LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

NAME
libpng — Portable Network Graphics (PNG) Reference Library 1.5.13

SYNOPSIS

#include <png.h>

png_uint_32 png_access_version_numbévoid);

void png_benign_error (png_structppng_ptt png_const_charperror);

void png_build_grayscale_palette (inbit_depth png_colorp palette;

png_voidp png_calloc (png_structpong_ptr;, png_alloc_size_tize);

void png_chunk_benign_error (png_structppng_ptr png_const_charperror);

void png_chunk_error (png_structp png_ptr png_const_charperror);

void png_chunk_warning (png_structppng_ptr, png_const_charpmessge);

void png_corvert_from_struct_tm (png_timep ptime gruct tm FAR * ttime);

void png_corvert_from_time_t (png_timep ptime time_t ttime);

png_charmp png_corvert_to_rfc1123 (png_structp png_ptr, png_timep ptimé);

png_infop png_create_info_struct (png_structpng_pt;

png_structp png_create read_struct (png_const_chgs user_png_ver png_voidp error_ptr,

September 27, 2012 1

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_error_ptr error_fn, png_error_ptr warn_fr);

png_structp png_crate read_struct_ 2 (png_const_chgr user_png_ver png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn png_voidp mem_ptr png_malloc_ptr malloc_fn
png_free_ptrfree_fn);

png_structp png_create_write_struct (png_const_chgr user_png_ver png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn);

png_structp png_create_write_struct 2 (png_const_ch@ar user_png_ver png_voidp error_ptr,
png_error_ptr error_fn, png_error_ptr warn_fn png_voidp mem_ptr png_malloc_ptr malloc_fn
png_free_ptrfree_fn);

void png_data_freer (png_structppng_pt; png_infop info_ptr, int freer, png_uint_32mask);

void png_destroy_info_struct (png_structppng_ptr, png_infopp info_ptr_pt);

void png_destioy read_struct (png_structpp png_ptr_ptr png_infopp info_ptr_ptr, png_infopp
end_info_ptr_pf);

void png_destroy_write_struct (png_structpppng_ptr_ptr png_infopp info_ptr_ptn);

void png_err (png_structp png_ptd;

void png_error (png_structp png_ptr png_const_charperror);

void png_free (png_structppng_ptr, png_voidp ptr);

void png_free_chunk_list (png_structppng_pti;

September 27, 2012 2

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_free_default (png_structppng_ptr png_voidp ptr);

void png_free_data (png_structppng_pt; png_infop info_ptr, int numn;

png_byte png_get_bit_depth (png_const_structpng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get bKGD (png_const_structpng_pt; png_infop info_ptr, png_color_16p*back-
ground;

png_byte png_get_channels (png_const_structing_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get cHRM (png_const_structpng_ptt, png_const_infopinfo_ptr, double *white_x
double *white_y, double *red_x, double *red_y, double *green_x double *green_y double *blue_x
double *blue_y);

png_uint_32 png_get cHRM_fixed (png_const_structp png_ptr png_const_infop info_ptr,
png_uint_32*white_x png_uint_32 *white_y, png_uint_32 *red_x, png_uint_32 *red_y, png_uint_32
*green_x png_uint_32*green_y png_uint_32*blue_x png_uint_32*blue_y);

png_uint_32 png_get cHRM_XYZ (png_structppng_ptr,
png_const_infopinfo_ptr, double *red_X, double *red_Y, double *red_2Z,
double *green_X double *green_Y, double *green_Z double *blue_X,

double *blue_Y, double *blue_2);

png_uint_32 png_get cHRM_XYZ fixed (png_structp png_pt; png_const_infop info_ptr,
png_fixed_point*int_red_X png_fixed_point*int_red_Y, png_fixed_point*int_red_Z png_fixed_point
*int_green_X png_fixed_point *int_green_Y png_fixed_point *int_green_Z png_fixed_point
*int_blue_X png_fixed_point*int_blue_Y, png_fixed_point*int_blue_2);

png_uint_32 png_get_chunk_cache_max (png_const_strughmg_ptd;

September 27, 2012 3

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_alloc_size t png_get _chunk_malloc_max (png_const_strugipg_pt);

png_byte png_get_color_type (png_const_structpng_pt;, png_const_infopinfo_ptr);

png_uint_32 png_get_compression_buffer_size (png_const_strugipg_pty;

png_byte png_get_compression_type (png_const_strugbmg_ptr png_const_infopinfo_ptr);

png_byte png_get_copyright (png_const_structpng_pt;

png_uint_32 png_get_current_ow_number (png_const_strucdp

png_byte png_get_current_pass_numbefpng_const_strucdp

png_voidp png_get_error_ptr (png_const_structpng_pt;

png_byte png_get_filter_type (png_const_structpng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get gAMA (png_const_structp png_pt;, png_const_infop info_ptr, double
*file_gammay;

png_uint_32 png_get gAMA fixed (png_const_structp png_ptr png_const_infop info_ptr,
png_uint_32*int_file_gamm¥;

png_byte png_get_header_ver (png_const_strucgmg_pti;

png_byte png_get_header_version (png_const_strucgmg_pt;

September 27, 2012 4

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)
png_uint_32 png_get hIST (png_const_structppng_pt;, png_const_infop info_ptr, png_uint_16p

*hist);

png_uint_32 png_get iCCP (png_const_structpng_ptr png_const_infopinfo_ptr, png_charpp name
int *compression_typgng_bytepp profile, png_uint_32*proflen);

png_uint_32 png_get IHDR (png_structp png_ptr png_infop info_ptr, png_uint_32 *width,
png_uint_32*height, int *bit_depth int *color_type int *interlace_type int *compression_typdnt *fil-
ter_type;

png_uint_32 png_get_image_height (png_const_strucng_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_image_width (png_const_structpng_pt; png_const_infopinfo_ptr);

png_int_32 png_get_int_32 (png_bytepuf);

png_byte png_get_interlace_type (png_const_strucypng_ptr, png_const_infopinfo_ptr);

png_const_bytep png_get_io_chunk_name (png_structmg_pt);

png_uint_32 png_get_io_chunk_type (png_const_strucipng_ptd;

png_voidp png_get_io_ptr (png_structppng_pty;

png_uint_32 png_get_io_state (png_structpng_ptd;

png_byte png_get_libpng_ver (png_const_structpng_pt);

png_voidp png_get_mem_ptr (png_const_structpng_ptd;

September 27, 2012 5

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_uint_32 png_get oFFs (png_const_structpng_ptr, png_const_infopinfo_ptr, png_uint_32 *off-
set_x png_uint_32*offset_y int *unit_type);

png_uint_32 png_get_pCAL (png_const_structgpng_ptr, png_const_infopinfo_ptr, png_charp *pur-
pose png_int_32 *X0, png_int_32 *X1, int *type, int *nparams png_charp *units, png_charpp
*paramy);

png_uint_32 png_get pHYs (png_const_structppng_pt; png_const_infop info_ptr, png_uint_32
*res_x png_uint_32*res_y, int *unit_type);

float png_get_pixel_aspect_ratio (png_const_structpng_pt; png_const_infopinfo_ptr);

png_uint_32 png_get pHYs_dpi (png_const_structpng_ptr png_const_infopinfo_ptr, png_uint_32
*res_x png_uint_32*res_y, int *unit_type);

png_fixed_point png_get_pixel_aspect_ratio_fixed (png_const_structpng_ptr png_const_infop
info_ptr);

png_uint_32 png_get_pixels_per_inch (png_const_strucyg_pt; png_const_infopinfo_ptr);

png_uint_32 png_get_pixels_per_meter (png_const_strucipng_ptr png_const_infopinfo_ptr);

png_voidp png_get_progressie _ptr (png_const_structppng_pty;

png_uint_32 png_get PLTE (png_const_structpng_ptr png_const_infopinfo_ptr, png_colorp *pal-
ette int *num_paletté;

png_byte png_get rgb_to_gray_status (png_const_strucfmg_ptr)

png_uint_32 png_get_owbytes (png_const_structgong_pt; png_const_infopinfo_ptr);

September 27, 2012 6

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_bytepp png_get_ows (png_const_structppng_ptr png_const_infopinfo_ptr);

png_uint_32 png_get_sBIT (png_const_structpng_pt;, png_infop info_ptr, png_color_8p*sig_bit);

void png_get sCAL (png_const_structppng_ptr png_const_infopinfo_ptr, int* unit, double* width,
double* heigh);

void png_get sCAL fixed (png_const_structp png_pt; png_const_infop info_ptr, int* unit,
png_fixed_pointpwidth, png_fixed_pointpheigh);

void png_get_sCAL_s (png_const_structgpng_ptr, png_const_infopinfo_ptr, int* unit, png_charpp
width, png_charpp heigh);

png_bytep png_get_signatue (png_const_structppng_pt; png_infop info_ptr);

png_uint_32 png_get _sPT (png_const_structp png_ptr png_const_infop info_ptr, png_spalette_p
*splt_ptr);

png_uint_32 png_get SRGB (png_const_structp png_pt; png_const_infop info_ptr, int
*file_srgb_inten;

png_uint_32 png_get_text (png_const_structpng_ptt, png_const_infopinfo_ptr, png_textp *text_ptr,
int *num_texj;

png_uint_32 png_get_tIME (png_const_structgpng_ptr, png_infop info_ptr, png_timep *mod_time;

png_uint_32 png_get tRNS (png_const_structpng_ptr png_infop info_ptr, png_bytep *trans_alpha
int *num_trans png_color_16p*trans_color);

/* This function is really an inline macro.*/

png_uint_16 png_get_uint_16 (png_bytepuf);

September 27, 2012 7

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_uint_32 png_get_uint_31 (png_structpng_pt;, png_bytep buf);

/* This function is really an inline macro.*/

png_uint_32 png_get_uint_32 (png_bytepuf);

png_uint_32 png_get _unknown_chunks (png_const_structppng_ptr png_const_infop info_ptr,
png_unknown_chunkppunknowny,

png_voidp png_get_user_chunk_ptr (png_const_structpng_pt;

png_uint_32 png_get_user_height_max (png_const_strucimg_pty;

png_voidp png_get_user_transform_ptr (png_const_structpng_pt);

png_uint_32 png_get_user_width_max (png_const_strucipng_pt;

png_uint_32 png_get_valid (png_const_structpng_ptr; png_const_infopinfo_ptr, png_uint_32flag);

float png_get_x_offset_inches (png_const_strucfmg_ptr, png_const_infopinfo_ptr);

png_fixed_point png_get x_offset_inches_fixed (png_strucgmg_ptr, png_const_infopinfo_ptr);

png_int_32 png_get_x_offset_microns (png_const_strucfmg_pt; png_const_infopinfo_ptr);

png_int_32 png_get x_offset_pixels (png_const_strucgmg_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_x_pixels_per_inch (png_const_strucfmg_ptr png_const_infopinfo_ptr);

September 27, 2012 8

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_uint_32 png_get_x_pixels_per_meter (png_const_strucgmg_ptr png_const_infopinfo_ptr);

float png_get_y offset_inches (png_const_structmg_ptr, png_const_infopinfo_ptr);

png_fixed_point png_get_y_offset_inches_fixed (png_strucgmg_ptr, png_const_infopinfo_ptr);

png_int_32 png_get_y offset_microns (png_const_strucfmg_pt; png_const_infopinfo_ptr);

png_int_32 png_get_y offset_pixels (png_const_strucgmg_ptr, png_const_infopinfo_ptr);

png_uint_32 png_get_y pixels_per_inch (png_const_strucfmg_ptr png_const_infopinfo_ptr);

png_uint_32 png_get_y pixels_per_meter (png_const_strucgmg_ptr png_const_infopinfo_ptr);

int png_handle_as_unknown (png_structgpng_ptr;, png_bytepchunk_namg

void png_info_init_3 (png_infoppinfo_ptr, png_size_tpng_info_struct_sige

void png_init_io (png_structp png_ptr, FILE *fp);

void png_longjmp (png_structp png_pts int val);

png_voidp png_malloc (png_structppng_pt; png_alloc_size sizg;

png_voidp png_malloc_default (png_structpng_pt; png_alloc_size siz8g;

September 27, 2012 9

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_voidp png_malloc_wan (png_structp png_ptr, png_alloc_size_&ize);

png_uint_32 png_permit_mng_features (png_structpng_ptr, png_uint_32mng_features_permittgd

void png_process_data (png_structpong_ptr, png_infop info_ptr, png_bytep buffer, png_size tbuf-
fer_sizé;

png_size t png_process_data_paugeng_structpint save;

png_uint_32 png_process_data_skifpng_structp;

void png_progressie_combine_wow (png_structp png_pt; png_bytepold_row, png_bytepnew_row;

void png_read_end (png_structppng_ptr, png_infop info_ptr);

void png_read_image (png_structpng_ptr png_byteppimage);

void png_read_info (png_structp png_ptr, png_infop info_ptr);

void png_read_png (png_structppng_ptr, png_infop info_ptr, int transforms png_voidp paramg;

void png_read_row (png_structp png_ptr, png_byteprow, png_bytepdisplay_row);

void png_read_rows (png_structp png_ptr, png_bytepp row, png_bytepp display_row png_uint_32
num_rows;

void png_read_update_inb (png_structp png_ptr png_infop info_ptr);

September 27, 2012 10

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

int png_reset_zstream (png_structpng_pti;

void png_save_int_32 (png_bytepbuf, png_int_32i);

void png_save _uint_16 (png_bytepbuf, unsigned inti);

void png_save_uint_32 (png_bytepbuf, png_uint_32i);

void png_set_add_alpha (png_structgpng_ptr png_uint_32filler, int flagy;

void png_set_alpha_mode (png_structpng_ptr, int mode double output_gammp

void png_set_alpha_mode_fixed (png_structpng_ptr, int mode png_fixed_pointoutput_gammpa

void png_set backgound (png_structp png_ptr png_color_16p background_colgr int back-
ground_gamma_codet need_expandlouble background_gamma

void png_set_background_fixed (png_structppng_pt; png_color_16p background_colar int back-
ground_gamma_codéet need_expandgng_uint_32background_gamma

void png_set_benign_errors (png_structpng_pts int allowed);

void png_set_bgr (png_structppng_ptp;

void png_set_bKGD (png_structppng_ptr png_infop info_ptr, png_color_16pbackground;

void png_set_check_for_iwmalid_index(png_structrp png_ptr, int allowed);

September 27, 2012 11

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)
void png_set_cHRM (png_structppng_ptr png_infop info_ptr, double white_x double white_y double

red_x doublered_y, double green_xdouble green_ydouble blue_x double blue_y);

void png_set cHRM_fixed (png_structp png_pt;, png_infop info_ptr, png_uint_32 white_x
png_uint_32 white_y png_uint_32 red_x png_uint_32 red_y, png_uint_32 green_x png_uint_32
green_ypng_uint_32blue_x png_uint_32blue_y);

void png_set cHRM_XYZ (png_structp png_ptr png_infop info_ptr, double red_X double red_Y,
doublered_Z double green_Xdoublegreen_Y,

double green_Z double blue_X double blue_Y, double blue_2;

void png_set cHRM_XYZ fixed (png_structp png_ptr png_infop info_ptr, png_fixed_point
int_ red_X png_fixed_point int_red_Y png_fixed_point int_ red_Z png_fixed_point int_green_X
png_fixed_point int_green_Y png_fixed_point int_green_Z png_fixed_point int_blue X
png_fixed_pointint_blue_Y png_fixed_pointint_blue_J7;

void png_set_chunk_cache_max (png_structpng_ptr png_uint_32user_chunk_cache_max

void png_set_compression_lesl (png_structp png_pts int leve);

void png_set_compression_mem Vel (png_structp png_pt; int mem_levél

void png_set_compression_method (png_structpng_ptr int method;

void png_set_compression_strategy (png_structpng_ptr, int strategy;

void png_set_compression_window_bits (png_structpng_ptr, int window_bit$;

void png_set_crc_action (png_structpng_ptr, int crit_action int ancil_actior);

void png_set error_fn (png_structp png_pt;, png_voidp error_ptr, png_error_ptr error_fn,

September 27, 2012 12

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_error_ptr warning_fn;

void png_set_expand (png_structpng_pt);

void png_set_expand_16 (png_structpng_pt;

void png_set_filler (png_structppng_pt; png_uint_32filler, int flags;

void png_set_filter (png_structppng_ptr, int method int filters);

void png_set filter_heuristics (png_structppng_ptr, int heuristic_methodint num_weightspng_dou-
blep filter_weights png_doublepfilter_costs;

void png_set filter_heuristics_fixed (png_structppng_ptr int heuristic_method int num_weights
png_fixed_point_pfilter_weights png_fixed_point_pfilter_cost$;

void png_set_flush (png_structgong_ptr, int nrows);

void png_set_gamma (png_structpng_ptr, double screen_gammalouble default_file_gamma

void png_set gamma_fixed (png_structp png_ptr png_uint_32 screen_gamma png_uint_32
default_file_gamma

void png_set_gAMA (png_structppng_ptr, png_infop info_ptr, double file_gamma

void png_set_ gAMA _fixed (png_structppng_ptr png_infop info_ptr, png_uint_32file_gammg

September 27, 2012 13

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_gray_to_rgb (png_structgpng_pt);

void png_set_hIST (png_structppng_pt;, png_infop info_ptr, png_uint_16p hist);

void png_set iCCP (png_structppng_ptr png_infop info_ptr, png_const_charpname int compres-
sion_typepng_const_bytepprofile, png_uint_32proflen);

int png_set_interlace_handling (png_structgpng_ptd;

void png_set_irvalid (png_structp png_ptr;, png_infop info_ptr, int mask;

void png_set_irvert_alpha (png_structp png_pt;

void png_set_irvert_mono (png_structp png_pt;

void png_set_IHDR (png_structppng_ptr png_infop info_ptr, png_uint_32width, png_uint_32height
int bit_depth int color_type int interlace_typeint compression_typeént filter_type;

void png_set_leep_unknavn_chunks (png_structp png_ptr int keep png_bytep chunk_list int
num_chunkgs

jmp_buf* png_set_longjmp_fn (png_structp png_ptr png_longjmp_ptr longjmp_fn dze_t
jmp_buf_sizg

void png_set_chunk_malloc_max (png_structpng_ptr, png_alloc_size_user_chunk_cache_mgax

void png_set_compression_buffer_size (png_strucipng_ptr, png_uint_32siz8g;

September 27, 2012 14

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_ mem_fn (png_structp png_pt; png_voidp mem_ptr png_malloc_ptr malloc_fn
png_free_ptrfree_fn);

void png_set_oFFs (png_structpng_ptr, png_infop info_ptr, png_uint_32 offset_x png_uint_32 off-
set_yint unit_typg;

void png_set_packing (png_structgng_pt);

void png_set_packswap (png_structpng_ptp;

void png_set_palette_to_rgb (png_structpng_ptD;

void png_set pCAL (png_structp png_ptr, png_infop info_ptr, png_charp purpose png_int_32 X0,
png_int_32X1, int type int nparams png_charp units png_charpp paramg;

void png_set _pHYs (png_structppng_ptr, png_infop info_ptr, png_uint_32res_x png_uint_32res_y
int unit_type;

void png_set_piogressive read_fn (png_structp png_pt; png_voidp progressive_pty png_progres-
sive_info_ptr info_fn png_progressive_row_ptr row_fn png_progressive_end_ptr end_fn);

void png_set_PLTE (png_structppng_ptr, png_infop info_ptr, png_colorp palette int num_palettg

void png_set_quantize (png_structpng_ptr png_colorp palette int num_paletteint maximum_colors
png_uint_16phistogram int full_quantiz¢;

void png_set_read_fn (png_structpng_ptr png_voidpio_ptr, png_rw_ptr read_data_fi);

void png_set_read_status_fn (png_structpng_ptr png_read_status_ptrread_row_fr);

September 27, 2012 15

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set read_user_chunk_fn (png_structp png_ptr, png_voidp user_chunk_ptr
png_user_chunk_ptrread_user_chunk_jn

void png_set_read_user_transbrm_fn (png_structp png_pts png_user_transform_ptr
read_user_transform_jn

void png_set_rgb_to_gray (png_structgpng_ptr, int error_action double red, double greer);

void png_set_rgb_to_gray_fixed (png_structgpng_ptr, int error_action png_uint_32red, png_uint_32
greer;

void png_set_1ows (png_structp png_ptr, png_infop info_ptr, png_bytepprow_pointers;

void png_set_sBIT (png_structppng_ptr, png_infop info_ptr, png_color_8psig_bi;

void png_set_sCAL (png_structppng_ptr, png_infop info_ptr, int unit, double width, double heigh);

void png_set_sCAL_fixed (png_structppng_ptr png_infop info_ptr, int unit, png_fixed_point width,
png_fixed_pointheigh);

void png_set_sCAL_s (png_structpng_ptr png_infop info_ptr, int unit, png_charp width, png_charp
heigh);

void png_set_scale_16 (png_structpng_pt);

void png_set_shift (png_structppng_ptr, png_color_8ptrue_bity;

void png_set_sig_bytes (png_structpng_ptr, int num_byteg

September 27, 2012 16

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set sPO (png_structp png_pt; png_infop info_ptr, png_spalette p splt_pt, int

num_spalettgs

void png_set_sRGB (png_structgpng_pt; png_infop info_ptr, int srgb_inteny;

void png_set sSRGB_gAMA_and_cHRM (png_structpng_ptr, png_infop info_ptr, int srgb_inten};

void png_set_strip_16 (png_structmpng_pt;

void png_set_strip_alpha (png_structppng_ptD;

void png_set_strip_error_numbers (png_structppng_pt;, png_uint_32strip_modg;

void png_set_swap (png_structpng_pt);

void png_set_swap_alpha (png_structpng_pt;

void png_set_text (png_structppng_pt; png_infop info_ptr, png_textptext ptr, int num_texk,

void png_set_text_compression_lel (png_structp png_ptr, int leve);

void png_set_text_compression_mem_Vel (png_structp png_ptr, int mem_levél

void png_set_text_compression_strategy (png_strucipng_ptr, int strategy;

void png_set_text_compression_window_bits (png_structpng_ptr, int window_bit$;

void png_set_text_compression_meth@ehg_structp png_ptr, int method);

September 27, 2012 17

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_set_tIME (png_structp png_ptr, png_infop info_ptr, png_timep mod_time;

void png_set tRNS (png_structppng_ptr, png_infop info_ptr, png_bytep trans_alpha int num_trans
png_color_16ptrans_colo);

void png_set tRNS_to_alpha (png_structpng_pt);

png_uint_32 png_set_unknown_chunks (png_structp png_ptr, png_infop info_ptr,
png_unknown_chunkpunknownsint num int location);

void png_set_unknown_chunk_location (png_structgng_ptr, png_infop info_ptr, int chunk int loca-
tion);

void png_set user_limits (png_structp png_ptr png_uint_32 user_width_max png_uint_32
user_height_m3ax

void png_set user_trangbrm_info (png_structp png_ptr png_voidp user_transform_ptr int
user_transform_depthint user_transform_channéls

void png_set write_fn (png_structp png_ptr png_voidp io_ptr, png_rw_ptr write_data_fn
png_flush_ptr output_flush_fj

void png_set_write_status_fn (png_structgpng_ptr png_write_status_ptrwrite_row_frj;

void png_set_write_user_transform_fn (png_structp png_ptr, png_user_transform_ptr
write_user_transform_jn

int png_sig_cmp (png_bytepsig, png_size_tstart, png_size_thum_to_chedk

void png_start_read_image (png_structgng_pt);

September 27, 2012 18

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_warning (png_structp png_ptr png_const_charpmessge);

void png_write_chunk (png_structp png_pt; png_bytep chunk_name png_bytep data png_size t
length);

void png_write_chunk_data (png_structppng_pt; png_bytepdata png_size tlength);

void png_write_chunk_end (png_structppng_pt;

void png_write_chunk_start (png_structp png_ptr png_bytepchunk_namepng_uint_32length);

void png_write_end (png_structppng_ptr, png_infop info_ptr);

void png_write_flush (png_structppng_pt);

void png_write_image (png_structppng_ptt, png_byteppimage);

void png_write_info (png_structp png_ptr, png_infop info_ptr);

void png_write_info_before PLTE (png_structppng_ptr, png_infop info_ptr);

void png_write_png (png_structppng_ptr, png_infop info_ptr, int transforms png_voidp paramg;

void png_write_row (png_structp png_ptr, png_byteprow);

void png_write_rows (png_structp png_ptr, png_bytepprow, png_uint_32num_rows;

September 27, 2012 19

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void png_write_sig (png_structppng_ptd;

DESCRIPTION
Thelibpng library supports encoding, decoding, and various manipulations of the Portable Network Graph-
ics (PNG) format image files. It uses thé(3) compression library Following is a cop of the libpng-
manual.txt file that accompanies libpng.

LIBPNG.TXT
Libpng-manual.txt - A description on Wwdo use and modify libpng

libpng version 1.5.13 - September 27, 2012
Updated and distributed by Glenn Randers-Pehrson
<glennrp at users.sourceforge.net>

Copyright (c) 1998-2012 Glenn Randers-Pehrson

This document is released under the libpng license.
For conditions of distribution and use, see the disclaimer
and license in png.h

Based on:

libpng versions 0.97, January 1998, through 1.5.13 - September 27, 2012
Updated and distributed by Glenn Randers-Pehrson
Copyright (c) 1998-2012 Glenn Randers-Pehrson

libpng 1.0 beta 6version 0.96 May 28, 1997
Updated and distributed by Andreas Dilger
Copyright (c) 1996, 1997 Andreas Dilger

libpng 1.0 beta 2 - version 0.88 January 26, 1996
For conditions of distribution and use, see copyright
notice in png.h. Copyright (c) 1995, 1996 Guy Eric
Schalnat, Group 42, Inc.

