
 Object Management Group
Framingham Corporate Center

492 Old Connecticut Path
Framingham, MA 01701-4568

U.S.A.

Telephone: +1-508-820 4300
Facsimile: +1-508-820 4303

Analysis and Design
Platform Task Force

Process Working Group
White Paper

on Analysis & Design
 Process Engineering

Version 1.0

OMG Document ad/98-07-12

29 July 1998

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 2 of 34

Table of Contents
1. INTRODUCTION... 4

1.1 ANALYSIS AND DESIGN TASK FORCE PROCESS WORKING GROUP MISSION.. 4
1.2 INDUSTRY PROBLEM.. 4

1.2.1 State of the Current Practice.. 4
1.2.2 Maturity Level of the Industry.. 4

1.3 PURPOSE OF THE WHITE PAPER.. 5
1.3.1 General Purpose .. 5
1.3.2 No Single Process .. 5
1.3.3 Single Process Definition Language.. 5

1.4 INTENDED AUDIENCE(S) .. 6
1.5 WRITING TEAM ... 6
1.6 QUESTIONS & COMMENTS...6

2. DEFINITION OF PROCESS ENGINEERING... 7

3. THE SCOPE OF PROCESS ENGINEERING ADDRESSED IN THIS PAPER ... 7

4. SOFTWARE DEVELOPMENT PROCESS DEFINITION LANGUAGE AND META-MODEL................. 7

4.1 SOFTWARE DEVELOPMENT PROCESS DEFINITION LANGUAGE .. 7
4.2 WELL DEFINED META-MODEL.. 8

5. PROCESS ENGINEERING .. 9

5.1 SOFTWARE PROCESS ENGINEERS... 9
5.2 SOFTWARE DEVELOPMENT PRACTITIONERS.. 9

6. CONSIDERATIONS FOR A&D PROCESS RFI/RFPS... 10

6.1 PLANNED ROADMAP... 10

7. OTHER SIMILAR STANDARDS AND EFFORTS.. 11

8. RELATIONSHIP TO OMG TECHNOLOGY AND OTHER WORK EFFORTS .. 11

8.1 WORKFLOW RFP ... 11
8.2 UML.. 11

8.2.1 SPDL and UML Model Elements ... 12
8.2.2 UML Model Elements Related to Process Engineering ... 12
8.2.3 Meta-Model Alignment .. 12

8.3 POTENTIAL CBO - ORGANIZATION... 13
8.4 MANUFACTURING TASK FORCE.. 13
8.5 ORMSC/RMWG - VIEWPOINTS (VAN-SI) .. 13

Appendix A - Characteristics of an SPDL

1. GOAL OF THE LANGUAGE... 14

1.1 INTRODUCTION... 14
1.2 WORK PRODUCTS.. 15
1.3 SYSTEM DEVELOPMENT ACTIVITIES.. 15
1.4 ORGANIZATION, ROLES.. 15
1.5 DEVELOPMENT RULES AND GUIDELINES... 16

2. PROPERTIES THAT THIS LANGUAGE SHOULD HAVE .. 16

2.1 INTRODUCTION... 16
2.2 ORGANIZING PROCESS ENGINEERING COMPONENTS... 17
2.3 INTRODUCING THE “ V IEWPOINT ” MECHANISM... 17

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 3 of 34

Appendix B - Example SPDL Meta-Model

1. LOGICAL MODEL.. 20

1.1 ACTORS AND USE CASES...20

2. PACKAGE LEVEL .. 21

2.1 MODEL OVERVIEW ... 21
2.1.1 .. 21

2.2 PROJECT PROFILE PACKAGE.. 21
2.3 PROCESS DESCRIPTION PACKAGE .. 21

2.3.1 Justification.. 22
2.3.2 Activities... 22
2.3.3 Work Products... 22

3. HIGH-LEVEL STATIC DIAGRAM .. 23

3.1 PROJECT PROFILE PACKAGE.. 23
3.1.1 Project/Organizational Profile Class... 23

3.2 JUSTIFICATION PACKAGE .. 24
3.2.1 Goals & Risks Class... 24

3.3 ACTIVITIES PACKAGE... 25
3.3.1 Resources Class ... 25
3.3.2 Task Description Class .. 26
3.3.3 Activities/Tasks Class... 27

3.4 WORK PRODUCTS PACKAGE ... 28
3.4.1 Work Product Class ... 28

4. DYNAMIC MODEL... 30

4.1 ACTIVITY /TASK AS A COMPUTER JOB.. 30
4.2 TASK PRIORITY ... 31

4.2.1 Risk Evaluator.. 31
4.3 RESOURCE ASSIGNMENT...31

4.3.1 Resource Assigner.. 31
4.4 DYNAMIC PRIORITY ... 31

5. DYNAMICS SAMPLE... 32

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 4 of 34

1. Introduction

1.1 Analysis and Design Task Force Process Working Group Mission

The Process Working Group of the Analysis and Design Task Force (ADTF) is to provide a
forum for identifying and building consensus and convergence in the industry around system
development process/methodology in a distributed environment. In addition, it will develop and
manage process white papers, RFIs and RFPs for the ADTF.1

The first formal effort of this group is this white paper to address software and software system
process engineering.

1.2 Industry Problem

1.2.1 State of the Current Practice
Process engineering in the software development industry is not a universal well defined and
standardized activity. It has a high degree of variability due to a large number of factors. It
varies according to cultural aspects, practices, and habits. It depends on the type of project
(size, critical aspects, novelty, repetitiveness, etc.), on the size of the organization, on the
standards that are used, on the technology that is used, and on the domain for which software is
developed. It also depends on the end user requirements regarding the software, and in particular
the quality criteria.

In addition, the UML 1.1 has been adopted by the OMG as a modeling language and has
received wide recognition and acceptance in the industry. The UML addresses modeling with
associated diagrams, notation, semantics, etc. It does not address process., nor was that its
intention.2

Analysts, designers and developers need assistance in how to use the UML and other software
development work products.

1.2.2 Maturity Level of the Industry
Institutionalization is a major step for the process maturity in an organization.3 It entails building
an infrastructure and a corporate culture that supports the methods, practices, and procedures of
the business so that they last after those who originally defined them have gone. As a software
organization gains in software process maturity, it institutionalizes its software process via
policies, standards, and organizational structures. Defining, improving and institutionalizing
processes are the main activities for “ process engineering ”.

In practice however, many companies have invested much time and money in process, but the
results have not be satisfactory in many cases due to the constant technical, market, and

1 ADTF Process Working Group Mission Statement ad/98-03-02
2 Process was specifically excluded from the RFP in response to the feedback received in the original RFI which said
that there was not and may never be convergence in the industry on process.
3 Capability Maturity Model, Version 1.1, Software Engineering Institute

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 5 of 34

standards changes; culture resistance; and lack of sustained management support. Very often,
the process definition work is reinvented for every project in every company. The mergers of
companies, or of development teams, or the inter-project cooperation, unavoidably leads to a
new study of the procedures.

