
138 Bell Labs Technical Journal ◆ Summer 1996

Introduction
Although software development is generally

viewed as a cerebral activity performed by individ-
uals, it is really highly social. A typical software
project consists of many software developers, sys-
tem engineers, testers, managers, documentation
specialists, and users, all communicating with one
another. The patterns of interaction among the
participants in a software project are important fac-
tors in the effectiveness of the team and may even
have a significant impact on the ultimate success of
the project.

Traditional analysis of software development
has focused on process, or more precisely, the
sequence of steps used by developers to create soft-
ware, combined with various artifacts produced
along the way. Although this type of analysis is
useful, particularly for such things as achieving
International Organization for Standardization
(ISO) certification, it does not take into account
interpersonal interactions and various social
aspects of software development organizations.

Other views of development process comple-
ment and sometimes overshadow mainstream
task-oriented process models. We used a role-based
approach in studies of more than forty software
development organizations. These analyses have
provided us with insights into the types of practices
and organizational structures typical of productive
software organizations. We have codified these into
sets of software development patterns that can be
used by organizations to help develop software effi-

ciently and effectively. A few organizations have
already applied these patterns to establish the
foundations of their projects or to transform trou-
bled software organizations into healthy ones.

In this paper, we describe our approach to soft-
ware process analysis and our specific visual analy-
sis techniques. We also outline some characteristics
of roles and communication among roles that
shape software development organizations. After
describing some key organizational patterns of
highly productive software organizations, we con-
clude by explaining future directions of this work.

Role-Based Organizational Analysis
Early research suggested that roles be viewed

as a basic unit of abstraction for organizational
studies.1 Roles are informal (or formal) positions
with identifiable responsibilities. Typical examples
of roles are those of designer, system tester, man-
ager, and user. Besides having its own set of
responsibilities, a role may communicate with
another role. Within an organization, several peo-
ple may play the same role, and one person may
play different roles at different times.

In half-day sessions with project technical staff,
we captured information about roles on CRC
(class, responsibility, collaborator) cards, a common
technique in object-oriented analysis.2 Using one
card for each class, or role, we identified the name
of the role, its responsibilities, and other roles with
which it communicates (its collaborators). Relevant

◆ Patterns of Productive Software Organizations
Neil B. Harrison and James O. Coplien

Software development is a predominantly social activity. Individuals in a software
project fill various roles and communicate with other roles, forming a social network of
communication that embodies many important characteristics of the organization.
These social networks lend themselves to both quantitative and visual analysis. In an
attempt to isolate important factors that contribute to software productivity, we have
used both visual and quantitative data to uncover patterns of organization and process
that are characteristic of highly productive software projects. These patterns, in turn,
have enabled us to establish guiding principles for roles and for communication among
roles. Several projects have begun to apply these patterns in a generative manner to
reshape their organizations.

Copyright 1996. Lucent Technologies Inc. All rights reserved.

Bell Labs Technical Journal ◆ Summer 1996 139

roles were first identified using a group brainstorm-
ing process, after which the list of candidate roles
was evaluated and refined. Cards representing spe-
cific roles were given to the individuals who nor-
mally performed those roles. The participants then
acted out the process being studied. As a role
became active, the person playing it explained the
relevant tasks, or responsibilities, and identified
dependencies on and communication with other
roles, called collaborations. The role player also
assigned a relative strength to each collaboration.
All this information was recorded on the cards.

We have used CRC cards to gather data from
more than forty organizations, almost all within
the software industry. Our initial studies focused
on large system development efforts in telecom-
munications, but we have since expanded our
horizons to include projects of all sizes, except
those with fewer than five people. We have also
studied various applications, including aerospace
organizations, medical software development, and
consumer software. Most organizations that took
part were directly involved in software develop-
ment, but a small sample of them perform market
management or other assorted functions.

Visual Analysis of Projects
To analyze the data we collected, we used two

different techniques: force-based social networks
and interaction grids, described in the sections that
follow.

Natural Force-Based Social Networks
We collected the data from the CRC cards in a

database and used a tool called Pasteur1 to display
the data. Creating a graphical representation of the
cards, Pasteur provides various manipulation and
visualization techniques that enable the user to
analyze organizations.

Of these techniques, the one we use most fre-
quently is force-based relaxation rendering. The
cards, each of which represents a role, are placed
on the screen randomly and caused to repel each
other. A collaboration is represented as an attract-
ing force between roles, based on the strength of
the collaboration. Roles with collaborations move
toward each other and away from those with
which they have no collaborations. Eventually,
they reach a stable state in which the roles with a
strong affinity for each other are grouped together.
Roles that exhibit collaborations with many others
end up nearest the center. These properties give
strong visual cues about the structure of an organi-
zation, making it easy to identify key roles and nat-
ural suborganizations.

