives the mini-
mum number of digits to appear ford, i, o, u, x, and X conversions, the number of digits to appear after the
radix character fora, A, e, E, f, and F conversions, the maximum number of significant digits forg andG
conversions, or the maximum number of characters to be printed from a string fors andS conversions.

The length modifier
Here, "integer conversion" stands ford, i, o, u, x, or X conversion.

hh A following integer conversion corresponds to asigned char or unsigned char argument, or a fol-
lowing n conversion corresponds to a pointer to asigned charargument.

h A following integer conversion corresponds to ashort int or unsigned short intargument, or a fol-
lowing n conversion corresponds to a pointer to ashort intargument.

l (ell) A following integer conversion corresponds to along int or unsigned long intargument, or a
following n conversion corresponds to a pointer to along int argument, or a following c conver-
sion corresponds to awint_t argument, or a following s conversion corresponds to a pointer to
wchar_targument.

ll (ell-ell). A following integer conversion corresponds to along long intor unsigned long long int
argument, or a followingn conversion corresponds to a pointer to along long intargument.

L A following a, A, e, E, f, F, g, or G conversion corresponds to along doubleargument. (C99
allows %LF, but SUSv2 does not.)

q ("quad". 4.4BSD and Linux libc5 only. Don’t use.) Thisis a synonym forll .

j A following integer conversion corresponds to anintmax_tor uintmax_targument.

z A following integer conversion corresponds to asize_tor ssize_targument. (Linuxlibc5 hasZ
with this meaning. Don’t use it.)

t A following integer conversion corresponds to aptrdiff_t argument.

GNU 2013-03-05 3

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

The SUSv2 knows about only the length modifiersh (in hd, hi, ho, hx, hX, hn) and l (in ld, li , lo, lx, lX ,
ln, lc, ls) andL (in Le, LE , Lf , Lg, LG).

The conversion specifier
A character that specifies the type of conversion to be applied. The conversion specifiers and their mean-
ings are:

d, i The int argument is converted to signed decimal notation. The precision, if any, giv es the mini-
mum number of digits that must appear; if the converted value requires fewer digits, it is padded
on the left with zeros. The default precision is 1.When 0 is printed with an explicit precision 0,
the output is empty.

o, u, x, X
The unsigned intargument is converted to unsigned octal (o), unsigned decimal (u), or unsigned
hexadecimal (x and X) notation. Theletters abcdef are used forx conversions; the letters
ABCDEF are used forX conversions. Theprecision, if any, giv es the minimum number of digits
that must appear; if the converted value requires fewer digits, it is padded on the left with zeros.
The default precision is 1. When 0 is printed with an explicit precision 0, the output is empty.

e, E The doubleargument is rounded and converted in the style [−]d.ddde±dd where there is one digit
before the decimal-point character and the number of digits after it is equal to the precision; if the
precision is missing, it is taken as 6; if the precision is zero, no decimal-point character appears.
An E conversion uses the letterE (rather thane) to introduce the exponent. Theexponent always
contains at least two digits; if the value is zero, the exponent is 00.

f, F The doubleargument is rounded and converted to decimal notation in the style [−]ddd.ddd, where
the number of digits after the decimal-point character is equal to the precision specification. If the
precision is missing, it is taken as 6; if the precision is explicitly zero, no decimal-point character
appears. Ifa decimal point appears, at least one digit appears before it.