Updated/rewritten per request in the libpgF
Copyright (c) 1995, 1996 Frank J.\Wojcik
December 18, 1995 & January 20, 1996

I. Introduction
This file describes hoto use and modify the PNG reference library (known as libpng) for your own use.
There are fig ®ctions to this file: introduction, structures, reading, writing, and modification and configu-
ration notes for various special platforms. In addition to this fkemple.c is a good starting point for
using the libraryas it is reavily commented and should includeegything most people will nheedwe
assume that libpng is already installed; see the INSTALL file for instructionswtohnstall libpng.

For examples of libpng usage, see the filegfaple.c”, "pngtest.c”, and the files in the "contrib" diregtory

all of which are included in the libpng distribution.

Libpng was written as a companion to the PNG specification, &y afweducing the amount of time and
effort it takes to support the PNG file format in application programs.

The PNG specification (second edition) vMamber 2003, is\ailable as a W3C Recommendation and as an

September 27, 2012 20

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

ISO Standard (ISO/IEC 15948:2003 (E)) at <http://ww8:01g/TR/2003/REC-PNG-20031110/ The W3C
and ISO documents & identical technical content.

The PNG-1.2 specification isvalable at <http://wwwlibpng.og/pub/png/documents/>. i$ technically
equialent to the PNG specification (second edition) but has some additional material.

The PNG-1.0 specification izalable as RFC 2083 <http://wwiilbpng.og/pub/png/documents/> and as a
W3C Recommendation <http://www.w3.0rg/TR/REC.png.html>.

Some additional chunks are described in the special-purpose public chunks documents at
<http://www.libpng.org/pub/png/documents/>.

Other information about PNG, and the latest version of libpng, can be found at the PNG home page,
<http://www.libpng.org/pub/png/>.

Most users will not hae © modify the library significantly; advanced users may want to modify it more.
All attempts were made to makt as omplete as possible, whilee&ping the code easy to understand.
Currently this library only supports C. Support for other languages is being considered.

Libpng has been designed to handle multiple sessions at one time, to be easily modifiable, to be portable to
the vast majority of machines (ANSI, K&R, 16-, 32-, and 64-higjlable, and to be easy to use. The ulti-

mate goal of libpng is to promote the acceptance of the PNG file format inverhatsy possible.While

there is still work to be done (see the TODO file), libpng shouldr¢be majority of the needs of its users.

Libpng uses zlib for its compression and decompression of PNG files. Further information about zlib, and
the latest @rsion of zlib, can be found at the zlib home page, <http:/mfavzip.org/pub/infozip/zlib/>.

The zlib compression utility is a general purpose utility that is useful for more than PNG files, and can be
used without libpng. See the documentationveedid with zlib for more detailsYou can usually find the
source files for the zlib utility whever you find the libpng source files.

Libpng is thread safe, provided the threads are using different instances of the structures. Each thread
should hae its own png_struct and png_info instances, and thus its own image. Libpng does not protect
itself against tw threads using the same instance of a structure.

II. Structures
There are tw main structures that are important to libpng, png_struct and png_info. Both are internal
structures that are no longer exposed in the libpng interface (as of libpng 1.5.0).

The png_info structure is designed to provide information about the PNGAfilene time, the fields of
png_info were intended to be directly accessible to the dmreve, this tended to cause problems with
applications using dynamically loaded libraries, and as a result a set of interface functions for png_info (the
png_get_*() and png_set_*() functions) waseeped, and direct access to the png_info fields depre-

cated..

The png_struct structure is the object used by the library to decode a single Asagfel.5.0 this struc-
ture is also not exposed.

Almost all libpng APIs require a pointer to a png_struct as the figstinagnt. Mawg (in particular the
png_set and png_get APIs) also require a pointer to png_info as the segoamérar Somepplication
visible macros defined in png.h designed for basic data access (reading and wrgerg intéhe PNG fer
mat) dont take a pg_info pointer but it's dmost alvays safe to assume that a (png_struct*) has to be
passed to call an API function.

You can hae nore than one png_info structure associated with an image, as illustrated in pngtest.c, one for

September 27, 2012 21

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

information valid prior to the IBT chunks and another (called "end_info" below) for things after them.

The png.h header file is anvaluable reference for programming with libpng. And while I'm on the topic,
malke are you include the libpng header file:

#include <png.h>
and also (as of libpng-1.5.0) the zlib header file, if you need it:

#include <zlib.h>

Types
The png.h header file defines a number of integral types used by the APIs. Most of these areitaidy ob
for example types corresponding to integers of particular sizes and types for passing color values.

One exception is o non-integral numbers are handledor application comenience most APIs that tak
such numbers wa C @ouble) aguments; haever, internally PNG, and libpng, use 32 bit signed gets
and encode thealue by multiplying by 100,000. As of libpng 1.5.0 a wamience macro PNG_FP_1 is
defined in png.h along with a type (png_fixed_point) which is simply (png_int_32).

All APIs that tale (double) arguments alsoVea matching API that takes the corresponding fixed point
integer aguments. Thefixed point APl has the same name as the floating point one withed" fix
appended. Theactual range of values permitted in the APIs is frequently less than the full range of
(png_fixed_point) (-21474 to +21474). When APIs require a nayane agument the type is recorded as
png_uint_32 abee. Consult the header file and the text befor more information.

Special care must be &kith sCAL chunk handling because the chunk itself uses non-integiats/
encoded as strings containing decimal floating point numbers. See the comments in the header file.

Configuration
The main header file function declarations are frequently protected by C preprocessingeslioédtie
form:

#ifdef PNG_feature SUPPORTED
declare-function
#endif

#ifdef PNG_feature SUPPORTED
use-function
#endif

The library can be built without support for these APIs, although a stangi&ddmill have dl implemented

APIs. Applicationprograms should check the feature macros before using an API for maximum portabil-
ity. From libpng 1.5.0 the feature macros set during the build of libpng are recorded in the header file
"pnglibconf.h" and this file is @lays included by png.h.

If you dont need to change the library configuration from the default, skip to the next section ("Reading").
Notice that some of the makefiles in the ’scripts’ directory and (in 1.5.0) all of the build project files in the
'projects’ directory simply cop scripts/pnglibconf.h.pralilt to pnglibconf.h. This means that thesailol

systems do not permit easy auto-configuration of the library-aig support the default configuration.

The easiest way to makrinor changes to the libpng configuration when auto-configuration is supported is
to add definitions to the command line using (typically) CPRESA For example:

September 27, 2012 22

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

CPPFLAGS=-DPNG_NO_FLATING_ARITHMETIC

will change the internal libpng math implementation for gamma correction and other arithmetic calcula-
tions to fixed point, widing the need for fast floating point suppofthe result can be seen in the gener
ated pnglibconf.h - makaure it contains the changed feature macro setting.

If you need to mak more extensive anfiguration changes - more than one oo feature macro settings -

you can either add -DPNG_USER_CONFIG to the build command line and put a list of feature macro set-
tings in pngush or you can set DFA_XTRA (a makefile variable) to a file containing the same information
in the form of 'option’ settings.

A. Changing pnglibconf.h

A variety of methods exist to build libpndlot all of these support reconfiguration of pnglibconflim.
reconfigure pnglibconf.h it must either be rebuilt from scripts/pnglibcanégihg avk or it must be edited
by hand.

Hand editing is achieed by mpying scripts/pnglibconf.h.prefiit to pnglibconf.h and changing the lines
defining the supported features, paying very close attention to the 'option’ information in scripts/pnglib-
conf.dfa that describes those features and their requirements. This is easy to get wrong.

B. Configuration using DFA_XTRA

Rehuilding from pnglibconf.dd is easy if a functioning 'awk’, or a later variant such as 'nawk’ awiy',

is available. Theconfigure build will automatically find an appropriate awk and build pnglibcoriitte
scripts/pnglibconf.mak file contains a set of makles for doing the same thing if configure is not used,
and maw of the makefiles in the scripts directory use this approach.

When rebuilding simply write a mefile containing changed options and set DFA_XTRA to the name of
this file. This causes the build to append the fike to the end of scripts/pnglibconfadf Thepngusr.dfa
file should contain lines of the following forms:

evaything = off

This turns all optional featuresfofincludeit at the start of pnguslifa to make it easier to build a minimal
configuration. ¥u will need to turn at least some features on afterward to enable either reading or writing
code, or both.

option feature on option feature off

Enable or disable a single feature. This will automatically enable other features required by a feature that is
turned on or disable other features that require a feature which is tufné&baflicting settings will cause

an error message to be emitted by awk.

setting feature default value

Changes the default value of setting 'feature’viue’. Thereare a small number of settings listed at the
top of pnglibconf.h, theare documented in the source code. Most of these valwesphdormance impli-
cations for the library but most of themviearp visible effect on the APl. Some can also werddden

from the API.

This method of building a customized pnglibconf.h is illustrated in contrib/pngmini8ee the "$(PNG-
CONF):" target in the makefile and pngusa.df these directories.

September 27, 2012 23

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

C. Configuration using PNG_USR_CONFIG

If -DPNG_USR_CONFIG is added to the CFLAGS when pnglibconf.huil the file pngusr.h will auto-
matically be included before the options in scripts/pnglibcomfadf processedYour pngust.h file should
contain only macro definitions turning features on éoosetting settings.

Apart from the global setting Verything = of" all the options listed alw® can be set using macros in
pngusr.h:

#define PNG_feature. SUPPORTED
is equiaent to:

option feature on

#define PNG_NO_feature

is equiaent to:

option feature off

#define PNG_feature value

is equident to:

setting feature default value

Notice that in both cases, pngda end pngusr.h, the contents of the pngusr file you supggride the
contents of scripts/pnglibconf.dfa

If confusing or incomprehensible behavior results it is possiblexamime the intermediate file pnglib-
conf.dfn to find the full set of dependgrinformation for each setting and option. Simply locate the fea-
ture in the file and read the C comments that precede it.

This method is also illustrated in the contrib/pngminim/* makefiles and pngusr.h.

lll. Reading
We'll now walk you through the possible functions to call when reading in a PNG file sequehtiafly
explaining the syntax and purpose of each o8ee example.c and png.h for more detail. While progres-
sive reading is ceered in the next section, you will still need some of the functions discussed in this section
to read a PNG file.

Setup
You will want to do the 1/O initialization(*) before you get into libpng, so if it doesmrk, you dont have
much to undo. Of course, you will also want to insure that you are, in fact, dealing with a PNG file.
Libpng provides a simple check to see if a file is a PNG Titeuse it, pass in the first 1 to 8 bytes of the
file to the function png_sig_cmp(), and it will return 8I¢g) if the bytes match the corresponding bytes of
the PNG signature, or nonzero (true) otherwi€¥.course, the more bytes you pass in, the greater the
accurag of the prediction.

If you are intending to éep the file pointer open for use in libpng, you must ensure yot réad’ more
than 8 bytes from the beginning of the file, and you alse lmamake a @ll to png_set_sig_bytes_read()
with the number of bytes you read from thgibaing. Libpngwill then only check the bytes (if any) that
your program didri’read.

September 27, 2012 24

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

(*): If you are not using the standard I/O functions, you will need to replace them with custom functions.
See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "rb");
if ('fp)
{

return (ERROR);
}

fread(headerl, number fp);
is_png = Ipng_sig_cmp(head@r number);

if (lis_png)
{
return (NOT_PNG);

}

Next, png_struct and png_info need to be allocated and initializedrder to ensure that the size of these
structures is correctven with a dynamically linked libpng, there are functions to initialize and allocate the
structures. W dso pass the libraryersion, optional pointers to error handling functions, and a pointer to a
data struct for use by the error functions, if necessary (the pointer and functions can be NULL &#tthe def
error handlers are to be used). See the section on Changes to Libpmgdoalding the old initialization
functions. Thestructure allocation functions quietly return NULL if yh&ail to create the structure, so
your application should check for that.

png_structp png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if ('png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);

if (linfo_ptr)
{
png_destroy _read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);
return (ERROR);

}

If you want to use your van memory allocation routines, use a libpng that was built with
PNG_USER_MEM_SUPPOHED defined, and use png_create_read_struct_2() instead of png_cre-
ate_read_struct():

png_structp png_ptr = png_create_read_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptuser_malloc_fn, user_free_fn);

The error handling routines passed to png_create_read_struct() and the memory alloc/free routines passed
to png_create_struct_2() are only necessary if you are not using the libpng supplied error handling and

September 27, 2012 25

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

memory alloc/free functions.

When libpng encounters an errarexpects to longjmp back to your routin&herefore, you will need to
call setjimp and pass your png_jnufipng_ptr). Ifyou read the file from different routines, you will need
to update the longjmp buffevery time you enter a meroutine that will call a png_*() function.

See your documentation of setjmp/longjmp for your compiler for more information on setjmp/longjmp.
See the discussion on libpng error handling in the Customizing Libpng sectienfbelmore information

on the libpng error handling. If an error occurs, and libpng longjitek to your setjmp, you will ant to

call png_destroy_read_struct() to frey amemory.

if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy read_struct(&png_,plinfo_ptr,
&end_info);

fclose(fp);
return (ERROR);

}

Pass (png_infopp)NULL instead of &end_info if you ditlefeate an end_info structure.

If you would rather aoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_NO_SETJMHAN which case errors will result in a call to PNG_ABORT() which defaults to abort().

You can #define PNG_ABORT() to a function that does something more useful than abort(), as long as
your function does not return.

Now you need to set up the input codene default for libpng is to use the C function fread(). If you use
this, you will need to pass a valid FILE * in the function png_init_io(). Be sure that the file is opened in
binary mode.If you wish to handle reading data in anotherywou need not call the png_init_io() func-

tion, but you must then implement the libpng 1/0 methods discussed in the Customizing Libpng section
below.

png_init_io(png_ptrfp);

If you had previously opened the file and reag @ithe signature from the beginning in order to see if this
was a ING file, you need to let libpng kmothat there are some bytes missing from the start of the file.

png_set_sig_bytes(png_ptumber);
You can change the zlib compression buffer size to be used while reading compressed data with
png_set_compression_buffer_size(png,_iptffer_size);

where the defult size is 8192 bytes. Note that thdfer size is changed immediately and thédr is real-
located immediatelyinstead of setting a flag to be acted upon later.

If you want CRC errors to be handled in a different manner than the default, use
png_set_crc_action(png_ptrit_action, ancil_action);
The values for png_set crc_action() saywHhépng is to handle CRC errors in ancillary and critical

chunks, and whether to use the data contained thaxeite that it is impossible to "discard" data in a criti-
cal chunk.

September 27, 2012 26

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Choices for (int) crit_action are
PNG_CRC_DERULT 0 error/quit
PNG_CRC_ERROR_QIT 1 error/quit
PNG_CRC_VARN_USE 3warn/use data
PNG_CRC_Q@IET_USE 4 quiet/use data
PNG_CRC_NO_CHANGE &use the current value

Choices for (int) ancil_action are
PNG_CRC_DERULT 0 error/quit
PNG_CRC_ERROR_QIT 1 error/quit
PNG_CRC_WARN_DISCARD 2warn/discard data
PNG_CRC_VARN_USE 3warn/use data
PNG_CRC_Q@IET_USE 4 quiet/use data
PNG_CRC_NO_CHANGE &use the current value

Setting up callback code
You can set up a callback function to handlg anknonvn chunks in the input streamol must supply the
function

read_chunk_callback(png_structp png_ptr,
png_unknown_chunkp chunk);

{

/* The unknown chunk structure contains your
chunk data, along with similar data foryasther
unknown chunks: */

png_byte name[5];
png_byte *data;
png_size_t size;

/* Note that libpng has already taken care of
the CRC handling */

/* put your code here. Search for your chunk in the
unknown chunk structure, process it, and return one
of the following: */

return (-n); /* chunk had an error */

return (0); /* did not recognize */

return (n); /* success */

}

(You can gve your function another name that youdilkistead of "read_chunk_callback™)
To inform libpng about your function, use

png_set read_user_chunk_fn(png, pser_chunk_ptr,
read_chunk_callback);

This names not only the callback function, but also a user pointer that you casm nsitfie
png_get_user_chunk_ptr(png_ptr);

If you call the png_set_read_user_chunk_fn() function, then all wkiebunks will be szed when read,

September 27, 2012 27

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

in case your callback function will need one or more of them. This behavior can be changed with the
png_set_keep_unknown_chunks() function, describedwbelo

At this point, you can set up a callback function that will be called after eadhaobeen read, which you
can use to control a progress meter or the lilk's demonstrated in pngtest.&’ou must supply a function

void read_row_callback(png_structp png_ptr,
png_uint_32 ray, int pass);
{

[* put your code here */

}

(You can gve it another name that you kEkinstead of "read_row_callback™)
To inform libpng about your function, use
png_set _read_status_fn(png, ptiad_row_callback);

When this function is called thewcdhas already been completely processed andrdhe &nd 'pass’ refer

to the next rov to be fandled. Br the non-interlaced case thevrthat was just handled is simply one less

than the passed inwonumber and pass will alvays be 0. For the interlaced case the same applies unless

the rav value is 0, in which case thewqust handled as the last one from one of the preceding passes.
Because interlacing may skip a pass you cannot be sure that the preceding pass is just ‘pass-1’, if you really
need to knav what the last pass is recordytpass) from the callback and use the last recorded value each
time.

As with the user transform you can find the output ueing the PNG_RW_FROM_PASS_BW macro.

Unknown-chunk handling
Now you get to set the way the library processes unwknchunks in the input PNG stream. Both o
and unknown chunks will be read. Normal behavior is thatknchunks will be parsed into information
in various info_ptr members while unknown chunks will be discarded. This behavior can be wasteful if
your application will neer use some known chunk types dhange this, you can call:

png_set_keep_unknown_chunks(png, kegep,
chunk_list, num_chunks);
keep -0: default unknown chunk handling
1: ignore; do not keep
2: keep only if safe-to-copy
3: keep wen if unsafe-to-copy

You can use these definitions:
PNG_HANDLE_CHUNK_AS DERULT 0
PNG_HANDLE_CHUNK_NEVER 1
PNG_HANDLE_CHUNK_IF_ SAFE 2
PNG_HANDLE_CHUNK_AIWAY S 3

chunk_list - list of chunks affected (a byte string,
five bytes per chunk, NULL or " if
num_chunks is 0)

num_chunks - number of chunks affected; if 0, all

unknown chunks arefatcted. Ifnonzero,
only the chunks in the list are affected

September 27, 2012 28

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Unknown chunks declared in this way will beved as aw data onto a list of png_unknown_chunk struc-
tures. Ifa dunk that is normally knen to libpng is named in the list, it will be handled as umkmo
according to the "keep" direed. If a chunk is named in successi instances of
png_set_keep_unknm_chunks(), the final instance will ®lgrecedence. ThéHDR and IEND chunks
should not be named in chunk_list; if yrere, libpng will process them normallyyamay. If you knav that
your application will neer make use of some particular chunks, use PNG_HANDLE_CHUNK_NEVER
(or 1) as demonstrated belo

Here is an example of the usage of png_sspkunknan_chunks(), where the pete "vpAg" chunk will
later be processed by a user chunk callback function:

png_byte vpAg[5]={118, 112, 65, 103, (png_byte) ' '};

#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
png_byte unused_chunks[]=

{
104, 73, 83, 84png_byte)’'’, /* hIST */
105, 84, 88116, (png_byte) ", /* iTXt*
112, 67, 65, 76png_byte) '’, /* pCAL */
115, 67, 65, 76png_byte) ', [* sCAL */
115, 80, 76, 84(png_byte) "', /* sPLT */
116, 73, 77, 69png_byte) ', /* tIME */
¥

#endif

#if defined(PNG_UNKNOWN_CHUNKS_SUPPORTED)
/* ignore all unknown chunks: */
png_set_keep_unknown_chunks(read IptNULL, 0);

[* except for vpAg: */
png_set_keep_unknown_chunks(read_tepAg, 1);

[* also ignore unused known chunks: */
png_set_keep_unknown_chunks(read_Tttnused_chunks,
(int)sizeof(unused_chunks)/5);
#endif

User limits
The PNG specification alles the width and height of an image to be as large as 2"31-Ifffi@x)/for
about 2.147 billion rows and columns. Since veny fgplications really need to process suclgéar
images, we hge imposed an arbitrary 1-million limit on rows and columhsarger images will be rejected
immediately with a png_error() call. If you wish to change this limit, you can use

png_set_user_limits(png_pwidth_max, height_max);

to set your own limits, or use width_max = height_max = fifffiL to allow all valid dimensions (libpng
may reject some very large images anyway because of potential lweffibove conditions).

You should put this statement after you create the PNG structure and before calling png_read_info(),
png_read_png(), or png_process_data().

When writing a PNG datastream, put this statement before calling png_write_info() or png_write_png().

September 27, 2012 29

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

If you need to retriee the limits that are being applied, use

width_max = png_get_user_width_max(png_ptr);
height_max = png_get_user_height_max(png_ptr);

The PNG specification sets no limit on the number of ancillary chunkseallin a PNG datastreanYou
can impose a limit on the total number of SPEXt, iTXt, zTXt, and unknan chunks that will be stored,
with

png_set_chunk_cache_max(png, pser_chunk_cache_max);
where Ox7ffffff L means unlimited.You can retri@e this limit with

chunk_cache_max = png_get_chunk_cache_max(png_ptr);

This limit also applies to the number aiffers that can be allocated by png_decompress_chunk() while
decompressing iTXt, zTXt, and iCCP chunks.

You can also set a limit on the amount of memory that a compressed chunk otherAfacaiDoccup,
with

png_set_chunk_malloc_max(png_,pser_chunk_malloc_max);
and you can retrie the limit with
chunk_malloc_max = png_get_chunk_malloc_max(png_ptr);

Any chunks that would cause either of these limits to be exceeded will be ignored.

Information about your system
If you intend to display the PNG or to incorporate it in other image data you need to tell libpng information
about your display or dvang surface so that libpng can eert the values in the image to match the dis-

play.

From libpng-1.5.4 this information can be set before reading the PNG file hdadearlier versions
png_set_gmmay() existed but bebad incorrectly if called before the PNG file header had been read and
png_set_alpha_mode() did not exist.

If you need to support versions prior to libpng-1.5.4 test #rsian number as illustrated belasing
"PNG_LIBPNG_VER >= 10504" and follothe procedures described in the appropriate manual page.

You give libpng the encoding expected by your system expressed as a 'gaaiu@’ You can also specify
a default encoding for the PNG file in case the required information is missing from the file. &ytdef
libpng assumes that the PNG data matches your system, to keep this default call:
png_set_gamma(png_ptcreen_gamma, 1/screen_gamma/*file gamma*/);
or you can use the fixed point egpiént:
png_set_gamma_fixed(png_NG_FP_1*screen_gamma, PNG_FP_1/screen_gamma);
If you dont know the gamma for your system it is probably 2.2 - a good approximation to the IEC standard

for display systems (SRGB). If images are too contrasty or washed out you gatudewong - check
your system documentation!

September 27, 2012 30

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Many systems permit the systenamma to be changed via a lookup table in the displagrda ew g/s-
tems, including older Macs, change the response autiefAsof 1.5.4 three special values arsilable
to handle common situations:

PNG_DERULT_sRGB: Indicates that the system conforms to the IEC 61966-2-1
standard. Thisnatches almost all systems.

PNG_GAMMA_MAC_18: Indicates that the system is an older (pre Mac OS 10.6)
Apple Macintosh system with the default settings.

PNG_GAMMA_LINEAR: Just the fixed point value for 1.0 - indicates that the
system expects data with no gamma encoding.

You would use the linear (unencoded) value if you need to process the pixel values further because this
avads the need to decode and reencode each component valueeviagtiametic is performedA lot of

graphics software uses linealwes for this reason, often with higher precision component values to pre-
sene overall accurag.

The second thing you may need to tell libpng aboutvs yaur system handles alpha channel information.
Some, but not all, PNG files contain an alpha chanfekisplay these files correctly you need to compose
the data onto a suitable background, as described in the PNG specification.

Libpng only supports composing onto a single color (using png_set_background; see latleerwise
you must do the composition yourself and, in this case, you may need to call png_set_alpha_mode:

#if PNG_LIBPNG_VER >= 10504
png_set_alpha_mode(png_,ptiode, screen_gamma);
#else
png_set_gamma(png_ptcreen_gamma, 1.0/screen_gamma);
#endif

The screen_gamma value is the same as therent to png_set_gamma;wever, how it affects the out-

put depends on the modpng_set_alpha_mode() sets the file gamma default to 1/screen_gamma, so nor
mally you dont need to call png_setagima. Ifyou need different defaults call png_set_gamma() before
png_set_alpha_mode() - if you call it after it willeoride the settings made by png_set_alpha_mode().

The mode is as follows:

PNG_ALPHA_PNG: The data is encoded according to the PNG specification. Red, green and blue, or
gray, components areagnma encoded color values and are not premultiplied by the ahiea VI healpha
value is a linear measure of the contribution of the pixel to the corresponding final output pixel.

You should normally use this format if you intend to perform color correction on the color values; most,
maybe all, color correction sofase has no handling for the alpha channel angyvay the math to handle
pre-multiplied component values is unnecessarily complex.

Before you do anarithmetic on the componenaiues you need to rem® the gamma encoding and multi-
ply out the alpha channebee the PNG specification for more detail. It is important to note that when an
image with an alpha channel is scaled, linear encoded, pre-multiplied component values must be used!

The remaining modes assume you tloeed to do anfurther color correction or that if you do, your color
correction software knows all about alpha (it probably doesn’t!)

PNG_ALPHA_STANDARD: The data libpng produces is encoded in the standard way assumed by

most correctly written graphics sofiwe. Thegamma encoding will be renved by libpng and the linear
component values will be pre-multiplied by the alpha channel.

