
LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

NAME
libpng − Portable Network Graphics (PNG) Reference Library 1.5.13

SYNOPSIS

#include <png.h>

png_uint_32 png_access_version_number(void);

void png_benign_error (png_structppng_ptr, png_const_charperror);

void png_build_grayscale_palette (intbit_depth, png_colorppalette);

png_voidp png_calloc (png_structppng_ptr, png_alloc_size_tsize);

void png_chunk_benign_error (png_structppng_ptr, png_const_charperror);

void png_chunk_error (png_structp png_ptr, png_const_charperror);

void png_chunk_warning (png_structppng_ptr, png_const_charpmessage);

void png_convert_from_struct_tm (png_timep ptime, struct tm FAR * ttime);

void png_convert_from_time_t (png_timep ptime, time_t ttime);

png_charp png_convert_to_rfc1123 (png_structppng_ptr, png_timepptime);

png_infop png_create_info_struct (png_structppng_ptr);

png_structp png_create_read_struct (png_const_charp user_png_ver, png_voidp error_ptr,

September 27, 2012 1

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_error_ptr error_fn, png_error_ptr warn_fn);

png_structp png_create_read_struct_2 (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn,
png_free_ptr free_fn);

png_structp png_create_write_struct (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn);

png_structp png_create_write_struct_2 (png_const_charp user_png_ver, png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn, png_voidp mem_ptr, png_malloc_ptr malloc_fn,
png_free_ptr free_fn);

void png_data_freer (png_structppng_ptr, png_infop info_ptr, int freer, png_uint_32mask));

void png_destroy_info_struct (png_structppng_ptr, png_infopp info_ptr_ptr);

void png_destroy_read_struct (png_structpp png_ptr_ptr, png_infopp info_ptr_ptr, png_infopp
end_info_ptr_ptr);

void png_destroy_write_struct (png_structpppng_ptr_ptr, png_infopp info_ptr_ptr);

void png_err (png_structp png_ptr);

void png_error (png_structp png_ptr, png_const_charperror);

void png_free (png_structppng_ptr, png_voidpptr);

void png_free_chunk_list (png_structppng_ptr);

September 27, 2012 2

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_free_default (png_structppng_ptr, png_voidpptr);

void png_free_data (png_structppng_ptr, png_infop info_ptr, int num);

png_byte png_get_bit_depth (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_bKGD (png_const_structppng_ptr, png_infop info_ptr, png_color_16p*back-
ground);

png_byte png_get_channels (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_cHRM (png_const_structppng_ptr, png_const_infopinfo_ptr, double *white_x,
double *white_y, double *red_x, double *red_y, double *green_x, double *green_y, double *blue_x,
double *blue_y);

png_uint_32 png_get_cHRM_fixed (png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32 *white_x, png_uint_32 *white_y, png_uint_32 *red_x, png_uint_32 *red_y, png_uint_32
*green_x, png_uint_32*green_y, png_uint_32*blue_x, png_uint_32*blue_y);

png_uint_32 png_get_cHRM_XYZ (png_structppng_ptr,

png_const_infopinfo_ptr, double *red_X, double *red_Y, double *red_Z,

double *green_X, double *green_Y, double *green_Z, double *blue_X,

double *blue_Y, double *blue_Z);

png_uint_32 png_get_cHRM_XYZ_fixed (png_structp png_ptr, png_const_infop info_ptr,
png_fixed_point*int_red_X, png_fixed_point*int_red_Y, png_fixed_point*int_red_Z, png_fixed_point
*int_green_X, png_fixed_point *int_green_Y, png_fixed_point *int_green_Z, png_fixed_point
*int_blue_X, png_fixed_point*int_blue_Y, png_fixed_point*int_blue_Z);

png_uint_32 png_get_chunk_cache_max (png_const_structppng_ptr);

September 27, 2012 3

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_alloc_size_t png_get_chunk_malloc_max (png_const_structppng_ptr);

png_byte png_get_color_type (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_compression_buffer_size (png_const_structppng_ptr);

png_byte png_get_compression_type (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_byte png_get_copyright (png_const_structppng_ptr);

png_uint_32 png_get_current_row_number (png_const_structp);

png_byte png_get_current_pass_number(png_const_structp);

png_voidp png_get_error_ptr (png_const_structppng_ptr);

png_byte png_get_filter_type (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_gAMA (png_const_structp png_ptr, png_const_infop info_ptr, double
*file_gamma);

png_uint_32 png_get_gAMA_fixed (png_const_structp png_ptr, png_const_infop info_ptr,
png_uint_32*int_file_gamma);

png_byte png_get_header_ver (png_const_structppng_ptr);

png_byte png_get_header_version (png_const_structppng_ptr);

September 27, 2012 4

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_uint_32 png_get_hIST (png_const_structppng_ptr, png_const_infop info_ptr, png_uint_16p
*hist);

png_uint_32 png_get_iCCP (png_const_structppng_ptr, png_const_infopinfo_ptr, png_charpp name,
int *compression_type, png_byteppprofile, png_uint_32*proflen);

png_uint_32 png_get_IHDR (png_structp png_ptr, png_infop info_ptr, png_uint_32 *width,
png_uint_32 *height, int *bit_depth, int *color_type, int *interlace_type, int *compression_type, int *fil-
ter_type);

png_uint_32 png_get_image_height (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_image_width (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_int_32 png_get_int_32 (png_bytepbuf);

png_byte png_get_interlace_type (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_const_bytep png_get_io_chunk_name (png_structppng_ptr);

png_uint_32 png_get_io_chunk_type (png_const_structppng_ptr);

png_voidp png_get_io_ptr (png_structppng_ptr);

png_uint_32 png_get_io_state (png_structppng_ptr);

png_byte png_get_libpng_ver (png_const_structppng_ptr);

png_voidp png_get_mem_ptr (png_const_structppng_ptr);

September 27, 2012 5

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_uint_32 png_get_oFFs (png_const_structppng_ptr, png_const_infop info_ptr, png_uint_32 *off-
set_x, png_uint_32*offset_y, int *unit_type);

png_uint_32 png_get_pCAL (png_const_structppng_ptr, png_const_infopinfo_ptr, png_charp *pur-
pose, png_int_32 *X0, png_int_32 *X1, int *type, int *nparams, png_charp *units, png_charpp
*params);

png_uint_32 png_get_pHYs (png_const_structppng_ptr, png_const_infop info_ptr, png_uint_32
*res_x, png_uint_32*res_y, int *unit_type);

float png_get_pixel_aspect_ratio (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_pHYs_dpi (png_const_structppng_ptr, png_const_infop info_ptr, png_uint_32
*res_x, png_uint_32*res_y, int *unit_type);

png_fixed_point png_get_pixel_aspect_ratio_fixed (png_const_structppng_ptr, png_const_infop
info_ptr);

png_uint_32 png_get_pixels_per_inch (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_pixels_per_meter (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_voidp png_get_progressive_ptr (png_const_structppng_ptr);

png_uint_32 png_get_PLTE (png_const_structppng_ptr, png_const_infopinfo_ptr, png_colorp *pal-
ette, int *num_palette);

png_byte png_get_rgb_to_gray_status (png_const_structppng_ptr)

png_uint_32 png_get_rowbytes (png_const_structppng_ptr, png_const_infopinfo_ptr);

September 27, 2012 6

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_bytepp png_get_rows (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_sBIT (png_const_structppng_ptr, png_infop info_ptr, png_color_8p*sig_bit);

void png_get_sCAL (png_const_structppng_ptr, png_const_infop info_ptr, int* unit, double* width,
double* height);

void png_get_sCAL_fixed (png_const_structp png_ptr, png_const_infop info_ptr, int* unit,
png_fixed_pointpwidth, png_fixed_pointpheight);

void png_get_sCAL_s (png_const_structppng_ptr, png_const_infop info_ptr, int* unit, png_charpp
width, png_charppheight);

png_bytep png_get_signature (png_const_structppng_ptr, png_infop info_ptr);

png_uint_32 png_get_sPLT (png_const_structp png_ptr, png_const_infop info_ptr, png_spalette_p
*splt_ptr);

png_uint_32 png_get_sRGB (png_const_structp png_ptr, png_const_infop info_ptr, int
*file_srgb_intent);

png_uint_32 png_get_text (png_const_structppng_ptr, png_const_infopinfo_ptr, png_textp *text_ptr,
int *num_text);

png_uint_32 png_get_tIME (png_const_structppng_ptr, png_infop info_ptr, png_timep *mod_time);

png_uint_32 png_get_tRNS (png_const_structppng_ptr, png_infop info_ptr, png_bytep *trans_alpha,
int *num_trans, png_color_16p*trans_color);

/* This function is really an inline macro. */

png_uint_16 png_get_uint_16 (png_bytepbuf);

September 27, 2012 7

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_uint_32 png_get_uint_31 (png_structppng_ptr, png_bytepbuf);

/* This function is really an inline macro. */

png_uint_32 png_get_uint_32 (png_bytepbuf);

png_uint_32 png_get_unknown_chunks (png_const_structppng_ptr, png_const_infop info_ptr,
png_unknown_chunkppunknowns);

png_voidp png_get_user_chunk_ptr (png_const_structppng_ptr);

png_uint_32 png_get_user_height_max (png_const_structppng_ptr);

png_voidp png_get_user_transform_ptr (png_const_structppng_ptr);

png_uint_32 png_get_user_width_max (png_const_structppng_ptr);

png_uint_32 png_get_valid (png_const_structppng_ptr, png_const_infopinfo_ptr, png_uint_32flag);

float png_get_x_offset_inches (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_fixed_point png_get_x_offset_inches_fixed (png_structppng_ptr, png_const_infopinfo_ptr);

png_int_32 png_get_x_offset_microns (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_int_32 png_get_x_offset_pixels (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_x_pixels_per_inch (png_const_structppng_ptr, png_const_infopinfo_ptr);

September 27, 2012 8

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_uint_32 png_get_x_pixels_per_meter (png_const_structppng_ptr, png_const_infopinfo_ptr);

float png_get_y_offset_inches (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_fixed_point png_get_y_offset_inches_fixed (png_structppng_ptr, png_const_infopinfo_ptr);

png_int_32 png_get_y_offset_microns (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_int_32 png_get_y_offset_pixels (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_y_pixels_per_inch (png_const_structppng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_y_pixels_per_meter (png_const_structppng_ptr, png_const_infopinfo_ptr);

int png_handle_as_unknown (png_structppng_ptr, png_bytepchunk_name);

void png_info_init_3 (png_infopp info_ptr, png_size_tpng_info_struct_size);

void png_init_io (png_structp png_ptr, FILE *fp);

void png_longjmp (png_structppng_ptr, int val);

png_voidp png_malloc (png_structppng_ptr, png_alloc_size_tsize);

png_voidp png_malloc_default (png_structppng_ptr, png_alloc_size_tsize);

September 27, 2012 9

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_voidp png_malloc_warn (png_structp png_ptr, png_alloc_size_tsize);

png_uint_32 png_permit_mng_features (png_structppng_ptr, png_uint_32mng_features_permitted);

void png_process_data (png_structppng_ptr, png_infop info_ptr, png_bytep buffer, png_size_tbuf-
fer_size);

png_size_t png_process_data_pause(png_structp, int save);

png_uint_32 png_process_data_skip(png_structp);

void png_progressive_combine_row (png_structp png_ptr, png_bytepold_row, png_bytepnew_row);

void png_read_end (png_structppng_ptr, png_infop info_ptr);

void png_read_image (png_structppng_ptr, png_bytepp image);

void png_read_info (png_structp png_ptr, png_infop info_ptr);

void png_read_png (png_structppng_ptr, png_infop info_ptr, int transforms, png_voidpparams);

void png_read_row (png_structp png_ptr, png_byteprow, png_bytepdisplay_row);

void png_read_rows (png_structp png_ptr, png_bytepp row, png_bytepp display_row, png_uint_32
num_rows);

void png_read_update_info (png_structp png_ptr, png_infop info_ptr);

September 27, 2012 10

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

int png_reset_zstream (png_structppng_ptr);

void png_save_int_32 (png_bytepbuf, png_int_32 i);

void png_save_uint_16 (png_bytepbuf, unsigned int i);

void png_save_uint_32 (png_bytepbuf, png_uint_32 i);

void png_set_add_alpha (png_structppng_ptr, png_uint_32filler, int flags);

void png_set_alpha_mode (png_structppng_ptr, int mode, doubleoutput_gamma);

void png_set_alpha_mode_fixed (png_structppng_ptr, int mode, png_fixed_pointoutput_gamma);

void png_set_background (png_structp png_ptr, png_color_16p background_color, int back-
ground_gamma_code, int need_expand, doublebackground_gamma);

void png_set_background_fixed (png_structppng_ptr, png_color_16p background_color, int back-
ground_gamma_code, int need_expand, png_uint_32background_gamma);

void png_set_benign_errors (png_structppng_ptr, int allowed);

void png_set_bgr (png_structppng_ptr);

void png_set_bKGD (png_structppng_ptr, png_infop info_ptr, png_color_16pbackground);

void png_set_check_for_invalid_index(png_structrp png_ptr, int allowed);

September 27, 2012 11

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_cHRM (png_structppng_ptr, png_infop info_ptr, double white_x, double white_y, double
red_x, double red_y, doublegreen_x, doublegreen_y, doubleblue_x, doubleblue_y);

void png_set_cHRM_fixed (png_structp png_ptr, png_infop info_ptr, png_uint_32 white_x,
png_uint_32 white_y, png_uint_32 red_x, png_uint_32 red_y, png_uint_32 green_x, png_uint_32
green_y, png_uint_32blue_x, png_uint_32blue_y);

void png_set_cHRM_XYZ (png_structp png_ptr, png_infop info_ptr, double red_X, double red_Y,
double red_Z, doublegreen_X, doublegreen_Y,

doublegreen_Z, doubleblue_X, doubleblue_Y, doubleblue_Z);

void png_set_cHRM_XYZ_fixed (png_structp png_ptr, png_infop info_ptr, png_fixed_point
int_red_X, png_fixed_point int_red_Y, png_fixed_point int_red_Z, png_fixed_point int_green_X,
png_fixed_point int_green_Y, png_fixed_point int_green_Z, png_fixed_point int_blue_X,
png_fixed_point int_blue_Y, png_fixed_point int_blue_Z);

void png_set_chunk_cache_max (png_structppng_ptr, png_uint_32user_chunk_cache_max);

void png_set_compression_level (png_structp png_ptr, int level);

void png_set_compression_mem_level (png_structp png_ptr, int mem_level);

void png_set_compression_method (png_structppng_ptr, int method);

void png_set_compression_strategy (png_structppng_ptr, int strategy);

void png_set_compression_window_bits (png_structppng_ptr, int window_bits);

void png_set_crc_action (png_structppng_ptr, int crit_action, int ancil_action);

void png_set_error_fn (png_structp png_ptr, png_voidp error_ptr, png_error_ptr error_fn,

September 27, 2012 12

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_error_ptr warning_fn);

void png_set_expand (png_structppng_ptr);

void png_set_expand_16 (png_structppng_ptr);

void png_set_expand_gray_1_2_4_to_8 (png_structppng_ptr);

void png_set_filler (png_structppng_ptr, png_uint_32filler, int flags);

void png_set_filter (png_structppng_ptr, int method, int filters);

void png_set_filter_heuristics (png_structppng_ptr, int heuristic_method, int num_weights, png_dou-
blep filter_weights, png_doublepfilter_costs);

void png_set_filter_heuristics_fixed (png_structppng_ptr, int heuristic_method, int num_weights,
png_fixed_point_pfilter_weights, png_fixed_point_pfilter_costs);

void png_set_flush (png_structppng_ptr, int nrows);

void png_set_gamma (png_structppng_ptr, doublescreen_gamma, doubledefault_file_gamma);

void png_set_gamma_fixed (png_structp png_ptr, png_uint_32 screen_gamma, png_uint_32
default_file_gamma);

void png_set_gAMA (png_structppng_ptr, png_infop info_ptr, doublefile_gamma);

void png_set_gAMA_fixed (png_structppng_ptr, png_infop info_ptr, png_uint_32file_gamma);

September 27, 2012 13

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_gray_1_2_4_to_8 (png_structppng_ptr);

void png_set_gray_to_rgb (png_structppng_ptr);

void png_set_hIST (png_structppng_ptr, png_infop info_ptr, png_uint_16phist);

void png_set_iCCP (png_structppng_ptr, png_infop info_ptr, png_const_charpname, int compres-
sion_type, png_const_bytepprofile, png_uint_32proflen);

int png_set_interlace_handling (png_structppng_ptr);

void png_set_invalid (png_structp png_ptr, png_infop info_ptr, int mask);

void png_set_invert_alpha (png_structp png_ptr);

void png_set_invert_mono (png_structp png_ptr);

void png_set_IHDR (png_structppng_ptr, png_infop info_ptr, png_uint_32width, png_uint_32height,
int bit_depth, int color_type, int interlace_type, int compression_type, int filter_type);

void png_set_keep_unknown_chunks (png_structp png_ptr, int keep, png_bytep chunk_list, int
num_chunks);

jmp_buf* png_set_longjmp_fn (png_structp png_ptr, png_longjmp_ptr longjmp_fn, size_t
jmp_buf_size);

void png_set_chunk_malloc_max (png_structppng_ptr, png_alloc_size_tuser_chunk_cache_max);

void png_set_compression_buffer_size (png_structppng_ptr, png_uint_32size);

September 27, 2012 14

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_mem_fn (png_structp png_ptr, png_voidp mem_ptr, png_malloc_ptr malloc_fn,
png_free_ptr free_fn);

void png_set_oFFs (png_structppng_ptr, png_infop info_ptr, png_uint_32 offset_x, png_uint_32 off-
set_y, int unit_type);

void png_set_packing (png_structppng_ptr);

void png_set_packswap (png_structppng_ptr);

void png_set_palette_to_rgb (png_structppng_ptr);

void png_set_pCAL (png_structp png_ptr, png_infop info_ptr, png_charp purpose, png_int_32 X0,
png_int_32X1, int type, int nparams, png_charpunits, png_charppparams);

void png_set_pHYs (png_structppng_ptr, png_infop info_ptr, png_uint_32 res_x, png_uint_32 res_y,
int unit_type);

void png_set_progressive_read_fn (png_structp png_ptr, png_voidp progressive_ptr, png_progres-
sive_info_ptr info_fn, png_progressive_row_ptr row_fn, png_progressive_end_ptr end_fn);

void png_set_PLTE (png_structppng_ptr, png_infop info_ptr, png_colorppalette, int num_palette);

void png_set_quantize (png_structppng_ptr, png_colorp palette, int num_palette, int maximum_colors,
png_uint_16phistogram, int full_quantize);

void png_set_read_fn (png_structppng_ptr, png_voidp io_ptr, png_rw_ptr read_data_fn);

void png_set_read_status_fn (png_structppng_ptr, png_read_status_ptrread_row_fn);

September 27, 2012 15

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_read_user_chunk_fn (png_structp png_ptr, png_voidp user_chunk_ptr,
png_user_chunk_ptrread_user_chunk_fn);

void png_set_read_user_transform_fn (png_structp png_ptr, png_user_transform_ptr
read_user_transform_fn);

void png_set_rgb_to_gray (png_structppng_ptr, int error_action, double red, doublegreen);

void png_set_rgb_to_gray_fixed (png_structppng_ptr, int error_action png_uint_32 red, png_uint_32
green);

void png_set_rows (png_structp png_ptr, png_infop info_ptr, png_bytepprow_pointers);

void png_set_sBIT (png_structppng_ptr, png_infop info_ptr, png_color_8psig_bit);

void png_set_sCAL (png_structppng_ptr, png_infop info_ptr, int unit, doublewidth, doubleheight);

void png_set_sCAL_fixed (png_structppng_ptr, png_infop info_ptr, int unit, png_fixed_point width,
png_fixed_pointheight);

void png_set_sCAL_s (png_structppng_ptr, png_infop info_ptr, int unit, png_charp width, png_charp
height);

void png_set_scale_16 (png_structppng_ptr);

void png_set_shift (png_structppng_ptr, png_color_8ptrue_bits);

void png_set_sig_bytes (png_structppng_ptr, int num_bytes);

September 27, 2012 16

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_sPLT (png_structp png_ptr, png_infop info_ptr, png_spalette_p splt_ptr, int
num_spalettes);

void png_set_sRGB (png_structppng_ptr, png_infop info_ptr, int srgb_intent);

void png_set_sRGB_gAMA_and_cHRM (png_structppng_ptr, png_infop info_ptr, int srgb_intent);

void png_set_strip_16 (png_structppng_ptr);

void png_set_strip_alpha (png_structppng_ptr);

void png_set_strip_error_numbers (png_structppng_ptr, png_uint_32strip_mode);

void png_set_swap (png_structppng_ptr);

void png_set_swap_alpha (png_structppng_ptr);

void png_set_text (png_structppng_ptr, png_infop info_ptr, png_textp text_ptr, int num_text);

void png_set_text_compression_level (png_structp png_ptr, int level);

void png_set_text_compression_mem_level (png_structp png_ptr, int mem_level);

void png_set_text_compression_strategy (png_structppng_ptr, int strategy);

void png_set_text_compression_window_bits (png_structppng_ptr, int window_bits);

void png_set_text_compression_method, (png_structp png_ptr, int method));

September 27, 2012 17

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_tIME (png_structppng_ptr, png_infop info_ptr, png_timepmod_time);

void png_set_tRNS (png_structppng_ptr, png_infop info_ptr, png_bytep trans_alpha, int num_trans,
png_color_16ptrans_color);

void png_set_tRNS_to_alpha (png_structppng_ptr);

png_uint_32 png_set_unknown_chunks (png_structp png_ptr, png_infop info_ptr,
png_unknown_chunkpunknowns, int num, int location);

void png_set_unknown_chunk_location (png_structppng_ptr, png_infop info_ptr, int chunk, int loca-
tion);

void png_set_user_limits (png_structp png_ptr, png_uint_32 user_width_max, png_uint_32
user_height_max);

void png_set_user_transform_info (png_structp png_ptr, png_voidp user_transform_ptr, int
user_transform_depth, int user_transform_channels);

void png_set_write_fn (png_structp png_ptr, png_voidp io_ptr, png_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);

void png_set_write_status_fn (png_structppng_ptr, png_write_status_ptrwrite_row_fn);

void png_set_write_user_transform_fn (png_structp png_ptr, png_user_transform_ptr
write_user_transform_fn);

int png_sig_cmp (png_bytepsig, png_size_tstart, png_size_tnum_to_check);

void png_start_read_image (png_structppng_ptr);

September 27, 2012 18

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_warning (png_structppng_ptr, png_const_charpmessage);

void png_write_chunk (png_structp png_ptr, png_bytep chunk_name, png_bytep data, png_size_t
length);

void png_write_chunk_data (png_structppng_ptr, png_bytepdata, png_size_tlength);

void png_write_chunk_end (png_structppng_ptr);

void png_write_chunk_start (png_structppng_ptr, png_bytepchunk_name, png_uint_32 length);

void png_write_end (png_structppng_ptr, png_infop info_ptr);

void png_write_flush (png_structppng_ptr);

void png_write_image (png_structppng_ptr, png_bytepp image);

void png_write_info (png_structp png_ptr, png_infop info_ptr);

void png_write_info_before_PLTE (png_structppng_ptr, png_infop info_ptr);

void png_write_png (png_structppng_ptr, png_infop info_ptr, int transforms, png_voidpparams);

void png_write_row (png_structp png_ptr, png_byteprow);

void png_write_rows (png_structp png_ptr, png_bytepprow, png_uint_32num_rows);

September 27, 2012 19

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_write_sig (png_structppng_ptr);

DESCRIPTION
The libpng library supports encoding, decoding, and various manipulations of the Portable Network Graph-
ics (PNG) format image files. It uses thezlib(3) compression library. Following is a copy of the libpng-
manual.txt file that accompanies libpng.

LIBPNG.TXT
Libpng-manual.txt - A description on how to use and modify libpng

libpng version 1.5.13 - September 27, 2012
Updated and distributed by Glenn Randers-Pehrson
<glennrp at users.sourceforge.net>
Copyright (c) 1998-2012 Glenn Randers-Pehrson

This document is released under the libpng license.
For conditions of distribution and use, see the disclaimer
and license in png.h

Based on:

libpng versions 0.97, January 1998, through 1.5.13 - September 27, 2012
Updated and distributed by Glenn Randers-Pehrson
Copyright (c) 1998-2012 Glenn Randers-Pehrson

libpng 1.0 beta 6version 0.96 May 28, 1997
Updated and distributed by Andreas Dilger
Copyright (c) 1996, 1997 Andreas Dilger

libpng 1.0 beta 2 - version 0.88 January 26, 1996
For conditions of distribution and use, see copyright
notice in png.h. Copyright (c) 1995, 1996 Guy Eric
Schalnat, Group 42, Inc.

