
DB_File(3) UserContributed Perl Documentation DB_File(3)

NAME
DB_File − Perl5 access to Berkeley DB version 1.x

SYNOPSIS
use DB_File;

[$X =] tie %hash, 'DB_File', [$filename, $flags, $mode, $DB_HASH] ;
[$X =] tie %hash, 'DB_File', $filename, $flags, $mode, $DB_BTREE ;
[$X =] tie @array, 'DB_File', $filename, $flags, $mode, $DB_RECNO ;

$status = $X−>del($key [, $flags]) ;
$status = $X−>put($key, $value [, $flags]) ;
$status = $X−>get($key, $value [, $flags]) ;
$status = $X−>seq($key, $value, $flags) ;
$status = $X−>sync([$flags]) ;
$status = $X−>fd ;

BTREE only
$count = $X−>get_dup($key) ;
@list = $X−>get_dup($key) ;
%list = $X−>get_dup($key, 1) ;
$status = $X−>find_dup($key, $value) ;
$status = $X−>del_dup($key, $value) ;

RECNO only
$a = $X−>length;
$a = $X−>pop ;
$X−>push(list);
$a = $X−>shift;
$X−>unshift(list);
@r = $X−>splice(offset, length, elements);

DBM Filters
$old_filter = $db−>filter_store_key (s ub { ... }) ;
$old_filter = $db−>filter_store_value(sub { ... }) ;
$old_filter = $db−>filter_fetch_key (s ub { ... }) ;
$old_filter = $db−>filter_fetch_value(sub { ... }) ;

untie %hash ;
untie @array ;

DESCRIPTION
DB_File is a module which allows Perl programs to make use of the facilities provided by Berkeley DB
version 1.x (if you have a newer version ofDB, see ‘‘Using DB_File with Berkeley DB version 2 or
greater’’). It is assumed that you have a copy of the BerkeleyDB manual pages at hand when reading this
documentation. The interface defined here mirrors the BerkeleyDB interface closely.

BerkeleyDB is a C library which provides a consistent interface to a number of database formats.DB_File
provides an interface to all three of the database types currently supported by BerkeleyDB.

The file types are:

DB_HASH
This database type allows arbitrary key/value pairs to be stored in data files. This is equivalent to the
functionality provided by other hashing packages like DBM, NDBM, ODBM, GDBM, and SDBM.
Remember though, the files created usingDB_HASH are not compatible with any of the other
packages mentioned.

perl v5.16.3 2015-03-06 1

DB_File(3) UserContributed Perl Documentation DB_File(3)

A default hashing algorithm, which will be adequate for most applications, is built into BerkeleyDB.
If you do need to use your own hashing algorithm it is possible to write your own in Perl and have
DB_File use it instead.

DB_BTREE
The btree format allows arbitrary key/value pairs to be stored in a sorted, balanced binary tree.

As with theDB_HASH format, it is possible to provide a user defined Perl routine to perform the
comparison of keys. By default, though, the keys are stored in lexical order.

DB_RECNO
DB_RECNOallows both fixed-length and variable-length flat text files to be manipulated using the
same key/value pair interface as inDB_HASH andDB_BTREE. In this case the key will consist of a
record (line) number.

Using DB_File with BerkeleyDB version 2 or greater
AlthoughDB_File is intended to be used with BerkeleyDB version 1, it can also be used with version 2, 3
or 4. In this case the interface is limited to the functionality provided by Berkeley DB 1.x. Anywhere the
version 2 or greater interface differs, DB_File arranges for it to work like version 1. This feature allows
DB_File scripts that were built with version 1 to be migrated to version 2 or greater without any changes.

If you want to make use of the new features available in Berkeley DB 2.x or greater, use the Perl module
BerkeleyDB instead.

Note: The database file format has changed multiple times in BerkeleyDB version 2, 3 and 4. If you cannot
recreate your databases, you must dump any existing databases with either thedb_dump or the
db_dump185 utility that comes with Berkeley DB. Once you have rebuilt DB_File to use Berkeley DB
version 2 or greater, your databases can be recreated usingdb_load . Refer to the Berkeley DB
documentation for further details.

Please read ‘‘COPYRIGHT’’ before using version 2.x or greater of BerkeleyDB with DB_File.

Interface to BerkeleyDB
DB_File allows access to BerkeleyDB files using thetie() mechanism in Perl 5 (for full details, see ‘‘ tie()’’
in perlfunc). This facility allows DB_File to access BerkeleyDB files using either an associative array (for
DB_HASH & DB_BTREEfile types) or an ordinary array (for theDB_RECNOfile type).

In addition to thetie() interface, it is also possible to access most of the functions provided in the Berkeley
DB API directly. See ‘‘THE API INTERFACE’’ .

Opening a BerkeleyDB Database File
BerkeleyDB uses the functiondbopen()to open or create a database. Here is the C prototype fordbopen():

DB*
dbopen (const char * file, int flags, int mode,

DBTYPE type, const void * openinfo)

The parametertype is an enumeration which specifies which of the 3 interface methods (DB_HASH,
DB_BTREE or DB_RECNO) is to be used. Dependingon which of these is actually chosen, the final
parameter,openinfopoints to a data structure which allows tailoring of the specific interface method.

This interface is handled slightly differently inDB_File. Here is an equivalent call usingDB_File:

tie %array, 'DB_File', $filename, $flags, $mode, $DB_HASH ;

Thefilename , flags andmode parameters are the direct equivalent of theirdbopen()counterparts. The
final parameter$DB_HASHperforms the function of both thetype and openinfo parameters in
dbopen().

In the example above $DB_HASHis actually a pre-defined reference to a hash object.DB_File has three of
these pre-defined references. Apart from$DB_HASH, there is also$DB_BTREEand$DB_RECNO.

The keys allowed in each of these pre-defined references is limited to the names used in the equivalent C
structure. So, for example, the$DB_HASHreference will only allow keys called bsize , cachesize ,
ffactor , hash , lorder andnelem .

perl v5.16.3 2015-03-06 2

DB_File(3) UserContributed Perl Documentation DB_File(3)

To change one of these elements, just assign to it like this:

$DB_HASH−>{'cachesize'} = 10000 ;

The three predefined variables$DB_HASH, $DB_BTREEand$DB_RECNOare usually adequate for most
applications. Ifyou do need to create extra instances of these objects, constructors are available for each
file type.

