
154 Bell Labs Technical Journal ◆ Winter 1997 Copyright 1997. Lucent Technologies Inc. All rights reserved.

Introduction
Software has become an essential component of

wide-ranging products. From the microkernel in set-

top boxes to various layers of software in telecommu-

nications systems, software is the key differentiator for

high-technology products. Technological advances

continue to lead the way for producing increasingly

sophisticated software products, and their creation

requires an equally sophisticated development envi-

ronment. The increased sophistication of software

development environments requires projects to evalu-

ate their development process, tools, and technology.

Software configuration management (SCM) is at

the core of the software development environment.

The need to use SCM for large software systems has

been well understood for about the last 20 years.

Increased complexity of products and their develop-

ment environments not only has sharpened the need

for SCM in every software development project but

also has expanded its scope. SCM is an important cri-

terion in several recognized standards like the ISO-

9000 series and the Software Capability Maturity

Model. A better development process—well integrated

with SCM—is a key enabler in producing higher qual-

ity software.

To meet the future challenges of software devel-

opment, a project should assess its SCM needs criti-

cally, choose an appropriate SCM system that has the

essential functionality, and support a well-defined

software development process. This paper discusses

the characteristics of SCM systems, the future SCM

challenges for Lucent Technologies, the SCM systems

now being used within the company, and the issues

surrounding successful deployment of an SCM system.

The Essence of SCM
Software development is a process within which

♦ Software Configuration Management for
the 21st Century
Anil K. Midha

The increasing complexity of both software systems and the environments in which
they are produced is pressuring projects to improve the development process using
innovative methods. The role of software configuration management (SCM) systems,
policies, and procedures that help control and manage software development envi-
ronments is being stretched beyond the conceptual boundaries it has had for the last
decade. One of the key enablers of producing higher quality software is a better
software development process. The SCM system must instantiate a quality process,
allow tracking and monitoring of process metrics, and provide mechanisms for tailor-
ing and continual improvement of the software development process. More than a
dozen SCM systems are now available, each one having a distinct architecture and
set of core functionalities. Currently, no single system provides all the key SCM func-
tions in the best form. Thus, a project must assess its real needs and choose the right
SCM system to meet its software development challenges. This paper focuses on the
characteristics of SCM systems, the SCM challenges for Lucent Technologies, the prin-
cipal SCM systems being used within the company, and the issues of choosing and
successfully implementing the best SCM systems.



Bell Labs Technical Journal ◆ Winter 1997 155

specialists trained in certain disciplines (for example,

system engineering, programming, and system test-

ing) must work together effectively. In every disci-

pline, people use the appropriate processes to control

and manage their activities. For successful software

development, however, the project team must follow

a well-defined, systematic, and integrated process

that facilitates the coordination and management of

activities across all disciplines. SCM is the essential

thread that joins various software development activ-

ities in the form of a disciplined approach. Because

SCM covers a wide range of software development

activities, people in disparate roles often view it dif-

ferently. In a broad sense, we can define SCM as a set

of tools and procedures that addresses the entire soft-

ware development life cycle, identifying, managing,

and controlling software and related components as

they change over time.1

SCM provides the discipline to facilitate the con-

tinued evolution of a product. The journey of prod-

uct evolution requires controlling and managing

constant changes to internal intermediate deliver-

ables, as well as to the components that constitute

products for external use. As opportunities for

changes are identified, they must be investigated for

their short- and long-term impact on the overall

product direction in various development streams—

for example, in product releases. All product changes

must be coordinated, tracked, planned, implemented,

tested, delivered, and maintained over a product’s life

cycle. A logical change to a product may result in

several physical changes to product components.

Interdependencies of various logical and physical

changes and the propagation of certain changes from

one development stream to another add a new

dimension to the coordination of changes in various

development streams. Furthermore, actual changes

may be implemented by a team of project members

who must communicate and collaborate to imple-

ment all the desired changes successfully.

SCM helps to coordinate all these activities, pro-

viding a more effective interface with many other

development-related activities like project and test

management and requirements traceability.

SCM System Characteristics
A successful SCM system streamlines the entire

process of managing product changes, tracking ver-

sions and the configuration of components, and coor-

dinating the work of team members, as well as

building and releasing product deliverables. The sys-

tem should be sufficiently flexible to meet the vary-

ing and growing needs of projects in different

development phases. Thus, an SCM system must

provide the following key capabilities:

• Version control. The core functionality that

every SCM system must have, version control

provides the mechanism to keep track of the

history of changes to the product components

as they evolve over time throughout the soft-

ware development life cycle. It facilitates the

creation of product development streams for

maintaining different versions of the product.