To indicate the degree of collaboration with
other roles, we color code the role cards. Shades of
red, from dim to bright, are used to represent a
role’s relative degree of collaboration. As collabora-
tion increases, roles glow brighter red. The roles
may be overlaid with red, yellow, and green lines
representing, respectively, strong, medium, or
weak communication links with other roles.

In Figure 1 the software developer, shown at
the center of the organization, has strong commu-
nication links to many other roles. Immediately to
the right of the software developer, a cluster of
roles—the system engineer and developers of
firmware and hardware—interact closely with each
other and with the software developer. This partic-
ular project appears to have a multi-role develop-
ment core.

At the upper right is a cluster of four roles,
revolving around the “core team” role. Together,
these form a project management subgroup. On the
far left another subgroup—product support, system
test, and the modification request (MR) review
board—represents quality assurance functions.

In this organization, the software developer
and the customer can communicate only through
the core team role. Separating the developer from
the customer may prevent the developer from
understanding the nuances of the customer’s
desires, potentially creating rework late in develop-
ment or causing customer dissatisfaction. For this
organization, we might recommend establishing a
dialogue between customers and developers.

Interaction Grids
As an alternative to force-based relaxation ren-

dering, we use interaction grids, a technique
inspired by the work of Church and Helfman at
Bell Laboratories3 and DePauw et al.4 An interaction
grid is a square matrix whose columns are the roles
that initiate collaborations, and whose rows are the
roles that receive the collaborations. The roles in
both rows and columns are sorted according to the
amount of collaboration, with the busiest roles at
the origin. As in the adjacency diagram described
earlier, the roles are color coded in red. The squares
of the grid, which represent collaborations between
roles, vary from dim to bright red, with the bright-
est indicating the greatest degree of collaboration.

Figure 2, the interaction grid for the organiza-
tion shown earlier, is one of the sparser grids we
have seen. The most central role, the software
developer, receives communication from most
other roles, but also initiates communication to
most other roles. Clearly, the software developer is
the hub of the organization.

140 Bell Labs Technical Journal ◆ Summer 1996

the larger, more mature projects did have a greater
number of roles, but there were many exceptions.

For an organization with n roles, the number
of possible links is

.

In any organization, only a portion of the pos-
sible collaborations are exercised; everyone does
not talk to everyone else. The ratio of the actual
collaborations to the possible collaborations is
called the communication saturation.

As the number of roles increases, it is reason-
able to expect the number of communication paths
to increase roughly as the square of the number of
roles. However, Figure 3a shows that the number
of communication paths increases as a linear func-
tion of the number of roles. This linear property is
independent of the size of the organization. Adding
a role increases the number of collaborations by a
constant amount (on average).

As the number of roles increases, the number
of possible communication links increases quadrat-
ically, but the number of actual links increases lin-
early. Therefore, the communication saturation
decreases in a hyperbolic manner as the number of
roles increases. Figure 3b shows a scatter plot of
communication saturation as a function of roles.

For organizations with very few roles, satura-

n n()−1

2

The six busiest roles, with the exception of the
core team role, have almost complete connectivity
among themselves. In this project, these roles
formed a small team that worked closely together
to design software. Although using small subteams
may be very effective, it introduces the danger that
peripheral roles may not receive information criti-
cal to their jobs.

Visualizations also support further introspec-
tion by helping the organization face and under-
stand its problems. The location of key roles in the
diagram usually confirms the development team’s
expectations or helps explain exceptional or prob-
lematic behavior. For example, one organization
immediately recognized the remote position of the
architectural role in its social network diagram as
one reason for its lack of product focus.
Visualizations not only pinpoint organizational
strengths or weaknesses, but also serve as a mirror
in which team members can see and understand
themselves better.

Analysis of Data
Besides analyzing individual projects, we

examined all data across projects to uncover trends
that centered on roles, collaborations, and organi-
zation size. Organization size refers to the number
of distinct roles in an organization, not to the num-
ber of people on any given project. In some cases,

Figure 1.
Adjacency diagram for a design process.

Figure 2.
An interaction grid for a design process of the organiza-
tion shown in Figure 1.

Bell Labs Technical Journal ◆ Summer 1996 141

tion is generally complete; everybody talks to
everybody else. However, the communication sat-
uration rate drops very quickly, with the bulk of
the organizations studied having saturation rates of
ten to thirty percent. For large organizations, the
impact of adding a role is proportionally smaller.