September 27, 2012 31

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

With this format the final image must be re-encoded to match the display gamma before the image is dis-
played. Ifyour system doesnhdo that, yet still seems to perform arithmetic on thee|sixvithout decoding
them, it is broken - check out the modes felo

With PNG_ALPHA_SRANDARD libpng alvays produces linear component values, wmte
screen_gmma you supplyThe screen_gamma value iswmwer, used as a dafilt for the file gamma if
the PNG file has no gamma information.

If you call png_set gmma() after png_set_alpha_mode() you wirdde the linear encodinglnstead
the pre-multiplied pixel values will be gamma encoded but the alpha channel will still be Tiiheamay
actually match the requirements of some broken software, but it is unlikely.

While linear 8-bit data is often used it has insufficient precision fpiiraage with a reasonable dynamic
range. © avoid problems, and if your software supports it, use png_set_expand_16() to force all compo-
nents to 16 bits.

PNG_ALPHA_OPTIMIZED: This mode is the same as PNG_ALPHAANSIDARD except that com-
pletely opaque pixels areagima encoded according to the screen_garmaheaeyv Piels with alpha less
than 1.0 will still hae linear components.

Use this format if you hee control oser your compositing softare and so dohdo aher arithmetic (such
as scaling) on the data you get from libpipur compositing software can simply goppaque pixels to
the output but still has linear values for the non-opaque pixels.

In normal compositing, where the alpha channel encodes partial piseehge (as opposed to broad area
translucency), the inaccuracies of the 8-bit representation of non-opaque pixels aanirrele

You can also try this format if your software is broken; it might look better.

PNG_ALPHA_BROKEN: This is PNG_ALPHA_ SANDARD; however, dl component values, includ-
ing the alpha channel are gamma encoded. This is an appropriate format to try if yoaresaftwnore
likely hardware, is totally broken, i.e., if it performs linear arithmetic directly on gamma encoded values.

In most cases of broken software or hardware the bug in the final display manifests as a subtle halo around
composited parts of the imag¥ou may not &en perceve tis as a halo; the composited part of the image

may simply appear separate from the background, as though it had been cut out of paper and pasted on
afterward.

If you dont haveto deal with bugs in software or hardware, or if you can fix them, there are three recom-
mended ways of using png_set_alpha_mode():

png_set_alpha_mode(png_,@NG_ALPHA_PNG,
screen_gamma);

You can do color correction on the result (libpng does not currently support color correction internally).
When you handle the alpha channel you need to undo the gamma encoding and multiply out the alpha.

png_set_alpha_mode(png_,NG_ALPHA_STANDARD,
screen_gamma);
png_set_expand_16(png_ptr);

If you are using the high Vel interface, dort call png_set_expand_16(); instead pass PNG_TRANS-
FORM_EXPAND_ 16 to the interface.

September 27, 2012 32

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

With this mode you cahdo mlor correction, but you can do arithmetic, including composition and scaling,
on the data without further processing.

png_set_alpha_mode(png_,@NG_ALPHA_OPTIMIZED,
screen_gamma);

You can aoid the epansion to 16-bit components with this mode, but you lose the ability to scale the
image or perform other linear arithmetidll you can do is compose the result onto a matching output.
Since this mode is libpng-specific you also need to write your own composition software.

If you dont need, or carn’handle, the alpha channel you can call png_set_background() toednty
compositing against a fxl color Don't call png_set_strip_alpha() to do this - it will \eagurious pixel
values in transparent parts of this image.

png_set_background(png_jfrbackground_color,
PNG_BACKGROUND_GAMMA_SCREEN, 0, 1);

The background_color is an RGB or grayscale value according to the data format libpng will produce for
you. Becausgou dont yet knav the format of the PNG file, if you call png_set_background at this point
you must arrange for the format produced by libpng Wways hare 8bit or 16-bit components and then
store the color as an 8-bit or 16-bit color as appropriéite color contains separate gray and RGB compo-
nent \alues, so you can let libpng produce gray or RGB output according to the input formaty bitt lo
depth grayscale images musivajs be comerted to at least 8-bit format(Even though las bit depth
grayscale images cariavean alpha channel thean hae a tansparent color!)

You st the transforms you need latether as flags to the highvd interface or libpng API calls for the
low levd interface. r reference the settings and API calls required are:

8-bit values:
PNG_TRANSFORM_SCALE_16 | PNG_EXPAND
png_set_expand(png_ptr); png_set_scale_16(png_ptr);

If you must get exactly the same inaccurate results

produced by default in versions prior to libpng-1.5.4,

use PNG_TRANSFORM_STRIP_16 and png_set_strip_16(png_ptr)
instead.

16-bit values:
PNG_TRANSFORM_EXPAND_16
png_set_expand_16(png_ptr);

In either case palette image data will be expanded to RGBou just want color data you can add
PNG_TRANSFORM_GRAY_TO_RGB or png_set_gray _to_rgb(png_ptr) to the list.

Calling png_set _background before the PNG file header is read will oxdt pvior to libpng-1.5.4.
Because the failure may result in unexpecteatnimgs or errors it is therefore much safer to call
png_set_background after the head has been fdafhrtunately this means that prior to libpng-1.5.4 it
cannot be used with the higlvékinterface.

The high-level read interface
At this point there are twways to proceed; through the higlvderead interface, or through a sequence of
low-level read operationsYou can use the high-el interface if (a) you are willing to read the entire
image into memoryand (b) the input transformations you want to do are limited to the following set:

September 27, 2012 33

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNG_TRANSFORM_IDENTITY Ndransformation
PNG_TRANSFORM_SCALE_16 Strip6-bit samples to

8-bit accurately
PNG_TRANSFORM_STRIP_16 Chd-bit samples to

8-bit less accurately
PNG_TRANSFORM_STRIP_ALPHA Discattie alpha channel
PNG_TRANSFORM_RCKING Expandl, 2 and 4-bit

samples to bytes
PNG_TRANSFORM_RCKSWAP Changerder of packed

pixels to LSB first
PNG_TRANSFORM_EXRND Performset_expand()
PNG_TRANSFORM_INVER_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalizgixels to the

sBIT depth

PNG_TRANSFORM_BGR FlilRGB to BGR, RGBA
to BGRA

PNG_TRANSFORM_SWP_ALPHA FlipRGBA to ARGB or GA
to AG

PNG_TRANSFORM_INVER_ALPHA Changelpha from opacity
to transparency
PNG_TRANSFORM_SWP_ENDIAN Byte-svap 16-bit samples
PNG_TRANSFORM_GRAY_D_RGB Expandrayscale samples
to RGB (or GA to RGBA)
PNG_TRANSFORM_EXBND 16 Expandsamples to 16 bits

(This excludes setting a background cptiming gamma transformation, quantizing, and setting Jilldr
this is the case, simply do this:

png_read_png(png_pinfo_ptr, png_transforms, NULL)
where png_transforms is an integer containing the bitwise OR of some set of transformatiomtiags.
call is equwaent to png_read_info(), followed the set of transformations indicated by the transform mask,

then png_read_image(), and finally png_read_end().

(The final parameter of this call is not yet us&bmeday it might point to transformation parameters
required by some future input transform.)

You must use png_transforms and not cally apng_set_transform() functions when you use
png_read_png().

After you hae alled png_read_png(), you can reigehe image data with
row_pointers = png_get_rows(png_,ptfo_ptr);

where row_pointers is an array of pointers to the pixel data for each row:
png_bytep row_pointers[height];

If you know your image size and pixel size ahead of time, you can allocate row_pointers prior to calling
png_read_png() with

if (height > PNG_UINT_32_MAX/png_sizeof(png_byte))

png_error (png_ptr,
"Image is too tall to process in memory");

September 27, 2012 34

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

The

if (width > PNG_UINT_32_MAX/pixel_size)

png_error (png_ptr,
"Image is too wide to process in memory");

row_pointers = png_malloc(png_ptr,
height*png_sizeof(png_bytep));

for (int i=0; i<height, i++)
row_pointers[i]=NULL; /* security precaution */

for (int i=0; i<height, i++)
row_pointers[i]l=png_malloc(png_ptr,
width*pixel_size);

png_set_rows(png_piinfo_ptr, &row_pointers);

Alternatively you could allocate your image in one big block and defime pointers][i] to point into the
proper places in your block.

If you use png_set wes(), the application is responsible for freeing row_pointers (and row_pointersi], if
they were separately allocated).

If you dont allocate rav_pointers ahead of time, png_read_png() will do it, and it'll be free’ed by libpng
when you call png_destroy_*().

low-level read interface
If you are going the lo-level route, you are ne ready to read all the file information up to the actual
image data.You do tis with a call to png_read_info().

png_read_info(png_ptmfo_ptr);
This will process all chunks up to but not including the image data.

This also copies some of the data from the PNG file into the decode structure for use in later transforma-
tions. Importantnformation copied in is:

1) The PNG file gamma from the gAMA chunk. Thigeavrites the default value pviled by an earlier
call to png_set_gamma or png_set_alpha_mode.

2) Prior to libpng-1.5.4 the background color from a bKGd chuftis damages the information pided
by an earlier call to png_set_background resulting in unexpecteditwehhaibpng-1.5.4 no longer does
this.

3) The number of significant bits in each componattier Libpnguses this to optimize gamma handling
by reducing the internal lookup table sizes.

4) The transparent color information from a tRNS chuiis can be modified by a later call to
png_set tRNS.

Querying the info gructure

Functions are used to get the information from the info_ptr once it has beerN@tadthat these fields
may not be completely filled in until png_read_end() has read the chunk data following the image.

png_get IHDR(png_ptinfo_ptr, &width, &height,

September 27, 2012 35

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

&bit_depth, &color_type, &interlace_type,
&compression_type, &filter_method);

width - holds the width of the image
in pixels (up to 2731).

height -holds the height of the image
in pixels (up to 2731).

bit_depth -holds the bit depth of one of the
image channels. (valid values are
1,2, 4,8, 16 and depend also on
the color_type. See also
significant bits (sBIT) below).

color_type -describes which color/alpha channels
are present.
PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace_type - (PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAMY7)

compression_type - (must be PNG_COMPRESSION_TYPE_BASE
for PNG 1.0)

filter_method {must be PNG_FILTER_TYPE_BASE
for PNG 1.0, and can also be
PNG_INTRAPIXEL_DIFFERENCING if
the PNG datastream is embedded in
a MNG-1.0 datastream)

Any or dl of interlace_type, compression_type, or
filter_method can be NULL if you are
not interested in their values.

Note that png_get IHDR() returns 32-bit data into
the applicatiors width and height variables.

This is an unsafe situation if these are 16-bit
variables. Insuch situations, the
png_get_image_width() and png_get_image_height()
functions described beloare safer.

September 27, 2012 36

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

width =png_get_image_width(png_ptr,
info_ptr);

height =png_get_image_height(png_ptr,
info_ptr);

bit_depth =png_get_bit_depth(png_ptr,
info_ptr);

color_type =png_get_color_type(png_ptr,
info_ptr);

interlace_type png_get_interlace_type(png_ptr,
info_ptr);

compression_type = png_get_compression_type(png_ptr,
info_ptr);

filter_method =png_get_filter_type(png_ptr,
info_ptr);

channels = png_get_channels(png, ipfio_ptr);

channels aumber of channels of info for the
color type (valid values are 1 (GRA
PALETTE), 2 (GRAY_ALPHA), 3 (RGB),
4 (RGB_ALPHA or RGB + filler byte))

rowbytes = png_get_rowbytes(png._, jpixfo_ptr);

rowbytes -number of bytes needed to hold a row

signature = png_get_signature(png, jptfo_ptr);

signature holds the signature read from the
file (if any). Thedata is kept in
the same offset it would be if the
whole signature were read (i.e. if an
application had already read in 4
bytes of signature before starting
libpng, the remaining 4 bytes would
be in signature[4] through signature[7]
(see png_set_sig_bytes())).

These are also important, but their validity depends on whether the chunk has beerThread.
png_get_valid(png_ptinfo_ptr, PNG_INFO_<chunk>) and png_get_<chunk>(png, jstfo_ptr, ...) func-
tions return non-zero if the data has been read, or zero if it is mis3ing. parameters to the
png_get_<chunk> are set directly if e simple data types, or a pointer into the info_ptr is returned for
ary complex types.

The colorspace data from gAMA, cHRM, sRGB, iC@Rd sBIT chunks is simply returned tovgite

application information about othe image s encoded. Libpng itself only does transformations using
the file gamma when combining semitransparent pixels with the background color.

September 27, 2012 37

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_get PLTE(png_ptmfo_ptr, & palette,
&num_palette);

palette the palette for the file
(array of png_color)

num_palette number of entries in the palette

png_get gAMA(png_ptiinfo_ptr, &file_gamma);
png_get gAMA _fixed(png_ptinfo_ptr, &int_file_gamma);

file_gamma -+the gamma at which the file was
written (PNG_INFO_gAMA)

int_file_gamma - 100,000 times the gamma at which the
file is written

png_get cHRM(png_ptinfo_ptr, &white_x, &white_y &red_x,
&red_y, &green_x, &green & blue x, &blue_y)

png_get cHRM_XYZ(png_ptinfo_ptr, &red_X, &red_Y &red_Z, &green_X,
&green_Y &green_Z, &blue_X, &blue_Y&blue_27)

png_get cHRM_fixed(png_ptinfo_ptr, &int_white_x, &int_white_y,
&int_red_x, &int_red_y&int_green_x, &int_green_y,
&int_blue_x, &int_blue_y)

png_get cHRM_XYZ_fixed(png_ptinfo_ptr, &int_red_X, &int_red_Y,
&int_red_Z, &int_green_X, &int_green_,&int_green_Z,
&int_blue_X, &int_blue_Y &int_blue_Z)

{white,red,green,blue} {x,y}
A color space encoding specified using the
chromaticities of the end points and the
white point. (PNG_INFO_cHRM)

{red,green,blue} {X,Y,Z}
A color space encoding specified using the encoding end
points - the CIE tristimulus specification of the intended
color of the red, green and blue channels in the PNG RGB
data. Thewhite point is simply the sum of the three end
points. (PNG_INFO_cHRM)

png_get sRGB(png_piinfo_ptr, &srgb_intent);

file_srgb_intent - the rendering intent (PNG_INFO_sRGB)
The presence of the SRGB chunk
means that the pixel data is in the
SRGB color space. This chunk also
implies specific values of gAMA and
cHRM.

png_get iCCP(png_ptinfo_ptr, &name,
&compression_type, &profile, &proflen);

name -The profile name.

September 27, 2012 38

LIBPNG(3)

compression_type - The compression typeags

PNG_COMPRESSION_TYPE_BASE for PNG 1.0.

You may give NULL to this argument to
ignore it.

profile -International Color Consortium color
profile data. May contain NULSs.

proflen -length of profile data in bytes.

png_get_sBIT(png_ptinfo_ptr, &sig_bit);

sig_bit -the number of significant bits for
(PNG_INFO_sBIT) each of the gray,
red, green, and blue channels,
whichever are appropriate for the

given color type (png_color_16)

png_get tRNS(png_ptinfo_ptr, &trans_alpha,
&num_trans, &trans_color);

trans_alpha array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)

num_trans number of transparent entries
(PNG_INFO_tRNS)

trans_color graylevel or color sample values of
the single transparent color for
non-paletted images (PNG_INFO_tRNS)

png_get_hIST(png_ptmfo_ptr, &hist);
(PNG_INFO_hIST)

hist -histogram of palette (array of
png_uint_16)

png_get tIME(png_ptinfo_ptr &mod_time);

mod_time time image was last modified
(PNG_VALID_tIME)

png_get bKGD(png_ptinfo_ptr, & background);

background background color (of type
png_color_16p) (PNG_VALID_bKGD)
valid 16-bit red, green and blue

values, rgadless of color_type

num_comments png_get_text(png_ptmfo_ptr,
&text_ptr, &num_text);

num_comments Aumber of comments

September 27, 2012

LibraryFunctions Manual

LIBPNG(3)

39

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

text_ptr -array of png_text holding image
comments

text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt

text_ptr[il.key -keyword for comment. Must contain
1-79 characters.

text_ptr[i].text - text comments for current
keyword. Carnbe empty.

text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt

text_ptr[il.itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt

text_ptr[i].lang -language of comment (empty
string for unknown).

text_ptr[i].lang_ley -keyword in UTF-8
(empty string for unknown).

Note that the itxt_length, lang, and langyk

members of the text_ptr structure only exist when the
library is built with iTXt chunk support. Prior to
libpng-1.4.0 the library was built by default without
iTXt support. Also note that when iTXt is supported,
they contain NULL pointers when the "compression”
field contains PNG_TEXT_COMPRESSION_NONE or
PNG_TEXT_COMPRESSION_zTXt.

num_tet - number of comments (same as
num_comments; you can put NULL here
to avoid the duplication)

Note while png_set_text() will accept text, language,
and translatedéywords that can be NULL pointers, the
structure returned by png_get_text willvals contain
regular zero-terminated C strings. Vhmight be

empty strings but thewill never be NULL pointers.

num_spalettes = png_get_sPLT(png, iptio_ptr,
&palette_ptr);

num_spalettes rumber of sPTL chunks read.
palette_ptr array of palette structures holding

contents of one or more sPthunks
read.

September 27, 2012 40

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)
png_get oFFs(png_pinfo_ptr, &offset_x, &offset vy,
&unit_type);

offset x -positive dfset from the left edge
of the screen (can begegtive)

offset y -positive dfset from the top edge
of the screen (can begegtive)

unit_type -PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_get pHYs(png_ptinfo_ptr, &res_x, &res_y,

&unit_type);
res_x -pixels/unit physical resolution in
x direction
res_y -pixels/unit physical resolution in
x direction

unit_type -PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_get sCAL(png_ptinfo_ptr, &unit, &width,

&height)
unit - physical scale units (an integer)
width - width of a pixel in physical scale units

height -height of a pixel in physical scale units
(width and height are doubles)

png_get sCAL_s(png_ptinfo_ptr, &unit, &width,

&height)
unit - physical scale units (an integer)
width -width of a pixel in physical scale units

(expressed as a string)

height -height of a pixel in physical scale units
(width and height are strings éK2.54")

num_unknown_chunks = png_get_unknown_chunks(png_ptr,
info_ptr, &unknowns)

unknavns -array of png_unknown_chunk
structures holding unknown chunks

unknawns[i].name -hame of unknown chunk

unknawnsli].data -data of unknown chunk

September 27, 2012 41

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

unknawnsJi].size -size of unknown chunk’data
unknownsli].location - position of chunk in file

The value of "i" corresponds to the order in which the
chunks were read from the PNG file or inserted with the
png_set_unknown_chunks() function.

The value of "location” is a bitwise "or" of

PNG_HA/E_IHDR (0x01)
PNG_HAVE_PIOE (0x02)
PNG_AFTER_IDAT (0x08)

The data from the pHYs chunk can be regikin saveal corvenient forms:

res_x = png_get_x_pixels_per_meter(png_ptr,
info_ptr)

res_y = png_get_y pixels_per_meter(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_meter(png_ptr,
info_ptr)

res_x = png_get_x_pixels_per_inch(png_ptr,
info_ptr)

res_y = png_get_y pixels_per_inch(png_ptr,
info_ptr)

res_x_and_y = png_get_pixels_per_inch(png_ptr,
info_ptr)

aspect_ratio = png_get_pixel_aspect_ratio(png_ptr,
info_ptr)

Each of these returns 0 [signifying "unknown"] if
the data is not present or if res_x is 0;
res_ x_and yisOifres x!=res_ y

Note that because of the way the resolutions are
stored internallythe inch comersions won't
come out to exactlyven number For example,
72 dpi is stored as 0.28346 pixels/mesad
when this is retrieed it is 71.9988 dpi, so
be sure to round the returned value appropriately
if you want to display a reasonable-looking result.

The data from the oFFs chunk can be re&dan seveal corvenient forms:
x_offset = png_get_x_offset_microns(png, ptfo_ptr);

y_offset = png_get_y offset_microns(png, ptfo_ptr);

September 27, 2012 42

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

x_offset = png_get_x_offset_inches(png, ptfo_ptr);
y_offset = png_get_y offset_inches(png, ptfo_ptr);

Each of these returns 0 [signifying "unknown" if both
x and y are Q] if the data is not present or if the
chunk is present but the unit is theglixThe
remark about inexact inch oaesions applies here
as well, because a value in inches talways be
corverted to microns and back without some loss
of precision.

For more information, see the PNG specification for chunk contéBescareful with trusting rowbytes, as
some of the transformations could increase the space needed to heldeaqyand, filler gray to_rgb,
etc.). Seeng_read_update_info(), belo

A quick word about text_ptr and numxte PNG stores comments inelgword/text pairs, one pair per
chunk, with no limit on the number oftechunks, and a 2°31 byte limit on their size. While there are sug-
gested kywords, there is no requirement to restrict the use to these stiinigsstrongly suggested that
keywords and text be sensible to humans (shtag point), so dom’use abbreiations. Non-printingsym-

bols are not allwed. Sedhe PNG specification for more details. There is also no requirementedebi
after the leyword.

Keywords should be limited to 79 Latin-1 characters without leading or trailing spaces, but non-ceasecuti
spaces are allowed within theyword. Itis possible to hae the same &word ary number of times.The
text_ptr is an array of png_text structures, each holding a pointer to a language string, a poingsFr to a k
word and a pointer to a text string. The text string, language code, and transiatedtkmay be empty or
NULL pointers. The kyword/text pairs are put into the array in the order thay #we receved. However,

some or all of the text chunks may be after the image, so, te mmekyou hge read all the text chunks,
don't mess with these until after you read the fsafter the image. This will be mentioned again beio

the discussion that goes with png_read_end().

Input transformations
After you've read the header information, you can set up the library to hangllgpecial transformations
of the image data. The various ways to transform the data will be described in the orderytHadutte
occur This is important, as some of these change the color type and/or bit depth of the data, and some oth-
ers only work on certain color types and bit depths.

Transformations you request are ignored ifyten’t haveary meaning for a particular input data format.
However some transformations canvean efect as a result of a previous transformation. If you specify a
contradictory set of transformations, for example both adding and removing the alpha channel, you cannot
predict the final result.

The color used for the transpargna@lues should be supplied in the same format/depth as the current
image data. It is stored in the same format/depth as the image data in a tRNS chunk, so this is what libpng
expects for this data.

The color used for the background value depends on the need_expand argument as deseribed belo

Data will be decoded into the suppliedvrbuffers packed into bytes unless the library has been told to
transform it into another formator example, 4 bit/pixel paletted or grayscale data will be returned 2 pix-
els/byte with the leftmost pixel in the high-order bits of the byte, unless png_set_packing() is &&lied.

RGB data will be stored in RGB RGB RGB format unless png_set _filler() or png_set_add_alpha() is called
to insert filler bytes, either before or after each RGB triplet. 16-bit RGB data will be returned RRGGBB

September 27, 2012 43

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

RRGGBB, with the most significant byte of the color value first, unless png_set scale_16() is called to
transform it to rgular RGB RGB triplets, or png_set filler() or png_set_add alpha() is called to insert filler
bytes, either before or after each RRGGBB tripEimilarly, 8-bit or 16-bit grayscale data can be modified
with png_set_filler(), png_set_add_alpha(), png_set_strip_16(), or png_set_scale_16().

The following code transforms grayscale images of less than 8 to 8 bits, changes paletted images to RGB,
and adds a full alpha channel if there is transpgrerformation in a tRNS chunkThis is most useful on
grayscale images with bit depths of 2 or 4 or if there is a multiple-imaggngi@pplication that wishes to

treat all images in the same way.

if (color_type == PNG_COLOR_TYPE_PALETTE)
png_set_palette_to_rgb(png_ptr);

if (png_get_valid(png_ptinfo_ptr,
PNG_INFO_tRNS)) png_set tRNS_to_alpha(png_ptr);

if (color_type == PNG_COLOR_TYPE_GRA& &

The first two functions are actually aliases for png_set_expand(), added in libpng version 1.0.4, with the
function names expanded to impeode readability In some future version tlyemay actually do dier-
ent things.

without changing tRNS to alpha.

As of libpng version 1.5.2, png_set_expand_16() was added. Ndshamg_set rpand(); havever, the
resultant channels t@ 16 hits rather than 8Use this when the output color or gray channels are made lin-
ear to &oid fairly severe accurag loss.

if (bit_depth < 16)
png_set_expand_16(png_ptr);

PNG can hee files with 16 bits per channelf you only can handle 8 bits per channel, this will strip the
pixels down to 8-bit.

if (bit_depth == 16) #if PNG_LIBPNG_VER >= 10504
png_set_scale_16(png_ptr); #else
png_set_strip_16(png_ptr); #endif

(The more accurate "png_set_scale_16()" API becamikalle in libpng version 1.5.4).

If you need to process the alpha channel on the image separately from the image data (for example if you
convert it to a bitmap mask) it is possible tovkedibpng strip the channel leaving just RGB or gray data:

if (color_type & PNG_COLOR_MASK_ALPHA)
png_set_strip_alpha(png_ptr);
If you strip the alpha channel you need to find some othgrofzdealing with the information. If, instead,
you want to covert the image to an opaque version with no alpha channel use png_set _background; see
below.

As of libpng \ersion 1.5.2, almost all useful expansions are supported, the major ommissions/ere con
sion of grayscale to inded images (which can be done trivially in the application) and/esion of

September 27, 2012 44

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

indexed to grayscale (which can be done by a trivial manipulation of the palette.)

In the following table, the 01 means grayscale with depth<8, 31 meansdnti¢h depth<8, other numer
als represent the color type, "T" means the tRNS chunk is present, A means an alpha channel is present, and
O means tRNS or alpha is present but all pixels in the image are opaque.

