bc(1) GeneraCommands Manual bc(1)

NAME

bc - An arbitrary precision calculator language
SYNTAX

bc [-hlwsqgv] [long-options] [file ...]
DESCRIPTION

bc is a language that supports arbitrary precision numbers with interasteution of statementsThere
are some similarities in the syntax to the C programming languag&ndard math library isvailable by
command line option. If requested, the math library is defined before procesgifitegnbc starts by
processing code from all the files listed on the command line in the order listed. After allvideleba
processedbc reads from the standard input. All code xeaited as it is read. (If a file contains a com-
mand to halt the processbr will never read from the standard input.)

This version ofbc contains seeral extensions beyond traditionat implementations and the POSIX draft
standard. Commarlthe options can cause these extensions to prirgraimg or to be rejected. This doc-
ument describes the language accepted by this proc&densions will be identified as such.

OPTIONS
-h, --help
Print the usage and exit.
-, --interactve
Force interactie npde.

-1, --mathlib
Define the standard math library.

-w, --warn
Give warnings for extensions to POSb¥X.

-s, --standard
Process exactly the POSbB¢ language.

-q, --quiet
Do not print the normal GNU bc welcome.
-v, --version
Print the version number and copyright and quit.
NUMBERS

The most basic element bt is the number Numbers are arbitrary precision numbefgis precision is
both in the integer part and the fractional paktl numbers are represented internally in decimal and all
computation is done in decimalThis version truncates results from divide and multiply operations.)
There are tw atributes of numbers, the length and the scalee length is the total number of significant
decimal digits in a number and the scale is the total number of decimal digits after the decimadtgooint.
example:

.000001 has a length of 6 and scale of 6.

1935.000 has a length of 7 and a scale of 3.

VARIABLES
Numbers are stored in tntypes of variables, simple variables and arrays. Both simple variables and array
variables are named. Names begin with a letter followed ynamber of letters, digits and underscores.
All letters must be lver case. (Full alpha-numeric names are an extension. In P@SdK names are a
single lower case lett@r Thetype of \ariable is clear by the context because all array variable names will
be followed by brackets ([]).

There are four speciabviablesscale, ibase, obas@ndlast. scaledefines has some operations use digits
after the decimal point. The default valuesofileis 0.ibase and obasedefine the coversion base for
input and output numbers. The default for both input and output is badast@an extension) is aavi-
able that has thealue of the last printed numbeFhese will be discussed in further detail where appropri-
ate. Allof these variables may V@avalues assigned to them as well as used in expressions.

GNU Project 2006-06-11 1

bc(1) GeneraCommands Manual bc(1)

COMMENTS
Comments irbc start with the characters and end with the characte’'s Comments may start gwhere
and appear as a single space in the inplitis causes comments to delimit other input itefa. exam-
ple, a comment can not be found in the middle of a variable name.) Comments inglugedares (end
of line) between the start and the end of the comment.

To aupport the use of scripts faac, a Sngle line comment has been added asxension. Asingle line
comment starts at#character and continues to the next end of the line. The end of line character is not
part of the comment and is processed normally.

EXPRESSIONS
The numbers are manipulated by expressions and statements. Since the language was designed to be inter
active, satements and expressions axeceted as soon as possiblEhere is no "main” programnstead,
code is gecuted as it is encountered. (Functions, discussed in detaild@&aefined when encountered.)

A simple epression is just a constatiic corverts constants into internal decimal numbers using the cur
rent input base, specified by thariableibase (There is an exception in functions.) Thegdevalues of
ibaseare 2 through 16. Assigning a value outside this rangeasewill result in a value of 2 or 16lnput
numbers may contain the characters 0-9 and (Aléte: Theg must be capitalsLower case letters aran-

able names.) Single digit numbersvays hare the value of the digit gerdless of the value dbase (i.e.

A =10.) For multi-digit numberspc changes all input digits greater or equal to ibase to the value of
ibasel. Thismakes the numbéiFF always be the largest 3 digit number of the input base.

