¢ Software Configuration Management for
the 21st Century

Anil K. Midha

The increasing complexity of both software systems and the environments in which
they are produced is pressuring projects to improve the development process using
innovative methods. The role of software configuration management (SCM) system:s,
policies, and procedures that help control and manage software development envi-
ronments is being stretched beyond the conceptual boundaries it has had for the last
decade. One of the key enablers of producing higher quality software is a better
software development process. The SCM system must instantiate a quality process,
allow tracking and monitoring of process metrics, and provide mechanisms for tailor-
ing and continual improvement of the software development process. More than a
dozen SCM systems are now available, each one having a distinct architecture and
set of core functionalities. Currently, no single system provides all the key SCM func-
tions in the best form. Thus, a project must assess its real needs and choose the right
SCM system to meet its software development challenges. This paper focuses on the
characteristics of SCM systems, the SCM challenges for Lucent Technologies, the prin-

cipal SCM systems being used within the company, and the issues of choosing and

successfully implementing the best SCM systems.

Introduction

Software has become an essential component of
wide-ranging products. From the microkernel in set-
top boxes to various layers of software in telecommu-
nications systems, software is the key differentiator for
high-technology products. Technological advances
continue to lead the way for producing increasingly
sophisticated software products, and their creation
requires an equally sophisticated development envi-
ronment. The increased sophistication of software
development environments requires projects to evalu-
ate their development process, tools, and technology.

Software configuration management (SCM) is at
the core of the software development environment.
The need to use SCM for large software systems has
been well understood for about the last 20 years.
Increased complexity of products and their develop-
ment environments not only has sharpened the need
for SCM in every software development project but

154 Bell Labs Technical Journal ¢ Winter 1997

also has expanded its scope. SCM is an important cri-
terion in several recognized standards like the ISO-
9000 series and the Software Capability Maturity
Model. A better development process—well integrated
with SCM—is a key enabler in producing higher qual-
ity software.

To meet the future challenges of software devel-
opment, a project should assess its SCM needs criti-
cally, choose an appropriate SCM system that has the
essential functionality, and support a well-defined
software development process. This paper discusses
the characteristics of SCM systems, the future SCM
challenges for Lucent Technologies, the SCM systems
now being used within the company, and the issues
surrounding successful deployment of an SCM system.

The Essence of SCM
Software development is a process within which

Copyright 1997. Lucent Technologies Inc. All rights reserved.



Panel 1. Abbreviations, Acronyms, and Terms

ECMS—Extended Change Management System

GUl—graphical user interface

LAN—Iocal area network

MRG—modification request in generic

MR—modification request

NFS—Network File System

RCS—Revision Control System

SBCS—Source and Binary Control System

SCCS—Source Code Control System

SCM—software configuration management

SQL—Structured Query Language

TCP/IP—Transmission Control Protocol/Internet
Protocol

VE—Version Editor

WAN—wide area network

specialists trained in certain disciplines (for example,
system engineering, programming, and system test-
ing) must work together effectively. In every disci-
pline, people use the appropriate processes to control
and manage their activities. For successful software
development, however, the project team must follow
a well-defined, systematic, and integrated process
that facilitates the coordination and management of
activities across all disciplines. SCM is the essential
thread that joins various software development activ-
ities in the form of a disciplined approach. Because
SCM covers a wide range of software development
activities, people in disparate roles often view it dif-
ferently. In a broad sense, we can define SCM as a set
of tools and procedures that addresses the entire soft-
ware development life cycle, identifying, managing,
and controlling software and related components as
they change over time.!

SCM provides the discipline to facilitate the con-
tinued evolution of a product. The journey of prod-
uct evolution requires controlling and managing
constant changes to internal intermediate deliver-
ables, as well as to the components that constitute
products for external use. As opportunities for
changes are identified, they must be investigated for
their short- and long-term impact on the overall
product direction in various development streams—
for example, in product releases. All product changes
must be coordinated, tracked, planned, implemented,

tested, delivered, and maintained over a product’s life
cycle. A logical change to a product may result in
several physical changes to product components.
Interdependencies of various logical and physical
changes and the propagation of certain changes from
one development stream to another add a new
dimension to the coordination of changes in various
development streams. Furthermore, actual changes
may be implemented by a team of project members
who must communicate and collaborate to imple-
ment all the desired changes successfully.