Updated/rewritten per request in the libpng FAQ
Copyright (c) 1995, 1996 Frank J. T. Wojcik
December 18, 1995 & January 20, 1996

I. Introduction
This file describes how to use and modify the PNG reference library (known as libpng) for your own use.
There are five sections to this file: introduction, structures, reading, writing, and modification and configu-
ration notes for various special platforms. In addition to this file, example.c is a good starting point for
using the library, as it is heavily commented and should include everything most people will need.We
assume that libpng is already installed; see the INSTALL file for instructions on how to install libpng.

For examples of libpng usage, see the files "example.c", "pngtest.c", and the files in the "contrib" directory,
all of which are included in the libpng distribution.

Libpng was written as a companion to the PNG specification, as a way of reducing the amount of time and
effort it takes to support the PNG file format in application programs.

The PNG specification (second edition), November 2003, is available as a W3C Recommendation and as an

September 27, 2012 20

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

ISO Standard (ISO/IEC 15948:2003 (E)) at <http://www.w3.org/TR/2003/REC-PNG-20031110/ The W3C
and ISO documents have identical technical content.

The PNG-1.2 specification is available at <http://www.libpng.org/pub/png/documents/>. Itis technically
equivalent to the PNG specification (second edition) but has some additional material.

The PNG-1.0 specification is available as RFC 2083 <http://www.libpng.org/pub/png/documents/> and as a
W3C Recommendation <http://www.w3.org/TR/REC.png.html>.

Some additional chunks are described in the special-purpose public chunks documents at
<http://www.libpng.org/pub/png/documents/>.

Other information about PNG, and the latest version of libpng, can be found at the PNG home page,
<http://www.libpng.org/pub/png/>.

Most users will not have to modify the library significantly; advanced users may want to modify it more.
All attempts were made to make it as complete as possible, while keeping the code easy to understand.
Currently, this library only supports C. Support for other languages is being considered.

Libpng has been designed to handle multiple sessions at one time, to be easily modifiable, to be portable to
the vast majority of machines (ANSI, K&R, 16-, 32-, and 64-bit) available, and to be easy to use. The ulti-
mate goal of libpng is to promote the acceptance of the PNG file format in whatever way possible.While
there is still work to be done (see the TODO file), libpng should cover the majority of the needs of its users.

Libpng uses zlib for its compression and decompression of PNG files. Further information about zlib, and
the latest version of zlib, can be found at the zlib home page, <http://www.info-zip.org/pub/infozip/zlib/>.
The zlib compression utility is a general purpose utility that is useful for more than PNG files, and can be
used without libpng. See the documentation delivered with zlib for more details.You can usually find the
source files for the zlib utility wherever you find the libpng source files.

Libpng is thread safe, provided the threads are using different instances of the structures. Each thread
should have its own png_struct and png_info instances, and thus its own image. Libpng does not protect
itself against two threads using the same instance of a structure.

II. Structures
There are two main structures that are important to libpng, png_struct and png_info. Both are internal
structures that are no longer exposed in the libpng interface (as of libpng 1.5.0).

The png_info structure is designed to provide information about the PNG file.At one time, the fields of
png_info were intended to be directly accessible to the user. Howev er, this tended to cause problems with
applications using dynamically loaded libraries, and as a result a set of interface functions for png_info (the
png_get_*() and png_set_*() functions) was developed, and direct access to the png_info fields was depre-
cated..

The png_struct structure is the object used by the library to decode a single image.As of 1.5.0 this struc-
ture is also not exposed.

Almost all libpng APIs require a pointer to a png_struct as the first argument. Many (in particular the
png_set and png_get APIs) also require a pointer to png_info as the second argument. Someapplication
visible macros defined in png.h designed for basic data access (reading and writing integers in the PNG for-
mat) don’t take a png_info pointer, but it’s almost always safe to assume that a (png_struct*) has to be
passed to call an API function.

You can have more than one png_info structure associated with an image, as illustrated in pngtest.c, one for

September 27, 2012 21

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

information valid prior to the IDAT chunks and another (called "end_info" below) for things after them.

The png.h header file is an invaluable reference for programming with libpng. And while I’m on the topic,
make sure you include the libpng header file:

#include <png.h>

and also (as of libpng-1.5.0) the zlib header file, if you need it:

#include <zlib.h>

Types
The png.h header file defines a number of integral types used by the APIs. Most of these are fairly obvious;
for example types corresponding to integers of particular sizes and types for passing color values.

One exception is how non-integral numbers are handled.For application convenience most APIs that take
such numbers have C (double) arguments; however, internally PNG, and libpng, use 32 bit signed integers
and encode the value by multiplying by 100,000. As of libpng 1.5.0 a convenience macro PNG_FP_1 is
defined in png.h along with a type (png_fixed_point) which is simply (png_int_32).

All APIs that take (double) arguments also have a matching API that takes the corresponding fixed point
integer arguments. Thefixed point API has the same name as the floating point one with "_fixed"
appended. Theactual range of values permitted in the APIs is frequently less than the full range of
(png_fixed_point) (-21474 to +21474). When APIs require a non-negative argument the type is recorded as
png_uint_32 above. Consult the header file and the text below for more information.

Special care must be take with sCAL chunk handling because the chunk itself uses non-integral values
encoded as strings containing decimal floating point numbers. See the comments in the header file.

Configuration
The main header file function declarations are frequently protected by C preprocessing directives of the
form:

#ifdef PNG_feature_SUPPORTED
declare-function
#endif
...
#ifdef PNG_feature_SUPPORTED
use-function
#endif

The library can be built without support for these APIs, although a standard build will have all implemented
APIs. Applicationprograms should check the feature macros before using an API for maximum portabil-
ity. From libpng 1.5.0 the feature macros set during the build of libpng are recorded in the header file
"pnglibconf.h" and this file is always included by png.h.

If you don’t need to change the library configuration from the default, skip to the next section ("Reading").

Notice that some of the makefiles in the ’scripts’ directory and (in 1.5.0) all of the build project files in the
’projects’ directory simply copy scripts/pnglibconf.h.prebuilt to pnglibconf.h. This means that these build
systems do not permit easy auto-configuration of the library - they only support the default configuration.

The easiest way to make minor changes to the libpng configuration when auto-configuration is supported is
to add definitions to the command line using (typically) CPPFLAGS. For example:

September 27, 2012 22

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

CPPFLAGS=-DPNG_NO_FLOATING_ARITHMETIC

will change the internal libpng math implementation for gamma correction and other arithmetic calcula-
tions to fixed point, avoiding the need for fast floating point support.The result can be seen in the gener-
ated pnglibconf.h - make sure it contains the changed feature macro setting.

If you need to make more extensive configuration changes - more than one or two feature macro settings -
you can either add -DPNG_USER_CONFIG to the build command line and put a list of feature macro set-
tings in pngusr.h or you can set DFA_XTRA (a makefile variable) to a file containing the same information
in the form of ’option’ settings.

A. Changing pnglibconf.h

A variety of methods exist to build libpng.Not all of these support reconfiguration of pnglibconf.h.To
reconfigure pnglibconf.h it must either be rebuilt from scripts/pnglibconf.dfa using awk or it must be edited
by hand.

Hand editing is achieved by copying scripts/pnglibconf.h.prebuilt to pnglibconf.h and changing the lines
defining the supported features, paying very close attention to the ’option’ information in scripts/pnglib-
conf.dfa that describes those features and their requirements. This is easy to get wrong.

B. Configuration using DFA_XTRA

Rebuilding from pnglibconf.dfa is easy if a functioning ’awk’, or a later variant such as ’nawk’ or ’gawk’,
is available. Theconfigure build will automatically find an appropriate awk and build pnglibconf.h.The
scripts/pnglibconf.mak file contains a set of make rules for doing the same thing if configure is not used,
and many of the makefiles in the scripts directory use this approach.

When rebuilding simply write a new file containing changed options and set DFA_XTRA to the name of
this file. This causes the build to append the new file to the end of scripts/pnglibconf.dfa. Thepngusr.dfa
file should contain lines of the following forms:

ev erything = off

This turns all optional features off. Includeit at the start of pngusr.dfa to make it easier to build a minimal
configuration. You will need to turn at least some features on afterward to enable either reading or writing
code, or both.

option feature on option feature off

Enable or disable a single feature. This will automatically enable other features required by a feature that is
turned on or disable other features that require a feature which is turned off. Conflictingsettings will cause
an error message to be emitted by awk.

setting feature default value

Changes the default value of setting ’feature’ to ’value’. Thereare a small number of settings listed at the
top of pnglibconf.h, they are documented in the source code. Most of these values have performance impli-
cations for the library but most of them have no visible effect on the API. Some can also be overridden
from the API.

This method of building a customized pnglibconf.h is illustrated in contrib/pngminim/*.See the "$(PNG-
CONF):" target in the makefile and pngusr.dfa in these directories.

September 27, 2012 23

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

C. Configuration using PNG_USR_CONFIG

If -DPNG_USR_CONFIG is added to the CFLAGS when pnglibconf.h is built the file pngusr.h will auto-
matically be included before the options in scripts/pnglibconf.dfa are processed.Your pngusr.h file should
contain only macro definitions turning features on or off or setting settings.

Apart from the global setting "everything = off" all the options listed above can be set using macros in
pngusr.h:

#define PNG_feature_SUPPORTED

is equivalent to:

option feature on

#define PNG_NO_feature

is equivalent to:

option feature off

#define PNG_feature value

is equivalent to:

setting feature default value

Notice that in both cases, pngusr.dfa and pngusr.h, the contents of the pngusr file you supply override the
contents of scripts/pnglibconf.dfa

If confusing or incomprehensible behavior results it is possible to examine the intermediate file pnglib-
conf.dfn to find the full set of dependency information for each setting and option. Simply locate the fea-
ture in the file and read the C comments that precede it.

This method is also illustrated in the contrib/pngminim/* makefiles and pngusr.h.

III. Reading
We’l l now walk you through the possible functions to call when reading in a PNG file sequentially, briefly
explaining the syntax and purpose of each one.See example.c and png.h for more detail. While progres-
sive reading is covered in the next section, you will still need some of the functions discussed in this section
to read a PNG file.

Setup
You will want to do the I/O initialization(*) before you get into libpng, so if it doesn’t work, you don’t hav e
much to undo. Of course, you will also want to insure that you are, in fact, dealing with a PNG file.
Libpng provides a simple check to see if a file is a PNG file.To use it, pass in the first 1 to 8 bytes of the
file to the function png_sig_cmp(), and it will return 0 (false) if the bytes match the corresponding bytes of
the PNG signature, or nonzero (true) otherwise.Of course, the more bytes you pass in, the greater the
accuracy of the prediction.

If you are intending to keep the file pointer open for use in libpng, you must ensure you don’t read more
than 8 bytes from the beginning of the file, and you also have to make a call to png_set_sig_bytes_read()
with the number of bytes you read from the beginning. Libpngwill then only check the bytes (if any) that
your program didn’t read.

September 27, 2012 24

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

(*): If you are not using the standard I/O functions, you will need to replace them with custom functions.
See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "rb");
if (!fp)
{

return (ERROR);
}

fread(header, 1, number, fp);
is_png = !png_sig_cmp(header, 0, number);

if (!is_png)
{

return (NOT_PNG);
}

Next, png_struct and png_info need to be allocated and initialized.In order to ensure that the size of these
structures is correct even with a dynamically linked libpng, there are functions to initialize and allocate the
structures. We also pass the library version, optional pointers to error handling functions, and a pointer to a
data struct for use by the error functions, if necessary (the pointer and functions can be NULL if the default
error handlers are to be used). See the section on Changes to Libpng below reg arding the old initialization
functions. Thestructure allocation functions quietly return NULL if they fail to create the structure, so
your application should check for that.

png_structp png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);

if (!info_ptr)
{

png_destroy_read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);

return (ERROR);
}

If you want to use your own memory allocation routines, use a libpng that was built with
PNG_USER_MEM_SUPPORTED defined, and use png_create_read_struct_2() instead of png_cre-
ate_read_struct():

png_structp png_ptr = png_create_read_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);

The error handling routines passed to png_create_read_struct() and the memory alloc/free routines passed
to png_create_struct_2() are only necessary if you are not using the libpng supplied error handling and

September 27, 2012 25

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

memory alloc/free functions.

When libpng encounters an error, it expects to longjmp back to your routine.Therefore, you will need to
call setjmp and pass your png_jmpbuf(png_ptr). Ifyou read the file from different routines, you will need
to update the longjmp buffer every time you enter a new routine that will call a png_*() function.

See your documentation of setjmp/longjmp for your compiler for more information on setjmp/longjmp.
See the discussion on libpng error handling in the Customizing Libpng section below for more information
on the libpng error handling. If an error occurs, and libpng longjmp’s back to your setjmp, you will want to
call png_destroy_read_struct() to free any memory.

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);

fclose(fp);
return (ERROR);

}

Pass (png_infopp)NULL instead of &end_info if you didn’t create an end_info structure.

If you would rather avoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_NO_SETJMP, in which case errors will result in a call to PNG_ABORT() which defaults to abort().

You can #define PNG_ABORT() to a function that does something more useful than abort(), as long as
your function does not return.

Now you need to set up the input code.The default for libpng is to use the C function fread(). If you use
this, you will need to pass a valid FILE * in the function png_init_io(). Be sure that the file is opened in
binary mode.If you wish to handle reading data in another way, you need not call the png_init_io() func-
tion, but you must then implement the libpng I/O methods discussed in the Customizing Libpng section
below.

png_init_io(png_ptr, fp);

If you had previously opened the file and read any of the signature from the beginning in order to see if this
was a PNG file, you need to let libpng know that there are some bytes missing from the start of the file.

png_set_sig_bytes(png_ptr, number);

You can change the zlib compression buffer size to be used while reading compressed data with

png_set_compression_buffer_size(png_ptr, buffer_size);

where the default size is 8192 bytes. Note that the buffer size is changed immediately and the buffer is real-
located immediately, instead of setting a flag to be acted upon later.

If you want CRC errors to be handled in a different manner than the default, use

png_set_crc_action(png_ptr, crit_action, ancil_action);

The values for png_set_crc_action() say how libpng is to handle CRC errors in ancillary and critical
chunks, and whether to use the data contained therein.Note that it is impossible to "discard" data in a criti-
cal chunk.

September 27, 2012 26

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Choices for (int) crit_action are
PNG_CRC_DEFAULT 0 error/quit
PNG_CRC_ERROR_QUIT 1 error/quit
PNG_CRC_WARN_USE 3 warn/use data
PNG_CRC_QUIET_USE 4 quiet/use data
PNG_CRC_NO_CHANGE 5use the current value

Choices for (int) ancil_action are
PNG_CRC_DEFAULT 0 error/quit
PNG_CRC_ERROR_QUIT 1 error/quit
PNG_CRC_WARN_DISCARD 2warn/discard data
PNG_CRC_WARN_USE 3 warn/use data
PNG_CRC_QUIET_USE 4 quiet/use data
PNG_CRC_NO_CHANGE 5use the current value

Setting up callback code
You can set up a callback function to handle any unknown chunks in the input stream. You must supply the
function

read_chunk_callback(png_structp png_ptr,
png_unknown_chunkp chunk);

{
/* The unknown chunk structure contains your

chunk data, along with similar data for any other
unknown chunks: */

png_byte name[5];
png_byte *data;
png_size_t size;

/* Note that libpng has already taken care of
the CRC handling */

/* put your code here. Search for your chunk in the
unknown chunk structure, process it, and return one
of the following: */

return (-n); /* chunk had an error */
return (0); /* did not recognize */
return (n); /* success */

}

(You can give your function another name that you like instead of "read_chunk_callback")

To inform libpng about your function, use

png_set_read_user_chunk_fn(png_ptr, user_chunk_ptr,
read_chunk_callback);

This names not only the callback function, but also a user pointer that you can retrieve with

png_get_user_chunk_ptr(png_ptr);

If you call the png_set_read_user_chunk_fn() function, then all unknown chunks will be saved when read,

September 27, 2012 27

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

in case your callback function will need one or more of them. This behavior can be changed with the
png_set_keep_unknown_chunks() function, described below.

At this point, you can set up a callback function that will be called after each row has been read, which you
can use to control a progress meter or the like. It’s demonstrated in pngtest.c.You must supply a function

void read_row_callback(png_structp png_ptr,
png_uint_32 row, int pass);

{
/* put your code here */

}

(You can give it another name that you like instead of "read_row_callback")

To inform libpng about your function, use

png_set_read_status_fn(png_ptr, read_row_callback);

When this function is called the row has already been completely processed and the ’row’ and ’pass’ refer
to the next row to be handled. For the non-interlaced case the row that was just handled is simply one less
than the passed in row number, and pass will always be 0.For the interlaced case the same applies unless
the row value is 0, in which case the row just handled was the last one from one of the preceding passes.
Because interlacing may skip a pass you cannot be sure that the preceding pass is just ’pass-1’, if you really
need to know what the last pass is record (row,pass) from the callback and use the last recorded value each
time.

As with the user transform you can find the output row using the PNG_ROW_FROM_PASS_ROW macro.

Unknown-chunk handling
Now you get to set the way the library processes unknown chunks in the input PNG stream. Both known
and unknown chunks will be read. Normal behavior is that known chunks will be parsed into information
in various info_ptr members while unknown chunks will be discarded. This behavior can be wasteful if
your application will never use some known chunk types. To change this, you can call:

png_set_keep_unknown_chunks(png_ptr, keep,
chunk_list, num_chunks);

keep -0: default unknown chunk handling
1: ignore; do not keep
2: keep only if safe-to-copy
3: keep even if unsafe-to-copy

You can use these definitions:
PNG_HANDLE_CHUNK_AS_DEFAULT 0
PNG_HANDLE_CHUNK_NEVER 1
PNG_HANDLE_CHUNK_IF_SAFE 2
PNG_HANDLE_CHUNK_ALWA YS 3

chunk_list - list of chunks affected (a byte string,
five bytes per chunk, NULL or ’’ i f
num_chunks is 0)

num_chunks - number of chunks affected; if 0, all
unknown chunks are affected. Ifnonzero,
only the chunks in the list are affected

September 27, 2012 28

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Unknown chunks declared in this way will be saved as raw data onto a list of png_unknown_chunk struc-
tures. If a chunk that is normally known to libpng is named in the list, it will be handled as unknown,
according to the "keep" directive. If a chunk is named in successive instances of
png_set_keep_unknown_chunks(), the final instance will take precedence. TheIHDR and IEND chunks
should not be named in chunk_list; if they are, libpng will process them normally anyway. If you know that
your application will never make use of some particular chunks, use PNG_HANDLE_CHUNK_NEVER
(or 1) as demonstrated below.

Here is an example of the usage of png_set_keep_unknown_chunks(), where the private "vpAg" chunk will
later be processed by a user chunk callback function:

png_byte vpAg[5]={118, 112, 65, 103, (png_byte) ’ ’};

#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
png_byte unused_chunks[]=
{
104, 73, 83, 84,(png_byte) ’ ’, /* hIST */
105, 84, 88,116, (png_byte) ’’, /* iTXt */
112, 67, 65, 76,(png_byte) ’ ’, /* pCAL */
115, 67, 65, 76,(png_byte) ’ ’, /* sCAL */
115, 80, 76, 84,(png_byte) ’ ’, /* sPLT */
116, 73, 77, 69,(png_byte) ’ ’, /* tIME */

};
#endif

...

#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
/* ignore all unknown chunks: */
png_set_keep_unknown_chunks(read_ptr, 1, NULL, 0);

/* except for vpAg: */
png_set_keep_unknown_chunks(read_ptr, 2, vpAg, 1);

/* also ignore unused known chunks: */
png_set_keep_unknown_chunks(read_ptr, 1, unused_chunks,

(int)sizeof(unused_chunks)/5);
#endif

User limits
The PNG specification allows the width and height of an image to be as large as 2ˆ31-1 (0x7fffffff), or
about 2.147 billion rows and columns. Since very few applications really need to process such large
images, we have imposed an arbitrary 1-million limit on rows and columns.Larger images will be rejected
immediately with a png_error() call. If you wish to change this limit, you can use

png_set_user_limits(png_ptr, width_max, height_max);

to set your own limits, or use width_max = height_max = 0x7fffffff L to allow all valid dimensions (libpng
may reject some very large images anyway because of potential buffer overflow conditions).

You should put this statement after you create the PNG structure and before calling png_read_info(),
png_read_png(), or png_process_data().

When writing a PNG datastream, put this statement before calling png_write_info() or png_write_png().

September 27, 2012 29

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

If you need to retrieve the limits that are being applied, use

width_max = png_get_user_width_max(png_ptr);
height_max = png_get_user_height_max(png_ptr);

The PNG specification sets no limit on the number of ancillary chunks allowed in a PNG datastream.You
can impose a limit on the total number of sPLT, tEXt, iTXt, zTXt, and unknown chunks that will be stored,
with

png_set_chunk_cache_max(png_ptr, user_chunk_cache_max);

where 0x7fffffff L means unlimited.You can retrieve this limit with

chunk_cache_max = png_get_chunk_cache_max(png_ptr);

This limit also applies to the number of buffers that can be allocated by png_decompress_chunk() while
decompressing iTXt, zTXt, and iCCP chunks.

You can also set a limit on the amount of memory that a compressed chunk other than IDAT can occupy,
with

png_set_chunk_malloc_max(png_ptr, user_chunk_malloc_max);

and you can retrieve the limit with

chunk_malloc_max = png_get_chunk_malloc_max(png_ptr);

Any chunks that would cause either of these limits to be exceeded will be ignored.

Information about your system
If you intend to display the PNG or to incorporate it in other image data you need to tell libpng information
about your display or drawing surface so that libpng can convert the values in the image to match the dis-
play.

From libpng-1.5.4 this information can be set before reading the PNG file header. In earlier versions
png_set_gamma() existed but behaved incorrectly if called before the PNG file header had been read and
png_set_alpha_mode() did not exist.

If you need to support versions prior to libpng-1.5.4 test the version number as illustrated below using
"PNG_LIBPNG_VER >= 10504" and follow the procedures described in the appropriate manual page.

You giv e libpng the encoding expected by your system expressed as a ’gamma’ value. You can also specify
a default encoding for the PNG file in case the required information is missing from the file. By default
libpng assumes that the PNG data matches your system, to keep this default call:

png_set_gamma(png_ptr, screen_gamma, 1/screen_gamma/*file gamma*/);

or you can use the fixed point equivalent:

png_set_gamma_fixed(png_ptr, PNG_FP_1*screen_gamma, PNG_FP_1/screen_gamma);

If you don’t know the gamma for your system it is probably 2.2 - a good approximation to the IEC standard
for display systems (sRGB). If images are too contrasty or washed out you got the value wrong - check
your system documentation!

September 27, 2012 30

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Many systems permit the system gamma to be changed via a lookup table in the display driver, a few sys-
tems, including older Macs, change the response by default. Asof 1.5.4 three special values are available
to handle common situations:

PNG_DEFAULT_sRGB: Indicates that the system conforms to the IEC 61966-2-1
standard. Thismatches almost all systems.

PNG_GAMMA_MAC_18: Indicates that the system is an older (pre Mac OS 10.6)
Apple Macintosh system with the default settings.

PNG_GAMMA_LINEAR: Just the fixed point value for 1.0 - indicates that the
system expects data with no gamma encoding.

You would use the linear (unencoded) value if you need to process the pixel values further because this
avoids the need to decode and reencode each component value whenever arithmetic is performed.A lot of
graphics software uses linear values for this reason, often with higher precision component values to pre-
serve overall accuracy.

The second thing you may need to tell libpng about is how your system handles alpha channel information.
Some, but not all, PNG files contain an alpha channel.To display these files correctly you need to compose
the data onto a suitable background, as described in the PNG specification.

Libpng only supports composing onto a single color (using png_set_background; see below). Otherwise
you must do the composition yourself and, in this case, you may need to call png_set_alpha_mode:

#if PNG_LIBPNG_VER >= 10504
png_set_alpha_mode(png_ptr, mode, screen_gamma);

#else
png_set_gamma(png_ptr, screen_gamma, 1.0/screen_gamma);

#endif

The screen_gamma value is the same as the argument to png_set_gamma; however, how it affects the out-
put depends on the mode.png_set_alpha_mode() sets the file gamma default to 1/screen_gamma, so nor-
mally you don’t need to call png_set_gamma. Ifyou need different defaults call png_set_gamma() before
png_set_alpha_mode() - if you call it after it will override the settings made by png_set_alpha_mode().

The mode is as follows:

PNG_ALPHA_PNG: The data is encoded according to the PNG specification. Red, green and blue, or
gray, components are gamma encoded color values and are not premultiplied by the alpha value. Thealpha
value is a linear measure of the contribution of the pixel to the corresponding final output pixel.

You should normally use this format if you intend to perform color correction on the color values; most,
maybe all, color correction software has no handling for the alpha channel and, anyway, the math to handle
pre-multiplied component values is unnecessarily complex.

Before you do any arithmetic on the component values you need to remove the gamma encoding and multi-
ply out the alpha channel.See the PNG specification for more detail. It is important to note that when an
image with an alpha channel is scaled, linear encoded, pre-multiplied component values must be used!