Full expressions are similar to maather high leel languages. Sincghere is only one kind of nhumber
there are no rules for mixing types. Instead, there are rules on the scapeess®ons. Esry expression
has a scale. This is deedl from the scale of original numbers, the operation performed and iy cases,
the value of the ariablescale Legd values of the ariablescaleare 0 to the maximum number repre-
sentable by a C integer.

In the following descriptions of ¢gl expressions, “epr" refers to a complete expression and "var" refers to
a gmple or an arrayariable. Asimple variable is just a
name
and an array variable is specified as
namégexpr]
Unless specifically mentioned the scale of the result is the maximum scale of the expressi@ts in

-expr The result is the gation of the expression.
++var The variable is incremented by one and tiwevadue is the result of the expression.

--var The variable is decremented by one and thevadue is the result of the expression.

var ++
The result of the expression is the value of theable and then the variable is incremented by
one.

var-- The result of the expression is the value of the variable and then the variable is decremented by
one.

expr + expr
The result of the expression is the sum of the éxpressions.

expr - expr

The result of the expression is the difference of theeypressions.

expr * expr
The result of the expression is the product of the égpressions. I and b are the scales of the
two expressions, then the scale of the result is: min(a+b,max(scale,a,b))

expr / expr
The result of the expression is the quotient of the éqpressions. Thacale of the result is the
value of the variablscale

GNU Project 2006-06-11 2

bc(1) GeneraCommands Manual bc(1)

expr % expr
The result of the expression is the "remainder” and it is computed in the followinglar com-
pute a%b, first a/b is computed doaledigits. Thatresult is used to compute a-(a/b)*b to the
scale of the maximum afcalerscale(b) and scale(a)f scaleis set to zero and bothx@gressions
are integers this expression is the integer remainder function.

expr ~ expr
The result of thexpression is the value of the first raised to the second. The sequmedson
must be an inger (If the second expression is not an gae a warning is generated and the
expression is truncated to get an integalue.) Thescale of the result iscaleif the exponent is
negdive. If the exponent is positie the scale of the result is the minimum of the scale of the first
expression times the value of the exponent and the maximwnoatéand the scale of the first
expression. (e.gscale(a’b) = min(scale(a)*b, mas¢€ale, scale(a))).) Itshould be noted that
expr 0 will always return the value of 1.

(expr) This alters the standard precedence to forcevdteagion of the expression.

var = expr
The variable is assigned the value of the expression.

var <op>= expr
This is equialent to "var = var <op> expr" with the exception that the "var" panakiated only
once. Thican malk a dfference if "var" is an array.

Relational expressions are a special kind of expression thagsabsaluate to 0 or 1, O if the relation is

false and 1 if the relation is true. These may appearyinega expression. (POSDbc requires that rela-

tional expressions are used only in if, while, and for statements and that only one relational test may be
done in them.) The relational operators are

exprl < expr2
The result is 1 if exprl is strictly less than expr2.

exprl <= expr2
The result is 1 if exprl is less than or equal to expr2.

exprl > expr2
The result is 1 if exprl is strictly greater than expr2.

exprl >= expr2
The result is 1 if exprl is greater than or equal to expr2.

exprl == expr2
The result is 1 if exprl is equal to expr2.

exprl = expr2
The result is 1 if exprl is not equal to expr2.