SCM helps to coordinate all these activities, pro-
viding a more effective interface with many other
development-related activities like project and test
management and requirements traceability.

SCM System Characteristics

A successful SCM system streamlines the entire
process of managing product changes, tracking ver-
sions and the configuration of components, and coor-
dinating the work of team members, as well as
building and releasing product deliverables. The sys-
tem should be sufficiently flexible to meet the vary-
ing and growing needs of projects in different
development phases. Thus, an SCM system must
provide the following key capabilities:

e Version control. The core functionality that
every SCM system must have, version control
provides the mechanism to keep track of the
history of changes to the product components
as they evolve over time throughout the soft-
ware development life cycle. It facilitates the
creation of product development streams for
maintaining different versions of the product.
Any version from a stream can be accessed.
Some systems also provide a mechanism by
which to identify and merge changes from one
development stream to another.

¢ Change management. A process of identifying,
evaluating, tracking, managing, implementing,
and reporting the requests for changes to a
product, change management defines the
overall use of the SCM system. The change
management process has two aspects: problem
tracking and change control. Problem tracking

Bell Labs Technical Journal o Winter 1997 155



is the process of recording, tracking, and
reporting problems and enhancement
requests submitted by end users of a product.
Some of these reported issues, problems, and
enhancements result in requests for product
changes. Change control activity is the
process of identifying, tracking, controlling,
and managing actual changes to product
components throughout the software devel-
opment life cycle.

Configuration control. A process of identifying,
defining, and selecting a collection of compo-
nents of a product, configuration control
allows the use of a criterion for specitying a
version of a set of product components.

Build management. A process of efficiently
building the whole or a subset of a version of a
product from the selected configuration of
product components, build management facili-
tates recordkeeping of a built version, the build
environment, and the versions of the selected
components in a configuration. Build support
is essential in various software development
life-cycle phases like unit, integration, and sys-
tem testing.

Process management. Known as the culmination
of all the process support that enables a project
to carry out the software development life-
cycle activities in a repeatable, streamlined,
and (as much as possible) automated fashion,
process management has a very wide scope in
SCM. It encompasses the process and gates of
both the change control and test/verification
activities, generation of product- and process-
related quality metrics, as well as subdivision
and scheduling of development activities.

ware development community can embrace
the system’s functionality as part of doing their
work. Next in significance are the following
four aspects: an interface with which users are
comfortable or one that they enjoy using (for
example, a graphical user interface [GUI] or a
command-line interface); the platform on
which users normally complete their develop-
ment activities (for example, a UNIX* environ-
ment on a workstation or a version of
Microsoft* Windows* on a PC); the integration
of SCM functionality with the other software
development environment tools (for example,
FrameMaker* and MS* Word for document
preparation); and the simplicity with which
users can identify, select, and extract informa-
tion for performing their normal development
tasks more efficiently.

Ease of administration. An SCM system is unlike
many other development tools in that the
administrative activities do not end after instal-
lation. In fact, installation is just the first step
among many to use an SCM system effectively
in an organization. Generally, systems require
some customization and fine tuning on a regu-
lar basis, and administrators must define, set,
and monitor project policies and procedures
governed by the SCM system. Administrators
must also audit data repositories and take
timely corrective actions for smooth function-
ing of the system. The amount of resources
(machine and human) for the proper and reg-
ular administration of different systems can
vary significantly.

Support for distributed development. SCM support
for distributed development has increasingly
become an essential attribute. Different ven-

Other Desirable Characteristics
The SCM system also should provide the follow-

dors support different flavors of distributed
development. For some organizations, the
ing capabilities: ability to use an SCM system over a local area

o Ease of use. As with any other system, ease of network (LAN) is sufficient. Other organiza-

use, which has many dimensions, is particu-
larly important for an SCM system. Of course,
the most significant aspect is the simplicity and
effortlessness with which members of the soft-

156 Bell Labs Technical Journal o Winter 1997

tions stress the importance of the system’s
ability to accommodate development teams at
remote locations in using a single centralized
system over a wide area network (WAN) for



common development efforts. Still others
need distributed databases at each develop-
ment site at which local development can take
place and be synchronized periodically with
different remote sites.

¢ Integration of SCM functionality. In some SCM
systems, part of the functionality is not pro-
vided by the system. Rather, it is supplemented
by other associated tools. For effective imple-
mentation of SCM methodology, most of the
critical functionalities of the SCM system must
be well integrated with each other.