FROM 01 31 0 OT 0O 2 2T 20 3 3T 30 4A 40 6A ®

TO

01 -[G] - - - = = = = = = - - = -

31 QIQ QIRIQI Q Q Q Q Q QQI[Q] Q Q
01G+..G6GGGGG B BGBGB
OT ItGtt+ . GtG G Gt G G B BtGBtGBt
00 ItGtt. + Gt Gt G Gt Gt G Bt Bt GBt GBt
2 CPCCC + C--CBCBB B

2T Ct- CtC Ct + t - - - BtCBt Bt Bt

20 Ct- CtC C tt + - - - @BtCBt Bt Bt

3 [Q] p [QIQ] [Q] QQ + . .[QIRIQ Q

+

t

Q
3T [Qip [QYIQ][Q] Qt Qt Qt t + t [QY[QY Qt Qt
30 [Qip [QYIQI[Q] Qt Qt Qt t t + [QY[Qf] Qt Qt
4A IAG A T T GA GT GT GA GT GT + BA G GBA
40 IAGBAA T T GA GT GT GA GT GT BA + GBA G
6A CAPACAC C A TIT PAP P C BA + BA
60 CAPBACAC C AT T PAP P BA C BA +

Within the matrix,
"+" identifies entries where 'from’ and 'to’ are the same.
"-" means the transformation is not supported.
"." means nothing is necessary (a tRNS chunk can just be ignored).
"t" means the transformation is obtained by png_set_tRNS.
"A" means the transformation is obtained by png_set_add_alpha().
"X" means the transformation is obtained by png_set_expand().
"1" means the transformation is obtained by
if there is no transpareyn the original or the final
format).
"C" means the transformation is obtained by png_set_gray to_rgb().
"G" means the transformation is obtained by png_set _rgb_to_gray().
"P" means the transformation is obtained by
png_set_expand_palette_to_rgb().
"p" means the transformation is obtained by png_set_packing().
"Q" means the transformation is obtained by png_set_quantize().
"T" means the transformation is obtained by
png_set tRNS_to_alpha().
"B" means the transformation is obtained by
png_set_background(), or png_strip_alpha().

When an entry has multiple transforms listed all are required to cause thewvegdlt ansformation.
When two transforms are separated by a comma either will do theWdien transforms are enclosed in []
the transform should do the jolnththis is currently unimplemented - a different format will result if the
suggested transformations are used.

In PNG files, the alpha channel in an image is thel lef opacity If you need the alpha channel in an

image to be the &l of transpareng instead of opacityyou can iwert the alpha channel (or the tRNS
chunk data) after &' read, so that 0 is fully opaque and 255 (in 8-bit or paletted images) or 65535 (in 16-bit

September 27, 2012 45

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

images) is fully transparent, with
png_set_imert_alpha(png_ptr);

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as smallyasatieresulting in, for example, 8
pixels per byte for 1 bit files. This codepands to 1 pixel per byte without changing the values of the pix-
els:

if (bit_depth < 8)
png_set_packing(png_ptr);

PNG files hge possible bit depths of 1, 2, 4, 8, and 16. All pixels stored in a PNG imagehbaan
"scaled" or "shifted" up to the next higher possible bit depth (e.g. from 5 bits/sample in the range [0,31] to 8
bits/sample in the range [0, 255]However, it is dso possible to carert the PNG pixel data back to the
original bit depth of the image. This call reduces the pixels back down to the original bit depth:

png_color_8p sig_bit;

if (png_get_sBIT(png_ptinfo_ptr, &sig_bit))
png_set_shift(png_ptsig_bit);

PNG files store 3-color pels in red, green, blue ordefhis code changes the storage of the pixels to blue,
green, red:

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_bgr(png_ptr);

PNG files store RGB pixels packed into 3 or 6 bytes. This cquknels them into 4 or 8 bytes for windo
ing systems that need them in this format:

if (color_type == PNG_COLOR_TYPE_RGB)
png_set_filler(png_ptfiller, PNG_FILLER_BEFORE);

where "filler" is the 8 or 16-bit number to fill with, and the location is either PNG_FILLER BEFORE or
PNG_FILLER_AFTER, depending upon whether you want the filler before the RGB or Hfisrtrans-
formation does not #&fct images that already Vveafull alpha channelsTo add an opaque alpha channel,
use filler=0xf or Oxffff and PNG_FILLER_AFTER which will generate R@Rixels.

Note that png_set _filler() does not change the color type. If ya @ do that, you can add a true alpha
channel with

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_GRAY)
png_set_add_alpha(png_jdtHer, PNG_FILLER_AFTER);

where "filler" contains the alpha value to assign to eadl.pikhisfunction was added in libpng-1.2.7.

If you are reading an image with an alpha channel, and you need the data as ARGB instead of the normal
PNG format RGBA:

if (color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_swap_alpha(png_ptr);

September 27, 2012 46

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

For some uses, you mayamt a grayscale image to be represented as RGB. This code will do tat con
sion:

if (color_type == PNG_COLOR_TYPE_GRA]|
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)
png_set_gray_to_rgb(png_ptr);

Corversely, you can cowert an RGB or RGB image to grayscale or grayscale with alpha.

if (color_type == PNG_COLOR_TYPE_RGB ||
color_type == PNG_COLOR_TYPE_RGB_ALPHA)
png_set_rgb_to_gray(png_jpérror_action,
double red_weight, double green_weight);

error_action = 1: silently do the cgansion

error_action = 2: issue a warning if the original
image has anpixel where
red !=green or red != blue

error_action = 3: issue an error and abort the
corversion if the original
image has anpixel where
red !=green or red != blue

red_weight: weighof red component
green_weight: weightf green component
If either weight is ngdive, default

weights are used.

In the corresponding fed point API the red_weight and green_weight values are simply scaled by
100,000:

png_set_rgb_to_gray(png_pérror_action,
png_fixed_point red_weight,
png_fixed_point green_weight);
If you have st error_action = 1 or 2, you can later check whether the image really wasfigragrocess-
ing the image ns, with the png_get rgb_to_gray_status(png_ptr) function. It will return a png_byte that
is zero if the image was gray or 1 if there werg aon-gray piels. Backgroundénd sBIT data will be
silently cowerted to grayscale, using the green channel data for, sBj@dless of the error_action setting.
The default mlues come from the PNG file cHRM chunk if present; otherwise, the defaults correspond to
the ITU-R recommendation 709, and also the sSRGB color space, as recommended in the Gindolgs Po
Colour FAQ, <http://www.poynton.com/>, in section 9:
<http://www.poynton.com/notes/colour_and_gamma/CAQhtmI#RTFToC9>
Y =0.2126 * R+ 0.7152* G + 0.0722 * B

Previous versions of this document, 1998 through 2002, recommended a slightly different formula:

Y =0.212671 * R + 0.715160 * G + 0.072169 * B

September 27, 2012 47

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Libpng uses an integer approximation:
Y =(6968 * R + 23434 * G + 2366 * B)/32768
The calculation is done in a linear colorspace, if the image gamma can be determined.

The png_set_background() function has been described already; it tells libpng to composite images with
alpha or simple transpargneganst the supplied background coldfor compatibility with \ersions of

libpng earlier than libpng-1.5.4 it is recommended that you call the function after reading the file header
evan if you dont want to use the color in a bKGD chunk, if one exists.

If the PNG file contains a bKGD chunk (PNG_INFO_bKG8alid), you may use this coloor supply
another color more suitable for the current display (e.g., the background color from a webypageed
to tell libpng hav the color is represented, both the format of the comporémes in the color (the num-
ber of bits) and the gamma encoding of the coldhe function takes to arguments, back-
ground_@mma_mode and needpand to cowey tis information; hwever, only two combinations are
likely to be useful:

png_color_16 my_background,;
png_color_16p image_background;

if (png_get_bKGD(png_ptinfo_ptr, &image_background))
png_set_background(png_jdmage_background,
PNG_BACKGROUND_GAMMA_FILE, 1/*needs to be expanded*/, 1);
else
png_set_background(png_jfrmy_background,
PNG_BACKGROUND_GAMMA_SCREEN, 0/*do not expand*/, 1);

The second call was described abo my_background is in the format of the final, displaeytput pro-

duced by libpng. Because youm@now the format of the PNG it is possible teoal the need to choose
either 8-bit or 16-bit output and to retain palette images (the palette colors will be modified appropriately
and the tRNS chunk remed.) However, if you are doing this, takgeat care not to ask for transforma-
tions without checking first that thepply!

In the first call the background color has the original bit depth and color type of the PNG file. So, for pal-
ette images the color is supplied as a palettexiadd for low bit greyscale images the color is a reduced
bit value in image_background->gray.

If you didn't call png_set_gamma() before reading the file hedderexample if you need your code to
remain compatible with older versions of libpng prior to libpng-1.5.4, this is the place to call it.

Do not call it if you called png_set_alpha_mode(); doing so will damage the settings put in place by
png_set_alpha_mode(). (Ifpng_set alpha_mode() is supported then you can certainly do
png_set_gamma() before reading the PNG header.)

This API unconditionally sets the screen and file gamma values, so iveiiide the alue in the PNG file
unless it is called before the PNG file reading stdfts.this reason you mustvadys call it with the PNG
file value when you call it in this position:

if (pong_get_ gAMA(png_ptrinfo_ptr, &file_gamma))
png_set_gamma(png_ptcreen_gamma, file_gamma);

else
png_set_gamma(png_ptcreen_gamma, 0.45455);

September 27, 2012 48

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

If you need to reduce an RGB file to a paletted file, or if a paletted file has more entries then will fit on your
screen, png_set_quantize() will do thalote that this is a simple match quantization that merely finds the
closest color ailable. Thisshould work fairly well with optimized palettesytbfairly badly with linear

color cubes.If you pass a palette that is larger than maximum_colors, the file will reduce the number of
colors in the palette so it will fit into maximum_colors. If there is a histogram, libpng will use it ® mak
more intelligent choices when reducing the palette. If there is no histogram, it may not do as good a job.

if (color_type & PNG_COLOR_MASK_COLOR)

{
if (png_get_valid(png_ptinfo_ptr,
PNG_INFO_PLTE))

{
png_uint_16p histogram = NULL;

png_get_hIST(png_ptmfo_ptr,
&histogram);
png_set_quantize(png_ppalette, num_palette,
max_screen_colors, histogram, 1);

}

else

{
png_color std_color_cube[MAX_SCREEN_COLORS] =

{...colors ... };

png_set_quantize(png_p#td_color_cube,
MAX_SCREEN_COLORS, MAX_SCREEN_COLORS,
NULL,0);
}
}

PNG files describe monochrome as black being zero and white being one. The following codersd! re
this (male back be one and white be zero):

if (bit_depth == 1 && color_type == PNG_COLOR_TYPE_GRAY)
png_set_imert_mono(png_ptr);

This function can also be used twdrt grayscale and gray-alpha images:
if (color_type == PNG_COLOR_TYPE_GRA]|
color_type == PNG_COLOR_TYPE_GRAY_ALPHA)

png_set_iwert_mono(png_ptr);

PNG files store 16-bit pixels in netwk byte order (big-endian, ie. most significant bits first). This code
changes the storage to the other way (little-endian, i.e. least significant bits first, the way PCs store them):

if (bit_depth == 16)
png_set_swap(png_ptr);

If you are using padd-pixel images (1, 2, or 4 bits/@h, and you need to change the order the pixels are
packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

September 27, 2012 49

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)
Finally, you can write your own transformation function if none of tkistang ones meets your needs.
This is done by setting a callback with

png_set_read_user_transform_fn(png_ptr,
read_transform_fn);

You must supply the function

void read_transform_fn(png_structp png, ptrg_row_infop
row_info, png_bytep data)

See pngtest.c for a workingample. Yur function will be called after all of the other transformations
have been processedlake are with interlaced images if you do the interlace yourself - the width of the
row is the width in row_info’, not the werall image width.

If supported, libpng provides twinformation routines that you can use to find where you are in processing
the image:

png_get_current_pass_number(png_structp png_ptr);
png_get_current_row_number(png_structp png_ptr);

Don't try using these outside a transform callback - firstly t#we only supported if user transforms are
supported, secondly thenay well return ungpected results unless themds actually being processed at
the moment theare called.

With interlaced images the value returned is thev rim the input sub-image image.Use
PNG_FOW_FROM_PASS_ RBW(row, pass) and PNG_COL_FKRM_PASS COL(col, pass) to find the
output pixel (x,y) gien an nterlaced sub-image pixel (mxol,pass).

The discussion of interlace handling eba@ontains more information on o use these values.

You can also set up a pointer to a user structure for use by your callback function, and you can inform
libpng that your transform function will change the number of channels or bit depth with the function

png_set_user_transform_info(png,, per_ptr,
user_depth, user_channels);

The uses gplication, not libpng, is responsible for allocating and freeingra@emory required for the
user structure.

You can retriee the pointer via the function png_get_user_transform_pldg).example:

voidp read_user_transform_ptr =
png_get_user_transform_ptr(png_ptr);

The last thing to handle is interlacing; this iv@ed in detail bela, but you must call the function here if
you want libpng to handle expansion of the interlaced image.

number_of passes = png_set_interlace_handling(png_ptr);

After setting the transformations, libpng can update your png_info structure to reflécarssiormations
you've requested with this call.

png_read_update_info(png_dtifo_ptr);

September 27, 2012 50

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

This is most useful to update the info structsineiwbytes field so you can use it to allocate your image
memory This function will also update your palette with the correct screnntp and background if
these hee been gven with the calls abee. You may only call png_read_update_info() once with a particu-
lar info_ptr.

After you call png_read_update_info(), you can allocajeraemory you need to hold the image. The/ro
data is simply na byte data for all forms of images. As the actual allocat@nieg among applications, no
example will be gien. If you are allocating one large chunk, you will need to build an array of pointers to
each rav, as it will be needed for some of the functions lvelo

Remember: Before you call png_read_update_info(), the png_get *() functions returaluég corre-
sponding to the original PNG image. After you call png_read_update_info the values refer to the image
that libpng will output. Consequently you must call all the png_set functions before you call
png_read_update_info(). Thiss particularly important for png_set_interlace_handling() - if you are going

to call png_read_update_info() you must call png_set_interlace_handling() before it unlesanydo w
receve interlaced output.

Reading image data
After youve dlocated memoryyou can read the image data. The simplest way to do this is in one function
call. If you are allocating enough memory to hold the whole image, you can just call png_read_image()
and libpng will read in all the image data and put it in the memory area supptiadvill need to pass in
an array of pointers to eacharo

This function automatically handles interlacing, so you taeed to call png_set_interlace_handling()
(unless you call png_read_update_info()) or call this function multiple timesy af éimat other stdfnec-
essary with png_read_rows().

png_read_image(png_ptow_pointers);
where row_pointers is:

png_bytep row_pointers[height];

You can point to void or char or what you use for pixels.

If you dont want to read in the whole image at once, you can use png_read_rows() instead. If there is no
interlacing (check interlace_type == PNG_INTERLACE_NONE), this is simple:

png_read_rows(png_ptow_pointers, NULL,
number_of_rows);

where row_pointers is the same as in the png_read_image() call.

If you are doing this just onewoat a ime, you can do this with a single row_pointer instead of an array of
row_pointers:

png_bytep row_pointer = row;
png_read_row(png_ptrow_pointer NULL);

If the file is interlaced (interlace_type != 0 in the IHDR chunk), things get somewhat. h@ahdeonly cur

rent (PNG Specification ersion 1.2) interlacing type for PNG is (interlace_type == PNG_INTER-
LACE_ADAMY); a somewhat complicated 2D interlace schemewknas Adam7, that breaks down an
image into seen snaller images of varying size, based on an 8x8 grid. This number is defined (from
libpng 1.5) as PNG_INTERLACE_ADAM7_PASSES in png.h

September 27, 2012 51

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

libpng can fill out those images or it cawagyihem to you "as is". It is almostvedys better to hae libpng
handle the interlacing for you. If you want the images filled out, there aravétys to do that. The one
mentioned in the PNG specification is to expand each pixeV twse pixels that va rot been read yet

(the "rectangle" method). This results in a blpakage for the first pass, which gradually smooths out as
more pixels are readlhe other method is the "sparkle" method, where pixels are drawn only in their final
locations, with the rest of the image remaining wiateolors thg were initialized to before the start of
the read. The first method usually looks bettat tends to be sheer, as here are more pixels to put in the
rows.

If, as is likely, you want libpng to expand the images, call this before calling png_start_read_image() or
png_read_update_info():

if (interlace_type == PNG_INTERLACE_ADAM7)
number_of_passes
= png_set_interlace_handling(png_ptr);

This will return the number of passes need€drrently this is seen, but may change if another interlace

type is added. This function can be callegreif the file is not interlaced, where it will return one pass.

You then need to read the whole image 'number_of passes’ tiEesh time will distribute the péts

from the current pass to the correct place in the output image, so you need to supply the same rows to
png_read_rows in each pass.

If you are not going to display the image after each pass, but are going to wait until the entire image is read
in, use the sparkle fetct. Thiseffect is faster and the end result of either method is exactly the dame.

you are planning on displaying the image after each pass, the "rectangle" effect is generally considered the
better looking one.

If you only want the "sparkle" effect, just call png_reaavaf) as normal, with the third parameter NULL.
Make aure you mak pass oer the image number_of passes times, and yout @dbange the data in the

rows between callsYou can change the locations of the data, just not the data. Each pass only writes the
pixels appropriate for that pass, and assumes the data from previous passes is still valid.

png_read_rows(png_ptow_pointers, NULL,
number_of_rows);

If you only want the first effect (the rectangles), do the same as before except pass lifferoin the
third parameterand leare the second parameter NULL.

png_read_rows(png_pMULL, row_pointers,
number_of_rows);

If you dont want libpng to handle the interlacing details, just call png_read_rows() PNG_INTER-
LACE_ADAM7_PASSES times to read in all the images. Each of the images is a valid image by itself;
however, you will almost certainly need to distribute the gdscfrom each sub-image to the correct place.
This is where eerything gets very trick

If you want to retrige the separate images you must pass the correct number of rows to eachveuadessi

of png_read_mws(). Thecalculation gets pretty complicated for small images, where some sub-images
may not gen exist because either their width or height ends up zero. libpng provideswaros to help

you in 1.5 and later versions:

png_uint_32 width = PNG_PASS_COLS(image_width, pass_number);
png_uint_32 height = PNG_PASSOR/S(image_height, pass_number);

September 27, 2012 52

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Respeciiely these tell you the width and height of the sub-image corresponding to the numbered pass.
'pass’ is in in the range 0 to 6 - this can be confusing because the specification refers to the same passes as
1to 7 Be areful, you must check both the width and height before calling png_read_rows() and not call it

for that pass if either is zero.

You can, of course, read each sub-image by row. If you want to produce optimal code to raakpxel-
by-pixel transformation of an interlaced image this is the best approach; read waifleach pass, trans-
form it, and write it out to a meinterlaced image.

If you want to de-interlace the image yourself libpngvjates further macros to help that tell you where to
place the pixels in the output imagBecause the interlacing scheme is rectangular - sub-image pixels are
always arranged on a rectangular grid - all you need tavKoo each pass is the starting column avdiro

the output image of the first pixel plus the spacing between eaeh p@is of libpng 1.5 there are four
macros to retriee this information:

png_uint_32 x = PNG_PASS_START_COL(pass);
png_uint_32 y = PNG_PASS_STARTORV/(pass);

png_uint_32 xStep = 1U << PNG_PASS_COL_SHIFT(pass);
png_uint_32 yStep = 1U << PNG_PASSOW_SHIFT(pass);

These allav you to write the obvious loop:

png_uint_32 input_y = 0;
png_uint_32 output_y = PNG_PASS_STARDWR(pass);

while (output_y < output_image_height)

{
png_uint_32 input_x = 0;
png_uint_32 output_x = PNG_PASS_START_COL(pass);

while (output_x < output_image_width)

{
image[output_y][output_x] =
subimage[pass][input_y][input_x++];

output_x += xStep;

}
++input_y;
output_y += yStep;

}

Notice that the steps between sucaessutput rows and columns are returned as shifisis is possible
because the pixels in the subimages aneye a power of 2 apart - 1, 2, 4 or 8 gl - in the original
image. Inpractice you may need to directly calculate the output coordine#a gh nput coordinate.
libpng provides tw further macros for this purpose:

png_uint_32 output x = PNG_COL_FROM_PASS_COL(input_x, pass);
png_uint_32 output_ y = PNG@W_FROM_PASS RW(input_y, pass);

Finally a pair of macros are provided to tell you if a particular imagearcolumn appears in a\gn
pass:

int col_in_pass = PNG_COL_IN_INTERLACE_PASS(output_x, pass);

September 27, 2012 53

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

int row_in_pass = PNG_®N_IN_INTERLACE_PASS(output ,\pass);

Bear in mind that you will probably also need to check the width and height of the pass in addition to the
abore © be sire the passven exists!

With ary luck you are convinced by wahat you dort want to do your own interlace handling. In reality
normally the only good reason for doing this is if you are processing PNG files oel-&dyppixel basis
and dont want to load the whole file into memory when it is interlaced.

libpng includes a test program, pngvalid, that illustrates reading and writing of interlaced iriagms.
cant get interlacing to work in your code and dobwant to leae it to libpng (the recommended approach),
see hav pngvalid.c does it.

Finishing a sequential read
After you are finished reading the image through thelével interface, you can finish reading the filk.
you are interested in comments or time, which may be stored either before or after the image data, you
should pass the separate png_info struct if you want to keep the comments from before and after the image
separate.

png_infop end_info = png_create_info_struct(png_ptr);
if (lfend_info)

{
png_destroy read_struct(&png_,plinfo_ptr,

(png_infopp)NULL);
return (ERROR);
}

png_read_end(png_pend_info);

If you are not interested, you should still call png_read_end() but you can pass Nudidingthe need to
create an end_info structure.

png_read_end(png_p{png_infop)NULL);
If you dont call png_read_end(), then your file pointer will be left pointing to the first chunk after the last
IDAT, which is probably not what you want if you expect to read something beyond the end of the PNG
datastream.

When you are done, you can free all memory allocated by libpadhiik

png_destroy read_struct(&png_,p&info_ptr,
&end_info);

or, if you didnt create an end_info structure,

png_destroy read_struct(&png_,p&info_ptr,
(png_infopp)NULL);

It is also possible to individually free the info_ptr members that point to libpng-allocated storage with the
following function:

png_free data(png_pinfo_ptr, mask, seq)

September 27, 2012 54

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

mask - identifies data to be freed, a mask

containing the bitwise OR of one or

more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HISTPNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREEQRVS,
PNG_FREE_SCAL, PNG_FREE_SPL
PNG_FREE_TEXTPNG_FREE_UNKN,

or simply PNG_FREE_ALL

seq -sequence number of item to be freed
(-1 for all items)

This function may be safely called when the vah¢ storage has already been freed, or has not yet been
allocated, or was allocated by the user and not by libamgl, will in those cases do nothing. The "seq"
parameter is ignored if only one item of the selected data type, suciasi®hllaved. If"seq" is not -1,

and multiple items are allowed for the data type identified in the mask, such as text,con$Pthe nth

item in the structure is freed, where n is "seq".

The default behavior is only to free data thaisvallocated internally by libpng. This can be changed, so
that libpng will not free the data, or so that it will free data that was allocated by the user with png_malloc()
or png_calloc() and passed in via a png_set_*() function, with

png_data_freer(png_pinfo_ptr, freer mask)

freer -one of
PNG_DESTRY_ WILL FREE DATA
PNG_SET WILL FREE BTA
PNG_USER_WILL FREE_BTA

mask -which data elements are affected
same choices as in png_free_data()

This function only affects data that has already been allocd®dcan call this function after reading the

PNG data but before callingyapng_set_*() functions, to control whether the user or the png_set_*() func-

tion is responsible for freeing yexisting data that might be present, and again after the png_set_*() func-
tions to control whether the user or png_destroy_*() is supposed to free the data. When the user assumes
responsibility for libpng-allocated data, the application must use png_free() to free it, and when the user
transfers responsibility to libpng for data that the user has allocated, the userveusiedapng_malloc()

or png_calloc() to allocate it.

If you allocated your row_pointers in a single block, as suggeste® @btihne description of the highve
read interdce, you must not transfer responsibility for freeing it to the png_set_rows or png_reag_destro
function, because tliavould also try to free the individual row_pointersi].

If you allocated tet_ptr.text, text_ptrlang, and tet ptr.translated_dyword separatelydo rot transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a pxigsttecture it combines these
members with thedy member and png_free data() will free onlyxte ptr.key. Similarly, if you transfer
responsibility for free’ing tet_ptr from libpng to your application, your application must not separately
free those members.

The png_free_data() function will turnfahe "valid" flag for anything it freeslf you need to turn the flag
off for a chunk that was freed by your application instead of by libpng, you can use

September 27, 2012 55

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_set_imaid(png_ptr info_ptr, mask);

mask - identifies the chunks to be madeilid,

containing the bitwise OR of one or

more of
PNG_INFO_gAMA, PNG_INFO_sBIT,
PNG_INFO_cHRM, PNG_INFO_PLTE,
PNG_INFO_tRNS, PNG_INFO_bKGD,
PNG_INFO_hISTPNG_INFO_pHYs,
PNG_INFO_oFFs, PNG_INFO_tIME,
PNG_INFO_pCAL, PNG_INFO_sRGB,
PNG_INFO_iCCPPNG_INFO_sPH,
PNG_INFO_sCAL, PNG_INFO_IBT

For a nore compact example of reading a PNG image, see the file example.c.