Boolean operations are alsg# (POSIXbc does NO haveboolean operations). The result of all bool-
ean operations are 0 and 1 (for false and true) as in relatigmaksions. Thboolean operators are:

lexpr The resultis 1 if expris 0.

expr && expr
The result is 1 if both expressions are non-zero.

expr || expr
The result is 1 if either expression is non-zero.
The expression precedence is as follows: (lowest to highest)
|| operatarleft associatie
&& operator, left associatie
I operator nonassociatie
Relational operators, left associati
Assignment operatpright associatie

GNU Project 2006-06-11 3

be(l)

GeneraCommands Manual bc(1)

+ and - operators, left associai

*, [and % operators, left associei
" operator right associatie

unary - operatgmonassociatie

++ and -- operators, nonassoaiati

This precedence was chosen so that POSIX comgi@ptograms will run correctlyThis will cause the
use of the relational and logical operators tovehaome unusual beki#r when used with assignment
expressions. Considéne expression:

a=3<5

Most C programmers would assume this would assign the result of "3 < 5" (the value 1) to the variable "a".
What this does ibc is assign the value 3 to tharnable "a" and then compare 3 to 5. It is best to use
parenthesis when using relational and logical operators with the assignment operators.

There are a f@ more special expressions that are provideldcin These hae © do with user defined func-
tions and standard function¥hey all appear asriaméparametery’. Seethe section on functions for user
defined functions. The standard functions are:

length (expression)
The value of the length function is the number of significant digits in the expression.

read () The read function (an extension) will read a number from the standard irgantlless of where
the function occurs.Beware, this can cause problems with the mixing of data and program in the
standard input. The best use for this function is in &iusly written program that needs input
from the userbut never allows program code to be input from the us&he value of the read
function is the number read from the standard input using the cuglerst of the ariableibase
for the cowersion base.

scale (expression)
The value of the scale function is the number of digits after the decimal point in the expression.

sqrt (expression)
The \alue of the sqrt function is the square root of tkgression. Itthe expression is getive, a
run time error is generated.

STATEMENTS

Statements (as in most algebraic languages)igdedhe sequencing of expressiomgation. Inbc state-
ments are xecuted "as soon as possibleExecution happens when awlae in encountered and there is
one or more complete statements. Due to this immediateiion, newlines areery important inbc. In

fact, both a semicolon and awlse are used as statement separators. An improperly placed newline will
cause a syntax ertoBecause neglines are statement separators, it is possible to hide a newline by using
the backslash charactefhe sequence "\<nl>", where <nl> is the newline appeaflxtas whitespace
instead of a neline. A statement list is a series of statements separated by semicolonsvéindsneThe
following is a list ofbc statements and what thdo: (Things enclosed in braets ([]) are optional parts of

the statement.)

expression
This statement does one ofathings. Ifthe expression starts with "awable> <assignment> ...",
it is considered to be an assignment statemkérihe expression is not an assignment statement,
the expression isveluated and printed to the outpuéfter the number is printed, a newline is
printed. For ekample, "a=1" is an assignment statement and "(a=1)" is an expression that has an
embedded assignment. All numbers that are printed are printed in the base specifiedaliy the v
able obase The leyd values forobaseare 2 through BC_BSE_MAX. (Seethe section LIM-
ITS.) For bases 2 through 16, the usual method of writing numbers is Beebdases greater than
16, bc uses a multi-character digit method of printing the numbers where each higher base digit is
printed as a base 10 numb&he multi-character digits are separated by spaEesh digit con-
tains the number of characters required to represent the base ten value of "obase-1". Since num-
bers are of arbitrary precision, some numbers may not be printable on a single outpritdise.
long numbers will be split across lines using the "\" as the last character on a line. The maximum

GNU Project 2006-06-11 4

be(l)

GeneraCommands Manual bc(1)

number of characters printed per line is 70. Due to the inteeaetture ofbc, printing a number
causes the sidefett of assigning the printed value to the specalablelast. This allows the

user to receer the last walue printed without having to retype the expression that printed the num-
ber Assigning tolast is legd and will overwrite the last printed value with the assignedue.