SCM Challenges in Lucent Technologies

Typically, Lucent’s ongoing software development
projects are fairly large, ranging from tens to hundreds
of team members working on various components of a
product to be integrated. As the company grows, its
development activities are becoming geographically
dispersed. The requirements to support multiple fla-
vors of products working on a diverse set of heteroge-
neous platforms for various national and international
customers are constantly increasing. In addition, the
competitive pressures to produce higher quality prod-
ucts in shorter timeframes continue. These market
trends and technological advances, including Internet-
based software development, pose some interesting
challenges in the SCM area.

Distributed Development

As mentioned above, Lucent project teams are
now often dispersed across several geographic loca-
tions. For all the team members to perform software
development activities effectively, they must all share
the same SCM system and follow consistent SCM
practices. The chosen SCM system must provide vari-
ous types of distributed development facilities to meet
the requirements of different team configurations.
Currently, many projects use a LAN or WAN to access
a central SCM repository. The future challenge will be
to distribute the SCM repository to the various project
sites. Team members at each development site primar-
ily would use a local SCM repository for most of their
work. In doing so, the various sites would need to be
kept synchronized, and the different software compo-
nents from each location would be integrated at one of

the sites. In such an environment, the SCM system
challenge will be to provide facilities for the integra-
tion, building, maintenance, tracking, and delivery of
the combined product with the same ease and consis-
tent process as provided for the individual components
at each site.

Parallel and Concurrent Development

Parallel streams of software products will be devel-
oped, maintained, and coordinated to satisfy short-
and long-term market needs for a diverse set of cus-
tomers. From the SCM standpoint, the system must
provide the facilities to create multiple streams easily.
Developers should be able to implement the product
features into a stream, and the SCM system should
help migrate the software changes for specific features
to the other development streams automatically and
transparently. Furthermore, the developers should be
able to resolve code conflicts painlessly.

To hasten the development process, more than
one developer must sometimes work on the same file
at the same time rather than waiting for one developer
to finish before another can begin. For this reason, the
SCM system should allow multiple concurrent unre-
served checkouts of a file by different developers for
the same development stream. When a developer
attempts to check in a file after the first one, the sys-
tem should force the merging of any new changes
with those previously checked in.

Currently, most projects perform single-thread
development—that is, changes are made serially
and no merge technology is used. Parallel and con-
current development practices force projects toward
more multi-thread development using merge tech-
nology, which for some developers is a cultural
change. Managing any such change is usually a
challenge in itself.

Multi-Platform Support

Increasingly, software development activities are
performed on a heterogeneous set of platforms. More
and more, products must have an open architecture
and must be supported on several different platforms.
Often, the target platform for the product is different
from the development platform. From the SCM stand-
point, this difference requires either that the SCM sys-
tem work natively on all the development platforms of

Bell Labs Technical Journal o Winter 1997 157



a project or at least that its major functionality be
available as a client on various development platforms.
For effective software development, it is essential that
the team members on all the development platforms
use the same SCM system and uniform SCM policies.

Integrated Build Management

Building target products from software files is a
primary software development activity. In this area,
the challenge for an SCM system not only is to provide
an efficient build mechanism on every target platform
but also to monitor each target product, the environ-
ment in which it was built, and the versions of all its
constituent software files. If the build management of
the SCM system is integrated with both the version
control and configuration management functions, all
the tracking and manufacturing of the software can be
done more efficiently.

Component-Based Development

Reuse at every level is becoming a business neces-
sity to produce high-quality products within increas-
ingly shorter intervals. More and more projects are
trying to use industry-standard components, domain-
specific reusable software components, or reusable
software platforms to build new products more
quickly. Each of these strategies requires SCM support
from a different angle. The SCM system should pro-
vide adequate facilities to search, access, and version
control all kinds of reusable assets. It should also pro-
vide impact analysis of sharing and/or changing a
component in the other configurations in which the
component has been used.

Internet-Based Development

Ever-increasing interest in the Internet and
Internet-based software development has posed new
challenges in the SCM area. First, customers now
expect to be connected with vendors via the Internet.
They desire the ability to enter product defects and to
check the status of fixes. Further, they want product
fixes and in some cases even products themselves to be
available for downloading through the Internet. This
feature requires that the SCM system have Internet
hooks in its defect tracking, support, and software
delivery and deployment subsystems. Second, it seems
that some products will be developed with Internet

158 Bell Labs Technical Journal o Winter 1997

technology like Java* and ActiveX*. In due course,
developers would want the SCM systems to provide a
well-integrated development environment for leverag-
ing these new technologies.