Reading PNG files progressiely
The progresse reader is slightly dierent then the non-progressi reader Instead of calling
png_read_info(), png_read_rows(), and png_read_end(), yoa makcall to png_process_data(), which
calls callbacks when it has the info, avyaor the end of the imageYou st up these callbacks with
png_set_progress read_fn(). ¥u dont haveto worry about the input/output functions of libpng, as you
are gving the library the data directly in png_process_datag)ill assume that you wva read the section
on reading PNG files alse, so | will only highlight the differences (although | will swall of the code).

png_structp png_ptr; png_infop info_ptr;

/* An example code fragment of tvoyou would
initialize the progresse reader in your
application. */
int
initialize_png_reader()
{
png_ptr = png_create_read_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if ('png_ptr)
return (ERROR);

info_ptr = png_create_info_struct(png_ptr);

if (linfo_ptr)
{
png_destroy _read_struct(&png_ptr,
(png_infopp)NULL, (png_infopp)NULL);
return (ERROR);
}

if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy read_struct(&png_,plinfo_ptr,
(png_infopp)NULL);
return (ERROR);

}

September 27, 2012 56

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

[* This ones rew. You can provide functions
to be called when the header info is valid,
when each o is completed, and when the image
is finished. If you arem’using all functions,
you can specify NULL parameters. Even when all
three functions are NULL, you need to call
png_set_progress read_fn(). %u can use
ary struct as the user_ptr (cast to a void pointer
for the function call), and retnie the pointer
from inside the callbacks using the function

png_get_progress ptr(png_ptr);

which will return a void pointewhich you hae
to cast appropriately.

*/

png_set progress read_fn(png_ptivoid *)user_ptr,
info_callback, row_callback, end_callback);

return O;

}

/* A code fragment that you call as you reeedocks
of data */
int
process_data(png_bytep buffeng_uint_32 length)
{
if (setjmp(png_jmpbuf(png_ptr)))
{
png_destroy read_struct(&png_,plinfo_ptr,
(png_infopp)NULL);
return (ERROR);
}

[* This ones rew dso. Simplygive it a chunk
of data from the file stream (in ordef
course). Ommachines with segmented memory
models machines, ddrgive it any more than
64K. Thelibrary seems to run fine with sizes
of 4K. Although you can ge it much less if
necessary (I assume you cawegi chunks of
1 byte, | haven’t tried less then 256 bytes
yet). Wherthis function returns, you may
want to display ap rows that were generated
in the rav callback if you dort already do
so there.

*/

png_process_data(png_,ptfo_ptr, buffer, length);

[* At this point you can call png_process_data_skip if
you want to handle data the library will skip yourself;
it simply returns the number of bytes to skip (and stops
libpng skipping that number of bytes on the next
png_process_data call).

September 27, 2012 57

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

return O;

}

/* This function is called (as set by
png_set_progresas read_fn() abee) when enough data
has been supplied so all of the header has been
read.

*/

void

info_callback(png_structp png_ppng_infop info)

{

/* Do ary setup here, including setting yaof
the transformations mentioned in the Reading
PNG files sectionFor now, you _must_ call
either png_start_read_image() or
png_read_update_info() after all the
transformations are setv@n if you dont set
ary). You may start getting rows before
png_process_data() returns, so this is your
last chance to prepare for that.

This is where you turn on interlace handling,
assuming you dohivant to do it yourself.

If you need to you can stop the processing of
your original input data at this point by calling
png_process_data_pause. Tieurns the number
of unprocessed bytes from the last png_process_data
call - it is up to you to ensure that the next call
sees these bytesag. If you dont want to bother
with this you can get libpng to cache the unread
bytes by setting the 'sa parameter (see png.h) but
then libpng will hae © copy the data internally.
*/
}

/* This function is called when eachwamf image
data is complete */
void
row_callback(png_structp png_ptng_bytep new_nw,
png_uint_32 row_num, int pass)
{
[* If the image is interlaced, and you turned
on the interlace handlghis function will
be called for eery row in every pass. Some
of these rows will not be changed from the
previous pass. When thewas not changed,
the new_rw variable will be NULL. The rows
and passes are called in ordsryou don’t
really need the row_num and pass, but I'm
supplying them because it may reajour life
easier.

If you did not turn on interlace handling then

September 27, 2012 58

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

the callback is called for eachw®f each
sub-image when the image is interlaced. In this
case row_num’ is the min the sub-image, not
the rav in the output image as it is in all other
cases.

For the non-NULL rows of interlaced images when
you have switched on libpng interlace handling,
you must call png_progressi combine_row()
passing in the @ and the old rav. You can
call this function for NULL rows (it will just
return) and for non-interlaced images (it just
does the memgpfor you) if it will make the
code easierThus, you can just do this for
all cases if you switch on interlace handling;

*/

png_progresse_combine_row(png_ptold_row,
new_row);

/* where old_rav is what was displayed for
previously for the rev. Note that the first
pass (pass == 0, really) will completelywen
the old rav, 0 the rows do not hee © be
initialized. Afterthe first pass (and only
for interlaced images), you will i1 © pass
the current rev, and the function will combine
the old rav and the nev row.

You can also call png_process_data_pause in this
callback - see alve.
*
}

void
end_callback(png_structp png_ing_infop info)
{

[* This function is called after the whole image
has been read, includingyachunks after the
image (up to and including the IENDYou
will usually have the same info chunk as you
had in the headgdthough some data mayve
been added to the comments and time fields.

Most people wort’do much here, perhaps setting
a flag that marks the image as finished.
*/

IV. Writing
Much of this is very similar to readinddowever, everything of importance is repeated here, so yam'tv
have o constantly look back up in the reading section to understand writing.

September 27, 2012 59

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Setup
You will want to do the /O initialization before you get into libpng, so if it doesmrk, you dont have
arything to undo. If you are not using the standard I/O functions, you will need to replace them with cus-
tom writing functions. See the discussion under Customizing libpng.

FILE *fp = fopen(file_name, "wb");

if ('fp)
return (ERROR);

Next, png_struct and png_info need to be allocated and initialized. As these can be betiyr°e,
you may not want to store these on the stack, unless yaudagk space to spare. Of course, you will
want to check if thg return NULL. If you are also reading, youon't want to name your read structure
and your write structure both "png_ptr"; you can call themythdang you like, such as "read_ptr" and
"write_ptr". Lookat pngtest.c, for example.

png_structp png_ptr = png_create_write_struct
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn);

if ('png_ptr)
return (ERROR);

png_infop info_ptr = png_create_info_struct(png_ptr);
if (linfo_ptr)
{
png_destroy write_struct(&png_ptr,
(png_infopp)NULL);
return (ERROR);
}

If you want to use your own memory allocation routines, define PNG_USER_MEM_SUMBPOddd use
png_create write_struct_2() instead of png_create_write_struct():

png_structp png_ptr = png_create_write_struct_2
(PNG_LIBPNG_VER_STRING, (png_voidp)user_error_ptr,
user_error_fn, user_warning_fn, (png_voidp)
user_mem_ptuuser_malloc_fn, user_free_fn);

After you hae these structures, you will need to set up the error handiiMigen libpng encounters an
error, it expects to longjmp() back to your routine. Therefore, you will need to call setjimp() and pass the
png_jmphuf(png_ptr). Ifyou write the file from dferent routines, you will need to update the png_jmp-
buf(png_ptr) eery time you enter a meroutine that will call a png_*() function. See your documentation

of setjmp/longjmp for your compiler for more information on setjmp/longjree the discussion on
libpng error handling in the Customizing Libpng section Wwelor more information on the libpng error
handling.

if (setjmp(png_jmpbuf(png_ptr)))
{

png_destroy_write_struct(&png_p&info_ptr);
fclose(fp);
return (ERROR);

}

September 27, 2012 60

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

return;

If you would rather aoid the complexity of setjmp/longjmp issues, you can compile libpng with
PNG_NO_SETJMHAN which case errors will result in a call to PNG_ABORT() which defaults to abort().

You can #define PNG_ABORT() to a function that does something more useful than abort(), as long as
your function does not return.

Now you need to set up the output code. Theadkfor libpng is to use the C function fwrite(). If you use
this, you will need to pass a valid FILE * in the function png_init_io(). Be sure that the file is opened in
binary mode.Again, if you wish to handle writing data in anothemywsee the discussion on libpng 1/0O
handling in the Customizing Libpng section helo

png_init_io(png_ptrfp);

If you are embedding your PNG into a datastream such as MNG, aridvaon’libpng to write the 8-byte
signature, or if you hee dready written the signature in your application, use

png_set_sig_bytes(png_p®);

to inform libpng that it should not write a signature.

Write callbacks
At this point, you can set up a callback function that will be called after eachasobeen written, which
you can use to control a progress meter or tlee llKs demonstrated in pngtest.&ou must supply a func-
tion

void write_row_callback(png_structp png_jing_uint_32 ra,
int pass);
{

/* put your code here */

}

(You can gve it another name that you kEkinstead of "write_row_callback™)
To inform libpng about your function, use
png_set_write_status_fn(png_,ptrite_row_callback);

When this function is called thewohas already been completely processed and it has also been written
out. Therow' and 'pass’ refer to the nextwoto be fandled. Br the non-interlaced case thevrthat was

just handled is simply one less than the passedimuonber and pass will avays be 0.For the interlaced

case the same applies unless the value is 0, in which case thewqust handled w&s the last one from

one of the preceding passes. Because interlacing may skip a pass you cannot be sure that the preceding
pass is just ‘pass-1’, if you really need to Wnwhat the last pass is record¥tpass) from the callback and

use the last recorded value each time.

As with the user transform you can find the output ueing the PNG_RW_FROM_PASS_BW macro.

You now havethe option of modifying hew the compression library will run. The folling functions are
mainly for testing, but may be useful in some cases,ifikou need to write PNG files extremely fast and
are willing to gve yp some compression, or if you want to get the maximum possible compression at the
expense of slower writing. If you ke o special needs in this area, let the library do what it wants by not
calling this function at all, as it has been tuned toveel good speed/compression ratio. The second

September 27, 2012 61

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

parameter to png_set_filter() is the filter method, for which the only valid values are 0 (as of the July 1999
PNG specification, ersion 1.2) or 64 (if you are writing a PNG datastream that is to be embedded in a

MNG datastream)The third parameter is a flag that indicates which filter type(s) are to be tested for each
scanline. Sethe PNG specification for details on the specific filter types.

[* turn on or of filtering, and/or choose
specific filters.You can use either a single
PNG_FILTER_VALUE_NAME or the bitwise OR of one
or more PNG_FILTER_NAME masks.

*/

png_set_filter(png_pto,
PNG_FILTER_NONE [PNG_FILTER_VALUE_NONE |
PNG_FILTER_SUB [|PNG_FILTER_MLUE_SUB |
PNG_FILTER_UP |PNG_FILTER_MLUE_UP |
PNG_FILTER_A/G |PNG_FILTER_VALUE_A/G |
PNG_FILTER_PAETH | PNG_FILTER_VALUE_PAETH]|
PNG_ALL_FILTERS);

If an application wants to start and stop using particular filters during compression, it should start out with
all of the filters (to ensure that the yius rav of pixels will be stored in casestheeded later), and then
add and remee them after the start of compression.

If you are writing a PNG datastream that is to be embedded in a MNG datastream, the second parameter
can be either O or 64.

The png_set_compression_*() functions irded to the zlib compression libragnd should mostly be
ignored unless you really kmowhat you are doing. The only generally useful call is png_set_compres-
sion_level() which changes e much time zlib spends on trying to compress the image data. See the
Compression Library (zlib.h and algorithm.txt, distributed with zlib) for details on the compressisn le

#include zlib.h

* Set the zlib compressionvd */
png_set_compressionvig(png_ptr,
Z_BEST_COMPRESSION);

[* Set other zlib parameters for compressingTD /
png_set_compression_menvdgpng_ptr 8);
png_set_compression_strategy(png_ptr,
Z_DEFAULT_STRATEGY);
png_set_compression_window_bits(png, ph);
png_set_compression_method(png, ®tr
png_set_compression_buffer_size(png,_§it62)

[* Set zlib parameters for text compression

* |f y ou dont call these, the parameters

* fall back on those defined for AD chunks

*/

png_set_text_compression_menvelépng_ptr 8);

png_set_text_compression_strategy(png_ptr,
Z_DEFAULT_STRATEGY);

png_set_text_compression_window_bits(png_1H);

png_set_text_compression_method(png &ir

September 27, 2012 62

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Setting the contents of ind for output
You now reed to fill in the png_info structure with all the data you wish to write before the actual image.
Note that the only thing you are alled to write after the image is the text chunks and the time chunk (as
of PNG Specification 1.2, gway). Seeyng_write_end() and the latest PNG specification for more-infor
mation on that. If you wish to write them before the image, fill them W, aod flag that data as being
valid. If you want to wait until after the data, dofill them until png_write_end() For al the fields in
png_info and their data types, see pnd=hr explanations of what the fields contain, see the PNG specifi-
cation.

Some of the more important parts of the png_info are:

png_set IHDR(png_ptinfo_ptr, width, height,
bit_depth, color_type, interlace_type,
compression_type, filter_method)

width - holds the width of the image
in pixels (up to 2°31).

height -holds the height of the image
in pixels (up to 2°31).

bit_depth -holds the bit depth of one of the
image channels.
(valid values are 1, 2, 4, 8, 16
and depend also on the
color_type. Sealso significant
bits (sBIT) below).

color_type -describes which color/alpha
channels are present.
PNG_COLOR_TYPE_GRAY
(bit depths 1, 2, 4, 8, 16)
PNG_COLOR_TYPE_GRAY_ALPHA
(bit depths 8, 16)
PNG_COLOR_TYPE_PALETTE
(bit depths 1, 2, 4, 8)
PNG_COLOR_TYPE_RGB
(bit_depths 8, 16)
PNG_COLOR_TYPE_RGB_ALPHA
(bit_depths 8, 16)

PNG_COLOR_MASK_PALETTE
PNG_COLOR_MASK_COLOR
PNG_COLOR_MASK_ALPHA

interlace_type - PNG_INTERLACE_NONE or
PNG_INTERLACE_ADAM7

compression_type - (must be
PNG_COMPRESSION_TYPE_DREILT)

filter_method {must be PNG_FILTER_TYPE_DBELT

or, if you are writing a PNG to
be embedded in a MNG datastream,

September 27, 2012 63

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

can also be
PNG_INTRAPIXEL_DIFFERENCING)

If you call png_set_IHDR(), the call must appear beforg @rthe other png_set *() functions, because
they might require access to some of the IHDR settings. The remaining png_set_*() functions can be called
in ary order.

If you wish, you can reset the compression_type, interlace type, or filter_method later by calling
png_set_IHDR() again; if you do this, the width, height, bit_depth, and color_type must be the same in
each call.

png_set PLTE(png_ptinfo_ptr, palette,
num_palette);

palette the palette for the file
(array of png_color)
num_palette number of entries in the palette

png_set gAMA(png_ptinfo_ptr, file_gamma);
png_set gAMA_fixed(png_ptmfo_ptr, int_file_gamma);

file_gamma +the gamma at which the image was
created (PNG_INFO_gAMA)

int_file_gamma - 100,000 times the gamma at which
the image was created

png_set cHRM(png_ptinfo_ptr, white_x, white_yred_x, red_y,
green_x, green, ylue x, blue_y)

png_set cHRM_XYZ(png_ptinfo_ptr, red_X, red_Yred_Z, green_X,
green_Ygreen_Z, blue_X, blue_Ylue Z7)

png_set cHRM_fixed(png_pinfo_ptr, int_white_x, int_white_y,
int_red_x, int_red_yint_green_x, int_green_y,
int_blue_x, int_blue_y)

png_set cHRM_XYZ_fixed(png_ptinfo_ptr, int_red_X, int_red_Y,
int_red_Z, int_green_X, int_green, ivit_green_Z,
int_blue_X, int_blue_Yint_blue_Z)

{white,red,green,blue} {x,y}
A color space encoding specified using the chromaticities
of the end points and the white point.

{red,green,blue} {X,Y,Z}
A color space encoding specified using the encoding end
points - the CIE tristimulus specification of the intended
color of the red, green and blue channels in the PNG RGB
data. Thewhite point is simply the sum of the three end
points.

png_set sRGB(png_pinfo_ptr, srgb_intent);
smgb_intent -the rendering intent

(PNG_INFO_sRGB) The presence of
the sRGB chunk means that the pixel

September 27, 2012 64

LIBPNG(3)

data is in the SRGB color space.

This chunk also implies specific
values of gAMA and cHRM. Rendering
intent is the CSS-1 property that

has been defined by the International
Color Consortium
(http://www.color.org).

It can be one of
PNG_sRGB_INTENT_SATURATION,
PNG_sRGB_INTENT_PERCEPTUAL,
PNG_sRGB_INTENT_ABSOLUTE, or
PNG_sRGB_INTENT_RELATIVE.

png_set sSRGB_gAMA_and_cHRM(png_,ptifo_ptr,
srgb_intent);

smgb_intent -the rendering intent
(PNG_INFO_sRGB) The presence of the
sRGB chunk means that the pixel
data is in the SRGB color space.
This function also causes gAMA and
cHRM chunks with the specific values
that are consistent with SRGB to be
written.

png_set iCCP(png_ptinfo_ptr, name, compression_type,

profile, proflen);
name -The profile name.

compression_type - The compression typeags

PNG_COMPRESSION_TYPE_BASE for PNG 1.0.

You may give NULL to this argument to
ignore it.

profile -International Color Consortium color
profile data. May contain NULSs.

proflen -length of profile data in bytes.

png_set_sBIT(png_ptinfo_ptr, Sg_bit);

sig_bit -the number of significant bits for
(PNG_INFO_sBIT) each of the graed,
green, and blue channels, whiclreare
appropriate for the gen color type

(png_color_16)

png_set tRNS(png_ptinfo_ptr, trans_alpha,
num_trans, trans_color);

trans_alpha array of alpha (transparency)
entries for palette (PNG_INFO_tRNS)

September 27, 2012

LibraryFunctions Manual

LIBPNG(3)

65

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

num_trans number of transparent entries
(PNG_INFO_tRNS)

trans_color graylevel or color sample values
(in order red, green, blue) of the
single transparent color for
non-paletted images (PNG_INFO_tRNS)

png_set_hIST(png_ptinfo_ptr, hist);

hist -histogram of palette (array of
png_uint_16) (PNG_INFO_hIST)

png_set tIME(png_ptinfo_ptr, mod_time);

mod_time time image was last modified
(PNG_VALID_tIME)

png_set_bKGD(png_ptmfo_ptr, background);

background background color (of type
png_color_16p) (PNG_VALID_bKGD)

png_set_text(png_ptinfo_ptr, text_ptr, num_text);

text_ptr -array of png_text holding image
comments

text_ptr[i].compression - type of compression used
on "text" PNG_TEXT_COMPRESSION_NONE
PNG_TEXT_COMPRESSION_zTXt
PNG_ITXT_COMPRESSION_NONE
PNG_ITXT_COMPRESSION_zTXt
text_ptr[il.key -keyword for comment. Must contain
1-79 characters.
text_ptr[i].text - text comments for current
keyword. Canbe NULL or empty.
text_ptr[i].text_length - length of text string,
after decompression, 0 for iTXt
text_ptr[i].itxt_length - length of itxt string,
after decompression, 0 for tEXt/zTXt
text_ptr[i].lang -language of comment (NULL or
empty for unknown).
text_ptr[i].translated_éyword - keyword in UTF-8 (NULL
or empty for unknown).

Note that the itxt_length, lang, and langyk

members of the text_ptr structure only exist when the
library is built with iTXt chunk support. Prior to
libpng-1.4.0 the library was built by default without
iTXt support. Also note that when iTXt is supported,
they contain NULL pointers when the "compression”
field contains PNG_TEXT_COMPRESSION_NONE or
PNG_TEXT_COMPRESSION_zTXt.

September 27, 2012 66

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

num_tet - number of comments

png_set_sPLT(png_pitnfo_ptr, &palette_ptr,
num_spalettes);

palette_ptr array of png_sPLT_struct structures
to be added to the list of palettes
in the info structure.

num_spalettes rumber of palette structures to be
added.

png_set_oFFs(png_ptnfo_ptr, offset_x, offset_y,
unit_type);

offset_x -positive dfset from the left
edge of the screen

offset_y -positive dfset from the top
edge of the screen

unit_type - PNG_OFFSET_PIXEL, PNG_OFFSET_MICROMETER

png_set_pHYs(png_ptinfo_ptr, res_x, res_y,
unit_type);

res_x -pixels/unit physical resolution
in x direction

res_y -pixels/unit physical resolution
in y direction

unit_type -PNG_RESOLUTION_UNKNOWN,
PNG_RESOLUTION_METER

png_set_sCAL(png_ptmfo_ptr, unit, width, height)
unit - physical scale units (an integer)
width - width of a pixel in physical scale units

height -height of a pixel in physical scale units
(width and height are doubles)

png_set sCAL_s(png_pinfo_ptr, unit, width, height)
unit - physical scale units (an integer)

width -width of a pixel in physical scale units
expressed as a string

height -height of a pixel in physical scale units
(width and height are strings éK2.54")

png_set_unknown_chunks(png_,pirfo_ptr, & unknowns,

September 27, 2012 67

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

num_unknowns)

unknavns -array of png_unknown_chunk
structures holding unknown chunks
unknawns[i].name -hame of unknown chunk
unknawns]i].data -data of unknown chunk
unknawnsJi].size -size of unknown chunk’data
unknownsii].location - position to write chunk in file
0: do not write chunk
PNG_HAVE_IHDR: before PLTE
PNG_HAVE_PLTE: before IBT
PNG_AFTER_IDAT: after IDAT

The "location” member is set automatically according to what part of the output file has already been writ-
ten. You can change its value after calling png_set _unknown_chunks() as demonstrated in pngtest.c.
Within each of the "locations", the chunks are sequenced according to their position in the structure (that is,
the \alue of "i", which is the order in which the chunk was either read from the input file or defined with
png_set_unknown_chunks).

A quick word about text and numxte text is an array of png_text structuresum_text is the number of
valid structures in the arrayeach png_text structure holds a language codeyadd, a text value, and a
compression type.

The compression typesvethe same valid numbers as the compression types of the imag€datantly,

the only valid number is zeroHowever, you can store ¢ either compressed or uncompressed, enlik
images, which alays hare b be @mpressed. Sié you dont want the t&t compressed, set the compres-
sion type to PNG_TEXT_COMPRESSION_NONBecause tEXt and zTXt chunks dbhavea language
field, if you specify PNG_TEXT_COMPRESSION_NONE or PNG_TEXT_COMPRESSION_zT¥t an
language code or translateelword will not be written out.

Until text gets around aviehundred bytes, it is not worth compressing it. After the text has been written
out to the file, the compression type is set to PNG_TEXT_COMPRESSION_NONE_WR or
PNG_TEXT_COMPRESSION_zTXt WR, so that it iswritten out agin at the end (in case you are call-
ing png_write_end() with the same struct).

The keywords that are gen in the PNG Specification are:

Title Short(one line) title or
caption for image

Author Nameof images aeator
Description Descriptionf image (possibly long)
Copyright Copyright notice

Creation Tme Time of original image creation
(usually RFC 1123 format, see below)

Software Softvare used to create the image
Disclaimer Legd disclaimer

Warning Warning of nature of content

September 27, 2012 68

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Source Deice used to create the image

Comment Miscellaneousomment; cowersion
from other image format

The leyword-text pairs work lile this. Keywords should be short simple descriptions of what the comment
is about. Some typicaldgwords are found in the PNG specification, as is some recommendatioag-on k
words. You can repeatdywords in a file. You can ezen write some text before the image and some .after
For example, you may want to put a description of the image before the imaigeale te disclaimer
until after so viewers working over modem connections darhaveto wait for the disclaimer to gover the
modem before thestart seeing the image=inally, keywords should be full words, not ablirations. Key-
words and text are in the ISO 8859-1 (Latin-1) character set (a supersgtlaf ®&SCII) and can not con-
tain NUL characters, and should not contain control or other unprintable charadenmmake the com-
ments widely readable, stick with basic ASCII, amdid machine specific character set extensiorestik
IBM-PC character set. Theelwword must be presentubyou can lege df the text string on non-com-
pressed pairs. Compressed pairs musge lzaext string, as only the ta string is compressed yanay, SO

the compression would be meaningless.

PNG supports modification time via the png_time structufe/o corversion routines are pwvided,
png_conert_from_time_t() for time_t and png_oaet_from_struct_tm() for struct tm. The time_t routine

uses gmtime().You don't haveto use either of these, but if you wish to fill in the png_time structure
directly, you should provide the time in wersal time (GMT) if possible instead of your local timdote

that the year number is the full year (e.g. 1998, rather than 98 - PNG is year 2000 compliant!), and that
months start with 1.

If you want to store the time of the original image creation, you should use a plain tEXt chunk with the
"Creation Time" leyword. Thisis necessary because the "creation time" of a PNG image isvbaine
vague, depending on whether you mean the PNG file, the time the inaggereated in a non-PNG format,

a dill photo from which the image was scanned, or possibly the subject matter itself. In oralalitete
machine-readable dates, it is recommended that the "Creatiwt TEXt chunk use RFC 1123 format
dates (e.g. "22 May 1997 18:07:10 GMT"), although thig igméquirement. Unlik the tIME chunk, the
"Creation Time" tEXt chunk is notxpected to be automatically changed by the sm#w D facilitate the

use of RFC 1123 dates, a function pngveonto_rfc1123(png_pirpng_timep) is provided to ceart

from PNG time to an RFC 1123 format string.

Writing unknown chunks
You can use the png_set_unknown_chunks function to queue up chunks for wyitiagjive it a chunk
name, ra data, and a size; thatdl there is to it. The chunks will be written by the next faliog
png_write_info_before PIE, png_write_info, or png_write_end functiony chunks previously read
into the info structure’ unknonvn-chunk list will also be written out in a sequence that satisfies the PNG
specificatiors ardering rules.