What is the impact of low communication sat-
uration? A low saturation rate indicates that roles
are not communicating with one another. In many
cases, this is appropriate; certain roles may be more
or less independent. In fact, larger organizations
probably have evolved toward role specialization as
a way to handle their complexities. However, such
a condition may increase the risk that critical infor-
mation does not reach the right person, or that the
information is not received in a timely manner.

Communication appears to be critical to suc-
cess; highly productive organizations have high
communication saturation. The cost inherent in
communication, however, makes it prohibitively
expensive for organizations with many roles to
achieve high communication saturation. None of
the projects with a large number of roles had high
communication saturation, and none were highly
productive, leading us to conclude that complex
organizations would benefit from a reduction in
the number of roles they have.

Individual Roles and Communication
It is instructive to examine individual roles

within projects. During our studies, we noticed

that certain roles were directly involved, and
others indirectly involved, in creating a product.
Those directly involved are performing producer
roles, such as a designer, coder, or tester. Those in
support roles, on the other hand, somehow sup-
port producer roles in their tasks. As we men-
tioned earlier, the roles at the center, generally
the busiest roles, are almost always producer
roles. The difference between the amount of
their communication and the average role in
their organizations is often substantial.

We measure the difference in communication
rates within an organization by using the communi-
cation intensity ratio, the ratio of the busiest role’s
link count to the average link count of that organi-
zation. It measures, in effect, how much the com-
munication is concentrated on a single role. In
general, the most productive projects have low
communication intensity ratios, meaning that
communication is distributed evenly among the
roles. A low communication intensity ratio, how-
ever, does not guarantee high productivity. We
have found that projects with less than stellar pro-
ductivity may also have low communication inten-
sity ratios.

As an organization becomes more complex,
one might expect that communication would be
spread more evenly, with the communication bur-
den being shared more or less equally among the
roles. However, Figure 4 shows that as an organi-

200

150

100

50

0

C
o

lla
b

o
ra

ti
o

n
s

10 20 30 40 50 60

80

60

40

20

0

Sa
tu

ra
ti

o
n

 (
p

er
ce

n
t)

10 20 30 40 50 60
Roles Roles

(a) (b)

Figure 3.
(a) Roles and collaborations, with least squares fit. (b) Communication saturation, with line y = 6/x superimposed.

142 Bell Labs Technical Journal ◆ Summer 1996

zation grows, the communication intensity ratio
increases and the organization becomes more
hierarchical, with the busiest role becoming even
busier. Extremely busy roles spend much of their
time in communication, allowing little time for
directly productive activities. Because these roles
are almost always producers, high organizational
complexity may tend to harm productivity.

Characteristics of Highly Successful Projects
As we collected gross productivity measures

from projects, we recognized that current produc-
tivity measures, such as lines of code per staff
month, are limited in their precision. Therefore, we
considered only large differences to be significant.
The few projects in which lines of code per staff
month were an order of magnitude larger than
average were designated as “hyperprogramming”
projects. In a few other projects, the development
interval from beginning to end was about twice as
fast as average. We noted these projects, although
they were not necessarily conducted by hyperpro-
gramming teams.

What made these teams especially productive?
In analyzing the data, we searched for distinguish-
ing characteristics of organizations that were highly
productive. Certain themes recurred among all the
projects, and certain others appeared chiefly in suc-
cessful projects. We have codified these themes
into patterns of software development as they
relate to organizations and interpersonal interac-
tions,5 and we give a sample of some of the most
significant patterns in the sections that follow.

Keep Organization Simple
Thoreau stated, “Our life is frittered away by

detail... . Simplify, simplify.” The most produc-
tive organizations we studied averaged fewer
roles (about 16) than the average for all organi-
zations (about 21). Often, they also had fewer
people in the organization, but the projects
themselves were not necessarily small. Perhaps
fewer roles require fewer people to fill them, or
small organizations do not allow themselves the
luxury of many roles to fill.

Work Flows Inward
The roles at the center of a relaxation diagram,

the busiest roles, indicate where the focus of the
organization is. In healthy organizations, indeed in
most organizations we studied, the roles at the cen-
ter, such as designer or coder, were directly
involved in the production of the desired product.
Other roles should support these; when they
instead become central, the focus of the project

shifts away from the product itself. This situation is
reminiscent of the lament by Philip Howard about
the United States government: “How things are
done has become far more important than what is
done... . Process now has become an end in itself.”6

Of course, if developer centeredness is too
strong, the developer may be spending more
time communicating than developing. Some
developers report that they work nights and
weekends because it is the only time they can
get anything done.