These challenges of the software development
environment are extending the boundaries of tradi-
tional SCM.

SCM Systems in Lucent Technologies

In the past, a few organizations could manage
with ad hoc SCM systems developed in house and typ-
ically consisting of some scripts that manipulated an
underlying version control tool, such as the Source
Code Control System (SCCS) or the Revision Control
System (RCS). Although such ad hoc systems achieved
a modest degree of SCM support with a moderate
investment in tool development and maintenance,
they rapidly became a resource drain for the organiza-
tion whenever more substantial SCM support was
needed. These systems provided only basic version
control and rudimentary configuration management
capabilities. As project size, complexity, and the geo-
graphic spread grew, the need for a more comprehen-
sive set of SCM functionalities increased as well. Thus,
most software development organizations began
switching to standard, integrated, and well-supported
SCM systems.

Today, the most widely used SCM system within
Lucent is the combination of the SABLIME® and
nmake systems. Both of these noncommercial systems,
which were designed and developed by Lucent, are
being enhanced and supported by the company’s
Software Technology Center. For the past ten years,
thousands of software professionals at Lucent and else-
where have been using these products on a wide vari-
ety of projects.

Another SCM system that predates the SABLIME
system—the Extended Change Management System
(ECMS)—is used in a few very large key projects.
ECMS was designed and developed by these projects
at Lucent for their specific needs, and the company’s
Platforms and Solutions Software Development
Environment supports it.

The next two subsections provide an overview of
the functionality and process supported by these



Miscellaneous
commands

External MR
communication
subsystem

MR management
subsystem

Source
management
subsystem

MR - Modification request
SBCS - Source and Binary Control System
SCCS - Source Code Control System

Administration
subsystem

Information
retrieval SABLIME®
subsystem databases

Figure 1.
Overview of the SABLIME system’s architecture.

SCM systems, including their relative strengths and
weaknesses.

Some projects in Lucent are beginning to use
commercial SCM systems. They include the ClearCase
CM* system and other related products from Pure
Atria, Inc., as well as the Aide-de-Camp/Pro* system
from True Software, Inc. These and few other leading
SCM systems, like Continuus* from the Continuus
Corporation, provide a wide range of SCM functional-
ity. Readers should examine the product information
provided by the respective vendors and some indepen-
dent sources?34 for the relative strengths and weak-
nesses of these systems.

SABLIME/nmake Systems

Actually two independent products, the SABLIME
and nmake systems complement each other to provide
end-to-end configuration management. The SABLIME
system (see Figure 1) provides tightly integrated
change management, version control, and configura-
tion management capabilities. The nmake system pro-
vides state-of-the-art product build management.

One of the major strengths of the SABLIME sys-
tem is that it supports an out-of-the-box process
model, which is structured around the change-control
life cycle (see Figure 2). In the SABLIME system,
change requests are tracked both at the product level
(modification requests [MRs]) and at each stream of
product development (modification requests in generic
[MRGs]). Each stream of development corresponds to
a planned release of the product, thus supporting con-
current release development.

The change-request life cycle at both levels has
enough variability to review requests by one or more
project reviewers. It also can take any of the appro-
priate paths—for example, terminating the request at
an early stage, deferring the request for later action,
assigning it for a formal study, and/or accepting it for
further action for one or more development streams
(generally referred to as generics). Each change
request is assigned to one or more project members
with an appropriate priority and due date. If a change
request is large or spans several areas of responsibil-
ity, it can be subdivided into smaller (child) requests

Bell Labs Technical Journal o Winter 1997 159



study |
g

active

study
:’_understudy _________________
_ i if test states defined '

|
reject

testpass approve

4

q . A
assign submit
assigned :Isubmitted lmq approved

|

|

o
defer | !
I |

I | |

|

|

|

reject
(source commands)

propose | propose
defer
|
activate | activate
MRG
/ states| 1
create | accept |
created lpl accepted
—>|_ ™ P
fcreate |
| spawnmr
: nochange
kilmr = - = — — — — — —

MR - Modification request

MRG - Modification request in generic

> killed

Italics - MR or MRG state
Bold - Command name

Figure 2.