Here are examples of the constructors and the valid options available for DB_HASH, DB_BTREEand
DB_RECNOrespectively.

$a = new DB_File::HASHINFO ;
$a−>{'bsize'} ;
$a−>{'cachesize'} ;
$a−>{'ffactor'};
$a−>{'hash'} ;
$a−>{'lorder'} ;
$a−>{'nelem'} ;

$b = new DB_File::BTREEINFO ;
$b−>{'flags'} ;
$b−>{'cachesize'} ;
$b−>{'maxkeypage'} ;
$b−>{'minkeypage'} ;
$b−>{'psize'} ;
$b−>{'compare'} ;
$b−>{'prefix'} ;
$b−>{'lorder'} ;

$c = new DB_File::RECNOINFO ;
$c−>{'bval'} ;
$c−>{'cachesize'} ;
$c−>{'psize'} ;
$c−>{'flags'} ;
$c−>{'lorder'} ;
$c−>{'reclen'} ;
$c−>{'bfname'} ;

The values stored in the hashes above are mostly the direct equivalent of their C counterpart. Like their C
counterparts, all are set to a default values − that means you don’t hav eto setall of the values when you
only want to change one. Here is an example:

$a = new DB_File::HASHINFO ;
$a−>{'cachesize'} = 12345 ;
tie %y, 'DB_File', "filename", $flags, 0777, $a ;

A few of the options need extra discussion here. When used, the C equivalent of the keys hash , compare
andprefix store pointers to C functions. InDB_File these keys are used to store references to Perl subs.
Below are templates for each of the subs:

sub hash
{

my ($data) = @_ ;
...
r eturn the hash value for $data
return $hash ;

}

sub compare

perl v5.16.3 2015-03-06 3

DB_File(3) UserContributed Perl Documentation DB_File(3)

{
my ($key, $key2) = @_ ;
...
r eturn 0 if $key1 eq $key2
−1 if $ key1 lt $key2
1 if $key1 gt $key2
return (−1 , 0 or 1) ;

}

sub prefix
{

my ($key, $key2) = @_ ;
...
r eturn number of bytes of $key2 which are
necessary to determine that it is greater than $key1
return $bytes ;

}

See ‘‘Changing theBTREEsort order’’ f or an example of using thecompare template.

If you are using theDB_RECNOinterface and you intend making use ofbval , you should check out ‘‘The
’bval’ Option’’.

Default Parameters
It is possible to omit some or all of the final 4 parameters in the call totie and let them take default
values. AsDB_HASH is the most common file format used, the call:

tie %A, "DB_File", "filename" ;

is equivalent to:

tie %A, "DB_File", "filename", O_CREAT|O_RDWR, 0666, $DB_HASH ;

It is also possible to omit the filename parameter as well, so the call:

tie %A, "DB_File" ;

is equivalent to:

tie %A, "DB_File", undef, O_CREAT|O_RDWR, 0666, $DB_HASH ;

See ‘‘In Memory Databases’’ f or a discussion on the use ofundef in place of a filename.

In Memory Databases
BerkeleyDB allows the creation of in-memory databases by usingNULL (that is, a(char *)0 in C) in
place of the filename.DB_File usesundef instead ofNULL to provide this functionality.

DB_HASH
The DB_HASH file format is probably the most commonly used of the three file formats thatDB_File
supports. It is also very straightforward to use.

A Simple Example
This example shows how to create a database, add key/value pairs to the database, delete keys/value pairs
and finally how to enumerate the contents of the database.

use warnings ;
use strict ;
use DB_File ;
our (%h, $k, $v) ;

unlink "fruit" ;
tie %h, "DB_File", "fruit", O_RDWR|O_CREAT, 0666, $DB_HASH

or die "Cannot open file 'fruit': $!\n";

perl v5.16.3 2015-03-06 4

DB_File(3) UserContributed Perl Documentation DB_File(3)

Add a few key/value pairs to the file
$h{"apple"} = "red" ;
$h{"orange"} = "orange" ;
$h{"banana"} = "yellow" ;
$h{"tomato"} = "red" ;

Check for existence of a key
print "Banana Exists\n\n" if $h{"banana"} ;

Delete a key/value pair.
delete $h{"apple"} ;

print the contents of the file
while (($k, $v) = each %h)

{ p rint "$k −> $v\n" }

untie %h ;

here is the output:

Banana Exists

orange −> orange
tomato −> red
banana −> yellow

Note that the like ordinary associative arrays, the order of the keys retrieved is in an apparently random
order.

DB_BTREE
The DB_BTREE format is useful when you want to store data in a given order. By default the keys will be
stored in lexical order, but as you will see from the example shown in the next section, it is very easy to
define your own sorting function.

Changing theBTREE sort order
This script shows how to override the default sorting algorithm thatBTREE uses. Instead of using the
normal lexical ordering, a case insensitive compare function will be used.

use warnings ;
use strict ;
use DB_File ;

my %h ;

sub Compare
{

my ($key1, $key2) = @_ ;
"\L$key1" cmp "\L$key2" ;

}

s pecify the Perl sub that will do the comparison
$DB_BTREE−>{'compare'} = \&Compare ;

unlink "tree" ;
tie %h, "DB_File", "tree", O_RDWR|O_CREAT, 0666, $DB_BTREE

or die "Cannot open file 'tree': $!\n" ;

perl v5.16.3 2015-03-06 5

DB_File(3) UserContributed Perl Documentation DB_File(3)

Add a key/value pair to the file
$h{'Wall'} = 'Larry' ;
$h{'Smith'} = 'John' ;
$h{'mouse'} = 'mickey' ;
$h{'duck'} = 'donald' ;

Delete
delete $h{"duck"} ;

Cycle through the keys printing them in order.
Note it is not necessary to sort the keys as
t he btree will have kept them in order automatically.
foreach (keys %h)

{ p rint "$_\n" }

untie %h ;

Here is the output from the code above.

mouse
Smith
Wall

There are a few point to bear in mind if you want to change the ordering in aBTREEdatabase:

1. The new compare function must be specified when you create the database.

2. You cannot change the ordering once the database has been created. Thus you must use the same
compare function every time you access the database.