(The SUSv2 does not know aboutF and says that character string representations for infinity and
NaN may be made available. TheC99 standard specifies "[−]inf" or "[−]infinity" for infinity, and
a string starting with "nan" for NaN, in the case off conversion, and "[−]INF" or "[−]INFINITY"
or "NAN*" in the case ofF conversion.)

g, G The doubleargument is converted in stylef or e (or F or E for G conversions). Theprecision
specifies the number of significant digits. If the precision is missing, 6 digits are given; if the pre-
cision is zero, it is treated as 1.Stylee is used if the exponent from its conversion is less than −4
or greater than or equal to the precision.Trailing zeros are removed from the fractional part of the
result; a decimal point appears only if it is followed by at least one digit.

a, A (C99; not in SUSv2) For a conversion, thedoubleargument is converted to hexadecimal notation
(using the letters abcdef) in the style [−]0xh.hhhhp±; for A conversion the prefix0X, the letters
ABCDEF, and the exponent separatorP is used. There is one hexadecimal digit before the deci-
mal point, and the number of digits after it is equal to the precision. The default precision suffices
for an exact representation of the value if an exact representation in base 2 exists and otherwise is
sufficiently large to distinguish values of typedouble. The digit before the decimal point is
unspecified for nonnormalized numbers, and nonzero but otherwise unspecified for normalized
numbers.

c If no l modifier is present, theint argument is converted to anunsigned char, and the resulting
character is written. If anl modifier is present, thewint_t (wide character) argument is converted
to a multibyte sequence by a call to thewcrtomb(3) function, with a conversion state starting in
the initial state, and the resulting multibyte string is written.

s If no l modifier is present: Theconst char * argument is expected to be a pointer to an array of
character type (pointer to a string).Characters from the array are written up to (but not including)
a terminating null byte ('\0'); if a precision is specified, no more than the number specified are
written. If a precision is given, no null byte need be present; if the precision is not specified, or is
greater than the size of the array, the array must contain a terminating null byte.

GNU 2013-03-05 4

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

If an l modifier is present: Theconst wchar_t * argument is expected to be a pointer to an array of
wide characters.Wide characters from the array are converted to multibyte characters (each by a
call to thewcrtomb(3) function, with a conversion state starting in the initial state before the first
wide character), up to and including a terminating null wide character. The resulting multibyte
characters are written up to (but not including) the terminating null byte. If a precision is speci-
fied, no more bytes than the number specified are written, but no partial multibyte characters are
written. Notethat the precision determines the number ofbyteswritten, not the number ofwide
charactersor screen positions. The array must contain a terminating null wide character, unless a
precision is given and it is so small that the number of bytes written exceeds it before the end of
the array is reached.

C (Not in C99, but in SUSv2.) Synonym forlc. Don’t use.

S (Not in C99, but in SUSv2.) Synonym forls. Don’t use.

p Thevoid * pointer argument is printed in hexadecimal (as if by%#x or %#lx).

n The number of characters written so far is stored into the integer indicated by theint * (or variant)
pointer argument. Noargument is converted.

m (Glibc extension.) Printoutput ofstrerror(errno). No argument is required.

% A '%' is written. No argument is converted. Thecomplete conversion specification is '%%'.

CONFORMING TO
The fprintf (), printf (), sprintf (), vprintf (), vfprintf (), andvsprintf () functions conform to C89 and C99.
Thesnprintf () andvsnprintf () functions conform to C99.

Concerning the return value ofsnprintf (), SUSv2 and C99 contradict each other: whensnprintf () is called
with size=0 then SUSv2 stipulates an unspecified return value less than 1, while C99 allows str to be
NULL in this case, and gives the return value (as always) as the number of characters that would have been
written in case the output string has been large enough.

Linux libc4 knows about the five C standard flags. It knows about the length modifiersh, l, L , and the con-
versionsc, d, e, E, f, F, g, G, i, n, o, p, s, u, x, and X, whereF is a synonym for f. Additionally, it accepts
D, O, and U as synonyms forld, lo, and lu. (This is bad, and caused serious bugs later, when support for
%D disappeared.) Nolocale-dependent radix character, no thousands’ separator, no NaN or infinity, no
"%m$" and "*m$".