SABLIME system support for an out-of-the-box process model structured around the change-control life cycle.

and independently assigned, tracked, and managed
in different generics.

Using the authorized change request in a generic,
the assigned person changes the necessary product
components for the generic and completes the work
for the change request. Each change request may have
to pass various levels of independent tests performed
by designated test teams before it can be considered
approved for the general release. If a change request
fails certain tests, it is rejected back to the project
member who originally worked on it for additional
work. When a change request is marked approved for
all the generics in which it was accepted for work, it
can be closed.

The SABLIME system recognizes four different
classes of change requests: software, document,
firmware, and hardware. It allows customizing the
number of test levels, as well as the formation of test
teams for each change request class on a per-generic
basis depending on project size, rigor, and the desired
process. As a change request passes through its various
life-cycle stages, the designated project members are
notified of the event via e-mail for their subsequent
action. This intra-project communication promotes an
effective project management process of clearer
responsibility, as well as prompt and timely actions. At
every stage, the SABLIME system keeps track of who,
when, why, and what action was taken, as well as
which product components were affected. For each

160 Bell Labs Technical Journal o Winter 1997

change request, the system requires project members
to document detailed information about its descrip-
tion, the solution proposed as a result of the study, the
way it is resolved, the rejection notes if it did not pass
any tests, and its history.

The SABLIME system generates data to track the
quality of the product being developed under it, as
well as helping projects track, measure, and improve
the quality of their software development process.
On a per-change-request basis, the system enables
projects to collect and analyze the data to facilitate
assessing process quality metrics. For example, a pro-
ject can collect the data for a release on the develop-
ment phase in which the faults have been introduced,
are being detected, and should have been detected. At the
end of the release cycle, the analysis of these data can
help discover the gaps between phase introduced and
phase detected, as well as between phase detected and
phase should have been detected. Significant gaps suggest
that the project team should improve its process to
detect and correct the faults in a development phase
soon after the one in which they were introduced.
Similarly, various other metrics related to fault type,
fault detection, fault prevention, root-cause analysis,
and staff effort can help projects identify the lapses in
their process. Thus, the necessary actions can be
taken to improve the development process and the
product’s quality.

The SABLIME system provides tightly integrated



version, configuration, and change management. All
changes to a product require that the authorized per-
son possess an assigned change request for the desired
generic. The SABLIME system tracks all the compo-
nent changes associated with a change request. It pro-
vides two version control branches for each generic:
the development branch in which the assigned person
makes the changes, and the official branch containing
the cumulative result of all the approved changes.

Checking out a component file for changes
retrieves its latest version from the development
branch and checking in adds the new version at the
end of the development branch. The SABLIME system
does not allow simultaneous checkout of a file in a
generic by two different individuals, thus simplifying
the process at the cost of single threading. It allows
declaring a component file common across multiple
generics as long as the development branches for each
generic are identical.

For common files, as long as the change request is
authorized for all the common generics, the SABLIME
system automatically propagates all the changes com-
pleted in any of the common generics. Currently, for
uncommon files, the developer must make the corre-
sponding changes manually for each generic. A future
version of the SABLIME system will allow the auto-
matic propagation of changes for uncommon files.
Apart from common files, developers can work in dif-
ferent generics without ever interfering with each
other. For each generic, the system allows automatic
detection and creation of dependencies between
change requests for logically and physically dependent
changes in the files.

The SABLIME system provides a choice of main-
taining version history under either the SCCS or the
Source and Binary Control System (SBCS) version
control tools on a per-file basis. SCCS allows versions
of only ASCII files, and it has some line-length and
special character limitations. SBCS allows versioning of
ASCII and non-ASCII files, has no line length or spe-
cial character limitations, and provides data com-
paction for both the initial version and subsequent
changes. SABLIME keeps all the version-controlled
files in a central repository.

The distinctive characteristic of the SABLIME sys-

tem’s configuration management feature is the ability
to define and extract a complete or partial configura-
tion of a product’s files based on a group of change
requests. Such a group can be named and stored in
SABLIME and used later for retrieving the correspond-
ing configuration. While retrieving a desired version,
SABLIME ensures that the dependent change requests
are automatically included in the group. The extracted
product configuration can be built using the standard
make facility or the nmake tool.