3. Duplicate keys are entirely defined by the comparison function.In the case-insensitive example
above, the keys: ’KEY’ and ’key’ would be considered duplicates, and assigning to the second one
would overwrite the first. If duplicates are allowed for (with the R_DUP flag discussed below), only a
single copy of duplicate keys is stored in the database −−− so (again with example above) assigning
three values to the keys: ’KEY’, ’K ey’, and ’key’ would leave just the first key: ’KEY’ in the database
with three values. For some situations this results in information loss, so care should be taken to
provide fully qualified comparison functions when necessary. For example, the above comparison
routine could be modified to additionally compare case-sensitively if two keys are equal in the case
insensitive comparison:

sub compare {
my($key1, $key2) = @_;
lc $key1 cmp lc $key2 ||
$key1 cmp $key2;

}

And now you will only have duplicates when the keys themselves are truly the same. (note: in
versions of the db library prior to about November 1996, such duplicate keys were retained so it was
possible to recover the original keys in sets of keys that compared as equal).

Handling Duplicate Keys
The BTREE file type optionally allows a single key to be associated with an arbitrary number of values.
This option is enabled by setting the flags element of$DB_BTREEto R_DUP when creating the database.

There are some difficulties in using the tied hash interface if you want to manipulate aBTREEdatabase with
duplicate keys. Consider this code:

use warnings ;
use strict ;
use DB_File ;

perl v5.16.3 2015-03-06 6

DB_File(3) UserContributed Perl Documentation DB_File(3)

my ($filename, %h) ;

$filename = "tree" ;
unlink $filename ;

Enable duplicate records
$DB_BTREE−>{'flags'} = R_DUP ;

tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file
$h{'Wall'} = 'Larry' ;
$h{'Wall'} = 'Brick' ; # Note the duplicate key
$h{'Wall'} = 'Brick' ; # Note the duplicate key and value
$h{'Smith'} = 'John' ;
$h{'mouse'} = 'mickey' ;

i terate through the associative array
and print each key/value pair.
foreach (sort keys %h)

{ p rint "$_ −> $h{$_}\n" }

untie %h ;

Here is the output:

Smith −> John
Wall −> Larry
Wall −> Larry
Wall −> Larry
mouse −> mickey

As you can see 3 records have been successfully created with key Wall − the only thing is, when they are
retrieved from the database they seemto have the same value, namelyLarry . The problem is caused by
the way that the associative array interface works. Basically, when the associative array interface is used to
fetch the value associated with a given key, it will only ever retrieve the first value.

Although it may not be immediately obvious from the code above, the associative array interface can be
used to write values with duplicate keys, but it cannot be used to read them back from the database.

The way to get around this problem is to use the BerkeleyDB API method calledseq . This method allows
sequential access to key/value pairs. See ‘‘THE API INTERFACE’’ for details of both theseq method and
theAPI in general.

Here is the script above rewritten using theseq API method.

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h, $status, $key, $value) ;

$filename = "tree" ;
unlink $filename ;

Enable duplicate records
$DB_BTREE−>{'flags'} = R_DUP ;

perl v5.16.3 2015-03-06 7

DB_File(3) UserContributed Perl Documentation DB_File(3)

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file
$h{'Wall'} = 'Larry' ;
$h{'Wall'} = 'Brick' ; # Note the duplicate key
$h{'Wall'} = 'Brick' ; # Note the duplicate key and value
$h{'Smith'} = 'John' ;
$h{'mouse'} = 'mickey' ;

i terate through the btree using seq
and print each key/value pair.
$key = $value = 0 ;
for ($status = $x−>seq($key, $value, R_FIRST) ;

$status == 0 ;
$status = $x−>seq($key, $value, R_NEXT))

{ p rint "$key −> $value\n" }

undef $x ;
untie %h ;

that prints:

Smith −> John
Wall −> Brick
Wall −> Brick
Wall −> Larry
mouse −> mickey

This time we have got all the key/value pairs, including the multiple values associated with the keyWall .

To make life easier when dealing with duplicate keys,DB_File comes with a few utility methods.

The get_dup()Method
Theget_dup method assists in reading duplicate values fromBTREEdatabases. The method can take the
following forms:

$count = $x−>get_dup($key) ;
@list = $x−>get_dup($key) ;
%list = $x−>get_dup($key, 1) ;

In a scalar context the method returns the number of values associated with the key, $key .

In list context, it returns all the values which match$key . Note that the values will be returned in an
apparently random order.

In list context, if the second parameter is present and evaluatesTRUE, the method returns an associative
array. The keys of the associative array correspond to the values that matched in theBTREE and the values
of the array are a count of the number of times that particular value occurred in theBTREE.

So assuming the database created above, we can useget_dup like this:

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h) ;

$filename = "tree" ;

Enable duplicate records

perl v5.16.3 2015-03-06 8

DB_File(3) UserContributed Perl Documentation DB_File(3)

$DB_BTREE−>{'flags'} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

my $cnt = $x−>get_dup("Wall") ;
print "Wall occurred $cnt times\n" ;

my %hash = $x−>get_dup("Wall", 1) ;
print "Larry is there\n" if $hash{'Larry'} ;
print "There are $hash{'Brick'} Brick Walls\n" ;

my @list = sort $x−>get_dup("Wall") ;
print "Wall => [@list]\n" ;

@list = $x−>get_dup("Smith") ;
print "Smith => [@list]\n" ;

@list = $x−>get_dup("Dog") ;
print "Dog => [@list]\n" ;

and it will print:

Wall occurred 3 times
Larry is there
There are 2 Brick Walls
Wall => [Brick Brick Larry]
Smith => [John]
Dog => []

The find_dup()Method
$status = $X−>find_dup($key, $value) ;

This method checks for the existence of a specific key/value pair. If the pair exists, the cursor is left
pointing to the pair and the method returns 0. Otherwise the method returns a non-zero value.