The high-level write interface
At this point there are twways to proceed; through the higlvdewrite interface, or through a sequence of
low-level write operations.You can use the high-lel interface if your image data is present in the info
structure. Alldefined output transformations are permitted, enabled by the following masks.

PNG_TRANSFORM_IDENTITY Ndransformation
PNG_TRANSFORM_RCKING Pack 1, 2 and 4-bit samples
PNG_TRANSFORM_RCKSWAP Changerder of packed

pixels to LSB first
PNG_TRANSFORM_INVER_MONO Invert monochrome images
PNG_TRANSFORM_SHIFT Normalizgixels to the

sBIT depth

September 27, 2012 69

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

The

PNG_TRANSFORM_BGR FIiiRGB to BGR, RGBA
to BGRA

PNG_TRANSFORM_SWP_ALPHA FlipRGBA to ARGB or GA
to AG

PNG_TRANSFORM_INVER_ALPHA Changelpha from opacity
to transparency
PNG_TRANSFORM_SWP_ENDIAN Byte-svap 16-bit samples
PNG_TRANSFORM_STRIP_FILLER Striput filler
bytes (deprecated).
PNG_TRANSFORM_STRIP_FILLER_BEFORE Strip out leading
filler bytes
PNG_TRANSFORM_STRIP_FILLER_AFTER Strqut trailing
filler bytes

If you have valid image data in the info structure (you can use png_set(rto put image data in the info
structure), simply do this:

png_write_png(png_ptinfo_ptr, png_transforms, NULL)

where png_transforms is an integer containing the bitwise OR of some set of transformatiomtiags.
call is equvadent to png_write_info(), followed the set of transformations indicated by the transform mask,
then png_write_image(), and finally png_write_end().

(The final parameter of this call is not yet us&bmeday it might point to transformation parameters
required by some future output transform.)

You must use png_transforms and not cally apng_set_transform() functions when you use
png_write_png().

low-level write interface
If you are going the lo-level route instead, you are waready to write all the file information up to the
actual image dataYou do tis with a call to png_write_info().

png_write_info(png_ptinfo_ptr);

Note that there is one transformation you may need to do before png_write_infB)lG files, the alpha
channel in an image is thevé of opacity If your data is supplied as avé of transpareng you can

invert the alpha channel before you write it, so that 0 is fully transparent and 255 (in 8-bit or paletted
images) or 65535 (in 16-bit images) is fully opaque, with

png_set_imert_alpha(png_ptr);

This must appear before png_write_info() instead of later with the other transformations because in the case
of paletted images the tRNS chunk data has tovsetéd before the tRNS chunk is written. If your image

is not a paletted image, the tRNS data (which in such cases represents a single color to be rendered as trans-
parent) von't need to be changed, and you can safely do this transformation after your png_write_info()
call.

If you need to write a prate chunk that you want to appear before the PLTE chunk when PLTE is present,
you can write the PNG info in tngeps, and insert code to write your own chunk between them:

png_write_info_before PLTE(png_pinfo_ptr);

png_set_unknown_chunks(png_,ptfo_ptr, ...);
png_write_info(png_ptinfo_ptr);

September 27, 2012 70

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

After you've written the file information, you can set up the library to handjespacial transformations of

the image data. Theavious ways to transform the data will be described in the order thasttbald

occur This is important, as some of these change the color type and/or bit depth of the data, and some oth-
ers only work on certain color types and bit deptigen though each transformation checks to see if it has
data that it can do something with, you should ensike to only enable a transformation if it will balid

for the data.For example, dort swap red and blue on grayscale data.

PNG files store RGB pixels pasttinto 3 or 6 bytes. This code tells the library to strip input data that has 4
or 8 bytes per pixel down to 3 or 6 bytes (or strip 2 or 4-byte grayscale+filler data to 1 or 2 bytes per pixel).

png_set_filler(png_ptO, ANG_FILLER_BEFORE);

where the 0 is unused, and the location is either PNG_FILLER_BEFORE or PNG_FILLER_AFTER,
depending upon whether the filler byte in the pixel is stored XRGB or RGBX.

PNG files pack pixels of bit depths 1, 2, and 4 into bytes as smallyasatieresulting in, for example, 8
pixels per byte for 1 bit files. If the data is supplied at 1 pixel per byte, use this code, which will correctly
pack the pixels into a single byte:

png_set_packing(png_ptr);

PNG files reduce possible bit depths to 1, 2, 4, 8, andf6ur data is of another bit depth, you can write
an sBIT chunk into the file so that decoders canve¥dbe original data if desired.

[* Set the true bit depth of the image data */
if (color_type & PNG_COLOR_MASK_COLOR)

{
sig_bit.red = true_bit_depth;
sig_bit.green = true_bit_depth;
sig_bit.blue = true_bit_depth;

}

else

{
sig_bit.gray = true_bit_depth;
}

if (color_type & PNG_COLOR_MASK_ALPHA)

sig_bit.alpha = true_bit_depth;
}

png_set_sBIT(png_ptinfo_ptr, &sig_bit);
If the data is stored in thewdbuffer in a bit depth other than one supported by PNG (e.g. 3 bit data in the
range 0-7 for a 4-bit PNG), this will scale thedues to appear to be the correct bit depth as is required by
PNG.

png_set_shift(png_pt&sig_bit);
PNG files store 16-bit pixels in netwk byte order (big-endian, ie. most significant bits first). This code

would be used if theare supplied the other way (little-endian, i.e. least significant bits first, ayeP@s
store them):

September 27, 2012 71

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)
if (bit_depth > 8)

png_set_swap(png_ptr);

If you are using padd-pixel images (1, 2, or 4 bits/@h, and you need to change the order the pixels are
packed into bytes, you can use:

if (bit_depth < 8)
png_set_packswap(png_ptr);

PNG files store 3 color pixels in red, green, blue ordéris code would be used if fhare supplied as
blue, green, red:

png_set_bgr(png_ptr);

PNG files describe monochrome as black being zero and white being one. This code would be used if the
pixels are supplied with thisversed (black being one and white being zero):

png_set_imert_mono(png_ptr);

Finally, you can write your wn transformation function if none of the existing ones meets your needs.
This is done by setting a callback with

png_set write_user_transform_fn(png_ptr,
write_transform_fn);

You must supply the function

void write_transform_fn(png_structp png_ging_row_infop
row_info, png_bytep data)

See pngtest.c for a workingample. Your function will be called before wrof the other transformations
are processedlf supported libpng also supplies an information routine that may be called from your call-
back:

png_get_current_row_number(png_ptr);
png_get_current_pass_number(png_ptr);

This returns the currentwopassed to the transformWith interlaced images the value returned is the ro
in the input sub-image image. Use PN®W FROM_PASS RW(row, pass) and
PNG_COL_FROM_RSS COL(col, pass) to find the output glixx,y) given an nterlaced sub-image @k
(row,col,pass).

The discussion of interlace handling eba@ontains more information on o use these values.

You can also set up a pointer to a user structure for use by your callback function.

png_set_user_transform_info(png , pser_ptr 0, 0);

The user_channels and user_depth parameters of this function are ignored when writing; you can set them
to zero as shown.

You can retriee the pointer via the function png_get_user_transform_pidg).example:

voidp write_user_transform_ptr =

September 27, 2012 72

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

png_get_user_transform_ptr(png_ptr);

It is possible to hze libpng flush ap pending output, either manuallyr automatically after a certain num-
ber of lines hae bteen written. To flush the output stream a single time call:

png_write_flush(png_ptr);

and to hae libpng flush the output stream periodically after a certain number of scanlireseea writ-
ten, call:

png_set_flush(png_ptnrows);

Note that the distance between rows is from the last time png_write_flush@aNed, or the first woof

the image if it has ner been called.So if you write 50 lines, and then png_set_flush 25, it will flush the
output on the next scanline, angegy 25 lines thereafteunless png_write_flush() is called before 25 more

lines hare been written. If nravs is too small (less than about 10 lines for a 640 pixel wide RGB image) the
image compression may decrease noticeably (although this may be acceptable for real-time applications).
Infrequent flushing will only dgrade the compression performance byva ffercent @er images that do

not use flushing.

Writing the image data

That's it for the transformationsNow you can write the image data. The simplest way to do this is in one
function call. If you have the whole image in memaryou can just call png_write_image() and libpng will
write the image.You will need to pass in an array of pointers to eaah rdhis function automatically
handles interlacing, so you domeed to call png_set_interlace_handling() or call this function multiple
times, or ay of that other stdfnecessary with png_write_rows().

png_write_image(png_ptrow_pointers);
where row_pointers is:

png_byte *row_pointers[height];

You can point to void or char or what you use for pixels.

If you dont want to write the whole image at once, you can use png_wnis(yranstead. If the file is not
interlaced, this is simple:

png_write_rows(png_ptrow_pointers,
number_of_rows);

row_pointers is the same as in the png_write_image() call.

If you are just writing one @ at a ime, you can do this with a single row_pointer instead of an array of
row_pointers:

png_bytep row_pointer = row;

png_write_row(png_ptrow_pointer);
When the file is interlaced, things can get a good deal more complicated. The only currently (as of the
PNG Specification version 1.2, dated July 1999) defined interlacing scheme for PNG files is the "Adam7"

interlace scheme, that breaks down an image intensenaller images of varying size. libpng willibd
these images for you, or you can do them yoursélfyou want to build them yourself, see the PNG

September 27, 2012 73

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

specification for details of which pixels to write when.

If you dont want libpng to handle the interlacing details, just use png_set_interlace_handling() and call
png_write_ravs() the correct number of times to write all the sub-images (png_set_interlace handling()
returns the number of sub-images.)

If you want libpng to build the sub-images, call this before you start writipgoavs:
number_of passes = png_set_interlace_handling(png_ptr);

This will return the number of passes need€drrently this is seen, but may change if another interlace
type is added.

Then write the complete image number_of_passes times.
png_write_rows(png_ptrow_pointers, number_of rows);

Think carefully before you write an interlaced imagd&pically code that reads such images reads all the
image data into memaryncompressed, before doingygmrocessing. Onlgode that can display an image
on the fly can tak advantage of the interlacing anglea then the image has to be exactly the correct size
for the output device, because scaling an image requires adjacent pixels and thesevatebteuatil all

the passes ha keen read.

If you do write an interlaced image you will hardlyee need to handle the interlacing yourseall
png_set_interlace_handling() and use the approach described abo

The only time it is conceéble that you will really need to write an interlaced image pass-by-pass is when
you hase read one pass by pass and made soned-pyxpixel transformation to it, as described in the read
code abwe. In this case use the PNGAFS ROWS and PNG_PASS COLS macros to determine the size
of each sub-image in turn and simply write the rows you obtained from the read code.

Finishing a sequential write
After you are finished writing the image, you should finish writing the filgou are interested in writing
comments or time, you should pass an appropriately filled png_info poihteyu are not interested, you
can pass NULL.

png_write_end(png_ptmfo_ptr);
When you are done, you can free all memory used by libpadhitk
png_destroy_write_struct(&png_p&info_ptr);

It is also possible to individually free the info_ptr members that point to libpng-allocated storage with the
following function:

png_free data(png_pinfo_ptr, mask, seq)

mask -identifies data to be freed, a mask
containing the bitwise OR of one or
more of
PNG_FREE_PLTE, PNG_FREE_TRNS,
PNG_FREE_HISTPNG_FREE_ICCP,
PNG_FREE_PCAL, PNG_FREEQRVS,
PNG_FREE_SCAL, PNG_FREE_SPL

September 27, 2012 74

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNG_FREE_TEXTPNG_FREE_UNKN,
or simply PNG_FREE_ALL

seq -sequence number of item to be freed
(-1 for all items)

This function may be safely called when the vah¢ storage has already been freed, or has not yet been
allocated, or s allocated by the user and not by libpng, and will in those cases do nothing. The "seq"
parameter is ignored if only one item of the selected data type, suciasi®hllaved. If"seq" is not -1,

and multiple items are allowed for the data type identified in the mask, such as text,condPthe nth

item in the structure is freed, where n is "seq".

If you allocated data such as a palette that you passed in to libpng with png_set_*, you must not free it until
just before the call to png_destroy_write_struct().

The default behavior is only to free data thaisvallocated internally by libpng. This can be changed, so
that libpng will not free the data, or so that it will free data that was allocated by the user with png_malloc()
or png_calloc() and passed in via a png_set_*() function, with

png_data_freer(png_pinfo_ptr;, freer mask)

freer -one of
PNG_DESTRY_ WILL FREE DATA
PNG_SET WILL FREE BTA
PNG_USER_WILL FREE_BTA

mask -which data elements are affected
same choices as in png_free_data()

For example, to transfer responsibility for some data from a read structure to a write structure, you could
use

png_data_freer(read_ptead_info_ptr,
PNG_USER_WILL_FREE_BTA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

png_data_freer(write_ptwrite_info_ptr,
PNG_DEST®Y_WILL_FREE_DATA,
PNG_FREE_PLTE|PNG_FREE_tRNS|PNG_FREE_hIST)

thereby briefly reassigning responsibility for freeing to the user but immediately afterwards reassigning it
once more to the write_desyréunction. Haing done this, it would then be safe to degtiee read struc-
ture and continue to use the PLTE, tRNS, and hIST data in the write structure.

This function only affects data that has already been allocated.can call this function before calling

after the png_set_*() functions to control whether the user or png_destroy_*() is supposed to free the data.
When the user assumes responsibility for libpng-allocated data, the application must use png_free() to free
it, and when the user transfers responsibility to libpng for data that the user has allocated, the user must
have uised png_malloc() or png_calloc() to allocate it.

If you allocated tet_ptr.text, text_ptrlang, and tet ptr.translated_dyword separatelydo rot transfer
responsibility for freeing text_ptr to libpng, because when libpng fills a pxtgsttecture it combines these
members with thedy member and png_free data() will free onlyxte ptr.key. Similarly, if you transfer
responsibility for free’ing tet_ptr from libpng to your application, your application must not separately

September 27, 2012 75

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

free those memberd=or a more compact example of writing a PNG image, see the file example.c.

V. Modifying/Customizing libpng:
There are tw issues here. The first is changingvhlibpng does standard thingsdikremory allocation,
input/output, and error handling. The second deals with more complicated thegddikg nev chunks,
adding ne transformations, and generally changingvhdpng works. Bothof those are compile-time
issues; that is, tlyeare generally determined at the time the code is written, and there is rarely a need to
provide the user with a means of changing them.

Memory allocation, input/output, and error handling

All of the memory allocation, input/output, and error handling in libpng goes through callbacks that are
usersettable. Thelefault routines are in pngmem.c, pngrio.c, pngwio.c, and pngerror.c, resjyeciio
change these functions, call the appropriate png_set_* fn() function.

Memory allocation is done through the functions png_malloc(), png_calloc(), and png_fiésy).
png_malloc() and png_free() functions currently just call the standard C functions and png_calloc() calls
png_malloc() and then clears themheallocated memory to zero; note that png_calloc(pngsgk) is not

the same as the calloc(humpbgze) function provided by stdlib. Thereis limited support for certain sys-

tems with sgmented memory architectures and the types of pointers declared by png.h match this; you will
have 1 use appropriate pointers in your application. Since it is unlikely that the method of handling mem-
ory allocation on a platform will change between applications, these functions must be modified in the
library at compile time.If you prefer to use a different method of allocating and freeing data, you can use
png_create read_struct_2() or png_create_write_struct_2()gistene your own functions as described
above. These functions also provide a void pointer that can bewedriga

mem_ptr=png_get_mem_ptr(png_ptr);
Your replacement memory functions mustdgrototypes as follows:

png_voidp malloc_fn(png_structp png_ptr,
png_alloc_size t size);

void free_fn(png_structp png_ppng_voidp ptr);

Your malloc_fn() must return NULL in case ddilure. Thepng_malloc() function will normally call
png_error() if it receies a NJLL from the system memory allocator or from your replacement malloc_fn().

Your free_fn() will neer be alled with a NULL ptr since libpngs png_free() checks for NULL before
calling free_fn().

Input/Output in libpng is done through png_read() and png_write(), which currently just call fread() and
fwrite(). TheFILE * is stored in png_struct and is initialized via png_init_io(). If you wish to change the
method of 1/O, the library supplies callbacks that you can set through the function png_set_read_fn() and
png_set_write_fn() at run time, instead of calling the png_init_io() funciidrese functions also provide a

void pointer that can be retvied via the function png_get_io_ptr(Jror example:

png_set_read_fn(png_structp read_ptr,
voidp read_io_ptrpng_rw_ptr read_data_fn)

png_set_write_fn(png_structp write_ptr,

voidp write_io_ptrpng_rw_ptr write_data_fn,
png_flush_ptr output_flush_fn);

September 27, 2012 76

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

voidp read_io_ptr = png_get_io_ptr(read_ptr);
voidp write_io_ptr = png_get_io_ptr(write_ptr);

The replacement I/O functions mustbarototypes as follows:

void user_read_data(png_structp png_ptr,
png_bytep data, png_size_t length);

void user_write_data(png_structp png_ptr,
png_bytep data, png_size_t length);

void user_flush_data(png_structp png_ptr);
The user_read_data() function is responsible for detecting and handling end-of-data errors.

Supplying NULL for the read, write, or flush functions sets them back to using thdtdefstream func-
tions, which expect the io_ptr to point to a standard *FILE structiaiis.probably a mistakto tse NULL
for one of write_data_fn and output_flush_fn but not both of them, unless yeubhi& libpng with
PNG_NO_WRITE_FLUSH defined. Itis an error to read from a write stream, and vice versa.

Error handling in libpng is done through png_error() and prgning(). Errorshandled through
png_error() are fatal, meaning that png_error() showermeturn to its caller Currently this is handled
via setjmp() and longjmp() (unless yowhkaompiled libpng with PNG_NO_SETJMI which case it is
handled via PNG_ABORT()), but you could change this to do thingselik() if you should wish, as long
as your function does not return.

On non-fatal errors, png_warning() is called to print a warning message, and then control returns to the
calling code. By default png_error() and png_warning() print a message on stderr via fprintf() unless the
library is compiled with PNG_NO_CONSOLE_IO defined (because yout deemit the messages) or
PNG_NO_STDIO defined (because fprintf() isavailable). If you wish to change the behavior of the

error functions, you will need to set up yowrromessage callbacks. These functions are normally sup-
plied at the time that the png_struct is creatitds also possible to redirect errors and warnings to your
own replacement functions after png_create_* struct() has been called by calling:

png_set_error_fn(png_structp png_ptr,
png_voidp error_ptpng_error_ptr error_fn,
png_error_ptr warning_fn);

png_voidp error_ptr = png_get_error_ptr(png_ptr);

If NULL is supplied for either error_fn or warning_fn, then the libpng default function will be used, calling
fprintf() and/or longjmp() if a problem is encounterékthe replacement error functions shoulddgaram-
eters as follows:

void user_error_fn(png_structp png_ptr,
png_const_charp error_msg);

void user_warning_fn(png_structp png_ptr,
png_const_charp warning_msg);

The motvation behind using setjmp() and longjmp() is the C++whand catch exception handling meth-

ods. Thismakes the code much easier to write, as there is no need to creegleturn code of \eery

function call. However, there are some uncertainties about the status of ladables after a longjmp, so

the user may want to be careful about doing anything after setjmp returns non-zero besides returning itself.

September 27, 2012 77

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Consult your compiler documentation for more detalter an dternative gproach, you may wish to use
the "cexcept" facility (see http://ceept.sourcefare.net), which is illustrated in pnghd.c and in con-
trib/visupng.

Custom chunks
If you need to read or write custom chunks, you may need to get deeper into the libpngreodbrary
now has mechanisms for storing and writing chunks of unkntype; you canwen declare callbacks for
custom chunksHowever, this may not be good enough if the library code itself needs tw &bout inter
actions between your chunk and existing ‘intrinsic’ chunks.

If you need to write a meintrinsic chunk, first read the PNG specification. Acquire a fivet & under-
standing of hw it works. Ry particular attention to the sections that describe chunk names, and look at
how other chunks were designed, so you can do things simil8egond, check out the sections of libpng
that read and write chunksry to find a chunk that is similar to yours and use it as a templabtze

details can be found in the comments inside the ctids.best to handle prte or unknown chunks in a
generic method, via callback functions, instead of by modifying libpng functions. This is illustrated in
pngtest.c, which uses a callback function to handleatpr'vpAg" chunk and the me"sTER" chunk,

which are both unknown to libpng.

If you wish to write your own transformation for the data, look through the part of the code that does the
transformations, and check out some of the simpler ones to get an ideatb&hwork. Try to find a sim-

ilar transformation to the one you want to add andyadpof it. More details can be found in the com-
ments inside the code itself.

Configuring for 16-bit platforms
You will want to look into zconf.h to tell zlib (and thus libpng) that it cannot allocate more then 64K at a
time. Ewn if you can, the memoryom’'t be acessible. Sdimit zlib and libpng to 64K by defining
MAXSEG_64K.

Configuring for DOS
For DOS users who only ke access to the lower 640K, you will Ve o limit zlib’s memory usage via a
png_set_compression_menvdk¥) call. See zlib.h or zconf.h in the zlib library for more information.

Configuring for Medium Model
Libpng’'s support for medium model has been tested on most of the popular compdeke sure
MAXSEG_64K gets defined, USEAR_KEYWORD gets defined, and FAR gets defined to far in png-
conf.h, and you should be all sé&verything in the library (except for zl&dructure) is expecting far data.
You must use the typedefs with the p or pp on the end for pointers (or at least look at them and be careful).
Make mote that the rows of data are defined as png_bytepp, which is an "unsigned char far * far *".

Configuring for gui/windowing platforms:
You will need to write n& error and warning functions that use the GUI irded, as described pieusly,
and set them to be the error and warning functions at the time that png_create_*_struct() is called, in order
to have them aailable during the structure initializatiorthey can be changed later via png_set_error_fn().
On some compilers, you may alsovéd change the memory allocators (png_malloc, etc.).

Configuring for compiler xxx:
All includes for libpng are in pngconf.Hf you need to add, change or delete an include, this is the place to
do it. The includes that are not needed outside libpng are placed inydngptiich is only used by the
routines inside libpng itselfThe files in libpng proper only include pngphi and png.h, which %14%in
turn includes pngconf.h. in turn includes pngconf.h and, as of libpng-1.5.0, pnglibcdkd.hof
libpng-1.5.0, pngprih dso includes three other pate header files, pngstruct.h, pnginfo.h, and

September 27, 2012 78

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

pngdebug.h, which contain material that previously appeared in the public headers.

Configuring zlib:
There are special functions to configure the compression. Perhaps the most useful one changes the com-
pression leel, which currently uses input compression values in the range @hélibrary normally uses
the default compressionvid (Z_DEFAULT _COMPRESSION = 6).Tests hae $own that for a lage
majority of images, compressioalues in the range 3-6 compress nearly as well as higles, land do so
much fster For online applications it may be desirable tedhaaximum speed (Z_BEST_SPEED = 1).
With versions of zlib after v0.99, you can also specify no compression (Z_NO_COMPRESSIONIt= 0), b
this would create files larger than just storing the bitmap. You can specify the compressiondeby
calling:

#include zlib.h
png_set_compressionvipng_pt; levd);

Another useful one is to reduce the memowgllased by the library The memory leel defaults to 8, but it
can be lowered if you are short on memory (running DOS x@amele, where you only kia 40K). Note
that the memory el does hae an efect on compression; among other things, lowesldewill result in

sections of incompressible data being emitted in smaller stored blocks, with a correspondjrglselar
tive ovehead of up to 15% in the worst case.

#include zlib.h
png_set_compression_menvdgpng_ptr levd);

The other functions are for configuring zlibhey are not recommended for normal use and may result in
writing an irvalid PNG file. See zlib.h for more information on what these mean.

#include zlib.h
png_set_compression_strategy(png_ptr,
strategy);

png_set_compression_window_bits(png_ptr,
window_bits);

png_set_compression_method(png, pithod);
png_set_compression_buffer_size(png_site);

As of libpng version 1.5.4, additional APIs becamailable to set these separately for norAIDcom-
pressed chunks such as zTXt, iTXt, and iCCP:

#include zlib.h
#if PNG_LIBPNG_VER >= 10504
png_set_text_compressionvé{png_ptt levd);

png_set_text_compression_menveléong_ptr levd);

png_set_text_compression_strategy(png_ptr,
strategy);

png_set_text_compression_window_bits(png_ptr,
window_bits);

png_set_text_compression_method(png_mpéthod);

September 27, 2012 79

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

#endif

Controlling r ow filtering
If you want to control whether libpng uses filtering or not, which filters are used, anit boes about
picking raw filters, you can call one of these functions. The selection and configuration fifteos can
have a gynificant impact on the size and encoding speed and a somewhat lesser impact on the decoding
speed of an image. Filtering is enabled by default for RGB and grayscale images (with and without alpha),
but not for paletted images nor foryaimages with bit depths less than 8 bits/pixel.

The 'method’ parameter sets the main filtering method, which is currently only '0’ in the PNG 1.2 specifi-
cation. Thefilters’ parameter sets which filter(s), if yrshould be used for each scanline. Possiblees
are PNG_ALL_FILTERS and PNG_NO_FILTERS to turn filtering on and off, reygbcti

Individual filter types are PNG_FILTER_NONE, PNG_FILTER_SUB, PNGTER_UR PNG_FIL-
TER_AV/G, PNG_FILTER_FAETH, which can be bitwise ORed together with ’|' to specify one or more fil-

ters to use. These filters are described in more detail in the PNG specification. If you intend to change the
filter type during the course of writing the image, you should start with flags set for all of the filters you
intend to use so that libpng can initialize its internal structures appropriately for all of the filter(typtss.

that this means the firstwomust alvays be adaptely filtered, because libpng currently does not allocate

the filter buffers until png_write_row() is called for the first time.)

filters = PNG_FILTER_NONE | PNG_FILTER_SUB
PNG_FILTER_UP | PNG_FILTER \AG |
PNG_FILTER_PAETH | PNG_ALL_FILTERS;

png_set filter(png_ptPNG_FILTER_TYPE_BASE,
filters);

The second parameter can also be
PNG_INTRAPIXEL_DIFFERENCING if you are
writing a PNG to be embedded in a MNG
datastream. Thigarameter must be the
same as the value of filter_method used
in png_set_IHDR().