The SABLIME system supports a distributed
development environment networked over the
Network File System (NFS), Transmission Control
Protocol/Internet Protocol (TCP/IP), or the Datakit®
virtual circuit switch. The repository for the managed
product resides on a centralized server that can be
accessed by all users simultaneously over the LAN or
WAN. Centralized databases provide ease of adminis-
tration and data auditing. SABLIME’s data repository
is a simple, efficient flat ASCII file-based relational
database. It provides an extensive set of standard
detailed, summary, and user-customized reports, as
well as raw data that can be post-processed using other
report generators. In addition, pie charts, bar graphs,
and tabular reports can be obtained. Data can be
extracted using powerful Structured Query Language
(SQL) queries.

The SABLIME system offers X Window System*-
and Microsoft Windows-based GUIs, a cursor-based
form interface, and the standard command-line user
interface. Each user interface provides extensive data
validation, on-line help messages, project-specific
menus, and defaults. In addition, screens can be cus-
tomized for labels, field names, and for their optional
or mandatory use. Projects can customize their
SABLIME usage by collecting additional project-
specific attributes for the change request at both the
product and generic levels. SABLIME has a unique
feature that allows cooperating projects (either in the
same or different location) to exchange information
about change requests and their status.

The nmake system has many features that clearly
make it one of the most sophisticated build engines in
the UNIX environment. It provides for an efficient
build environment supporting parallel build tasks on a

Bell Labs Technical Journal o Winter 1997 161



Developer’s node

developer

Order of directory search
for viewpathing

Test node

Official node

Figure 3.

Viewpathing, which enables project members to share code while maintaining private development areas.

single host, as well as the ability to distribute build
tasks to a network of build hosts. In addition, it is effi-
cient in processing makefiles because it works on a
precompiled version of the makefiles and preserves
the status of every build.

One of the most powerful features of nmake is
viewpathing, which enables project members to share
code while maintaining private development areas.
This helps to maintain project isolation and sharing at
the desired level while maximizing the use of disk
space. Viewpathing also provides an efficient work-
space management feature that allows users to build
against a common source baseline, override selected
tiles with local versions as desired, and reuse common
source and object files without copying them. If the
viewpath is set as shown in Figure 3, nmake first
checks the developer’s node, then the test node, and
finally the official node for required files.

The nmake system uses an extensive rule-based
language that allows projects to define custom asser-
tion rules and provides dynamic determination of
implicit prerequisite dependencies. This facilitates the
creation of concise, consistent, and flexible makefiles.
The nmake system’s support for almost any source lan-
guage (for example, C, C++, M4, and FORTRAN)
makes it a versatile build tool for a wide range of appli-
cation domains.

162 Bell Labs Technical Journal o Winter 1997

Extended Change Management System (ECMS)

Another SCM system, ECMS (which was men-
tioned earlier) is being used by some key, very large
software development projects in Lucent. The change
management process supported by ECMS is similar to
that of the SABLIME system.

The distinguishing characteristic of ECMS is its
featuring concept for version control. Essentially, the
featuring concept allows developers to apply individ-
ual changes in a release (characterized as a set of fea-
tures) and have them flow to other designated releases
without having to go through a formal merge process
and manually review all the file differences irrelevant
to the change. The implementation of featuring is sim-
ilar to the #ifde f construct in C language. Blocks of
text in source files can be made conditional on a par-
ticular feature by surrounding the text with
#featur e and #endfeatur
using this construction are called featured files. When

e constructs. The files

one of these files is checked out for edit, all its condi-
tional text and controlling conditions are present. A
specially enhanced editor called Version Editor (VE) is
sometimes used by developers to help screen and
manage the complexity of many levels (sometimes
nested) of the #featur

When a featured file is retrieved for building or

€ constructs.

testing, ECMS evaluates the conditions according to a



specified feature set, and it puts the resulting unfea-
tured text in an extracted copy of the file. Thus, a user
making a change to a featured file must check in the
file before testing it.

By means of featuring, ECMS provides a form of
parallel development. Different generics can be
defined to use different feature sets. Therefore, ECMS
can provide direct support for files that must be similar
but not completely identical across a set of generics.
The file is made common across the generics, and the
differences between the generics are confined to
appropriate feature blocks. ECMS also economizes on
space by having just one working branch shared by
the common generics.