1.3 Purpose of the White Paper

1.3.1 General Purpose
The purpose of this paper is to describe a means for software development process engineering
to address the issues of:

• how to effectively use the UML in specific software/software development projects, and
• the maturity of the development of systems and software.

This paper is intended to describe and obtain agreement on the concept that processes and
methods for software development can and should be described using a software development
process definition language. This language would be the foundation for engineering project
specific software development processes and methods. This engineering, in essence a
“methodology to create methodologies”, would permit individual software development projects
to select the components for their processes and methods based on that project’s specific goals,
risks, capabilities, etc.

Further, this paper will provide the foundation for possible RFIs and/or RFPs for the process
definition language and models.

1.3.2 No Single Process
This paper does not propose that there is a single process and/or methodology. Rather, it asserts
that it is not possible to standardize a process or methodology for all software development
situations. For example, to quote from UML 1.0:

"Processes must be tailored to the organization, culture and problem
domain at hand. What works in one context would be a disaster in
another. The selection of a particular process will vary greatly,
depending on the things like problem domain, implementation
technology, and skills of the team."

Further, it is probably not possible even to standardize on the names of the software development
phases. For example, there has been an ongoing discussion in the OTUG mailing list on whether
there is even is such a thing as an Object-Oriented Analysis Phase. However, this inability to
agree on even some of the basics, need not stop progress. There are some basic things in
common to all software developments - objectives/goals, risks, activities, work products, etc.

1.3.3 Single Process Definition Language
While it may not be possible to make much progress on standardizing the processes and
methods, we assert that it is possible to standardize the language to specify them. There are over
50 existing published object-oriented methodologies. These methodologies can be restated (with
effort of course) in that language. This standard language would then allow projects and

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 6 of 34

organizations to compare and contrast different methodologies properly and engineer the
processes and methods based on their own specific circumstances.

Indeed, if the language was standardized, the tool market could eventually automate some of
software process engineering. Computer Assisted Process Engineering (CAPE) and Computer
Assisted Software Engineering (CASE) tools exist today. This effort will provide the conceptual
foundations to enable the integration and/or inter-operation of these two types of tools. The
underneath CORBA technology would then make it possible to share, distribute, exchange and
extend process and method elements.

Finally, even though the concepts described in this paper may apply to process engineering for
anything, it is not the intent of this paper to describe general process engineering. The focus is
on resolving the issues of effective UML usage and process maturity in software development
projects.

1.4 Intended Audience(s)

This white paper is intended for the OMG as a whole and, specifically, those task forces and
working groups which are working in the areas of workflow and processes. This will ensure the
work in these workspaces is well synchronized.

Another audience may be the process and methodology industries outside of the OMG. Their
thoughts and suggestions will help address the commercial significance of the concepts and
directions established in the paper.

1.5 Writing Team

Editor: Mike Bradley, BellSouth.

Contributors: Philippe Desfray, Softeam
Michael Jesse Chonoles, Lockheed Martin Advanced Concepts Center
Paul Allen, Select Software
Steve Tockey, Rockwell Collins
Van-Si Nguyen, Xerox

1.6 Questions & Comments

Please address content-related questions or feedback to the Process Working Group and to the
paper editor Mike Bradley (mike.j.bradley@bridge.bellsouth.com). In the interests of mailing
list efficiency, please address errata or omissions directly to the editor only.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 7 of 34

2. Definition of Process Engineering
A process is a system of operations for producing something, in other words, a series of actions,
changes or functions, that reach an end or a result. A software process is a set of activities,
methods, practices, and transformations that people use to develop, maintain, acquire, and
subcontract software and the associated products (documentation, code, etc.).4

Process Engineering (PE) covers the activities related to the definition, optimization, and control
of processes. For software development, the processes to be engineered are those used in
developing software.

3. The Scope of Process Engineering Addressed in This Paper

This paper covers process engineering for defining the processes to be used in software
development. This scope could also be interpreted as process engineering for systems
development in which the effort includes the development of software.

Thus, Software Process Engineering (SPE) is, in effect, the selection of the specific software
development activities, the order in which they will be carried out, etc. The activity of software
process engineering is considered to be one of the components of the planning for software
development projects. The positions expressed in this white paper are related to those processes
whose results are likely to be expressed in UML.

Even though the concepts described in this paper may apply to process engineering for anything,
it is not the intent of this paper to describe process engineering in general.

4. Software Development Process Definition Language and Meta-Model

A software development process definition language is needed as a foundation for the process
engineering of software development processes and methods for individual projects. Further,
this language needs to be based on software engineering components using a welldefined meta-
model.

4.1 Software Development Process Definition Language

The goal of the Software Process Definition Language (SPDL) is not to define a language
resembling a syntactic or graphical language such as C++ or UML, but rather to define and
standardize a formal structure for specifying any particular software process.

The SPDL will allow different software processes to be engineered appropriate to different
project profiles. A project profile will reflect such things as the organizational culture
(hierarchical vs. empowered teams) , industry sector or domain (insurance, telecommunications
etc.), technology type and combinations (relational database, Internet, C++ mainframe, VB etc.),
etc.

4 Capability Maturity Model for Software, Version 1.1, Software Engineering Institute

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 8 of 34

The SPDL will be used to describe existing processes and methodologies so that projects can
engineer their projects potentially using parts of many processes or methodologies according to
the project’s profile. In addition, it will make it possible to:

• introduce new types of process engineering components,
• define its relationships to other components,
• combine components,
• customize existing components, and
• have these components shared between different projects and organizations.

Also, the structure will allow the software community to share, distribute, reuse, automate, and
customize the defined processes. The language will address such elements as software
development work products, activities, tasks, techniques, methods, etc. In addition it will
address project profile information such as goals, risks, organization, resources and their skills,
technologies to be used, roles, metrics, rules, etc.

4.2 Well Defined Meta-Model

In the OMG context, underlying the SPDL will be a meta-model described using:
• the MOF (Meta Object Facility) for meta-model interoperability and CORBA interface

generation
• the UML for notation.

This UML meta-model is not a system development project deliverable, but rather it describes
the possible process components from which each project will select to develop its own process
and methods.

MODELING
TASK STAGE

WORK PRODUCT

MODELING
TECHNIQUE

MODEL ITEM

UML

 PROCESS

 PROFILE

 ORG TYPE PROJ TYPE

OTHER SOURCES

OTHER ARTIFACTS

 TASK

TECHNIQUE

BUSINESS PLANNING ??

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 9 of 34

Figure 1: Example Meta-model and Software Process Engineer’s View .

Figure 1 is an example of a possible meta-model for SPDL. The meta-model would contain such
concepts as Organization and its capabilities; Project and its characteristics; tasks; etc. In
addition, as this example shows, the meta-model would point to other already defined meta-
models such as UML1.1. This will allow the definition of software processes for specific
projects to be supported by tools.