Assuming the database from the previous example:

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h, $found) ;

$filename = "tree" ;

Enable duplicate records
$DB_BTREE−>{'flags'} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

$found = ($x−>find_dup("Wall", "Larry") == 0 ? "" : "not") ;
print "Larry Wall is $found there\n" ;

$found = ($x−>find_dup("Wall", "Harry") == 0 ? "" : "not") ;
print "Harry Wall is $found there\n" ;

perl v5.16.3 2015-03-06 9

DB_File(3) UserContributed Perl Documentation DB_File(3)

undef $x ;
untie %h ;

prints this

Larry Wall is there
Harry Wall is not there

The del_dup()Method
$status = $X−>del_dup($key, $value) ;

This method deletes a specific key/value pair. It returns 0 if they exist and have been deleted successfully.
Otherwise the method returns a non-zero value.

Again assuming the existence of thetree database

use warnings ;
use strict ;
use DB_File ;

my ($filename, $x, %h, $found) ;

$filename = "tree" ;

Enable duplicate records
$DB_BTREE−>{'flags'} = R_DUP ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

$x−>del_dup("Wall", "Larry") ;

$found = ($x−>find_dup("Wall", "Larry") == 0 ? "" : "not") ;
print "Larry Wall is $found there\n" ;

undef $x ;
untie %h ;

prints this

Larry Wall is not there

Matching Partial Keys
The BTREE interface has a feature which allows partial keys to be matched. This functionality isonly
available when theseq method is used along with the R_CURSOR flag.

$x−>seq($key, $value, R_CURSOR) ;

Here is the relevant quote from the dbopen man page where it defines the use of the R_CURSOR flag with
seq:

Note, for the DB_BTREE access method, the returned key is not
necessarily an exact match for the specified key. The returned key
is the smallest key greater than or equal to the specified key,
permitting partial key matches and range searches.

In the example script below, thematch sub uses this feature to find and print the first matching key/value
pair given a partial key.

perl v5.16.3 2015-03-06 10

DB_File(3) UserContributed Perl Documentation DB_File(3)

use warnings ;
use strict ;
use DB_File ;
use Fcntl ;

my ($filename, $x, %h, $st, $key, $value) ;

sub match
{

my $key = shift ;
my $value = 0;
my $orig_key = $key ;
$x−>seq($key, $value, R_CURSOR) ;
print "$orig_key\t−> $key\t−> $value\n" ;

}

$filename = "tree" ;
unlink $filename ;

$x = tie %h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_BTREE
or die "Cannot open $filename: $!\n";

Add some key/value pairs to the file
$h{'mouse'} = 'mickey' ;
$h{'Wall'} = 'Larry' ;
$h{'Walls'} = 'Brick' ;
$h{'Smith'} = 'John' ;

$key = $value = 0 ;
print "IN ORDER\n" ;
for ($st = $x−>seq($key, $value, R_FIRST) ;

$st == 0 ;
$st = $x−>seq($key, $value, R_NEXT))

{ p rint "$key −> $value\n" }

print "\nPARTIAL MATCH\n" ;

match "Wa" ;
match "A" ;
match "a" ;

undef $x ;
untie %h ;

Here is the output:

IN ORDER
Smith −> John
Wall −> Larry
Walls −> Brick
mouse −> mickey

PARTIAL MATCH
Wa −> Wall −> Larry

perl v5.16.3 2015-03-06 11

DB_File(3) UserContributed Perl Documentation DB_File(3)

A −> Smith −> John
a −> mouse −> mickey

DB_RECNO
DB_RECNOprovides an interface to flat text files. Both variable and fixed length records are supported.

In order to make RECNOmore compatible with Perl, the array offset for allRECNOarrays begins at 0 rather
than 1 as in BerkeleyDB.

As with normal Perl arrays, aRECNOarray can be accessed using negative indexes. The index −1 refers to
the last element of the array, −2 the second last, and so on. Attempting to access an element before the start
of the array will raise a fatal run-time error.

The ’bval’ Option
The operation of the bval option warrants some discussion. Here is the definition of bval f rom the Berkeley
DB 1.85recno manual page:

The delimiting byte to be used to mark the end of a
record for variable−length records, and the pad charac−
ter for fixed−length records. If no value is speci−
fied, newlines (``\n'') are used to mark the end of
variable−length records and fixed−length records are
padded with spaces.

The second sentence is wrong. In actual fact bval will only default to"\n" when the openinfo parameter in
dbopen isNULL. If a non-NULL openinfo parameter is used at all, the value that happens to be in bval will
be used. That means you always have to specify bval when making use of any of the options in the openinfo
parameter. This documentation error will be fixed in the next release of BerkeleyDB.

That clarifies the situation with regards Berkeley DB itself. What aboutDB_File? Well, the behavior
defined in the quote above is quite useful, soDB_File conforms to it.

That means that you can specify other options (e.g. cachesize) and still have bval default to"\n" for
variable length records, and space for fixed length records.

Also note that the bval option only allows you to specify a single byte as a delimiter.

A Simple Example
Here is a simple example that usesRECNO (if you are using a version of Perl earlier than 5.004_57 this
example won’t work — see‘‘ ExtraRECNOMethods’’ f or a workaround).

use warnings ;
use strict ;
use DB_File ;

my $filename = "text" ;
unlink $filename ;

my @h ;
tie @h, "DB_File", $filename, O_RDWR|O_CREAT, 0666, $DB_RECNO

or die "Cannot open file 'text': $!\n" ;

Add a few key/value pairs to the file
$h[0] = "orange" ;
$h[1] = "blue" ;
$h[2] = "yellow" ;

push @h, "green", "black" ;

my $elements = scalar @h ;
print "The array contains $elements entries\n" ;

perl v5.16.3 2015-03-06 12

DB_File(3) UserContributed Perl Documentation DB_File(3)

my $last = pop @h ;
print "popped $last\n" ;

unshift @h, "white" ;
my $first = shift @h ;
print "shifted $first\n" ;

Check for existence of a key
print "Element 1 Exists with value $h[1]\n" if $h[1] ;

use a negative index
print "The last element is $h[−1]\n" ;
print "The 2nd last element is $h[−2]\n" ;

untie @h ;

Here is the output from the script:

The array contains 5 entries
popped black
shifted white
Element 1 Exists with value blue
The last element is green
The 2nd last element is yellow

Extra RECNO Methods
If you are using a version of Perl earlier than 5.004_57, the tied array interface is quite limited. In the
example script above push , pop , shift , unshift or determining the array length will not work with a
tied array.