It is also possible to influencewdibpng chooses from among thesitable filters. This is done in one or
both of two ways - by telling it hav important it is to keep the same filter for sucaessws, and by
telling it the relatvte computational costs of the filters.

double weights[3] ={1.5, 1.3, 1.1},
costs[PNG_FILTER_VALUE_LAST] =
{1.0,1.3,1.3,1.5, 1.7}

png_set_filter_heuristics(png_ptr,
PNG_FILTER_HEURISTIC_WEIGHTED, 3,
weights, costs);

The weights are multiplying factors that indicate to libpng that thfifter should be the same for succes-
sive rows wnless another wofilter is that mawy times better than the previous filtdn the abeoe example,

if the previous 3 filters were SUB, SUB, NONE, the SUB filter couicele’sum of absolute dérences"

1.5 x 1.3 times higher than other filters and still be chosen, while the NONE filter coeld lsam 1.1
times higher than other filters and still be chosdnspecified weights are taken to be 1.0, and the specified
weights should probably be decliningdithose abee in order to emphasize recent filtengeoolder filters.

The filter costs specify for each filter type a r&fattbcoding cost to be considered when selecting ro

September 27, 2012 80

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

filters. Thismeans that filters with higher costs are less likely to be choserfilbers with lower costs,
unless their "sum of absolute differences” is that much smallee costs do not necessarily reflect the
exact computational speeds of the various filters, since this would unduly influence the final image size.

Note that the humbers al®were irvented purely for this example and argegi only to help explain the
function usage. Little testing has been done to find optimum values for either the costs or the weights.

Removing unwanted object code
There are a bunch of #defiseéh pngconf.h that control what parts of libpng are compiled. All the defines
end in _SUPPORED. If you are neer going to use a capabilityou can change the #define to #undef
before recompiling libpng andwayourself code and data space, or you can turimdividual capabilities
with defines that begin with PNG_NO .

In libpng-1.5.0 and latethe #defines ae in pnglibconf.h instead.

You can also turn all of the transforms and ancillary chunk capabilitfesnofrasse with compiler direc-
tives that define PNG_NO_READ[or WRITE]_TRANSFORMS, or PNG_NO_READ|or
WRITE]_ANCILLARY_CHUNKS, or all four dong with directies to urn on ag of the capabilities that
you do vant. ThePNG_NO_READ[or WRITE]_TRANSFORMS direwtis dsable the extra transforma-
tions but still lege the library fully capable of reading and writing PNG files with all known public chunks.
Use of the PNG_NO_READ[or WRITE]_ANCILLARY_CHUNKS direed poduces a library that is
incapable of reading or writing ancillary chunks. If you are not using the progresading capability
you can turn that 6fvith PNG_NO_PROGRESSIVE_READ (daronfuse this with the INTERLBING
capability which you'll still have).

All the reading and writing specific code are in separate files, so thex Bhlould only grab the files it
needs. Hwever, if you want to ma& aure, or if you are ilding a stand alone librargll the reading files
start with "pngr" and all the writing files start with "pngwThe files that dom’match either (lile png.c,
pngtrans.c, etc.) are used for both reading and writing, avaysineed to be included. The progressi
reader is in pngpread.c

If you are creating or distributing a dynamically linked library (a .so or DLL file), you should noteemo
disable ag parts of the libraryas his will cause applications liek with different versions of the library to
fail if they call functions not @ailable in your library The size of the library itself should not be an issue,
because only those sections that are actually used will be loaded into memory.

Requesting debug printout
The macro definition PNG_DEBUG can be used to request debugging pri#ilit.to an integer value in
the range 0 to 3. Higher numbers result in increasing amounts udgial information. The information
is printed to the "stderr" file, unless another file name is specified in the PNG_DEBUG_FILE macro defini-
tion.

When PNG_DEBUG > 0, the following functions (macros) becovatable:

png_debug(ieel, message)

png_debugl(hsel, message, pl)

png_debug2(hel, message, pl, p2)
in which "level" is compared to PNG_DEBUG to decide whether to print the message, "message" is the
formatted string to be printed, and p1 and p2 are parameters that are to be embedded in the string according

to printf-style formatting directes. For example,

png_debugl(2, "foo=%d0, foo);

September 27, 2012 81

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

is expanded to

if (PNG_DEBUG > 2)
fprintf(PNG_DEBUG_FILE, "foo=%d0, foo);

When PNG_DEBUG is definedubis zero, the macros aréefined, but you can still use PNG_DB8
to control your own debugging:

#ifdef PNG_DEBUG
fprintf(stderr ...
#endif

When PNG_DEBUG = 1, the macros are defined, but only png_debug statements al/in@ Ieill be
printed. Therearent any such statements in thiseksion of libpng, but if you insert some yheill be
printed.

VI. MNG support
The MNG specification (ailable at http://wwwlibpng.og/pub/mng) allows certain extensions to PNG for
PNG images that are embedded in MNG datastreams. Libpng can support some oftémssene. @
enable them, use the png_permit_mng_features() function:

feature_set = png_permit_mng_features(png nmsk)

mask is a png_uint_32 containing the bitwise OR of the
features you want to enable. These include
PNG_FLAG_MNG_EMPTY_PLTE
PNG_FLAG_MNG_FILTER_64
PNG_ALL_MNG_FEATURES

feature_set is a png_uint_32 that is the bitwise AND of
your mask with the set of MNG features that is
supported by the version of libpng that you are using.

It is an error to use this function when reading or writing a standalone PNG file with the PNG 8-byte signa-
ture. ThePNG datastream must be wrapped in a MNG datastréana minimum, it must hee the MNG

8-byte signature and the MHDR and MEND chunks. Libpng does not provide support for thege or an
other MNG chunks; your application must provide its own support for thésa. may wish to consider

using libmng (mailable at http://www.libmng.com) instead.

VII. Changes to Libpng from version 0.88
It should be noted thatevsions of libpng later than 0.96 are not distributed by the original libpng author
Guy Schalnat, nor by Andreas Dilgamo had takener from Guy during 1996 and 1997, and digitéyl
versions 0.89 through 0.96ubrather by another member of the original PNG Group, Glenn Randers-
Pehrson. Gugnd Andreas are still & and well, but thg havemoved on to dher things.

The old libpng functions png_read_init(), png_write_init(), png_info_init(), png_read_destroy(), and
png_write_destry() have bkeen meed to PNG_INTERNAL in version 0.95 to discourage their usenese
functions will be remweed from libpng version 1.4.0.

The preferred method of creating and initializing the libpng structures is via the png_create _read_struct(),
png_create_write_struct(), and png_create_info_struct() becaysksdfee the size of the structures from

the application, all version error checking, and also allthe use of custom error handling routines-dur

ing the initialization, which the old functions do not. The functions png_read_destroy() and
png_write_destry() do not actually free the memory that libpng allocated for these structs, but just reset

September 27, 2012 82

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

the data structures, so thecan be wused instead of png_degtmead_struct() and
png_destrg write_struct() if you feel there is too much systemerbead allocating and freeing the
png_struct for each image read.

Setting the error callbacks via png_set message fn() before png_read_init() as was suggested in
libpng-0.88 is no longer supported because this caused applications that do not use custom error functions
to fail if the png_ptr was not initialized to zerdt is still possible to set the error callbacks AFTER
png_read_init(), or to change them with png_set_error_fn(), which is essentially the same funttion, b
with a nev name to force compilation errors with applications that try to use the old method.

Starting with version 1.0.7, you can find out which version of the library you are using at run-time:
png_uint_32 libpng_vn = png_access_version_number();

The number libpng_vn is constructed from the magsion, minor version with leading zero, and release
number with leading zero, (e.qg., libpng_vn for version 1.0.7 is 10007).

Note that this function does not &al mg_ptr so you can call it before youé aeated one.
You can also check which version of png.h you used when compiling your application:

png_uint_32 application_vn = PNG_LIBPNG_VER,;

VIII. Changes to Libpng from version 1.0.x to 1.2.x
Support for user memory management was enabled hyltleflo accomplish this, the functions png_cre-
ate_read_struct_2(), png_create write_struct_2(), png_set_mem_fn(), png_get mem_ptr(), png_mal-
loc_default(), and png_free_default() were added.

Support for the iTXt chunk has been enabled by default as of version 1.2.41.
Support for certain MNG features was enabled.

Support for numbered error messages wdded However, we reve got around to actually numbering the
error messages. The function png_set_strip_error_numbeas(faded (Note: the prototype for this func-
tion was inadvertently remred from png.h in PNG_NO_ASSEMBLER_CODE builds of libpng-1.2.15.
was restored in libpng-1.2.36).

The png_malloc_warn() function was added at libpng-1.2.3. This issues agm@qgvand returns NULL
instead of aborting when it fails to acquire the requested memory allocation.

Support for setting user limits on image width and height venabled by dafilt. The functions
png_set_user_limits(), png_get user_width_max(), and png_get user_height max() were added at
libpng-1.2.6.

The png_set_add_alpha() function was added at libpng-1.2.7.

The function png_set expand_gray 1 2 4 to 8()asw added at libpng-1.2.9. Unlike

A number of macro definitions in support of runtime selection of assembler code features (especially Intel
MMX code support) were added at libpng-1.2.0:

PNG_ASM_FLAG_MMX_SUPPORT_COMPILED

September 27, 2012 83

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNG_ASM_FLAG_MMX_SUPPORT_IN_CPU
PNG_ASM_FLAG_MMX_READ_COMBINE_RW
PNG_ASM_FLAG_MMX_READ_INTERLACE
PNG_ASM_FLAG_MMX_READ_FILTER_SUB
PNG_ASM_FLAG_MMX_READ_FILTER_UP
PNG_ASM_FLAG_MMX_READ_FILTER_AG
PNG_ASM_FLAG_MMX_READ_FILTER_PAETH
PNG_ASM_FLAGS_INITIALIZED
PNG_MMX_READ_FLAGS

PNG_MMX_FLAGS

PNG_MMX_WRITE_FLAGS

PNG_MMX_FLAGS

We alded the following functions in support of runtime selection of assembler code features:

png_get_mmx_flagmask()
png_set_mmx_thresholds()
png_get_asm_flags()
png_get_mmx_bitdepth_threshold()
png_get_mmx_rowbytes_threshold()
png_set_asm_flags()

We replaced all of these functions with simple stubs in libpng-1.2.20, when the Intel assembleasode w
removed due to a licensing issue.

These macros are deprecated:

PNG_READ_TRANSFORMS_NOT_SUPPORTED
PNG_PROGRESSIVE_READ_NOT_SUPPORTED
PNG_NO_SEQUENTIAL_READ_SUPPORTED
PNG_WRITE_TRANSFORMS_NOT_SUPPORTED
PNG_READ_ANCILLARY_CHUNKS_NOT_SUPPORTED
PNG_WRITE_ANCILLARY _CHUNKS_NOT_SUPPORTED

They havebeen replaced, respedy, by:

PNG_NO_READ_TRANSFORMS
PNG_NO_PROGRESSIVE_READ
PNG_NO_SEQUENTIAL_READ
PNG_NO_WRITE_TRANSFORMS
PNG_NO_READ_ANCILLARY_CHUNKS
PNG_NO_WRITE_ANCILLARY_CHUNKS

PNG_MAX_UINT was replaced with PNG_UINT_31 MAX. It has been deprecated since libpng-1.0.16
and libpng-1.2.6.

The function
png_check_sig(sig, num) was replaced with
Ipng_sig_cmp(sig, 0, num) It has been deprecated since libpng-0.90.

The function

1.2.9.

September 27, 2012 84

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

IX. Changes to Libpng from version 1.0.x/1.2.x to 1.4.x
Private libpng prototypes and macro definitions were@ddrom png.h and pngconf.h into ampngpriv.h
header file.
Functions png_set_benign_errors(), png_benign_error(), and png_chunk_benign_error() were added.
Support for setting the maximum amount of memory that the application will allocate for reading chunks
was aded, as a security measure. The functions png_set chunk cache_max() and
png_get_chunk_cache_max() were added to the library.

We implemented support for 1/O states by adding png_ptr member io_state and functions
png_get_io_chunk_name() and png_get_io_state() in pngget.c

We alded PNG_TRANSFORM_GRAY_TO_RGB to thea#able high-level input transforms.
Checking for and reporting of errors in the IHDR chunk is more thorough.
Support for global arrays was reved, to improe thread safety.
Some obsolete/deprecated macros and functioresbiean remuoed.
Typecasted NULL definitions such as
#define png_eidp_NULL (png_widp)NULL were eliminated. If you used these in your applica-

tion, just use NULL instead.

The png_struct and info_struct members "trans" and "trans_values" were changed to "trans_alpha" and
"trans_color", respectgly.

The obsolete, unused pnggccrd.c and pngvcrd.c files and related makefiles weed.remo

The PNG_1 0 Xand PNG_1 2 X macros were eliminated.

The PNG_LEGACY_SUPPORTED macro was eliminated.

Many WIN32_WCE #ifdefs were renved.

The functions png_read_init(info_ptr), png_write_init(info_ptr), png_info_init(info_ptr),
png_read_destyg), and png_write_destroy() & keen remwed. The have been deprecated since

libpng-0.95.

The png_permit_empty plte() was revad. It has been deprecated since libpng-1.0.9. Use png_per
mit_mng_features() instead.

We removed the obsolete stub functions png_get mmx_flagmask(), png_set mmx_thresholds(),
png_get_asm_flags(), png_get_mmx_bitdepth_threshold(), png_get_mvbytes_threshold(),
png_set_asm_flags(), and png_mmx_supported()

We removed the obsolete png_check_sig(), png_meynagheck(), and png_memset_check() functions.
Instead use Ipng_sig_cmp(), png_memcpy(), and png_memset(), redpecti

expanded aptRNS chunk to an alpha channel.

September 27, 2012 85

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Macros for png_get_uint_16, png_get_uint_32, and png_get_int_32 were added and are usedltby def
instead of the corresponding functions. Unfortunatetym libpng-1.4.0 until 1.4.4, the png_get_uint_16
macro (but not the function) incorrectly returned a value of type png_uint_32.

We dhanged the prototype for png_malloc() from
png_malloc(png_structp png_ppng_uint_32 size) to
png_malloc(png_structp png_ppng_alloc_size_t size)

This also applies to the prototype for the user replacement malloc_fn().

The png_calloc() function & added and is used in place of of "png_malloc(); memset();" except in the
case in png_read_png() where the array consists of pointers; in this case a "for" loop is used after the
png_malloc() to set the pointers to NULL, tegiobust. behgior in case the application runs out of mem-

ory part-way through the process.

We changed the prototypes of png_get _compressigifelb size() and png_set_compressianfdr_size()
to work with png_size_t instead of png_uint_32.

Support for numbered error messages was vedhby default, since we ner got around to actually num-
bering the error messages. The function png_set_strip_error_numbers() wasdrémmo the library by
default.

The png_zalloc() and png_zfree() functions are no longeoréed. Thepng_zalloc() function no longer
zeroes out the memory that it allocatégplications that called png_zalloc(png_,ptumber sze) can call
png_calloc(png_ptmumber*size) instead, and can call png_free() instead of png_zfree().

Support for dithering was disabled by aeit in libpng-1.4.0, because it has not been well tested and
doesnt actually "dither". The code &s not remeed, havever, and could be enabled by building libpng
with PNG_READ_DITHER_SUPPORTED defined. In libpng-1.4.2, this support was reenabled, but the
function was renamed png_set_quantize() to reflect more accurately what it actuallAtoes.same

time, the PNG_DITHER_[RED,GREEN_BLUE] _BITS macros were also renamed to POENQ
TIZE_[RED,GREEN,BLUE]_BITS, and PNG_READ_DITHER_SUPPORTED was renamed to
PNG_READ_QJANTIZE_SUPPORTED.

We removed the trailing " from the warning and error messages.

X. Changes to Libpng from version 1.4.x to 1.5.x
From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macub fot the function) incorrectly returned alwe
of type png_uint_32.

Checking for imalid palette ind& on read or write \as added at libpng 1.5.10. When awalidl index is
found, libpng issues a benign errdtis is enabled by default but can be disabled in each png_ptr with

png_set_check_for valid_index(png_ptralowed);
allowed -one of
0: disable
1: enable
A. Changes that affect users of libpng
There are no substantial APl changes between the non-deprecated parts of the 1.4.5 APl and the 1.5.0 AP,

however, the ability to directly access members of the main libpng control structures, png_struct and
png_info, deprecated in earlier versions of libpng, has been completelyerbfram libpng 1.5.

September 27, 2012 86

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

We ro longer include zlib.h in png.h. Applications that need access to information .im &iib need to
add the '#include "zlib.h™ directe. It does not matter whether it is placed prior to or after the #include
png.h™ directve.

The png_sprintf(), png_strcpy(), and png_strncpy() macros are no longer used and weed.remo

We moved the png_strlen(), png_memcpy(), png_memset(), and png_memcmp() macros inete pri
header file (pngpvih) that is not accessible to applications.

In png_get_iCCRhe type of "profile" was changed from png_charpp to png_bytepp, and in png_set iCCP
from png_charp to png_const_bytep.

There are changes of form in png.h, including/@ad changed macros to declare parts of the Adime
API functions with aguments that are pointers to data not modified within the functienbegn corrected
to declare these arguments with PNG_CONST.

Much of the internal use of C macros to control the library build has also changed and some of this is visi-
ble in the exported header files, in particular the use of macros to control data and API elements visible dur
ing application compilation may require significant revision to application c@tis. extremely rare for an
application to do this.)

Any program that compiled against libpng 1.4 and did not use deprecated features or access internal library
structures should compile and work against libpng 1xX&em@ for the change in the prototype for
png_get iCCP() and png_set_iCCP() API functions mentionedeabo

libpng 1.5.0 adds PNG_ABS macros to help in the reading and writing of interlaced images. The macros
return the number of ves and columns in each pass and information that can be used to de-interlace and (if
absolutely necessary) interlace an image.

libpng 1.5.0 adds an APl png_longjmp(png, ptalue). This API calls the application-puided

png_longjmp_ptr on the internal, but application initialized, longjmrifeln It is provided as a corenience
to avoid the need to use the png_jmpbuf macro, which had the unnecessaryesitiefetsetting the inter
nal png_longjmp_ptr value.

libpng 1.5.0 includes a complete fixed point ABly default this is present along with the corresponding
floating point API. In general the fixed point API is faster and smaller than the floating point one because
the PNG file format used fixed point, not floating poinhis applies een if the library uses floating point

in internal calculationsA new macro, PNG_FL@TING_ARITHMETIC_SUPPORED, rereals whether

the library uses floating point arithmetic (the aléf) or fixed point arithmetic internally for performance
critical calculations such asammma correction. In some cases, the gamma calculations may produce
slightly different results. This has changed the results in png_rgb_to _gray and in alpha composition
(png_set_background for example). This appliesm éf the original image was already linear (gamma ==
1.0) and, therefore, it is not necessary to linearize the imébes is because libpng has *not* been
changed to optimize that case correotét.

Fixed point support for the sCAL chunk comes with an importavgatathe sCAL specification uses a
decimal encoding of floating point values and the acguwfPENG fixed point values is inslidient for rep-
resentation of these values. Consequently a "string" APl (png_get sCAL_s and png_set SCAL_s) is the
only reliable vay of reading arbitrary SCAL chunks in the absence of either the floating point API er inter
nal floating point calculations.

Applications no longer need to include the optional distribution header file pngusr.h or define the corre-

sponding macros during application build in order to see the coaganv of the libpng API. From 1.5.0
application code can check for the corresponding _ SUPPORTED macro:

September 27, 2012 87

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

#ifdef PNG_INCH_CONVERSIONS SUPPORTED
/* code that uses the inch a@nsion APIs. */ #endif

This macro will only be defined if the inch a@msion functions hee been compiled into libpng. The full

set of macros, and whether or not support has been compiled injagabla in the header file pnglib-
conf.h. Thisheader file is specific to the libpngilol. Noticethat prior to 1.5.0 the _SUPPORTED macros
would aways hare the default definition unless reset by pngusr.h or by explicit settings on the compiler
command line. These settings may produce compiggniwgs or errors in 1.5.0 because of macro redefini-
tion.

From libpng-1.4.0 until 1.4.4, the png_get_uint_16 macub fot the function) incorrectly returned alwe
of type png_uint_32. libpng 1.5.0 is consistent with the implementation in 1.4.5 and 1.2.x (where the
macro did not exist.)

Applications can no choose whether to use these macros or to call the corresponding function by defining
PNG_USE_READ_MACRS or PNG_NO_USE_READ_M2ROS before including png.h. Notice that

this is only supported from 1.5.0 -defining PNG_NO_USE_READQRAS prior to 1.5.0 will lead to a

link failure.

Prior to libpng-1.5.4, the zlib compressor used the same set of parameters when compressiigdiua D
and textual data such as zTXt and iCQR libpng-1.5.4 we reinitialized the zlib stream for each type of
data. V¢ added five png_set_text *() functions for setting the parameters to use with textual data.

Prior to libpng-1.5.4, the PNG_READ_160T8 ACCURATE_SCALE_SUPPQORED option was dfby

default, and slightly inaccurate scaling occurred. This option can no longer be turned off, and the choice of
accurate or inaccurate 16-to-8 scaling is by using thepmg_set_scale 16 _to_8() API for accurate scal-

ing or the old png_set_strip_16_to_8() API for simple chopping.

Prior to libpng-1.5.4, the png_set_user_limits() function could only be used to reduce the width and height
limits from the value of PNG_USER_WIDTH_MAX and PNG_USER_HEIGHT_MAX, although this doc-
ument said that it could be used tewide them. Nav this function will reduce or increase the limits.

Starting in libpng-1.5.10, the user limits can be set en masse with the configuration option
PNG_SAFE_LIMITS_SUPPORED. If this option is enabled, a set of "safe" limits is applied in pradppri
These can beverridden by application calls to png_set_user_limits(), png_set_user_chunk_cache_max(),
and/or png_set_user_malloc_max() that increase or decrease the limits. Also, in libpng-1.5.18uthe def
width and height limits were increased from 1,000,000 toffi1fi.e., made unlimited). Therefore, the
limits are now
default safe

png_user_width_max Oxfffff 1,000,000

png_user_height max OXiffff 1,000,000

png_user_chunk_cache_maxublimited) 128

png_user_chunk_malloc_max 0 (unlimited) 8,000,000

B. Changes to the build and configuration of libpng

Details of internal changes to the library code can be found in the CHANGES file and in the GIT repository
logs. Thesewill be of no concern to the vast majority of library users or buildensebe, the fav who
configure libpng to a non-default feature set may need to chamgghisds done.

There should be no need for libranyilders to alter build scripts if these use the distributed build support -

configure or the makefiles - Wwever, users of the makefiles may care to update their build scriptsiltb b
pnglibconf.h where the corresponding makefile does not do so.

September 27, 2012 88

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

Building libpng with a non-defult configuration has changed completélyne old method using pngusr
should still work correctly wen though the way pngusr.h is used in théldhas been changed;ever,
library builders will probably want to examine the changes t@ talvantage of ne capabilities and to
simplify their build system.

B.1 Specific changes to library configuration capabilities

The library nev supports a complete fixed point implementation and can thus be used on systemsethat ha
no floating point support orevy limited or slav support. Preiously gamma correction, an essential part of
complete PNG support, required reasonably fast floating point.

As part of this the choice of internal implementation has been made independent of the choice ef-fixed v
sus floating point APIs and all the missing fixed point APighaeen implemented.

The exact mechanism used to control aftels of API functions has changeé.single set of operating
system independent macro definitions is used and operating system specificeslisertiefined in pnglib-
conf.h

As part of this the mechanism used to choose procedure call standards on those systems dhdadio

has been changed. At present this onfga$ certain Microsoft (DOS, Wdows) and IBM (OS/2) operat-

ing systems running on Intel processors. As before, PNGAPI is defined where required to control the
exported API functions; heever, two new macros, PNGCBAPI and PNGCAPI, are used instead for call-
back functions (PNGCBAPI) and (PNGCAPI) for functions that must match a C library prototype (cur
rently only png_longjmp_ptrwhich must match the C longjmp function.) Thesnapproach is docu-
mented in pngconf.h

Despite these changes, libpng 1.5.0 only supports theer@tiuinction calling standard on those platforms
tested so far (__cdecl on Microsoftilons). Thisis because the support requirements for altermati
calling corventions seem to no longexist. Developers who find it necessary to set PNG_ARILE to 1

should advise the mailing list (png-mng-implement) of this and library builders who use Openwatcom and
therefore set PNG_API_RULE to 2 should also contact the mailing list.

A new test program, pngvalid, is pridled in addition to pngtespng\alid validates the arithmetic accuyac

of the gamma correction calculations and includes a number of validations of the file fArsudiset of

the full range of tests is run when "neaéheck” is done (in the 'configure'uild.) png\walid also allevs

total allocated memory usage to valeated and performs additional memomeavrite validation.