The remaining modes assume you don’t need to do any further color correction or that if you do, your color
correction software knows all about alpha (it probably doesn’t!)

PNG_ALPHA_STANDARD: The data libpng produces is encoded in the standard way assumed by
most correctly written graphics software. Thegamma encoding will be removed by libpng and the linear
component values will be pre-multiplied by the alpha channel.

September 27, 2012 31

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

With this format the final image must be re-encoded to match the display gamma before the image is dis-
played. Ifyour system doesn’t do that, yet still seems to perform arithmetic on the pixels without decoding
them, it is broken - check out the modes below.

With PNG_ALPHA_STANDARD libpng always produces linear component values, whatever
screen_gamma you supply. The screen_gamma value is, however, used as a default for the file gamma if
the PNG file has no gamma information.

If you call png_set_gamma() after png_set_alpha_mode() you will override the linear encoding.Instead
the pre-multiplied pixel values will be gamma encoded but the alpha channel will still be linear. This may
actually match the requirements of some broken software, but it is unlikely.

While linear 8-bit data is often used it has insufficient precision for any image with a reasonable dynamic
range. To avoid problems, and if your software supports it, use png_set_expand_16() to force all compo-
nents to 16 bits.

PNG_ALPHA_OPTIMIZED: This mode is the same as PNG_ALPHA_STANDARD except that com-
pletely opaque pixels are gamma encoded according to the screen_gamma value. Pixels with alpha less
than 1.0 will still have linear components.

Use this format if you have control over your compositing software and so don’t do other arithmetic (such
as scaling) on the data you get from libpng.Your compositing software can simply copy opaque pixels to
the output but still has linear values for the non-opaque pixels.

In normal compositing, where the alpha channel encodes partial pixel coverage (as opposed to broad area
translucency), the inaccuracies of the 8-bit representation of non-opaque pixels are irrelevant.

You can also try this format if your software is broken; it might look better.

PNG_ALPHA_BROKEN: This is PNG_ALPHA_STANDARD; however, all component values, includ-
ing the alpha channel are gamma encoded. This is an appropriate format to try if your software, or more
likely hardware, is totally broken, i.e., if it performs linear arithmetic directly on gamma encoded values.

In most cases of broken software or hardware the bug in the final display manifests as a subtle halo around
composited parts of the image.You may not even perceive this as a halo; the composited part of the image
may simply appear separate from the background, as though it had been cut out of paper and pasted on
afterward.

If you don’t hav eto deal with bugs in software or hardware, or if you can fix them, there are three recom-
mended ways of using png_set_alpha_mode():

png_set_alpha_mode(png_ptr, PNG_ALPHA_PNG,
screen_gamma);

You can do color correction on the result (libpng does not currently support color correction internally).
When you handle the alpha channel you need to undo the gamma encoding and multiply out the alpha.

png_set_alpha_mode(png_ptr, PNG_ALPHA_STANDARD,
screen_gamma);

png_set_expand_16(png_ptr);

If you are using the high level interface, don’t call png_set_expand_16(); instead pass PNG_TRANS-
FORM_EXPAND_16 to the interface.

September 27, 2012 32

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

With this mode you can’t do color correction, but you can do arithmetic, including composition and scaling,
on the data without further processing.

png_set_alpha_mode(png_ptr, PNG_ALPHA_OPTIMIZED,
screen_gamma);

You can avoid the expansion to 16-bit components with this mode, but you lose the ability to scale the
image or perform other linear arithmetic.All you can do is compose the result onto a matching output.
Since this mode is libpng-specific you also need to write your own composition software.

If you don’t need, or can’t handle, the alpha channel you can call png_set_background() to remove it by
compositing against a fixed color. Don’t call png_set_strip_alpha() to do this - it will leave spurious pixel
values in transparent parts of this image.

png_set_background(png_ptr, &background_color,
PNG_BACKGROUND_GAMMA_SCREEN, 0, 1);

The background_color is an RGB or grayscale value according to the data format libpng will produce for
you. Becauseyou don’t yet know the format of the PNG file, if you call png_set_background at this point
you must arrange for the format produced by libpng to always have 8-bit or 16-bit components and then
store the color as an 8-bit or 16-bit color as appropriate.The color contains separate gray and RGB compo-
nent values, so you can let libpng produce gray or RGB output according to the input format, but low bit
depth grayscale images must always be converted to at least 8-bit format.(Even though low bit depth
grayscale images can’t hav ean alpha channel they can have a transparent color!)

You set the transforms you need later, either as flags to the high level interface or libpng API calls for the
low lev el interface. For reference the settings and API calls required are:

8-bit values:
PNG_TRANSFORM_SCALE_16 | PNG_EXPAND
png_set_expand(png_ptr); png_set_scale_16(png_ptr);

If you must get exactly the same inaccurate results
produced by default in versions prior to libpng-1.5.4,
use PNG_TRANSFORM_STRIP_16 and png_set_strip_16(png_ptr)
instead.

16-bit values:
PNG_TRANSFORM_EXPAND_16
png_set_expand_16(png_ptr);

In either case palette image data will be expanded to RGB.If you just want color data you can add
PNG_TRANSFORM_GRAY_TO_RGB or png_set_gray_to_rgb(png_ptr) to the list.

Calling png_set_background before the PNG file header is read will not work prior to libpng-1.5.4.
Because the failure may result in unexpected warnings or errors it is therefore much safer to call
png_set_background after the head has been read.Unfortunately this means that prior to libpng-1.5.4 it
cannot be used with the high level interface.

The high-level r ead interface
At this point there are two ways to proceed; through the high-level read interface, or through a sequence of
low-level read operations.You can use the high-level interface if (a) you are willing to read the entire
image into memory, and (b) the input transformations you want to do are limited to the following set:

September 27, 2012 33

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNG_TRANSFORM_IDENTITY Notransformation
PNG_TRANSFORM_SCALE_16 Strip16-bit samples to

8-bit accurately
PNG_TRANSFORM_STRIP_16 Chop16-bit samples to

8-bit less accurately
PNG_TRANSFORM_STRIP_ALPHA Discardthe alpha channel
PNG_TRANSFORM_PACKING Expand1, 2 and 4-bit

samples to bytes
PNG_TRANSFORM_PACKSWAP Changeorder of packed

pixels to LSB first
PNG_TRANSFORM_EXPAND Performset_expand()
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalizepixels to the

sBIT depth
PNG_TRANSFORM_BGR FlipRGB to BGR, RGBA

to BGRA
PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA

to AG
PNG_TRANSFORM_INVERT_ALPHA Changealpha from opacity

to transparency
PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_GRAY_TO_RGB Expandgrayscale samples

to RGB (or GA to RGBA)
PNG_TRANSFORM_EXPAND_16 Expandsamples to 16 bits

(This excludes setting a background color, doing gamma transformation, quantizing, and setting filler.) If
this is the case, simply do this:

png_read_png(png_ptr, info_ptr, png_transforms, NULL)

where png_transforms is an integer containing the bitwise OR of some set of transformation flags.This
call is equivalent to png_read_info(), followed the set of transformations indicated by the transform mask,
then png_read_image(), and finally png_read_end().

(The final parameter of this call is not yet used.Someday it might point to transformation parameters
required by some future input transform.)

You must use png_transforms and not call any png_set_transform() functions when you use
png_read_png().

After you have called png_read_png(), you can retrieve the image data with

row_pointers = png_get_rows(png_ptr, info_ptr);

where row_pointers is an array of pointers to the pixel data for each row:

png_bytep row_pointers[height];

If you know your image size and pixel size ahead of time, you can allocate row_pointers prior to calling
png_read_png() with

if (height > PNG_UINT_32_MAX/png_sizeof(png_byte))
png_error (png_ptr,

"Image is too tall to process in memory");

September 27, 2012 34

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

if (width > PNG_UINT_32_MAX/pixel_size)
png_error (png_ptr,

"Image is too wide to process in memory");

row_pointers = png_malloc(png_ptr,
height*png_sizeof(png_bytep));

for (int i=0; i<height, i++)
row_pointers[i]=NULL; /* security precaution */

for (int i=0; i<height, i++)
row_pointers[i]=png_malloc(png_ptr,

width*pixel_size);

png_set_rows(png_ptr, info_ptr, &row_pointers);

Alternatively you could allocate your image in one big block and define row_pointers[i] to point into the
proper places in your block.

If you use png_set_rows(), the application is responsible for freeing row_pointers (and row_pointers[i], if
they were separately allocated).

If you don’t allocate row_pointers ahead of time, png_read_png() will do it, and it’ll be free’ed by libpng
when you call png_destroy_*().

The low-level r ead interface
If you are going the low-level route, you are now ready to read all the file information up to the actual
image data.You do this with a call to png_read_info().

png_read_info(png_ptr, info_ptr);

This will process all chunks up to but not including the image data.

This also copies some of the data from the PNG file into the decode structure for use in later transforma-
tions. Importantinformation copied in is:

1) The PNG file gamma from the gAMA chunk. This overwrites the default value provided by an earlier
call to png_set_gamma or png_set_alpha_mode.

2) Prior to libpng-1.5.4 the background color from a bKGd chunk.This damages the information provided
by an earlier call to png_set_background resulting in unexpected behavior. Libpng-1.5.4 no longer does
this.

3) The number of significant bits in each component value. Libpnguses this to optimize gamma handling
by reducing the internal lookup table sizes.

4) The transparent color information from a tRNS chunk.This can be modified by a later call to
png_set_tRNS.

Querying the info structure
Functions are used to get the information from the info_ptr once it has been read.Note that these fields
may not be completely filled in until png_read_end() has read the chunk data following the image.

png_get_IHDR(png_ptr, info_ptr, &width, &height,

September 27, 2012 35

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

&bit_depth, &color_type, &interlace_type,
&compression_type, &filter_method);

width - holds the width of the image
in pixels (up to 2ˆ31).

height -holds the height of the image
in pixels (up to 2ˆ31).

bit_depth -holds the bit depth of one of the
image channels. (valid values are
1, 2, 4, 8, 16 and depend also on
the color_type. See also
significant bits (sBIT) below).

color_type -describes which color/alpha channels
are present.

PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)

PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)

PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)

PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)

PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace_type - (PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7)

compression_type - (must be PNG_COMPRESSION_TYPE_BASE
for PNG 1.0)

filter_method -(must be PNG_FILTER_TYPE_BASE
for PNG 1.0, and can also be
PNG_INTRAPIXEL_DIFFERENCING if
the PNG datastream is embedded in
a MNG-1.0 datastream)

Any or all of interlace_type, compression_type, or
filter_method can be NULL if you are
not interested in their values.

Note that png_get_IHDR() returns 32-bit data into
the application’s width and height variables.
This is an unsafe situation if these are 16-bit
variables. Insuch situations, the
png_get_image_width() and png_get_image_height()
functions described below are safer.

September 27, 2012 36

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

width = png_get_image_width(png_ptr,
info_ptr);

height =png_get_image_height(png_ptr,
info_ptr);

bit_depth =png_get_bit_depth(png_ptr,
info_ptr);

color_type =png_get_color_type(png_ptr,
info_ptr);

interlace_type =png_get_interlace_type(png_ptr,
info_ptr);

compression_type = png_get_compression_type(png_ptr,
info_ptr);

filter_method =png_get_filter_type(png_ptr,
info_ptr);

channels = png_get_channels(png_ptr, info_ptr);

channels -number of channels of info for the
color type (valid values are 1 (GRAY,
PALETTE), 2 (GRAY_ALPHA), 3 (RGB),
4 (RGB_ALPHA or RGB + filler byte))

rowbytes = png_get_rowbytes(png_ptr, info_ptr);

rowbytes -number of bytes needed to hold a row

signature = png_get_signature(png_ptr, info_ptr);

signature -holds the signature read from the
file (if any). Thedata is kept in
the same offset it would be if the
whole signature were read (i.e. if an
application had already read in 4
bytes of signature before starting
libpng, the remaining 4 bytes would
be in signature[4] through signature[7]
(see png_set_sig_bytes())).

These are also important, but their validity depends on whether the chunk has been read.The
png_get_valid(png_ptr, info_ptr, PNG_INFO_<chunk>) and png_get_<chunk>(png_ptr, info_ptr, ...) func-
tions return non-zero if the data has been read, or zero if it is missing.The parameters to the
png_get_<chunk> are set directly if they are simple data types, or a pointer into the info_ptr is returned for
any complex types.

The colorspace data from gAMA, cHRM, sRGB, iCCP, and sBIT chunks is simply returned to give the
application information about how the image was encoded. Libpng itself only does transformations using
the file gamma when combining semitransparent pixels with the background color.

September 27, 2012 37

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_get_PLTE(png_ptr, info_ptr, &palette,
&num_palette);

palette -the palette for the file
(array of png_color)

num_palette -number of entries in the palette

png_get_gAMA(png_ptr, info_ptr, &file_gamma);
png_get_gAMA_fixed(png_ptr, info_ptr, &int_file_gamma);

file_gamma -the gamma at which the file was
written (PNG_INFO_gAMA)

int_file_gamma - 100,000 times the gamma at which the
file is written

png_get_cHRM(png_ptr, info_ptr, &white_x, &white_y, &red_x,
&red_y, &green_x, &green_y, &blue_x, &blue_y)

png_get_cHRM_XYZ(png_ptr, info_ptr, &red_X, &red_Y, &red_Z, &green_X,
&green_Y, &green_Z, &blue_X, &blue_Y, &blue_Z)

png_get_cHRM_fixed(png_ptr, info_ptr, &int_white_x, &int_white_y,
&int_red_x, &int_red_y, &int_green_x, &int_green_y,
&int_blue_x, &int_blue_y)

png_get_cHRM_XYZ_fixed(png_ptr, info_ptr, &int_red_X, &int_red_Y,
&int_red_Z, &int_green_X, &int_green_Y, &int_green_Z,
&int_blue_X, &int_blue_Y, &int_blue_Z)

{white,red,green,blue}_{x,y}
A color space encoding specified using the
chromaticities of the end points and the
white point. (PNG_INFO_cHRM)

{red,green,blue}_{X,Y,Z}
A color space encoding specified using the encoding end
points - the CIE tristimulus specification of the intended
color of the red, green and blue channels in the PNG RGB
data. Thewhite point is simply the sum of the three end
points. (PNG_INFO_cHRM)

png_get_sRGB(png_ptr, info_ptr, &srgb_intent);

file_srgb_intent - the rendering intent (PNG_INFO_sRGB)
The presence of the sRGB chunk
means that the pixel data is in the
sRGB color space. This chunk also
implies specific values of gAMA and
cHRM.

png_get_iCCP(png_ptr, info_ptr, &name,
&compression_type, &profile, &proflen);

name -The profile name.

September 27, 2012 38

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

compression_type - The compression type; always
PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.

profile - International Color Consortium color
profile data. May contain NULs.

proflen -length of profile data in bytes.

png_get_sBIT(png_ptr, info_ptr, &sig_bit);

sig_bit -the number of significant bits for
(PNG_INFO_sBIT) each of the gray,
red, green, and blue channels,
whichever are appropriate for the
given color type (png_color_16)

png_get_tRNS(png_ptr, info_ptr, &trans_alpha,
&num_trans, &trans_color);

trans_alpha -array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)

num_trans -number of transparent entries
(PNG_INFO_tRNS)

trans_color -graylevel or color sample values of
the single transparent color for
non-paletted images (PNG_INFO_tRNS)

png_get_hIST(png_ptr, info_ptr, &hist);
(PNG_INFO_hIST)

hist -histogram of palette (array of
png_uint_16)

png_get_tIME(png_ptr, info_ptr, &mod_time);

mod_time -time image was last modified
(PNG_VALID_tIME)

png_get_bKGD(png_ptr, info_ptr, &background);

background -background color (of type
png_color_16p) (PNG_VALID_bKGD)
valid 16-bit red, green and blue
values, regardless of color_type

num_comments =png_get_text(png_ptr, info_ptr,
&text_ptr, &num_text);

num_comments -number of comments

September 27, 2012 39

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

text_ptr -array of png_text holding image
comments

text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE

PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[i].key -keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Canbe empty.

text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt

text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt

text_ptr[i].lang -language of comment (empty
string for unknown).

text_ptr[i].lang_key -keyword in UTF-8
(empty string for unknown).

Note that the itxt_length, lang, and lang_key
members of the text_ptr structure only exist when the
library is built with iTXt chunk support. Prior to
libpng-1.4.0 the library was built by default without
iTXt support. Also note that when iTXt is supported,
they contain NULL pointers when the "compression"
field contains PNG_TEXT_COMPRESSION_NONE or
PNG_TEXT_COMPRESSION_zTXt.

num_text - number of comments (same as
num_comments; you can put NULL here
to avoid the duplication)

Note while png_set_text() will accept text, language,
and translated keywords that can be NULL pointers, the
structure returned by png_get_text will always contain
regular zero-terminated C strings. They might be
empty strings but they will never be NULL pointers.

num_spalettes = png_get_sPLT(png_ptr, info_ptr,
&palette_ptr);

num_spalettes -number of sPLT chunks read.

palette_ptr -array of palette structures holding
contents of one or more sPLT chunks
read.

September 27, 2012 40

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_get_oFFs(png_ptr, info_ptr, &offset_x, &offset_y,
&unit_type);

offset_x -positive offset from the left edge
of the screen (can be negative)

offset_y -positive offset from the top edge
of the screen (can be negative)

unit_type -PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_get_pHYs(png_ptr, info_ptr, &res_x, &res_y,
&unit_type);

res_x -pixels/unit physical resolution in
x direction

res_y -pixels/unit physical resolution in
x direction

unit_type -PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_get_sCAL(png_ptr, info_ptr, &unit, &width,
&height)

unit - physical scale units (an integer)

width - width of a pixel in physical scale units

height -height of a pixel in physical scale units
(width and height are doubles)

png_get_sCAL_s(png_ptr, info_ptr, &unit, &width,
&height)

unit - physical scale units (an integer)

width - width of a pixel in physical scale units
(expressed as a string)

height -height of a pixel in physical scale units
(width and height are strings like "2.54")

num_unknown_chunks = png_get_unknown_chunks(png_ptr,
info_ptr, &unknowns)

unknowns -array of png_unknown_chunk
structures holding unknown chunks

unknowns[i].name -name of unknown chunk

unknowns[i].data -data of unknown chunk

September 27, 2012 41

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

unknowns[i].size -size of unknown chunk’s data

unknowns[i].location - position of chunk in file

The value of "i" corresponds to the order in which the
chunks were read from the PNG file or inserted with the
png_set_unknown_chunks() function.

The value of "location" is a bitwise "or" of

PNG_HAVE_IHDR (0x01)
PNG_HAVE_PLTE (0x02)
PNG_AFTER_IDAT (0x08)

The data from the pHYs chunk can be retrieved in sev eral convenient forms:

res_x = png_get_x_pixels_per_meter(png_ptr,
info_ptr)

res_y = png_get_y_pixels_per_meter(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_meter(png_ptr,
info_ptr)

res_x = png_get_x_pixels_per_inch(png_ptr,
info_ptr)

res_y = png_get_y_pixels_per_inch(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_inch(png_ptr,
info_ptr)

aspect_ratio = png_get_pixel_aspect_ratio(png_ptr,
info_ptr)

Each of these returns 0 [signifying "unknown"] if
the data is not present or if res_x is 0;
res_x_and_y is 0 if res_x != res_y

Note that because of the way the resolutions are
stored internally, the inch conversions won’t
come out to exactly even number. For example,
72 dpi is stored as 0.28346 pixels/meter, and
when this is retrieved it is 71.9988 dpi, so
be sure to round the returned value appropriately
if you want to display a reasonable-looking result.

The data from the oFFs chunk can be retrieved in sev eral convenient forms:

x_offset = png_get_x_offset_microns(png_ptr, info_ptr);

y_offset = png_get_y_offset_microns(png_ptr, info_ptr);

September 27, 2012 42

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

x_offset = png_get_x_offset_inches(png_ptr, info_ptr);

y_offset = png_get_y_offset_inches(png_ptr, info_ptr);

Each of these returns 0 [signifying "unknown" if both
x and y are 0] if the data is not present or if the
chunk is present but the unit is the pixel. The
remark about inexact inch conversions applies here
as well, because a value in inches can’t always be
converted to microns and back without some loss
of precision.

For more information, see the PNG specification for chunk contents.Be careful with trusting rowbytes, as
some of the transformations could increase the space needed to hold a row (expand, filler, gray_to_rgb,
etc.). Seepng_read_update_info(), below.

A quick word about text_ptr and num_text. PNG stores comments in keyword/text pairs, one pair per
chunk, with no limit on the number of text chunks, and a 2ˆ31 byte limit on their size. While there are sug-
gested keywords, there is no requirement to restrict the use to these strings.It is strongly suggested that
keywords and text be sensible to humans (that’s the point), so don’t use abbreviations. Non-printingsym-
bols are not allowed. Seethe PNG specification for more details. There is also no requirement to have text
after the keyword.

Ke ywords should be limited to 79 Latin-1 characters without leading or trailing spaces, but non-consecutive
spaces are allowed within the keyword. It is possible to have the same keyword any number of times.The
text_ptr is an array of png_text structures, each holding a pointer to a language string, a pointer to a key-
word and a pointer to a text string. The text string, language code, and translated keyword may be empty or
NULL pointers. The keyword/text pairs are put into the array in the order that they are received. However,
some or all of the text chunks may be after the image, so, to make sure you have read all the text chunks,
don’t mess with these until after you read the stuff after the image. This will be mentioned again below in
the discussion that goes with png_read_end().

Input transformations
After you’ve read the header information, you can set up the library to handle any special transformations
of the image data. The various ways to transform the data will be described in the order that they should
occur. This is important, as some of these change the color type and/or bit depth of the data, and some oth-
ers only work on certain color types and bit depths.

Transformations you request are ignored if they don’t hav eany meaning for a particular input data format.
However some transformations can have an effect as a result of a previous transformation. If you specify a
contradictory set of transformations, for example both adding and removing the alpha channel, you cannot
predict the final result.

The color used for the transparency values should be supplied in the same format/depth as the current
image data. It is stored in the same format/depth as the image data in a tRNS chunk, so this is what libpng
expects for this data.

The color used for the background value depends on the need_expand argument as described below.

Data will be decoded into the supplied row buffers packed into bytes unless the library has been told to
transform it into another format.For example, 4 bit/pixel paletted or grayscale data will be returned 2 pix-
els/byte with the leftmost pixel in the high-order bits of the byte, unless png_set_packing() is called.8-bit
RGB data will be stored in RGB RGB RGB format unless png_set_filler() or png_set_add_alpha() is called
to insert filler bytes, either before or after each RGB triplet. 16-bit RGB data will be returned RRGGBB

September 27, 2012 43

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

RRGGBB, with the most significant byte of the color value first, unless png_set_scale_16() is called to
transform it to regular RGB RGB triplets, or png_set_filler() or png_set_add alpha() is called to insert filler
bytes, either before or after each RRGGBB triplet.Similarly, 8-bit or 16-bit grayscale data can be modified
with png_set_filler(), png_set_add_alpha(), png_set_strip_16(), or png_set_scale_16().

The following code transforms grayscale images of less than 8 to 8 bits, changes paletted images to RGB,
and adds a full alpha channel if there is transparency information in a tRNS chunk.This is most useful on
grayscale images with bit depths of 2 or 4 or if there is a multiple-image viewing application that wishes to
treat all images in the same way.

if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb(png_ptr);

if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_tRNS)) png_set_tRNS_to_alpha(png_ptr);

if (color_type == PNG_COLOR_TYPE_GRAY & &
bit_depth < 8) png_set_expand_gray_1_2_4_to_8(png_ptr);

The first two functions are actually aliases for png_set_expand(), added in libpng version 1.0.4, with the
function names expanded to improve code readability. In some future version they may actually do differ-
ent things.

As of libpng version 1.2.9, png_set_expand_gray_1_2_4_to_8() was added. It expands the sample depth
without changing tRNS to alpha.

As of libpng version 1.5.2, png_set_expand_16() was added. It behaves as png_set_expand(); however, the
resultant channels have 16 bits rather than 8.Use this when the output color or gray channels are made lin-
ear to avoid fairly severe accuracy loss.

if (bit_depth < 16)
png_set_expand_16(png_ptr);

PNG can have files with 16 bits per channel.If you only can handle 8 bits per channel, this will strip the
pixels down to 8-bit.

if (bit_depth == 16) #if PNG_LIBPNG_VER >= 10504
png_set_scale_16(png_ptr); #else
png_set_strip_16(png_ptr); #endif

(The more accurate "png_set_scale_16()" API became available in libpng version 1.5.4).

If you need to process the alpha channel on the image separately from the image data (for example if you
convert it to a bitmap mask) it is possible to have libpng strip the channel leaving just RGB or gray data:

if (color_type & PNG_COLOR_MASK_ALPHA)
png_set_strip_alpha(png_ptr);

If you strip the alpha channel you need to find some other way of dealing with the information. If, instead,
you want to convert the image to an opaque version with no alpha channel use png_set_background; see
below.

