DB_File(3) UserContributed Perl Documentation DB_File(3)

NAME
DB_File — Perl5 access to Berkgl®B version 1.x

SYNOPSIS
use DB_File;

[$X =] tie %hash, 'DB_File', [$filename, $flags, $mode, $DB_HASH] ;
[$X =] tie %hash, 'DB_File', $filename, $flags, $mode, $DB_BTREE ;
[$X =] tie @array, 'DB_File', $filename, $flags, $mode, $DB_RECNO ;

$status = $X->del($key [, $flags]) ;

$status = $X->put($key, $value [, $flags)) ;
$status = $X->get($key, $value [, $flags)) ;
$status = $X->seq($key, $value, $flags) ;
$status = $X->sync([$flags]) ;

$status = $X—>fd ;

BTREE only

$count = $X->get_dup($key) ;

@list = $X—>get_dup($key) ;

%list = $X->get_dup($key, 1) ;
$status = $X—>find_dup($key, $value) ;
$status = $X—>del_dup($key, $value) ;

RECNO only

$a = $X—>length;

$a = $X->pop ;

$X->push(list);

$a = $X->shift;

$X->unshift(list);

@r = $X—>splice(offset, length, elements);

DBM Filters

$old_filter = $db—>filter_store_key (sub{..});
$old_filter = $db—>filter_store_value(sub{...});

$old_filter = $db—>filter_fetch_key (sub{..});

$old_filter = $db—>filter_fetch_value(sub {... });

untie %hash ;
untie @array ;

DESCRIPTION
DB_File is a module which allows Perl programs to make of the facilities provided by Besley DB
version 1.x (if you hae a rewer version ofDB, see “Using DB_File with Berley DB version 2 or
greater). It is assumed that you V@ a opy of the Berleley DB manual pages at hand when reading this
documentation. The interface defined here mirrors the Berk&agterface closely.

BerkeleyDB is a C library which praeides a consistent interface to a number of database forDBtd-ile
provides an interface to all three of the database types currently supported by BeBkeley

The file types are:

DB_HASH
This database type allows arbitramykalue pairs to be stored in data files. This is \edemt to the
functionality provided by other hashing package [8M, NDBM, ODBM, GDBM, and SDBM.
Remember though, the files created usb®] HASH are not compatible with gnof the other
packages mentioned.

perl v5.16.3 2015-03-06 1

DB_File(3) UserContributed Perl Documentation DB_File(3)

A default hashing algorithm, which will be adequate for most applicationsjlisriio BerkeleyDB.
If you do need to use youmn hashing algorithm it is possible to write your own in Perl ang ha
DB_File use it instead.

DB_BTREE
The btree format allows arbitrargyvalue pairs to be stored in a sorted, balanced binary tree.

As with theDB_HASH format, it is possible to provide a user defined Perl routine to perform the
comparison of &ys. By default, though, theels ae stored in lexical order.

DB_RECNO
DB_RECNOallows both fixed-length and variable-length flat text files to be manipulated using the
same kylvalue pair interface as DB_HASH andDB_BTREE. In this case thedy will consist of a
record (line) number.

Using DB_File with BerkeleyDB version 2 or greater
AlthoughDB_File is intended to be used with Beiky DB version 1, it can also be used with version 2, 3
or 4. In this case the interface is limited to the functionality provided byeRsrkB 1.x. Anywhere the
version 2 or greater interface fiifs, DB_File arranges for it to work lig version 1. This feature ails
DB_File scripts that were built with version 1 to be migrated to version 2 or greater witlyothiaages.

If you want to mak use of the ne& features wzailable in Berleley DB 2.x or greateruse the Perl module
BerkeleyDB instead.

Note: The database file format has changed multiple times ineRsrB version 2, 3 and 4. If you cannot
recreate your databases, you must dump esting databases with either theb_dump or the
db_dump185 utility that comes with Berdey DB. Once you hee retuilt DB_File to use Beréley DB
version 2 or greateryour databases can be recreated uslbgload . Refer to the Berkley DB
documentation for further details.

Please read COPYRIGHT" before using version 2.x or greater of Berked®with DB_File.

Interface to BerkeleyDB
DB_File allows access to Beeley DB files using thdie() mechanism in Perl 5 (for full details, sege()”
in perlfunc). This facility allevs DB_File to access Bedtey DB files using either an associaiaray (for
DB_HASH & DB_BTREEfile types) or an ordinary array (for tb&_ RECNOfile type).

In addition to thdie() interface, it is also possible to access most of the functions provided in tredegerk
DB API directly. See “THE API INTERFACE”.

Opening a BerkeleyDB Database File
BerkeleyDB uses the functiodbopen()}o open or create a database. Here is the C prototypédpen()

DB*
dbopen (const char * file, int flags, int mode,
DBTYPE type, const void * openinfo)

The parametetype is an enumeration which specifies which of the 3 interface metimgIHASH,
DB_BTREE or DB_RECNQ is to be sed. Dependingn which of these is actually chosen, the final
parameterppeninfopoints to a data structure which allows tailoring of the specific interface method.

This interface is handled slightly differently@B_File. Here is an equéalent call usingdB_File:
tie %array, 'DB_File', $filename, $flags, $mode, $DB_HASH ;

Thefilename ,flags andmode parameters are the direct elient of theirdbopen()counterparts. The
final parameterl$DB_HASHperforms the function of both thigype and openinfo parameters in
dbopen()

In the example ahe $DB_HASHSs actually a pre-defined reference to a hash olipitFile has three of
these pre-defined references. Apart fitBB_HASHthere is alséDB_BTREEand$DB_RECNO

The leys dlowed in each of these pre-defined references is limited to the names used invllergdDi
structure. So, for example, tB_HASHreference will only alle keys alled bsize , cachesize ,
ffactor , hash,lorder andnelem.

perl v5.16.3 2015-03-06 2

DB_File(3) UserContributed Perl Documentation DB_File(3)

To change one of these elements, just assign tceittik:
$DB_HASH->{'cachesize'} = 10000 ;

The three predefinedaxiables$DB_HASH $DB_BTREEand$DB_RECNQ@ire usually adequate for most
applications. Ifyou do need to create extra instances of these objects, constructoralabteaor each
file type.