Thus, for an individual project, the software process engineering results in a unique software
development process (described in the language of the SPDL meta-model) that describes which
of the UML models will be produced in the project, as well as, how they will be produced, in
what level of detail at each phase, how they will relate to other models, etc. For example, the
engineered process might specify a particular UML diagram with little formal rigor to provide a
discussion vehicle at system proposal or feasibility stage. Further, at the other extreme it might
specify the same UML diagram with a high degree of rigor later in the project life-cycle for the
specification of the delivered software.

5. Process Engineering

SPE is used by process engineers in project planning and by practitioners in executing the
project. Practitioners are software developers, project leaders, and other roles on a software
project which are likely to be involved in modeling - significantly this includes users.

5.1 Software Process Engineers

Figure 1 in the preceding section, is an example of how the SPDL could be scoped in the context
of the process engineer’s domain of interest.

The flexibility of the language is of profound importance here. Note the de-coupling of the UML
model, which has its own syntax, semantics and rules of consistency. Techniques are further de-
coupled from tasks. A technique is a procedure which guides the creation of one or more UML
model items. A technique is modular in that it may be used by different tasks. A task is in turn
also modular in that it can be used within different stages of different processes. This provides
great flexibility while at the same time retaining the soundness and stability of the underlying
UML model.5

So, what’s the bottom-line? Where’s the value?

The process engineer can engineer the process and methods for a software development project
using the SPDL (which is based upon the foundation of a well defined meta-model) using the
project’s profile. This will result in techniques, tasks, deliverables and stages that make up the
processes and methods of relevance to his/her organization’s project. The process engineer can
then give guidance to the project as illustrated in Table 1.

5.2 Software Development Practitioners

5 Note: there are two other more detailed examples in Appendix A and B.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 10 of 34

Table 1 represents some of the types of questions practitioners might ask and how the process
and methods developed by the process engineer for the specific project might answer them.
Question Example response

what is the overall shape and sequencing of the
process?

spiral, waterfall, …. suitable diagram to show
structure and sequencing.

what deliverables are expected, and when? project proposal after inception stage.

which models are appropriate (and why) ? class model - to capture system structure.

which models are mandatory/optional parts of
deliverables produced at each stages of
development?

class model is mandatory within analysis doc
after analysis stage.

what level of model detail is needed for each
deliverable?

class model must include attribute/operation
descriptions within analysis doc.

what are the required inter-relationships
between models at each deliverable?

a use case must correspond to either a sequence
diagram or a collaboration diagram in the
external design specification.

what rules of thumb apply to a model at each
deliverable?

a service package contains around 5 to 15 classes
in the external design specification.

who (team role) is responsible for those
models?

system architect is responsible for service
package dependency diagram.

which modeling techniques are appropriate? use case, class, collaboration…….

how is a technique performed, what are the
procedural guidelines?

identifying classes is performed like this……

what rules of thumb (heuristics) apply when
using a technique?

in identifying actors look for the roles
(salesperson) not the individuals (Fred, Mary,
Joe..)

when should/must the techniques be used,
what is the recommended sequence of
techniques?

use cases must be identified before modeling
collaborations.

which modeling techniques are
mandatory/optional at different stages of
development?

class modeling is mandatory in analysis.

TABLE 1: PRACTIONER’S DOMAIN OF INTEREST.

6. Considerations for A&D Process RFI/RFPs
It is anticipated that RFIs and/or RFPs will be issued for a meta-models and SPDL. Section 5,
Appendix A and Appendix B contain some partial examples of possible languages and meta-
models using different approaches.

6.1 Planned Roadmap

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 11 of 34

• RFI to validate the contents of this Whitepaper.
• RFP for the Meta-Model and Software Process Definition Language (SPDL)
• RFI or RFP for processes to use
• RFPs to address other needs identified in the original RFI.

7. Other Similar Standards and Efforts
While it would appear that many “process standards” efforts such as SEI/CMM, ISO/IEC 15504,
BOOTSTRAP, ISO 9000, ISO/IEC 12207, MIL-STD 498, Trillium, The V-Model, these efforts
do not directly address an SPDL supported by a well defined meta-model. These standards
would be potential processes to be described by an SPDL or they could help define and/or
constrain other processes described by an SPDL.

8. Relationship to OMG Technology and Other Work Efforts

8.1 Workflow RFP

The feeling is that this effort is complementary to the BODTF (CF) RFP-2, cf/97-05-06
Workflow Management Facility. While the target of this white paper is processes for software
development, any technology adopted as a consequence of it may provide process definitions to
be used by the Workflow Management Facility. The main interface between the workflow RFP
and any technology resulting from this white paper would be interfaces to the process definition
repository where the process “instances” would be accessible to the workflow management
facility.

In addition the workflow tends to focus more on the execution and control of processes,
including nested processes. The workflow processes may change during their execution, but, in
general, they are not individually created for each lot, run, etc. On the other hand, SPDL tends to
focus more on the creation of a process from a repository on a project-by-project basis depending
on the goals, risks, capabilities, and other characteristics of the specific project and organization
doing the development.

8.2 UML

Figure 2 shows the three main relationships between the SPDL meta-model and the UML meta-
model. These links must be carefully studied in order to integrate the two meta-models and other
areas of process engineering and UML notation and diagrams properly. Responses to any
Software Process Engineering RFPs must clarify such links.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 12 of 34

Dependencies between UML and PWG

MOF

Process MetaModel UML MetaModel

Process Related
UML elements

connections
extensions ...

UML Model

Instantiation

Instantiation
Work Products,
Control

1

2

3

Level1

Level2

Level3

Figure 2: Connections between SPDL and UML Meta-Models

8.2.1 SPDL and UML Model Elements
SPDL and UML Model Elements are related as represented by Link 1 in Figure 2. The
effective use of the UML is the main focus of the process engineering working group. It is
expected that many UML elements such as diagrams, components, packages, etc. will be related
to process activities using an SPDL. An SPDL can be used toidentify which UML elements will
be work products in the process.

8.2.2 UML Model Elements Related to Process Engineering
Another aspect to be dealt with is the management of UML elements related to process
engineering. This connection is represented by Link 2 in Figure 2. For example, stereotypes and
tagged values may be restricted to only certain activities, or life-cycle phases. These restrictions
must be expressible by any SPDL. For example, during analysis, certain tagged values must be
used while others are dedicated to design. Tagged values and stereotypes restrictions can exist at
every part of the life-cycle. These UML notions have different meanings and are not necessarily
available, depending on the stage of the life-cycle.

In addition, there are relationships among such things as UML diagrams, techniques, and
activities which must be represented in the process meta-model. In other words, how do the
UML “Model Elements” (in the UML 1.1 meta-model sense) relate to “process elements” that
are likely to be defined in a process meta-model. As developed in Appendix A, some mapping
techniques such as the point-of-view notation can be made.