As of libpng version 1.5.2, almost all useful expansions are supported, the major ommissions are conver-
sion of grayscale to indexed images (which can be done trivially in the application) and conversion of

September 27, 2012 44

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

indexed to grayscale (which can be done by a trivial manipulation of the palette.)

In the following table, the 01 means grayscale with depth<8, 31 means indexed with depth<8, other numer-
als represent the color type, "T" means the tRNS chunk is present, A means an alpha channel is present, and
O means tRNS or alpha is present but all pixels in the image are opaque.

FROM 01 31 0 0T 0O 2 2T 2O 3 3T 3O 4A 4O 6A 6O
TO
01 - [G] - - - - - - - - - - - - -
31 [Q] Q [Q] [Q] [Q] Q Q Q Q Q Q [Q] [Q] Q Q
0 1 G + . . G G G G G G B BGB GB
0T lt Gt t + . Gt G G Gt G G Bt Bt GBt GBt
0O lt Gt t . + Gt Gt G Gt Gt G Bt Bt GBt GBt
2 C P C C C + . . C - -CB CB B B
2T Ct - Ct C C t + t - - - CBt CBt Bt Bt
2O Ct - Ct C C t t + - - - CBt CBt Bt Bt
3 [Q] p [Q] [Q] [Q] Q Q Q + . . [Q] [Q] Q Q
3T [Qt] p [Qt][Q] [Q] Qt Qt Qt t + t [Qt][Qt] Qt Qt
3O [Qt] p [Qt][Q] [Q] Qt Qt Qt t t + [Qt][Qt] Qt Qt
4A lA G A T T GA GT GT GA GT GT + BA G GBA
4O lA GBA A T T GA GT GT GA GT GT BA + GBA G
6A CA PA CA C C A T tT PA P P C CBA + BA
6O CAPBA CA C C A tT T PA P P CBA C BA +

Within the matrix,
"+" identifies entries where ’from’ and ’to’ are the same.
"-" means the transformation is not supported.
"." means nothing is necessary (a tRNS chunk can just be ignored).
"t" means the transformation is obtained by png_set_tRNS.
"A" means the transformation is obtained by png_set_add_alpha().
"X" means the transformation is obtained by png_set_expand().
"1" means the transformation is obtained by

png_set_expand_gray_1_2_4_to_8() (and by png_set_expand()
if there is no transparency in the original or the final
format).

"C" means the transformation is obtained by png_set_gray_to_rgb().
"G" means the transformation is obtained by png_set_rgb_to_gray().
"P" means the transformation is obtained by

png_set_expand_palette_to_rgb().
"p" means the transformation is obtained by png_set_packing().
"Q" means the transformation is obtained by png_set_quantize().
"T" means the transformation is obtained by

png_set_tRNS_to_alpha().
"B" means the transformation is obtained by

png_set_background(), or png_strip_alpha().

When an entry has multiple transforms listed all are required to cause the right overall transformation.
When two transforms are separated by a comma either will do the job. When transforms are enclosed in []
the transform should do the job but this is currently unimplemented - a different format will result if the
suggested transformations are used.

In PNG files, the alpha channel in an image is the level of opacity. If you need the alpha channel in an
image to be the level of transparency instead of opacity, you can invert the alpha channel (or the tRNS
chunk data) after it’s read, so that 0 is fully opaque and 255 (in 8-bit or paletted images) or 65535 (in 16-bit

September 27, 2012 45

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

images) is fully transparent, with

png_set_invert_alpha(png_ptr);

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can, resulting in, for example, 8
pixels per byte for 1 bit files. This code expands to 1 pixel per byte without changing the values of the pix-
els:

if (bit_depth < 8)
png_set_packing(png_ptr);

PNG files have possible bit depths of 1, 2, 4, 8, and 16. All pixels stored in a PNG image have been
"scaled" or "shifted" up to the next higher possible bit depth (e.g. from 5 bits/sample in the range [0,31] to 8
bits/sample in the range [0, 255]).However, it is also possible to convert the PNG pixel data back to the
original bit depth of the image. This call reduces the pixels back down to the original bit depth:

png_color_8p sig_bit;

if (png_get_sBIT(png_ptr, info_ptr, &sig_bit))
png_set_shift(png_ptr, sig_bit);

PNG files store 3-color pixels in red, green, blue order. This code changes the storage of the pixels to blue,
green, red:

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_bgr(png_ptr);

PNG files store RGB pixels packed into 3 or 6 bytes. This code expands them into 4 or 8 bytes for window-
ing systems that need them in this format:

if (color_type == PNG_COLOR_TYPE_RGB)
png_set_filler(png_ptr, filler, PNG_FILLER_BEFORE);

where "filler" is the 8 or 16-bit number to fill with, and the location is either PNG_FILLER_BEFORE or
PNG_FILLER_AFTER, depending upon whether you want the filler before the RGB or after. This trans-
formation does not affect images that already have full alpha channels.To add an opaque alpha channel,
use filler=0xff or 0xffff and PNG_FILLER_AFTER which will generate RGBA pixels.

Note that png_set_filler() does not change the color type. If you want to do that, you can add a true alpha
channel with

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_GRAY)
png_set_add_alpha(png_ptr, filler, PNG_FILLER_AFTER);

where "filler" contains the alpha value to assign to each pixel. Thisfunction was added in libpng-1.2.7.

If you are reading an image with an alpha channel, and you need the data as ARGB instead of the normal
PNG format RGBA:

if (color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_swap_alpha(png_ptr);

September 27, 2012 46

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

For some uses, you may want a grayscale image to be represented as RGB. This code will do that conver-
sion:

if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);

Conversely, you can convert an RGB or RGBA image to grayscale or grayscale with alpha.

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_rgb_to_gray(png_ptr, error_action,

double red_weight, double green_weight);

error_action = 1: silently do the conversion

error_action = 2: issue a warning if the original
image has any pixel where
red != green or red != blue

error_action = 3: issue an error and abort the
conversion if the original
image has any pixel where
red != green or red != blue

red_weight: weightof red component

green_weight: weightof green component
If either weight is negative, default
weights are used.

In the corresponding fixed point API the red_weight and green_weight values are simply scaled by
100,000:

png_set_rgb_to_gray(png_ptr, error_action,
png_fixed_point red_weight,
png_fixed_point green_weight);

If you have set error_action = 1 or 2, you can later check whether the image really was gray, after process-
ing the image rows, with the png_get_rgb_to_gray_status(png_ptr) function. It will return a png_byte that
is zero if the image was gray or 1 if there were any non-gray pixels. Backgroundand sBIT data will be
silently converted to grayscale, using the green channel data for sBIT, reg ardless of the error_action setting.

The default values come from the PNG file cHRM chunk if present; otherwise, the defaults correspond to
the ITU-R recommendation 709, and also the sRGB color space, as recommended in the Charles Poynton’s
Colour FAQ, <http://www.poynton.com/>, in section 9:

<http://www.poynton.com/notes/colour_and_gamma/ColorFAQ.html#RTFToC9>

Y = 0.2126 * R + 0.7152 * G + 0.0722 * B

Previous versions of this document, 1998 through 2002, recommended a slightly different formula:

Y = 0.212671 * R + 0.715160 * G + 0.072169 * B

September 27, 2012 47

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Libpng uses an integer approximation:

Y = (6968 * R + 23434 * G + 2366 * B)/32768

The calculation is done in a linear colorspace, if the image gamma can be determined.

The png_set_background() function has been described already; it tells libpng to composite images with
alpha or simple transparency against the supplied background color. For compatibility with versions of
libpng earlier than libpng-1.5.4 it is recommended that you call the function after reading the file header,
ev en if you don’t want to use the color in a bKGD chunk, if one exists.

If the PNG file contains a bKGD chunk (PNG_INFO_bKGD valid), you may use this color, or supply
another color more suitable for the current display (e.g., the background color from a web page).You need
to tell libpng how the color is represented, both the format of the component values in the color (the num-
ber of bits) and the gamma encoding of the color. The function takes two arguments, back-
ground_gamma_mode and need_expand to convey this information; however, only two combinations are
likely to be useful:

png_color_16 my_background;
png_color_16p image_background;

if (png_get_bKGD(png_ptr, info_ptr, &image_background))
png_set_background(png_ptr, image_background,

PNG_BACKGROUND_GAMMA_FILE, 1/*needs to be expanded*/, 1);
else

png_set_background(png_ptr, &my_background,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*do not expand*/, 1);

The second call was described above - my_background is in the format of the final, display, output pro-
duced by libpng. Because you now know the format of the PNG it is possible to avoid the need to choose
either 8-bit or 16-bit output and to retain palette images (the palette colors will be modified appropriately
and the tRNS chunk removed.) However, if you are doing this, take great care not to ask for transforma-
tions without checking first that they apply!

In the first call the background color has the original bit depth and color type of the PNG file. So, for pal-
ette images the color is supplied as a palette index and for low bit greyscale images the color is a reduced
bit value in image_background->gray.

If you didn’t call png_set_gamma() before reading the file header, for example if you need your code to
remain compatible with older versions of libpng prior to libpng-1.5.4, this is the place to call it.

Do not call it if you called png_set_alpha_mode(); doing so will damage the settings put in place by
png_set_alpha_mode(). (Ifpng_set_alpha_mode() is supported then you can certainly do
png_set_gamma() before reading the PNG header.)

This API unconditionally sets the screen and file gamma values, so it will override the value in the PNG file
unless it is called before the PNG file reading starts.For this reason you must always call it with the PNG
file value when you call it in this position:

if (png_get_gAMA(png_ptr, info_ptr, &file_gamma))
png_set_gamma(png_ptr, screen_gamma, file_gamma);

else
png_set_gamma(png_ptr, screen_gamma, 0.45455);

September 27, 2012 48

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

If you need to reduce an RGB file to a paletted file, or if a paletted file has more entries then will fit on your
screen, png_set_quantize() will do that.Note that this is a simple match quantization that merely finds the
closest color available. Thisshould work fairly well with optimized palettes, but fairly badly with linear
color cubes.If you pass a palette that is larger than maximum_colors, the file will reduce the number of
colors in the palette so it will fit into maximum_colors. If there is a histogram, libpng will use it to make
more intelligent choices when reducing the palette. If there is no histogram, it may not do as good a job.

if (color_type & PNG_COLOR_MASK_COLOR)
{

if (png_get_valid(png_ptr, info_ptr,
PNG_INFO_PLTE))

{
png_uint_16p histogram = NULL;

png_get_hIST(png_ptr, info_ptr,
&histogram);

png_set_quantize(png_ptr, palette, num_palette,
max_screen_colors, histogram, 1);

}

else
{

png_color std_color_cube[MAX_SCREEN_COLORS] =
{ . .. colors ... };

png_set_quantize(png_ptr, std_color_cube,
MAX_SCREEN_COLORS, MAX_SCREEN_COLORS,
NULL,0);

}
}

PNG files describe monochrome as black being zero and white being one. The following code will reverse
this (make black be one and white be zero):

if (bit_depth == 1 && color_type == PNG_COLOR_TYPE_GRAY)
png_set_invert_mono(png_ptr);

This function can also be used to invert grayscale and gray-alpha images:

if (color_type == PNG_COLOR_TYPE_GRAY ||
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_invert_mono(png_ptr);

PNG files store 16-bit pixels in network byte order (big-endian, ie. most significant bits first). This code
changes the storage to the other way (little-endian, i.e. least significant bits first, the way PCs store them):

if (bit_depth == 16)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change the order the pixels are
packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

September 27, 2012 49

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Finally, you can write your own transformation function if none of the existing ones meets your needs.
This is done by setting a callback with

png_set_read_user_transform_fn(png_ptr,
read_transform_fn);

You must supply the function

void read_transform_fn(png_structp png_ptr, png_row_infop
row_info, png_bytep data)

See pngtest.c for a working example. Your function will be called after all of the other transformations
have been processed.Take care with interlaced images if you do the interlace yourself - the width of the
row is the width in ’row_info’, not the overall image width.

If supported, libpng provides two information routines that you can use to find where you are in processing
the image:

png_get_current_pass_number(png_structp png_ptr);
png_get_current_row_number(png_structp png_ptr);

Don’t try using these outside a transform callback - firstly they are only supported if user transforms are
supported, secondly they may well return unexpected results unless the row is actually being processed at
the moment they are called.

With interlaced images the value returned is the row in the input sub-image image.Use
PNG_ROW_FROM_PASS_ROW(row, pass) and PNG_COL_FROM_PASS_COL(col, pass) to find the
output pixel (x,y) given an interlaced sub-image pixel (row,col,pass).

The discussion of interlace handling above contains more information on how to use these values.

You can also set up a pointer to a user structure for use by your callback function, and you can inform
libpng that your transform function will change the number of channels or bit depth with the function

png_set_user_transform_info(png_ptr, user_ptr,
user_depth, user_channels);

The user’s application, not libpng, is responsible for allocating and freeing any memory required for the
user structure.

You can retrieve the pointer via the function png_get_user_transform_ptr().For example:

voidp read_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);

The last thing to handle is interlacing; this is covered in detail below, but you must call the function here if
you want libpng to handle expansion of the interlaced image.

number_of_passes = png_set_interlace_handling(png_ptr);

After setting the transformations, libpng can update your png_info structure to reflect any transformations
you’ve requested with this call.

png_read_update_info(png_ptr, info_ptr);

September 27, 2012 50

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

This is most useful to update the info structure’s rowbytes field so you can use it to allocate your image
memory. This function will also update your palette with the correct screen_gamma and background if
these have been given with the calls above. You may only call png_read_update_info() once with a particu-
lar info_ptr.

After you call png_read_update_info(), you can allocate any memory you need to hold the image. The row
data is simply raw byte data for all forms of images. As the actual allocation varies among applications, no
example will be given. If you are allocating one large chunk, you will need to build an array of pointers to
each row, as it will be needed for some of the functions below.

Remember: Before you call png_read_update_info(), the png_get_*() functions return the values corre-
sponding to the original PNG image. After you call png_read_update_info the values refer to the image
that libpng will output. Consequently you must call all the png_set_ functions before you call
png_read_update_info(). Thisis particularly important for png_set_interlace_handling() - if you are going
to call png_read_update_info() you must call png_set_interlace_handling() before it unless you want to
receive interlaced output.

Reading image data
After you’ve allocated memory, you can read the image data. The simplest way to do this is in one function
call. If you are allocating enough memory to hold the whole image, you can just call png_read_image()
and libpng will read in all the image data and put it in the memory area supplied.You will need to pass in
an array of pointers to each row.

This function automatically handles interlacing, so you don’t need to call png_set_interlace_handling()
(unless you call png_read_update_info()) or call this function multiple times, or any of that other stuff nec-
essary with png_read_rows().

png_read_image(png_ptr, row_pointers);

where row_pointers is:

png_bytep row_pointers[height];

You can point to void or char or whatever you use for pixels.

If you don’t want to read in the whole image at once, you can use png_read_rows() instead. If there is no
interlacing (check interlace_type == PNG_INTERLACE_NONE), this is simple:

png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);

where row_pointers is the same as in the png_read_image() call.

If you are doing this just one row at a time, you can do this with a single row_pointer instead of an array of
row_pointers:

png_bytep row_pointer = row;
png_read_row(png_ptr, row_pointer, NULL);

If the file is interlaced (interlace_type != 0 in the IHDR chunk), things get somewhat harder. The only cur-
rent (PNG Specification version 1.2) interlacing type for PNG is (interlace_type == PNG_INTER-
LACE_ADAM7); a somewhat complicated 2D interlace scheme, known as Adam7, that breaks down an
image into seven smaller images of varying size, based on an 8x8 grid. This number is defined (from
libpng 1.5) as PNG_INTERLACE_ADAM7_PASSES in png.h

September 27, 2012 51

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

libpng can fill out those images or it can give them to you "as is". It is almost always better to have libpng
handle the interlacing for you. If you want the images filled out, there are two ways to do that. The one
mentioned in the PNG specification is to expand each pixel to cover those pixels that have not been read yet
(the "rectangle" method). This results in a blocky image for the first pass, which gradually smooths out as
more pixels are read.The other method is the "sparkle" method, where pixels are drawn only in their final
locations, with the rest of the image remaining whatever colors they were initialized to before the start of
the read. The first method usually looks better, but tends to be slower, as there are more pixels to put in the
rows.

If, as is likely, you want libpng to expand the images, call this before calling png_start_read_image() or
png_read_update_info():

if (interlace_type == PNG_INTERLACE_ADAM7)
number_of_passes

= png_set_interlace_handling(png_ptr);

This will return the number of passes needed.Currently, this is seven, but may change if another interlace
type is added. This function can be called even if the file is not interlaced, where it will return one pass.
You then need to read the whole image ’number_of_passes’ times.Each time will distribute the pixels
from the current pass to the correct place in the output image, so you need to supply the same rows to
png_read_rows in each pass.

If you are not going to display the image after each pass, but are going to wait until the entire image is read
in, use the sparkle effect. Thiseffect is faster and the end result of either method is exactly the same.If
you are planning on displaying the image after each pass, the "rectangle" effect is generally considered the
better looking one.

If you only want the "sparkle" effect, just call png_read_rows() as normal, with the third parameter NULL.
Make sure you make pass over the image number_of_passes times, and you don’t change the data in the
rows between calls.You can change the locations of the data, just not the data. Each pass only writes the
pixels appropriate for that pass, and assumes the data from previous passes is still valid.

png_read_rows(png_ptr, row_pointers, NULL,
number_of_rows);

If you only want the first effect (the rectangles), do the same as before except pass the row buffer in the
third parameter, and leave the second parameter NULL.

png_read_rows(png_ptr, NULL, row_pointers,
number_of_rows);

If you don’t want libpng to handle the interlacing details, just call png_read_rows() PNG_INTER-
LACE_ADAM7_PASSES times to read in all the images. Each of the images is a valid image by itself;
however, you will almost certainly need to distribute the pixels from each sub-image to the correct place.
This is where everything gets very tricky.

If you want to retrieve the separate images you must pass the correct number of rows to each successive call
of png_read_rows(). Thecalculation gets pretty complicated for small images, where some sub-images
may not even exist because either their width or height ends up zero. libpng provides two macros to help
you in 1.5 and later versions:

png_uint_32 width = PNG_PASS_COLS(image_width, pass_number);
png_uint_32 height = PNG_PASS_ROWS(image_height, pass_number);

September 27, 2012 52

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Respectively these tell you the width and height of the sub-image corresponding to the numbered pass.
’pass’ is in in the range 0 to 6 - this can be confusing because the specification refers to the same passes as
1 to 7! Be careful, you must check both the width and height before calling png_read_rows() and not call it
for that pass if either is zero.

You can, of course, read each sub-image row by row. If you want to produce optimal code to make a pixel-
by-pixel transformation of an interlaced image this is the best approach; read each row of each pass, trans-
form it, and write it out to a new interlaced image.

If you want to de-interlace the image yourself libpng provides further macros to help that tell you where to
place the pixels in the output image.Because the interlacing scheme is rectangular - sub-image pixels are
always arranged on a rectangular grid - all you need to know for each pass is the starting column and row in
the output image of the first pixel plus the spacing between each pixel. As of libpng 1.5 there are four
macros to retrieve this information:

png_uint_32 x = PNG_PASS_START_COL(pass);
png_uint_32 y = PNG_PASS_START_ROW(pass);
png_uint_32 xStep = 1U << PNG_PASS_COL_SHIFT(pass);
png_uint_32 yStep = 1U << PNG_PASS_ROW_SHIFT(pass);

These allow you to write the obvious loop:

png_uint_32 input_y = 0;
png_uint_32 output_y = PNG_PASS_START_ROW(pass);

while (output_y < output_image_height)
{

png_uint_32 input_x = 0;
png_uint_32 output_x = PNG_PASS_START_COL(pass);

while (output_x < output_image_width)
{

image[output_y][output_x] =
subimage[pass][input_y][input_x++];

output_x += xStep;
}

++input_y;
output_y += yStep;

}

Notice that the steps between successive output rows and columns are returned as shifts.This is possible
because the pixels in the subimages are always a power of 2 apart - 1, 2, 4 or 8 pixels - in the original
image. Inpractice you may need to directly calculate the output coordinate given an input coordinate.
libpng provides two further macros for this purpose:

png_uint_32 output_x = PNG_COL_FROM_PASS_COL(input_x, pass);
png_uint_32 output_y = PNG_ROW_FROM_PASS_ROW(input_y, pass);

Finally a pair of macros are provided to tell you if a particular image row or column appears in a given
pass:

int col_in_pass = PNG_COL_IN_INTERLACE_PASS(output_x, pass);

September 27, 2012 53

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

int row_in_pass = PNG_ROW_IN_INTERLACE_PASS(output_y, pass);

Bear in mind that you will probably also need to check the width and height of the pass in addition to the
above to be sure the pass even exists!

With any luck you are convinced by now that you don’t want to do your own interlace handling. In reality
normally the only good reason for doing this is if you are processing PNG files on a pixel-by-pixel basis
and don’t want to load the whole file into memory when it is interlaced.

libpng includes a test program, pngvalid, that illustrates reading and writing of interlaced images.If you
can’t get interlacing to work in your code and don’t want to leave it to libpng (the recommended approach),
see how pngvalid.c does it.

Finishing a sequential read
After you are finished reading the image through the low-level interface, you can finish reading the file.If
you are interested in comments or time, which may be stored either before or after the image data, you
should pass the separate png_info struct if you want to keep the comments from before and after the image
separate.

png_infop end_info = png_create_info_struct(png_ptr);

if (!end_info)
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

png_read_end(png_ptr, end_info);

If you are not interested, you should still call png_read_end() but you can pass NULL, avoiding the need to
create an end_info structure.

png_read_end(png_ptr, (png_infop)NULL);

If you don’t call png_read_end(), then your file pointer will be left pointing to the first chunk after the last
IDAT , which is probably not what you want if you expect to read something beyond the end of the PNG
datastream.

When you are done, you can free all memory allocated by libpng like this:

png_destroy_read_struct(&png_ptr, &info_ptr,
&end_info);

or, if you didn’t create an end_info structure,

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

It is also possible to individually free the info_ptr members that point to libpng-allocated storage with the
following function:

png_free_data(png_ptr, info_ptr, mask, seq)

September 27, 2012 54

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

mask - identifies data to be freed, a mask
containing the bitwise OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,
PNG_FREE_TEXT, PNG_FREE_UNKN,

or simply PNG_FREE_ALL

seq -sequence number of item to be freed
(-1 for all items)

This function may be safely called when the relevant storage has already been freed, or has not yet been
allocated, or was allocated by the user and not by libpng,and will in those cases do nothing. The "seq"
parameter is ignored if only one item of the selected data type, such as PLTE, is allowed. If "seq" is not -1,
and multiple items are allowed for the data type identified in the mask, such as text or sPLT, only the n’th
item in the structure is freed, where n is "seq".

The default behavior is only to free data that was allocated internally by libpng. This can be changed, so
that libpng will not free the data, or so that it will free data that was allocated by the user with png_malloc()
or png_calloc() and passed in via a png_set_*() function, with

png_data_freer(png_ptr, info_ptr, freer, mask)

freer -one of
PNG_DESTROY_WILL_FREE_DAT A
PNG_SET_WILL_FREE_DAT A
PNG_USER_WILL_FREE_DAT A

mask -which data elements are affected
same choices as in png_free_data()

This function only affects data that has already been allocated.You can call this function after reading the
PNG data but before calling any png_set_*() functions, to control whether the user or the png_set_*() func-
tion is responsible for freeing any existing data that might be present, and again after the png_set_*() func-
tions to control whether the user or png_destroy_*() is supposed to free the data. When the user assumes
responsibility for libpng-allocated data, the application must use png_free() to free it, and when the user
transfers responsibility to libpng for data that the user has allocated, the user must have used png_malloc()
or png_calloc() to allocate it.

If you allocated your row_pointers in a single block, as suggested above in the description of the high level
read interface, you must not transfer responsibility for freeing it to the png_set_rows or png_read_destroy
function, because they would also try to free the individual row_pointers[i].

If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword separately, do not transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a png_text structure it combines these
members with the key member, and png_free_data() will free only text_ptr.key. Similarly, if you transfer
responsibility for free’ing text_ptr from libpng to your application, your application must not separately
free those members.

The png_free_data() function will turn off the "valid" flag for anything it frees.If you need to turn the flag
off for a chunk that was freed by your application instead of by libpng, you can use

September 27, 2012 55

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_set_invalid(png_ptr, info_ptr, mask);

mask - identifies the chunks to be made invalid,
containing the bitwise OR of one or
more of
PNG_INFO_gAMA, PNG_INFO_sBIT,
PNG_INFO_cHRM, PNG_INFO_PLTE,
PNG_INFO_tRNS, PNG_INFO_bKGD,
PNG_INFO_hIST, PNG_INFO_pHYs,
PNG_INFO_oFFs, PNG_INFO_tIME,
PNG_INFO_pCAL, PNG_INFO_sRGB,
PNG_INFO_iCCP, PNG_INFO_sPLT,
PNG_INFO_sCAL, PNG_INFO_IDAT

For a more compact example of reading a PNG image, see the file example.c.

