THE PROFESSION

Why Johnny

Can't Program

Neville Holmes, University of Tasmania

Ithough written nearly a year

ago, this column quite neatly

follows last month’s, in which

I charged that misguided atti-

tudes to programming restrict
the layout of program code too much.
This month, I claim that programmers
are not educated well enough to code
really good programs.

Johnny’s problems were highlighted for
me by Bertrand Meyer’s December 1999
Component and Object Technology col-
umn (“A Really Good Idea,” Computer,
pp. 144-147), which I read for two rea-
sons. First, 've long been bemused by the
prevalence of Objects. Never having had
much to do with them, I’ve found that
what I read about Objects either passed
over my head or resembled a strictly
applied version of what I knew long ago
as modular programming.

Second, I wanted to know why Meyer,
an authority on the topic, thought
Objects such a good idea. Although
Meyer explained why in his column,
most entertainingly and eloquently, I still
felt confused about the nature of the
really good idea.

One really good idea seemed to be
about software construction in the large:
“...when it comes to building complex,
evolutionary, mission-critical systems, OO
solutions are our best bet. Nothing else
has come to challenge them.” This pas-
sage bespeaks an emphasis on technical
management. Indeed, there’s nothing like
the thorough and controlled application
of a clearly specified and well-tested tech-
nology to ensure a complex technical pro-
ject’s prosperity. So, as a basis for good
technical management, Object Technolo-
gy (or is it Component Technology?)
should be a really good idea.

Computer

The other really good idea seemed to
be about what developers once called
systems analysis, the arena of the pro-
moted programmers who specified the
programs and modules to be coded by
their less-experienced or less-talented
workmates. Meyer gave as examples two
general principles, although objectives
might be a better word:

e “the OO view [is] that we are build-
ing little machines, each with its offi-
cial control panel . . . serving as the
obligatory path to the internals,” and

¢ “to keep modules independent from
each other’s implementation deci-
sions and hence from variations in
each other’s implementations.”

Had these examples of objectives
appeared early in the column, I probably
would have dismissed the piece as another
case of modular programming revisited.
But by the time I got to them, I had slogged
through two rather disturbing program-
ming exhibits. True, Meyer offered these
exhibits as examples of bad programming.
My only quarrel with him is that he didn’t
show how really bad they are.

His failure to do so caused me to con-
clude that OO technology focuses on
technical management and systems analy-
sis, and away from program coding.

Methodology has drowned the craft.
Johnny may be a software engineer now,
but he can’t program anymore—at least
not properly.

Why can’t Johnny program? Meyer’s
two programming exhibits suggest sev-
eral reasons.

JOHNNY IS INNUMERATE

Evidence for asserting that Johnny is
innumerate lies in the pivot “solution”
to the main Y2K problem, referred to in
Meyer’s column as the “windowing Y2K
technique.” He properly lambastes it,
then later asserts that the solution lies in
the use of information hiding.

That might be so at the systems level,
or even at the coding level, but Meyer’s
criticism overlooks that the pivot tech-
nique is simply an innumerate corruption
of a perfectly good programming tech-
nique that uses what school mathemat-

Innumerate, illiterate, and
overwhelmed, today’s professionals
are torn between system design
and program coding.

ics curricula call “clock arithmetic.”

To keep the explanation simple, let’s
forget about minutes and suppose that in
a program we must deal with a 24-hour
clock precise to the nearest hour; thus our
code must deal with integers in the range
of 0 to 23. Such clocks mainly allow us to
compute periods of time. In this example,
our starting time and our finishing time
will be integers in the range of 0 to 23.

The program computes the elapsed
time by subtracting the starting time from
the finishing time. What happens if the
computed elapsed time turns out to be
negative? Such a result indicates that the
period of time included midnight. No
problem in clock arithmetic—you just add
a modulus of 24, with no pivot necessary.