Here are wamples of the constructors and the valid optiovailable for DB_HASH, DB_BTREE and
DB_RECNOTrespectiely.

$a = new DB_File::HASHINFO ;
$a->{'bsize'} ;
$a->{'cachesize'};
$a—>{'ffactor'};

$a->{'hash'} ;

$a->{'lorder'} ;

$a->{'nelem’};

$b = new DB_File::BTREEINFO ;
$b—>{'flags'} ;

$b->{'cachesize'};
$b->{'maxkeypage'} ;
$b->{'minkeypage'} ;
$b—>{'psize} ;

$b—>{'compare'} ;

$b—>{'prefix’} ;

$b—>{'lorder'} ;

$c = new DB_File::RECNOINFO ;
$c—>{'bval’} ;
$c—>{'cachesize'} ;
$c—>{'psize'} ;
$c—>{flags'} ;
$c—>{'lorder'} ;
$c—>{reclen'};
$c—>{'bfname’} ;
The values stored in the hasheswebae mostly the direct equalent of their C counterpart. Létheir C

counterparts, all are set to a defawdtues - that means you dohaveto setall of the values when you
only want to change one. Here is an example:

$a = new DB_File::HASHINFO ;
$a->{'cachesize’} = 12345;
tie %y, 'DB_File', "filename", $flags, 0777, $a ;
A few d the options need extra discussion here. When used, the @lequof the leys hash , compare

andprefix store pointers to C functions. DB_File these kys ae used to store references to Perl subs.
Below are templates for each of the subs:

sub hash

{
my ($data) = @_;

r eturn the hash value for $data
return $hash ;

}

sub compare

perl v5.16.3 2015-03-06 3

DB_File(3) UserContributed Perl Documentation DB_File(3)

{
my ($key, $key2) = @_ ;
return 0 if $keyl eq $key2
-1 if $ keyl It $key2
1 if $keyl gt $key2
return (-1,00r1);
}
sub prefix
{
my ($key, $key2) = @_ ;
r eturn number of bytes of $key2 which are
necessary to determine that it is greater than $keyl
return $bytes ;
}

See “Changing th8TREE sort order’f or an example of using tle®empare template.
If you are using th®B_RECNOinterface and you intend making usebofal , you should check outThe
'bval’ Option”.

Default Parameters
It is possible to omit some or all of the final 4 parameters in the cék toand let them tak default

values. AsDB_HASH is the most common file format used, the call:
tie %A, "DB_File", "filename" ;
is equiaent to:
tie %A, "DB_File", "filename", O_CREAT|O_RDWR, 0666, $DB_HASH ;
It is also possible to omit the filename parameter as well, so the call:
tie %A, "DB_File" ;
is equiaent to:
tie %A, "DB_File", undef, O_CREAT|O_RDWR, 0666, $DB_HASH ;
See “In Memory Databasegor a discussion on the usewfdef in place of a filename.

In Memory Databases
BerkeleyDB allows the creation of in-memory databases by usiggL (that is, a(char *)0O in C) in
place of the filenameDB_File usesundef instead oNULL to provide this functionality.

DB_HASH
The DB_HASH file format is probably the most commonly used of the three file formatD®aFile

supports. It is also very straightforward to use.

A Simple Example
This example shows hoto create a database, adeykalue pairs to the database, deletgskalue pairs

and finally hav to enumerate the contents of the database.

use warnings ;
use strict ;

use DB _File;
our (%h, $k, $v) ;

unlink "fruit" ;

tie %oh, "DB_File", "fruit", O_RDWR|O_CREAT, 0666, $DB_HASH
or die "Cannot open file 'fruit’; $1\n";

perl v5.16.3 2015-03-06 4

DB_File(3)

here

UserContributed Perl Documentation DB_File(3)

Add a few key/value pairs to the file
$h{"apple"} = "red" ;

$h{"orange"} = "orange" ;
$h{"banana"} = "yellow" ;

$h{"tomato"} = "red" ;

Check for existence of a key
print "Banana Exists\n\n" if $h{"banana"} ;

Delete a key/value pair.
delete $h{"apple"} ;

print the contents of the file
while (($k, $v) = each %h)
{ print "$k —> $v\n" }
untie %h ;
is the output:

Banana Exists

orange —> orange
tomato —> red
banana —> yellow

Note that the lik ardinary associate arays, the order of theelys retrieved is in an @parently random
order.

DB_BTREE

The DB_BTREEformat is useful when you want to store data invargorder. By default the leys will be
stored in lexical ordetbut as you will see from the example shown in the next section, it is very easy to
define your own sorting function.

Changing theBTREE sort order

This

script shows he to override the default sorting algorithm thBTREE uses. Instead of using the

normal lexical ordering, a case insen&tiompare function will be used.

perl v5.16.3

use warnings ;
use strict ;
use DB _File ;

my %h ;

sub Compare

{
my ($keyl, $key2) = @_;
"\L$keyl" cmp "\LSkey2" ;
}

specify the Perl sub that will do the comparison
$DB_BTREE->{'compare'} = \&Compare ;

unlink "tree" ;

tie %oh, "DB_File", "tree", O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open file 'tree": $1\n" ;

2015-03-06 5

DB_File(3) UserContributed Perl Documentation DB_File(3)

Add a key/value pair to the file
$h{’'wall'} = 'Larry';

$h{'Smith} = 'John’;

$h{'mouse'} = 'mickey’ ;
$h{'duck’} = 'donald’ ;

Delete
delete $h{"duck"} ;

Cycle through the keys printing them in order.
Note it is not necessary to sort the keys as
t he btree will have kept them in order automatically.
foreach (keys %h)
{ print"$_\n"}

untie %h ;
Here is the output from the code abo

mouse
Smith
Wall

There are a fg point to bear in mind if you want to change the ordering BTREE database:
1. The n& compare function must be specified when you create the database.

2. You cannot change the ordering once the database has been created. Thus you must use the same
compare functionvery time you access the database.