Any version from a stream can be accessed.

Some systems also provide a mechanism by

which to identify and merge changes from one

development stream to another.

• Change management. A process of identifying,

evaluating, tracking, managing, implementing,

and reporting the requests for changes to a

product, change management defines the

overall use of the SCM system. The change

management process has two aspects: problem

tracking and change control. Problem tracking

Panel 1. Abbreviations, Acronyms, and Terms

ECMS—Extended Change Management System
GUI—graphical user interface
LAN—local area network
MRG—modification request in generic
MR—modification request
NFS—Network File System
RCS—Revision Control System
SBCS—Source and Binary Control System
SCCS—Source Code Control System
SCM—software configuration management
SQL—Structured Query Language
TCP/IP—Transmission Control Protocol/Internet

Protocol
VE—Version Editor
WAN—wide area network



156 Bell Labs Technical Journal ◆ Winter 1997

is the process of recording, tracking, and

reporting problems and enhancement

requests submitted by end users of a product.

Some of these reported issues, problems, and

enhancements result in requests for product

changes. Change control activity is the

process of identifying, tracking, controlling,

and managing actual changes to product

components throughout the software devel-

opment life cycle.

• Configuration control. A process of identifying,

defining, and selecting a collection of compo-

nents of a product, configuration control

allows the use of a criterion for specifying a

version of a set of product components.

• Build management. A process of efficiently

building the whole or a subset of a version of a

product from the selected configuration of

product components, build management facili-

tates recordkeeping of a built version, the build

environment, and the versions of the selected

components in a configuration. Build support

is essential in various software development

life-cycle phases like unit, integration, and sys-

tem testing.

• Process management. Known as the culmination

of all the process support that enables a project

to carry out the software development life-

cycle activities in a repeatable, streamlined,

and (as much as possible) automated fashion,

process management has a very wide scope in

SCM. It encompasses the process and gates of

both the change control and test/verification

activities, generation of product- and process-

related quality metrics, as well as subdivision

and scheduling of development activities.

Other Desirable Characteristics
The SCM system also should provide the follow-

ing capabilities:

• Ease of use. As with any other system, ease of

use, which has many dimensions, is particu-

larly important for an SCM system. Of course,

the most significant aspect is the simplicity and

effortlessness with which members of the soft-

ware development community can embrace

the system’s functionality as part of doing their

work. Next in significance are the following

four aspects: an interface with which users are

comfortable or one that they enjoy using (for

example, a graphical user interface [GUI] or a

command-line interface); the platform on

which users normally complete their develop-

ment activities (for example, a UNIX* environ-

ment on a workstation or a version of

Microsoft* Windows* on a PC); the integration

of SCM functionality with the other software

development environment tools (for example,

FrameMaker* and MS* Word for document

preparation); and the simplicity with which

users can identify, select, and extract informa-

tion for performing their normal development

tasks more efficiently.

• Ease of administration. An SCM system is unlike

many other development tools in that the

administrative activities do not end after instal-

lation. In fact, installation is just the first step

among many to use an SCM system effectively

in an organization. Generally, systems require

some customization and fine tuning on a regu-

lar basis, and administrators must define, set,

and monitor project policies and procedures

governed by the SCM system. Administrators

must also audit data repositories and take

timely corrective actions for smooth function-

ing of the system. The amount of resources

(machine and human) for the proper and reg-

ular administration of different systems can

vary significantly.

• Support for distributed development. SCM support

for distributed development has increasingly

become an essential attribute. Different ven-

dors support different flavors of distributed

development. For some organizations, the

ability to use an SCM system over a local area

network (LAN) is sufficient. Other organiza-

tions stress the importance of the system’s

ability to accommodate development teams at

remote locations in using a single centralized

system over a wide area network (WAN) for



Bell Labs Technical Journal ◆ Winter 1997 157

common development efforts. Still others

need distributed databases at each develop-

ment site at which local development can take

place and be synchronized periodically with

different remote sites.

• Integration of SCM functionality. In some SCM

systems, part of the functionality is not pro-

vided by the system. Rather, it is supplemented

by other associated tools. For effective imple-

mentation of SCM methodology, most of the

critical functionalities of the SCM system must

be well integrated with each other.