The newly assignedalue will remain until the next number is printed or another value is assigned
to last. (Some installations may allothe use of a single period (.) which is not part of a number
as a short hand notation for flast.)

string The string is printed to the output. Strings start with a double quote character and contain all char
acters until the next double quote charactlt characters are takliterally, including ay new-
line. Nonewline character is printed after the string.

print list

The print statement (an extension) provides another method of ottpautllist” is a list of strings

and expressions separated by commas. Each string or expression is printed in the order of the list.
No terminating newline is printed. Expressions aveluated and their value is printed and
assigned to theaviablelast. Strings in the print statement are printed to the output and may con-
tain special characters. Special characters start with the backslash chara€tes pecial char

acters recognized Hyc are "a" (alert or bell), "b" (backspace), "f* (form feed), "n"wtiee), "r"

(carriage return), "q" (double quote), "t" (tab), and "\" (backslagimy other character follwing

the backslash will be ignored.

{ statement_list }

This is the compound statement. It almultiple statements to be grouped together fecie
tion.

if (expression) statement&lgestatement2]

The if statementvaluates the expression anxkeutes statementl or statement2 depending on the
vaue of the &pression. Ifthe expression is non-zero, statementlxicaed. If statement?2 is
present and thealue of the expression is 0, then statementXésuted. (Theelse clause is an
extension.)

while (expression) statement

The while statement willx@cute the statement while the expression is non-zerovalitaes the
expression before eachxexution of the statementTermination of the loop is caused by a zero
expression value or thexecution of a break statement.

for ([expressionl] ; [expression2] ; [expression3]) statement

The for statement controls repeate@osition of the statement. Expressionl vsleated before
the loop. Expression2 israuated before eachxecution of the statement. If it is non-zero, the
statement isv@luated. Ifit is zero, the loop is terminated. After eacteaition of the statement,
expression3 isealuated before the reduation of expression2. lexpressionl or expression3 are
missing, nothing iswva@luated at the point tlyewould be galuated. Ifexpression2 is missing, it is
the same as substituting the value 1 fgression2. (Theptional expressions are axt@nsion.
POSIXbc requires all threexpressions.) Théollowing is equvalent code for the for statement:
expressionl;
while (expression2) {

statement;

expression3;

}

break This statement causes a forced exit of the most recent enclosing while statement or for statement.

continue

halt

GNU Project

The continue statement (artension) causethe most recent enclosing for statement to start the
next iteration.

The halt statement (an extension) is gecated statement that causesltegrocessor to quit only
when it is &ecuted. Br example, "if (0 == 1) halt" will not cause to terminate because the halt
is not executed.

2006-06-11 5

bc(1) GeneraCommands Manual bc(1)

return Return the value 0 from a function. (See the section on functions.)

return (expression)
Return the value of the expression from a function. (See the section on funcAsran) &ten-
sion, the parenthesis are not required.

PSEUDO STATEMENTS
These statements are not statements in the traditional SEmseare not eecuted statements. Their func-
tion is performed at "compile" time.

limits Print the local limits enforced by the local versiorbof This is an extension.

quit When the quit statement is read, boeprocessor is terminated ga&dless of where the quit state-
ment is found.For example, "if (0 == 1) quit" will causbkc to terminate.

warranty
Print a longer warranty notice. This is an extension.

FUNCTIONS
Functions preide a method of defining a computation that canXeewed later Functions inbc always
compute a value and return it to the callBunction definitions are "dynamic" in the sense that a function
is undefined until a definition is encountered in the input. That definition is then used until another defini-
tion function for the same name is encounteréde nev definition then replaces the older definitioA.
function is defined as follows:
definename(parameterg { newline
auto_list statement_ligt
A function call is just an expression of the fommarthgparametery'.

Paameters are numbers or arrays (a&temsion). Inthe function definition, zero or more parameters are
defined by listing their names separated by commdisparameters are call by value parametekstays

are specified in the parameter definition by the notatiam¥]". In the function call, actual parameters

are full xpressions for number parameters. The same notation is used for passing arrays as for defining
array parameters. The named array is passed by value to the function. Since function definitions are
dynamic, parameter numbers and types are checked when a function isAalledismatch in number or

types of parameters will cause a runtime erfruntime error will also occur for the call to an undefined
function.