3. Duplicate leys ae entirely defined by the comparison functidn. the case-insensitt example
abore, the lkeys: '’KEY' and 'key would be considered duplicates, and assigning to the second one
would overwrite the first. If duplicates are allowed for (with the R_DUP flag discussedhaloly a
single cop of duplicate leys is gored in the database ——- so (again with example&assigning
three values to theels: '’KEY’, 'K ey, and 'key would leave just the first ky: '"KEY’ in the database
with three values. For some situations this results in information loss, so care shouldrb#otak
provide fully qualified comparison functions when necess&gr example, the alve mmparison
routine could be modified to additionally compare case-sedigiif two keys ae equal in the case
insensitve cmparison:

sub compare {
my($keyl, $key2) = @_;
Ic $keyl cmp Ic $key2 ||
$keyl cmp $key?;

}

And nowv you will only have duplicates when thedys themseles are truly the same. (note: in
versions of the db library prior to about Wanber 1996, such duplicateys were retained so it as
possible to recger the original leys in sts of lkeys that compared as equal).

Handling Duplicate Keys
The BTREE file type optionally allows a singleel o be a&sociated with an arbitrary number aflues.
This option is enabled by setting the flags elemef0d_BTREBo R_DUP when creating the database.

There are some difficulties in using the tied hash interface if you want to manipBREBdatabase with
duplicate leys. Consider this code:

use warnings ;
use strict ;
use DB _File;

perl v5.16.3 2015-03-06 6

DB_File(3)

UserContributed Perl Documentation DB_File(3)

my ($filename, %h) ;

$filename = "tree" ;
unlink $filename ;

Enable duplicate records
$DB_BTREE—->{flags'} = R_DUP ;

tie %h, "DB_File", $flename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file

$h{’'wall'} = 'Larry';

$h{'Wall'} = 'Brick’ ; # Note the duplicate key

$h{'Wwall'} = 'Brick’ ; # Note the duplicate key and value
$h{'Smith} = 'John’;

$h{'mouse'} = 'mickey’ ;

i terate through the associative array
and print each key/value pair.
foreach (sort keys %h)

{ print"$_ —>$h{$ \n"}

untie %h ;

Here is the output:

Smith -> John

Wall -> Larry
Wall -> Larry
Wall -> Larry

mouse —> mickey

As you can see 3 recordsvedeen successfully created witBykWall - the only thing is, when tlyeare
retrieved from the database theseemto have the same value, namelyarry . The problem is caused by
the way that the associaé aray interface works. Basicallywhen the associat aray interface is used to
fetch the value associated with aagi key, it will only ever retrieve the first value.

Although it may not be immediately obvious from the codevabihe associate aray interface can be
used to write values with duplicateys, but it cannot be used to read them back from the database.

The way to get around this problem is to use the BleskDB API method callegeq. This method allovs
sequential access t@Wvalue pairs. Seé THE API INTERRACE" for details of both theseq method and
the APl in general.

Here is the script alve rewritten using theseq API method.

perl v5.16.3

use warnings ;

use strict ;

use DB _File ;

my ($filename, $x, %h, $status, $key, $value) ;

$filename = "tree" ;
unlink $filename ;

Enable duplicate records
$DB_BTREE—->{flags'} = R_DUP ;

2015-03-06 7

DB_File(3)

UserContributed Perl Documentation

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file

$h{’'wall'} = 'Larry';

$h{'Wwall'} = 'Brick’ ; # Note the duplicate key

$h{'wall'} = 'Brick’ ; # Note the duplicate key and value
$h{'Smith} = 'John’;

$h{'mouse'} = 'mickey’ ;

i terate through the btree using seq
and print each key/value pair.
$key = $value =0 ;
for ($status = $x—>seq($key, $value, R_FIRST) ;
$status == 0 ;
Pstatus = $x—>seq($key, $value, R_NEXT))
{ print "$key —> $value\n" }

undef $x ;
untie %h ;

that prints:
Smith -> John
Wall -> Brick
Wall -> Brick
Wall -> Larry

mouse —> mickey

DB_File(3)

This time we hee ot all the ley/value pairs, including the multiple values associated with elyé\kall .

To make life easier when dealing with duplicateyk, DB_File comes with a fe utility methods.

The get_dup()Method
Theget_dup method assists in reading duplicate values fBIfREE databases. The method caret#iie

following forms:

In a scalar context the method returns the number of values associated wét)) #xex.

$count = $x—>get_dup(Skey) ;
@list = $x—>get_dup($key) ;
%list = $x—>get_dup($key, 1) ;

In list context, it returns all the values which magiey . Note that the alues will be returned in an
apparently random order.

In list contet, if the second parameter is present avaluatesTRUE, the method returns an assodiati
array The leys of the associate aray correspond to thealues that matched in tlBTREE and the alues

of the array are a count of the number of times that particular value occurre@irREE.

So assuming the database created@lvee an useget_dup like this:

perl v5.16.3

use warnings ;

use strict ;

use DB _File ;

my ($filename, $x, %h) ;

$filename = "tree" ;

Enable duplicate records

2015-03-06

DB_File(3) UserContributed Perl Documentation DB_File(3)

$DB_BTREE—->{flags'} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

my $cnt = $x—>get_dup("Wall") ;
print "Wall occurred $cnt times\n" ;

my %hash = $x—>get_dup("Wall", 1) ;
print "Larry is there\n" if $hash{'Larry'} ;
print "There are $hash{'Brick'} Brick Walls\n" ;

my @list = sort $x—>get_dup("Wall") ;
print "Wall => [@list\n" ;

@list = $x—>get_dup("Smith") ;
print "Smith => [@list\n" ;

@list = $x—>get_dup("Dog") ;
print "Dog => [@list\n" ;
and it will print:

Wall occurred 3 times
Larry is there
There are 2 Brick Walls

Wall => [Brick Brick Larry]
Smith => [John]
Dog => I

The find_dup()Method
$status = $X—>find_dup($key, $value) ;

This method checks for the existence of a spec#igvilue pair If the pair exists, the cursor is left
pointing to the pair and the method returns 0. Otherwise the method returns a non-zero value.