8.2.3 Meta-Model Alignment
The meta-model alignment is represented by the Link 3 in Figure 2. There are alignment
constraints between the UML meta-model, and the process engineering meta-model. As an
example, the activity diagram meta-model may be related to the process engineering notion of
activity.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 13 of 34

There may even be the need for extensions of the UML meta-model. For example, process
definition may introduce new requirements on the content and presentation of UML diagrams.
This would in turn introduce new requirements to the UML meta-model.

8.3 Manufacturing Task Force

The SPDL and manufacturing processes, tasks, resources, organizations, etc., while they are the
same at some high level of abstraction, are not similar in the way they are used. In
manufacturing the focus, like in workflow, tends to be more on the execution and control of
processes which are not individually created for each lot, run, etc. On the other hand, SPDL
tends to focus more on the creation of a process from a repository on a project-by-project basis
depending on the characteristics of the specific project and the organization doing the
development.

8.4 ORMSC/RMWG - Viewpoints (Van-si)

Appendix A - Characteristics of an SPDL

9. Goal of the language
There is a tremendous need to formalize process engineering components, to reuse those that are
already defined, to have them shared between organizations with common interests, and to go on
improving them. This can only be obtained if a framework is defined and standardized.

SOFTWARE SERVICE

PROJECT 1 PROJECT 2 PROJECT 3

METHODOLOGY REPOSITORY

Figure A-1 - Distributing the methodological skill to several projects

This Framework should make it possible to introduce every new kind of process engineering
component, to define its relationships to other components, to combine components, to
customize existing components, and to have these components shared between different
organisms. Process engineering components such as “ activity ”, “ rule ”, “ document template ”,
“ work product ” need to be supported by the framework.

9.1 Introduction

As opposed to software that is made of work products, process engineering is made of everything
that helps to produce the work products. Process engineering deals with such things as:
• development technologies used for software,
• system development activities needed for developing a software,
• rules or guidelines that must be followed by the developer,
• risk management for the work products elaboration,
• goal definition,
• project organization,
• roles,
• metrics, and
• skill management.
Note: This list is not meant to be exhaustive.

There is an orthogonal relationship between work products or development technologies, and
process engineering. For example, many different methodologies can be used with the UML
technology, or any other technology such as idl, C++, Java, etc.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 15 of 34

In addition, process engineering deals with “ combining technologies ”. For example, it can
define how to combine the UML and C++ technologies during a detailed design. This mapping
needs to be supported by the process definition language.

We may not be exhaustive in describing every type of process engineering element, but we may
formalize the main supported and distributed elements that can be identified, and provide an
extensibility mechanism for that purpose.

9.2 Work products

Work Products are the fundamental material that process engineering has to manage. Work
products define each element that has to be produced in an automated or manual way, using a set
of technologies. These can be for example UML models, documentation, reports, code source,
binaries, etc. Metrics can also, but not entirely, be defined as work products.

Process engineering specifies every work product that has to be produced during a software
development. It also defines every activity that will produce all these work products.

Further, for every kind of work product, it will provide dedicated rules and guidelines. It states
exactly how a work product should be produced, what elements have to be inside. It also defines
how the work product will be controlled, how it will be identified, maintained, what organization
will manage it, what is its goal, what risks are related to its development, etc.

Finally, process engineering specifies the situations for when the work product is to be used or
not used. These goals and risk avoidance criteria are used to match the work products to specific
projects.

9.3 System development activities

An activity is the process unit that will produce one or more work products. An activity needs
resources that can be specified in terms of the roles, as well as input work products, it has links
with other activities, and is related to dedicated procedures (quality control, termination criteria,
metrics, etc.).

The activity elements constitute the main connection between process engineering, and project
management. Project management has not been recognized as being a main target for process
engineering (SLC meeting decision). For that reason, activities may optionally provide details on
schedule information.

9.4 Organization, roles

Roles must be defined in order to clearly specify the responsibilities each should have in
producing a product in an activity. The project team organization has to be expressed through the
roles of every resource involved. Project manager, developer, architect, tester, configuration
manager, are examples of roles. Each of them is specialized in some activities, and has specific
duties and responsibilities regarding specific work products.

Tools strongly influence organization, for they automate or help the developer’s tasks. The work
they provide has to be managed as well. A compiler tool has an impact on activities and work
products (checking source code, producing binary code), just as the developer role has (checking
design models, producing source code). If almost every development team uses a compiler, only

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 16 of 34

a small percentage still use case tools, or test tools, or configuration management tools. Each
kind of tool needs to be represented in the process, accompanied by its influence on the
organization.

9.5 Development rules and guidelines

Development rules and guidelines are based on the technologies used, on the developer’s current
points of view (introduced later - analysis, development, building a prototype, etc.) and on the
kinds of expected work products.

They describe the skill of a development organization, by detailing all rules and guidelines that
have to be followed for producing every work product. They ensure that a development process
is repeatable, using a growing level of quality. They constitute a development knowledge
repository for the developers, and therefore guarantee that the development results do not rely
too heavily on someone’s particular performance that may not be reproducible.

Possible examples of development rules or guidelines are :
• Document templates, that describe how a particular kind of document should be made, what

chapters should be included, what information should be in these chapters,
• Development guidelines in a specific programming language, such as naming rules, sources

organization rules, the source structuring rule, and language features that are encouraged to
be used or prohibited,

• Specific modeling consistency rules, that conduct the modeling task and help declaring a
model correct or not. These rules can enforce maintainability or readability or robustness or
efficiency, depending on the current development point of view.

• Design patterns, that represent design knowledge in particular, and that can be recommended
in certain contexts or prohibited,

• Translation rules, such as model to code translation, or model to database schema translation,
• Metrics, that are expressed by formula in order to measure different aspects such as

complexity, maintainability, encapsulation, performance, for several kinds of work products.
• policies such as configuration management policies, bug management policies, recruitment

policies, quality control policies
• techniques customizations, such as UML subsets, UML customizations, design patterns

10. Properties that this language should have

10.1 Introduction

The system/process definition language needs to organize the process elements, in order to
ensure the following properties :
• structuring mechanism : work products, activities, rules and any other process components

must be structured into consistent sets of elements, deliverables that can be distributed,
shared, customized, etc.

• extensibility : many users are not willing to redefine from scratch a new methodology for
their projects. They cannot take other methodologies as they are either. They need to adapt
already defined methodologies, in order to target their specific constraints, culture, etc. This
is the reason why the deliverables must be customizable and fulfill the extensibility property.

• relationships to techniques : imagine a technique, UML for example, many processes can be
applied on it. As we want to automate processes, we need both a close connection between

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 17 of 34

processes and techniques, and an interchangeable connection. Techniques may be differently
customized depending on the process definition combinations that are applied.