To make the interface more useful for older versions of Perl, a number of methods are supplied with
DB_File to simulate the missing array operations. All these methods are accessed via the object returned
from the tie call.

Here are the methods:

$X−>push(list) ;
Pushes the elements oflist to the end of the array.

$value = $X−>pop ;
Removes and returns the last element of the array.

$X−>shift
Removes and returns the first element of the array.

$X−>unshift(list) ;
Pushes the elements oflist to the start of the array.

$X−>length
Returns the number of elements in the array.

$X−>splice(offset, length, elements);
Returns a splice of the array.

Another Example
Here is a more complete example that makes use of some of the methods described above. It also makes
use of theAPI interface directly (see ‘‘THE API INTERFACE’’).

perl v5.16.3 2015-03-06 13

DB_File(3) UserContributed Perl Documentation DB_File(3)

use warnings ;
use strict ;
my (@h, $H, $file, $i) ;
use DB_File ;
use Fcntl ;

$file = "text" ;

unlink $file ;

$H = tie @h, "DB_File", $file, O_RDWR|O_CREAT, 0666, $DB_RECNO
or die "Cannot open file $file: $!\n" ;

f irst create a text file to play with
$h[0] = "zero" ;
$h[1] = "one" ;
$h[2] = "two" ;
$h[3] = "three" ;
$h[4] = "four" ;

Print the records in order.
#
The length method is needed here because evaluating a tied
array in a scalar context does not return the number of
elements in the array.

print "\nORIGINAL\n" ;
foreach $i (0 .. $H−>length − 1) {

print "$i: $h[$i]\n" ;
}

use the push & pop methods
$a = $H−>pop ;
$H−>push("last") ;
print "\nThe last record was [$a]\n" ;

and the shift & unshift methods
$a = $H−>shift ;
$H−>unshift("first") ;
print "The first record was [$a]\n" ;

Use the API to add a new record after record 2.
$i = 2 ;
$H−>put($i, "Newbie", R_IAFTER) ;

and a new record before record 1.
$i = 1 ;
$H−>put($i, "New One", R_IBEFORE) ;

delete record 3
$H−>del(3) ;

now print the records in reverse order

perl v5.16.3 2015-03-06 14

DB_File(3) UserContributed Perl Documentation DB_File(3)

print "\nREVERSE\n" ;
for ($i = $H−>length − 1 ; $i >= 0 ; −− $i)

{ p rint "$i: $h[$i]\n" }

s ame again, but use the API functions instead
print "\nREVERSE again\n" ;
my ($s, $k, $v) = (0, 0, 0) ;
for ($s = $H−>seq($k, $v, R_LAST) ;

$s == 0 ;
$s = $H−>seq($k, $v, R_PREV))

{ p rint "$k: $v\n" }

undef $H ;
untie @h ;

and this is what it outputs:

ORIGINAL
0: zero
1: one
2: two
3: three
4: four

The last record was [four]
The first record was [zero]

REVERSE
5: last
4: three
3: Newbie
2: one
1: New One
0: first

REVERSE again
5: last
4: three
3: Newbie
2: one
1: New One
0: first

Notes:

1. Rather than iterating through the array,@hlike this:

foreach $i (@h)

it is necessary to use either this:

foreach $i (0 .. $H−>length − 1)

or this:

for ($a = $H−>get($k, $v, R_FIRST) ;
$a == 0 ;
$a = $H−>get($k, $v, R_NEXT))

perl v5.16.3 2015-03-06 15

DB_File(3) UserContributed Perl Documentation DB_File(3)

2. Notice that both times theput method was used the record index was specified using a variable,$i ,
rather than the literal value itself. This is becauseput will return the record number of the inserted
line via that parameter.

THE API INTERF ACE
As well as accessing BerkeleyDB using a tied hash or array, it is also possible to make direct use of most of
theAPI functions defined in the BerkeleyDB documentation.

To do this you need to store a copy of the object returned from the tie.

$db = tie %hash, "DB_File", "filename" ;

Once you have done that, you can access the Berkeley DB API functions asDB_File methods directly like
this:

$db−>put($key, $value, R_NOOVERWRITE) ;

Important: If you have sav ed a copy of the object returned fromtie , the underlying database file willnot
be closed until both the tied variable is untied and all copies of the saved object are destroyed.

use DB_File ;
$db = tie %hash, "DB_File", "filename"

or die "Cannot tie filename: $!" ;
...
undef $db ;
untie %hash ;

See ‘‘Theuntie()Gotcha’’ f or more details.

All the functions defined in dbopen are available except forclose() and dbopen()itself. The DB_File
method interface to the supported functions have been implemented to mirror the way Berkeley DB works
whenever possible. In particular note that:

• The methods return a status value. All return 0 on success. All return −1 to signify an error and set
$! to the exact error code. The return code 1 generally (but not always) means that the key specified
did not exist in the database.

Other return codes are defined. See below and in the Berkeley DB documentation for details. The
BerkeleyDB documentation should be used as the definitive source.

• Whenever a BerkeleyDB function returns data via one of its parameters, the equivalent DB_File
method does exactly the same.

• If you are careful, it is possible to mixAPI calls with the tied hash/array interface in the same piece of
code. Although only a few of the methods used to implement the tied interface currently make use of
the cursor, you should always assume that the cursor has been changed any time the tied hash/array
interface is used. As an example, this code will probably not do what you expect:

$X = tie %x, 'DB_File', $filename, O_RDWR|O_CREAT, 0777, $DB_BTREE
or die "Cannot tie $filename: $!" ;

Get the first key/value pair and set the cursor
$X−>seq($key, $value, R_FIRST) ;

t his line will modify the cursor
$count = scalar keys %x ;

Get the second key/value pair.
oops, it didn't, it got the last key/value pair!
$X−>seq($key, $value, R_NEXT) ;

The code above can be rearranged to get around the problem, like this:

perl v5.16.3 2015-03-06 16

DB_File(3) UserContributed Perl Documentation DB_File(3)

$X = tie %x, 'DB_File', $filename, O_RDWR|O_CREAT, 0777, $DB_BTREE
or die "Cannot tie $filename: $!" ;

t his line will modify the cursor
$count = scalar keys %x ;

Get the first key/value pair and set the cursor
$X−>seq($key, $value, R_FIRST) ;

Get the second key/value pair.
worked this time.
$X−>seq($key, $value, R_NEXT) ;

All the constants defined in dbopen for use in the flags parameters in the methods defined below are also
available. Refer to the BerkeleyDB documentation for the precise meaning of the flags values.