Assuming the database from the previous example:
use warnings ;
use strict ;
use DB _File ;
my ($filename, $x, %h, $found) ;

$filename = "tree" ;

Enable duplicate records
$DB_BTREE—->{flags'} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

$found = ($x—>find_dup("Wall", "Larry") == 0 ? " : "not") ;
print “Larry Wall is $found there\n" ;

$found = ($x—>find_dup("Wall", "Harry") == 0 ? "™ : "not") ;
print "Harry Wall is $found there\n" ;

perl v5.16.3 2015-03-06 9

DB_File(3) UserContributed Perl Documentation DB_File(3)
undef $x ;
untie %h ;
prints this

Larry Wallis there
Harry Wall is not there

The del_dup()Method

$status = $X->del_dup($key, $value) ;

This method deletes a specifieyvalue pair It returns 0 if thg exist and hae been deleted successfully
Otherwise the method returns a non-zero value.

Again assuming the existence of thee database

use warnings ;

use strict ;

use DB _File ;

my ($filename, $x, %h, $found) ;

$filename = "tree" ;

Enable duplicate records
$DB_BTREE->{flags'} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

$x—>del_dup("Wall", "Larry") ;

$found = ($x—>find_dup("Wall", "Larry") == 0 ? " : "not") ;
print "Larry Wall is $found there\n" ;

undef $x ;
untie %h ;

prints this

Larry Wall is not there

Matching Partial Keys
The BTREE interface has a feature which alle partial leys to be natched. This functionality isnly
available when theseq method is used along with the R_CURSOR flag.

Here is the relant quote from the dbopen man page where it defines the use of the R_CURSOR flag with
seq:

$x—>seq($key, $value, R_CURSOR) ;

Note, for the DB_BTREE access method, the returned key is not
necessarily an exact match for the specified key. The returned key
is the smallest key greater than or equal to the specified key,
permitting partial key matches and range searches.

In the example script balg the match sub uses this feature to find and print the first matchéyly&ue
pair given a partial key.

perl v5.16.3

2015-03-06 10

DB_File(3)

UserContributed Perl Documentation

use warnings ;
use strict ;

use DB _File ;
use Fentl;

my ($filename, $x, %h, $st, $key, $value) ;

sub match
{
my $key = shift ;
my $value = 0;
my $orig_key = $key ;
$x—>seq($key, $value, R_CURSOR) ;
print "$orig_key\t—> $key\t—> $value\n" ;
}

$filename = "tree" ;
unlink $filename ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file
$h{'mouse'} = 'mickey’ ;

$h{’'wall'} = 'Larry';

$h{'Walls'} = 'Brick’ ;

$h{'Smith} = 'John’;

$key = $value =0 ;

print "IN ORDER\n" ;

for ($st = $x—>seq($key, $value, R_FIRST) ;
$St ==0;
$st = $x—>seq($key, $value, R_NEXT))

{ print"$key —-> $value\n" }
print \nPARTIAL MATCH\n" ;
match "Wa" ;
match "A" ;

match "a" ;

undef $x ;
untie %h ;

Here is the output:

perl v5.16.3

IN ORDER

Smith —> John
Wall -> Larry
Walls —> Brick
mouse —> mickey

PARTIAL MATCH
Wa ->Wall ->Larry

2015-03-06

DB_File(3)

11

DB_File(3) UserContributed Perl Documentation DB_File(3)

A —> Smith —> John
a —> nouse —> mickey

DB_RECNO

The

DB_RECNOprovides an interface to flat text files. Both variable and fixed length records are supported.

In order to ma& RECNOmore compatible with Perl, the array offset forREICNOarrays begins at O rather
than 1 as in BerkeleyB.

As with normal Perl arrays, RECNOarray can be accessed usingaliee indexes. The indg -1 refers to

the last element of the artay? the second last, and so on. Attempting to access an element before the start

of the array will raise a fatal run-time error.

'bval’ Option
The operation of theval option warrants some discussion. Here is the definitiorvaffoom the Berkley
DB 1.85recno manual page:

The delimiting byte to be used to mark the end of a
record for variable—length records, and the pad charac-

ter for fixed—length records. If no value is speci-
fied, newlines (T\n") are used to mark the end of
variable-length records and fixed—length records are
padded with spaces.

The second sentence is wrong. In actual fadtuill only default to"\n" when the openinfo parameter in
dbopen isNULL. If a non-NULL openinfo parameter is used at all, thiug that happens to be iaebwill

be used. That means yoways have o gecify bval when making use of grof the options in the openinfo
parameterThis documentation error will be fixed in the next release of Berlagey

That clarifies the situation with gards Berleley DB itself. What aboutDB_File? Well, the behwaior
defined in the quote abe is quite useful, s®B_File conforms to it.

That means that you can specify other options (e.g. cachesize) andvstilbwab default to"™\n" for
variable length records, and space for fixed length records.

Also note that theual option only allows you to specify a single byte as a delimiter.

A Simple Example

Here is a simplexample that useRECNO (if you are using a version of Perl earlier than 5.004_57 this
example wont work — seé' ExtraRECNOMethods’ f or a workaround).

use warnings ;
use strict ;
use DB _File ;

my $filename = "text" ;
unlink $filename ;

my @h ;
tie @h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_RECNO
or die "Cannot open file 'text’: $1\n" ;

Add a few key/value pairs to the file
$h[0] = "orange" ;

$h[1] = "blue";

$h[2] = "yellow" ;

push @h, "green”, "black" ;

my $elements = scalar @h ;
print "The array contains $elements entries\n" ;

perl v5.16.3 2015-03-06 12

DB_File(3) UserContributed Perl Documentation DB_File(3)

my $last = pop @h ;
print "popped $last\n" ;

unshift @h, "white" ;
my S$first = shift @h ;
print "shifted $first\n" ;

Check for existence of a key
print "Element 1 Exists with value $h[1]\n" if $h[1] ;

use a negative index
print "The last element is $h[-1]\n" ;
print "The 2nd last element is $h[-2]\n" ;

untie @h ;
Here is the output from the script:

The array contains 5 entries
popped black

shifted white

Element 1 Exists with value blue
The last element is green

The 2nd last element is yellow

Extra RECNO Methods
If you are using aersion of Perl earlier than 5.004_57, the tied array interface is quite limited. In the
example script abee push , pop, shift , unshift or determining the array length will nobvk with a
tied array.