The central role of the developer is necessary,
but appears to be insufficient for high productivity.
Communication, and by implication, work, must
flow toward the central roles. When the central
roles are generally consumers, rather than produc-
ers of communication, the organization tends to be
more productive. Figure 5a illustrates such an
inward-directed organization.5 The implications are
as follows: First, because peripheral roles generally
have external connections, they are in a position to
convey external needs to the producers. Second,
the producers can get the information they need
from just a few sources. Therefore, they spend less
time getting the information they need and more
time producing.

By contrast, Figure 5b shows an outward-
directed organization.5 In this case, the central
roles are creating work for everyone else, rather
than decreasing it. Because developers are often
not at the center of this type of organization, pro-

Figure 4.
Communication intensity ratio as a function of roles.

6

5

4

3

2

1

C
o

m
m

u
n

ic
at

io
n

 in
te

n
si

ty
 r

at
io

10 20 30 40 50

Roles

Bell Labs Technical Journal ◆ Summer 1996 143

ducers may need to talk to many people to get the
information they need. This may indicate organiza-
tional pathology.

Distribute Work Evenly
Most organizations focus on the developer

role. The highly productive organizations we have
seen do not allow that focus to become extreme;
instead, they spread communication around
(which implies an even balance of work as well).

The Quattro Pro* for Windows* project at
Borland International7 was one of the most pro-
ductive projects we have ever seen, with code pro-
duction rates on the order of one thousand lines
per person per week over the life of the project.
Figure 6 shows the adjacency diagram and inter-
action grid for this project.5 Both diagrams
demonstrate the even distribution of communica-
tion among the roles. The communication inten-
sity ratio is very low, indicating that the most
central role does not shoulder a disproportionate
amount of the communication burden.

Iterate, Iterate!
In nearly every organization we studied, the

activities of software design and coding were insep-
arably intertwined. In fact, many organizations
declined to separate the two roles, instead identify-
ing a single role, “developer.” For these organiza-
tions, the traditional waterfall model of software
development exists only on paper. A number of
particularly successful projects included tight proto-
typing loops of features such as user interfaces. In
one project, a team of system engineer, software
designer, and tester worked on the user interface
portion of the product, iterating as often as three
times a week. Successful iteration requires close
coupling with customers or customer surrogates
who can provide evaluation and feedback.

We found very few cases in which design and
code are well-separated activities. The exceptions
are in mature developments where the domain is
well understood and defined, and instantiation of
code from a design specification is largely auto-
matic.

Compensate Success
Projects that are highly successful almost

always provide meaningful rewards for their suc-
cessful completion. Those with the highest produc-
tivity also tended to have a very lucrative reward
structure. Celebrations can also be effective reward
mechanisms. This is fully described in Coplien.5

We have seen some evidence of potential pit-
falls in reward structures. If the proffered reward is
not perceived as appropriate or desirable, it will

not motivate. Rewards can also be cheapened if
they are given when success is not achieved. In
addition, if a reward is offered for the achievement
of an apparently unachievable goal, such as an
unreasonable schedule, the effect may tend to dis-
courage rather than motivate.

Synthesis: What We Learned
Our studies have produced a large volume of

patterns, many more than we can describe here.
Other work5 gives a complete list of the patterns
we have discovered to date.

While studying organizations, we have been
struck with the common sense nature of nearly
every pattern we uncovered. It is perplexing, then,
that organizations rarely follow all the patterns,
and that they experience some difficulty in adopt-
ing them. An organization’s practices are an inte-
gral part of its culture—how an organization does
things is defined, in part, by who and what it is,
and to change how it operates is to change its iden-
tity. For this reason alone, the participatory intro-
spection phase of our CRC card exercise is critical;
it helps participants reach a clearer understanding
of who they are and what they want to become.

In some cases our organizational analyses and
patterns have precipitated significant changes in
the organizations we studied. An important sign of
acceptance for our process was having participants
adopt the vocabulary of the patterns in their every-
day speech. In one case, managers began talking
about becoming a “developer-centric organiza-
tion.” It appears that broad adoption of changes
starts to occur when people begin to assimilate the
patterns into their standard vocabulary.

Future Directions
The research into the nature of software devel-

opment teams presented in this paper represents
only a small part of an extensive effort that has
spanned several years. Although we have learned
much, this work is far from finished. We hope to
analyze more projects to continue verifying our
insights and patterns.