Reading PNG files progressively
The progressive reader is slightly different then the non-progressive reader. Instead of calling
png_read_info(), png_read_rows(), and png_read_end(), you make one call to png_process_data(), which
calls callbacks when it has the info, a row, or the end of the image.You set up these callbacks with
png_set_progressive_read_fn(). You don’t hav eto worry about the input/output functions of libpng, as you
are giving the library the data directly in png_process_data().I will assume that you have read the section
on reading PNG files above, so I will only highlight the differences (although I will show all of the code).

png_structp png_ptr; png_infop info_ptr;

/* An example code fragment of how you would
initialize the progressive reader in your
application. */

int
initialize_png_reader()
{

png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

info_ptr = png_create_info_struct(png_ptr);

if (!info_ptr)
{

png_destroy_read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);

return (ERROR);
}

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

September 27, 2012 56

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

/* This one’s new. You can provide functions
to be called when the header info is valid,
when each row is completed, and when the image
is finished. If you aren’t using all functions,
you can specify NULL parameters. Even when all
three functions are NULL, you need to call
png_set_progressive_read_fn(). You can use
any struct as the user_ptr (cast to a void pointer
for the function call), and retrieve the pointer
from inside the callbacks using the function

png_get_progressive_ptr(png_ptr);

which will return a void pointer, which you have
to cast appropriately.

*/
png_set_progressive_read_fn(png_ptr, (void *)user_ptr,

info_callback, row_callback, end_callback);

return 0;
}

/* A code fragment that you call as you receive blocks
of data */

int
process_data(png_bytep buffer, png_uint_32 length)
{

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_read_struct(&png_ptr, &info_ptr,
(png_infopp)NULL);

return (ERROR);
}

/* This one’s new also. Simplygive it a chunk
of data from the file stream (in order, of
course). Onmachines with segmented memory
models machines, don’t giv e it any more than
64K. Thelibrary seems to run fine with sizes
of 4K. Although you can give it much less if
necessary (I assume you can give it chunks of
1 byte, I haven’t tried less then 256 bytes
yet). Whenthis function returns, you may
want to display any rows that were generated
in the row callback if you don’t already do
so there.

*/
png_process_data(png_ptr, info_ptr, buffer, length);

/* At this point you can call png_process_data_skip if
you want to handle data the library will skip yourself;
it simply returns the number of bytes to skip (and stops
libpng skipping that number of bytes on the next
png_process_data call).

September 27, 2012 57

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

return 0;
}

/* This function is called (as set by
png_set_progressive_read_fn() above) when enough data
has been supplied so all of the header has been
read.

*/
void
info_callback(png_structp png_ptr, png_infop info)
{

/* Do any setup here, including setting any of
the transformations mentioned in the Reading
PNG files section.For now, you _must_ call
either png_start_read_image() or
png_read_update_info() after all the
transformations are set (even if you don’t set
any). You may start getting rows before
png_process_data() returns, so this is your
last chance to prepare for that.

This is where you turn on interlace handling,
assuming you don’t want to do it yourself.

If you need to you can stop the processing of
your original input data at this point by calling
png_process_data_pause. Thisreturns the number
of unprocessed bytes from the last png_process_data
call - it is up to you to ensure that the next call
sees these bytes again. If you don’t want to bother
with this you can get libpng to cache the unread
bytes by setting the ’save’ parameter (see png.h) but
then libpng will have to copy the data internally.

*/
}

/* This function is called when each row of image
data is complete */

void
row_callback(png_structp png_ptr, png_bytep new_row,

png_uint_32 row_num, int pass)
{

/* If the image is interlaced, and you turned
on the interlace handler, this function will
be called for every row in every pass. Some
of these rows will not be changed from the
previous pass. When the row is not changed,
the new_row variable will be NULL. The rows
and passes are called in order, so you don’t
really need the row_num and pass, but I’m
supplying them because it may make your life
easier.

If you did not turn on interlace handling then

September 27, 2012 58

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

the callback is called for each row of each
sub-image when the image is interlaced. In this
case ’row_num’ is the row in the sub-image, not
the row in the output image as it is in all other
cases.

For the non-NULL rows of interlaced images when
you have switched on libpng interlace handling,
you must call png_progressive_combine_row()
passing in the row and the old row. You can
call this function for NULL rows (it will just
return) and for non-interlaced images (it just
does the memcpy for you) if it will make the
code easier. Thus, you can just do this for
all cases if you switch on interlace handling;

*/

png_progressive_combine_row(png_ptr, old_row,
new_row);

/* where old_row is what was displayed for
previously for the row. Note that the first
pass (pass == 0, really) will completely cover
the old row, so the rows do not have to be
initialized. Afterthe first pass (and only
for interlaced images), you will have to pass
the current row, and the function will combine
the old row and the new row.

You can also call png_process_data_pause in this
callback - see above.

*/
}

void
end_callback(png_structp png_ptr, png_infop info)
{

/* This function is called after the whole image
has been read, including any chunks after the
image (up to and including the IEND).You
will usually have the same info chunk as you
had in the header, although some data may have
been added to the comments and time fields.

Most people won’t do much here, perhaps setting
a flag that marks the image as finished.

*/
}

IV. Writing
Much of this is very similar to reading.However, everything of importance is repeated here, so you won’t
have to constantly look back up in the reading section to understand writing.

September 27, 2012 59

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Setup
You will want to do the I/O initialization before you get into libpng, so if it doesn’t work, you don’t hav e
anything to undo. If you are not using the standard I/O functions, you will need to replace them with cus-
tom writing functions. See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "wb");

if (!fp)
return (ERROR);

Next, png_struct and png_info need to be allocated and initialized. As these can be both relatively large,
you may not want to store these on the stack, unless you have stack space to spare. Of course, you will
want to check if they return NULL. If you are also reading, you won’t want to name your read structure
and your write structure both "png_ptr"; you can call them anything you like, such as "read_ptr" and
"write_ptr". Lookat pngtest.c, for example.

png_structp png_ptr = png_create_write_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if (!png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);
if (!info_ptr)
{

png_destroy_write_struct(&png_ptr,
(png_infopp)NULL);

return (ERROR);
}

If you want to use your own memory allocation routines, define PNG_USER_MEM_SUPPORTED and use
png_create_write_struct_2() instead of png_create_write_struct():

png_structp png_ptr = png_create_write_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptr, user_malloc_fn, user_free_fn);

After you have these structures, you will need to set up the error handling.When libpng encounters an
error, it expects to longjmp() back to your routine. Therefore, you will need to call setjmp() and pass the
png_jmpbuf(png_ptr). Ifyou write the file from different routines, you will need to update the png_jmp-
buf(png_ptr) every time you enter a new routine that will call a png_*() function. See your documentation
of setjmp/longjmp for your compiler for more information on setjmp/longjmp.See the discussion on
libpng error handling in the Customizing Libpng section below for more information on the libpng error
handling.

if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy_write_struct(&png_ptr, &info_ptr);

fclose(fp);
return (ERROR);

}
...

September 27, 2012 60

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

return;

If you would rather avoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_NO_SETJMP, in which case errors will result in a call to PNG_ABORT() which defaults to abort().

You can #define PNG_ABORT() to a function that does something more useful than abort(), as long as
your function does not return.

Now you need to set up the output code. The default for libpng is to use the C function fwrite(). If you use
this, you will need to pass a valid FILE * in the function png_init_io(). Be sure that the file is opened in
binary mode.Again, if you wish to handle writing data in another way, see the discussion on libpng I/O
handling in the Customizing Libpng section below.

png_init_io(png_ptr, fp);

If you are embedding your PNG into a datastream such as MNG, and don’t want libpng to write the 8-byte
signature, or if you have already written the signature in your application, use

png_set_sig_bytes(png_ptr, 8);

to inform libpng that it should not write a signature.

Write callbacks
At this point, you can set up a callback function that will be called after each row has been written, which
you can use to control a progress meter or the like. It’s demonstrated in pngtest.c.You must supply a func-
tion

void write_row_callback(png_structp png_ptr, png_uint_32 row,
int pass);

{
/* put your code here */

}

(You can give it another name that you like instead of "write_row_callback")

To inform libpng about your function, use

png_set_write_status_fn(png_ptr, write_row_callback);

When this function is called the row has already been completely processed and it has also been written
out. The’row’ and ’pass’ refer to the next row to be handled. For the non-interlaced case the row that was
just handled is simply one less than the passed in row number, and pass will always be 0.For the interlaced
case the same applies unless the row value is 0, in which case the row just handled was the last one from
one of the preceding passes. Because interlacing may skip a pass you cannot be sure that the preceding
pass is just ’pass-1’, if you really need to know what the last pass is record (row,pass) from the callback and
use the last recorded value each time.

As with the user transform you can find the output row using the PNG_ROW_FROM_PASS_ROW macro.

You now hav ethe option of modifying how the compression library will run. The following functions are
mainly for testing, but may be useful in some cases, like if you need to write PNG files extremely fast and
are willing to give up some compression, or if you want to get the maximum possible compression at the
expense of slower writing. If you have no special needs in this area, let the library do what it wants by not
calling this function at all, as it has been tuned to deliver a good speed/compression ratio. The second

September 27, 2012 61

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

parameter to png_set_filter() is the filter method, for which the only valid values are 0 (as of the July 1999
PNG specification, version 1.2) or 64 (if you are writing a PNG datastream that is to be embedded in a
MNG datastream).The third parameter is a flag that indicates which filter type(s) are to be tested for each
scanline. Seethe PNG specification for details on the specific filter types.

/* turn on or off fi ltering, and/or choose
specific filters.You can use either a single
PNG_FILTER_VALUE_NAME or the bitwise OR of one
or more PNG_FILTER_NAME masks.

*/
png_set_filter(png_ptr, 0,

PNG_FILTER_NONE |PNG_FILTER_VALUE_NONE |
PNG_FILTER_SUB |PNG_FILTER_VALUE_SUB |
PNG_FILTER_UP |PNG_FILTER_VALUE_UP |
PNG_FILTER_AVG | PNG_FILTER_VALUE_AVG |
PNG_FILTER_PAETH | PNG_FILTER_VALUE_PAETH|
PNG_ALL_FILTERS);

If an application wants to start and stop using particular filters during compression, it should start out with
all of the filters (to ensure that the previous row of pixels will be stored in case it’s needed later), and then
add and remove them after the start of compression.

If you are writing a PNG datastream that is to be embedded in a MNG datastream, the second parameter
can be either 0 or 64.

The png_set_compression_*() functions interface to the zlib compression library, and should mostly be
ignored unless you really know what you are doing. The only generally useful call is png_set_compres-
sion_level() which changes how much time zlib spends on trying to compress the image data. See the
Compression Library (zlib.h and algorithm.txt, distributed with zlib) for details on the compression levels.

#include zlib.h

/* Set the zlib compression level * /
png_set_compression_level(png_ptr,

Z_BEST_COMPRESSION);

/* Set other zlib parameters for compressing IDAT * /
png_set_compression_mem_level(png_ptr, 8);
png_set_compression_strategy(png_ptr,

Z_DEFAULT_STRATEGY);
png_set_compression_window_bits(png_ptr, 15);
png_set_compression_method(png_ptr, 8);
png_set_compression_buffer_size(png_ptr, 8192)

/* Set zlib parameters for text compression
* If y ou don’t call these, the parameters
* f all back on those defined for IDAT chunks
*/
png_set_text_compression_mem_level(png_ptr, 8);
png_set_text_compression_strategy(png_ptr,

Z_DEFAULT_STRATEGY);
png_set_text_compression_window_bits(png_ptr, 15);
png_set_text_compression_method(png_ptr, 8);

September 27, 2012 62

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Setting the contents of info for output
You now need to fill in the png_info structure with all the data you wish to write before the actual image.
Note that the only thing you are allowed to write after the image is the text chunks and the time chunk (as
of PNG Specification 1.2, anyway). Seepng_write_end() and the latest PNG specification for more infor-
mation on that. If you wish to write them before the image, fill them in now, and flag that data as being
valid. If you want to wait until after the data, don’t fill them until png_write_end().For all the fields in
png_info and their data types, see png.h.For explanations of what the fields contain, see the PNG specifi-
cation.

Some of the more important parts of the png_info are:

png_set_IHDR(png_ptr, info_ptr, width, height,
bit_depth, color_type, interlace_type,
compression_type, filter_method)

width - holds the width of the image
in pixels (up to 2ˆ31).

height -holds the height of the image
in pixels (up to 2ˆ31).

bit_depth -holds the bit depth of one of the
image channels.
(valid values are 1, 2, 4, 8, 16
and depend also on the
color_type. Seealso significant
bits (sBIT) below).

color_type -describes which color/alpha
channels are present.
PNG_COLOR_TYPE_GRAY

(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA

(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE

(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB

(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA

(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace_type - PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7

compression_type - (must be
PNG_COMPRESSION_TYPE_DEFAULT)

filter_method -(must be PNG_FILTER_TYPE_DEFAULT
or, if you are writing a PNG to
be embedded in a MNG datastream,

September 27, 2012 63

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

can also be
PNG_INTRAPIXEL_DIFFERENCING)

If you call png_set_IHDR(), the call must appear before any of the other png_set_*() functions, because
they might require access to some of the IHDR settings. The remaining png_set_*() functions can be called
in any order.

If you wish, you can reset the compression_type, interlace_type, or filter_method later by calling
png_set_IHDR() again; if you do this, the width, height, bit_depth, and color_type must be the same in
each call.

png_set_PLTE(png_ptr, info_ptr, palette,
num_palette);

palette -the palette for the file
(array of png_color)

num_palette -number of entries in the palette

png_set_gAMA(png_ptr, info_ptr, file_gamma);
png_set_gAMA_fixed(png_ptr, info_ptr, int_file_gamma);

file_gamma -the gamma at which the image was
created (PNG_INFO_gAMA)

int_file_gamma - 100,000 times the gamma at which
the image was created

png_set_cHRM(png_ptr, info_ptr, white_x, white_y, red_x, red_y,
green_x, green_y, blue_x, blue_y)

png_set_cHRM_XYZ(png_ptr, info_ptr, red_X, red_Y, red_Z, green_X,
green_Y, green_Z, blue_X, blue_Y, blue_Z)

png_set_cHRM_fixed(png_ptr, info_ptr, int_white_x, int_white_y,
int_red_x, int_red_y, int_green_x, int_green_y,
int_blue_x, int_blue_y)

png_set_cHRM_XYZ_fixed(png_ptr, info_ptr, int_red_X, int_red_Y,
int_red_Z, int_green_X, int_green_Y, int_green_Z,
int_blue_X, int_blue_Y, int_blue_Z)

{white,red,green,blue}_{x,y}
A color space encoding specified using the chromaticities
of the end points and the white point.

{red,green,blue}_{X,Y,Z}
A color space encoding specified using the encoding end
points - the CIE tristimulus specification of the intended
color of the red, green and blue channels in the PNG RGB
data. Thewhite point is simply the sum of the three end
points.

png_set_sRGB(png_ptr, info_ptr, srgb_intent);

srgb_intent -the rendering intent
(PNG_INFO_sRGB) The presence of
the sRGB chunk means that the pixel

September 27, 2012 64

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

data is in the sRGB color space.
This chunk also implies specific
values of gAMA and cHRM. Rendering
intent is the CSS-1 property that
has been defined by the International
Color Consortium
(http://www.color.org).
It can be one of
PNG_sRGB_INTENT_SATURATION,
PNG_sRGB_INTENT_PERCEPTUAL,
PNG_sRGB_INTENT_ABSOLUTE, or
PNG_sRGB_INTENT_RELATIVE.

png_set_sRGB_gAMA_and_cHRM(png_ptr, info_ptr,
srgb_intent);

srgb_intent -the rendering intent
(PNG_INFO_sRGB) The presence of the
sRGB chunk means that the pixel
data is in the sRGB color space.
This function also causes gAMA and
cHRM chunks with the specific values
that are consistent with sRGB to be
written.

png_set_iCCP(png_ptr, info_ptr, name, compression_type,
profile, proflen);

name -The profile name.

compression_type - The compression type; always
PNG_COMPRESSION_TYPE_BASE for PNG 1.0.
You may give NULL to this argument to
ignore it.

profile - International Color Consortium color
profile data. May contain NULs.

proflen -length of profile data in bytes.

png_set_sBIT(png_ptr, info_ptr, sig_bit);

sig_bit -the number of significant bits for
(PNG_INFO_sBIT) each of the gray, red,
green, and blue channels, whichever are
appropriate for the given color type
(png_color_16)

png_set_tRNS(png_ptr, info_ptr, trans_alpha,
num_trans, trans_color);

trans_alpha -array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)

September 27, 2012 65

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

num_trans -number of transparent entries
(PNG_INFO_tRNS)

trans_color -graylevel or color sample values
(in order red, green, blue) of the
single transparent color for
non-paletted images (PNG_INFO_tRNS)

png_set_hIST(png_ptr, info_ptr, hist);

hist -histogram of palette (array of
png_uint_16) (PNG_INFO_hIST)

png_set_tIME(png_ptr, info_ptr, mod_time);

mod_time -time image was last modified
(PNG_VALID_tIME)

png_set_bKGD(png_ptr, info_ptr, background);

background -background color (of type
png_color_16p) (PNG_VALID_bKGD)

png_set_text(png_ptr, info_ptr, text_ptr, num_text);

text_ptr -array of png_text holding image
comments

text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE

PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[i].key -keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Canbe NULL or empty.

text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt

text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt

text_ptr[i].lang -language of comment (NULL or
empty for unknown).

text_ptr[i].translated_keyword - keyword in UTF-8 (NULL
or empty for unknown).

Note that the itxt_length, lang, and lang_key
members of the text_ptr structure only exist when the
library is built with iTXt chunk support. Prior to
libpng-1.4.0 the library was built by default without
iTXt support. Also note that when iTXt is supported,
they contain NULL pointers when the "compression"
field contains PNG_TEXT_COMPRESSION_NONE or
PNG_TEXT_COMPRESSION_zTXt.

September 27, 2012 66

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

num_text - number of comments

png_set_sPLT(png_ptr, info_ptr, &palette_ptr,
num_spalettes);

palette_ptr -array of png_sPLT_struct structures
to be added to the list of palettes
in the info structure.

num_spalettes -number of palette structures to be
added.

png_set_oFFs(png_ptr, info_ptr, offset_x, offset_y,
unit_type);

offset_x -positive offset from the left
edge of the screen

offset_y -positive offset from the top
edge of the screen

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_set_pHYs(png_ptr, info_ptr, res_x, res_y,
unit_type);

res_x -pixels/unit physical resolution
in x direction

res_y -pixels/unit physical resolution
in y direction

unit_type -PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_set_sCAL(png_ptr, info_ptr, unit, width, height)

unit - physical scale units (an integer)

width - width of a pixel in physical scale units

height -height of a pixel in physical scale units
(width and height are doubles)

png_set_sCAL_s(png_ptr, info_ptr, unit, width, height)

unit - physical scale units (an integer)

width - width of a pixel in physical scale units
expressed as a string

height -height of a pixel in physical scale units
(width and height are strings like "2.54")

png_set_unknown_chunks(png_ptr, info_ptr, &unknowns,

September 27, 2012 67

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

num_unknowns)

unknowns -array of png_unknown_chunk
structures holding unknown chunks

unknowns[i].name -name of unknown chunk
unknowns[i].data -data of unknown chunk
unknowns[i].size -size of unknown chunk’s data
unknowns[i].location - position to write chunk in file

0: do not write chunk
PNG_HAVE_IHDR: before PLTE
PNG_HAVE_PLTE: before IDAT
PNG_AFTER_IDAT : after IDAT

The "location" member is set automatically according to what part of the output file has already been writ-
ten. You can change its value after calling png_set_unknown_chunks() as demonstrated in pngtest.c.
Within each of the "locations", the chunks are sequenced according to their position in the structure (that is,
the value of "i", which is the order in which the chunk was either read from the input file or defined with
png_set_unknown_chunks).

A quick word about text and num_text. text is an array of png_text structures.num_text is the number of
valid structures in the array. Each png_text structure holds a language code, a keyword, a text value, and a
compression type.

The compression types have the same valid numbers as the compression types of the image data.Currently,
the only valid number is zero.However, you can store text either compressed or uncompressed, unlike
images, which always have to be compressed. Soif you don’t want the text compressed, set the compres-
sion type to PNG_TEXT_COMPRESSION_NONE.Because tEXt and zTXt chunks don’t hav ea language
field, if you specify PNG_TEXT_COMPRESSION_NONE or PNG_TEXT_COMPRESSION_zTXt any
language code or translated keyword will not be written out.

Until text gets around a few hundred bytes, it is not worth compressing it. After the text has been written
out to the file, the compression type is set to PNG_TEXT_COMPRESSION_NONE_WR or
PNG_TEXT_COMPRESSION_zTXt_WR, so that it isn’t written out again at the end (in case you are call-
ing png_write_end() with the same struct).

The keywords that are given in the PNG Specification are:

Title Short(one line) title or
caption for image

Author Nameof image’s creator

Description Descriptionof image (possibly long)

Copyright Copyright notice

Creation Time Time of original image creation
(usually RFC 1123 format, see below)

Software Software used to create the image

Disclaimer Legal disclaimer

Warning Warning of nature of content

September 27, 2012 68

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Source Device used to create the image

Comment Miscellaneouscomment; conversion
from other image format

The keyword-text pairs work like this. Keywords should be short simple descriptions of what the comment
is about. Some typical keywords are found in the PNG specification, as is some recommendations on key-
words. You can repeat keywords in a file. You can even write some text before the image and some after.
For example, you may want to put a description of the image before the image, but leave the disclaimer
until after, so viewers working over modem connections don’t hav eto wait for the disclaimer to go over the
modem before they start seeing the image.Finally, keywords should be full words, not abbreviations. Key-
words and text are in the ISO 8859-1 (Latin-1) character set (a superset of regular ASCII) and can not con-
tain NUL characters, and should not contain control or other unprintable characters.To make the com-
ments widely readable, stick with basic ASCII, and avoid machine specific character set extensions like the
IBM-PC character set. The keyword must be present, but you can leave off the text string on non-com-
pressed pairs. Compressed pairs must have a text string, as only the text string is compressed anyway, so
the compression would be meaningless.

PNG supports modification time via the png_time structure.Tw o conversion routines are provided,
png_convert_from_time_t() for time_t and png_convert_from_struct_tm() for struct tm. The time_t routine
uses gmtime().You don’t hav e to use either of these, but if you wish to fill in the png_time structure
directly, you should provide the time in universal time (GMT) if possible instead of your local time.Note
that the year number is the full year (e.g. 1998, rather than 98 - PNG is year 2000 compliant!), and that
months start with 1.

If you want to store the time of the original image creation, you should use a plain tEXt chunk with the
"Creation Time" keyword. This is necessary because the "creation time" of a PNG image is somewhat
vague, depending on whether you mean the PNG file, the time the image was created in a non-PNG format,
a still photo from which the image was scanned, or possibly the subject matter itself. In order to facilitate
machine-readable dates, it is recommended that the "Creation Time" tEXt chunk use RFC 1123 format
dates (e.g. "22 May 1997 18:07:10 GMT"), although this isn’t a requirement. Unlike the tIME chunk, the
"Creation Time" tEXt chunk is not expected to be automatically changed by the software. To facilitate the
use of RFC 1123 dates, a function png_convert_to_rfc1123(png_ptr, png_timep) is provided to convert
from PNG time to an RFC 1123 format string.

Writing unknown chunks
You can use the png_set_unknown_chunks function to queue up chunks for writing.You giv e it a chunk
name, raw data, and a size; that’s all there is to it. The chunks will be written by the next following
png_write_info_before_PLTE, png_write_info, or png_write_end function.Any chunks previously read
into the info structure’s unknown-chunk list will also be written out in a sequence that satisfies the PNG
specification’s ordering rules.

The high-level write interface
At this point there are two ways to proceed; through the high-level write interface, or through a sequence of
low-level write operations.You can use the high-level interface if your image data is present in the info
structure. Alldefined output transformations are permitted, enabled by the following masks.

PNG_TRANSFORM_IDENTITY Notransformation
PNG_TRANSFORM_PACKING Pack 1, 2 and 4-bit samples
PNG_TRANSFORM_PACKSWAP Changeorder of packed

pixels to LSB first
PNG_TRANSFORM_INVERT_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalizepixels to the

sBIT depth

September 27, 2012 69

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNG_TRANSFORM_BGR FlipRGB to BGR, RGBA
to BGRA

PNG_TRANSFORM_SWAP_ALPHA Flip RGBA to ARGB or GA
to AG

PNG_TRANSFORM_INVERT_ALPHA Changealpha from opacity
to transparency

PNG_TRANSFORM_SWAP_ENDIAN Byte-swap 16-bit samples
PNG_TRANSFORM_STRIP_FILLER Stripout filler

bytes (deprecated).
PNG_TRANSFORM_STRIP_FILLER_BEFORE Strip out leading

filler bytes
PNG_TRANSFORM_STRIP_FILLER_AFTER Stripout trailing

filler bytes

If you have valid image data in the info structure (you can use png_set_rows() to put image data in the info
structure), simply do this:

png_write_png(png_ptr, info_ptr, png_transforms, NULL)

where png_transforms is an integer containing the bitwise OR of some set of transformation flags.This
call is equivalent to png_write_info(), followed the set of transformations indicated by the transform mask,
then png_write_image(), and finally png_write_end().