The auto_listis an optional list of variables that are for "local" u3ée syntax of the auto list (if present)

is "auto name ... ;". (The semicolon is optional fachnameis the name of an aut@siable. Arrayanay

be specified by using the same notation as used in parameters. These vanabtesirhealues pushed
onto a stack at the start of the functiorhe variables are then initialized to zero and used throughout the
execution of the function. At function exit, thesaniables are popped so that the original value (at the time
of the function call) of these variables are restored. The parameters are reallgrmlties that are initial-
ized to a value provided in the function call. Auto variables are different than traditional doiceddles
because if function A calls function B, B may access functisnaéto variables by just using the same
name, unless function B has called them aattables. Dudo the fact that auto variables and parameters
are pushed onto a stadig supports recurge functions.

The function body is a list dfc statements. Aagjn, statements are separated by semicolonsvaines.
Return statements cause the termination of a function and the returaloka Vhereare two versions of
the return statementThe first form, feturn", returns the value 0 to the callingpeession. Thesecond
form, "return (expression)”, computes the value of the expression and returns #ha¢ vo the calling
expression. Theres an implied teturn (0)" at the end of eery function. This allows a function to termi-
nate and return O without an explicit return statement.

Functions also change the usage of tgableibase All constants in the function body will be a@nted
using the value abaseat the time of the function callChanges oibasewill be ignored during thexecu-
tion of the function except for the standard functiead, which will always use the current value ibfase
for corversion of numbers.

Several extensions hee been added to functions. First, the format of the definition has been slightly

GNU Project 2006-06-11 6

bc(1) GeneraCommands Manual bc(1)

relaxed. Thestandard requires the opening brace be on the same line @efitreekeyword and all other
parts must be on following lines. This versiorbofwill allow any number of newlines before and after the
opening brace of the functiorzor example, the following definitions arega.
define d (n) { return (2*n); }
define d (n)
{ r eturn (2*n); }

Functions may be defined asid. A void funtion returns no value and thus may not be usedyirplace
that needs aalue. Avoid function does not produceyaoutput when called by itself on an input lin€he
key word void is placed between theek word define and the function namef-or example, consider the
following session.

define py (y) { print "--->", y, "<---","0; }

define void px (x) { print "--->", X, "<---","0; }

py(1)

--->] <

0

px(1)

--->] <
Sincepy is not a void function, the call @ly(1) prints the desired output and then prints a second line that
is the value of the function. Since thalwe of a function that is not\gn an eplicit return statement is
zero, the zero is printed=or px(1), no zro is printed because the function is a void function.

Also, call by variable for arrays was addelh declare a call by variable arrahe declaration of the array
parameter in the function definition looksdikrnamd]". Thecall to the function remains the same as call
by value arrays.

MATH LIBRARY
If bcis invoked with the-l option, a math library is preloaded and the default scale is set to 20. The math
functions will calculate their results to the scale set at the time of their call. The math library defines the
following functions:

s (X) The sine of x, x is in radians.

c(X) The cosine of x, x is in radians.

a() The arctangent of x, arctangent returns radians.
(X The natural logarithm of x.

e () The exponential function of raising e to the value x.
j(n,XY) The Bessel function of integer order n of x.

EXAMPLES
In /bin/sh, the following will assign the value of "pi" to the shell varigdble
pi=$(echo "scale=10; 4*a(1)" | bc -I)
The following is the definition of thexponential function used in the math librafjhis function is written
in POSIXbc.
scale = 20

/* Uses the fact that e"x = (e"(x/2))"2
When x is small enough, we use the series:
ex=1+x+Xx2/2! +x3/3! + ...
*/

define e(x) {
auto a, d,e f,i,m,v,z

/* Check the sign of x. */
if (x<0) {

GNU Project 2006-06-11 7

bc(1) GeneraCommands Manual bc(1)

1

m
X - X

}

/* Precondition x. */
z = scale;
scale =4 + z + .44*x;
while (x > 1) {
f+=1;
X /= 2;
}