Criteria for Choosing an SCM System

Besides the SABLIME/nmake systems and ECMS,
projects can choose a commercial SCM system. Both
the internal Lucent SCM systems mentioned above
and leading commercial systems have enough capabil-
ities and are sufficiently scaleable to work reasonably
well in many projects. None of them, however, can be
considered a perfect system that provides all critical
SCM functions in the best form. Therefore, a project
must assess its real SCM needs within its budget—that
is, which SCM functionality is most important and
which system best meets its requirements while mini-
mizing custom development.

A streamlined and well-understood software
development process is crucial to any software pro-
ject. The SCM system chosen for a project is the heart of
the software development environment. Thus, the system
must instantiate the desired software development process.
A well-designed and integrated process manage-
ment function ensures a better quality software
product and improves project productivity by
enhancing coordination of individual contributions
into a harmonious whole.

The cost of providing an SCM solution has sev-
eral components and varies significantly. In addition
to the license price for the bundled and unbundled
SCM functions, two other cost factors must be care-
fully considered:

e The hardware resources necessary to achieve

acceptable performance, and

e The human resources needed to administer
and maintain the SCM system.
Furthermore, the cost of producing and maintaining
custom developed software in addition to an out-of-
the-box system can be significant depending on the
ease of use and flexibility of the SCM system.

The SABLIME system provides an out-of-the-box
process that is flexible, customizable, and tightly inte-
grated with an adequate configuration management
functionality. SABLIME’s concepts embodied in its
process are simple and easy to understand, and they
have a shorter learning curve than comparable prod-
ucts. At this time, SABLIME is an order of magnitude
less expensive to license than any other SCM system
available. It needs no additional hardware for accept-
able performance and requires only minimal adminis-
tration. However, the system does not support
distributed development through which databases
could be split at geographically dispersed sites with
changes synchronized at specified times. In addition, it
does not currently provide parallel development capa-
bilities for merging or migrating changes between
generics. This capability, however, is planned for a
future version. Although nmake complements
SABLIME for build management, the two systems are
not tightly integrated.

The change management system of ECMS is not
as comprehensive or flexible as that of SABLIME. For
example, it neither supports the child change request
concept nor allows a flexible number of test states.
Even though the featuring concept of ECMS is very
powerful in supporting change migration across mul-
tiple development streams, it clutters the source code
tiles with #feature
make the source code files increasingly difficult to

constructs. These constructs

understand and maintain, particularly because the
project must support many different releases. ECMS
is built on top of SCCS. Thus, it supports only ASCII
tiles. The ECMS system only supports a command-
line user interface. Like SABLIME, ECMS does not
have an integrated build management system, so
nmake or any other build engine can be used for
building the products.

As the importance of the use of SCM receives
increasing recognition, the landscape of available SCM

Bell Labs Technical Journal o Winter 1997 163



systems is changing rapidly. Projects must relearn
what to expect from an SCM system as the functional-
ities offered continue to evolve and new products
enable new approaches to the existing complex issues
of rapid software development. Staying abreast of
SCM systems requires considerable ongoing effort.
Experimenting to locate and implement a good SCM
system is time consuming and costly. Furthermore,
difficult-to-achieve consensus and the cooperation of a
large team of software developers are required.
Settling for a poor system or none at all can be much
more costly although the costs may be less obvious.

Conclusion

As software systems are becoming more and more
complicated, the development environments needed
to build these systems are becoming equally complex.
SCM has become the central pillar that supports vari-
ous facets of software development, particularly the
software development process. SCM in its traditional
role primarily provided version and configuration con-
trol. To meet the software challenges of the next cen-
tury, SCM systems extend further into the areas of
change, process, workspace, build, and release man-
agement while supporting a quality process. At pre-
sent, no particular SCM system provides all these
capabilities in the best form at a reasonable price.
Projects should examine their key needs critically and
choose an SCM system that not only supports but
instantiates the desired software development process.
A good SCM system is a key to developing high-
quality software products.

*Trademarks

Aide-de-Camp/Pro is a registered trademark of True
Software, Inc.

ClearCase CM is a registered trademark of Pure Atria,
Inc.

Continuus is a registered trademark of Continuus
Corp.

FrameMaker is a registered trademark of Frame
Technology Corp.

Java is a trademark of Sun Microsystems.

Microsoft and MS are registered trademarks and
ActiveX and Windows are trademarks of Microsoft

Corp.