(The final parameter of this call is not yet used.Someday it might point to transformation parameters
required by some future output transform.)

You must use png_transforms and not call any png_set_transform() functions when you use
png_write_png().

The low-level write interface
If you are going the low-level route instead, you are now ready to write all the file information up to the
actual image data.You do this with a call to png_write_info().

png_write_info(png_ptr, info_ptr);

Note that there is one transformation you may need to do before png_write_info().In PNG files, the alpha
channel in an image is the level of opacity. If your data is supplied as a level of transparency, you can
invert the alpha channel before you write it, so that 0 is fully transparent and 255 (in 8-bit or paletted
images) or 65535 (in 16-bit images) is fully opaque, with

png_set_invert_alpha(png_ptr);

This must appear before png_write_info() instead of later with the other transformations because in the case
of paletted images the tRNS chunk data has to be inverted before the tRNS chunk is written. If your image
is not a paletted image, the tRNS data (which in such cases represents a single color to be rendered as trans-
parent) won’t need to be changed, and you can safely do this transformation after your png_write_info()
call.

If you need to write a private chunk that you want to appear before the PLTE chunk when PLTE is present,
you can write the PNG info in two steps, and insert code to write your own chunk between them:

png_write_info_before_PLTE(png_ptr, info_ptr);
png_set_unknown_chunks(png_ptr, info_ptr, ...);
png_write_info(png_ptr, info_ptr);

September 27, 2012 70

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

After you’ve written the file information, you can set up the library to handle any special transformations of
the image data. The various ways to transform the data will be described in the order that they should
occur. This is important, as some of these change the color type and/or bit depth of the data, and some oth-
ers only work on certain color types and bit depths.Even though each transformation checks to see if it has
data that it can do something with, you should make sure to only enable a transformation if it will be valid
for the data.For example, don’t swap red and blue on grayscale data.

PNG files store RGB pixels packed into 3 or 6 bytes. This code tells the library to strip input data that has 4
or 8 bytes per pixel down to 3 or 6 bytes (or strip 2 or 4-byte grayscale+filler data to 1 or 2 bytes per pixel).

png_set_filler(png_ptr, 0, PNG_FILLER_BEFORE);

where the 0 is unused, and the location is either PNG_FILLER_BEFORE or PNG_FILLER_AFTER,
depending upon whether the filler byte in the pixel is stored XRGB or RGBX.

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as small as they can, resulting in, for example, 8
pixels per byte for 1 bit files. If the data is supplied at 1 pixel per byte, use this code, which will correctly
pack the pixels into a single byte:

png_set_packing(png_ptr);

PNG files reduce possible bit depths to 1, 2, 4, 8, and 16.If your data is of another bit depth, you can write
an sBIT chunk into the file so that decoders can recover the original data if desired.

/* Set the true bit depth of the image data */
if (color_type & PNG_COLOR_MASK_COLOR)
{

sig_bit.red = true_bit_depth;
sig_bit.green = true_bit_depth;
sig_bit.blue = true_bit_depth;

}

else
{

sig_bit.gray = true_bit_depth;
}

if (color_type & PNG_COLOR_MASK_ALPHA)
{

sig_bit.alpha = true_bit_depth;
}

png_set_sBIT(png_ptr, info_ptr, &sig_bit);

If the data is stored in the row buffer in a bit depth other than one supported by PNG (e.g. 3 bit data in the
range 0-7 for a 4-bit PNG), this will scale the values to appear to be the correct bit depth as is required by
PNG.

png_set_shift(png_ptr, &sig_bit);

PNG files store 16-bit pixels in network byte order (big-endian, ie. most significant bits first). This code
would be used if they are supplied the other way (little-endian, i.e. least significant bits first, the way PCs
store them):

September 27, 2012 71

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

if (bit_depth > 8)
png_set_swap(png_ptr);

If you are using packed-pixel images (1, 2, or 4 bits/pixel), and you need to change the order the pixels are
packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

PNG files store 3 color pixels in red, green, blue order. This code would be used if they are supplied as
blue, green, red:

png_set_bgr(png_ptr);

PNG files describe monochrome as black being zero and white being one. This code would be used if the
pixels are supplied with this reversed (black being one and white being zero):

png_set_invert_mono(png_ptr);

Finally, you can write your own transformation function if none of the existing ones meets your needs.
This is done by setting a callback with

png_set_write_user_transform_fn(png_ptr,
write_transform_fn);

You must supply the function

void write_transform_fn(png_structp png_ptr, png_row_infop
row_info, png_bytep data)

See pngtest.c for a working example. Your function will be called before any of the other transformations
are processed.If supported libpng also supplies an information routine that may be called from your call-
back:

png_get_current_row_number(png_ptr);
png_get_current_pass_number(png_ptr);

This returns the current row passed to the transform.With interlaced images the value returned is the row
in the input sub-image image. Use PNG_ROW_FROM_PASS_ROW(row, pass) and
PNG_COL_FROM_PASS_COL(col, pass) to find the output pixel (x,y) given an interlaced sub-image pixel
(row,col,pass).

The discussion of interlace handling above contains more information on how to use these values.

You can also set up a pointer to a user structure for use by your callback function.

png_set_user_transform_info(png_ptr, user_ptr, 0, 0);

The user_channels and user_depth parameters of this function are ignored when writing; you can set them
to zero as shown.

You can retrieve the pointer via the function png_get_user_transform_ptr().For example:

voidp write_user_transform_ptr =

September 27, 2012 72

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_get_user_transform_ptr(png_ptr);

It is possible to have libpng flush any pending output, either manually, or automatically after a certain num-
ber of lines have been written.To flush the output stream a single time call:

png_write_flush(png_ptr);

and to have libpng flush the output stream periodically after a certain number of scanlines have been writ-
ten, call:

png_set_flush(png_ptr, nrows);

Note that the distance between rows is from the last time png_write_flush() was called, or the first row of
the image if it has never been called.So if you write 50 lines, and then png_set_flush 25, it will flush the
output on the next scanline, and every 25 lines thereafter, unless png_write_flush() is called before 25 more
lines have been written. If nrows is too small (less than about 10 lines for a 640 pixel wide RGB image) the
image compression may decrease noticeably (although this may be acceptable for real-time applications).
Infrequent flushing will only degrade the compression performance by a few percent over images that do
not use flushing.

Writing the image data
That’s it for the transformations.Now you can write the image data. The simplest way to do this is in one
function call. If you have the whole image in memory, you can just call png_write_image() and libpng will
write the image.You will need to pass in an array of pointers to each row. This function automatically
handles interlacing, so you don’t need to call png_set_interlace_handling() or call this function multiple
times, or any of that other stuff necessary with png_write_rows().

png_write_image(png_ptr, row_pointers);

where row_pointers is:

png_byte *row_pointers[height];

You can point to void or char or whatever you use for pixels.

If you don’t want to write the whole image at once, you can use png_write_rows() instead. If the file is not
interlaced, this is simple:

png_write_rows(png_ptr, row_pointers,
number_of_rows);

row_pointers is the same as in the png_write_image() call.

If you are just writing one row at a time, you can do this with a single row_pointer instead of an array of
row_pointers:

png_bytep row_pointer = row;

png_write_row(png_ptr, row_pointer);

When the file is interlaced, things can get a good deal more complicated. The only currently (as of the
PNG Specification version 1.2, dated July 1999) defined interlacing scheme for PNG files is the "Adam7"
interlace scheme, that breaks down an image into seven smaller images of varying size. libpng will build
these images for you, or you can do them yourself.If you want to build them yourself, see the PNG

September 27, 2012 73

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

specification for details of which pixels to write when.

If you don’t want libpng to handle the interlacing details, just use png_set_interlace_handling() and call
png_write_rows() the correct number of times to write all the sub-images (png_set_interlace_handling()
returns the number of sub-images.)

If you want libpng to build the sub-images, call this before you start writing any rows:

number_of_passes = png_set_interlace_handling(png_ptr);

This will return the number of passes needed.Currently, this is seven, but may change if another interlace
type is added.

Then write the complete image number_of_passes times.

png_write_rows(png_ptr, row_pointers, number_of_rows);

Think carefully before you write an interlaced image.Typically code that reads such images reads all the
image data into memory, uncompressed, before doing any processing. Onlycode that can display an image
on the fly can take advantage of the interlacing and even then the image has to be exactly the correct size
for the output device, because scaling an image requires adjacent pixels and these are not available until all
the passes have been read.

If you do write an interlaced image you will hardly ever need to handle the interlacing yourself.Call
png_set_interlace_handling() and use the approach described above.

The only time it is conceivable that you will really need to write an interlaced image pass-by-pass is when
you have read one pass by pass and made some pixel-by-pixel transformation to it, as described in the read
code above. In this case use the PNG_PASS_ROWS and PNG_PASS_COLS macros to determine the size
of each sub-image in turn and simply write the rows you obtained from the read code.

Finishing a sequential write
After you are finished writing the image, you should finish writing the file.If you are interested in writing
comments or time, you should pass an appropriately filled png_info pointer. If you are not interested, you
can pass NULL.

png_write_end(png_ptr, info_ptr);

When you are done, you can free all memory used by libpng like this:

png_destroy_write_struct(&png_ptr, &info_ptr);

It is also possible to individually free the info_ptr members that point to libpng-allocated storage with the
following function:

png_free_data(png_ptr, info_ptr, mask, seq)

mask -identifies data to be freed, a mask
containing the bitwise OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HIST, PNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREE_ROWS,
PNG_FREE_SCAL, PNG_FREE_SPLT,

September 27, 2012 74

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNG_FREE_TEXT, PNG_FREE_UNKN,
or simply PNG_FREE_ALL

seq -sequence number of item to be freed
(-1 for all items)

This function may be safely called when the relevant storage has already been freed, or has not yet been
allocated, or was allocated by the user and not by libpng, and will in those cases do nothing. The "seq"
parameter is ignored if only one item of the selected data type, such as PLTE, is allowed. If "seq" is not -1,
and multiple items are allowed for the data type identified in the mask, such as text or sPLT, only the n’th
item in the structure is freed, where n is "seq".

If you allocated data such as a palette that you passed in to libpng with png_set_*, you must not free it until
just before the call to png_destroy_write_struct().

The default behavior is only to free data that was allocated internally by libpng. This can be changed, so
that libpng will not free the data, or so that it will free data that was allocated by the user with png_malloc()
or png_calloc() and passed in via a png_set_*() function, with

png_data_freer(png_ptr, info_ptr, freer, mask)

freer -one of
PNG_DESTROY_WILL_FREE_DAT A
PNG_SET_WILL_FREE_DAT A
PNG_USER_WILL_FREE_DAT A

mask -which data elements are affected
same choices as in png_free_data()

For example, to transfer responsibility for some data from a read structure to a write structure, you could
use

png_data_freer(read_ptr, read_info_ptr,
PNG_USER_WILL_FREE_DAT A,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

png_data_freer(write_ptr, write_info_ptr,
PNG_DESTROY_WILL_FREE_DAT A,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

thereby briefly reassigning responsibility for freeing to the user but immediately afterwards reassigning it
once more to the write_destroy function. Having done this, it would then be safe to destroy the read struc-
ture and continue to use the PLTE, tRNS, and hIST data in the write structure.

This function only affects data that has already been allocated.You can call this function before calling
after the png_set_*() functions to control whether the user or png_destroy_*() is supposed to free the data.
When the user assumes responsibility for libpng-allocated data, the application must use png_free() to free
it, and when the user transfers responsibility to libpng for data that the user has allocated, the user must
have used png_malloc() or png_calloc() to allocate it.

If you allocated text_ptr.text, text_ptr.lang, and text_ptr.translated_keyword separately, do not transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a png_text structure it combines these
members with the key member, and png_free_data() will free only text_ptr.key. Similarly, if you transfer
responsibility for free’ing text_ptr from libpng to your application, your application must not separately

September 27, 2012 75

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

free those members.For a more compact example of writing a PNG image, see the file example.c.

V. Modifying/Customizing libpng:
There are two issues here. The first is changing how libpng does standard things like memory allocation,
input/output, and error handling. The second deals with more complicated things like adding new chunks,
adding new transformations, and generally changing how libpng works. Bothof those are compile-time
issues; that is, they are generally determined at the time the code is written, and there is rarely a need to
provide the user with a means of changing them.

Memory allocation, input/output, and error handling

All of the memory allocation, input/output, and error handling in libpng goes through callbacks that are
user-settable. Thedefault routines are in pngmem.c, pngrio.c, pngwio.c, and pngerror.c, respectively. To
change these functions, call the appropriate png_set_*_fn() function.

Memory allocation is done through the functions png_malloc(), png_calloc(), and png_free().The
png_malloc() and png_free() functions currently just call the standard C functions and png_calloc() calls
png_malloc() and then clears the newly allocated memory to zero; note that png_calloc(png_ptr, size) is not
the same as the calloc(number, size) function provided by stdlib.h. Thereis limited support for certain sys-
tems with segmented memory architectures and the types of pointers declared by png.h match this; you will
have to use appropriate pointers in your application. Since it is unlikely that the method of handling mem-
ory allocation on a platform will change between applications, these functions must be modified in the
library at compile time.If you prefer to use a different method of allocating and freeing data, you can use
png_create_read_struct_2() or png_create_write_struct_2() to register your own functions as described
above. These functions also provide a void pointer that can be retrieved via

mem_ptr=png_get_mem_ptr(png_ptr);

Your replacement memory functions must have prototypes as follows:

png_voidp malloc_fn(png_structp png_ptr,
png_alloc_size_t size);

void free_fn(png_structp png_ptr, png_voidp ptr);

Your malloc_fn() must return NULL in case of failure. Thepng_malloc() function will normally call
png_error() if it receives a NULL from the system memory allocator or from your replacement malloc_fn().

Your free_fn() will never be called with a NULL ptr, since libpng’s png_free() checks for NULL before
calling free_fn().

Input/Output in libpng is done through png_read() and png_write(), which currently just call fread() and
fwrite(). TheFILE * is stored in png_struct and is initialized via png_init_io(). If you wish to change the
method of I/O, the library supplies callbacks that you can set through the function png_set_read_fn() and
png_set_write_fn() at run time, instead of calling the png_init_io() function.These functions also provide a
void pointer that can be retrieved via the function png_get_io_ptr().For example:

png_set_read_fn(png_structp read_ptr,
voidp read_io_ptr, png_rw_ptr read_data_fn)

png_set_write_fn(png_structp write_ptr,
voidp write_io_ptr, png_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);

September 27, 2012 76

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

voidp read_io_ptr = png_get_io_ptr(read_ptr);
voidp write_io_ptr = png_get_io_ptr(write_ptr);

The replacement I/O functions must have prototypes as follows:

void user_read_data(png_structp png_ptr,
png_bytep data, png_size_t length);

void user_write_data(png_structp png_ptr,
png_bytep data, png_size_t length);

void user_flush_data(png_structp png_ptr);

The user_read_data() function is responsible for detecting and handling end-of-data errors.

Supplying NULL for the read, write, or flush functions sets them back to using the default C stream func-
tions, which expect the io_ptr to point to a standard *FILE structure.It is probably a mistake to use NULL
for one of write_data_fn and output_flush_fn but not both of them, unless you have built libpng with
PNG_NO_WRITE_FLUSH defined. It is an error to read from a write stream, and vice versa.

Error handling in libpng is done through png_error() and png_warning(). Errorshandled through
png_error() are fatal, meaning that png_error() should never return to its caller. Currently, this is handled
via setjmp() and longjmp() (unless you have compiled libpng with PNG_NO_SETJMP, in which case it is
handled via PNG_ABORT()), but you could change this to do things like exit() if you should wish, as long
as your function does not return.

On non-fatal errors, png_warning() is called to print a warning message, and then control returns to the
calling code. By default png_error() and png_warning() print a message on stderr via fprintf() unless the
library is compiled with PNG_NO_CONSOLE_IO defined (because you don’t want the messages) or
PNG_NO_STDIO defined (because fprintf() isn’t available). If you wish to change the behavior of the
error functions, you will need to set up your own message callbacks. These functions are normally sup-
plied at the time that the png_struct is created.It is also possible to redirect errors and warnings to your
own replacement functions after png_create_*_struct() has been called by calling:

png_set_error_fn(png_structp png_ptr,
png_voidp error_ptr, png_error_ptr error_fn,
png_error_ptr warning_fn);

png_voidp error_ptr = png_get_error_ptr(png_ptr);

If NULL is supplied for either error_fn or warning_fn, then the libpng default function will be used, calling
fprintf() and/or longjmp() if a problem is encountered.The replacement error functions should have param-
eters as follows:

void user_error_fn(png_structp png_ptr,
png_const_charp error_msg);

void user_warning_fn(png_structp png_ptr,
png_const_charp warning_msg);

The motivation behind using setjmp() and longjmp() is the C++ throw and catch exception handling meth-
ods. Thismakes the code much easier to write, as there is no need to check every return code of every
function call. However, there are some uncertainties about the status of local variables after a longjmp, so
the user may want to be careful about doing anything after setjmp returns non-zero besides returning itself.

September 27, 2012 77

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Consult your compiler documentation for more details.For an alternative approach, you may wish to use
the "cexcept" facility (see http://cexcept.sourceforge.net), which is illustrated in pngvalid.c and in con-
trib/visupng.

Custom chunks
If you need to read or write custom chunks, you may need to get deeper into the libpng code.The library
now has mechanisms for storing and writing chunks of unknown type; you can even declare callbacks for
custom chunks.However, this may not be good enough if the library code itself needs to know about inter-
actions between your chunk and existing ‘intrinsic’ chunks.

If you need to write a new intrinsic chunk, first read the PNG specification. Acquire a first level of under-
standing of how it works. Pay particular attention to the sections that describe chunk names, and look at
how other chunks were designed, so you can do things similarly. Second, check out the sections of libpng
that read and write chunks.Try to find a chunk that is similar to yours and use it as a template.More
details can be found in the comments inside the code.It is best to handle private or unknown chunks in a
generic method, via callback functions, instead of by modifying libpng functions. This is illustrated in
pngtest.c, which uses a callback function to handle a private "vpAg" chunk and the new "sTER" chunk,
which are both unknown to libpng.

If you wish to write your own transformation for the data, look through the part of the code that does the
transformations, and check out some of the simpler ones to get an idea of how they work. Try to find a sim-
ilar transformation to the one you want to add and copy off of i t. More details can be found in the com-
ments inside the code itself.

Configuring for 16-bit platforms
You will want to look into zconf.h to tell zlib (and thus libpng) that it cannot allocate more then 64K at a
time. Even if you can, the memory won’t be accessible. Solimit zlib and libpng to 64K by defining
MAXSEG_64K.

Configuring for DOS
For DOS users who only have access to the lower 640K, you will have to limit zlib’s memory usage via a
png_set_compression_mem_level() call. See zlib.h or zconf.h in the zlib library for more information.

Configuring for Medium Model
Libpng’s support for medium model has been tested on most of the popular compilers.Make sure
MAXSEG_64K gets defined, USE_FAR_KEYWORD gets defined, and FAR gets defined to far in png-
conf.h, and you should be all set.Everything in the library (except for zlib’s structure) is expecting far data.
You must use the typedefs with the p or pp on the end for pointers (or at least look at them and be careful).
Make note that the rows of data are defined as png_bytepp, which is an "unsigned char far * far *".

Configuring for gui/windowing platforms:
You will need to write new error and warning functions that use the GUI interface, as described previously,
and set them to be the error and warning functions at the time that png_create_*_struct() is called, in order
to have them available during the structure initialization.They can be changed later via png_set_error_fn().
On some compilers, you may also have to change the memory allocators (png_malloc, etc.).

Configuring for compiler xxx:
All includes for libpng are in pngconf.h.If you need to add, change or delete an include, this is the place to
do it. The includes that are not needed outside libpng are placed in pngpriv.h, which is only used by the
routines inside libpng itself.The files in libpng proper only include pngpriv.h and png.h, which %14%in
turn includes pngconf.h. in turn includes pngconf.h and, as of libpng-1.5.0, pnglibconf.h.As of
libpng-1.5.0, pngpriv.h also includes three other private header files, pngstruct.h, pnginfo.h, and

September 27, 2012 78

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

pngdebug.h, which contain material that previously appeared in the public headers.

Configuring zlib:
There are special functions to configure the compression. Perhaps the most useful one changes the com-
pression level, which currently uses input compression values in the range 0 - 9.The library normally uses
the default compression level (Z_DEFAULT_COMPRESSION = 6).Tests have shown that for a large
majority of images, compression values in the range 3-6 compress nearly as well as higher levels, and do so
much faster. For online applications it may be desirable to have maximum speed (Z_BEST_SPEED = 1).
With versions of zlib after v0.99, you can also specify no compression (Z_NO_COMPRESSION = 0), but
this would create files larger than just storing the raw bitmap. You can specify the compression level by
calling:

#include zlib.h
png_set_compression_level(png_ptr, lev el);

Another useful one is to reduce the memory level used by the library. The memory level defaults to 8, but it
can be lowered if you are short on memory (running DOS, for example, where you only have 640K). Note
that the memory level does have an effect on compression; among other things, lower levels will result in
sections of incompressible data being emitted in smaller stored blocks, with a correspondingly larger rela-
tive overhead of up to 15% in the worst case.

#include zlib.h
png_set_compression_mem_level(png_ptr, lev el);

The other functions are for configuring zlib. They are not recommended for normal use and may result in
writing an invalid PNG file. See zlib.h for more information on what these mean.

#include zlib.h
png_set_compression_strategy(png_ptr,

strategy);

png_set_compression_window_bits(png_ptr,
window_bits);

png_set_compression_method(png_ptr, method);

png_set_compression_buffer_size(png_ptr, size);

As of libpng version 1.5.4, additional APIs became available to set these separately for non-IDAT com-
pressed chunks such as zTXt, iTXt, and iCCP:

#include zlib.h
#if PNG_LIBPNG_VER >= 10504
png_set_text_compression_level(png_ptr, lev el);

png_set_text_compression_mem_level(png_ptr, lev el);

png_set_text_compression_strategy(png_ptr,
strategy);

png_set_text_compression_window_bits(png_ptr,
window_bits);

png_set_text_compression_method(png_ptr, method);

September 27, 2012 79

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

#endif

Controlling r ow filtering
If you want to control whether libpng uses filtering or not, which filters are used, and how it goes about
picking row filters, you can call one of these functions. The selection and configuration of row filters can
have a significant impact on the size and encoding speed and a somewhat lesser impact on the decoding
speed of an image. Filtering is enabled by default for RGB and grayscale images (with and without alpha),
but not for paletted images nor for any images with bit depths less than 8 bits/pixel.

The ’method’ parameter sets the main filtering method, which is currently only ’0’ in the PNG 1.2 specifi-
cation. The’filters’ parameter sets which filter(s), if any, should be used for each scanline. Possible values
are PNG_ALL_FILTERS and PNG_NO_FILTERS to turn filtering on and off, respectively.

Individual filter types are PNG_FILTER_NONE, PNG_FILTER_SUB, PNG_FILTER_UP, PNG_FIL-
TER_AVG, PNG_FILTER_PAETH, which can be bitwise ORed together with ’|’ to specify one or more fil-
ters to use. These filters are described in more detail in the PNG specification. If you intend to change the
filter type during the course of writing the image, you should start with flags set for all of the filters you
intend to use so that libpng can initialize its internal structures appropriately for all of the filter types.(Note
that this means the first row must always be adaptively filtered, because libpng currently does not allocate
the filter buffers until png_write_row() is called for the first time.)

filters = PNG_FILTER_NONE | PNG_FILTER_SUB
PNG_FILTER_UP | PNG_FILTER_AVG |
PNG_FILTER_PAETH | PNG_ALL_FILTERS;

png_set_filter(png_ptr, PNG_FILTER_TYPE_BASE,
filters);

The second parameter can also be
PNG_INTRAPIXEL_DIFFERENCING if you are
writing a PNG to be embedded in a MNG
datastream. Thisparameter must be the
same as the value of filter_method used
in png_set_IHDR().