• Parameterization mechanisms : process definition can define parameters, that may have
different values depending on the project context. Thus, the project definition defines a
project variability range, on which it can be applied as well. Metrics, automated code
generation, rules, may for example depend on general parameters such as the project size, or
on physical parameters such as directory paths.

10.2 Organizing process engineering components

There are two fundamental questions that have to be answered in order to develop a software
methodology framework.
• How can these numerous process engineering components be organized into consistent,

reusable and customizable groups ?
• How should the methodology/technology mapping be managed ?

As stated before, process engineering is much more related to “ how to use ” a technology than
to the technology itself. There is a kind of “ orthogonal ” relationship between these different
aspects. For example, the development phases definition does not depend on the programming
language used. However, their precise content is influenced by the technique. We can say the
same process can be applied on different techniques, though there may exist some adaptations,
and that the same technique can be used by different processes, though they may also need some
customizations.

C++ Client/Server RDB CMS tool Motif GUI 4GL

Custom
methodology

Incremental
LifeCycle

DOD 2167a

WaterFall
lifeCycle

Figure A-2 - Methodologies and technology are by nature “ orthogonal ”

Figure 2 presents that orthogonal aspect. Given a particular methodology (say Waterfall) and a
set of technologies to use (say C++ and UML), the requirement consists in deriving a set of
predefined “ process engineering components groups ” in order to obtain a customized
methodology which is “ Waterfall for UML with C++ ”.

Obviously, that customized methodology will be further customized in order to define the
“ Waterfall for UML with C++ dedicated to my organization ” methodology. This new
customized methodology needs to be packaged so that it can be itself distributed, shared,
improved, etc.
There is a specific structuring mechanism that has to be used for this purpose. We call it “ Point-
of-View ”.

10.3 Introducing the “ Point-of-View ” mechanism

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 18 of 34

As seen above, process engineering and technologies have a orthogonal relation. This is for
example the case of UML technology. In this case, depending on the methodology used, there
may exist :
• different stereotypes, different tagged values, which provide means to adapt UML to

different domain notations, different methodologies, or different underlying technologies,
• different document generation templates, that may produce different documentation from the

same model
• different code generators, that may use different programming conventions, or that may use

different target combinations (C++/SQL, Java/CORBA, etc.)
• different design patterns, that promote different kinds of design approaches
• different modeling rules, that heavily depend on methodologies, technologies,
• different configuration management policies, that manage links between generated code,

models, documentation, etc.

Thus, considering a given UML model, there may exist different usage of it, depending on the
point of view being used : it may be differently interpreted during analysis or design, for real
time purposes or for data storage purposes, for a C++ development , or for a Java development.

Many elements will change : the software products that have to be produced, the rules that have
to be abided by, the necessary tagged values, etc. The understanding of the model will not be the
same, and the functions that a tool may provide are not the same either.

We call “ point-of-view ” the perspective from which the model is considered. Thus, process
engineering defines a set of points-of-view that may be applied to a model, each of them
providing the necessary set of “ process engineering elements ” required. Points-of-view can
materialize development phases, or more accurately development activity types such as
“ analysis ”, or data schema definition, C++ programming, data schema optimization, etc.

The “ point-of-view ” concept is orthogonal to the “ software element ” one : the same viewpoint
can be applied on different software elements, whereas different points-of-view can be applied
on the same software element. Point-of-view is a major concept for structuring the process
engineering concepts.

RM-ODP has the viewpoint concept, which is similar, but it is different from the point-of-view
concept described here. As for the RM-ODP viewpoint concept, the point-of-view notion
defines a particular angle for viewing a problem. However, the point-of-view notion is dedicated
to a stabilized meta-model (different angles for considering a meta-model); whereas the point-of-
view notion is not dedicated to any specific model. In addition, the point-of-view notion does not
provide predefined points of view, and is extensible to any number of kinds of point of views,
whereas RM-ODP viewpoints are limited to five predefined kinds of viewpoints. Points-of-view
must be customizable by users, in order to let them take elements from a “ process engineering
repository ” and adapt them to their needs. That is why inheritance links between points-of-view
may exist.

Point-of-View is a mechanism for structuring rules, that provides a means to look at the same
meta-class from different angles of view, depending on the expected meta-model usage. For
example, documentation generation rules, C++ patterns rules, relational database rules, will each

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 19 of 34

have a specific interest in the meta-model, materialized into the so called “ point-of-view ”
concept.

 UML
META-MODEL

DEFAULT

CODE GEN RDB GEN

C++ JAVA

Figure A-3 : Different points-of-view consider the same meta-model from different target perspectives

The point-of-view structure may be a hierarchical structure, showing refinement links between
different points-of-view.

Points-of-view are very important for the developers, but are necessary for the final users too : at
the project level, users choose which already defined point-of-view they want. The project
becomes customized by the user’s choice for their specific requirement, having specific rules and
generation dedicated to their need (RDB, ODB, Client/Server, etc.).

C++ GEN

DOC GEN

RBD GEN

BDO GEN

GUI GEN

P1 P2 P3 P4

✔

VIEWPOINTS

PROJECTS

✔ ✔

✔✔

✔

✔

✔

Figure A-4 - Every project can choose its specific points-of-view.

Methodologies can be customized by selecting and refining a set of points-of-view that already
exist. Tools may change their consistency control mode, functionality, the views they present to
the user. They adapt their behavior to a specific technique such as UML, to the selected
processes the points-of-view represent.

Methodologies

Analysis

MyAnalysis YourAnalysis

Design

HisDesign
RDB

MyRDBrules

Development

C++

MyC++RulesMyMethodology

Figure A-5 - Structuring and specializing methodology fragments

Appendix B - Example an SPDL Meta-Model

Note: Tthis SPDL meta-model is just a proof-of-concept. Such a meta-model could exist and it does not
necessarily reflect any meta-model that could be adopted by the ADTF as a result of a future RFP. It is
for illustrative purposes only, to clarify what the meta-model of a SPDL could look like.

11. Logical Model

11.1 Actors and Use Cases

Actors Uses

Process Engineer

Methodologist

Author

To define, express, communicate, and justify process and process
components at all levels and their associated goals and risks,
including suitability for target organizations and projects.

Process and Process Components include

• process
• OO method/methodology (such as OMT, Fusion, Lockheed

Martin ACC Method Framework)
• procedure
• development patterns
• Software Development Life Cycles (e.g., waterfall, spiral,

iterative/incremental, fountain, scrum)
• lessons learned

Process Engineer To compare/contrast different processes and process components,
at all levels based on suitability to organization and project
circumstances and alignment to risks and goals.

Program
Manager

To modify, tailor (both a priori and dynamically) processes and
process components by adding, deleting, or modifying activities,
their applied efforts and resources, and their entrance and exit
criteria in response to changing priorities, and circumstances.