164 Bell Labs Technical Journal o Winter 1997

UNIX is a registered trademark of Novell.
X Window System is a registered trademark of the
Massachusetts Institute of Technology.

Acknowledgments

The author wishes to thank Mark Heimerdinger
and John Snively, who provided valuable assistance in
the development and review of this paper.

References

1. W.Rigg, C. Burrows, and P. Ingram, Ovum
Evaluates: Configuration Management Tools, Ovum,
London, 1995.

2. S. A. Dart, “Not All Tools Are Created Equal,”
Application Development Trends, Vol. 3, No. 10,
Oct. 1996, pp. 39-50.

3. T. Parker, “Software Configuration Management
Tools,” UNIX Review, Vol. 13, No.11, Oct. 1995,
pp. 91-96.

4. R.D. Cronk, “Tributaries And Deltas,” Byte,
Jan. 1992, pp. 177-186.

Further Reading

— S. Cichinski and G. S. Fowler, “Product
Administration Through SABLE and nmake,”
AT&T Technical Journal, Vol. 67, No. 4,
July/Aug. 1988, pp. 59-70.

— S. A. Dart, The Past, Present, and Future of
Configuration Management, Software Engineering
Institute Technical Report CMU/SEI-92-TR-8,
ESC-TR-92-8, July 1992.

— D.B. Leblang, “The CM Challenge:
Configuration Management that Works,”
Configuration Management, edited by W. F. Tichy,
John Wiley, New York, 1994,

— M. Cagan and D. Wiborg-Weber, “Task-Based
Configuration Management: A New Generation of
Configuration Management,” American
Programmer, Vol. 9, No. 10, Oct. 1996, pp. 21-28.

— G. Horton, “Building a Software Development
Infrastructure,” American Programmer, Vol. 9,
No. 10, Oct. 1996, pp. 8-11.

— L Sommerville, Sixth International Workshop
on Software Configuration Management,
Association of Computing Machinery, Special
Interest Group on Software Engineering
(ACM SIGSOFT) — Software Engineering Notes,
Vol. 21, No. 4, July 1996, pp. 54-57.

— G. S. Fowler, J. E. Humelsine, and C. H. Olson,
“Tools and Techniques for Building and Testing
Software Systems,” AT&T Technical Journal,

Vol. 71, No. 6, Nov./Dec. 1992, pp. 46-61.

— T.R.Hsueh, T. F. Houghton, J. F. Maranzano,
and G. P. Pasternack, “Software Production:
From Art/Craft to Engineering,” AT&T Technical



Journal, Vol. 73, No. 1, Jan./Feb. 1994,
pp. 59-67.

— D. G. Belanger, E. E. Sumner, Jr., and
P. J. Weinberger, “Research in Software,”
AT&T Technical Journal, Vol. 71, No. 6,
Nov./Dec. 1992, pp. 62-71.

— D. G. Belanger, G. D. Bergland, and M. Wish,
“Some Research Directions for Large-Scale
Software Development,” AT&T Technical Journal,
Vol. 67, No. 4, July/Aug. 1988, pp. 77-92.

— C. L. Pettijohn, “Achieving Quality in the
Development Process,” AT&T Technical Journal,
Vol. 65, No. 2, Mar./Apr. 1986, pp. 85-93.

(Manuscript approved March 1997)

ANIL K. MIDHA, formerly a distinguished member of
technical staff in Bell Labs’ Software
Ir__ i.l Technology Center, was the lead architect for
e the SABLIME configuration management sys-
& tem in the Software Practices and Technology
Department when this paper was developed.
He was responsible for the SABLIME system’s architec-
ture, design, and development, as well as for the training
and consulting services on software configuration man-
agement tools and processes. Mr. Midha holds a B.E.
degree in electronics and communication from the
University of Roorkee in India, and an M.Tech. degree
from the Indian Institute of Technology in New Delhi. [

Bell Labs Technical Journal o Winter 1997

165



	Introduction
	The Essence of SCM
	SCM System Characteristics
	Other Desirable Characteristics
	SCM Challenges in Lucent Technologies
	Distributed Development
	Parallel and Concurrent Development
	Multi-Platform Support
	Integrated Build Management
	Component-Based Development
	Internet-Based Development

	SCM Systems in Lucent Technologies
	SABLIME/nmakeSystems
	Extended Change Management System (ECMS)

	Criteria for Choosing an SCM System
	Conclusion
	References
	Further Reading