SCM Challenges in Lucent Technologies
Typically, Lucent’s ongoing software development

projects are fairly large, ranging from tens to hundreds

of team members working on various components of a

product to be integrated. As the company grows, its

development activities are becoming geographically

dispersed. The requirements to support multiple fla-

vors of products working on a diverse set of heteroge-

neous platforms for various national and international

customers are constantly increasing. In addition, the

competitive pressures to produce higher quality prod-

ucts in shorter timeframes continue. These market

trends and technological advances, including Internet-

based software development, pose some interesting

challenges in the SCM area.

Distributed Development
As mentioned above, Lucent project teams are

now often dispersed across several geographic loca-

tions. For all the team members to perform software

development activities effectively, they must all share

the same SCM system and follow consistent SCM

practices. The chosen SCM system must provide vari-

ous types of distributed development facilities to meet

the requirements of different team configurations.

Currently, many projects use a LAN or WAN to access

a central SCM repository. The future challenge will be

to distribute the SCM repository to the various project

sites. Team members at each development site primar-

ily would use a local SCM repository for most of their

work. In doing so, the various sites would need to be

kept synchronized, and the different software compo-

nents from each location would be integrated at one of

the sites. In such an environment, the SCM system

challenge will be to provide facilities for the integra-

tion, building, maintenance, tracking, and delivery of

the combined product with the same ease and consis-

tent process as provided for the individual components

at each site.

Parallel and Concurrent Development
Parallel streams of software products will be devel-

oped, maintained, and coordinated to satisfy short-

and long-term market needs for a diverse set of cus-

tomers. From the SCM standpoint, the system must

provide the facilities to create multiple streams easily.

Developers should be able to implement the product

features into a stream, and the SCM system should

help migrate the software changes for specific features

to the other development streams automatically and

transparently. Furthermore, the developers should be

able to resolve code conflicts painlessly.

To hasten the development process, more than

one developer must sometimes work on the same file

at the same time rather than waiting for one developer

to finish before another can begin. For this reason, the

SCM system should allow multiple concurrent unre-

served checkouts of a file by different developers for

the same development stream. When a developer

attempts to check in a file after the first one, the sys-

tem should force the merging of any new changes

with those previously checked in.

Currently, most projects perform single-thread

development—that is, changes are made serially

and no merge technology is used. Parallel and con-

current development practices force projects toward

more multi-thread development using merge tech-

nology, which for some developers is a cultural

change. Managing any such change is usually a

challenge in itself.

Multi-Platform Support
Increasingly, software development activities are

performed on a heterogeneous set of platforms. More

and more, products must have an open architecture

and must be supported on several different platforms.

Often, the target platform for the product is different

from the development platform. From the SCM stand-

point, this difference requires either that the SCM sys-

tem work natively on all the development platforms of



158 Bell Labs Technical Journal ◆ Winter 1997

a project or at least that its major functionality be

available as a client on various development platforms.

For effective software development, it is essential that

the team members on all the development platforms

use the same SCM system and uniform SCM policies.

Integrated Build Management
Building target products from software files is a

primary software development activity. In this area,

the challenge for an SCM system not only is to provide

an efficient build mechanism on every target platform

but also to monitor each target product, the environ-

ment in which it was built, and the versions of all its

constituent software files. If the build management of

the SCM system is integrated with both the version

control and configuration management functions, all

the tracking and manufacturing of the software can be

done more efficiently.

Component-Based Development
Reuse at every level is becoming a business neces-

sity to produce high-quality products within increas-

ingly shorter intervals. More and more projects are

trying to use industry-standard components, domain-

specific reusable software components, or reusable

software platforms to build new products more

quickly. Each of these strategies requires SCM support

from a different angle. The SCM system should pro-

vide adequate facilities to search, access, and version

control all kinds of reusable assets. It should also pro-

vide impact analysis of sharing and/or changing a

component in the other configurations in which the

component has been used.

Internet-Based Development
Ever-increasing interest in the Internet and

Internet-based software development has posed new

challenges in the SCM area. First, customers now

expect to be connected with vendors via the Internet.