The 24-hour clock compares directly
to double-digit calendar-year encoding,
but with a modulus of 100. Clock arith-
metic, as taught in elementary school and

Continued on page 158

The Profession
Continued from page 160

//function to eliminate blanks from a string
void eatspaces (char * str) {
int i=1; /* copy to offset within string */
int j=1; /* copy from offset within string */
while ((*(str + i) = *(str + j++)) 1=\0")
if (*(str + i) = ¢ ¢) it+;
return;

}

//function to eliminate blanks from a string
void eatspaces (char * string) {
int to = 1;
int from = 1;
while ((*(string + to) =
*(string + fromt+)) 1= “\0’)
if (*(string + to) I= ° ‘) tott;
return;

}

Figure 1. Coding example with illiterate comments.

as known and used by skilled programmers for at least 40
years, easily and correctly deals with such encoding. Therefore,
innumerate Johnny encoded all programs with this particular
Y2K bug. Johnny also wrote the pivot patches.

JOHNNY IS ILLITERATE

Meyer’s second programming example—drawn “from one
of the most frequently used C++ introductory textbooks” and
shown in Figure 1—supports the claim that Johnny is illiterate.

area of expertise? Computer Society

Technical Committees explore a variety
of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

I ooking for a community targeted to your

Join @ communify that fargefs your discipline.

In our Technical Committees, you're in good compant.

computer.org/TCsignup/

Figure 2. The code of Figure 1 with explanatory data names added.

Meyer says of this example that it “can’t have anything to do
with object technology” and proceeds to spell out why. What
disturbs me about the example is not the points Meyer makes
against the algorithm, which I heartily agree with, but the point
he doesn’t make about the coding, at least not directly: That
the code is so bad that he must explain it in bitter detail speaks
volumes. Good code is self-explanatory, at least to anyone
familiar with the coding system used.

Why is the example’s code so bad? The comments provide
one clue. Comments—as opposed to remarks, which address
aspects external to the code—explain the code itself. To quote
a saying that once circulated among programmers: “A com-
ment is a confession of failure.”

The most significant aspect of a program is the names given
to its data—a good programmer will put great effort into
choosing names that explain the data. This practice makes
expressions that use the names much more meaningful, and
should make comments unnecessary. Let’s try it—Figure 2
shows the results.

If anything needs to be explained now, it’s the details spe-
cific to the C++ coding system; we no longer need the original
comments. This matter is not trivial. Good programming prac-
tice focuses on functional coding, not on decoration with com-
ments. Developers should design code, at least public code, so
that it can be understood.

Johnny shows himself to be illiterate in more than his choice
of names. Problems crop up in smaller details, too. Compare
the code of Figure 2 with that of Figure 3.

There’s only a small difference—the conditions of the while
and the if have been rearranged internally. We read this kind
of code from left to right, putting together the meaning as we
go. The meaning of both the while and the if hinge on the
comparison !=. These meanings become more obvious in the
rearranged example, first because the comparisons come up
early, where you see them before your attention starts to wan-
der, and second because you don’t need to store a complex com-
parand in your working memory while waiting for the
comparison to appear.

This code needs further literate improvements. Most con-
spicuously, the blank and end-of-string characters should be
declared and everywhere used as named constants.

//function to eliminate blanks from a string
void eatspaces (char * string) {

int to = 1;

int from = 1;

while (*\0’ != (*(string + to) =

*(string + fromt++)))
if (¢ 1= *(string + to)) tott;

return;

}

Figure 3. The code of Figure 2 with reversed comparisons.

These may seem minute details, but, as Meyer says, “The in-
the-large aspects of programming rely on the lower-level parts,
and you can’t get them right unless you get the small things
right too.”

Listing Johnny’s inadequacies does not, however, reveal why
Johnny got that way. It’s too simple merely to accept that the
community as a whole is getting more illiterate and more innu-
merate. Presumably, Johnny received training. So why didn’t
it make him numerate and literate?