Below is a list of the methods available.

$status = $X−>get($key,$value [, $flags]) ;
Given a key ($key) this method reads the value associated with it from the database. The value read
from the database is returned in the$value parameter.

If the key does not exist the method returns 1.

No flags are currently defined for this method.

$status = $X−>put($key,$value [, $flags]) ;
Stores the key/value pair in the database.

If you use either the R_IAFTER or R_IBEFORE flags, the$key parameter will have the record
number of the inserted key/value pair set.

Valid flags are R_CURSOR, R_IAFTER, R_IBEFORE, R_NOOVERWRITE and R_SETCURSOR.

$status = $X−>del($key [,$flags]) ;
Removes all key/value pairs with key$key from the database.

A return code of 1 means that the requested key was not in the database.

R_CURSOR is the only valid flag at present.

$status = $X−>fd ;
Returns the file descriptor for the underlying database.

See ‘‘Locking: The Trouble with fd’’ f or an explanation for why you should not usefd to lock your
database.

$status = $X−>seq($key,$value, $flags) ;
This interface allows sequential retrieval f rom the database. See dbopen for full details.

Both the$key and$value parameters will be set to the key/value pair read from the database.

The flags parameter is mandatory. The valid flag values are R_CURSOR, R_FIRST, R_LAST,
R_NEXT and R_PREV.

$status = $X−>sync([$flags]) ;
Flushes any cached buffers to disk.

R_RECNOSYNC is the only valid flag at present.

DBM FILTERS
A DBM Filter is a piece of code that is be used when youalwayswant to make the same transformation to
all keys and/or values in aDBM database.

There are four methods associated withDBM Filters. All work identically, and each is used to install (or

perl v5.16.3 2015-03-06 17

DB_File(3) UserContributed Perl Documentation DB_File(3)

uninstall) a singleDBM Filter. Each expects a single parameter, namely a reference to a sub. The only
difference between them is the place that the filter is installed.

To summarise:

filter_store_key
If a filter has been installed with this method, it will be invoked every time you write a key to aDBM
database.

filter_store_value
If a filter has been installed with this method, it will be invoked every time you write a value to a
DBM database.

filter_fetch_key
If a filter has been installed with this method, it will be invoked every time you read a key from a
DBM database.

filter_fetch_value
If a filter has been installed with this method, it will be invoked every time you read a value from a
DBM database.

You can use any combination of the methods, from none, to all four.

All filter methods return the existing filter, if present, orundef in not.

To delete a filter passundef to it.

The Filter
When each filter is called by Perl, a local copy of $_ will contain the key or value to be filtered. Filtering is
achieved by modifying the contents of$_ . The return code from the filter is ignored.

An Example — the NULL termination problem.
Consider the following scenario. You have a DBM database that you need to share with a third-party C
application. The C application assumes thatall keys and values areNULL terminated. Unfortunately when
Perl writes toDBM databases it doesn’t useNULL termination, so your Perl application will have to manage
NULL termination itself. When you write to the database you will have to use something like this:

$hash{"$key\0"} = "$value\0" ;

Similarly the NULL needs to be taken into account when you are considering the length of existing
keys/values.

It would be much better if you could ignore theNULL terminations issue in the main application code and
have a mechanism that automatically added the terminatingNULL to all keys and values whenever you
write to the database and have them removed when you read from the database. As I’m sure you have
already guessed, this is a problem thatDBM Filters can fix very easily.

use warnings ;
use strict ;
use DB_File ;

my %hash ;
my $filename = "filt" ;
unlink $filename ;

my $db = tie %hash, 'DB_File', $filename, O_CREAT|O_RDWR, 0666, $DB_HASH
or die "Cannot open $filename: $!\n" ;

I nstall DBM Filters
$db−>filter_fetch_key (sub { s/\0$// }) ;
$db−>filter_store_key (sub { $_ .= "\0" }) ;
$db−>filter_fetch_value(sub { s/\0$// }) ;
$db−>filter_store_value(sub { $_ .= "\0" }) ;

perl v5.16.3 2015-03-06 18

DB_File(3) UserContributed Perl Documentation DB_File(3)

$hash{"abc"} = "def" ;
my $a = $hash{"ABC"} ;
. ..
undef $db ;
untie %hash ;

Hopefully the contents of each of the filters should be self-explanatory. Both ‘‘fetch’’ fi lters remove the
terminatingNULL, and both ‘‘store’’ fi lters add a terminatingNULL.

Another Example — Key is a C int.
Here is another real-life example. By default, whenever Perl writes to aDBM database it always writes the
key and value as strings. So when you use this:

$hash{12345} = "something" ;

the key 12345 will get stored in theDBM database as the 5 byte string ‘‘12345’’. If you actually want the
key to be stored in theDBM database as a C int, you will have to usepack when writing, andunpack
when reading.

Here is aDBM Filter that does it:

use warnings ;
use strict ;
use DB_File ;
my %hash ;
my $filename = "filt" ;
unlink $filename ;

my $db = tie %hash, 'DB_File', $filename, O_CREAT|O_RDWR, 0666, $DB_HASH
or die "Cannot open $filename: $!\n" ;

$db−>filter_fetch_key (sub { $_ = unpack("i", $_) }) ;
$db−>filter_store_key (sub { $_ = pack ("i", $_) }) ;
$hash{123} = "def" ;
. ..
undef $db ;
untie %hash ;

This time only two filters have been used— we only need to manipulate the contents of the key, so it
wasn’t necessary to install any value filters.