They desire the ability to enter product defects and to

check the status of fixes. Further, they want product

fixes and in some cases even products themselves to be

available for downloading through the Internet. This

feature requires that the SCM system have Internet

hooks in its defect tracking, support, and software

delivery and deployment subsystems. Second, it seems

that some products will be developed with Internet

technology like Java* and ActiveX*. In due course,

developers would want the SCM systems to provide a

well-integrated development environment for leverag-

ing these new technologies.

These challenges of the software development

environment are extending the boundaries of tradi-

tional SCM.

SCM Systems in Lucent Technologies
In the past, a few organizations could manage

with ad hoc SCM systems developed in house and typ-

ically consisting of some scripts that manipulated an

underlying version control tool, such as the Source

Code Control System (SCCS) or the Revision Control

System (RCS). Although such ad hoc systems achieved

a modest degree of SCM support with a moderate

investment in tool development and maintenance,

they rapidly became a resource drain for the organiza-

tion whenever more substantial SCM support was

needed. These systems provided only basic version

control and rudimentary configuration management

capabilities. As project size, complexity, and the geo-

graphic spread grew, the need for a more comprehen-

sive set of SCM functionalities increased as well. Thus,

most software development organizations began

switching to standard, integrated, and well-supported

SCM systems.

Today, the most widely used SCM system within

Lucent is the combination of the SABLIME® and

nmake systems. Both of these noncommercial systems,

which were designed and developed by Lucent, are

being enhanced and supported by the company’s

Software Technology Center. For the past ten years,

thousands of software professionals at Lucent and else-

where have been using these products on a wide vari-

ety of projects.

Another SCM system that predates the SABLIME

system—the Extended Change Management System

(ECMS)—is used in a few very large key projects.

ECMS was designed and developed by these projects

at Lucent for their specific needs, and the company’s

Platforms and Solutions Software Development

Environment supports it.

The next two subsections provide an overview of

the functionality and process supported by these



Bell Labs Technical Journal ◆ Winter 1997 159

SCM systems, including their relative strengths and

weaknesses.

Some projects in Lucent are beginning to use

commercial SCM systems. They include the ClearCase

CM* system and other related products from Pure

Atria, Inc., as well as the Aide-de-Camp/Pro* system

from True Software, Inc. These and few other leading

SCM systems, like Continuus* from the Continuus

Corporation, provide a wide range of SCM functional-

ity. Readers should examine the product information

provided by the respective vendors and some indepen-

dent sources2,3,4 for the relative strengths and weak-

nesses of these systems.

SABLIME/nmake Systems
Actually two independent products, the SABLIME

and nmake systems complement each other to provide

end-to-end configuration management. The SABLIME

system (see Figure 1) provides tightly integrated

change management, version control, and configura-

tion management capabilities. The nmake system pro-

vides state-of-the-art product build management.

One of the major strengths of the SABLIME sys-

tem is that it supports an out-of-the-box process

model, which is structured around the change-control

life cycle (see Figure 2). In the SABLIME system,

change requests are tracked both at the product level

(modification requests [MRs]) and at each stream of

product development (modification requests in generic

[MRGs]). Each stream of development corresponds to

a planned release of the product, thus supporting con-

current release development.

The change-request life cycle at both levels has

enough variability to review requests by one or more

project reviewers. It also can take any of the appro-

priate paths—for example, terminating the request at

an early stage, deferring the request for later action,

assigning it for a formal study, and/or accepting it for

further action for one or more development streams

(generally referred to as generics). Each change

request is assigned to one or more project members

with an appropriate priority and due date. If a change

request is large or spans several areas of responsibil-

ity, it can be subdivided into smaller (child) requests

Information
retrieval

subsystem

Source
management

subsystem

Miscellaneous
commands

MR management
subsystem

External MR
communication

subsystem

Administration
subsystem

SCCS SBCS

SABLIME®

databases

MR – Modification request
SBCS – Source and Binary Control System
SCCS – Source Code Control System

Figure 1. 
Overview of the SABLIME system’s architecture.



160 Bell Labs Technical Journal ◆ Winter 1997

and independently assigned, tracked, and managed

in different generics.

Using the authorized change request in a generic,

the assigned person changes the necessary product

components for the generic and completes the work

for the change request. Each change request may have

to pass various levels of independent tests performed

by designated test teams before it can be considered

approved for the general release. If a change request

fails certain tests, it is rejected back to the project

member who originally worked on it for additional

work. When a change request is marked approved for

all the generics in which it was accepted for work, it

can be closed.