Beyond studying organizations, we hope to
have more opportunities to apply these patterns to
both new and existing organizations. Organizations
that have used these patterns report encouraging
results; we would like more data.

Our conclusions about the characteristics of
highly productive organizations are still somewhat
preliminary. Although we have not been able, nor
may we ever be able, to quantify the benefit of
applying individual organizational patterns to other

144 Bell Labs Technical Journal ◆ Summer 1996

Figure 5.
Work flows inward. (a) Because peripheral roles generally have external connections, they can quickly convey external
needs to the producers. (b) In an outward-directed organization, the central roles create work for everyone else.

Figure 6.
Borland’s Quattro Pro for Windows (a) adjacency diagram and (b) interaction grid.

(a) (b)

(a) (b)

Bell Labs Technical Journal ◆ Summer 1996 145

organizations, we should be able to provide guide-
lines for their systematic application. Such insights
will become clearer as more projects are studied.

It may be instructive to study the extremes—
the “sick” organizations as well as hyperprogram-
mers. They may teach us which practices and
patterns we should avoid. It is perhaps understand-
able, however, that few dysfunctional teams have
requested an organizational analysis.

Software has become profoundly important in
the world today. Because software is developed in
teams, we must understand how these teams work
most effectively. Therefore, we expect to continue
with this significant work. The very nature of orga-
nizational structures, however, defies attempts to
study them using traditional controlled experimen-
tal methods. After all, we are studying the interac-
tion of the most complex entities in the
world—humans.

References
1. B. G. Cain and J. O. Coplien, “A Role-Based

Process Modeling Environment,” Proc. of the
Second International Conference on the Software
Process, Los Alamitos, California, February
1993, IEEE Computer Press, pp. 125-133.

2. Kent Beck, “Think Like an Object,” UNIX
Review, Vol. 9, No. 10, September 1991,
pp. 39-43.

3. K. W. Church and J. I. Helfman, “Dotplot:
A Program for Exploring Self-Similarity in
Millions of Lines of Text and Code,” Journal
of Computational and Graphical Statistics, Vol. 2,
No. 2, 1993, pp. 153-174.

4. W. DePauw, et al., “Visualizing the Behavior
of Object Oriented Systems,” SIGPLAN
Notices, Vol. 28, No. 10, 1993, pp. 326-337.

5. James O. Coplien, “A Generative Develop-
ment-Process Pattern Language,” Pattern
Languages of Program Design, Addison-Wesley,
Reading, Massachusetts, 1995, pp. 183-237.

6. Philip K. Howard, The Death of Common Sense:
How Law is Suffocating America, Random
House, New York, 1994, p. 60.

7. James O. Coplien, “Evaluating the Software
Development Process,” Dr. Dobb’s Journal,
Vol. 19, No. 11, October 1994, pp. 88-97.

Further Reading
Thomas Allen, Managing the Flow of Technology,

MIT Press, Boston, 1977.
Barry W. Boehm, “Improving Software

Productivity,” Software Engineering Economics,
Prentice-Hall, Englewood Cliffs, N. J., 1981,
pp. 641-689.

Daniel Katz and Robert L. Kahn, The Social

Psychology of Organizations, 2d ed., John
Wiley, New York, 1978.

Edward E. Lawler, Pay and Organization
Development, Addison-Wesley, Reading,
Massachusetts, 1981.

Stanley Wasserman and Katherine Faust, Social
Network Analysis: Methods and Applications,
Cambridge University Press, Cambridge,
Massachusetts, 1994.

M. R. Zuckerman and Lewis J. Hatala, Incredibly
American, ASQC Quality Press, Milwaukee,
1992.

*Trademarks
Quattro Pro is a registered trademark of Corel

Corporation.

Windows is a trademark of Microsoft Corporation.

(Manuscript approved April 1996)

NEIL B. HARRISON is a member of technical staff on
the Development Technologies Team of
Business Communication Systems (BCS) at
Lucent Technologies in Denver, Colorado.
He works on software and organizational
patterns, domain analysis, object-oriented

development, and software reliability engineering.
Mr. Harrison received a B.S. from Brigham Young
University, Provo, Utah, and an M.S. from Purdue
University, West Lafayette, Indiana, both in computer
science.

JAMES O. COPLIEN is a principal investigator in the
Software Production Research Department
at Bell Labs in Naperville, Illinois. He carries
out research programs in software design
patterns, empirical organizational model-
ing, multiparadigm design, and the object

paradigm; he is also a C++ expert. Mr. Coplien
received a B.S. in electrical and computer engineering
and an M.S. in computer science, both from the
University of Wisconsin at Madison. ◆