To make the interface more useful for oldeergions of Perl, a number of methods are supplied with
DB_File to simulate the missing array operations. All these methods are accessed via the object returned
from the tie call.

Here are the methods:
$X->push(list) ;

Pushes the elementslst to the end of the array.
$val ue = $X->pop ;

Remaores and returns the last element of the array.
$X—>shift

Remaores and returns the first element of the array.
$X->unshift(list) ;

Pushes the elementslst to the start of the array.

$X->length
Returns the number of elements in the array.

$X->splice(offset, length, elements);
Returns a splice of the array.

Another Example
Here is a more completexa@mple that makes use of some of the methods described. éibalso males
use of theAPI interface directly (seeTHE API INTERFACE").

perl v5.16.3 2015-03-06 13

DB_File(3)

perl v5.16.3

UserContributed Perl Documentation

use warnings ;

use strict ;

my (@h, $H, $file, $i) ;
use DB _File ;

use Fentl;

$file = "text" ;
unlink $file ;

$H = tie @h, "DB_File", $file, O_RDWR|O_CREAT, 0666, $DB_RECNO
or die "Cannot open file $file: $!\n" ;

first create a text file to play with

$h[0] = "zero";
$h[1] = "one";
$h[2] = "two" ;
$h[3] = "three" ;
$h[4] = "four" ;

Print the records in order.

#

The length method is needed here because evaluating a tied
array in a scalar context does not return the number of

elements in the array.

print \nORIGINAL\n" ;

foreach $i (0 .. $H->length — 1) {
print "$i: $h[$ij\n" ;

}

use the push & pop methods

$a = $H->pop ;

$H->push("last") ;

print "\nThe last record was [$a]\n" ;

and the shift & unshift methods
$a = $H->shift ;
$H->unshift("first") ;

print "The first record was [$a]\n" ;

#_ Use the API to add a new record after record 2.
ile—fp’ut@i, "Newbie", R_IAFTER) ;

#_ and a new record before record 1.

:IH:—i-p’ut($i, "New One", R_IBEFORE) ;

delete record 3
$H—>del(3) ;

now print the records in reverse order

2015-03-06

DB_File(3)

14

DB_File(3)

UserContributed Perl Documentation

print \nREVERSE\n" ;
for ($i = $H->length - 1 ; $i >= 0 ; —— 3i)
{ print"$i: $h[$i\n" }

same again, but use the API functions instead
print \nREVERSE again\n" ;

my ($s, 3Kk, $v) = (0,0,0);
for ($s = $H->seq($k, $v, R_LAST) ;
$s == :

$s = $H->seq($k, $v, R_PREV))
{ print "$k: $v\n" }

undef $H ;
untie @h ;

and this is what it outputs:

ORIGINAL
0: zero

1: one

2: two

3: three

4: four

The last record was [four]
The first record was [zero]

REVERSE
: last

: three

: Newbie
one

: New One
: first

ORrNWAOWO

REVERSE again
: last

: three

: Newbie

one

: New One

: first

ORrNWAOW

Notes:

1.

perl v5.16.3

Rather than iterating through the ar@fhlik e this:
foreach $i (@h)

it is necessary to use either this:
foreach $i (0 .. $H->length - 1)

or this:

for ($a = $H—>get($k, $v, R_FIRST) ;
$a==0;
$a = $H—>get($k, $v, R_NEXT))

2015-03-06

DB_File(3)

15

DB_File(3) UserContributed Perl Documentation DB_File(3)

2. Notice that both times theut method was used the record irdeas specified using axiable,$i ,
rather than the literalalue itself. This is becaugmit will return the record number of the inserted
line via that parameter.

THE API INTERF ACE

As well as accessing BerleyDB using a tied hash or arrayis aso possible to makdrect use of most of

the API functions defined in the Berkel®B documentation.

To do this you need to store a gopf the object returned from the tie.

$db = tie %hash, "DB_File", "filename" ;

Once you hee ne that, you can access the Bielg DB API functions aDB_File methods directly lik
this:

$db—>put($key, $value, R_NOOVERWRITE) ;

Important: If you have saved a mpy of the object returned frotiie |, the underlying database file wilbt
be closed until both the tied variable is untied and all copies of e daject are destroyed.

use DB _File ;
$db = tie %hash, "DB_File", "filename"
or die "Cannot tie filename: $!" ;

undef $db ;
untie %hash ;

See “Theuntie() Gotcha’ f or more details.

All the functions defined in dbopen argaitable except forclose() and dbopen()itself. The DB_File
method interface to the supported functiongehleeen implemented to mirror the way Beldy DB works
wheneer possible. In particular note that:

. The methods return a statuslve. All return 0 on success. All return -1 to signify an error and set
$! to the exact error code. The return code 1 generally (butways)l means that theei pecified
did not exist in the database.

Other return codes are defined. See weadnd in the Berkley DB documentation for details. The
BerkeleyDB documentation should be used as the defengdurce.

. Wheneer a BerkeleyDB function returns data via one of its parameters, thevagqui DB_File
method does exactly the same.