The SABLIME system recognizes four different

classes of change requests: software, document,

firmware, and hardware. It allows customizing the

number of test levels, as well as the formation of test

teams for each change request class on a per-generic

basis depending on project size, rigor, and the desired

process. As a change request passes through its various

life-cycle stages, the designated project members are

notified of the event via e-mail for their subsequent

action. This intra-project communication promotes an

effective project management process of clearer

responsibility, as well as prompt and timely actions. At

every stage, the SABLIME system keeps track of who,

when, why, and what action was taken, as well as

which product components were affected. For each

change request, the system requires project members

to document detailed information about its descrip-

tion, the solution proposed as a result of the study, the

way it is resolved, the rejection notes if it did not pass

any tests, and its history.

The SABLIME system generates data to track the

quality of the product being developed under it, as

well as helping projects track, measure, and improve

the quality of their software development process.

On a per-change-request basis, the system enables

projects to collect and analyze the data to facilitate

assessing process quality metrics. For example, a pro-

ject can collect the data for a release on the develop-

ment phase in which the faults have been introduced,

are being detected, and should have been detected. At the

end of the release cycle, the analysis of these data can

help discover the gaps between phase introduced and

phase detected, as well as between phase detected and

phase should have been detected. Significant gaps suggest

that the project team should improve its process to

detect and correct the faults in a development phase

soon after the one in which they were introduced.

Similarly, various other metrics related to fault type,

fault detection, fault prevention, root-cause analysis,

and staff effort can help projects identify the lapses in

their process. Thus, the necessary actions can be

taken to improve the development process and the

product’s quality.

The SABLIME system provides tightly integrated

study

propose
mra_study

mra_deferred
defer

activate

createdcreate

fcreate

acceptedaccept

killmr

MRG
states

understudy

deferred

study

propose

defer

activate

assign
assigned

submit

reject
(source commands)

spawnmr

nochange

submitted

testpass

[test states]
reject

active

approve

approve
approved

spawned

nochange

closemr completed

killed

MR – Modification request
MRG – Modification request in generic

Italics – MR or MRG state
Bold – Command name

if test states defined

Figure 2. 
SABLIME system support for an out-of-the-box process model structured around the change-control life cycle.



Bell Labs Technical Journal ◆ Winter 1997 161

version, configuration, and change management. All

changes to a product require that the authorized per-

son possess an assigned change request for the desired

generic. The SABLIME system tracks all the compo-

nent changes associated with a change request. It pro-

vides two version control branches for each generic:

the development branch in which the assigned person

makes the changes, and the official branch containing

the cumulative result of all the approved changes.

Checking out a component file for changes

retrieves its latest version from the development

branch and checking in adds the new version at the

end of the development branch. The SABLIME system

does not allow simultaneous checkout of a file in a

generic by two different individuals, thus simplifying

the process at the cost of single threading. It allows

declaring a component file common across multiple

generics as long as the development branches for each

generic are identical.

For common files, as long as the change request is

authorized for all the common generics, the SABLIME

system automatically propagates all the changes com-

pleted in any of the common generics. Currently, for

uncommon files, the developer must make the corre-

sponding changes manually for each generic. A future

version of the SABLIME system will allow the auto-

matic propagation of changes for uncommon files.

Apart from common files, developers can work in dif-

ferent generics without ever interfering with each

other. For each generic, the system allows automatic

detection and creation of dependencies between

change requests for logically and physically dependent

changes in the files.

The SABLIME system provides a choice of main-

taining version history under either the SCCS or the

Source and Binary Control System (SBCS) version

control tools on a per-file basis. SCCS allows versions

of only ASCII files, and it has some line-length and

special character limitations. SBCS allows versioning of

ASCII and non-ASCII files, has no line length or spe-

cial character limitations, and provides data com-

paction for both the initial version and subsequent

changes. SABLIME keeps all the version-controlled

files in a central repository.

The distinctive characteristic of the SABLIME sys-

tem’s configuration management feature is the ability

to define and extract a complete or partial configura-

tion of a product’s files based on a group of change

requests. Such a group can be named and stored in

SABLIME and used later for retrieving the correspond-

ing configuration. While retrieving a desired version,

SABLIME ensures that the dependent change requests

are automatically included in the group. The extracted

product configuration can be built using the standard

make facility or the nmake tool.