It is also possible to influence how libpng chooses from among the available filters. This is done in one or
both of two ways - by telling it how important it is to keep the same filter for successive rows, and by
telling it the relative computational costs of the filters.

double weights[3] = {1.5, 1.3, 1.1},
costs[PNG_FILTER_VALUE_LAST] =
{1.0, 1.3, 1.3, 1.5, 1.7};

png_set_filter_heuristics(png_ptr,
PNG_FILTER_HEURISTIC_WEIGHTED, 3,
weights, costs);

The weights are multiplying factors that indicate to libpng that the row filter should be the same for succes-
sive rows unless another row filter is that many times better than the previous filter. In the above example,
if the previous 3 filters were SUB, SUB, NONE, the SUB filter could have a "sum of absolute differences"
1.5 x 1.3 times higher than other filters and still be chosen, while the NONE filter could have a sum 1.1
times higher than other filters and still be chosen.Unspecified weights are taken to be 1.0, and the specified
weights should probably be declining like those above in order to emphasize recent filters over older filters.

The filter costs specify for each filter type a relative decoding cost to be considered when selecting row

September 27, 2012 80

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

filters. Thismeans that filters with higher costs are less likely to be chosen over filters with lower costs,
unless their "sum of absolute differences" is that much smaller. The costs do not necessarily reflect the
exact computational speeds of the various filters, since this would unduly influence the final image size.

Note that the numbers above were invented purely for this example and are given only to help explain the
function usage. Little testing has been done to find optimum values for either the costs or the weights.

Removing unwanted object code
There are a bunch of #define’s in pngconf.h that control what parts of libpng are compiled. All the defines
end in _SUPPORTED. If you are never going to use a capability, you can change the #define to #undef
before recompiling libpng and save yourself code and data space, or you can turn off individual capabilities
with defines that begin with PNG_NO_.

In libpng-1.5.0 and later, the #define’s are in pnglibconf.h instead.

You can also turn all of the transforms and ancillary chunk capabilities off en masse with compiler direc-
tives that define PNG_NO_READ[or WRITE]_TRANSFORMS, or PNG_NO_READ[or
WRITE]_ANCILLARY_CHUNKS, or all four, along with directives to turn on any of the capabilities that
you do want. ThePNG_NO_READ[or WRITE]_TRANSFORMS directives disable the extra transforma-
tions but still leave the library fully capable of reading and writing PNG files with all known public chunks.
Use of the PNG_NO_READ[or WRITE]_ANCILLARY_CHUNKS directive produces a library that is
incapable of reading or writing ancillary chunks. If you are not using the progressive reading capability,
you can turn that off with PNG_NO_PROGRESSIVE_READ (don’t confuse this with the INTERLACING
capability, which you’ll still have).

All the reading and writing specific code are in separate files, so the linker should only grab the files it
needs. However, if you want to make sure, or if you are building a stand alone library, all the reading files
start with "pngr" and all the writing files start with "pngw".The files that don’t match either (like png.c,
pngtrans.c, etc.) are used for both reading and writing, and always need to be included. The progressive
reader is in pngpread.c

If you are creating or distributing a dynamically linked library (a .so or DLL file), you should not remove or
disable any parts of the library, as this will cause applications linked with different versions of the library to
fail if they call functions not available in your library. The size of the library itself should not be an issue,
because only those sections that are actually used will be loaded into memory.

Requesting debug printout
The macro definition PNG_DEBUG can be used to request debugging printout.Set it to an integer value in
the range 0 to 3. Higher numbers result in increasing amounts of debugging information. The information
is printed to the "stderr" file, unless another file name is specified in the PNG_DEBUG_FILE macro defini-
tion.

When PNG_DEBUG > 0, the following functions (macros) become available:

png_debug(level, message)
png_debug1(level, message, p1)
png_debug2(level, message, p1, p2)

in which "level" is compared to PNG_DEBUG to decide whether to print the message, "message" is the
formatted string to be printed, and p1 and p2 are parameters that are to be embedded in the string according
to printf-style formatting directives. For example,

png_debug1(2, "foo=%d0, foo);

September 27, 2012 81

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

is expanded to

if (PNG_DEBUG > 2)
fprintf(PNG_DEBUG_FILE, "foo=%d0, foo);

When PNG_DEBUG is defined but is zero, the macros aren’t defined, but you can still use PNG_DEBUG
to control your own debugging:

#ifdef PNG_DEBUG
fprintf(stderr, ...

#endif

When PNG_DEBUG = 1, the macros are defined, but only png_debug statements having level = 0 will be
printed. Therearen’t any such statements in this version of libpng, but if you insert some they will be
printed.

VI. MNG support
The MNG specification (available at http://www.libpng.org/pub/mng) allows certain extensions to PNG for
PNG images that are embedded in MNG datastreams. Libpng can support some of these extensions. To
enable them, use the png_permit_mng_features() function:

feature_set = png_permit_mng_features(png_ptr, mask)

mask is a png_uint_32 containing the bitwise OR of the
features you want to enable. These include
PNG_FLAG_MNG_EMPTY_PLTE
PNG_FLAG_MNG_FILTER_64
PNG_ALL_MNG_FEATURES

feature_set is a png_uint_32 that is the bitwise AND of
your mask with the set of MNG features that is
supported by the version of libpng that you are using.

It is an error to use this function when reading or writing a standalone PNG file with the PNG 8-byte signa-
ture. ThePNG datastream must be wrapped in a MNG datastream.As a minimum, it must have the MNG
8-byte signature and the MHDR and MEND chunks. Libpng does not provide support for these or any
other MNG chunks; your application must provide its own support for them.You may wish to consider
using libmng (available at http://www.libmng.com) instead.

VII. Changes to Libpng from version 0.88
It should be noted that versions of libpng later than 0.96 are not distributed by the original libpng author,
Guy Schalnat, nor by Andreas Dilger, who had taken over from Guy during 1996 and 1997, and distributed
versions 0.89 through 0.96, but rather by another member of the original PNG Group, Glenn Randers-
Pehrson. Guyand Andreas are still alive and well, but they hav emoved on to other things.

The old libpng functions png_read_init(), png_write_init(), png_info_init(), png_read_destroy(), and
png_write_destroy() have been moved to PNG_INTERNAL in version 0.95 to discourage their use.These
functions will be removed from libpng version 1.4.0.

The preferred method of creating and initializing the libpng structures is via the png_create_read_struct(),
png_create_write_struct(), and png_create_info_struct() because they isolate the size of the structures from
the application, allow version error checking, and also allow the use of custom error handling routines dur-
ing the initialization, which the old functions do not. The functions png_read_destroy() and
png_write_destroy() do not actually free the memory that libpng allocated for these structs, but just reset

September 27, 2012 82

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

the data structures, so they can be used instead of png_destroy_read_struct() and
png_destroy_write_struct() if you feel there is too much system overhead allocating and freeing the
png_struct for each image read.

Setting the error callbacks via png_set_message_fn() before png_read_init() as was suggested in
libpng-0.88 is no longer supported because this caused applications that do not use custom error functions
to fail if the png_ptr was not initialized to zero.It is still possible to set the error callbacks AFTER
png_read_init(), or to change them with png_set_error_fn(), which is essentially the same function, but
with a new name to force compilation errors with applications that try to use the old method.

Starting with version 1.0.7, you can find out which version of the library you are using at run-time:

png_uint_32 libpng_vn = png_access_version_number();

The number libpng_vn is constructed from the major version, minor version with leading zero, and release
number with leading zero, (e.g., libpng_vn for version 1.0.7 is 10007).

Note that this function does not take a png_ptr, so you can call it before you’ve created one.

You can also check which version of png.h you used when compiling your application:

png_uint_32 application_vn = PNG_LIBPNG_VER;

VIII. Changes to Libpng from version 1.0.x to 1.2.x
Support for user memory management was enabled by default. To accomplish this, the functions png_cre-
ate_read_struct_2(), png_create_write_struct_2(), png_set_mem_fn(), png_get_mem_ptr(), png_mal-
loc_default(), and png_free_default() were added.

Support for the iTXt chunk has been enabled by default as of version 1.2.41.

Support for certain MNG features was enabled.

Support for numbered error messages was added.However, we nev er got around to actually numbering the
error messages. The function png_set_strip_error_numbers() was added (Note: the prototype for this func-
tion was inadvertently removed from png.h in PNG_NO_ASSEMBLER_CODE builds of libpng-1.2.15.It
was restored in libpng-1.2.36).

The png_malloc_warn() function was added at libpng-1.2.3. This issues a png_warning and returns NULL
instead of aborting when it fails to acquire the requested memory allocation.

Support for setting user limits on image width and height was enabled by default. The functions
png_set_user_limits(), png_get_user_width_max(), and png_get_user_height_max() were added at
libpng-1.2.6.

The png_set_add_alpha() function was added at libpng-1.2.7.

The function png_set_expand_gray_1_2_4_to_8() was added at libpng-1.2.9. Unlike
png_set_gray_1_2_4_to_8(), the new function does not expand the tRNS chunk to alpha. The
png_set_gray_1_2_4_to_8() function is deprecated.

A number of macro definitions in support of runtime selection of assembler code features (especially Intel
MMX code support) were added at libpng-1.2.0:

PNG_ASM_FLAG_MMX_SUPPORT_COMPILED

September 27, 2012 83

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU
PNG_ASM_FLAG_MMX_READ_COMBINE_ROW
PNG_ASM_FLAG_MMX_READ_INTERLACE
PNG_ASM_FLAG_MMX_READ_FILTER_SUB
PNG_ASM_FLAG_MMX_READ_FILTER_UP
PNG_ASM_FLAG_MMX_READ_FILTER_AVG
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH
PNG_ASM_FLAGS_INITIALIZED
PNG_MMX_READ_FLAGS
PNG_MMX_FLAGS
PNG_MMX_WRITE_FLAGS
PNG_MMX_FLAGS

We added the following functions in support of runtime selection of assembler code features:

png_get_mmx_flagmask()
png_set_mmx_thresholds()
png_get_asm_flags()
png_get_mmx_bitdepth_threshold()
png_get_mmx_rowbytes_threshold()
png_set_asm_flags()

We replaced all of these functions with simple stubs in libpng-1.2.20, when the Intel assembler code was
removed due to a licensing issue.

These macros are deprecated:

PNG_READ_TRANSFORMS_NOT_SUPPORTED
PNG_PROGRESSIVE_READ_NOT_SUPPORTED
PNG_NO_SEQUENTIAL_READ_SUPPORTED
PNG_WRITE_TRANSFORMS_NOT_SUPPORTED
PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED
PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORTED

They hav ebeen replaced, respectively, by:

PNG_NO_READ_TRANSFORMS
PNG_NO_PROGRESSIVE_READ
PNG_NO_SEQUENTIAL_READ
PNG_NO_WRITE_TRANSFORMS
PNG_NO_READ_ANCILLARY_CHUNKS
PNG_NO_WRITE_ANCILLARY_CHUNKS

PNG_MAX_UINT was replaced with PNG_UINT_31_MAX. It has been deprecated since libpng-1.0.16
and libpng-1.2.6.

The function
png_check_sig(sig, num) was replaced with
!png_sig_cmp(sig, 0, num) It has been deprecated since libpng-0.90.

The function
png_set_gray_1_2_4_to_8() which also expands tRNS to alpha was replaced with
png_set_expand_gray_1_2_4_to_8() which does not. It has been deprecated since libpng-1.0.18 and

1.2.9.

September 27, 2012 84

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

IX. Changes to Libpng from version 1.0.x/1.2.x to 1.4.x
Private libpng prototypes and macro definitions were moved from png.h and pngconf.h into a new pngpriv.h
header file.

Functions png_set_benign_errors(), png_benign_error(), and png_chunk_benign_error() were added.

Support for setting the maximum amount of memory that the application will allocate for reading chunks
was added, as a security measure. The functions png_set_chunk_cache_max() and
png_get_chunk_cache_max() were added to the library.

We implemented support for I/O states by adding png_ptr member io_state and functions
png_get_io_chunk_name() and png_get_io_state() in pngget.c

We added PNG_TRANSFORM_GRAY_TO_RGB to the available high-level input transforms.

Checking for and reporting of errors in the IHDR chunk is more thorough.

Support for global arrays was removed, to improve thread safety.

Some obsolete/deprecated macros and functions have been removed.

Typecasted NULL definitions such as
#define png_voidp_NULL (png_voidp)NULL were eliminated. If you used these in your applica-

tion, just use NULL instead.

The png_struct and info_struct members "trans" and "trans_values" were changed to "trans_alpha" and
"trans_color", respectively.

The obsolete, unused pnggccrd.c and pngvcrd.c files and related makefiles were removed.

The PNG_1_0_X and PNG_1_2_X macros were eliminated.

The PNG_LEGACY_SUPPORTED macro was eliminated.

Many WIN32_WCE #ifdefs were removed.

The functions png_read_init(info_ptr), png_write_init(info_ptr), png_info_init(info_ptr),
png_read_destroy(), and png_write_destroy() have been removed. They hav e been deprecated since
libpng-0.95.

The png_permit_empty_plte() was removed. It has been deprecated since libpng-1.0.9. Use png_per-
mit_mng_features() instead.

We removed the obsolete stub functions png_get_mmx_flagmask(), png_set_mmx_thresholds(),
png_get_asm_flags(), png_get_mmx_bitdepth_threshold(), png_get_mmx_rowbytes_threshold(),
png_set_asm_flags(), and png_mmx_supported()

We removed the obsolete png_check_sig(), png_memcpy_check(), and png_memset_check() functions.
Instead use !png_sig_cmp(), png_memcpy(), and png_memset(), respectively.

The function png_set_gray_1_2_4_to_8() was removed. It has been deprecated since libpng-1.0.18 and
1.2.9, when it was replaced with png_set_expand_gray_1_2_4_to_8() because the former function also
expanded any tRNS chunk to an alpha channel.

September 27, 2012 85

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Macros for png_get_uint_16, png_get_uint_32, and png_get_int_32 were added and are used by default
instead of the corresponding functions. Unfortunately, from libpng-1.4.0 until 1.4.4, the png_get_uint_16
macro (but not the function) incorrectly returned a value of type png_uint_32.

We changed the prototype for png_malloc() from
png_malloc(png_structp png_ptr, png_uint_32 size) to
png_malloc(png_structp png_ptr, png_alloc_size_t size)

This also applies to the prototype for the user replacement malloc_fn().

The png_calloc() function was added and is used in place of of "png_malloc(); memset();" except in the
case in png_read_png() where the array consists of pointers; in this case a "for" loop is used after the
png_malloc() to set the pointers to NULL, to give robust. behavior in case the application runs out of mem-
ory part-way through the process.

We changed the prototypes of png_get_compression_buffer_size() and png_set_compression_buffer_size()
to work with png_size_t instead of png_uint_32.

Support for numbered error messages was removed by default, since we never got around to actually num-
bering the error messages. The function png_set_strip_error_numbers() was removed from the library by
default.

The png_zalloc() and png_zfree() functions are no longer exported. Thepng_zalloc() function no longer
zeroes out the memory that it allocates.Applications that called png_zalloc(png_ptr, number, size) can call
png_calloc(png_ptr, number*size) instead, and can call png_free() instead of png_zfree().

Support for dithering was disabled by default in libpng-1.4.0, because it has not been well tested and
doesn’t actually "dither". The code was not removed, however, and could be enabled by building libpng
with PNG_READ_DITHER_SUPPORTED defined. In libpng-1.4.2, this support was reenabled, but the
function was renamed png_set_quantize() to reflect more accurately what it actually does.At the same
time, the PNG_DITHER_[RED,GREEN_BLUE]_BITS macros were also renamed to PNG_QUAN-
TIZE_[RED,GREEN,BLUE]_BITS, and PNG_READ_DITHER_SUPPORTED was renamed to
PNG_READ_QUANTIZE_SUPPORTED.

We removed the trailing ’.’ f rom the warning and error messages.

X. Changes to Libpng from version 1.4.x to 1.5.x
From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macro (but not the function) incorrectly returned a value
of type png_uint_32.

Checking for invalid palette index on read or write was added at libpng 1.5.10. When an invalid index is
found, libpng issues a benign error. This is enabled by default but can be disabled in each png_ptr with

png_set_check_for_invalid_index(png_ptr, allowed);

allowed -one of
0: disable
1: enable

A. Changes that affect users of libpng

There are no substantial API changes between the non-deprecated parts of the 1.4.5 API and the 1.5.0 API;
however, the ability to directly access members of the main libpng control structures, png_struct and
png_info, deprecated in earlier versions of libpng, has been completely removed from libpng 1.5.

September 27, 2012 86

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

We no longer include zlib.h in png.h. Applications that need access to information in zlib.h will need to
add the ’#include "zlib.h"’ directive. It does not matter whether it is placed prior to or after the ’"#include
png.h"’ directive.

The png_sprintf(), png_strcpy(), and png_strncpy() macros are no longer used and were removed.

We moved the png_strlen(), png_memcpy(), png_memset(), and png_memcmp() macros into a private
header file (pngpriv.h) that is not accessible to applications.

In png_get_iCCP, the type of "profile" was changed from png_charpp to png_bytepp, and in png_set_iCCP,
from png_charp to png_const_bytep.

There are changes of form in png.h, including new and changed macros to declare parts of the API.Some
API functions with arguments that are pointers to data not modified within the function have been corrected
to declare these arguments with PNG_CONST.

Much of the internal use of C macros to control the library build has also changed and some of this is visi-
ble in the exported header files, in particular the use of macros to control data and API elements visible dur-
ing application compilation may require significant revision to application code.(It is extremely rare for an
application to do this.)

Any program that compiled against libpng 1.4 and did not use deprecated features or access internal library
structures should compile and work against libpng 1.5, except for the change in the prototype for
png_get_iCCP() and png_set_iCCP() API functions mentioned above.

libpng 1.5.0 adds PNG_ PASS macros to help in the reading and writing of interlaced images. The macros
return the number of rows and columns in each pass and information that can be used to de-interlace and (if
absolutely necessary) interlace an image.

libpng 1.5.0 adds an API png_longjmp(png_ptr, value). This API calls the application-provided
png_longjmp_ptr on the internal, but application initialized, longjmp buffer. It is provided as a convenience
to avoid the need to use the png_jmpbuf macro, which had the unnecessary side effect of resetting the inter-
nal png_longjmp_ptr value.

libpng 1.5.0 includes a complete fixed point API.By default this is present along with the corresponding
floating point API. In general the fixed point API is faster and smaller than the floating point one because
the PNG file format used fixed point, not floating point.This applies even if the library uses floating point
in internal calculations.A new macro, PNG_FLOATING_ARITHMETIC_SUPPORTED, reveals whether
the library uses floating point arithmetic (the default) or fixed point arithmetic internally for performance
critical calculations such as gamma correction. In some cases, the gamma calculations may produce
slightly different results. This has changed the results in png_rgb_to_gray and in alpha composition
(png_set_background for example). This applies even if the original image was already linear (gamma ==
1.0) and, therefore, it is not necessary to linearize the image.This is because libpng has *not* been
changed to optimize that case correctly, yet.

Fixed point support for the sCAL chunk comes with an important caveat; the sCAL specification uses a
decimal encoding of floating point values and the accuracy of PNG fixed point values is insufficient for rep-
resentation of these values. Consequently a "string" API (png_get_sCAL_s and png_set_sCAL_s) is the
only reliable way of reading arbitrary sCAL chunks in the absence of either the floating point API or inter-
nal floating point calculations.

Applications no longer need to include the optional distribution header file pngusr.h or define the corre-
sponding macros during application build in order to see the correct variant of the libpng API. From 1.5.0
application code can check for the corresponding _SUPPORTED macro:

September 27, 2012 87

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

#ifdef PNG_INCH_CONVERSIONS_SUPPORTED
/* code that uses the inch conversion APIs. */ #endif

This macro will only be defined if the inch conversion functions have been compiled into libpng. The full
set of macros, and whether or not support has been compiled in, are available in the header file pnglib-
conf.h. Thisheader file is specific to the libpng build. Noticethat prior to 1.5.0 the _SUPPORTED macros
would always have the default definition unless reset by pngusr.h or by explicit settings on the compiler
command line. These settings may produce compiler warnings or errors in 1.5.0 because of macro redefini-
tion.

From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macro (but not the function) incorrectly returned a value
of type png_uint_32. libpng 1.5.0 is consistent with the implementation in 1.4.5 and 1.2.x (where the
macro did not exist.)

Applications can now choose whether to use these macros or to call the corresponding function by defining
PNG_USE_READ_MACROS or PNG_NO_USE_READ_MACROS before including png.h. Notice that
this is only supported from 1.5.0 -defining PNG_NO_USE_READ_MACROS prior to 1.5.0 will lead to a
link failure.

Prior to libpng-1.5.4, the zlib compressor used the same set of parameters when compressing the IDAT data
and textual data such as zTXt and iCCP. In libpng-1.5.4 we reinitialized the zlib stream for each type of
data. We added five png_set_text_*() functions for setting the parameters to use with textual data.

Prior to libpng-1.5.4, the PNG_READ_16_TO_8_ACCURATE_SCALE_SUPPORTED option was off by
default, and slightly inaccurate scaling occurred. This option can no longer be turned off, and the choice of
accurate or inaccurate 16-to-8 scaling is by using the new png_set_scale_16_to_8() API for accurate scal-
ing or the old png_set_strip_16_to_8() API for simple chopping.

Prior to libpng-1.5.4, the png_set_user_limits() function could only be used to reduce the width and height
limits from the value of PNG_USER_WIDTH_MAX and PNG_USER_HEIGHT_MAX, although this doc-
ument said that it could be used to override them. Now this function will reduce or increase the limits.

Starting in libpng-1.5.10, the user limits can be set en masse with the configuration option
PNG_SAFE_LIMITS_SUPPORTED. If this option is enabled, a set of "safe" limits is applied in pngpriv.h.
These can be overridden by application calls to png_set_user_limits(), png_set_user_chunk_cache_max(),
and/or png_set_user_malloc_max() that increase or decrease the limits. Also, in libpng-1.5.10 the default
width and height limits were increased from 1,000,000 to 0x7ffffff (i.e., made unlimited). Therefore, the
limits are now

default safe
png_user_width_max 0x7fffffff 1 ,000,000
png_user_height_max 0x7fffffff 1 ,000,000
png_user_chunk_cache_max 0(unlimited) 128
png_user_chunk_malloc_max 0 (unlimited) 8,000,000

B. Changes to the build and configuration of libpng

Details of internal changes to the library code can be found in the CHANGES file and in the GIT repository
logs. Thesewill be of no concern to the vast majority of library users or builders; however, the few who
configure libpng to a non-default feature set may need to change how this is done.

There should be no need for library builders to alter build scripts if these use the distributed build support -
configure or the makefiles - however, users of the makefiles may care to update their build scripts to build
pnglibconf.h where the corresponding makefile does not do so.

September 27, 2012 88

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Building libpng with a non-default configuration has changed completely. The old method using pngusr.h
should still work correctly even though the way pngusr.h is used in the build has been changed; however,
library builders will probably want to examine the changes to take advantage of new capabilities and to
simplify their build system.

B.1 Specific changes to library configuration capabilities

The library now supports a complete fixed point implementation and can thus be used on systems that have
no floating point support or very limited or slow support. Previously gamma correction, an essential part of
complete PNG support, required reasonably fast floating point.

As part of this the choice of internal implementation has been made independent of the choice of fixed ver-
sus floating point APIs and all the missing fixed point APIs have been implemented.

The exact mechanism used to control attributes of API functions has changed.A single set of operating
system independent macro definitions is used and operating system specific directives are defined in pnglib-
conf.h

As part of this the mechanism used to choose procedure call standards on those systems that allow a choice
has been changed. At present this only affects certain Microsoft (DOS, Windows) and IBM (OS/2) operat-
ing systems running on Intel processors. As before, PNGAPI is defined where required to control the
exported API functions; however, two new macros, PNGCBAPI and PNGCAPI, are used instead for call-
back functions (PNGCBAPI) and (PNGCAPI) for functions that must match a C library prototype (cur-
rently only png_longjmp_ptr, which must match the C longjmp function.) The new approach is docu-
mented in pngconf.h

Despite these changes, libpng 1.5.0 only supports the native C function calling standard on those platforms
tested so far (__cdecl on Microsoft Windows). This is because the support requirements for alternative
calling conventions seem to no longer exist. Developers who find it necessary to set PNG_API_RULE to 1
should advise the mailing list (png-mng-implement) of this and library builders who use Openwatcom and
therefore set PNG_API_RULE to 2 should also contact the mailing list.

A new test program, pngvalid, is provided in addition to pngtest.pngvalid validates the arithmetic accuracy
of the gamma correction calculations and includes a number of validations of the file format.A subset of
the full range of tests is run when "make check" is done (in the ’configure’ build.) pngvalid also allows
total allocated memory usage to be evaluated and performs additional memory overwrite validation.

Many changes to individual feature macros have been made. The following are the changes most likely to
be noticed by library builders who configure libpng:

1) All feature macros now hav econsistent naming:

#define PNG_NO_feature turns the feature off #define PNG_feature_SUPPORTED turns the feature on

pnglibconf.h contains one line for each feature macro which is either:

#define PNG_feature_SUPPORTED

if the feature is supported or:

/*#undef PNG_feature_SUPPORTED*/

if it is not. Library code consistently checks for the ’SUPPORTED’ macro.It does not, and libpng applica-
tions should not, check for the ’NO’ macro which will not normally be defined even if the feature is not

September 27, 2012 89

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

supported. The’NO’ macros are only used internally for setting or not setting the corresponding ’SUP-
PORTED’ macros.