. If you are careful, it is possible to mbPI calls with the tied hash/array interface in the same piece of
code. Although only a fe of the methods used to implement the tied interface currently nszkof
the cursaryou should alays assume that the cursor has been changetinaa the tied hash/array
interface is used. As an example, this code will probably not do what you expect:

$X = tie %x, 'DB_File', $filename, O_RDWR|O_CREAT, 0777, $DB_BTREE
or die "Cannot tie $filename: $!" ;

Get the first key/value pair and set the cursor
$X->seq($key, $value, R_FIRST) ;

t his line will modify the cursor
$count = scalar keys %x ;

Get the second key/value pair.
oops, it didn't, it got the last key/value pair!
$X->seq($key, $value, R_NEXT) ;

The code abee @an be rearranged to get around the problera iis:

perl v5.16.3 2015-03-06 16

DB_File(3)

UserContributed Perl Documentation DB_File(3)

$X = tie %x, 'DB_File', $filename, O_RDWR|O_CREAT, 0777, $DB_BTREE
or die "Cannot tie $filename: $!" ;

t his line will modify the cursor
$count = scalar keys %x ;

Get the first key/value pair and set the cursor
$X->seq($key, $value, R_FIRST) ;

Get the second key/value pair.
worked this time.
$X->seq($key, $value, R_NEXT) ;

All the constants defined in dbopen for use in the flags parameters in the methods definedebelso
awailable. Refer to the Berkel®B documentation for the precise meaning of the flags values.

Below is a list of the methodsvailable.
$st at us = $X—>get($key,$val ue [, $f | ags]) ;

Given a lkey @key) this method reads the value associated with it from the databasealibgead
from the database is returned in $value parameter.

If the key dbes not exist the method returns 1.

No flags are currently defined for this method.

$st at us = $X—>put($key, $val ue [, $f | ags]) ;

Stores the &y/value pair in the database.

If you use either the R_IAFTER or R_IBEFORE flags, #key parameter will hee the record
number of the insertecelgvalue pair set.

Valid flags are R_CURSOR, R_IAFTER, R_IBEFORE, R_NOOVERWRITE and R_SETCURSOR.

$st at us = $X—>del(Skey [,$f | ags]) ;

Removes dl key/value pairs with &y $key from the database.
A return code of 1 means that the requestsdias not in the database.

R_CURSOR is the only valid flag at present.

$st at us = $X—>fd ;

Returns the file descriptor for the underlying database.

See “Locking: The Trouble with fdf or an explanation for whyou should not uséd to lock your
database.

$st at us = $X—>seq(Skeysval ue, $f | ags) ;

This interface allows sequential retr@from the database. See dbopen for full details.
Both the$key and$value parameters will be set to theykvalue pair read from the database.

The flags parameter is mandatomhe \alid flag values are R_CURSOR, R_FIRS LAST,
R_NEXT and R_PREV.

$st at us = $X—>sync([$flags)) ;

Flushes apcached buffers to disk.

R_RECNOSYNC is the only valid flag at present.

DBM FILTERS
A DBM Filter is a piece of code that is be used whenglaayswant to male the same transformation to
all keys and/or values in ®BM database.

There are four methods associated vingM Filters. All work identically and each is used to install (or

perl v5.16.3

2015-03-06 17

DB_File(3) UserContributed Perl Documentation DB_File(3)

uninstall) a singleDBM Filter. Each expects a single parameteamely a reference to a subhe only
difference between them is the place that the filter is installed.

To summarise:

filter_store_key
If a filter has been installed with this method, it will beoked every time you write a &y b aDBM
database.

filter_store value
If a filter has been installed with this method, it will beoked every time you write a value to a
DBM database.

filter_fetch_key
If a filter has been installed with this method, it will beoked every time you read ady from a
DBM database.

filter_fetch_value
If a filter has been installed with this method, it will beoked every time you read a value from a
DBM database.

You can use ancombination of the methods, from none, to all four.
All filter methods return the existing filtgf present, oundef in not.
To delete a filter passndef to it.

The Filter
When each filter is called by Perl, a localg@p$_ will contain the ley a value to be filtered. Filtering is
achieved by modifying the contents df_. The return code from the filter is ignored.

An Example — the NULL termination problem.
Consider the following scenario. YouveaaDBM database that you need to share with a third-party C
application. The C application assumes #ilhkeys and values amgULL terminated. Unfortunately when
Perl writes tdBM databases it doegniseNULL termination, so your Perl application will\veato manage
NULL termination itself. When you write to the database you wiltha use something li& this:

$hash{"$key\0"} = "$value\0" ;

Similarly the NULL needs to be taken into account when you are considering the lengiistoige
keys/values.

It would be much better if you could ignore tRELL terminations issue in the main application code and
have a nechanism that automatically added the terminatingL to all keys and values whener you
write to the database andvieahem remwged when you read from the database. As I'm sure yoe ha
already guessed, this is a problem @t Filters can fix very easily.

use warnings ;
use strict ;
use DB _File ;

my %bhash ;
my $filename = "filt" ;

unlink $filename ;

my $db = tie %hash, 'DB_File', $filename, O_CREAT|O_RDWR, 0666, $DB_HASH
or die "Cannot open $filename: $\n" ;

| nstall DBM Filters

$db—>filter_fetch_key (sub { sNO$// 1)
$db—>filter_store_key (sub{$_.="0"});
$db—>filter_fetch_value(sub { sN0$// 1)

$db—>filter_store_value(sub {$_.="0"});

perl v5.16.3 2015-03-06 18

DB_File(3) UserContributed Perl Documentation DB_File(3)

$hash{"abc"} = "def" ;
my $a = $hash{"ABC"} ;
...

undef $db ;

untie %hash ;

Hopefully the contents of each of the filters should be sglfa@atory Both “fetch” filters remwoe the
terminatingNULL, and both “storé’filters add a terminatingULL.

Another Example — Key is a C int.
Here is another real-life example. By default, when®erl writes to aDBM database it alays writes the
key and value as strings. So when you use this:

$hash{12345} = "something" ;

the lkey 12345 will get stored in thBBM database as the 5 byte striti345”. If you actually want the
key to be gored in theDBM database as a C int, you willveaio use pack when writing, andunpack
when reading.

Here is @DBM Filter that does it:

use warnings ;

use strict ;

use DB _File ;

my %bhash ;

my $filename = "filt" ;
unlink $filename ;

my $db = tie %hash, 'DB_File', $filename, O_CREAT|O_RDWR, 0666, $DB_HASH
or die "Cannot open $filename: $\n" ;

$db—>filter_fetch_key (sub {$_ = unpack('i", $.)});
$db—>filter_store_key (sub {$_=pack ("i",$)});
$hash{123} = "def";

...

undef $db ;

untie %hash ;

This time only tvo filters hae been used— we oanly need to manipulate the contents of tleg, lso it
wasn't necessary to install girvalue filters.