The SABLIME system supports a distributed

development environment networked over the

Network File System (NFS), Transmission Control

Protocol/Internet Protocol (TCP/IP), or the Datakit®

virtual circuit switch. The repository for the managed

product resides on a centralized server that can be

accessed by all users simultaneously over the LAN or

WAN. Centralized databases provide ease of adminis-

tration and data auditing. SABLIME’s data repository

is a simple, efficient flat ASCII file-based relational

database. It provides an extensive set of standard

detailed, summary, and user-customized reports, as

well as raw data that can be post-processed using other

report generators. In addition, pie charts, bar graphs,

and tabular reports can be obtained. Data can be

extracted using powerful Structured Query Language

(SQL) queries.

The SABLIME system offers X Window System*-

and Microsoft Windows-based GUIs, a cursor-based

form interface, and the standard command-line user

interface. Each user interface provides extensive data

validation, on-line help messages, project-specific

menus, and defaults. In addition, screens can be cus-

tomized for labels, field names, and for their optional

or mandatory use. Projects can customize their

SABLIME usage by collecting additional project-

specific attributes for the change request at both the

product and generic levels. SABLIME has a unique

feature that allows cooperating projects (either in the

same or different location) to exchange information

about change requests and their status.

The nmake system has many features that clearly

make it one of the most sophisticated build engines in

the UNIX environment. It provides for an efficient

build environment supporting parallel build tasks on a



162 Bell Labs Technical Journal ◆ Winter 1997

single host, as well as the ability to distribute build

tasks to a network of build hosts. In addition, it is effi-

cient in processing makefiles because it works on a

precompiled version of the makefiles and preserves

the status of every build.

One of the most powerful features of nmake is

viewpathing, which enables project members to share

code while maintaining private development areas.

This helps to maintain project isolation and sharing at

the desired level while maximizing the use of disk

space. Viewpathing also provides an efficient work-

space management feature that allows users to build

against a common source baseline, override selected

files with local versions as desired, and reuse common

source and object files without copying them. If the

viewpath is set as shown in Figure 3, nmake first

checks the developer’s node, then the test node, and

finally the official node for required files.

The nmake system uses an extensive rule-based

language that allows projects to define custom asser-

tion rules and provides dynamic determination of

implicit prerequisite dependencies. This facilitates the

creation of concise, consistent, and flexible makefiles.

The nmake system’s support for almost any source lan-

guage (for example, C, C++, M4, and FORTRAN)

makes it a versatile build tool for a wide range of appli-

cation domains.

Extended Change Management System (ECMS)
Another SCM system, ECMS (which was men-

tioned earlier) is being used by some key, very large

software development projects in Lucent. The change

management process supported by ECMS is similar to

that of the SABLIME system.

The distinguishing characteristic of ECMS is its

featuring concept for version control. Essentially, the

featuring concept allows developers to apply individ-

ual changes in a release (characterized as a set of fea-

tures) and have them flow to other designated releases

without having to go through a formal merge process

and manually review all the file differences irrelevant

to the change. The implementation of featuring is sim-

ilar to the #ifde f construct in C language. Blocks of

text in source files can be made conditional on a par-

ticular feature by surrounding the text with 

#featur e and #endfeatur e constructs. The files

using this construction are called featured files. When

one of these files is checked out for edit, all its condi-

tional text and controlling conditions are present. A

specially enhanced editor called Version Editor (VE) is

sometimes used by developers to help screen and

manage the complexity of many levels (sometimes

nested) of the #featur e constructs.

When a featured file is retrieved for building or

testing, ECMS evaluates the conditions according to a

Developer’s node

developer

libraryinclude source
Test node

test

libraryinclude source
Official node

official

libraryinclude source

Order of directory search
for viewpathing

Figure 3. 
Viewpathing, which enables project members to share code while maintaining private development areas.



Bell Labs Technical Journal ◆ Winter 1997 163

specified feature set, and it puts the resulting unfea-

tured text in an extracted copy of the file. Thus, a user

making a change to a featured file must check in the

file before testing it.

By means of featuring, ECMS provides a form of

parallel development. Different generics can be

defined to use different feature sets. Therefore, ECMS

can provide direct support for files that must be similar

but not completely identical across a set of generics.

The file is made common across the generics, and the

differences between the generics are confined to

appropriate feature blocks. ECMS also economizes on

space by having just one working branch shared by

the common generics.