Tool Vendor To communicate, exchange, and depict models of process and
process components at all levels.

Instructors

Methodologist

To use as a basis for instruction for process and process
components that is:

1) capable of being abstracted for the level of audience

2) easily tailorable to students' priorities and circumstances

Program
Manager

To determine how to assign resources, order activities, evaluate
progress, assess risks

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 21 of 34

Developer To determine proper steps and actions, warn against potential
problems.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 22 of 34

12. Package Level

12.1 Model Overview

The diagram gives the high-level over-view of the model.

12.2 Project Profile Package

This package exists to allow:
• Process/Methodology authors to describe the types of organizations and projects for which their process or

method is suitable.
• Evaluating organizations and project teams to select the Process/Methodology that is suitable for their situation.

Since the potential criteria for characterizing organization and projects are numerous and
evolving, the scheme should not only allow for standard categories of criteria, but should be
dynamically adaptable, extendible, and sub-divisible.

12.3 Process Description Package

This package contains the description of the activities and tasks of the process or method
(Package Activities), the reasons why and under what circumstances these Activities are done
(Package Purposes) and the products (Package Work Products) produced by these activities.

12.1.1

Process Description Pkg

Project Profile Pkg

Justification Activities

Work Products

FigureB-1 Package Diagram

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 23 of 34

Though we use the term "Process" in the package name, it is intended that system development
activities of any scale can be captured. This would include large-scale System Development
Activities such as (but not limited to):
• OO Methods (e.g., OMT, Booch, Fusion, Rational Objectory, Process, Lockheed Martin

ACC Development Framework)
• System/Software Development Life Cycles (e.g., waterfall, spiral, fountain, scrum)
• Non-OO methods (e.g., Method 1)

• It would also include smaller scale descriptions of activities taken to address particular risks.
These include:

• Managerial Patterns
• Lessons Learned
• Individual Project Plans

Essentially, this is a Software Development Process Language (SPDL) that allows us to model
and describe process solutions in the system development domain.

12.3.1 Justification
Every activity must be justified. An activity is only performed for a purpose, either to achieve
goals or to mitigate risks.

Processes with justified steps are easier to teach, learn, understand, and use. Without
justification, it could be said that no one really "knows" the process.

If the activities are justified, then when circumstance change, the activities may be modified
appropriately. Under a different set of circumstances, an Activity may need to be shortened,
changed, de-emphasized, or even eliminated.

The Justification Package is also closely connected to the Project Profile Package. A given
organization, for a given project, will have a set of perceived goals and risks. They need the
ability to compare their goals and risks to the Process Description's Justifications to choose the
best process. Then, by contrasting them, a development team should be able to modify/tailor the
Activities to best meet their goals and risks. And as development proceeds, and new risks appear,
the team needs to be able to dynamically tailor the Activities.

12.3.2 Activities
This package contains the descriptions of the activities, tasks, steps, their resources, and metrics.

12.3.3 Work Products
This package contains the items produced for each activity performed.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 24 of 34

13. High-Level Static Diagram

13.1 Project Profile Package

13.1.1 Project/Organizational Profile Class
This represents the set of information needed to profile a particular organization and a particular
project.

At least the following organizational characteristics should be accounted for:
• Industry
• Size
• Formality
• SEI Level

At least the following project characteristics should be accounted for:
• Size
• Budget Profile (e.g., Cost, Effort, Time)
• Formality
• Implementation Profile (e.g., Architecture, Language, DB)

Task Description

(from Activities)

*

*

role/title
Project/Organizational Profile

(from Project Profile Pkg)

Resources

(from Activities)role/title

skill/capability

Measure

(from Activities)

*

Input

*

increased
*Risk

(from Justification)

*

*

justification

*

*

*

Output

Work Products

(from Work Products)

*

*

Activities/Tasks
(from Activities)

*

skill/capability
*

*

*

*

*

*

*

Goals & Risks
(from Justification)

*

*

**

*

*

*

*

producer

ReqOutputQualReqInputQual

consumer

FigureB-2 High-Level Static Diagram

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 25 of 34

13.1.1.1 Relationships

13.1.1.1.1 To Resources
• A Project/Organization owns certain resources.
• Each project may call the equivalent resource by a different title depending on the role the resource place on the

project and depending on the role nomenclature chosen by the project.
• Note: The resources required by a particular Activity may not be available as part of a project.

13.1.1.1.2 To Goals or Risks
• A project has a set of goals to achieve and a set of risks to avoid.
• An organization may have a set of Goals and Risks that are common to many of its projects
• These Goals and Risks may be for many projects and many organizations.

13.2 Justification Package

13.2.1 Goals & Risks Class
A Project is started because an organization has a set or goals that they need to reach or
alternatively, a set of risks that they need to address. One way of looking at this is to consider
that the Goals & Risks are the requirements that a particular set of Activities/Tasks are
undertaken to solve.

There will need to be at least two versions of this class in the final model. One to represent the
Goals & Risks needed to justify a particular Activity/Task, the other to represent the Goals &
Risks actually occurred for a particular Project.

13.2.1.1 Relationships

13.2.1.1.1 To Project/Organization Profile
• These Goals and Risks may be for many projects and many organizations.
• Each Activity (of whatever level) is performed to achieve some goals and to mitigate some risks.
• The set of Goals and Risks act as justification for an activity
• Several activities may be justified by the same Goal or Risk.

13.2.1.1.2 To Activities/Tasks
• A project has a set of goals to achieve and a set of risks to avoid.
• An organization may a set of Goals and Risks that are common to many of its projects
• These Goals and Risks may be for many projects and many organizations.

13.2.1.2 Subclasses: Risk
Risks may be of many types.
• Business: e.g., Competitive need to have properly positioned project by a certain date,

Organization needs particular capability to improve customer retention
• Managerial: e.g., Cost, schedule, people,
• Technical (Solution): e.g., will this solution work, be fast enough, interoperate.
• Developmental: Can we (with our organization, skills, discipline), develop this project. Can

we reach consensus, avoid analysis paralysis, requirements creep. Can we "design-to-
cost"?…

ilities

Resource

Schedule

Goals & Risks

domaindirection

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 26 of 34

13.2.1.3 Relationships

13.2.1.3.1 To Activities/Tasks
• Every activity has a set of risks that they may increase. These can be considered the "pitfalls" to watch out for

when doing the activity.
• Some risks can be increased while doing several different activities.

13.3 Activities Package

13.3.1 Resources Class
The Resources Class represents the people and other enabling resources (e.g, development
platform, tools, databases, access to equipment) that are used to perform a particular activity or
task.

There will need to be at least two versions of this class in the final model. One to represent the
skills/capabilities needed to perform a particular Activity/Task, the other to represent the skills
and capabilities available to the Project.