HINTS AND TIPS
Locking: The Trouble with fd
Until version 1.72 of this module, the recommended technique for loEkdrile databases was to flock
the filehandle returned from thd&d'’ function. Unfortunately this technique has been shown to be
fundamentally flawed (Kudos to David Harris for tracking this down). Use it at your own peril!

The locking technique went kkthis.

perl v5.16.3 2015-03-06 19

DB_File(3) UserContributed Perl Documentation DB_File(3)

$db = tie(%db, 'DB_File', foo.db', O_CREAT|O_RDWR, 0644)
|| die "dbcreat foo.db $!";

$fd = $db—>fd;

open(DB_FH, "+<&=$fd") || die "dup $!";

flock (DB_FH, LOCK_EX) || die "flock: $!";

$db{"Tom"} = "Jerry";

flock(DB_FH, LOCK_UN);
undef $db;

untie %db;

close(DB_FH);

In simple terms, this is what happens:
1. Use “tie” to open the database.

2. Lock the database with fd & flock.
3. Read & Write to the database.

4. Unlock and close the database.

Here is the crux of the problem. A side-effect of openingliBe File database in step 2 is that an initial
block from the database will get read from disk and cached in memory.

To e wly this is a problem, consider what can happen whemptacesses, sayA” and “B’’, both want

to update the samBB_File database using the locking steps outlinedvabAssume processA” has
already opened the database and has a write lock, but it besrlly updated the database yet (it has
finished step 2, but not started step 3 yet\wigpoocess ‘B’ tries to open the same database — step 1 will
succeed, but it will block on step 2 until proceas t eleases the lock. The important thing to notice here is
that at this point in time both processes willdhaached identical initial blocks from the database.

Now process‘A” updates the database and happens to change some of the data held in thefieitial b
Process'A” t erminates, flushing all cached data to disk and releasing the database lock. At this point the
database on disk will correctly reflect the changes made by précess *

With the lock released, proced8’' can nav continue. It also updates the database and unfortunately it too
modifies the data that was in its initialffer. Once that data gets flushed to disk it willeawrite some/all
of the changes procesa™ made to the database.

The result of this scenario is at best a database that toesstain what you expect. Atavst the database
will corrupt.

The aboe won't happen ®ery time competing process update the sddie File database, but it does
illustrate wly the technique should not be used.

Safe ways to lock a database
Starting with version 2.x, Beekey DB has internal support for locking. The companion module to this
one, BerkeleyDB, provides an interface to this locking functionalit§ you are serious about locking
BerkeleyDB databases, | strongly recommend udtegkeleyDB.

If using BerkeleyDB isn't an @otion, there are a number of modulesilable onCPAN that can be used to
implement locking. Each one implements locking differently and has different goals in mind. It is therefore
worth knowing the diierence, so that you can pick the right one for your application. Here are the three
locking wrappers:
Tie::DB_Lock

A DB_File wrapper which creates copies of the database file for read access, so thakeyalirith

of a multiversioning concurrent read system.wwer, updates are still serial. Use for databases
where reads may be lengtind consistencproblems may occur.

perl v5.16.3 2015-03-06 20

DB_File(3) UserContributed Perl Documentation DB_File(3)

Tie::DB_LockFile
A DB_File wrapper that has the ability to lock and unlock the database while it is being usiels. A
the tie-before-flock problem by simply re-tie-ing the database when you get or drop 8émeuse
of the flexibility in dropping and re-acquiring the lock in the middle of a session, this can be
massaged into a system that wilbnk with long updates and/or reads if the application follows the
hints in thePOD documentation.

DB_File::Lock
An extremely lightweighDB_File wrapper that simply flocks a lockfile before tie-ing the database
and drops the lock after the untie. Adl® one to use the same lockfile for multiple databasesoid a
deadlock problems, if desired. Use for databases where updates are reads are quick and simple flock
locking semantics are enough.

Sharing Databases With C Applications
There is no technical reason wi Berkeley DB database cannot be shared by both a Perl and a C
application.

The \ast majority of problems that are reported in this area boil down to the fact that C string# lare
terminated, whilst Perl strings are not. S&8BM FILTERS" for a generic way to work around this problem.

Here is a real example. Netscape 2.0 keeps a record of the locations you visit along with the time you last
visited them in @&B_HASH database. Thiis usually stored in the filé.netscape/history.diihe ley field

in the database is the location string and the value field is the time the location was last visited stored as a 4
byte binary value.

If you haven’t dready guessed, the location string is stored with a terminiitinndy. This means you need
to be careful when accessing the database.

Here is a snippet of code that is loosely basedoom Christianseis’'ggh script (available from your nearest
CPAN archie in authors/id/TOMC/scripts/nshist.pz

use warnings ;
use strict ;

use DB _File ;
use Fentl;

my ($dotdir, $HISTORY, %hist_db, $href, $binary_time, $date) ;
$dotdir = SENV{HOME} || $ENV{LOGNAME};

$HISTORY = "$dotdir/.netscape/history.db";

tie %hist_db, 'DB_File', $HISTORY
or die "Cannot open $HISTORY: $1\n" ;;

Dump the complete database
while (($href, $binary_time) = each %hist_db) {

r emove the terminating NULL
$href =" sA\x00%$// ;

convert the binary time into a user friendly string
$date = localtime unpack("V", $binary_time);
print "$date $hrefin" ;

}

check for the existence of a specific key

r emember to add the NULL

if ($binary_time = $hist_db{"http://mox.perl.com/\x00"}) {
$date = localtime unpack("V", $binary_time) ;

perl v5.16.3 2015-03-06 21

DB_File(3) UserContributed Perl Documentation DB_File(3)

print "Last visited mox.perl.com on $date\n" ;

}

else {
print "Never visited mox.perl.com\n”

}

untie %hist_db ;

The untie() Gotcha

If you male use of the BerileyDB AP, it is verystrongly recommended that you read “The untie Gotcha’
in perltie.