Criteria for Choosing an SCM System
Besides the SABLIME/nmake systems and ECMS,

projects can choose a commercial SCM system. Both

the internal Lucent SCM systems mentioned above

and leading commercial systems have enough capabil-

ities and are sufficiently scaleable to work reasonably

well in many projects. None of them, however, can be

considered a perfect system that provides all critical

SCM functions in the best form. Therefore, a project

must assess its real SCM needs within its budget—that

is, which SCM functionality is most important and

which system best meets its requirements while mini-

mizing custom development.

A streamlined and well-understood software

development process is crucial to any software pro-

ject. The SCM system chosen for a project is the heart of

the software development environment. Thus, the system

must instantiate the desired software development process.

A well-designed and integrated process manage-

ment function ensures a better quality software

product and improves project productivity by

enhancing coordination of individual contributions

into a harmonious whole.

The cost of providing an SCM solution has sev-

eral components and varies significantly. In addition

to the license price for the bundled and unbundled

SCM functions, two other cost factors must be care-

fully considered:

• The hardware resources necessary to achieve

acceptable performance, and

• The human resources needed to administer

and maintain the SCM system.

Furthermore, the cost of producing and maintaining

custom developed software in addition to an out-of-

the-box system can be significant depending on the

ease of use and flexibility of the SCM system.

The SABLIME system provides an out-of-the-box

process that is flexible, customizable, and tightly inte-

grated with an adequate configuration management

functionality. SABLIME’s concepts embodied in its

process are simple and easy to understand, and they

have a shorter learning curve than comparable prod-

ucts. At this time, SABLIME is an order of magnitude

less expensive to license than any other SCM system

available. It needs no additional hardware for accept-

able performance and requires only minimal adminis-

tration. However, the system does not support

distributed development through which databases

could be split at geographically dispersed sites with

changes synchronized at specified times. In addition, it

does not currently provide parallel development capa-

bilities for merging or migrating changes between

generics. This capability, however, is planned for a

future version. Although nmake complements

SABLIME for build management, the two systems are

not tightly integrated.

The change management system of ECMS is not

as comprehensive or flexible as that of SABLIME. For

example, it neither supports the child change request

concept nor allows a flexible number of test states.

Even though the featuring concept of ECMS is very

powerful in supporting change migration across mul-

tiple development streams, it clutters the source code

files with #feature constructs. These constructs

make the source code files increasingly difficult to

understand and maintain, particularly because the

project must support many different releases. ECMS

is built on top of SCCS. Thus, it supports only ASCII

files. The ECMS system only supports a command-

line user interface. Like SABLIME, ECMS does not

have an integrated build management system, so

nmake or any other build engine can be used for

building the products.

As the importance of the use of SCM receives

increasing recognition, the landscape of available SCM



164 Bell Labs Technical Journal ◆ Winter 1997

systems is changing rapidly. Projects must relearn

what to expect from an SCM system as the functional-

ities offered continue to evolve and new products

enable new approaches to the existing complex issues

of rapid software development. Staying abreast of

SCM systems requires considerable ongoing effort.

Experimenting to locate and implement a good SCM

system is time consuming and costly. Furthermore,

difficult-to-achieve consensus and the cooperation of a

large team of software developers are required.

Settling for a poor system or none at all can be much

more costly although the costs may be less obvious.

Conclusion
As software systems are becoming more and more

complicated, the development environments needed

to build these systems are becoming equally complex.

SCM has become the central pillar that supports vari-

ous facets of software development, particularly the

software development process. SCM in its traditional

role primarily provided version and configuration con-

trol. To meet the software challenges of the next cen-

tury, SCM systems extend further into the areas of

change, process, workspace, build, and release man-

agement while supporting a quality process. At pre-

sent, no particular SCM system provides all these

capabilities in the best form at a reasonable price.

Projects should examine their key needs critically and

choose an SCM system that not only supports but

instantiates the desired software development process.

A good SCM system is a key to developing high-

quality software products.

*Trademarks
Aide-de-Camp/Pro is a registered trademark of True

Software, Inc.

ClearCase CM is a registered trademark of Pure Atria,

Inc.

Continuus is a registered trademark of Continuus

Corp.

FrameMaker is a registered trademark of Frame

Technology Corp.

Java is a trademark of Sun Microsystems.

Microsoft and MS are registered trademarks and

ActiveX and Windows are trademarks of Microsoft

Corp.