/* Initialize the variables. */
\% 1+x

a X

d 1

for (i=2; 1; i++) {
e=(@*>x)/ (d *=i)
if (e==0){
if (f>0) while (f--) vV = VY,
scale =z
if (m) return (1/v);
return (v/1);
}
v += e
}
}

The following is code that uses theended features difc to implement a simple program for calculating
checkbook balances. This program is begitkn a file so that it can be used m#mes without having to
retype it at eery use.

scale=2

print "\nCheck book program\n"

print" Remember, deposits are negative transactions.\n"

print" Exit by a O transaction.\n\n"

print "Initial balance? "; bal = read()
bal /=1
print "\n"
while (1) {
"current balance ="; bal
"transaction? "; trans = read()
if (trans == 0) break;

bal -=trans
bal /=1

}

quit

The following is the definition of the recwsifactorial function.
define f (x) {
if (x <=1) return (1);
return (f(x-1) * x);
}

GNU Project 2006-06-11 8

bc(1) GeneraCommands Manual bc(1)

READLINE AND LIBEDIT OPTIONS
GNU bc can be compiled (via a configure option) to use the @@#ddline input editor library or the BSD
libedit library. This allows the user to do editing of lines before sending theoe.tdt also allows for a
history of previous lines typed. When this option is selediedhas one more speciahniable. Thisspe-
cial variable,history is the number of lines of history retaineor readline, a value of -1 means that an
unlimited number of history lines are retained. Setting the vallgstdry to a positve rumber restricts
the number of history lines to the numberepi Thevaue of 0 disables the history feature. Theaadif
value is 100. For more information, read the user manuals for the i&&tline, history and BSDlibedit
libraries. Onecan not enable botleadline andlibedit at the same time.

DIFFERENCES
This version ofbc was implemented from the POSIX P1003.2/D11 draft and contairesatalifferences
and extensions relag o the draft and traditional implementations. It is not implemented in the traditional
way using dc(1). This wversion is a single process which parses and runs a byte code translation of the pro-
gram. Therds an "undocumented" option (-c) that causes the program to output the byte code to the stan-
dard output instead of running it. It was mainly used forudging the parser and preparing the math
library.

A major source of dferences is extensions, where a feature is extended to add more functionality and addi-
tions, where n& features are added. The following is the list of differences and extensions.

LANG environment
This version does not conform to the POSIX standard in the processing of the LAixgh@ent
variable and all environment variables starting with LC _.

names Traditional and POSDbc have sngle letter names for functions, variables and arrdysy have
been extended to be multi-character names that start with a letter and may contain letters, numbers
and the underscore character.

Strings Strings are not allowed to contain NUL charactd?QSIX says all characters must be included in
strings.

last POSIXbc does not hee alast variable. Somémplementations obc use the period (.) in a simi-
lar way.

comparisons
POSIX bc allows comparisons only in the if statement, the while statement, and the second
expression of the for statement. Also, only one relational operation iseallin each of those
statements.

if statement, else clause
POSIXbc does not hee an dse clause.

for statement
POSIXbc requires all expressions to be present in the for statement.

&&, ||, !
POSIXbc does not hee the logical operators.

read function
POSIXbc does not hee a ead function.

print statement
POSIXbc does not hee a pint statement .

continue statement
POSIXbc does not hee a ontinue statement.

return statement
POSIXbc requires parentheses around the return expression.

GNU Project 2006-06-11 9

bc(1) GeneraCommands Manual bc(1)

array parameters
POSIXbc does not (currently) support array parameters in full. The POSIX grammar allows for
arrays in function definitions,ub does not provide a method to specify an array as an actual
parameter (This is most likely anersight in the grammgr Traditional implementations dic
have aly call by value array parameters.

function format
POSIXbc requires the opening brace on the same line adefiiee key word and theauto state-
ment on the next line.