Marny changes to indidual feature macros i@ keen made. The following are the changes most likely to
be noticed by library builders who configure libpng:

1) All feature macros m@ haveconsistent naming:

#define PNG_NO_feature turns the featufeétdéfine PNG_feature_ SUPPORTED turns the feature on
pnglibconf.h contains one line for each feature macro which is either:

#define PNG_feature. SUPPORTED

if the feature is supported or:

/*#undef PNG_feature_ SUPPORTED?*/

if it is not. Library code consistently checks for the 'SUPPORTED’ maltrdoes not, and libpng applica-
tions should not, check for the 'NO’ macro which will not normally be defirved & the feature is not

September 27, 2012 89

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

supported. ThéNO’ macros are only used internally for setting or not setting the corresponding 'SUP-
PORTED’ macros.

Compatibility with the old names is provided as follows:
PNG_INCH_CONVERSIONS turns on PNG_INCH_CONVERSIONS_SUPPORTED
And the following definitions disable the corresponding feature:

PNG_SETIJMP_NOT_SUPPOED disables SETIJMP PNG_READ_TRANSFORMS NGUP-
PORTED disables READ_TRANSFORMS PNG_NO_READ_COMPOSITED_NODIV disables
READ_COMPOSITE_NODIV PNG_WRITE_TRANSFORMS_NOSUPPORED disables
WRITE_TRANSFORMS PNG_READ_ANCILLAR_CHUNKS_NOT_SUPPORED disables
READ_ANCILLARY_CHUNKS PNG_WRITE_ANCILLARY_CHUNKS_NOT_SUPPORED disables
WRITE_ANCILLARY_CHUNKS

Library builders should renve wse of the abee, inconsistent, names.

2) Warning and error message formatting was previously conditional on the STDIO feature. The library has
been changed to use the CONSOLE_IO feature instead. This means that if CONSOLE_1O is disabled the
library no longer uses the printf(3) functionsje though the default read/write implementations use
(FILE) style stdio.h functions.

3) Three feature macroswaontrol the fixed/floating point decisions:
PNG_FLQATING_POINT_SUPPORTED enables the floating point APIs

PNG_FIXED_POINT_SUPPOHED enables the fixed point APIs;ever, in practice these are normally
required internally ayway (because the PNG file format is efik point), therefore in most cases
PNG_NO_FIXED_POINT merely stops the function from being exported.

PNG_FLQATING_ARITHMETIC_SUPPORED chooses between the internal floating point implementa-
tion or the fixed point oneTypically the fixed point implementation is larger and slower than the floating
point implementation on a system that supports floating pointaren, it may be &ster on a system which
lacks floating point hardware and therefore uses a software emulation.

4) Added PNG_{READ,WRITE} INT_FUNCTIONS_SUPPORED. Thisallows the functions to read
and write ints to be disabled independently of PNG_USE_READCR®S, which allows libpng to be
built with the functions een though the default is to use the macros - thisaallapplications to choose at
app buildtime whether or not to use macros \(jotgsly impossible because the functions weran'the
default build.)

B.2 Changes to the configuration mechanism

Prior to libpng-1.5.0 library dilders who needed to configure libpng had either to modify the exported png-
conf.h header file to add system specific configuration or had to write feature selection macros into pngusr
and cause this to be included into pngconf.h by defining PNG_USER_CONFIG. The latter mechanism had
the disadvantage that an application built without PNG_USER_CONFIG defmed see the unmodified,
default, libpng API and thus would probably fail to link.

These mechanisms still work in the configurgld and in ag makefile build that builds pnglibconf.h,
although the feature selection macrovehahanged somewhat as describedvaboln 1.5.0, havever,
pngusth is processed only once, when the exported header file pnglibconditt.isppgconf.hno longer
includes pngudhn, therefore pngusr.h is ignored after the build of pnglibconf.h and ivés meluded in an

September 27, 2012 90

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

application build.

The rarely used alternaé o adding a list of feature macros to the CFLAGS setting in the build also still
works; havever, the macros will be copied to pnglibconf.h and this may produce macro redefingion w
ings when the individual C files are compiled.

All configuration nav only works if pnglibconf.h is built from scripts/pnglibconfadf Thisrequires the
program avk. BrianKernighan (the original author of awk) maintains C source code of Wiatad this
and all knavn later implementations (often called by subtly different names - nawkeaawdfgr example)
are adequate to build pnglibconf.h. The Sun Microsystems @racle) program 'awk’ is an earlieex

sion and does not work; this may also apply to other systems tlaa limctioning awk called 'nawk’.

Configuration options are modocumented in scripts/pnglibconfadf Thisfile also includes dependanc
information that ensures a configuration is consistent; that is, if a feature is switttepesfdent features
are also remeed. Asa recommended alternaé © using feature macros in pngusr.h a systendbr may
also define equéalent options in pngusifa (or, indeed, apfile) and add that to the configuration by setting
DFA_XTRA to the file name. The makefiles in contrib/pngminim illustrater ho do this, and a case
where pngusr.h is still required.

XI. Detecting libpng
The png_get_io_ptr() function has been present since libpng-0.88,Jeasmenged, and is unaffected by
conditional compilation macrodt is the best choice for use in configure scripts for detecting the presence
of ary libpng version since 0.88. In an autoconf "configure.in” you could use

AC_CHECK_LIB(png, png_get_io_ptr.

XII. Source code repository
Since about February 200%rgion 1.2.34, libpng has been under "git" source control. The git repository
was kuilt from old libpng-x.yz.targz files going back to version 0.700u can access the git repository
(read only) at

git://libpng.git.sourceforge.net/gitroot/libpng
or you can browse it via "gitweb" at
http://libpng.git.sourceforge.net/git/gitweb.cgi?p=libpng

Paches can be sent to glennrp at users.sougeefoet or to png-mng-implement at lists.sourceforge.net or
you can upload them to the libpng bug tracker at

http://libpng.sourceforge.net

We dso accept patcheatit from the tar or zip distributions, and simple verbal discriptions of bugs fix
reported either to the Souragfe bug trackr, to the png-mng-implement at lists.sf.net mailing list, or
directly to glennrp.

XIII. Coding style
Our coding style is similar to the "Allman" style, with curly braces on separate lines:

if (condition)

{

action;

}

September 27, 2012 91

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

else if (another condition)

{

another action;

}

The braces can be omitted from simple one-line actions:

if (condition)
return (0);

We wse 3-space indentation, except for continued statements which are usually indented the same as the
first line of the statement plus four more spaces.

For macro definitions we use 2-space indentationagd leaving the "#" in the first column.

#ifndef PNG_NO_FEATURE

ifndef PNG_FEATURE_SUPPORTED
define PNG_FEATURE_SUPPORTED
endif

#endif

Comments appear with the leading "/*" at the same indentation as the statement that follows the comment:

[* Single-line comment */
statement;

[* This is a multiple-line
* comment.

*

statement;

Very short comments can be placed after the end of the statement to whipartaa:

statement; /tomment */

We don’t use C++ style ("//") comments. 8\rave howeve, used them in the past in somearabandoned
MMX assembler code.

Functions and their curly braces are not indented, and exported functions are marked with PNGAPI:

[* This is a public function that is visible to

* application programmers. It does thus-and-so.
*/

void PNGAPI

png_exported_function(png_ppng_info, foo)
{

body;
}
The prototypes for all exported functions appear in png.hjeabe comment that says

[* Maintainer: Put ne public prototypes here ... */

We mark all non-exported functions with "/* PRAVE */™":

September 27, 2012 92

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

void /* PRIVATE */
png_non_exported_function(png_,ging_info, foo)
{

body;
}

The prototypes for non-exported functions (except for those in pngtest) appear in.prahprie the com-
ment that says

/* Maintainer: Put ne private prototypes here ~ and in libpngpf.3 */
To avoid polluting the global namespace, the names of all exported functions and variables begin with
"png_", and all publicly visible C preprocessor macragibaith "PNG". We request that applications that
use libpng *not* begin anof their own symbols with either of these strings.
We put a space after each comma and after each semicolon in "for" statements, and we put spaces before
and after each C binary operator and after "for" or "while", and beforaX@"con’t put a space between a
typecast and thexpression being cast, nor do we put one between a function name and the left parenthesis

that follows it:

for (i=2;i>0; --i)
yl[i] = a(x) + (int)b;

We prefer #ifdef and #ifndef to #if defined() and if !defined() when there is only one macro being tested.

We prefer to express integers that are used as bit masks ioimeat, with an een number of laver-case
hex digits (e.g., 0x00, 0xff, 0x0100).

We b not use the TAB character for indentation in the C sources.
Lines do not exceed 80 characters.

Other rules can be inferred by inspecting the libpng source.

XIV.Y2K Compliance in libpng
September 27, 2012

Since the PNG D&lopment group is an ad-hoc bodye can't make an dficial declaration.

This is your unofficial assurance that libpng froemsion 0.71 and upward through 1.5.13 are Y2K compli-
ant. Itis my belief that earlier versions were also Y2K compliant.

Libpng only has tw year fields. One is a 2-byte unsigned integer that will hold years up to 63585.
other holds the date in text format, and will hold years up to 9999.

The integer is
"png_uint_16 year" in png_time_struct.

The string is
"char time_lffer[29]" in png_struct. This will no longer be used in libpng-1.6.x and will be remtb
from libpng-1.7.0.

There are sen time-related functions:

September 27, 2012 93

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

NOTE

png_conwert_to_rfc_1123() in png.c
(formerly png_cowert_to_rfc_1152() in error)
png_cowert_from_struct_tm() in pngwrite.c, called
in pngwrite.c
png_cowert_from_time_t() in pngwrite.c
png_get tIME() in pngget.c
png_handle_tIME() in pngrutil.c, called in pngread.c
png_set tIME() in pngset.c
png_write tIME() in pngwutil.c, called in pngwrite.c

All appear to handle dates properly in a Y2Kiesznment. Thepng_conert_from_time_t() function calls
gmtime() to comert from system clock time, which returns (year - 1900), which we properiyectdo the

full 4-digit year There is a possibility that applications using libpng are not passing 4-digit years into the
png_conert_to_rfc_1123() function, or that there incorrectly passing only a 2-digit year instead of "year

- 1900" into the png_camrt_from_struct_tm() function,u this is not under our control. The libpng docu-
mentation has wlays stated that it works with 4-digit years, and the APighmen documented as such.

The tIME chunk itself is also Y2K compliant. It uses a 2-byte unsigned integer to hold thengkaan
hold years as large as 65535.

zlib, upon which libpng depends, is also Y2K compliant. It contains no date-related code.

Glenn Randers-Pehrson
libpng maintainer
PNG Deelopment Group

Note about libpng version numbers:

Due to various miscommunications, unforeseen code incompatibilities and occaatoed dutside the
authors’ control, version numbering on the library has nedyed been consistent and straightfard. The
following table summarizes matters since version 0.89c, which was the first widely used release:

source png.hpng.h shared-lib
version string int version
0.89c ("beta 3")0.89 891.0.89
0.90 ("beta4") 0.90 90 0.90
0.95 ("beta5") 0.95 95 0.95
0.96 ("beta6") 0.96 96 0.96
0.97b ("beta 7")1.00.97 971.0.1

0.97c 0.97 97 2.0.97
0.98 0.98 98 2.0.98
0.99 0.99 98 2.0.99
0.99a-m 0.99 99 2.0.99
1.00 1.00 100 2.1.0
1.0.0 1.0.0 100 2.1.0

1.0.0 (fromhere on, thel00 2.1.0

1.0.1 png.rstring is 10001 2.1.0

1.0.1a-e identical to the 10002 from here on, the
1.0.2 sourceersion) 10002 sharddrary is 2.V
1.0.2a-b 10003wvhere V is the source
1.01 10001code version except as

September 27, 2012 94

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

1.0.1a-e 10002.1.0.1a-e noted.
1.0.2 100022.1.0.2
1.0.2a-b 10002.1.0.2a-b
1.0.3 100032.1.0.3
1.0.3a-d 10004£2.1.0.3a-d
1.04 100042.1.0.4
1.0.4a-f 100052.1.0.4a-f
1.0.5 (+ 2 patches) 10005 2.1.0.5
1.0.5a-d 100062.1.0.5a-d
1.0.5e-r 101002.1.0.5e-r
1.0.5s-v 100062.1.0.5s-v
1.0.6 (+ 3 patches) 10006 2.1.0.6
1.0.6d-g 100072.1.0.6d-g
1.0.6h 1000710.6h
1.0.6i 1000710.6i

1.0.6j 100072.1.0.6j

1.0.7betall-14 DLLNUM10007 2.1.0.7betall-14
1.0.7betal5-18 110007 2.1.0.7betal5-18

1.0.7rc1-2 1 10007 2.1.0.7rcl-2
1.0.7 1 10007 2.1.0.7
1.0.8betal-4 110008 2.1.0.8betal-4
1.0.8rcl 1 10008 2.1.0.8rc1

1.0.8 1 10008 2.1.0.8
1.0.9betal-6 110009 2.1.0.9betal-6
1.0.9rc1 1 10009 2.1.0.9rc1
1.0.9beta7-10 110009 2.1.0.9beta7-10
1.0.9rc2 1 10009 2.1.0.9rc2

1.0.9 1 10009 2.1.0.9
1.0.10betal 110010 2.1.0.10betal
1.0.10rc1 1 10010 2.1.0.10rcl1
1.0.10 1 10010 2.1.0.10
1.0.11betal-3 110011 2.1.0.11betal-3
1.0.11rc1 1 10011 2.1.0.11rcl1
1.0.11 1 10011 2.1.0.11
1.0.12betal-2 210012 2.1.0.12betal-2
1.0.12rc1 2 10012 2.1.0.12rc1
1.0.12 2 10012 2.1.0.12

1.1.0a-f - 10100 2.1.1.0a-fbandoned

1.2.0betal-2 210200 2.1.2.0betal-2
1.2.0beta3-5 310200 3.1.2.0beta3-5

1.2.0rcl 3 10200 3.1.2.0rcl
1.2.0 3 10200 3.1.2.0
1.2.1beta-4 310201 3.1.2.1betal-4
1.2.1rc1-2 3 10201 3.1.2.1rc1-2
121 3 10201 3.1.2.1

1.2.2betal-6 12 10202 12.s0.0.1.2.2betal-6
1.0.13betal 10 10013 10.50.0.1.0.13betal

1.0.13rcl1 10 10013 10.s0.0.1.0.13rcl
1.2.2rcl 12 10202 12.s0.0.1.2.2rcl
1.0.13 10 10013 10.s0.0.1.0.13
1.2.2 12 10202 12.s0.0.1.2.2
1.2.3rc1-6 12 10203 12.s0.0.1.2.3rc1-6
123 12 10203 12.s0.0.1.2.3

1.2.4betal-3 1310204 12.s0.0.1.2.4betal-3

September 27, 2012 95

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

1.2.4rcl 13 10204 12.s0.0.1.2.4rcl
1.0.14 10 10014 10.s0.0.1.0.14

124 13 10204 12.s0.0.1.2.4
1.2.5betal-2 1310205 12.s0.0.1.2.5betal-2
1.0.15rc1 10 10015 10.s0.0.1.0.15rcl
1.0.15 10 10015 10.s0.0.1.0.15

1.25 13 10205 12.s0.0.1.2.5

1.2.6betal-4 1310206 12.s0.0.1.2.6betal-4
1.2.6rc1-5 13 10206 12.s0.0.1.2.6rc1-5

1.0.16 10 10016 10.s0.0.1.0.16

1.2.6 13 10206 12.s0.0.1.2.6
1.2.7betal-2 1310207 12.s0.0.1.2.7betal-2
1.0.17rc1 10 10017 12.s0.0.1.0.17rcl
1.2.7rcl 13 10207 12.s0.0.1.2.7rcl
1.0.17 10 10017 12.s0.0.1.0.17

1.2.7 13 10207 12.s0.0.1.2.7

1.2.8betal-5 1310208 12.s0.0.1.2.8betal-5
1.0.18rcl1-5 10 10018 12.s0.0.1.0.18rc1-5
1.2.8rc1-5 13 10208 12.s0.0.1.2.8rc1-5
1.0.18 10 10018 12.s0.0.1.0.18

1.2.8 13 10208 12.s0.0.1.2.8
1.2.9betal-3 1310209 12.s0.0.1.2.9betal-3
1.2.9beta4d-11 1310209 12.s0.0.9[.0]
1.2.9rc1 13 10209 12.s0.0.9[.0]

1.2.9 13 10209 12.s0.0.9[.0]
1.2.10betal-7 1310210 12.s0.0.10[.0]
1.2.10rc1-2 13 10210 12.s0.0.10[.0]

1.2.10 13 10210 12.s0.0.10[.0]
1.4.0betal-6 14 10400 14.s0.0.0[.0]
1.2.11betal-4 1310210 12.s0.0.11[.0]
1.4.0beta7-8 14 10400 14.s0.0.0[.0]

1.2.11 13 10211 12.s0.0.11[.0]
1.2.12 13 10212 12.s0.0.12[.0]
1.4.0beta9-14 1410400 14.s0.0.0[.0]
1.2.13 13 10213 12.50.0.13[.0]

1.4.0betal5-36 1410400 14.s0.0.0[.0]
1.4.0beta37-87 1410400 14.s0.14.0[.0]
1.4.0rc01 14 10400 14.s0.14.0[.0]
1.4.0beta88-109 1410400 14.s0.14.0[.0]
1.4.0rc02-08 14 10400 14.s0.14.0[.0]

1.4.0 14 10400 14.s0.14.0[.0]
1.4.1beta01-03 1410401 14.s0.14.1[.0]
1.4.1rc01 14 10401 14.s0.14.1].0]
1.4.1beta04-12 1410401 14.s0.14.1[.0]
141 14 10401 14.s0.14.1[.0]
1.4.2 14 10402 14.s0.14.2[.0]
1.4.3 14 10403 14.s0.14.3[.0]
1.4.4 14 10404 14.s0.14.4[.0]

1.5.0beta01-58 1510500 15.s50.15.0[.0]
1.5.0rc01-07 15 10500 15.s0.15.0[.0]
15.0 15 10500 15.s0.15.0[.0]
1.5.1beta01-11 1510501 15.s0.15.1[.0]
1.5.1rc01-02 15 10501 15.s0.15.1[.0]
151 15 10501 15.s0.15.1[.0]

September 27, 2012 96

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

1.5.2beta01-03 1510502 15.s0.15.2[.0]
1.5.2rc01-03 15 10502 15.s50.15.2[.0]
15.2 15 10502 15.s0.15.2[.0]
1.5.3beta01-10 1510503 15.s0.15.3[.0]
1.5.3rc01-02 15 10503 15.s50.15.3[.0]
1.5.3betall 1510503 15.s0.15.3[.0]
1.5.3 [omitted]

1.5.4beta01-08 1510504 15.s0.15.4[.0]

1.5.4rc01 15 10504 15.s0.15.4[.0]
154 15 10504 15.s0.15.4[.0]
1.5.5beta01-08 1510505 15.s50.15.5[.0]
1.5.5rc01 15 10505 15.s0.15.5[.0]
155 15 10505 15.s0.15.5[.0]

1.5.6beta01-07 1510506 15.50.15.6[.0]
1.5.6rc01-03 15 10506 15.s0.15.6[.0]
15.6 15 10506 15.s0.15.6[.0]

1.5.7beta01-05 1510507 15.s50.15.7[.0]
1.5.7rc01-03 15 10507 15.s0.15.7[.0]

157 15 10507 15.s0.15.7[.0]
1.5.8beta01 15 10508 15.50.15.8[.0]
1.5.8rc01 15 10508 15.s0.15.8[.0]
158 15 10508 15.s0.15.8[.0]
1.5.9beta01-02 1510509 15.s50.15.9[.0]
1.5.9rc01 15 10509 15.s0.15.9[.0]
159 15 10509 15.s0.15.9[.0]
1.5.10beta01-05 1510510 15.s0.15.10[.0]
1.5.10 15 10510 15.s50.15.10[.0]

1.5.11beta01 1510511 15.s50.15.11[.0]
1.5.11rc01-05 1510511 15.s0.15.11[.0]
1511 15 10511 15.s50.15.11[.0]
15.12 15 10512 15.s50.15.12[.0]
1.5.13beta01-02 1510513 15.50.15.13[.0]
1.5.13rc01 15 10513 15.50.15.13[.0]
15.13 15 10513 15.50.15.13[.0]

Henceforth the source version will match the shared-library minor and patch numbers; the shared-library
major version number will be used for changes in backward compatitahtyit is ntended. The
PNG_PNGLIB_VER macro, which is not used within libpngt lbis aailable for applications, is an
unsigned integer of the form xyyzz corresponding to the sowson x.y.z (leading zeros in y and z).

Beta versions were ygn the previous public release number plus a lettmtil version 1.0.6j; from then on

they were gien the upcoming public release number plus "betaNN" or "rcN".

SEE ALSO
png(5), libpngpf(3), zlib(3), deflatg(5), andzlib(5)

libpng:
http://libpng.sourceforge.net (follothe [DOWNLOAD] link) http://www.libpng.org/pub/png

zlib:

(generally) at the same locationlidgmpng or at
ftp://ftp.info-zip.org/publ/infozip/zlib

September 27, 2012 97

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

PNGspecificationRFC2083

(generally) at the same locationlidgmpng or at
ftp://ftp.rfc-editor.org:/in-notes/rfc2083.txt
or (as a W3C Recommendation) at
http://www.w3.0rg/TR/REC-png.html

In the case of aninconsisteng between the PNG specification and this libyahe specification tads
precedence.

AUTHORS
This man page: Glenn Randers-Pehrson <glennrp at users.sourceforge.net>

The contributing authors would &kto hank all those who helped with testing, bug fixes, and patience.
This wouldnt havebeen possible without all of you.

Thanks to Frank J.. Wojcik for helping with the documentation.

Libpng version 1.5.13 - September 27, 2012: Initially created in 1995 by Guy Eric Schalnat, then of Group
42, Inc. Currently maintained by Glenn Randers-Pehrson (glennrp at users.sourceforge.net).

Supported by the PNG ddopment group
png-mng-implement at lists.sf.net (subscription required; visit png-mng-implement at lists.sqér.cefor
(subscription required; visit https://lists.sourceforge.net/lists/listinfo/png-mng-implement to subscribe).

COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
(This copy of the libpng notices is puided for your comenience. Incase of ay discrepang between this
copy and the notices in the file png.h that is included in the libpng distribution, the latter skaill pre

If you modify libpng you may insert additional notices immediately following this sentence.
This code is released under the libpng license.

libpng wersions 1.2.6, August 15, 2004, through 1.5.13, September 27, 2012, are Copyright (c)
2004,2006-2007 Glenn Randers-Pehrson, and are distlitaccording to the same disclaimer and license
as libpng-1.2.5 with the following individual added to the list of Contributing Authors

Cosmin Truta

libpng wersions 1.0.7, July 1, 2000, through 1.2.5 - October 3, 2002, are Copyright (c) 2000-2002 Glenn
Randers-Pehrson, and are distributed according to the same disclaimer and license as libpng-1.0.6 with the
following individuals added to the list of Contributing Authors

Simon-Pierre Cadieux
Eric S. Raymond
Gilles Vollant

and with the following additions to the disclaimer:

There is no warranty against interference with your
enjoyment of the library or against infringement.
There is no warranty that our efforts or the library
will fulfill any of your particular purposes or needs.
This library is provided with all faults, and the entire

September 27, 2012 98

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

risk of satisfactory qualityperformance, accurgcand
effort is with the user.

libpng versions 0.97, January 1998, through 1.0.6, March 20, 2000, are Copyright (c) 1998, 1999 Glenn
Randers-Pehrson Distributed according to the same disclaimer and license as libpng-0.96, withvthe follo
ing individuals added to the list of Contributing Authors:

Tom Lane
Glenn Randers-Pehrson
Willem van Schaik

libpng versions 0.89, June 1996, through 0.96, May 1997, are Copyright (c) 1996, 1997 Andreas Dilger
Distributed according to the same disclaimer and license as libpng-0.88, with the followwidualdi
added to the list of Contributing Authors:

John Bowler
Kevin Bracey
Sam Bushell
Magnus Holmgren
Greg Roelofs

Tom Tanner

libpng wersions 0.5, May 1995, through 0.88, January 1996, are Copyright (c) 1995, 1996 Guy Eric Schal-
nat, Group 42, Inc.

For the purposes of this copyright and license, "Coutiily Authors" is defined as the following set of
individuals:

Andreas Dilger
Dave Martindale
Guy Eric Schalnat
Paul Schmidt

Tim Wegner

The PNG Reference Library is supplied "AS IS'he Contributing Authors and Group 42, Inc. disclaim all
warranties, expressed or implied, including, without limitation, tleranties of merchantability and of fit-
ness for ap purpose. TheContributing Authors and Group 42, In@assume no liability for direct, indirect,
incidental, special x@mplary, or consequential damages, which may result from the use of the PNG Refer
ence Libraryeven if advised of the possibility of such damage.

Permission is hereby granted to use,ycapodify, and distrihute this source code, or portions hereof, for
ary purpose, without fee, subject to the following restrictions:

1. The origin of this source code must not be misrepresented.

2. Altered versions must be plainly marked as such and
must not be misrepresented as being the original source.

3. This Copyright notice may not be reved or dtered from
ary source or altered source distribution.

The Contriluting Authors and Group 42, Inc. specifically permit, without fee, and encourage the use of this

source code as a component to supporting the PNG file format in commercial prdtiyots.use this
source code in a product, acknowledgment is not required but would be appreciated.

September 27, 2012 99

LIBPNG(3) LibraryFunctions Manual LIBPNG(3)

A "png_get_copyright" function isvailable, for cowenient use in "about" boxes and the like:
printf("%s",png_get_copyright(NULL));

Also, the PNG logo (in PNG format, of course) is supplied in the files "pwpgigdrand "pngbapg
(88x31) and "pngne.png” (98x31).

Libpng is OSI Certified Open Source Sddie. OSICertified Open Source is a certification mark of the
Open Source Initiate.

Glenn Randers-Pehrson glennrp at users.sourceforge.net September 27, 2012

September 27, 2012 100