13.3.1.1 Relationships

13.3.1.1.1 To Project/Organization Profile
• A Project/Organization owns certain resources. Each project may call the equivalent resource by a different title

depending on the role the resource place on the project and depending on the role nomenclature chosen by the
project.

• Note that the resources required by a particular Activity may not be available as part of a project.

13.3.1.1.2 To Activities/Tasks

Figure B-3 - Types of Goals/Risks

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 27 of 34

• For a particular Activity/Task, there are a set of resources need to perform that task. These resources may be
partitioned by differing skills and capability descriptions.

• Each resource may be used on many different Activities/Tasks.
• For each resource participating in an activity, there are Task Descriptions (or Instructions) on how to apply that

resource for this task.

13.3.1.1.3 To Resources
• A Resource can be at several different levels, for example, a Database Team is a resource that might contain a

some tuning specialists for different databases, a manager, a tester....

13.3.1.2 Subclasses
See figure 4 for some of the different types of Resources that need to accounted for.

Resources

Platform-Time Tool-Seat

ConsumableIndividual

Team Infrastructure

13.3.2 Task Description Class
A Task Description is the instructions given to a particular (human) resource to perform a given
Activity/Task on the Work Products of the Task. For non human resources (such a hardware
platform), it is the description of how that resource will be used on the given Activity/Task to
product the Work Products of the Task.

13.3.2.1 Relationships

13.3.2.1.1 To Work Products
• For each Resource assigned to a Task, a Task Description is needed to capture how that Resource will be

applied to a particular Work Product

Figure 3 Types of Resources

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 28 of 34

• Usually, a Task Description will cover only one Work Product, or may have sections for multiple work
products.

• In addition, while we normally think of a Task Description as being needed to cover how a Work Product will
be produced, it is possible that a Task Description will be needed to incorporate an input Work Product

13.3.3 Activities/Tasks Class
The Activities / Tasks class covers the range of applicable steps of development, from large-
scale activities such as Analysis, through smaller activities, such as code walk-through. It also
includes management reviews, steps from the method....

Activities include things such as; Developments, Measure, Manage, Buy, Assess, or Decide.

Activities can have sub-activities at different scales. Whole nomenclatures for the different levels
are used, but they usually hide the essential similarity of the levels.

Each Activity/Task has some justification, either goals to achieve and/ or risks to abate, and will
have it's own sets of risks that may occur if it is performed.

An Activity/Task often has a set of inputs that must at least meet a required level of quality
before the activity may start. It also has a set of outputs that must at least meet a required level of
quality before the activity can be considered completed. Note that an output may be (and usually
is) usable by a following activity even before it is "finished" by the originating activity. In
addition, a Work Product, in different states, may be input and output to the same activity.

13.3.3.1 Relationships

13.3.3.1.1 To Resources
• For a particular Activity/Task, there are a set of resources need to perform that task. These resources may be

partitioned by differing skills and capability descriptions.
• Each resource may be used on many different Activities/Tasks.
• For each resource participating in an activity, there are Task Descriptions (or Instructions) on how to apply that

resource for this task.

13.3.3.1.2 To Goals & Risks
• These Goals and Risks may be for many projects and many organizations.
• Each Activity (of whatever level) is performed to achieve some goals and to mitigate some risks.
• The set of Goals and Risks act as justification for an activity
• Several activities may be justified by the same Goal or Risk

13.3.3.1.3 To Risks
• Every activity has a set of risks that they may increase. These can be considered the "pitfalls" to watch out for

when doing the activity.
• Some risks can be increased while doing several different activities.

13.3.3.1.4 To Measure
• Each Activity or Task will have a set of measures (often called Metrics), to determine if the Activity/Task:

 a) is on Track (schedule/cost)
 b) is of sufficient quality

13.3.3.1.5 To Work Products

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 29 of 34

• An Activity/Task often has a set of inputs that must at least meet a required level of quality before the activity
may start. It also has a set of outputs that must at least meet a required level of quality before the activity can be
considered completed. Note that an output may be (and usually is) usable by a following activity even before it
is "finished" by the originating activity. In addition, a Work Product, in different states, may be input and
output to the same activity.

13.3.3.1.6 To Activities/Tasks
• Activities can have sub-activities at different scales. Whole nomenclatures for the different levels are used, but

they usually hide the essential similarity of the levels.

13.3.3.2 Subclasses

13.3.3.2.1 Measure

Each Activity or Task will have a set of measures (often called Metrics), to determine if the
Activity/Task:
 a) is on Track (schedule/cost)
 b) is of sufficient quality

A Measure in this context is actually an Activity/Task by itself, as it is equivalent to some
activity being performed. A Measure must be independently justified (is it worth to collect this),
may cause its own risk (developers design differently depending on the metric) and has its own
set of required inputs and outputs. A Measure may have lower-level component Measures and
may be a component of a larger Measure. To perform a particular Measure, we also need
resources.
A Measure requires at least one output Work Product with a Required Output Quality that is a
range of acceptable values for that measure.

For each Measure, they will need to be equivalent class(s) in the Organization/Project Profile
Package that describe historical results for that organization/project.

13.4 Work Products Package

13.4.1 Work Product Class
The Work Products class holds all the produced physical and conceptual products. It includes
documents, decisions, diagrams, figures of merit, measures, etc. Work Products can be complex
and contain within them other work products. For example, a Requirements Document would
contain a Use Case Model, which would in turn contain, a Use Case Overview, which in turn
would contain a list of Actors. It is only necessary to identify those Work Products that require
separate Activities/Tasks or are produced by different Resources. Remember that the Work
Products may be both input and output to same Activity/Task and may have multiple states of
completion.

13.4.1.1 Relationships

13.4.1.1.1 To Activities/Tasks
• An Activity/Task often has a set of inputs that must at least meet a required level of quality before the activity

may start. It also has a set of outputs that must at least meet a required level of quality before the activity can be
considered completed. Note that an output may be (and usually is) usable by a following activity even before it
is "finished" by the originating activity. In addition, a Work Product, in different states, may be input and
output to the same activity.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 30 of 34

13.4.1.1.2 To Task Description
• For each Resource assigned to a Task, a Task Description is needed to capture how that Resource will be

applied to a particular Work Product
• Usually, a Task Description will cover only one Work Product, or may have sections for multiple work

products.
• In addition, while we normally think of a Task Description as being needed to cover how a Work Product will

be produced, it is possible that a Task Description will be needed to incorporate an input Work Product

13.4.1.2 Subclasses

Code Events/Handoffs Plan/Schedule UML Diagram

Document Decision

*Template *

*

Work Products* *

*

**

Figure B-5 Types of Work Products

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 31 of 34

14. Dynamic Model

The dynamic model for arranging the activities of a system development effort is not a workflow
model. Workflow models are primarily have activities that need to complete before the following
activities start. In modern system development, completion is not the most common criteria for
starting the next step.