HINTS AND TIPS
Locking: The Trouble with fd

Until version 1.72 of this module, the recommended technique for lockingDB_File databases was to flock
the filehandle returned from the ‘‘fd’ ’ f unction. Unfortunately this technique has been shown to be
fundamentally flawed (Kudos to David Harris for tracking this down). Use it at your own peril!

The locking technique went like this.

perl v5.16.3 2015-03-06 19

DB_File(3) UserContributed Perl Documentation DB_File(3)

$db = tie(%db, 'DB_File', 'foo.db', O_CREAT|O_RDWR, 0644)
|| die "dbcreat foo.db $!";

$fd = $db−>fd;
open(DB_FH, "+<&=$fd") || die "dup $!";
flock (DB_FH, LOCK_EX) || die "flock: $!";
...
$db{"Tom"} = "Jerry" ;
...
flock(DB_FH, LOCK_UN);
undef $db;
untie %db;
close(DB_FH);

In simple terms, this is what happens:

1. Use ‘‘tie’’ to open the database.

2. Lock the database with fd & flock.

3. Read & Write to the database.

4. Unlock and close the database.

Here is the crux of the problem. A side-effect of opening theDB_File database in step 2 is that an initial
block from the database will get read from disk and cached in memory.

To see why this is a problem, consider what can happen when two processes, say ‘‘A’’ and ‘‘B’ ’, both want
to update the sameDB_File database using the locking steps outlined above. Assume process ‘‘A’’ has
already opened the database and has a write lock, but it hasn’t actually updated the database yet (it has
finished step 2, but not started step 3 yet). Now process ‘‘B’ ’ t ries to open the same database − step 1 will
succeed, but it will block on step 2 until process ‘‘A’’ r eleases the lock. The important thing to notice here is
that at this point in time both processes will have cached identical initial blocks from the database.

Now process ‘‘A’’ updates the database and happens to change some of the data held in the initial buffer.
Process ‘‘A’’ t erminates, flushing all cached data to disk and releasing the database lock. At this point the
database on disk will correctly reflect the changes made by process ‘‘A’’ .

With the lock released, process ‘‘B’ ’ can now continue. It also updates the database and unfortunately it too
modifies the data that was in its initial buffer. Once that data gets flushed to disk it will overwrite some/all
of the changes process ‘‘A’’ made to the database.

The result of this scenario is at best a database that doesn’t contain what you expect. At worst the database
will corrupt.

The above won’t happen every time competing process update the sameDB_File database, but it does
illustrate why the technique should not be used.

Safe ways to lock a database
Starting with version 2.x, Berkeley DB has internal support for locking. The companion module to this
one, BerkeleyDB, provides an interface to this locking functionality. If you are serious about locking
BerkeleyDB databases, I strongly recommend usingBerkeleyDB.

If using BerkeleyDB isn’t an option, there are a number of modules available onCPAN that can be used to
implement locking. Each one implements locking differently and has different goals in mind. It is therefore
worth knowing the difference, so that you can pick the right one for your application. Here are the three
locking wrappers:

Tie::DB_Lock
A DB_File wrapper which creates copies of the database file for read access, so that you have a kind
of a multiversioning concurrent read system. However, updates are still serial. Use for databases
where reads may be lengthy and consistency problems may occur.

perl v5.16.3 2015-03-06 20

DB_File(3) UserContributed Perl Documentation DB_File(3)

Tie::DB_LockFile
A DB_File wrapper that has the ability to lock and unlock the database while it is being used. Avoids
the tie-before-flock problem by simply re-tie-ing the database when you get or drop a lock.Because
of the flexibility in dropping and re-acquiring the lock in the middle of a session, this can be
massaged into a system that will work with long updates and/or reads if the application follows the
hints in thePODdocumentation.

DB_File::Lock
An extremely lightweightDB_File wrapper that simply flocks a lockfile before tie-ing the database
and drops the lock after the untie. Allows one to use the same lockfile for multiple databases to avoid
deadlock problems, if desired. Use for databases where updates are reads are quick and simple flock
locking semantics are enough.

Sharing Databases With C Applications
There is no technical reason why a Berkeley DB database cannot be shared by both a Perl and a C
application.

The vast majority of problems that are reported in this area boil down to the fact that C strings areNULL
terminated, whilst Perl strings are not. See ‘‘DBM FILTERS’’ for a generic way to work around this problem.

Here is a real example. Netscape 2.0 keeps a record of the locations you visit along with the time you last
visited them in aDB_HASH database. Thisis usually stored in the filẽ/.netscape/history.db. The key field
in the database is the location string and the value field is the time the location was last visited stored as a 4
byte binary value.

If you haven’t already guessed, the location string is stored with a terminatingNULL. This means you need
to be careful when accessing the database.

Here is a snippet of code that is loosely based on Tom Christiansen’s ggh script (available from your nearest
CPAN archive in authors/id/TOMC/scripts/nshist.gz).

use warnings ;
use strict ;
use DB_File ;
use Fcntl ;

my ($dotdir, $HISTORY, %hist_db, $href, $binary_time, $date) ;
$dotdir = $ENV{HOME} || $ENV{LOGNAME};

$HISTORY = "$dotdir/.netscape/history.db";

tie %hist_db, 'DB_File', $HISTORY
or die "Cannot open $HISTORY: $!\n" ;;

Dump the complete database
while (($href, $binary_time) = each %hist_db) {

r emove the terminating NULL
$href =˜ s/\x00$// ;

c onvert the binary time into a user friendly string
$date = localtime unpack("V", $binary_time);
print "$date $href\n" ;

}

c heck for the existence of a specific key
r emember to add the NULL
if ($binary_time = $hist_db{"http://mox.perl.com/\x00"}) {

$date = localtime unpack("V", $binary_time) ;

perl v5.16.3 2015-03-06 21

DB_File(3) UserContributed Perl Documentation DB_File(3)

print "Last visited mox.perl.com on $date\n" ;
}
else {

print "Never visited mox.perl.com\n"
}

untie %hist_db ;

The untie()Gotcha
If you make use of the BerkeleyDB API, it is verystrongly recommended that you read ‘‘The untie Gotcha’’
in perltie.

Even if you don’t currently make use of theAPI interface, it is still worth reading it.