Even if you dort currently male use of theAPI interface, it is still worth reading it.
Here is an example which illustrates the problem frddBaFile perspectie:

use DB _File ;
use Fentl ;

my %x ;
my $X;

$X = tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_TRUNC
or die "Cannot tie first time: $!" ;

$x{123} = 456 ;
untie %x ;

tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_CREAT
or die "Cannot tie second time: $!" ;

untie %x ;
When run, the script will produce this error message:

Cannot tie second time: Invalid argument at bad.file line 14.

Although the error message akorefers to the secontie() statement in the script, the source of the
problem is really with thentie() statement that precedes it.

Having read perltie you will probably tia dready guessed that the error is caused by the extyaofdlpe

tied object stored iBX. If you haen't, then the problem boils down to the fact that BiB_File
destructorDESTROY, will not be called untilall references to the tied object are destroyed. Both the tied
variable, %x and $X above told a reference to the object. The calutdie() will destroy the first, lut $X

still holds a walid reference, so the destructor will not get called and the databats.fillevill remain

open. The fact that Begley DB then reports the attempt to open a database that is already open via the
catch-all “Invalid argument’doesnt help.

If you run the script with thew flag the error message becomes:

untie attempted while 1 inner references still exist at bad.file line 12.
Cannot tie second time: Invalid argument at bad.file line 14.

which pinpoints the real problem. Finally the script caw @ nodified to fix the original problem by
destroying the\PI object before the untie:

$x{123} = 456 ;

undef $X ;
untie %x ;

perl v5.16.3 2015-03-06 22

DB_File(3) UserContributed Perl Documentation DB_File(3)

$X = tie %x, 'DB_File', 'tst.fil', O_RDWR|O_CREAT

COMMON QUESTIONS
Why is there Perl source in my database?

If you look at the contents of a database file created by DB_File, there can sometimes be part of a Perl
script included in it.

This happens because Beldy DB uses dynamic memory to allocateffiers which will subsequently be
written to the database file. Being dynamic, the memory coutd heen used for aithing beforeDB
malloced it. As Ber&ley DB doesnt clear the memory once it has been allocated, the unused portions will
contain random junk. In the case where a Perl script gets written to the database, the random junk will
correspond to an area of dynamic memory that happened to be used during the compilation of the script.

Unless you dott’like the possibility of there being part of your Perl scripts embedded in a database file, this

is nothing to worry about.

How do | store complex data structures with DB_File?
AlthoughDB_File cannot do this directjyhere is a module which can layer transpareniy ®B_File to
accomplish this feat.

Check out thauLDBM module, &ailable onCPAN in the directorymodules/by—-module/MLDBM

What does “Invalid Argument’’ mean?
You will get this error message when one of the parameters itiethecall is wrong. Unfortunately there
are quite a fe& parameters to get wrong, so it can be difficult to figure out which one it is.

Here are a couple of possibilities:
1. Attempting to reopen a database without closing it.
2. Using the O_WRONY flag.

What does “Bareword 'DB_File’ not allowed” mean?
You will encounter this particular error message when yme ltiee strict 'subs’ pragma (or the full
strict pragma) in your script. Consider this script:

use warnings ;
use strict ;
use DB_File ;
my %X ;
tie %x, DB_File, "filename" ;
Running it produces the error in question:
Bareword "DB_File" not allowed while "strict subs" in use
To get around the errpplace the wordB_File in either single or double quotes ditais:
tie %x, "DB_File", "filename" ;
Although it might seem li& a eal pain, it is really worth the effort of havingiae strict in all your
scripts.

REFERENCES
Articles that are either aboDB_File or male wse of it.

1. Full-Tex Searching in Rerl, Tim Kientzle (tkientzle@ddj.com), DrDobb’s Jburnal, Issue 295,
January 1999, pp 34-41

HISTORY
Moved to the Changes file.

perl v5.16.3 2015-03-06 23

DB_File(3) UserContributed Perl Documentation DB_File(3)

BUGS
Some older versions of Bezley DB had problems with fied length records using tiRECNOfile format.
This problem has been fixed since version 1.85 of Berlgsey

| am aure there are bugs in the code. If you do fing ancan suggest grenhancements, | would welcome
your comments.

AVAILABILITY
DB_File comes with the standard Perl source distribution. Look in the diree®yB_File. Given the
amount of time between releases of Perl the version that ships with Perl is quite likely to be out of date, so
the most recent version carways be found orCPAN (see “CPAN" in perlmodlib for details), in the
directorymodules/by—-module/DB_File

This version oDB_File will work with either version 1.x, 2.x or 3.x of Bexley DB, but is limited to the
functionality provided by version 1.

The official web site for Berktey DB is
http://www.oracle.com/technology/products/berkeley—db/db/index.hfdil versions of Berkley DB are
available there.

Alternatively, BerkeleyDB version 1 is &ailable at your nearestPAN archive in src/misc/db.1.85.tar.gz

COPYRIGHT
Copyright (c) 1995-2012 Paul Marquess. All rights reserved. This program is freeasnftyou can
redistribute it and/or modify it under the same terms as Perl itself.

Although DB_File is covered by the Perl license, the library it makes use of, namelyeksrkB, is not.
BerkeleyDB has its own copyright and its own license. Please tektime to read it.

Here are a fe words taken from the Beeley DB FAQ (at
http://www.oracle.com/technology/products/berkeley—db/db/indeX). ntméding the license:

Do | have to license DB to use it in Perl scripts?

No. The Berkeley DB license requires that software that uses
Berkeley DB be freely redistributable. In the case of Perl, that
software is Perl, and not your scripts. Any Perl scripts that you
write are your property, including scripts that make use of
Berkeley DB. Neither the Perl license nor the Berkeley DB license
place any restriction on what you may do with them.

If you are in ag doubt about the license situation, contact either thedbeyloB authors or the author of
DB_File. See AUTHOR?” for detalils.

SEE ALSO
perl,dbopen(3), hash(3), recno(3), btree(3), perldbmfilter

AUTHOR
The DB_File interface was written by Paul Marquess <pmgs@cpan.org>.

perl v5.16.3 2015-03-06 24