Linux libc5 knows about the five C standard flags and the ' flag, locale, "%m$" and "*m$". It knows about
the length modifiersh, l, L , Z, and q, but acceptsL andq both forlong doubleand forlong long int(this is
a bug). It no longer recognizesF, D, O, and U, but adds the conversion characterm, which outputsstr-
error(errno).

glibc 2.0 adds conversion charactersC andS.

glibc 2.1 adds length modifiershh, j , t, andz and conversion charactersa andA.

glibc 2.2 adds the conversion characterF with C99 semantics, and the flag characterI .

NOTES
Some programs imprudently rely on code such as the following

sprintf(buf, "%s some further text", buf);

to append text to buf . Howev er, the standards explicitly note that the results are undefined if source and
destination buffers overlap when callingsprintf (), snprintf (), vsprintf (), andvsnprintf (). Dependingon
the version ofgcc(1) used, and the compiler options employed, calls such as the above will not produce the
expected results.

The glibc implementation of the functionssnprintf () andvsnprintf () conforms to the C99 standard, that is,
behaves as described above, since glibc version 2.1.Until glibc 2.0.6 they would return −1 when the output
was truncated.

GNU 2013-03-05 5

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

BUGS
Becausesprintf () andvsprintf () assume an arbitrarily long string, callers must be careful not to overflow
the actual space; this is often impossible to assure. Note that the length of the strings produced is locale-
dependent and difficult to predict.Use snprintf () and vsnprintf () instead (or asprintf (3) and
vasprintf (3)).

Linux libc4.[45] does not have asnprintf (), but provides a libbsd that contains ansnprintf () equivalent to
sprintf (), that is, one that ignores thesizeargument. Thus,the use ofsnprintf () with early libc4 leads to
serious security problems.

Code such asprintf(foo); often indicates a bug, sincefoo may contain a % character. If foo comes from
untrusted user input, it may contain%n , causing theprintf () call to write to memory and creating a secu-
rity hole.

EXAMPLE
To print Pi to five decimal places:

#include <math.h>
#include <stdio.h>
fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

To print a date and time in the form "Sunday, July 3, 10:02", whereweekdayand monthare pointers to
strings:

#include <stdio.h>
fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

Many countries use the day-month-year order. Hence, an internationalized version must be able to print the
arguments in an order specified by the format:

#include <stdio.h>
fprintf(stdout, format,

weekday, month, day, hour, min);

where format depends on locale, and may permute the arguments. With the value:

"%1$s, %3$d. %2$s, %4$d:%5$.2d\n"

one might obtain "Sonntag, 3. Juli, 10:02".

To allocate a sufficiently large string and print into it (code correct for both glibc 2.0 and glibc 2.1):

If truncation occurs in glibc versions prior to 2.0.6, this is treated as an error instead of being handled
gracefully.

#include <stdio.h>
#include <stdlib.h>
#include <stdarg.h>

char *
make_message(const char *fmt, ...)
{

int n;
int size = 100; /* Guess we need no more than 100 bytes */
char *p, *np;
va_list ap;

if ((p = malloc(size)) == NULL)

GNU 2013-03-05 6

PRINTF(3) LinuxProgrammer’s Manual PRINTF(3)

return NULL;

while (1) {

/* Try to print in the allocated space */

va_start(ap, fmt);
n = vsnprintf(p, size, fmt, ap);
va_end(ap);

/* Check error code */

if (n < 0)
return NULL;

/* If that worked, return the string */

if (n < size)
return p;

/* Else try again with more space */

size = n + 1; /* Precisely what is needed */

if ((np = realloc (p, size)) == NULL) {
free(p);
return NULL;

} else {
p = np;

}
}

}

SEE ALSO
printf (1), asprintf (3), dprintf (3), scanf(3), setlocale(3), wcrtomb(3), wprintf (3), locale(5)

COLOPHON
This page is part of release 3.53 of the Linuxman-pages project. Adescription of the project, and informa-
tion about reporting bugs, can be found at http://www.kernel.org/doc/man−pages/.

GNU 2013-03-05 7