=+, =-, =* =/, =0, =
POSIXbc does not require these "old style" assignment operators to be defined. This version may
allow these "old style" assignments. Use the limits statement to see if the instalezhwsup-
ports them.If it does support the "old style" assignment operators, the statement "a =- 1" will
decrement by 1 instead of settingto the value -1.

spaces in numbers
Other implementations dic allow spaces in numbersFor example, "x=1 3" would assign the
value 13 to the variable x. The same statement would cause a syntax error in this vdision of

errors andxecution
This implementation aries from other implementations in terms of what code will»seuted
when syntax and other errors are found in the program. If a syntax error is found in a function
definition, error receery tries to find the beginning of a statement and continue to parse the func-
tion. Oncea g/ntax error is found in the function, the function will not be callable and becomes
undefined. Syntaerrors in the interacte exeution code will inalidate the current>ecution
block. Theexecution block is terminated by an end of line that appears after a complete sequence
of statementsFor example,
a=1
b=2

has tw execution blocks and
{a=1

b=2}

has onexecution block. Any runtime error will terminate thexecution of the currentecution block. A

runtime warning will not terminate the currenteution block.

Interrupts
During an interactie ®ssion, the SIGINT signal (usually generated by the control-C character
from the terminal) will causexecution of the currentxacution block to be interrupted. It will
display a "runtime" error indicating which function was interruptédter all runtime structures
have een cleaned up, a message will be printed to notify the usdsdismteady for more input.
All previously defined functions remain defined and the value of all non-autables are the
value at the point of interruption. All auto variables and function parameters argetehaing
the clean up process. During a non-intexacession, the SIGINT signal will terminate the entire
run ofbc.

LIMITS

The following are the limits currently in place for this processar Some of them may & been changed
by an installation. Use the limits statement to see the actual values.

BC_BASE_MAX
The maximum output base is currently set at 999. The maximum input base is 16.

BC_DIM_MAX
This is currently an arbitrary limit of 65535 as distitded. Your installation may be different.

BC_SCALE_MAX
The number of digits after the decimal point is limited to INT_MAX digidso, the number of
digits before the decimal point is limited to INT_MAX digits.

GNU Project 2006-06-11 10

bc(1) GeneraCommands Manual bc(1)

BC_STRING_MAX
The limit on the number of characters in a string is INT_MAX characters.

exponent
The value of the exponent in the raise operation (") is limited to LONG_MAX.

variable names

The current limit on the number of unique names is 32767 for each of sianjables, arrays and
functions.

ENVIRONMENT VARIABLES
The following environment variables are processetdy

POSIXLY_CORRECT
This is the same as thgoption.

BC_ENV_ARGS
This is another mechanism to gegaments tdc. The format is the same as the command line
arguments. Thesarguments are processed first, sg &fes listed in the environmentguments
are processed beforeyacommand line agjument files. This allows the user to set up "standard"
options and files to be processed\aryg invocation ofbc. The files in the erironment \ariables
would typically contain function definitions for functions the user wants definergt #me bc is
run.

BC_LINE_LENGTH
This should be an integer specifying the number of characters in an output line for numbers. This
includes the backslash and newline characters for long numbers. Ageasien, the value of
zero disables the multi-line featurAny other value of this ariable that is less than 3 sets the line
length to 70.
DIAGNOSTICS
If any file on the command line can not be opertedwill report that the file is unailable and terminate.
Also, there are compile and run time diagnostics that should be self-explanatory.
BUGS
Error recwery is not very good yet.

Email bug reports tbug-bc@gnu.org Be wre to include the wordbc” somevhere in the ‘Subject:”
field.

AUTHOR
Philip A. Nelson
philnelson@acm.org

ACKNOWLEDGEMENTS
The author would lig © thank Stge SSmmars (Stee.Sommars@att.com) for higtensve kelp in testing

the implementationMany great suggestions werevgh. Thisis a much better product due to higdive-
ment.

GNU Project 2006-06-11 11