JOHNNY IS OVERWHELMED

I believe that Johnny, trained as a software engineer and
employed to develop software systems, has bitten off more than
he can comfortably chew. Meyer borrows a metaphor from
Isaiah Berlin to tell us that object technology has “a little of the
fox and a little of the hedgehog.” Object technology, Meyer
insists, requires that Johnny be competent both in the small,
like the fox, and in the large, like the hedgehog.

But consider this point: In other branches of engineering, the
professional engineers deal with the in-the-large tasks while the
tradespeople deal with the in-the-small ones. Each group has its
particular training, skills, and duties. With so much to learn
and know and do in an endeavor such as building a highway
or a ship, a single profession or calling cannot skillfully per-
form all the work. Yet we blithely insist that software engineers
must be both foxes and hedgehogs.

The best way to build Meyer’s “complex, evolutionary, mis-

sion-critical systems” involves creating a team that consists of
both foxes and hedgehogs, rather than a single group that vainly
strives to acquire the traits of both. Such a team will consist of

e system engineers with in-the-large skills like, but not lim-
ited to, those Meyer describes, and

e programmers with in-the-small skills that include and lie
behind those he describes.

I deliberately use “system engineer” rather than “software
engineer.” The professional programmer must know and
understand clock arithmetic, but the system engineer must be
responsible for determining whether a mere 24-hour clock pro-
vides a safe system solution. I don’t think that “software engi-
neer” describes this role well.

In real life, engineers should be designing and validating the
system, not the software. If you forget the system you’re build-
ing, the software will often be useless.

they needed to know 40 years ago, but even then the field

often distinguished between programmers and systems
analysts. Meanwhile, Johnny must know too much to be at the
same time a skilled programmer and a skilled system engineer.
That’s why he’s overwhelmed.

But Johnny’s problem goes deeper: If he wants to be a pro-
fessional programmer, he must learn on the job. Programmers
have few trade courses to select from, many fewer than those
available to carpenters, plumbers, and electricians. Further,
very few professional courses will assist Johnny if he wants to
become a straightforward, generalist, humanist, system engi-
neer. Specialists such as computer system engineers and soft-
ware engineers appear to dominate the field.

No wonder Johnny has a problem. Let’s move to give him the
proper training to become whichever he wants to be—pro-
grammer or system engineer.

c omputing professionals must know vastly more now than

Neville Holmes is a lecturer under contract at the University
of Tasmania’s School of Computing. Contact him at neville.
holmes@utas.edu.au.

Circulation: Computer (ISSN 0018-9162) is published monthly by the IEEE Computer Society. IEEE Headquarters, Three Park Avenue,
17th Floor, New York, NY 10016-5997; IEEE Computer Society Publications Office, 10662 Los Vaqueros Circle, PO Box 3014, Los
Alamitos, CA 90720-1314; voice (714) 821-8380; fax (714) 821-4010; IEEE Computer Society Headquarters,1730 Massachusetts
Ave. NW, Washington, DC 20036-1903. IEEE Computer Society membership includes $13 for subscription of Computer magazine
($13 for students). Nonmember subscription rate available upon request. Single-copy prices: members $10.00; nonmembers $20.00.

This magazine is also available in microfiche form.

Postmaster: Send undelivered copies and address changes to Computer, IEEE Service Center, 445 Hoes Lane, Piscataway, NJ 08855.
Periodicals Postage Paid at New York, New York, and at additional mailing offices. Canadian GST #125634188. Canada Post
Publications Mail (Canadian Distribution) Agreement Number 0487910. Printed in USA.

Editorial: Unless otherwise stated, bylined articles, as well as product and service descrip-
tions, reflect the author’s or firm’s opinion. Inclusion in Computer does not necessarily con-
stitute endorsement by the IEEE or the Computer Society. All submissions are subject

to editing for style, clarity, and space.

for computer

December 2000