UNIX is a registered trademark of Novell.

X Window System is a registered trademark of the

Massachusetts Institute of Technology.

Acknowledgments
The author wishes to thank Mark Heimerdinger

and John Snively, who provided valuable assistance in

the development and review of this paper.

References
1. W. Rigg, C. Burrows, and P. Ingram, Ovum

Evaluates: Configuration Management Tools, Ovum,
London, 1995.

2. S. A. Dart, “Not All Tools Are Created Equal,”
Application Development Trends, Vol. 3, No. 10,
Oct. 1996, pp. 39-50.

3. T. Parker, “Software Configuration Management
Tools,” UNIX Review, Vol. 13, No.11, Oct. 1995,
pp. 91-96.

4. R. D. Cronk, “Tributaries And Deltas,” Byte,
Jan. 1992, pp. 177-186.

Further Reading
– S. Cichinski and G. S. Fowler, “Product

Administration Through SABLE and nmake,”
AT&T Technical Journal, Vol. 67, No. 4,
July/Aug. 1988, pp. 59-70.

– S. A. Dart, The Past, Present, and Future of
Configuration Management, Software Engineering
Institute Technical Report CMU/SEI-92-TR-8,
ESC-TR-92-8, July 1992.

– D. B. Leblang, “The CM Challenge:
Configuration Management that Works,”
Configuration Management, edited by W. F. Tichy,
John Wiley, New York, 1994.

– M. Cagan and D. Wiborg-Weber, “Task-Based
Configuration Management: A New Generation of
Configuration Management,” American
Programmer, Vol. 9, No. 10, Oct. 1996, pp. 21-28.

– G. Horton, “Building a Software Development
Infrastructure,” American Programmer, Vol. 9,
No. 10, Oct. 1996, pp. 8-11.

– I. Sommerville, Sixth International Workshop
on Software Configuration Management,
Association of Computing Machinery, Special
Interest Group on Software Engineering 
(ACM SIGSOFT) – Software Engineering Notes,
Vol. 21, No. 4, July 1996, pp. 54-57.

– G. S. Fowler, J. E. Humelsine, and C. H. Olson,
“Tools and Techniques for Building and Testing
Software Systems,” AT&T Technical Journal,
Vol. 71, No. 6, Nov./Dec. 1992, pp. 46-61.

– T. R. Hsueh, T. F. Houghton, J. F. Maranzano,
and G. P. Pasternack, “Software Production:
From Art/Craft to Engineering,” AT&T Technical



Bell Labs Technical Journal ◆ Winter 1997 165

Journal, Vol. 73, No. 1, Jan./Feb. 1994, 
pp. 59-67.

– D. G. Belanger, E. E. Sumner, Jr., and
P. J. Weinberger, “Research in Software,” 
AT&T Technical Journal, Vol. 71, No. 6,
Nov./Dec. 1992, pp. 62-71.

– D. G. Belanger, G. D. Bergland, and M. Wish,
“Some Research Directions for Large-Scale
Software Development,” AT&T Technical Journal,
Vol. 67, No. 4, July/Aug. 1988, pp. 77-92.

– C. L. Pettijohn, “Achieving Quality in the
Development Process,” AT&T Technical Journal,
Vol. 65, No. 2, Mar./Apr. 1986, pp. 85-93.

(Manuscript approved March 1997)

ANIL K. MIDHA, formerly a distinguished member of
technical staff in Bell Labs’ Software
Technology Center, was the lead architect for
the SABLIME configuration management sys-
tem in the Software Practices and Technology
Department when this paper was developed.

He was responsible for the SABLIME system’s architec-
ture, design, and development, as well as for the training
and consulting services on software configuration man-
agement tools and processes. Mr. Midha holds a B.E.
degree in electronics and communication from the
University of Roorkee in India, and an M.Tech. degree
from the Indian Institute of Technology in New Delhi. ◆


	Introduction
	The Essence of SCM
	SCM System Characteristics
	Other Desirable Characteristics
	SCM Challenges in Lucent Technologies
	Distributed Development
	Parallel and Concurrent Development
	Multi-Platform Support
	Integrated Build Management
	Component-Based Development
	Internet-Based Development

	SCM Systems in Lucent Technologies
	SABLIME/nmakeSystems
	Extended Change Management System (ECMS)

	Criteria for Choosing an SCM System
	Conclusion
	References
	Further Reading