Completion of an activity/task is not typically used as the criteria for several reasons:
• Some tasks are nearly impossible to prove complete. If completing test implies that there are no undetected

bugs, or if completing analysis implies that there are no missing requirements, then it impossible to prove and
nearly impossible to detect.

• The effort to "complete" a task typically follows the 90/10 rule. The last 10% needed to complete a task takes
90% of the effort. Therefore, even if completion is detectable, it may be very expensive. The value to the
project for completing the task may be less than the course of doing the task.

• Shortened time lines for project completion (e.g., time-to-market pressures), cause overlap of tasks. Follow-on
tasks using the output a of a task, can often start as soon as part of the output is complete. This is the basis for
incremental development.

Instead of a workflow model, we wish to model development as set of cooperative jobs
executing on a computer but that competing for resources.

14.1 Activity/Task as a Computer Job

Each Activity/Task (from the Activities Package) is modeled as computer job using some of the
available system resources (Resources from the Activities Package). A component Activity/Task

ProjectTeam : Resources

act5

Current & Es tim ated Resource Plans /Schedules :Work

aDocum ent
:WorkProduct

New Priorities

External Event,
Time Event,
Managerial
Event

riskEvaluator :
Resources

act4

act1 :
Activities /Tasks

resourceManager :
Resources

act2 act3

aDecis ion
:WorkProduct

Key Event
(e.g., task
finishes)

New Risk
Found

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 32 of 34

is a sub task of the computer job. Input and Output Work Products (from the Work Products
Package) are ongoing flows between jobs. The processor is really an aggregate of the available
resources.

14.2 Task Priority

The priority for each job is set based on the relative risk that the Activity/Task addresses. These
priorities are initially set before the project starts based on the Organizational/Project Profile and
their associated Goals/Risk (from the Justification Package). For example, the priority of the
testing Activity is different for shrink-wrapped software than for medical equipment software.

14.2.1 Risk Evaluator
There is a special resource whose job it is to evaluate and assign the relative priorities of the
tasks. The Risk Evaluator is typically a technical or engineering responsibility

14.3 Resource Assignment

Corresponding to the Priority is the allocation of resources. Resources are allocated in proportion
to the priority, subject to availability and other constraints.

14.3.1 Resource Assigner
There is a special resource whose job it is to assign the resources to the appropriate jobs based on
their relative priorities. The Resource Assigner job is typically a managerial responsibility. This
may be the same people who are the Risk Evaluations, but their jobs are logically distinct.

14.4 Dynamic Priority

System development needs the ability to dynamically change the priorities of these tasks. In the
simplest form, if a task is not yet able to run, the priority for a task is set to zero (and the
corresponding burn-rate for resources is set to zero). In addition, tasks that have finished also
have their priorities lowered, and their resources taken away. Under many circumstances the task
is never fully stopped, if a proper appears later in the development, an earlier task may be
reopened (priority-boosted).

More farsighted development projects need to dynamically change their priorities for other
reasons. While it is true that Tasks that address the most serious problems run at the higher
priorities, but may be starved for inputs. If there is a problem in an earlier task, it may be
necessary to assign more resources to that phases and to take such resources from downstream
tasks.

Whole tasks may need to be scheduled if during the development a new area of risk becomes
apparent. For example, performance may not be thought of as a risk area until it appears that
there is a bottleneck in processing.

• The criteria for re-evaluation are part of the methodology/process, but typically include:
• Starvation of an Activity/Task,
• Completion of an Activity/Task,
• Missing a schedule date
• Finding a new problem (risk)
• Changing resource availability
• Major design decision

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 33 of 34

15. Dynamics Sample
The following sample of the dynamics is given to illustrate that the model accurately describes
practical project management and is suitable for our purposes.

In our VSSM (Very Simple Sample Methodology) we have three Activities, Use Case, Analysis,
and Development. Each Activity has an output document and several diagrams. It has been
determined that the three Activities address the following Risks (Use Case – matching user
needs; Analysis -- good understanding of requirements; Development -- producing a timely
system). As a whole, the VSSM approach is only suitable for programs using Java for non-
critical development.

In VSSM, the Analysis activity has two sub activities, Domain Analysis and Application
Analysis. Domain Analysis and Use Case Analysis are started at the same time. Domain
Analysis exists to address the risk that the developers are unfamiliar with the domain, and
Application Analysis exists to address the risk that the developers are unfamiliar with the
application.

The VSSO (Very Simple Sample Organization) checks through the set of possible methodologies
available and chooses VSSM as most closely matching their size, temperament, and experience.
The VSSO Process Engineering Team, tailor the VSSM to increase the priority given to the Use
Case Activity -- they feel that VSSO projects require more attention to user input than the pre-
defined VSSM has. In addition, since VSSO has littler turn-over of resources, their developers
know the domain well – allowing them to de-emphasize domain analysis. They call this new
method, VSSM'.

As now defined, in VSSM' both Analysis and Development use the outputs of the Use Case
Activity. The domain analysis activity is de-emphasized and combined with application analysis.
The outputs of Analysis are used by Development.

There are not sufficient resources for each of these steps in the VSSO Organizational Profile to
be done simultaneously, but the available skills are sufficient. In addition, the time-line is very
short.

Because of the VSSM' emphasis on user input, and on the unavailability of the required inputs
for the later phases, the Project starts with the Use Case Activity. This Activity logically also has
the higher priority, as without understanding the user needs, any produced project would not be
useful.

As the Use Case Activity progresses, the risk of not-understanding the user's needs declines. And
as time wears on, the risk that the project doesn't yet understand the requirements increases. In
addition, the rate of return for the Use Case Activity declines. That is, the effort to find the n+1
use case becomes more expensive. At some point, it becomes more valuable to the project to
move resources from the Use Case Activity to the Analysis activity and increase the Analysis
activity's relative priority. The System Engineer (Risk Evaluator) tells the Project Manager
(Resource Manager) of the change to priority. The Project Manager determines the appropriate
people to free up from the Use Case Activity and moves them to the Analysis Activity.

OMG Analysis & Design Task Force, Analysis & Design Process Engineering

OMG Document ad/98-07-12 Page 34 of 34

The Analysis Activity then starts up, using some of the early outputs of the Use Case Activity.
Analysis progress, problems with the analysis may appear that are traced to missing use cases.
As each one of these occur, the System Engineer (Risk Evaluator) determines whether these
missing use cases need to be evaluated by the Use Case Activity. If they do, the Project manager
(resource Manager) determines what changes to resources and schedule are needed.

As progress slows down in the Use Case activity, and less use case are being found in later
activities, it may become useful to stop them completely and release their resources. If analysis
is sufficiently along, and the appropriate skills are available, these resources may be transferred
to the Development activity.

If later development still finds more unknown use cases, the Risk Evaluator determines the least
risky approach; a delayed delivery for the new use case, re-opening the Use Case activity, or
treating the use case where it is found.