Here is an example which illustrates the problem from aDB_File perspective:

use DB_File ;
use Fcntl ;

my %x ;
my $X ;

$X = tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_TRUNC
or die "Cannot tie first time: $!" ;

$x{123} = 456 ;

untie %x ;

tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_CREAT
or die "Cannot tie second time: $!" ;

untie %x ;

When run, the script will produce this error message:

Cannot tie second time: Invalid argument at bad.file line 14.

Although the error message above refers to the secondtie() statement in the script, the source of the
problem is really with theuntie()statement that precedes it.

Having read perltie you will probably have already guessed that the error is caused by the extra copy of the
tied object stored in$X. If you haven’t, then the problem boils down to the fact that theDB_File
destructor,DESTROY, will not be called untilall references to the tied object are destroyed. Both the tied
variable,%x, and $X above hold a reference to the object. The call tountie() will destroy the first, but $X
still holds a valid reference, so the destructor will not get called and the database filetst.fil will remain
open. The fact that Berkeley DB then reports the attempt to open a database that is already open via the
catch-all ‘‘Invalid argument’’ doesn’t help.

If you run the script with the−w flag the error message becomes:

untie attempted while 1 inner references still exist at bad.file line 12.
Cannot tie second time: Invalid argument at bad.file line 14.

which pinpoints the real problem. Finally the script can now be modified to fix the original problem by
destroying theAPI object before the untie:

...
$x{123} = 456 ;

undef $X ;
untie %x ;

perl v5.16.3 2015-03-06 22

DB_File(3) UserContributed Perl Documentation DB_File(3)

$X = tie %x, 'DB_File', 'tst.fil' , O_RDWR|O_CREAT
...

COMMON QUESTIONS
Why is there Perl source in my database?

If you look at the contents of a database file created by DB_File, there can sometimes be part of a Perl
script included in it.

This happens because Berkeley DB uses dynamic memory to allocate buffers which will subsequently be
written to the database file. Being dynamic, the memory could have been used for anything beforeDB
malloced it. As BerkeleyDB doesn’t clear the memory once it has been allocated, the unused portions will
contain random junk. In the case where a Perl script gets written to the database, the random junk will
correspond to an area of dynamic memory that happened to be used during the compilation of the script.

Unless you don’t like the possibility of there being part of your Perl scripts embedded in a database file, this
is nothing to worry about.

How do I store complex data structures with DB_File?
AlthoughDB_File cannot do this directly, there is a module which can layer transparently over DB_File to
accomplish this feat.

Check out theMLDBM module, available onCPAN in the directorymodules/by−module/MLDBM.

What does ‘‘Invalid Argument’ ’ mean?
You will get this error message when one of the parameters in thetie call is wrong. Unfortunately there
are quite a few parameters to get wrong, so it can be difficult to figure out which one it is.

Here are a couple of possibilities:

1. Attempting to reopen a database without closing it.

2. Using the O_WRONLY flag.

What does ‘‘Bareword ’DB_File’ not allowed’’ mean?
You will encounter this particular error message when you have thestrict 'subs' pragma (or the full
strict pragma) in your script. Consider this script:

use warnings ;
use strict ;
use DB_File ;
my %x ;
tie %x, DB_File, "filename" ;

Running it produces the error in question:

Bareword "DB_File" not allowed while "strict subs" in use

To get around the error, place the wordDB_File in either single or double quotes, like this:

tie %x, "DB_File", "filename" ;

Although it might seem like a real pain, it is really worth the effort of having ause strict in all your
scripts.

REFERENCES
Articles that are either aboutDB_File or make use of it.

1. Full-Text Searching in Perl, Tim Kientzle (tkientzle@ddj.com), Dr. Dobb’s Journal, Issue 295,
January 1999, pp 34−41

HISTORY
Moved to the Changes file.

perl v5.16.3 2015-03-06 23

DB_File(3) UserContributed Perl Documentation DB_File(3)

BUGS
Some older versions of Berkeley DB had problems with fixed length records using theRECNOfile format.
This problem has been fixed since version 1.85 of BerkeleyDB.

I am sure there are bugs in the code. If you do find any, or can suggest any enhancements, I would welcome
your comments.

AV A ILABILITY
DB_File comes with the standard Perl source distribution. Look in the directoryext/DB_File. Giv en the
amount of time between releases of Perl the version that ships with Perl is quite likely to be out of date, so
the most recent version can always be found onCPAN (see ‘‘CPAN’’ in perlmodlib for details), in the
directorymodules/by−module/DB_File.

This version ofDB_File will work with either version 1.x, 2.x or 3.x of Berkeley DB, but is limited to the
functionality provided by version 1.

The official web site for Berkeley DB is
http://www.oracle.com/technology/products/berkeley−db/db/index.html. All versions of Berkeley DB are
available there.

Alternatively, BerkeleyDB version 1 is available at your nearestCPAN archive in src/misc/db.1.85.tar.gz.

COPYRIGHT
Copyright (c) 1995−2012 Paul Marquess. All rights reserved. This program is free software; you can
redistribute it and/or modify it under the same terms as Perl itself.

Although DB_File is covered by the Perl license, the library it makes use of, namely Berkeley DB, is not.
BerkeleyDB has its own copyright and its own license. Please take the time to read it.

Here are a few words taken from the Berkeley DB FAQ (at
http://www.oracle.com/technology/products/berkeley−db/db/index.html) reg arding the license:

Do I have to license DB to use it in Perl scripts?

No. The Berkeley DB license requires that software that uses
Berkeley DB be freely redistributable. In the case of Perl, that
software is Perl, and not your scripts. Any Perl scripts that you
write are your property, including scripts that make use of
Berkeley DB. Neither the Perl license nor the Berkeley DB license
place any restriction on what you may do with them.

If you are in any doubt about the license situation, contact either the Berkeley DB authors or the author of
DB_File. See ‘‘AUTHOR’’ for details.

SEE ALSO
perl,dbopen(3), hash(3), recno(3), btree(3), perldbmfilter

AUTHOR
The DB_File interface was written by Paul Marquess <pmqs@cpan.org>.

perl v5.16.3 2015-03-06 24