Compatibility with the old names is provided as follows:

PNG_INCH_CONVERSIONS turns on PNG_INCH_CONVERSIONS_SUPPORTED

And the following definitions disable the corresponding feature:

PNG_SETJMP_NOT_SUPPORTED disables SETJMP PNG_READ_TRANSFORMS_NOT_SUP-
PORTED disables READ_TRANSFORMS PNG_NO_READ_COMPOSITED_NODIV disables
READ_COMPOSITE_NODIV PNG_WRITE_TRANSFORMS_NOT_SUPPORTED disables
WRITE_TRANSFORMS PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED disables
READ_ANCILLARY_CHUNKS PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORTED disables
WRITE_ANCILLARY_CHUNKS

Library builders should remove use of the above, inconsistent, names.

2) Warning and error message formatting was previously conditional on the STDIO feature. The library has
been changed to use the CONSOLE_IO feature instead. This means that if CONSOLE_IO is disabled the
library no longer uses the printf(3) functions, even though the default read/write implementations use
(FILE) style stdio.h functions.

3) Three feature macros now control the fixed/floating point decisions:

PNG_FLOATING_POINT_SUPPORTED enables the floating point APIs

PNG_FIXED_POINT_SUPPORTED enables the fixed point APIs; however, in practice these are normally
required internally anyway (because the PNG file format is fixed point), therefore in most cases
PNG_NO_FIXED_POINT merely stops the function from being exported.

PNG_FLOATING_ARITHMETIC_SUPPORTED chooses between the internal floating point implementa-
tion or the fixed point one.Typically the fixed point implementation is larger and slower than the floating
point implementation on a system that supports floating point; however, it may be faster on a system which
lacks floating point hardware and therefore uses a software emulation.

4) Added PNG_{READ,WRITE}_INT_FUNCTIONS_SUPPORTED. This allows the functions to read
and write ints to be disabled independently of PNG_USE_READ_MACROS, which allows libpng to be
built with the functions even though the default is to use the macros - this allows applications to choose at
app buildtime whether or not to use macros (previously impossible because the functions weren’t in the
default build.)

B.2 Changes to the configuration mechanism

Prior to libpng-1.5.0 library builders who needed to configure libpng had either to modify the exported png-
conf.h header file to add system specific configuration or had to write feature selection macros into pngusr.h
and cause this to be included into pngconf.h by defining PNG_USER_CONFIG. The latter mechanism had
the disadvantage that an application built without PNG_USER_CONFIG defined would see the unmodified,
default, libpng API and thus would probably fail to link.

These mechanisms still work in the configure build and in any makefile build that builds pnglibconf.h,
although the feature selection macros have changed somewhat as described above. In 1.5.0, however,
pngusr.h is processed only once, when the exported header file pnglibconf.h is built. pngconf.hno longer
includes pngusr.h, therefore pngusr.h is ignored after the build of pnglibconf.h and it is never included in an

September 27, 2012 90

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

application build.

The rarely used alternative of adding a list of feature macros to the CFLAGS setting in the build also still
works; however, the macros will be copied to pnglibconf.h and this may produce macro redefinition warn-
ings when the individual C files are compiled.

All configuration now only works if pnglibconf.h is built from scripts/pnglibconf.dfa. Thisrequires the
program awk. Brian Kernighan (the original author of awk) maintains C source code of that awk and this
and all known later implementations (often called by subtly different names - nawk and gawk for example)
are adequate to build pnglibconf.h. The Sun Microsystems (now Oracle) program ’awk’ is an earlier ver-
sion and does not work; this may also apply to other systems that have a functioning awk called ’nawk’.

Configuration options are now documented in scripts/pnglibconf.dfa. Thisfile also includes dependency
information that ensures a configuration is consistent; that is, if a feature is switched off dependent features
are also removed. Asa recommended alternative to using feature macros in pngusr.h a system builder may
also define equivalent options in pngusr.dfa (or, indeed, any file) and add that to the configuration by setting
DFA_XTRA to the file name. The makefiles in contrib/pngminim illustrate how to do this, and a case
where pngusr.h is still required.

XI. Detecting libpng
The png_get_io_ptr() function has been present since libpng-0.88, has never changed, and is unaffected by
conditional compilation macros.It is the best choice for use in configure scripts for detecting the presence
of any libpng version since 0.88. In an autoconf "configure.in" you could use

AC_CHECK_LIB(png, png_get_io_ptr, ...

XII. Source code repository
Since about February 2009, version 1.2.34, libpng has been under "git" source control. The git repository
was built from old libpng-x.y.z.tar.gz files going back to version 0.70.You can access the git repository
(read only) at

git://libpng.git.sourceforge.net/gitroot/libpng

or you can browse it via "gitweb" at

http://libpng.git.sourceforge.net/git/gitweb.cgi?p=libpng

Patches can be sent to glennrp at users.sourceforge.net or to png-mng-implement at lists.sourceforge.net or
you can upload them to the libpng bug tracker at

http://libpng.sourceforge.net

We also accept patches built from the tar or zip distributions, and simple verbal discriptions of bug fixes,
reported either to the SourceForge bug tracker, to the png-mng-implement at lists.sf.net mailing list, or
directly to glennrp.

XIII. Coding style
Our coding style is similar to the "Allman" style, with curly braces on separate lines:

if (condition)
{

action;
}

September 27, 2012 91

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

else if (another condition)
{

another action;
}

The braces can be omitted from simple one-line actions:

if (condition)
return (0);

We use 3-space indentation, except for continued statements which are usually indented the same as the
first line of the statement plus four more spaces.

For macro definitions we use 2-space indentation, always leaving the "#" in the first column.

#ifndef PNG_NO_FEATURE
ifndef PNG_FEATURE_SUPPORTED
define PNG_FEATURE_SUPPORTED
endif
#endif

Comments appear with the leading "/*" at the same indentation as the statement that follows the comment:

/* Single-line comment */
statement;

/* This is a multiple-line
* comment.
*/
statement;

Very short comments can be placed after the end of the statement to which they pertain:

statement; /*comment */

We don’t use C++ style ("//") comments. We hav e, howev er, used them in the past in some now-abandoned
MMX assembler code.

Functions and their curly braces are not indented, and exported functions are marked with PNGAPI:

/* This is a public function that is visible to
* application programmers. It does thus-and-so.
*/
void PNGAPI
png_exported_function(png_ptr, png_info, foo)
{

body;
}

The prototypes for all exported functions appear in png.h, above the comment that says

/* Maintainer: Put new public prototypes here ... */

We mark all non-exported functions with "/* PRIVATE */"":

September 27, 2012 92

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void /* PRIVATE */
png_non_exported_function(png_ptr, png_info, foo)
{

body;
}

The prototypes for non-exported functions (except for those in pngtest) appear in pngpriv.h above the com-
ment that says

/* Maintainer: Put new private prototypes here ˆ and in libpngpf.3 */

To avoid polluting the global namespace, the names of all exported functions and variables begin with
"png_", and all publicly visible C preprocessor macros begin with "PNG". We request that applications that
use libpng *not* begin any of their own symbols with either of these strings.

We put a space after each comma and after each semicolon in "for" statements, and we put spaces before
and after each C binary operator and after "for" or "while", and before "?".We don’t put a space between a
typecast and the expression being cast, nor do we put one between a function name and the left parenthesis
that follows it:

for (i = 2; i > 0; --i)
y[i] = a(x) + (int)b;

We prefer #ifdef and #ifndef to #if defined() and if !defined() when there is only one macro being tested.

We prefer to express integers that are used as bit masks in hex format, with an even number of lower-case
hex digits (e.g., 0x00, 0xff, 0x0100).

We do not use the TAB character for indentation in the C sources.

Lines do not exceed 80 characters.

Other rules can be inferred by inspecting the libpng source.

XIV. Y2K Compliance in libpng
September 27, 2012

Since the PNG Development group is an ad-hoc body, we can’t make an official declaration.

This is your unofficial assurance that libpng from version 0.71 and upward through 1.5.13 are Y2K compli-
ant. It is my belief that earlier versions were also Y2K compliant.

Libpng only has two year fields. One is a 2-byte unsigned integer that will hold years up to 65535.The
other holds the date in text format, and will hold years up to 9999.

The integer is
"png_uint_16 year" in png_time_struct.

The string is
"char time_buffer[29]" in png_struct.This will no longer be used in libpng-1.6.x and will be removed

from libpng-1.7.0.

There are seven time-related functions:

September 27, 2012 93

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_convert_to_rfc_1123() in png.c
(formerly png_convert_to_rfc_1152() in error)

png_convert_from_struct_tm() in pngwrite.c, called
in pngwrite.c

png_convert_from_time_t() in pngwrite.c
png_get_tIME() in pngget.c
png_handle_tIME() in pngrutil.c, called in pngread.c
png_set_tIME() in pngset.c
png_write_tIME() in pngwutil.c, called in pngwrite.c

All appear to handle dates properly in a Y2K environment. Thepng_convert_from_time_t() function calls
gmtime() to convert from system clock time, which returns (year - 1900), which we properly convert to the
full 4-digit year. There is a possibility that applications using libpng are not passing 4-digit years into the
png_convert_to_rfc_1123() function, or that they are incorrectly passing only a 2-digit year instead of "year
- 1900" into the png_convert_from_struct_tm() function, but this is not under our control. The libpng docu-
mentation has always stated that it works with 4-digit years, and the APIs have been documented as such.

The tIME chunk itself is also Y2K compliant. It uses a 2-byte unsigned integer to hold the year, and can
hold years as large as 65535.

zlib, upon which libpng depends, is also Y2K compliant. It contains no date-related code.

Glenn Randers-Pehrson
libpng maintainer
PNG Development Group

NOTE
Note about libpng version numbers:

Due to various miscommunications, unforeseen code incompatibilities and occasional factors outside the
authors’ control, version numbering on the library has not always been consistent and straightforward. The
following table summarizes matters since version 0.89c, which was the first widely used release:

source png.hpng.h shared-lib
version string int version
------- ------ ----- ----------
0.89c ("beta 3")0.89 89 1.0.89
0.90 ("beta 4") 0.90 90 0.90
0.95 ("beta 5") 0.95 95 0.95
0.96 ("beta 6") 0.96 96 0.96
0.97b ("beta 7")1.00.97 971.0.1
0.97c 0.97 97 2.0.97
0.98 0.98 98 2.0.98
0.99 0.99 98 2.0.99
0.99a-m 0.99 99 2.0.99
1.00 1.00 100 2.1.0
1.0.0 1.0.0 100 2.1.0
1.0.0 (fromhere on, the100 2.1.0
1.0.1 png.hstring is 10001 2.1.0
1.0.1a-e identical to the 10002 from here on, the
1.0.2 sourceversion) 10002 sharedlibrary is 2.V
1.0.2a-b 10003where V is the source
1.0.1 10001code version except as

September 27, 2012 94

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

1.0.1a-e 100022.1.0.1a-e noted.
1.0.2 100022.1.0.2
1.0.2a-b 100032.1.0.2a-b
1.0.3 100032.1.0.3
1.0.3a-d 100042.1.0.3a-d
1.0.4 100042.1.0.4
1.0.4a-f 100052.1.0.4a-f
1.0.5 (+ 2 patches) 10005 2.1.0.5
1.0.5a-d 100062.1.0.5a-d
1.0.5e-r 101002.1.0.5e-r
1.0.5s-v 100062.1.0.5s-v
1.0.6 (+ 3 patches) 10006 2.1.0.6
1.0.6d-g 100072.1.0.6d-g
1.0.6h 1000710.6h
1.0.6i 1000710.6i
1.0.6j 100072.1.0.6j
1.0.7beta11-14 DLLNUM10007 2.1.0.7beta11-14
1.0.7beta15-18 1 10007 2.1.0.7beta15-18
1.0.7rc1-2 1 10007 2.1.0.7rc1-2
1.0.7 1 10007 2.1.0.7
1.0.8beta1-4 1 10008 2.1.0.8beta1-4
1.0.8rc1 1 10008 2.1.0.8rc1
1.0.8 1 10008 2.1.0.8
1.0.9beta1-6 1 10009 2.1.0.9beta1-6
1.0.9rc1 1 10009 2.1.0.9rc1
1.0.9beta7-10 1 10009 2.1.0.9beta7-10
1.0.9rc2 1 10009 2.1.0.9rc2
1.0.9 1 10009 2.1.0.9
1.0.10beta1 1 10010 2.1.0.10beta1
1.0.10rc1 1 10010 2.1.0.10rc1
1.0.10 1 10010 2.1.0.10
1.0.11beta1-3 1 10011 2.1.0.11beta1-3
1.0.11rc1 1 10011 2.1.0.11rc1
1.0.11 1 10011 2.1.0.11
1.0.12beta1-2 2 10012 2.1.0.12beta1-2
1.0.12rc1 2 10012 2.1.0.12rc1
1.0.12 2 10012 2.1.0.12
1.1.0a-f - 10100 2.1.1.0a-fabandoned
1.2.0beta1-2 2 10200 2.1.2.0beta1-2
1.2.0beta3-5 3 10200 3.1.2.0beta3-5
1.2.0rc1 3 10200 3.1.2.0rc1
1.2.0 3 10200 3.1.2.0
1.2.1beta-4 3 10201 3.1.2.1beta1-4
1.2.1rc1-2 3 10201 3.1.2.1rc1-2
1.2.1 3 10201 3.1.2.1
1.2.2beta1-6 12 10202 12.so.0.1.2.2beta1-6
1.0.13beta1 10 10013 10.so.0.1.0.13beta1
1.0.13rc1 10 10013 10.so.0.1.0.13rc1
1.2.2rc1 12 10202 12.so.0.1.2.2rc1
1.0.13 10 10013 10.so.0.1.0.13
1.2.2 12 10202 12.so.0.1.2.2
1.2.3rc1-6 12 10203 12.so.0.1.2.3rc1-6
1.2.3 12 10203 12.so.0.1.2.3
1.2.4beta1-3 13 10204 12.so.0.1.2.4beta1-3

September 27, 2012 95

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

1.2.4rc1 13 10204 12.so.0.1.2.4rc1
1.0.14 10 10014 10.so.0.1.0.14
1.2.4 13 10204 12.so.0.1.2.4
1.2.5beta1-2 13 10205 12.so.0.1.2.5beta1-2
1.0.15rc1 10 10015 10.so.0.1.0.15rc1
1.0.15 10 10015 10.so.0.1.0.15
1.2.5 13 10205 12.so.0.1.2.5
1.2.6beta1-4 13 10206 12.so.0.1.2.6beta1-4
1.2.6rc1-5 13 10206 12.so.0.1.2.6rc1-5
1.0.16 10 10016 10.so.0.1.0.16
1.2.6 13 10206 12.so.0.1.2.6
1.2.7beta1-2 13 10207 12.so.0.1.2.7beta1-2
1.0.17rc1 10 10017 12.so.0.1.0.17rc1
1.2.7rc1 13 10207 12.so.0.1.2.7rc1
1.0.17 10 10017 12.so.0.1.0.17
1.2.7 13 10207 12.so.0.1.2.7
1.2.8beta1-5 13 10208 12.so.0.1.2.8beta1-5
1.0.18rc1-5 10 10018 12.so.0.1.0.18rc1-5
1.2.8rc1-5 13 10208 12.so.0.1.2.8rc1-5
1.0.18 10 10018 12.so.0.1.0.18
1.2.8 13 10208 12.so.0.1.2.8
1.2.9beta1-3 13 10209 12.so.0.1.2.9beta1-3
1.2.9beta4-11 13 10209 12.so.0.9[.0]
1.2.9rc1 13 10209 12.so.0.9[.0]
1.2.9 13 10209 12.so.0.9[.0]
1.2.10beta1-7 13 10210 12.so.0.10[.0]
1.2.10rc1-2 13 10210 12.so.0.10[.0]
1.2.10 13 10210 12.so.0.10[.0]
1.4.0beta1-6 14 10400 14.so.0.0[.0]
1.2.11beta1-4 13 10210 12.so.0.11[.0]
1.4.0beta7-8 14 10400 14.so.0.0[.0]
1.2.11 13 10211 12.so.0.11[.0]
1.2.12 13 10212 12.so.0.12[.0]
1.4.0beta9-14 14 10400 14.so.0.0[.0]
1.2.13 13 10213 12.so.0.13[.0]
1.4.0beta15-36 1410400 14.so.0.0[.0]
1.4.0beta37-87 1410400 14.so.14.0[.0]
1.4.0rc01 14 10400 14.so.14.0[.0]
1.4.0beta88-109 1410400 14.so.14.0[.0]
1.4.0rc02-08 14 10400 14.so.14.0[.0]
1.4.0 14 10400 14.so.14.0[.0]
1.4.1beta01-03 1410401 14.so.14.1[.0]
1.4.1rc01 14 10401 14.so.14.1[.0]
1.4.1beta04-12 1410401 14.so.14.1[.0]
1.4.1 14 10401 14.so.14.1[.0]
1.4.2 14 10402 14.so.14.2[.0]
1.4.3 14 10403 14.so.14.3[.0]
1.4.4 14 10404 14.so.14.4[.0]
1.5.0beta01-58 1510500 15.so.15.0[.0]
1.5.0rc01-07 15 10500 15.so.15.0[.0]
1.5.0 15 10500 15.so.15.0[.0]
1.5.1beta01-11 1510501 15.so.15.1[.0]
1.5.1rc01-02 15 10501 15.so.15.1[.0]
1.5.1 15 10501 15.so.15.1[.0]

September 27, 2012 96

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

1.5.2beta01-03 1510502 15.so.15.2[.0]
1.5.2rc01-03 15 10502 15.so.15.2[.0]
1.5.2 15 10502 15.so.15.2[.0]
1.5.3beta01-10 1510503 15.so.15.3[.0]
1.5.3rc01-02 15 10503 15.so.15.3[.0]
1.5.3beta11 15 10503 15.so.15.3[.0]
1.5.3 [omitted]
1.5.4beta01-08 1510504 15.so.15.4[.0]
1.5.4rc01 15 10504 15.so.15.4[.0]
1.5.4 15 10504 15.so.15.4[.0]
1.5.5beta01-08 1510505 15.so.15.5[.0]
1.5.5rc01 15 10505 15.so.15.5[.0]
1.5.5 15 10505 15.so.15.5[.0]
1.5.6beta01-07 1510506 15.so.15.6[.0]
1.5.6rc01-03 15 10506 15.so.15.6[.0]
1.5.6 15 10506 15.so.15.6[.0]
1.5.7beta01-05 1510507 15.so.15.7[.0]
1.5.7rc01-03 15 10507 15.so.15.7[.0]
1.5.7 15 10507 15.so.15.7[.0]
1.5.8beta01 15 10508 15.so.15.8[.0]
1.5.8rc01 15 10508 15.so.15.8[.0]
1.5.8 15 10508 15.so.15.8[.0]
1.5.9beta01-02 1510509 15.so.15.9[.0]
1.5.9rc01 15 10509 15.so.15.9[.0]
1.5.9 15 10509 15.so.15.9[.0]
1.5.10beta01-05 1510510 15.so.15.10[.0]
1.5.10 15 10510 15.so.15.10[.0]
1.5.11beta01 15 10511 15.so.15.11[.0]
1.5.11rc01-05 15 10511 15.so.15.11[.0]
1.5.11 15 10511 15.so.15.11[.0]
1.5.12 15 10512 15.so.15.12[.0]
1.5.13beta01-02 1510513 15.so.15.13[.0]
1.5.13rc01 15 10513 15.so.15.13[.0]
1.5.13 15 10513 15.so.15.13[.0]

Henceforth the source version will match the shared-library minor and patch numbers; the shared-library
major version number will be used for changes in backward compatibility, as it is intended. The
PNG_PNGLIB_VER macro, which is not used within libpng but is available for applications, is an
unsigned integer of the form xyyzz corresponding to the source version x.y.z (leading zeros in y and z).
Beta versions were given the previous public release number plus a letter, until version 1.0.6j; from then on
they were given the upcoming public release number plus "betaNN" or "rcN".

SEE ALSO
png(5), libpngpf (3), zlib(3), deflate(5), andzlib(5)

libpng:

http://libpng.sourceforge.net (follow the [DOWNLOAD] link) http://www.libpng.org/pub/png

zlib:

(generally) at the same location aslibpng or at
ftp://ftp.info-zip.org/pub/infozip/zlib

September 27, 2012 97

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNGspecification:RFC2083

(generally) at the same location aslibpng or at
ftp://ftp.rfc-editor.org:/in-notes/rfc2083.txt
or (as a W3C Recommendation) at
http://www.w3.org/TR/REC-png.html

In the case of any inconsistency between the PNG specification and this library, the specification takes
precedence.

AUTHORS
This man page: Glenn Randers-Pehrson <glennrp at users.sourceforge.net>

The contributing authors would like to thank all those who helped with testing, bug fixes, and patience.
This wouldn’t hav ebeen possible without all of you.

Thanks to Frank J. T. Wojcik for helping with the documentation.

Libpng version 1.5.13 - September 27, 2012: Initially created in 1995 by Guy Eric Schalnat, then of Group
42, Inc. Currently maintained by Glenn Randers-Pehrson (glennrp at users.sourceforge.net).

Supported by the PNG development group
png-mng-implement at lists.sf.net (subscription required; visit png-mng-implement at lists.sourceforge.net
(subscription required; visit https://lists.sourceforge.net/lists/listinfo/png-mng-implement to subscribe).

COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
(This copy of the libpng notices is provided for your convenience. Incase of any discrepancy between this
copy and the notices in the file png.h that is included in the libpng distribution, the latter shall prevail.)

If you modify libpng you may insert additional notices immediately following this sentence.

This code is released under the libpng license.

libpng versions 1.2.6, August 15, 2004, through 1.5.13, September 27, 2012, are Copyright (c)
2004,2006-2007 Glenn Randers-Pehrson, and are distributed according to the same disclaimer and license
as libpng-1.2.5 with the following individual added to the list of Contributing Authors

Cosmin Truta

libpng versions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are Copyright (c) 2000-2002 Glenn
Randers-Pehrson, and are distributed according to the same disclaimer and license as libpng-1.0.6 with the
following individuals added to the list of Contributing Authors

Simon-Pierre Cadieux
Eric S. Raymond
Gilles Vollant

and with the following additions to the disclaimer:

There is no warranty against interference with your
enjoyment of the library or against infringement.
There is no warranty that our efforts or the library
will fulfill an y of your particular purposes or needs.
This library is provided with all faults, and the entire

September 27, 2012 98

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

risk of satisfactory quality, performance, accuracy, and
effort is with the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are Copyright (c) 1998, 1999 Glenn
Randers-Pehrson Distributed according to the same disclaimer and license as libpng-0.96, with the follow-
ing individuals added to the list of Contributing Authors:

Tom Lane
Glenn Randers-Pehrson
Willem van Schaik

libpng versions 0.89, June 1996, through 0.96, May 1997, are Copyright (c) 1996, 1997 Andreas Dilger
Distributed according to the same disclaimer and license as libpng-0.88, with the following individuals
added to the list of Contributing Authors:

John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs
Tom Tanner

libpng versions 0.5, May 1995, through 0.88, January 1996, are Copyright (c) 1995, 1996 Guy Eric Schal-
nat, Group 42, Inc.

For the purposes of this copyright and license, "Contributing Authors" is defined as the following set of
individuals:

Andreas Dilger
Dave Martindale
Guy Eric Schalnat
Paul Schmidt
Tim Wegner

The PNG Reference Library is supplied "AS IS".The Contributing Authors and Group 42, Inc. disclaim all
warranties, expressed or implied, including, without limitation, the warranties of merchantability and of fit-
ness for any purpose. TheContributing Authors and Group 42, Inc.assume no liability for direct, indirect,
incidental, special, exemplary, or consequential damages, which may result from the use of the PNG Refer-
ence Library, even if advised of the possibility of such damage.

Permission is hereby granted to use, copy, modify, and distribute this source code, or portions hereof, for
any purpose, without fee, subject to the following restrictions:

1. The origin of this source code must not be misrepresented.

2. Altered versions must be plainly marked as such and
must not be misrepresented as being the original source.

3. This Copyright notice may not be removed or altered from
any source or altered source distribution.

The Contributing Authors and Group 42, Inc. specifically permit, without fee, and encourage the use of this
source code as a component to supporting the PNG file format in commercial products.If you use this
source code in a product, acknowledgment is not required but would be appreciated.

September 27, 2012 99

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

A "png_get_copyright" function is available, for convenient use in "about" boxes and the like:

printf("%s",png_get_copyright(NULL));

Also, the PNG logo (in PNG format, of course) is supplied in the files "pngbar.png" and "pngbar.jpg
(88x31) and "pngnow.png" (98x31).

Libpng is OSI Certified Open Source Software. OSICertified Open Source is a certification mark of the
Open Source Initiative.

Glenn Randers-Pehrson glennrp at users.sourceforge.net September 27, 2012

September 27, 2012 100

